
UltraLite™ for M-Business
Anywhere User’s Guide

Part number: DC20093-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001 Certicom Corp.
Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights reserved.
Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568; 5,761,305.
Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual v
SQL Anywhere Studio documentation vi
Documentation conventions ix
The CustDB sample database xi
Finding out more and providing feedback xii

1 Introduction to UltraLite for M-Business Anywhere 1
UltraLite for M-Business Anywhere features 2
UltraLite for M-Business Anywhere architecture 3

2 Understanding UltraLite for M-Business Anywhere Devel-
opment 5
UltraLite for M-Business Anywhere Quick Start 6
Working with the database schema 11
Connecting to an UltraLite database 13
Maintaining connections and application state across pages . 16
Encryption and obfuscation 17
Working with data using dynamic SQL 18
Working with data using the table API 23
Accessing schema information 30
Handling errors . 31
Authenticating users . 32
Synchronizing data . 33
Deploying UltraLite for M-Business Anywhere applications . . 37

3 Tutorial: A Sample Application for M-Business Anywhere 39
Introduction . 40
Lesson 1: Create a project architecture 41
Lesson 2: Create the application files 43
Lesson 3: Set up the M-Business Anywhere Server and Client 45
Lesson 4: Add startup code to your application 47
Lesson 5: Add inserts to your application 50
Lesson 6: Add navigation to your application 55
Lesson 7: Add updates and deletes to your application 56
Lesson 8: Add synchronization to your application 58

iii

4 UltraLite for M-Business Anywhere API Reference 61
Data types in UltraLite for M-Business Anywhere 62
Class AuthStatusCode . 63
Class Connection . 64
Class ConnectionParms . 72
Class DatabaseManager . 75
Class DatabaseSchema . 79
Class IndexSchema . 84
Class PreparedStatement . 87
Class PublicationSchema . 95
Class ResultSet . 96
Class ResultSetSchema . 103
Class SQLError . 106
Class SQLType . 110
Class SyncParms . 112
Class SyncResult . 120
Class TableSchema . 126
Class ULTable . 134
Class UUID . 154

Index 155

iv

About This Manual

Subject This manual describes UltraLite for M-Business Anywhere. With UltraLite
for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS,
Windows CE, or Windows XP.

M-Business Anywhere is iAnywhere’s platform for developing and
deploying mobile web-based applications. The previous name for the
product was AvantGo M-Business Server.

Audience This manual is intended for application developers who wish to take
advantage of the performance, resource efficiency, robustness, and security
of an UltraLite relational database for data storage and synchronization.

v

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere SNMP Extension Agent User’s Guide
This book describes how to configure the Adaptive Server Anywhere
SNMP Extension Agent for use with SNMP management applications to
manage Adaptive Server Anywhere databases.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

vi

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Server-Initiated Synchronization User’s Guide This book
describes MobiLink server-initiated synchronization, a feature of
MobiLink that allows you to initiate synchronization from the
consolidated database.

♦ MobiLink Tutorials This book provides several tutorials that walk you
through how to set up and run MobiLink applications.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

vii

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store, at
http://eshop.sybase.com/eshop/documentation.

viii

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

ix

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

x

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following diagram shows the tables in the CustDB database and how
they are related to each other.

ULOrderIDPool

pool_order_id
 integer

pool_emp_id
 integer

last_modified
 timestamp

ULCustomer

cust_id

integer

cust_name varchar(30)

last_modified

 timestamp

ULProduct

prod_id

integer

price
 integer

prod_name varchar(30)

ULOrder

order_id

integer

cust_id
 integer

prod_id
 integer

emp_id
 integer

disc
 integer

quant
 integer

notes
 varchar(50)

status
 varchar(20)

last_modified timestamp

ULEmployee

emp_id

integer

emp_name varchar(30)

last_download timestamp

ULEmpCust

emp_id

integer

cust_id

integer

action
 char(1)

last_modified timestamp

ULCustomerIDPool

pool_cust_id

integer

pool_emp_id
 integer

last_modified
 timestamp

ULIdentifyEmployee

emp_id
 integer
cust_id = cust_id

emp_id = emp_id

emp_id = emp_id

emp_id = pool_emp_id

prod_id = prod_id

cust_id = cust_id

emp_id = pool_emp_id

xi

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

xii

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xiii

xiv

CHAPTER 1

Introduction to UltraLite for M-Business
Anywhere

About this chapter This chapter introduces UltraLite for M-Business Anywhere. It assumes that
you are familiar with the features of UltraLite, as described in“Welcome to
UltraLite” [UltraLite Database User’s Guide,page 3].

Contents Topic: page

UltraLite for M-Business Anywhere features 2

UltraLite for M-Business Anywhere architecture 3

1

UltraLite for M-Business Anywhere features
UltraLite for M-Business Anywhere is a relational data management system
for mobile devices. It has the performance, resource efficiency, robustness,
and security required by business applications. UltraLite also provides
synchronization with enterprise data stores.

System requirements and supported platforms

Development platforms To develop applications using UltraLite for M-Business Anywhere, you
require the following:

♦ M-Business Anywhere is the new name for AvantGo M-Business Server.
This software requires M-Business Server 5.3 or later, and the
corresponding M-Business Anywhere client.

☞ For more information, see“UltraLite development platforms”
[Introducing SQL Anywhere Studio,page 99].

Target platforms UltraLite for M-Business Anywhere supports the following target platforms:

♦ Windows CE 3.0 and higher, with Pocket PC on the ARM processor.

♦ Palm OS version 5.0 and higher.

♦ Windows 2000 and Windows XP, starting with M-Business Anywhere
5.5.

☞ For more information, see“UltraLite target platforms”[Introducing SQL
Anywhere Studio,page 109].

2

Chapter 1. Introduction to UltraLite for M-Business Anywhere

UltraLite for M-Business Anywhere architecture
The UltraLite programming interface exposes a set of objects for data
manipulation using an UltraLite database. The following figure describes the
object hierarchy.

DatabaseManager

Connection
 DatabaseSchema

PublicationSchema

SyncParms

SyncResult

Table

TableSchema

IndexSchema

Column

ColumnSchema

Prepared Statement

ResultSet

ConnectionParms

ResultSetSchema

The following list describes some of the more commonly-used high level
objects.

♦ DatabaseManager manages connections to UltraLite databases.

☞ For more information, see“Class DatabaseManager” on page 75.

♦ ConnectionParms holds a set of connection parameters.

☞ For more information, see“Class ConnectionParms” on page 72.

♦ Connection represents a database connection, and governs transactions.

☞ For more information, see“Class Connection” on page 64.

♦ PreparedStatement, ResultSet, and ResultSetSchema manage
database requests and their results using SQL.

3

☞ For more information, see“Class PreparedStatement” on page 87,
“Class ResultSet” on page 96, and“Class ResultSetSchema” on page 103.

♦ Table manages data using a table-based API.

☞ For more information, see“Class ULTable” on page 134.

♦ SyncParms and SyncResult manage synchronization through the
MobiLink synchronization server.

☞ For more information about synchronization with MobiLink, see
“UltraLite Clients” [MobiLink Clients,page 277].

4

CHAPTER 2

Understanding UltraLite for M-Business
Anywhere Development

About this chapter This chapter describes application development using UltraLite for
M-Business Anywhere.

Contents Topic: page

UltraLite for M-Business Anywhere Quick Start 6

Working with the database schema 11

Connecting to an UltraLite database 13

Maintaining connections and application state across pages 16

Encryption and obfuscation 17

Working with data using dynamic SQL 18

Working with data using the table API 23

Accessing schema information 30

Handling errors 31

Authenticating users 32

Synchronizing data 33

Deploying UltraLite for M-Business Anywhere applications 37

5

UltraLite for M-Business Anywhere Quick Start
The following procedures describe how to run the supplied CustDB and
Simple sample applications.

Before you start, ensure that you have M-Business Anywhere 5.3 or later
installed and running, and that you have administrative privileges on the
server. You must also have a supported handheld device.

❖ To install and run M-Business Anywhere samples

1. Copy the UltraLite for M-Business Anywhere sample files to your
installation directory for deployment.
a. Open a command prompt and change directory to the

Samples\UltraLiteForMBusinessAnywhere\custdbsubdirectory of
your SQL Anywhere installation.

b. Run the following command:

build.bat install-dir

whereinstall-dir is the directory to which the CustDB and UltraLite
files should be deployed.
The batch file copies the required files into the location you specify. To
see what files are being copied, open
Samples\UltraLiteForMBusinessAnywhere\custdb\build.batin a text
editor.

2. Create a virtual directory in your web server that points to the install
directoryinstall-dir specified in step 1. The following instructions are for
Microsoft IIS:
a. Open the IIS management tool.

b. Right-click your web site and choose New Virtual Directory. Name
this virtual directoryCustDB and point it at your install directory
install-dir. Leave the other settings at their default values.

c. Right-click the new virtual directory and choose Properties. In the
HTTP Headers tab, click File Types and register the following file
extensions as the type application/octet-stream:
♦ dll
♦ usm
♦ cab
♦ pdb
♦ prc

d. Make a note of the URL that accesses the filemain.htmin this virtual
directory. In a default installation this would be
http://localhost/CustDB/main.htm.

6

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

3. Add users to M-Business Anywhere.

There are three ways to add new users to M-Business Anywhere: by
creating new user profiles, by allowing users to self-register, and by
importing a CSV file. These instructions describe how to create a new
user profile. For more information, see the M-Business Anywhere
documentation.

a. Log in to M-Business Anywhere as an administrator.

The default administrator account settings are a user ID ofAdmin and
an empty password.

b. Click the Users button.

c. Click the New User link. The Create New User page appears.

d. Type a unique user name in the User Name field.

e. Type the same password in the Password and the Confirm Password
fields.

f. Click Create to add the user, or click Create and Edit to create the user
and edit the user’s details.

4. Deploy the M-Business Anywhere Client to a handheld device or PC.

a. Click the Download Client Software Only link on the M-Business
Anywhere login page.

b. On the handheld device or PC, configure AvantGo Connect to
synchronize with the M-Business Anywhere server.

Enter the user ID and password of the new M-Business user account
you created.

c. Synchronize to the M-Business Anywhere server at least once to install
the client onto the device.

If you have connection problems at this stage, specify the IP number
rather than the host name as the host to avoid name resolution issues
with some versions of ActiveSync.

☞ For more information, see your M-Business Anywhere
documentation.

5. Add a group to M-Business Anywhere.

The group will be used to test UltraLite for M-Business Anywhere.

a. From a web browser, connect to M-Business Anywhere.

The default URL ishttp://localhostor http://localhost:8092.

b. Log in using the administrator account.

c. Click the Groups tab, and click New Group.

d. Name your groupUltraLite Samples.

7

6. Configure the M-Business Anywhere channel settings.

a. Add the user you created in step 3 to the new group UltraLite Samples.

b. User the group’s “web” tab, create the following channel.

Setting Value

Channel Name CustDB

Location http://localhost/CustDB/main.htm
or the URL from step 2.

Size 1000

Link depth 3

Allow binary
distribution

Yes (checked)

Hidden No (unchecked)

After setting the Location value, click View to confirm that you have
entered the value correctly.

7. Synchronize your client.

The initial synchronization downloads the UltraLite for M-Business
Anywhere files onto your handheld device.

❖ To verify your setup

1. Check that the required files are present.

♦ On Pocket PC, after you have synchronized the device, check that the
following files are in the\Program Files\AvantGo\Podsfolder:

♦ ulpod9.dll
♦ ul_custdb.usm

If any of these files are missing, you may have to manually copy them
over to the device.

♦ On Palm OS, after you have synchronized your device, check Palm OS
App Info for the presence of the following:

♦ ulpod
♦ ul_custdb

If any of these are missing, you may have to use the Palm install utility
to install the UltraLite for M-Business Anywhere runtime .prc and
sample schemas .pdb to the device.

♦ On Windows, after you have synchronized your device, check that the
following files are in theAvantGo\Podssubdirectory of yourAvantGo
Connectfolder:

8

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

♦ ulpod9.dll
♦ ul_custdb.usm
If any of these files are missing, you may have to manually copy them
over to the device.

2. Launch M-Business Client.

On your handheld device or PC, check that the About screen displays the
UltraLite for M-Business Anywhere version number. This confirms that
UltraLite for M-Business Anywhere is successfully installed.

3. Run the CustDB sample application.
a. Start the MobiLink synchronization server on your desktop.

From the Start menu, choose Programs➤ SQL Anywhere 9➤

MobiLink ➤ Synchronization Server Sample.

b. Start the CustDB application on your AvantGo Client.
The CustDB application is a link on your AvantGo home page.

c. Enter your user ID.
The default value is50.

d. Synchronize.
Either answer Yes to the prompt “Do you have a network connection
now?” or, in the CustDB application, click Synchronize. This
synchronizes data with MobiLink, and is a separate operation from
synchronizing with M-Business Anywhere.
You should now see data in the CustDB fields. You can now explore
the CustDB application.

☞ For information about the CustDB sample application, see“The
CustDB Sample Application”[MobiLink Tutorials,page 99].

HotSync with multiple
databases

Each UltraLite database on a Palm OS device must have a distinct creator ID
to work properly with HotSync. In addition, an application with that creator
ID must exist on the Palm OS device.

The HotSync Manager uses each application’s creator ID as an identifier to
handle synchronization. It hands each properly configured UltraLite
application to the MobiLink conduit for synchronization. The conduit
searches for and synchronizes a database with the same creator ID as the
application.

☞ For information about configuring the conduit, see“Understanding
HotSync synchronization”[MobiLink Clients,page 296].

All UltraLite for M-Business Anywhere applications inherit the creator ID
of the AvantGo client, which isAvGo. This inheritance means that only one
UltraLite database with creator IDAvGo can be synchronized, and that if

9

you assign a distinct creator ID to your database, HotSync will not find it
because there is no application with a corresponding creator ID.

This limitation is not an issue for the two sample applications (CustDB and
Simple), as they share a common database schema. The only side effect is
that when you synchronize the CustDB database, the Simple sample is also
synchronized.

☞ For information on resolving this problem, see“Understanding the Palm
Creator ID” [UltraLite Database User’s Guide,page 191].

10

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

Working with the database schema
The schema is the structure of a database. It is the collection of table
definitions, index definitions, and publication definitions within the database,
and all the relationships between them.

You create UltraLite databases by creating an UltraLite database schema file
and apply that file to a database by calling a function in your application.

Creating UltraLite database schema files

You can create an UltraLite schema file using the UltraLite Schema Painter
or theulinit utility.

♦ UltraLite Schema Painter The UltraLite Schema Painter is a graphical
utility for creating and editing UltraLite schema files.

To start the Schema painter, choose Start➤ Programs➤
SQL Anywhere 9➤ UltraLite ➤ UltraLite Schema Painter, or
double-click a schema (.usm) file in Windows Explorer.

☞ For more information about using the UltraLite Schema Painter, see
“Lesson 1: Create an UltraLite database schema”[UltraLite Database
User’s Guide,page 130].

♦ The ulinit utility If you have the Adaptive Server Anywhere database
management system, you can generate an UltraLite schema file using the
ulinit command line utility.

☞ For more information about using theulinit utility, see“The ulinit
utility” [UltraLite Database User’s Guide,page 112].

Changing the schema of a database

To change the schema of an existing database, create a schema file with the
new schema and apply this schema to the existing database. In most cases
there will be no data loss, but data loss can occur if columns are deleted or if
the data type for a column is changed to an incompatible type.

☞ For more information about these methods, see“Method
applyFileWithParms” on page 79and“Method applyFile” on page 79.

You can also change the schema by executing the following SQL statements:

♦ “CREATE INDEX statement”[UltraLite Database User’s Guide,page 172]
♦ “CREATE TABLE statement”[UltraLite Database User’s Guide,page 173]
♦ “DROP INDEX statement”[UltraLite Database User’s Guide,page 178]

11

♦ “DROP TABLE statement”[UltraLite Database User’s Guide,
page 178]“DROP INDEX statement”[UltraLite Database User’s Guide,
page 178]

12

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

Connecting to an UltraLite database
UltraLite applications must connect to a database before carrying out
operations on the data in it. This section describes how to connect to an
UltraLite database.

Using the Connection
object

The following properties of the Connection object govern global application
behavior.

☞ For more information about the Connection object, see“Class
Connection” on page 64.

♦ Commit behavior By default, UltraLite applications are in
AutoCommit mode. Each insert, update, or delete statement is committed
to the database immediately. Set Connection.autoCommit to false to build
transactions into your application. Turning autoCommit off and
performing commits directly can improve the performance of your
application.

☞ For more information, see“Method commit” on page 66.

♦ User authentication You can change the user ID and password for the
application from the default values of DBA and SQL by using the
grantConnectTo and revokeConnectFrom methods.

☞ For more information, see“Authenticating users” on page 32.

♦ Synchronization A set of objects governing synchronization are
accessed from the Connection object.

☞ For more information, see“Synchronizing data” on page 33.

♦ Tables UltraLite tables are accessed using the Connection.getTable
method.

☞ For more information, see“Method getTable” on page 68.

Connecting to a
database

You can connect to a database using either a ConnectionParms object or a
connection string. Methods that use a ConnectionParms object allow you to
manipulate connection parameters with ease and accuracy. Methods that use
a connection string require that you successfully create a connection string.

Using ConnectionParms to connect to a database

The following procedure uses a ConnectionParms object to connect to an
UltraLite database.

13

❖ To connect to an UltraLite database using ConnectionParms

1. Create a DatabaseManager object.

You should create only one DatabaseManager object per application.
This object is at the root of the object hierarchy. For this reason, it is often
best to declare the DatabaseManager object as global to the application.

dbMgr = CreateObject(
"iAnywhere.UltraLite.DatabaseManager.myDB");

if (dbMgr == null || dbMgr.sqlCode < 0) {
alert(

"Fatal Error! Cannot create database manager object: "
+ dbMgr.sqlCode);

}

2. Declare a ConnectionParms object and locate the directory where
M-Business Anywhere places the downloaded files.

For example:

var parm = dbMgr.createConnectionParms();
var dir = dbMgr.directory;

3. Set the required properties of the ConnectionParms object.

For example:

parm.connectionName = "simpleCon";

parm.schemaOnPalm = "ul_custapi";
parm.databaseOnPalm = "AvGo";
parm.databaseOnCE = dir + " \\ul_custapi.udb";
parm.schemaOnCE = dir + " \\ul_custapi.usm";

4. Open a connection to the database.

CreateDatabaseWithParms and OpenConnectionWithParms return an
open connection as a Connection object. Each method takes a single
ConnectionParms object as its argument.

For example:

try {
Connection = dbMgr.reOpenConnection("custdb");

if (Connection == null) {
Connection = dbMgr.openConnectionWithParms(parm);

}
} catch (ex) {

if (DatabaseMgr.sqlCode !=
DatabaseMgr.SQLError.SQLE_ULTRALITE_DATABASE_NOT_

FOUND) {
alert("Database Error! " + ex.getMessage());
return;

}
}

14

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

☞ For more information, see“Method createDatabaseWithParms” on
page 76and“Method openConnectionWithParms” on page 77.

15

Maintaining connections and application state
across pages

The scope of a JavaScript variable is limited to one web page. Most web
applications require multiple pages, and so a mechanism is needed for
making some objects persistent across the pages of an application.

UltraLite for M-Business Anywhere provides persistence for the ULTable,
ResultSet, and PreparedStatement objects. To make one of these objects
persist across pages, supply apersistent nameas a parameter when creating
the object. You can use the persistent name on subsequent pages.

To carry a connection object from page to page, you reopen the connection
on each page. One way to do this is to use the reOpen method. Another is to
supply an open method on each page, perhaps by including a JavaScript file
on each web page to initialize the settings. For examples of how to do this,
see the sample files
Samples\UltraLiteForMBusinessAnywhere\CustDB\main.htmand
Samples\UltraLiteForMBusinessAnywhere\Simple\main_page.htm.

The requirement to reopen connections across pages provides a security
feature for UltraLite applications. You can use it to require that the user
confirm some information, perhaps the password, on moving from page to
page.

See also ♦ “Method reOpenConnection” on page 78
♦ “Class PreparedStatement” on page 87
♦ “Class ResultSet” on page 96
♦ “Class ULTable” on page 134
♦ “Class PreparedStatement” on page 87

16

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

Encryption and obfuscation
You can encrypt or obfuscate your UltraLite database using UltraLite for
M-Business Anywhere.

☞ For more information about database encryption, see“Encrypting
UltraLite databases”[UltraLite Database User’s Guide,page 36].

Encryption To create a database with encryption, set the
ConnectionParms.encryptionKey property. When you call
CreateDatabaseWithParms and pass in the ConnectionParms object, the
database created and encrypted with the specified key.

☞ For more information about the EncryptionKey property, see
“Encryption Key connection parameter ”[UltraLite Database User’s Guide,
page 75]and“Method changeEncryptionKey” on page 65.

Example You can change the encryption key by specifying the new encryption key on
the Connection object. In this example, “apricot” is the encryption key.

conn.changeEncryptionKey("apricot")

After the database is encrypted, connections to the database must specify the
correct encryption key. Otherwise, the connection fails.

Obfuscation To obfuscate the database, specifyobfuscate=1 in the
ConnectionParms.additionalParms string. For example:

var open_parms = dbMgr.createConnectionParms();
open_parms.additionalParms = "obfuscate=1";
Connection = dbMgr.createDatabase(open_parms);

☞ For more information, see“Properties” on page 64.

17

Working with data using dynamic SQL
UltraLite applications can access table data using dynamic SQL or the Table
API. This section describes data access using dynamic SQL.

☞ For information about the Table API, see“Working with data using the
table API” on page 23.

This section explains how to perform the following tasks using dynamic
SQL.

♦ Inserting, deleting, and updating rows.

♦ Executing a query.

♦ Scrolling through the rows of a result set.

☞ This section does not describe the SQL language itself. For information
about dynamic SQL features, see“Dynamic SQL” [UltraLite Database User’s
Guide,page 159].

☞ The sequence of operations required is similar for any SQL operation.
For an overview, see“Using dynamic SQL”[UltraLite Database User’s Guide,
page 161].

Data manipulation: INSERT, UPDATE and DELETE

With UltraLite, you can perform SQL Data Manipulation Language
operations. These operations are performed using the ExecuteStatement
method, a member of the PreparedStatement class.

☞ For more information the PreparedStatement class, see“Class
PreparedStatement” on page 87.

Parameter markers in prepared statements
UltraLite handles variable values using the ? parameter marker. For any
INSERT, UPDATE or DELETE, each ? is referenced according to its
ordinal position in the prepared statement. For example, the first ? is
referred to as 1, and the second as 2.

❖ To INSERT a row

1. Declare a PreparedStatement object.

var PrepStmt;

2. Assign an INSERT statement to your prepared statement object. In the
following, TableName and ColumnName are the names of a table and
column.

18

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

PrepStmt = conn.prepareStatement(
"INSERT into TableName(ColumnName) values (?)", null);

The null parameter indicates that the statement has no persistent name.

3. Assign parameter values to the statement.

var NewValue;
NewValue = "Bob";
PrepStmt.setStringParameter(1, NewValue);

4. Execute the statement.

PrepStmt.executeStatement(null);

❖ To UPDATE a row

1. Declare a PreparedStatement object.

var PrepStmt;

2. Assign an UPDATE statement to your prepared statement object. In the
following, TableName and ColumnName are the names of a table and
column.

PrepStmt = conn.prepareStatement(
"UPDATE TableName SET ColumnName = ? WHERE ID = ?", null);

The null parameter indicates that the statement has no persistent name.

3. Assign parameter values to the statement using methods appropriate for
the data type.

var NewValue;
NewValue = "Bob";
PrepStmt.setStringParameter(1, NewValue);
PrepStmt.setIntParameter(2, 6);

4. Execute the statement

PrepStmt.executeStatement();

❖ To DELETE a row

1. Declare a PreparedStatement object.

var PrepStmt;

2. Assign a DELETE statement to your prepared statement object.

PrepStmt = conn.prepareStatement(
"DELETE FROM customer WHERE ID = ?", null);

The null parameter indicates that the statement has no persistent name.

19

3. Assign parameter values for the statement.

var IDValue;
IDValue = 6;
PrepStmt.setIntParameter(1, IDValue);

4. Execute the statement.

PrepStmt.executeStatement();

Data retrieval: SELECT

When you execute a SELECT statement, the
PreparedStatement.executeQuery method returns a ResultSet object. The
ResultSet class contains methods for navigating within a result set.

☞ For more information about ResultSet objects, see“Class ResultSet” on
page 96.

Example In the following code, the results of a query are accessed as a ResultSet.
When first assigned, the ResultSet is positioned before the first row. The
ResultSet.moveFirst method is then called to navigate to the first record in
the result set.

var MyResultSet;
var PrepStmt;
PrepStmt = conn.prepareStatement(_

"SELECT ID, Name FROM customer", null);
MyResultSet = PrepStmt.executeQuery(null);
MyResultSet.moveFirst();

Example The following code demonstrates how to obtain column values for the
current row. The example uses character data; similar methods are available
for other data types.

The getString method uses the following syntax:
MyResultSetName.getString(Index) whereIndex is the ordinal position of
the column name in your SELECT statement.

if (MyResultSet.getRowCount() == 0) {
} else {

alert(MyResultSet.getString(1));
alert(MyResultSet.getString(2));
MyResultSet.moveRelative(0);

}

☞ For more information about navigating a result set, see“Navigation with
dynamic SQL” on page 21.

The following procedure uses a SELECT statement to retrieve information
from the database. The results of the query are assigned to a ResultSet

20

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

object.

❖ To perform a SELECT statement

1. Declare a PreparedStatement object.

var OrderStmt;

2. Assign a prepared statement to your PreparedStatement object.

OrderStmt = Connection.prepareStatement(
"SELECT order_id, disc, quant, notes, status, c.cust_id,

cust_name, p.prod_id, prod_name, price
FROM ULOrder o, ULCustomer c, ULProduct p
WHERE o.cust_id = c.cust_id
AND o.prod_id = p.prod_id
ORDER BY der_id", "order_query_stmt");

The second parameter is a persistent name that provides cross-page
JavaScript object persistence.

3. Execute the query.

OrderResultSet = OrderStmt.executeQuery("order_query");

☞ For more information on how to use queries, see the CustDB sample
code inSamples\UltraLiteForMBusinessAnywhere\CustDB\custdb.js.

Navigation with dynamic SQL

UltraLite for M-Business Anywhere provides you with a number of methods
to navigate a result set in order to perform a wide range of navigation tasks.

The following methods of the ResultSet object allow you to navigate your
result set:

♦ moveAfterLast moves to a position after the last row.

♦ moveBeforeFirst moves to a position before the first row.

♦ moveFirst moves to the first row.

♦ moveLast moves to the last row.

♦ moveNext moves to the next row.

♦ movePrevious moves to the previous row.

♦ moveRelative moves a certain number of rows relative to the current
row. Positive index values move forward in the result set, negative index
values move backward in the result set, and zero does not move the
cursor. Zero is useful if you want to repopulate a row buffer.

21

Example The following code fragment demonstrates how to use the MoveFirst
method to navigate within a result set.

PrepStmt = conn.prepareStatement(
"SELECT ID, Name FROM customer", null);

MyResultSet = PrepStmt.executeQuery(null);
MyResultSet.moveFirst();

The same technique is used for all of the move methods.

☞ For more information about these navigational methods, see“Class
ResultSet” on page 96.

The ResultSetSchema object

The ResultSet.schema property allows you to retrieve information about the
columns in the query.

The following example demonstrates how to use ResultSetSchema to
capture schema information.

var i;
var MySchema = rs.schema ;
for (i = 1; i <= MySchema.columnCount; i++) {

colname = MySchema.getColumnName(i);
coltype = MySchema.getColumnSQLType(colname).toString();
alert (colname + " " + coltype);

}

22

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

Working with data using the table API
UltraLite applications can access table data using dynamic SQL or the Table
API. This section describes data access using the Table API.

☞ For information about dynamic SQL, see“Working with data using
dynamic SQL” on page 18.

This section explains how to perform the following tasks using the Table
API.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

Navigation with the Table API

UltraLite for M-Business Anywhere provides you with a number of methods
to navigate a table in order to perform a wide range of navigation tasks.

The following methods of the ULTable object allow you to navigate your
result set:

♦ moveAfterLast moves to a position after the last row.

♦ moveBeforeFirst moves to a position before the first row.

♦ moveFirst moves to the first row.

♦ moveLast moves to the last row.

♦ moveNext moves to the next row.

♦ movePrevious moves to the previous row.

♦ moveRelative moves a certain number of rows relative to the current
row. Positive index values move forward in the table, negative index
values move backward in the table, and zero does not move the cursor.
Zero is useful if you want to repopulate a row buffer.

Example The following code opens the customer table and scrolls through its rows. It
then displays an alert with the last name of each customer.

23

var tCustomer;
tCustomer = conn.getTable("customer", null);
tCustomer.open();
tCustomer.moveBeforeFirst();
While (tCustomer.moveNext()) {

alert(tCustomer.getString(3));
}

Specifying an index You expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rows in a particular order.

Example The following code moves to the first row of the customer table as ordered
by the ix_name index.

tCustomer = conn.getTable("customer", null);
tCustomer.openWithIndex("ix_name");
tCustomer.moveFirst();

Accessing the values of the current row

At any time, a ULTable object is positioned at one of the following places.

♦ Before the first row of the table.

♦ On a row of the table.

♦ After the last row of the table.

If the ULTable object is positioned on a row, you can use one of the ULTable
get methods to get the value of each column for the current row.

Example The following code fragment retrieves the value of three columns from the
tCustomer ULTable object, and displays them in text boxes.

var colID, colFirstName, colLastName;
colID = tCustomer.schema.getColumnID("id");
colFirstName = tCustomer.schema.getColumnID("fname");
colLastName = tCustomer.schema.getColumnID("lname");
alert(tCustomer.getInt(colID));
alert(tCustomer.getString(colFirstName));
alert(tCustomer.getString(colLastName));

You can also use methods of ULTable to set values.

tCustomer.setString(colLastName, "Kaminski");

By assigning values to these properties you do not alter the value of the data
in the database.

You can assign values to the properties even if you are before the first row or

24

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

after the last row of the table. You cannot, however, get values from the
column. For example, the following code fragment generates an error.

tCustomer.moveBeforeFirst();
id = tCustomer.getInt(colID);

Searching rows with find and lookup

UltraLite has several modes of operation for working with data. Two of
these modes, the find and lookup modes, are used for searching. The
ULTable object has methods corresponding to these modes for locating
particular rows in a table.

Note
The columns searched using Find and Lookup methods must be in the
index used to open the table.

♦ Find methods move to the first row that exactly matches a specified
search value, under the sort order specified when the ULTable object was
opened.

☞ For more information about find methods, see“Class ULTable” on
page 134.

♦ Lookup methods move to the first row that matches or is greater than a
specified search value, under the sort order specified when the ULTable
object was opened.

☞ For more information about lookup methods, see“Class ULTable” on
page 134.

❖ To search for a row

1. Enter find or lookup mode.

Call the FindBegin or LookupBegin method. For example, the following
code fragment calls ULTable.findBegin.

tCustomer.findBegin();

2. Set the search values.

You do this by setting values in the current row. Setting these values
affects the buffer, not the database. For example, the following code
fragment sets the last name column in the buffer to Kaminski.

tCustomer.setString(3, "Kaminski");

For multi-column indexes, a value for the first column is required, but
you can omit the other columns.

25

3. Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index.

tCustomer.findFirst();

Inserting, updating, and deleting rows

UltraLite exposes the rows in a table to your application one at a time. The
ULTable object has a current position, which may be on a row, before the
first row, or after the last row of the table.

When your application changes location, UltraLite makes a copy of the row
in a buffer. Any operations to get or set values affect only the copy of data in
this buffer. They do not affect the data in the database.

Example The following statement changes the value of the first column in the buffer
to 3.

tCustomer.setInt(1 , 3);

Using UltraLite modes The UltraLite mode determines the purpose for which the values in the
buffer will be used. UltraLite has the following four modes of operation, in
addition to a default mode.

♦ Insert mode The data in the buffer is added to the table as a new row
when the ULTable.insert method is called.

♦ Update mode The data in the buffer replaces the current row when the
ULTable.update method is called.

♦ Find mode Used to locate a row whose value exactly matches the data
in the buffer when one of the ULTable.find methods is called.

♦ Lookup mode Used to locate a row whose value matches or is greater
than the data in the buffer when one of the ULTable.lookup methods is
called.

❖ To update a row

1. Move to the row you wish to update.

You can move to a row by scrolling through the table or by searching
using Find and Lookup methods.

2. Enter Update mode.

26

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

For example, the following instruction enters Update mode on the table
tCustomer.

tCustomer.updateBegin();

3. Set the new values for the row to be updated.

For example, the following instruction sets the new value to Elizabeth.

tCustomer.setString(2, "Elizabeth");

4. Execute the Update.

tCustomer.update();

After the update operation, the current row is the row that was just updated.
If you changed the value of a column in the index specified when the
ULTable object was opened, the current position is undefined.

By default, UltraLite operates in AutoCommit mode, so that the update is
immediately applied to the row in permanent storage. If you have disabled
AutoCommit mode, the update is not applied until you execute a commit
operation. For more information, see“Transaction processing in UltraLite”
on page 28.

Caution
Do not update the primary key of a row: delete the row and add a new row
instead.

Inserting rows The steps to insert a row are similar to those for updating rows, except that
there is no need to locate any particular row in the table before carrying out
the insert operation. Rows are automatically sorted by the index specified
when opening the table.

❖ To insert a row

1. Enter Insert mode.

For example, the following instruction enters Insert mode on the table
CustomerTable.

tCustomer.insertBegin();

2. Set the values for the new row.

If you do not set a value for one of the columns, and that column has a
default, the default value is used. If the column has no default, NULL is
used. If the column does not allow NULL, the following defaults are
used:

♦ For numeric columns, zero.

27

♦ For character columns, an empty string.
To set a value to NULL explicitly, use the setNull method.

colID = tCustomer.schema.getColumnID("id");
colFirstName = tCustomer.schema.getColumnID("fname");
colLastName = tCustomer.schema.getColumnID("lname");
tCustomer.setInt(colID, 42);
tCustomer.setString(colFirstName, "Mitch");
tCustomer.setString(colLastName, "McLeod");

3. Execute the insertion.

The inserted row is permanently saved to the database when a Commit is
carried out. In AutoCommit mode, a Commit is carried out as part of the
Insert method.

tCustomer.insert();

Deleting rows There is no delete mode corresponding to the insert or update modes.

The following procedure deletes a row.

❖ To delete a row

1. Move to the row you wish to delete.

2. Execute the delete:

tCustomer.deleteRow();

Working with BLOB data

You can fetch BLOB data for columns declared BINARY or LONG
BINARY using the GetByteChunk method.

☞ For more information, see“Method getStringChunk” on page 142.

Transaction processing in UltraLite

UltraLite provides transaction processing to ensure the integrity of the data
in your database. A transaction is a logical unit of work. Either the entire
transaction is executed, or none of the statements in the transaction are
executed.

By default, UltraLite operates in AutoCommit mode. In AutoCommit mode,
each insert, update, or delete is executed as a separate transaction. Once the
operation is completed, the change is made to the database.

If you set the Connection.autoCommit property to false, you can use
multi-statement transactions. For example, if your application transfers

28

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

money between two accounts, the deduction from the source account and the
addition to the destination account constitute a single transaction.

If AutoCommit is false, you must execute a Connection.commit statement to
complete a transaction and make changes to your database permanent, or
you may execute a Connection. Rollback statement to cancel all the
operations of a transaction. Turning AutoCommit off improves performance.

Note
Synchronization causes a Commit even if you have AutoCommit set to
False.

29

Accessing schema information
Each Connection, ULTable, and ResultSet object contains a schema
property. These schema objects provide information about the tables,
columns, indexes, and publications in a database.

☞ For information about modifying the schema, see“Changing the schema
of a database” on page 11.

♦ DatabaseSchema The number and names of the tables in the database,
as well as global properties such as the format of dates and times.

To obtain a DatabaseSchema object, access the
Connection.databaseSchema property.

♦ TableSchema The number and names of columns in the table, as well
as the Indexes collections for the table.

To obtain a TableSchema object, access the ULTable.schema property.

♦ IndexSchema Information about the column, or columns, in the index.
As an index has no data directly associated with it, there is no separate
Index object, only a IndexSchema object.

The IndexSchema objects are accessed using the TableSchema.getIndex
method.

♦ PublicationSchema The numbers and names of tables and columns
contained in a publication. Publications are also comprised of schema
only, so there is a PublicationSchema object but no Publication object.

The PublicationSchema objects are accessible using the
DatabaseSchema.getPublicationSchema method.

♦ ResultSetSchema The number and names of the columns in a result
set.

The ResultSetSchema objects are accessible using the
PreparedStatement.getResultSetSchema method or the ResultSet.schema
property.

30

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

Handling errors
In normal operation, UltraLite for M-Business Anywhere can throw errors
that are intended to be caught and handled in the script environment. Errors
are expressed as SQLCODE values, negative numbers indicating the
particular kind of error.

☞ For a list of error codes thrown by UltraLite for M-Business Anywhere,
see“Class SQLError” on page 106.

UltraLite for M-Business Anywhere throws errors only from the
DatabaseManager and Connection objects. The following methods of
DatabaseManager can throw errors.

♦ createDatabase
♦ createDatabaseWithParms
♦ dropDatabase
♦ dropDatabaseWithParms
♦ openConnection
♦ openConnectionWithParms

All other errors and exceptions within UltraLite for M-Business Anywhere
are routed through the Connection object.

☞ For more information about accessing error numbers from
DatabaseManager and Connection objects, see“Class Connection” on
page 64and“Class DatabaseManager” on page 75.

31

Authenticating users
New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password of DBA and SQL,
respectively, you must first connect as this initial user.

You cannot change a user ID: you add a user and delete an existing user. A
maximum of four user IDs are permitted for each UltraLite database.

☞ For more information about granting or revoking connection authority,
see“Method grantConnectTo” on page 68and“Method
revokeConnectFrom” on page 69.

❖ To add a user or change the password for an existing user

1. Connect to the database as a user with DBA authority.

2. Grant the user connection authority with the desired password.

conn.grantConnectTo("Robert", "newPassword");

❖ To delete an existing user

1. Connect to the database as a user with DBA authority.

2. Revoke the user’s connection authority as follows.

conn.revokeConnectFrom("Robert");

32

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

Synchronizing data
UltraLite for M-Business Anywhere applications typically involve two kinds
of synchronization:

♦ Web content synchronization Web content, including HTML pages
that define the application itself, is synchronized through M-Business
Anywhere.

♦ Data synchronization The UltraLite database is synchronized with a
MobiLink synchronization server.

Although these two kinds of synchronization are distinct, you can initiate
them together in a technique calledone-button synchronization.
One-button synchronization is the recommended model for most
applications, but as there may be cases where it is necessary to keep
synchronization of data and web content entirely separate, that technique is
discussed below.

One-button synchronization

One-button synchronization is a technique for initiating web content
synchronization (using M-Business Anywhere) and UltraLite data
synchronization (using MobiLink) in a single operation. It is available on
Windows CE and Windows XP only. The architecture of one-button
synchronization is as follows:

MobiLink

Synchronization

Server

M-Business

Anywhere

Web content

synchronization

Data

synchronization

UltraLite for M-

Business

Anywhere

application

The sequence of events in one button synchronization is as follows:

33

1. The user synchronizes their web application, perhaps by placing it in the
cradle.

2. The M-Business Client synchronizes the web content.

3. The MBConnect component of M-Business Client calls theulconnect.exe
application.

4. ulconnect.exeinitiates synchronization of the UltraLite database.

5. Data is synchronized with MobiLink.

To implement one-button synchronization you must carry out the following
steps:

1. In your application, set the synchronization parameters for MobiLink
synchronization.

If you are synchronizing through M-Business Anywhere you can use the
SyncParms.setMBAServer method to set the host and port
synchronization parameters. For more information, see“Method
setMBAServer” on page 116.

Otherwise, use the standard methods to set synchronization parameters.
For more information, see“Class SyncParms” on page 112.

2. Save the synchronization parameters so that they can be read by
ulconnect.exe.

Call the Connection.SaveSyncParms method to save the synchronization
parameters. For more information, see“Method saveSyncParms” on
page 70.

Synchronizing data

For most users it is useful to use one-button synchronization, which initiates
both data synchronization and web content synchronization. For more
information, see“One-button synchronization” on page 33.

This section is for those users who wish to synchronize data separately from
web content synchronization.

Synchronization requires the MobiLink synchronization server and
appropriate licensing. You can find a working example of synchronization in
the CustDB sample application.

UltraLite for M-Business Anywhere supports TCP/IP, HTTP, HTTPS, and
HotSync synchronization. Synchronization is initiated by the UltraLite
application. In all cases, you use methods and properties of the Connection
object to control synchronization.

34

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

Note
To synchronize using encrypted synchronization (HTTPS) or to use en-
cryption over TCP/IP you must obtain the separately-licensable security
option. To order this option, see the card in your SQL Anywhere Studio
package or seehttp://www.sybase.com/detail?id=1015780.

☞ For more information, see“Welcome to SQL Anywhere Studio”
[Introducing SQL Anywhere Studio,page 4].

❖ To synchronize over TCP/IP or HTTP

1. Prepare the synchronization information.

Assign values to the required properties of the Connection.syncParms
object.

☞ For information about the properties and the values that you should
set, see“UltraLite Clients” [MobiLink Clients,page 277].

2. Synchronize.

Call the Connection.synchronize method.

Synchronizing data via M-Business Anywhere

Whether you use one-button synchronization or separate data
synchronization, you can use a MobiLink Redirector to configure your
M-Business Anywhere server to route data to and from a MobiLink
synchronization server. For synchronization from outside the firewall, this
reduces the number of ports that need to be externally accessible.

The following diagram illustrates the architecture for the case of one-button
synchronization.

35

http://www.sybase.com/detail?id=1015780

MobiLink

Synchronization

Server

M-Business

Anywhere

Web content

synchronization

Data

synchronization

Redirector

UltraLite for M-

Business

Anywhere

application

❖ To synchronize data via M-Business Anywhere

1. At the server side, set up a MobiLink Redirector to route data between
M-Business Anywhere and your MobiLink synchronization server.

☞ For information on the MobiLink Redirector for M-Business
Anywhere, see“M-Business Anywhere Redirector”[MobiLink
Administration Guide,page 153].

2. In your client, set synchronization parameters so that UltraLite
synchronization is directed to the host and port number of M-Business
Anywhere. You can use the SyncParms.setMBAServer method to carry
out this task.

☞ For more information, see“Method setMBAServer” on page 116.

3. From a client application, initiate synchronization using either one-button
synchronization or separate data synchronization.

☞ For more information, see“One-button synchronization” on page 33,
and“Synchronizing data” on page 34.

36

Chapter 2. Understanding UltraLite for M-Business Anywhere
Development

Deploying UltraLite for M-Business Anywhere
applications

When you have completed your application or when you wish to test your
application, you need to deploy it to a device. This section outlines the steps
needed to deploy an UltraLite application to a device.

Deploying applications to Windows CE and Windows XP

You must carry out the following steps to deploy an UltraLite application to
a Windows CE device:

♦ Deploy your application and UltraLite component.

☞ For instructions, see“UltraLite for M-Business Anywhere Quick
Start” on page 6.

♦ Deploy an initial copy of the UltraLite database or schema.

☞ For instructions, see“UltraLite for M-Business Anywhere Quick
Start” on page 6.

In many situations it is sufficient to deploy an UltraLite schema file only.
UltraLite creates a database file from the schema on the first connection
attempt. You can then use synchronization to load an initial copy of the
data.

You must place the database or schema file so that it can be located by the
application. The Database On CE and Schema On CE connection
parameters define the location for Windows CE. The Database on
Desktop and Schema on Desktop define the location for Windows XP.

☞ See“Database On CE connection parameter”[UltraLite Database
User’s Guide,page 69], “Schema On CE connection parameter ”[UltraLite
Database User’s Guide,page 78], “Database On Desktop connection
parameter”[UltraLite Database User’s Guide,page 70], and“Schema On
Desktop connection parameter ”[UltraLite Database User’s Guide,page 79].

Deploying applications
that use one-button
synchronization

One-button synchronization requires a set of files, includingulconnect.exe
andulconnect.usm. These files are packaged together in the file
ultralite\UltraLiteForMBusinessAnywhere\ulpod.cab. When you deploy the
cab file to a Windows CE device, it installs its contents in the proper
locations automatically. For Windows XP, you must deploy the files
manually.

Deploying applications to Palm OS

You must carry out the following steps to deploy an UltraLite application to

37

a Palm OS device:

♦ Deploy your application and UltraLite component.

☞ For instructions, see“UltraLite for M-Business Anywhere Quick
Start” on page 6.

♦ Deploy an initial copy of the UltraLite database or schema.

☞ For instructions, see“UltraLite for M-Business Anywhere Quick
Start” on page 6.

In many situations it is sufficient to deploy an UltraLite schema file only.
UltraLite creates a database file from the schema on the first connection
attempt. You can then use synchronization to load an initial copy of the
data.

You can create.pdb files for deployment to Palm OS from any of the
UltraLite utilities, including the Schema Painter, ulxml, and ulinit.

You must supply a schema or database using the correct creator ID, so
that it can be located by your application. The Database On Palm
connection parameter uses the creator ID to find the database.

☞ See“Database On Palm connection parameter”[UltraLite Database
User’s Guide,page 71], and“Schema On Palm connection parameter ”
[UltraLite Database User’s Guide,page 80]. For information about using the
virtual file system, see“VFS On Palm parameter ”[UltraLite Database
User’s Guide,page 81].

♦ Deploy the MobiLink synchronization conduit for HotSync.

This step is required only if the application is synchronizing using
HotSync.

☞ For instructions, see“Deploying the MobiLink HotSync conduit”
[MobiLink Clients,page 302].

38

CHAPTER 3

Tutorial: A Sample Application for
M-Business Anywhere

About this chapter This tutorial guides you through the process of building an UltraLite
application for M-Business Anywhere.

Contents Topic: page

Introduction 40

Lesson 1: Create a project architecture 41

Lesson 2: Create the application files 43

Lesson 3: Set up the M-Business Anywhere Server and Client 45

Lesson 4: Add startup code to your application 47

Lesson 5: Add inserts to your application 50

Lesson 6: Add navigation to your application 55

Lesson 7: Add updates and deletes to your application 56

Lesson 8: Add synchronization to your application 58

39

Introduction
This tutorial describes how to build a cross-platform UltraLite application.
At the end of the tutorial you will have an application and small database
that synchronizes with a central consolidated database.

Timing The tutorial takes about 30 minutes if you copy and paste the code. If you
enter the code yourself, it takes significantly longer.

Prerequisites This tutorial assumes that you have M-Business Anywhere installed on your
computer and that your machine has a web server that you can use to deliver
files.

You must also have access to an M-Business Client in order to test and run
the application.

The tutorial assumes a basic familiarity with JavaScript programming
language and M-Business Anywhere application development.

The tutorial also assumes that you know how to create an UltraLite schema
using the UltraLite Schema Painter. For more information, see“The
UltraLite Schema Painter”[UltraLite Database User’s Guide,page 124].

40

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

Lesson 1: Create a project architecture
The first procedure describes how to create an UltraLite database schema.
The database schema is a description of the database. It describes the tables,
indexes, keys, and publications within the database, and all the relationships
between them.

☞ For more information about database schemas, see“Creating UltraLite
database schema files” on page 11.

❖ To create an UltraLite database schema

1. Create a directory for this tutorial.

This tutorial assumes the directory isc:\Tutorial\mbus. If you create a
directory with a different name, use that directory throughout the tutorial.

Create the following subdirectories for platform-specific files:

♦ c:\Tutorial\mbus\PALM_OS
♦ c:\Tutorial\mbus\WIN32_OS
♦ c:\Tutorial\mbus\WINCE_OS
♦ c:\Tutorial\mbus\WINCE_OS\arm

2. Configure your web server.

a. Map a virtual directory named tutorial on your web server to
c:\Tutorial\mbus. The URL to access this directory will be
http://localhost/tutorial.
For Microsoft IIS, you can make these changes from the management
tool.

For Apache, make a symbolic link namedtutorial from your document
root to thec:\Tutorial\mbusdirectory, or copy the tutorial files into
your Apache document root.

b. Ensure that your web server delivers the following files with MIME
type application/octet-stream:

♦ dll
♦ usm
♦ prc
♦ pdb

For Microsoft IIS, you can make these changes from the management
tool. Go to the virtual directory properties and make the changes under
HTTP Headers and File Types.

For Apache, edit the filemime.typesin yourconf directory.

3. Create a database schema using the UltraLite Schema Painter.

41

☞ For more information about creating a database schema, see the
“Lesson 1: Create an UltraLite database schema”[UltraLite Database
User’s Guide,page 130].

♦ Schema filename tutcustomer.usm.

♦ Table name Customer

♦ Columns in Customer

Column

Name

Data Type

(Size)

Column allows

NULL values?

Default value

ID integer No autoincrement

FName char(15) No None

LName char(20) No None

City char(20) Yes None

Phone char(12) Yes 555-1234

It is usually better to use global autoincrement or UUID values for
primary keys in a synchronizing environment. The autoincrement
default is used here to keep the tutorial shorter.

♦ Primary key Ascending ID

4. Save the database schema.

If you are developing an application for Windows or Windows CE,
choose File➤ Save and choosetutcustomer.usmin theWINCE_OSor
theWIN32_OSsubdirectory of your tutorial directory as the filename.

If you are developing an application for Palm OS:

a. From the File menu, choose Export Schema for Palm.

b. Enter Syb3 as the creator ID.

c. Save the file astutcustomer.pdbin thePALM_OS subdirectory of your
tutorial directory.

A note on Palm Creator IDs
The creator ID is assigned to you by Palm. You can use Syb3 as your
creator ID when you make sample applications. However, when you
create a commercial application, you should use your own creator ID.

If you are developing a cross-platform application, save the schema file in
all the above locations.

42

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

Lesson 2: Create the application files
The following procedure uses the form to create a user interface. This
example uses text boxes for input and output.

❖ Create the application files

1. Create the filec:\Tutorial\mbus\main.html.

This file will be the main file of the application. Later in the tutorial, you
will add content to the file. For now, you just set it up to include a
platform-specific fileul_deps.html. Add the following content to the file:

<html>
<body>

</body>
</html>

2. Create the platform-specific files.

Each of these files references the appropriate UltraLite runtime library
and database schema file. Create a fileul_deps.htmlin each of the
operating system subdirectories of your tutorial directory, as follows:

<!-- PALM_OS \ul_deps.html -->
<html>

</html>

<!-- WINCE_OS \ul_deps.html -->
<html>

</html>

<!-- WIN32_OS \ul_deps.html -->
<html>

</html>

3. Copy the UltraLite runtime files to the tutorial directory.

The ul_deps.html files require that the UltraLite runtime library and
database schema be in the proper location relative to the tutorial
directory. The schema file is already in place from earlier in the tutorial.
You must now copy the UltraLite runtime library into place.

In the following instructions, paths for the source files are relative to your
SQL Anywhere installation.

43

♦ For the Palm OS, copyulpod9.prcfrom
UltraLite\UltraLiteForMBusinessAnywhere\palm\68kto
c:\Tutorial\mbus\PALM_OS.

♦ For Windows CE, copyulpod9.dll from
UltraLite\UltraLiteForMBusinessAnywhere\ce\armto
c:\Tutorial\mbus\WINCE_OS\arm.

♦ For Windows CP, copyulpod9.dll from
UltraLite\UltraLiteForMBusinessAnywhere\win32\386to
c:\Tutorial\mbus\WIN32_OS.

All application files are now in place.

44

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

Lesson 3: Set up the M-Business Anywhere
Server and Client

In this lesson you create an M-Business Anywhere user, group, and channel
for your application.

❖ Configure M-Business Anywhere

1. Open the M-Business Anywhere administration console and login as the
admin user.

The default user ID isadmin, with a blank password.

2. Create a new user.

Later in this tutorial, you will use the user name and password you create
in this step to synchronize from an M-Business client. If you already
have an M-Business client set up for this server, you may wish to use a
user name that already exists.

a. Click the Users heading and click New User.

b. Enter a User Name and Password. The other fields are optional. Click
Create.

3. Create a group and a channel:

a. Click the Groups heading and click New Group.

b. Name the new group UltraLite and click Create and Edit.

c. Under the Web tab, click New Group Channel.

d. Use the following settings for the channel. Make sure to substitute the
correct URL for your web server:

♦ Title UltraLite Tutorial

♦ Location http://host:port/tutorial/main.html.
The location is the URL of the tutorialmain.htmlpage, as served by
your web server.

♦ Channel Size Limit 1000 KB

♦ Link Depth 2

♦ Allow Binary Distribution Yes (checked).

4. Add the user to the group:

a. Click the Users heading and find the user you created in step 2.

b. Click the User Name to show the user’s properties.

c. Click Add/Remove Groups.

45

d. Check the UltraLite group and click Update to add the user to this
group.

The user, group, and channel are now all set up on M-Business Anywhere.
The next step is to synchronize the content of this channel to an M-Business
client. You can do this from whichever platform you wish to use.

The next procedure assumes that you have an M-Business client installed. It
is recommended that you click Tools➤ Options and set the client options to
Show JavaScript Errors. This setting allows easier debugging of any errors
in your application.

❖ Synchronize the channel for your device

1. Synchronize your M-Business client with the UltraLite channel on the
M-Business Anywhere Server.

At this stage there is no content for your application, so the page appears
blank.

46

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

Lesson 4: Add startup code to your application
In this lesson you add startup code to your application that connects to an
UltraLite database. This requires adding HTML to the main page, and
adding JavaScript logic to control the application.

❖ Add content to your application

1. Add content tomain.html.

Add the following form to your application’s main page,
c:\Tutorial\mbus\main.html, immediately after the<a> tag:

<form name="custForm">
<input type="text" name="fname" size="15">

<input type="text" name="lname" size="20">

<input type="text" name="city" size="20">

<input type="text" name="phone" size="12">

<input type="text" name="custid" size="10">

<table>
<tr>

<td><input type="button"
value="Insert" onclick="ClickInsert();">

</td>
<td><input type="button"

value="Update" onclick="ClickUpdate();">
</td>
<td>

<input type="button"
value="Delete" onclick="ClickDelete();">

</td>
</tr>

<tr>
<td>

<input type="button"
value="Next" onclick="ClickNext();">

</td>
<td>

<input type="button"
value="Prev" onclick="ClickPrev();">

</td>
<td></td>

</tr>

<tr>
<td colspan=3>

<input type="button"
value="Synchronize" onclick="ClickSync();">

</td>
</tr>

</table>
</form>

47

2. Create a JavaScript filec:\Tutorial\mbus\tutorial.jsthat provides
application logic.

3. Add content to the JavaScript file:

Add the following code to the top of the file to declare the required
UltraLite objects:

var DatabaseMgr;
var Connection;
var CustomerTable;

Add connection code:

function Connect()
{

DatabaseMgr = CreateObject(
"iAnywhere.UltraLite.DatabaseManager.Tutorial");

if(DatabaseMgr == null) {
alert("Error, make sure POD is on device");
return;

}

var connParms = DatabaseMgr.createConnectionParms();
var dir = DatabaseMgr.directory;

connParms.schemaOnPalm = "tutCustomer";
connParms.databaseOnPalm = "Syb3";

connParms.databaseOnCE = dir + " \\tutCustomer.udb";
connParms.schemaOnCE = dir + " \\tutCustomer.usm";

connParms.schemaOnDesktop = dir + " \\tutCustomer.usm";
connParms.databaseOnDesktop = dir + " \\tutCustomer.udb";

connParms.userID = "dba";
connParms.password = "sql";

48

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

try {
// try to connect to an existing database
Connection = DatabaseMgr.openConnectionWithParms(

connParms);
alert("Connected to an existing database");

} catch(ex) {
if(DatabaseMgr.sqlCode != DatabaseMgr.SQLError.SQLE_

ULTRALITE_DATABASE_NOT_FOUND) {
alert(ex.getMessage());
return;

} else {
try {

// the database does not exist, create one
Connection = DatabaseMgr.createDatabaseWithParms(

connParms);
alert("Created a new database");

} catch(ex2) {
alert(ex2.getMessage());
return;

}
}

}
}

4. Use the onload event handler to connect to the database when the
application is started:

a. Import tutorial.js into main.htmlby adding the following line
immediately before the<body> tag:

<script src="tutorial.js"></script>

b. Edit main.htmland change the<body> tag to the following:

<body onload="Connect();">

5. Test your application.

Synchronize your M-Business Client and start the application. A message
box appears when your application creates the UltraLite database. Once
this is working properly, you can continue to the next lesson.

49

Lesson 5: Add inserts to your application
This lesson shows how to fill out your application with data manipulation
and navigation logic.

❖ Open the table

1. Write code to initialize the CustomerTable that represents the Customer
table in your database.

Add the following code to the end of the Connect() function intutorial.js:

try {
CustomerTable = Connection.getTable("customer", null);
CustomerTable.open();

} catch(ex3) {
alert("Error: " + ex3.getMessage());

}

2. Add variables to move data between the database and the web form.

Add the following declarations to the top oftutorial.js, before the
Connect() function.

var Cust_FName = "";
var Cust_LName = "";
var Cust_City = "";
var Cust_Phone = "";
var Cust_Id = "";

3. Create procedures to fetch and display customer data.

Add the following function totutorial.js, immediately after the Connect()
function. It fetches the current row of the customer and also ensures that
NULL columns display as empty strings:

50

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

function FetchCurrentRow()
{

var id;
if(CustomerTable.getRowCount() == 0) {

Cust_FName = "";
Cust_LName = "";
Cust_City = "";
Cust_Phone = "";
Cust_Id = "";

} else {
id = CustomerTable.schema.getColumnID("FName");
Cust_FName = CustomerTable.getString(id);
id = CustomerTable.schema.getColumnID("LName");
Cust_LName = CustomerTable.getString(id);
id = CustomerTable.schema.getColumnID("city");
if(CustomerTable.isNull(id)) {

Cust_City = "";
} else {

Cust_City = CustomerTable.getString(id);
}
id = CustomerTable.schema.getColumnID("phone");
if(CustomerTable.isNull(id)) {

Cust_Phone = "";
} else {

Cust_Phone = CustomerTable.getString(id);
}

id = CustomerTable.schema.getColumnID("id");
Cust_Id = CustomerTable.getString(id);

}
}

Add the following JavaScript tomain.html, immediately before the
closing</body> tag. DisplayCurrentRow takes the values from the
database and displays them in the web form. FetchForm takes the current
values in the web form and makes them available to the database code.

<script>
function DisplayCurrentRow()
{

FetchCurrentRow();
document.custForm.fname.value = Cust_FName;
document.custForm.lname.value = Cust_LName;
document.custForm.city.value = Cust_City;
document.custForm.phone.value = Cust_Phone;
document.custForm.custid.value = Cust_Id;

}

51

function FetchForm()
{

Cust_FName = document.custForm.fname.value;
Cust_LName = document.custForm.lname.value;
Cust_City = document.custForm.city.value;
Cust_Phone = document.custForm.phone.value;

}
</script>

4. Call DisplayCurrentRow when the application is loaded.

Modify the<body> tag at the top ofmain.htmlas follows:

<body onload="Connect(); DisplayCurrentRow();">

Although there is no data in your database, so that no rows are displayed,
this is a good place to synchronize M-Business Client to ensure that you
have not introduced bugs.

❖ Add code to insert rows

1. Write code to implement the Insert button.

In the following procedure, the call to InsertBegin puts the application
into insert mode and sets all values in the current row to their defaults.
For example, the ID column receives the next autoincrement value. The
column values are set and the new row is inserted.

Add the following function totutorial.js, immediately after
FetchCurrentRow():

52

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

function Insert()
{

var id;

try {
CustomerTable.insertBegin();
id = CustomerTable.schema.getColumnID("FName");
CustomerTable.setString(id, Cust_FName);
id = CustomerTable.schema.getColumnID("LName");
CustomerTable.setString(id, Cust_LName);
id = CustomerTable.schema.getColumnID("city");
if(Cust_City.length > 0) {

CustomerTable.setString(id, Cust_City);
}
id = CustomerTable.schema.getColumnID("phone");
if(Cust_Phone.length > 0) {

CustomerTable.setString(id, Cust_Phone);
}
CustomerTable.insert();
CustomerTable.moveLast();

} catch(ex) {
alert("Insert error: " + ex.getMessage());

}
}

Add the following function to main.html, immediately after the
FetchForm() function:

function ClickInsert()
{

FetchForm();
Insert();
DisplayCurrentRow();

}

You can now test your application.

❖ Test your application

1. Synchronize your M-Business Client.

2. Run the application.

After an initial message box, the form is displayed.

3. Insert two rows into the table:
a. Enter a first name of Jane in the first text box and a last name of Doe in

the second text box. Click Insert.
A row is added to the table with these values. The application moves to
the last row of the table and displays the row. The label displays the
automatically incremented value of the ID column that UltraLite
assigned to the row.

53

b. Enter a first name of John in the first text box and a last name of Smith
in the second. Click Insert.

The next step is to add navigation buttons

54

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

Lesson 6: Add navigation to your application
This lesson describes code for scrolling forwards and backwards through the
rows of a result set.

❖ Add navigation code to your application

1. Add the MoveNext function totutorial.js, immediately after the Insert()
function:

function MoveNext()
{

if(! CustomerTable.moveNext()) {
CustomerTable.moveLast();

}
}

2. Add the MovePrev function totutorial.js, immediately after the
MoveNext() function:

function MovePrev()
{

if(! CustomerTable.movePrevious()) {
CustomerTable.moveFirst();

}
}

3. Add the following procedures tomain.html:

function ClickNext()
{

MoveNext();
DisplayCurrentRow();

}

function ClickPrev()
{

MovePrev();
DisplayCurrentRow();

}

4. Synchronize your application and test the navigation buttons.

When the form is first displayed, the controls are empty as the current
position is before the first row. After the form is displayed, click Next and
Previous to move through the rows of the table.

55

Lesson 7: Add updates and deletes to your
application

This lesson describes code for updating and deleting rows.

❖ Add update and delete functions to your application

1. Add the Update function totutorial.js:

function Update()
{

var id;
try {

CustomerTable.updateBegin();

id = CustomerTable.schema.getColumnID("fname");
CustomerTable.setString(id, Cust_FName);
id = CustomerTable.schema.getColumnID("lname");
CustomerTable.setString(id, Cust_LName);
id = CustomerTable.schema.getColumnID("city");
if(Cust_City.length > 0) {

CustomerTable.setString(id, Cust_City);
} else {

CustomerTable.setNull(id);
}
id = CustomerTable.schema.getColumnID("phone");
if(Cust_Phone.length > 0) {

CustomerTable.setString(id, Cust_Phone);
} else {

CustomerTable.setNull(id);
}
CustomerTable.update();

} catch(ex) {
alert("Update error: " + ex.getMessage());

}
}

2. Add the Delete function totutorial.js:

function Delete()
{

if(CustomerTable.getRowCount() == 0) {
return;

}
CustomerTable.deleteRow();
CustomerTable.moveRelative(0);

}

3. Add the following functions tomain.html:

56

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

function ClickUpdate()
{

FetchForm();
Update();
DisplayCurrentRow();

}

function ClickDelete()
{

Delete();
DisplayCurrentRow();

}

4. Synchronize your M-Business Client and run the application.

57

Lesson 8: Add synchronization to your application
The following procedure implements synchronization.

❖ Add a synchronization function to your application

1. Add the Synchronize() function totutorial.js:

The synchronization parameters are stored in the ULSyncParms object.
For example, the ULSyncParms.UserName property specifies the user
name that MobiLink looks for. The ULSyncParms.SendColumnNames
property specifies that the column names will be sent to MobiLink so it
can generate upload and download scripts.

This function uses a TCP/IP synchronization stream and the default
network communication options (stream parameters). These default
options assume that you are synchronizing from either a Windows CE
client connected to the computer running the MobiLink server via
ActiveSync, or from a Windows XP client running on the same computer
as MobiLink. If this is not the case, change the synchronization stream
type and set the network communication options to the appropriate
values.

☞ For more information, see“Method setStream” on page 118and
“Method setStreamParms” on page 118

function Synchronize()
{

var SyncParms = Connection.syncParms;

SyncParms.setUserName(" user-name ");
SyncParms.setStream(SyncParms.STREAM_TYPE_TCPIP);
SyncParms.setVersion("ul_default");
SyncParms.setSendColumnNames(true);

try {
Connection.synchronize();

} catch(ex) {
alert("Sync error: " + ex.getMessage());

}
}

2. Add the following function tomain.html:

function ClickSync()
{

window.showBusy = true;
Synchronize();
window.showBusy = false;
DisplayCurrentRow();

}

58

Chapter 3. Tutorial: A Sample Application for M-Business Anywhere

3. Synchronize your M-Business Client.

This synchronization downloads the latest version of the application. It
does not synchronize your database.

The final step in this tutorial is to synchronize your UltraLite database. The
ASA 9.0 Sample database has a Customer table with columns matching
those in theCustomer table in your UltraLite database. The following
procedure synchronizes your database with the ASA 9.0 Sample database.

❖ To synchronize your application

1. From a command prompt, start the MobiLink synchronization server by
running the following command line.

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -v+ -zu+ -za

The-zu+ and-za command line options provide automatic addition of
users and generation of synchronization scripts. For more information
about these options, see“MobiLink Synchronization Server Options”
[MobiLink Administration Guide,page 189].

2. In M-Business Client, click Delete repeatedly to delete all the rows in
your table.

Any rows in the table would be uploaded to the Customer table in the
ASA 9.0 Sample database.

3. Synchronize your application.

Click Synchronize. The MobiLink synchronization server window
displays the synchronization progress.

4. When the synchronization is complete, click Next and Previous to move
through the rows of the table.

This completes the tutorial.

59

CHAPTER 4

UltraLite for M-Business Anywhere API
Reference

About this chapter This chapter describes the UltraLite for M-Business Anywhere API, a set of
classes and methods that allow you to write code for applications that use
UltraLite databases. Each topic contains information about a specific class,
method, constant, or enum. The reference is organized by class, with
associated methods beneath.

Contents Topic: page

Data types in UltraLite for M-Business Anywhere 62

Class AuthStatusCode 63

Class Connection 64

Class ConnectionParms 72

Class DatabaseManager 75

Class DatabaseSchema 79

Class IndexSchema 84

Class PreparedStatement 87

Class PublicationSchema 95

Class ResultSet 96

Class ResultSetSchema 103

Class SQLError 106

Class SQLType 110

Class SyncParms 112

Class SyncResult 120

Class TableSchema 126

Class ULTable 134

Class UUID 154

61

Data types in UltraLite for M-Business Anywhere
JavaScript has only one numeric data type and only one Date data type.

The prototypes in this API Reference include a variety of other data types in
the method and property descriptions. These types are internal M-Business
Anywhere data types. Distinct numeric data types such as UInt32 (unsigned
32-bit integer) are reported here to give an idea of the size and precision of
data that may be supplied. Distinct time-related data types (Date, Time,
Timestamp) are reported so that you can write code to extract the required
information from the supplied data if necessary.

62

Chapter 4. UltraLite for M-Business Anywhere API Reference

Class AuthStatusCode
Enumerates the status codes that may be reported during MobiLink user
authentication.

This object can be obtained from DatabaseManager as follows:

var authStatus = dbMgr.AuthStatusCode;

Properties

The following constants are properties of AuthStatusCode

Constant Value Description

UNKNOWN 0 Authorization status is unknown,
possibly because the connection
has not yet performed a synchro-
nization.

VALID 1000 User ID and password were valid
at time of synchronization.

VALID_BUT_EXPIRES_-
SOON

2000 User ID and password were valid
at time of synchronization but will
expire soon.

EXPIRED 3000 User ID or password has expired;
authorization failed.

INVALID 4000 Bad user ID or password; autho-
rization failed.

IN_USE 5000 User ID is already in use; autho-
rization failed.

Method toString

Prototype String toString() ;

Returns The name of the code orunknown if not a recognized code.

Remarks Generates the string name of the authorization status code constant.

63

Class Connection
Represents a connection to an UltraLite database.

Connections are instantiated using one of the following methods:

♦ DatabaseManager.openConnection
♦ DatabaseManager.openConnectionWithParms
♦ DatabaseManager.createDatabase
♦ DatabaseManager.createDatabaseWithParms

You must open a connection before carrying out any other operation, and
you must close the connection after you have finished all operations on the
connection and before your application terminates.

You must close all tables opened on a connection before closing the
connection.

When a JavaScript Error is thrown because of a failed UltraLite database
operation, the SQL error code is set on the sqlCode field of the Connection
object.

Properties

Prototype Description

Boolean autoCommit Controls whether a commit is performed af-
ter each statement (insert, update or delete).

If autoCommit is false, a commit or roll-
back is performed only when the user
invokes thecommit() or rollback() method.

By default, a database commit is performed
after each successful statement. If the
commit fails, you have the option to execute
additional SQL statements and perform
the commit again, or execute a rollback
statement.

Boolean databaseNew (read-
only)

Indicates if the database was new when
this connection was opened (true), or if
the database already existed when this
connection was opened (false).

64

Chapter 4. UltraLite for M-Business Anywhere API Reference

Prototype Description

String openParms (read-only) Gets the open parameters string as a
semicolon-separated list of name=value
pairs.

See“Connection Parameters” [UltraLite
Database User’s Guide,page 63].

DatabaseSchema databas-
eSchema (read-only)

Gets the database schema. This property is
valid only while its connection is open.

Boolean skipMBASync (read-
write)

Controls whether the database should be
synchronized during one-button synchro-
nization (false) or whether it should be
skipped (true).

See“One-button synchronization” on
page 33.

Int32 sqlCode (read-only) Gets the SQL Code of the last operation on
this connection.

The SQL Code is the standard Adaptive
Server Anywhere code and is reset by any
subsequent UltraLite database operation on
this connection.

SyncParms syncParms (read-
only)

Gets synchronization settings for this con-
nection.

See“Synchronization parameters” [Mo-
biLink Clients,page 316].

SyncResult syncResult (read-
only)

Gets the results of the most recent synchro-
nization for this connection.

See“Synchronization parameters” [Mo-
biLink Clients,page 316].

INVALID_DATABASE_ID
(read-only)

A constant indicating an invalid database.

Method changeEncryptionKey

Prototype changeEncryptionKey (String newKey)

Parameters ♦ newKey The new encryption key for the database.

Remarks Changes the database’s encryption key to the specified new key.

If the encryption key is lost, it is not possible to open the database.

65

Method close

Prototype close()

Remarks Closes this connection.

Once a connection is closed, it can not be reopened. To reopen a connection,
a new connection object must be created and opened.

It is an error to use any object (table, schema, etc.) associated with a closed
connection.

In JavaScript, the closed connection object is not set to NULL automatically
after it is closed. It is recommended that you explicitly set the connection
object to NULL after closing the connection.

Method commit

Prototype commit()

Remarks Commits outstanding changes to the database.

Method countUploadRow

Prototype UInt32 countUploadRow(UInt32 mask , UInt32 threshold)

Parameters ♦ mask set of publications to check. See PublicationSchema class for
more information.

♦ threshold value that determines the maximum number of rows to
count, and so limits the amount of time taken by the call. A value of 0
corresponds to the maximum limit. A value of 1 determines if any rows
need to be synchronized.threshold must be in range[0,0x0ffffffff] .

Returns The number of rows to be uploaded when the next synchronization takes
place.

Method getDatabaseID

Prototype UInt32 getDatabaseID()

Remarks Gets the current Database ID value, as set by setDatabaseID().

If the value has not been set, the constant
Connection.INVALID_DATABASE_ID is returned.

66

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method getGlobalAutoIncrementUsage

Prototype UInt16 getGlobalAutoIncrementUsage()

Returns The percentage of available global increment values used so far.

Remarks Returns the percentage of available global autoincrement values that have
been used.

If the percentage approaches 100, your application should set a new value
for the global database ID using thesetDatabaseID.

Method getLastDownloadTime

Prototype Date getLastDownloadTime(UInt32 mask)

Parameters ♦ mask A set of publications to check.

Returns The timestamp of the most recent download.

Remarks The parameter mask must reference a single publication or be the special
constant PublicationSchema.SYNC_ALL_DB for the time of the last
download of the full database.

See also ♦ “Class PublicationSchema” on page 95

Method getLastIdentity

Prototype UInt64 getLastIdentity()

Returns The most recent identity value used.

Remarks This function is equivalent to the following SQL statement:

SELECT @@identity

The function is particularly useful in the context of global autoincrement
columns. The returned value is an unsigned 64-bit integer, database data
type UNSIGNED BIGINT. Since this statement only allows you to
determine the most recently assigned default value, you should retrieve this
value soon after executing the insert statement to avoid spurious results.

Occasionally, a single insert statement may include more than one column of
type global autoincrement. In this case, the return value is one of the
generated default values, but there is no reliable means to determine which
one. For this reason, you should design your database and write your insert
statements so as to avoid this situation.

67

Method getNewUUID

Prototype UUID getNewUUID()

Returns A new UUID value.

Method getTable

Prototype Table getTable(String name, String persistName)

Parameters ♦ name name of the table to fetch.

♦ persistName The name for cross-page JavaScript object persistence.
Set to null if no persistence is required (for example, if the application
has only a single HTML page).

Remarks Creates and returns a reference to the requested table in the database.

Method grantConnectTo

Prototype grantConnectTo(String uid , String pwd)

Parameters ♦ uid user ID to grant access to. The maximum length is 16 characters.

♦ pwd The password for the user ID.

Remarks Grants access to an UltraLite database for a user ID with a specified
password. If an existing user ID is specified, this function updates the
password for the user. UltraLite supports a maximum of 4 users. This
method is enabled only if user authentication was enabled when the
connection was opened.

Method isOpen

Prototype Boolean isOpen() ;

Returns true if the connection is open, false otherwise.

Remarks Checks whether this connection is currently open.

Method prepareStatement

Prototype PreparedStatement prepareStatement(String sql , String persistName)

Parameters ♦ sql a SQL statement that may contain one or more ‘?’ IN parameter
placeholder.

68

Chapter 4. UltraLite for M-Business Anywhere API Reference

♦ persistName The name for cross-page JavaScript object persistence.
Set to null if no persistence is required (for example, if the application
has only a single HTML page).

Remarks Pre-compiles and stores into a PreparedStatement object a SQL statement
with or without IN parameters. This object can then be used to efficiently
execute this statement multiple times.

Method resetLastDownloadTime

Prototype resetLastDownloadTime(UInt32 mask)

Parameters ♦ mask set of publications to reset.

Remarks Resets the time of the most recent download.

Method revokeConnectFrom

Prototype revokeConnectFrom(String uid)

Parameters ♦ uid user ID to be excluded from database access. The maximum length
is 16 characters.

Remarks Revokes access from an UltraLite database for a user ID.

Method rollback

Prototype rollback()

Remarks Rolls back outstanding changes to the database.

Method rollbackPartialDownload

Prototype rollbackPartialDownload()

Remarks Roll back the changes from a failed synchronization.

When a communication error occurs during the download phase of
synchronization, UltraLite can apply the downloaded changes, so that the
synchronization can be resumed from the place it was interrupted. If the
download changes are not needed (the user or application does not want to
resume the download at this point), RollbackPartialDownload rolls back the
failed download transaction.

Method setDatabaseID

Prototype setDatabaseID(UInt32 value)

Parameters ♦ value database ID value.valuemust be in range[0,0x0ffffffff] .

69

Remarks Sets the database ID value to be used for global autoincrement columns.

Method saveSyncParms

Prototype saveSyncParms()

Remarks Saves the synchronization parameters for use by HotSync or for use during
one-button synchronization.

Do not confuse the saveSyncParms method with the Connection.SyncParms
property. The SyncParms property is used to define the synchronization
parameters for this connection. The setSyncParms method just saves these
parameters so that HotSync can use them.

See also ♦ “One-button synchronization” on page 33

Method startSynchronizationDelete

Prototype startSynchronizationDelete()

Remarks Mark for synchronization all subsequent deletes made by this connection.
Once this function is called, all delete operations are again synchronized.

Method stopSynchronizationDelete

Prototype stopSynchronizationDelete()

Remarks Prevents delete operations from being synchronized. This is useful for
deleting old information from an UltraLite database to save space, while not
deleting this information on the consolidated database.

Method synchronize

Prototype synchronize()

Remarks Synchronize the database using the current SyncParms object. A detailed
result status is reported in this connection’s SyncResult object. The
synchronization is carried out using the synchronization properties defined
in the Connection.SyncParms object for this connection.

Method synchronizeWithParm

Prototype synchronizeWithParm(SyncParms parms)

Parameters ♦ parms The SyncParms object to use for this synchronization.

Remarks Synchronize the database using the specified SyncParms object. This method

70

Chapter 4. UltraLite for M-Business Anywhere API Reference

makes it possible to share synchronization parameters among connections.

A detailed result status is reported in this connection’s SyncResult object.

71

Class ConnectionParms
Specifies parameters for opening a connection to an UltraLite database.

Databases are created with a single authenticated user, DBA, whose initial
password is SQL. By default, connections are opened using the user ID DBA
and password SQL. To disable the default user, use
Connection.revokeConnectFrom. To add a user or change a user’s password,
use Connection.grantConnectTo.

Currently, only one connection can be opened at any time. Only one
database may be active at a given time. Attempts to open a connection to a
different database while other connections are open result in an error.

Properties

The properties of the class are listed here.

Prototype Description

String additionalParms
(read-write)

Additional parameters specified asname=value
pairs separated with semi-colons.

☞ See“Additional Parms connection pa-
rameter” [UltraLite Database User’s Guide,
page 68].

String cacheSize (read-
write)

The size of the cache. CacheSize values are
specified in bytes. Use the suffix k or K
for kilobytes and use the suffix m or M for
megabytes. The default cache size is sixteen
pages. Given a default page size of 4 KB, the
default cache size is 64 KB.

☞ See“Cache Size connection parameter ”
[UltraLite Database User’s Guide,page 73].

String connectionName
(read-write)

A name for the connection. The connection
name is used to share a single connection
across multiple web pages.

☞ See“Connection Name connection pa-
rameter” [UltraLite Database User’s Guide,
page 74], and“Maintaining connections and
application state across pages” on page 16.

72

Chapter 4. UltraLite for M-Business Anywhere API Reference

Prototype Description

String databaseOnCE
(read-write)

The filename of the database deployed to
PocketPC.

☞ See“Database On CE connection pa-
rameter” [UltraLite Database User’s Guide,
page 69].

String databaseOnDesktop
(read-write)

The filename of the database deployed to
Windows XP.

☞ See“Database On Desktop connection
parameter” [UltraLite Database User’s Guide,
page 70].

String databaseOnPalm
(read-write)

The UltraLite database creator ID on the Palm
device.

☞ See“Database On Palm connection pa-
rameter” [UltraLite Database User’s Guide,
page 71].

String encryptionKey
(read-write)

A key for encrypting the database. OpenCon-
nection and OpenConnectionWithParms must
use the same key as specified during database
creation. Suggestions for keys are:

1. Select an arbitrary, lengthy string

2. Select strings with a variety of numbers, let-
ters and special characters, so as to decrease
the chances of key penetration.

☞ See“Encryption Key connection parameter
” [UltraLite Database User’s Guide,page 75].

String parmsUsed (read-
only)

The connection parameters used by the
DatabaseManager. Useful for debugging pur-
poses.

String password (read-
write)

The password for an authenticated user.
Databases are initially created with one au-
thenticated user passwordSQL. Passwords
are case-insensitive if the database is case-
insensitive and case-sensitive if the database is
case-sensitive. The default value isSQL.

☞ See“Password connection parameter”
[UltraLite Database User’s Guide,page 76].

73

Prototype Description

String schemaOnCE (read-
write)

The schema filename deployed to PocketPC.

☞ See“Schema On CE connection parameter
” [UltraLite Database User’s Guide,page 78].

String schemaOnDesktop
(read-write)

The schema filename deployed to Windows
XP.

☞ See“Schema On Desktop connection
parameter ” [UltraLite Database User’s Guide,
page 79].

String schemaOnPalm
(read-write)

The schema PDB on the Palm device.

☞ See“Schema On Palm connection pa-
rameter ” [UltraLite Database User’s Guide,
page 80].

String userID (read-write) The authenticated user for the database.
Databases are initially created with one au-
thenticated user DBA. The UserID is case-
insensitive if the database is case-insensitive
and case-sensitive if the database is case-
sensitive. The default value isDBA.

☞ See“User ID connection parameter”
[UltraLite Database User’s Guide,page 76].

Boolean VFSOnPalm
(read-write)

Indicates whether the Palm database is on a
virtual file system (true) or on the Palm store
(false).

☞ See“VFS On Palm parameter ” [UltraLite
Database User’s Guide,page 81].

74

Chapter 4. UltraLite for M-Business Anywhere API Reference

Class DatabaseManager
Manages connections to an UltraLite database.

You must open a connection before carrying out any other operation, and
you must close the connection after you have finished all operations on the
connection, and before your application terminates. You must close all
tables opened on a connection before closing the connection.

Properties

The properties of the class are listed here.

Property Description

AuthStatusCodeAuthSta-
tusCode(read-only)

Gets the AuthStatusCode object associated with the most recent synchro-
nization.

String directory (read-
only)

The directory in which M-Business Anywhere is running. This directory is
where M-Business Anywhere places the downloaded schema file.

On Palm OS, this property is NULL.

UInt32 runtimeType Set the runtime type to be either the UltraLite runtime library or the UltraLite
database engine. The value is an enum, and is one of the following:

DatabaseManager.UL_STANDALONE
DatabaseManager.UL_ENGINE_CLIENT

Int32sqlCode(read-only) Gets the SQL Code value associated with the most recent operation.

SQLError SQLError
(read-only)

Gets the SQLError object for the most recent operation.

SQLTypeSQLType (read-
only)

Gets the SQLType object for the most recent operation.

PODSUInt32UL_-
STANDALONE (read
only)

A constant indicating that the runtime type is the UltraLite runtime library.

PODSUInt32UL_-
ENGINE_CLIENT (read-
only)

A constant indicating that the runtime type is the UltraLite database engine.

Method createDatabase

Prototype Connection createDatabase(String parms)

75

Parameters ♦ parms parameters for creating the database and opening a connection
to it. Parameter keywords are case-insensitive, and most values are
case-sensitive.parms is used to create the database, specify the schema
for the newly-created database, and open the connection.

Returns An opened Connection object.

Remarks Creates a database and opens a connection to the database as specified by
parms. If the database already exists, a
SQLE_DATABASE_NOT_CREATED exception is thrown.

Only one database may be active at a given time. Attempts to open a
connection to a database result in an error if there are connections open to a
different database.

Connection.databaseNew is set totrue to indicate that the database was
created when the connection was opened. You must close the connection
after you have finished all operations on the connection, and before your
application terminates. You must close all tables opened on a connection
before closing the connection.

Method createDatabaseWithParms

Prototype Connection createDatabaseWithParms(ConnectionParms parms)

Parameters ♦ parms A ConnectionParms object holding parameters for creating the
database and opening a connection to it.

Returns An opened connection object

Remarks Creates a database and opens a connection to the database as specified by
parms. If the database already exists, an error is thrown. You can check
Connection.sqlCode within the error catching code to identify the cause of
the error.

Only one database may be active at a given time. Attempts to open a
connection to a database will result in an error if there are connections open
to a different database.

Connection.databaseNew is set totrue to indicate that the database was
created when the connection was opened. You must close the connection
after you have finished all operations on the connection, and before your
application terminates. You must close all tables opened on a connection
before closing the connection.

Method dropDatabase

Prototype dropDatabase(String parms)

76

Chapter 4. UltraLite for M-Business Anywhere API Reference

Parameters ♦ parms parameters for identifying a database.

Remarks Deletes the specified database.

parms is a semicolon-separated list of keyword=value pairs
(" param1=value1;param2=value2"). Parameter keywords are
case-insensitive, and most values are case-sensitive.

You can not drop a database that has open connections.

Method dropDatabaseWithParms

Prototype dropDatabaseWithParms(ConnectionParms parms)

Parameters ♦ parms parameters for identifying a database. For more information see
“Class ConnectionParms” on page 72.

Remarks Deletes the specified database file.

You can not drop a database that has open connections.

Method openConnection

Prototype Connection openConnection(String parms)

Parameters ♦ parms A String holding the parameters for opening a connection as a
set of keyword=value pairs. Parameter keywords are case-insensitive, and
most values are case-sensitive.

Returns An opened connection.

Remarks Opens a connection to the database specified byparms. If the database does
not exist, an error is thrown. You can check Connection.sqlCode within the
error catching code to identify the cause of the error.

Only one database may be active at a given time. Attempts to open a
connection to different database while other connections are open will result
in an error.

Connection.databaseNew is set tofalseto indicate that the database was not
created when the connection was opened. You must close the connection
after you have finished all operations on the connection, and before your
application terminates. You must close all tables opened on a connection
before closing the connection.

Method openConnectionWithParms

Prototype Connection openConnectionWithParms(ConnectionParms parms)

Parameters

77

♦ parms A ConnectionParms object holding the parameters for opening
a connection.

Returns An opened Connection object.

Remarks Opens a connection to the database specified byparms. If the database does
not exist, an exception is thrown. You can check Connection.sqlCode to find
out more about the cause of the error.

Only one database may be active at a given time. Attempts to open a
connection to different database while other connections are open will result
in an error.

Connection.databaseNew is set tofalseto indicate that the database was not
created when the connection was opened. You must close the connection
after you have finished all operations on the connection, and before your
application terminates. You must close all tables opened on a connection
before closing the connection.

Method reOpenConnection

Prototype Connection reOpenConnection(String connectionName)

Parameters ♦ persistName The name of the connection to be reopened, as specified
in the Connection.connectionName property.

Returns An opened Connection object. The method is used to maintain connections
across multiple web pages.

78

Chapter 4. UltraLite for M-Business Anywhere API Reference

Class DatabaseSchema
Represents the schema of an UltraLite database. ADatabaseSchemaobject
is attached to a connection and is only valid while that connection is open.

Constants

Constant Description

SYNC_ALL_DB Synchronize all tables in the database.

SYNC_ALL_PUBS Synchronize all publications in the
database.

The members of the class are listed here.

Method applyFile

Prototype applyFile(String parms)

Parameters ♦ parms parameters for specifying the schema to be applied to the
database.

Remarks Applies a database schema file to the database. All instances of
TableSchema, IndexSchema,andPublicationSchemawill be invalidated
and will need to be replaced.

parms is a semicolon-separated list of keyword=value pairs
(" param1=value1;param2=value2"). Parameter keywords are
case-insensitive, and most values are case-sensitive.

Method applyFileWithParms

Prototype applyFileWithParms(ConnectionParms parms)

Parameters ♦ parms A ConnectionParms object holding parameters for specifying
the schema to be applied to the database.

Remarks Applies a database schema file to the database. All instances of
TableSchema, IndexSchema,andPublicationSchemawill be invalidated
and will need to be replaced.

Method getCollationName

Prototype String getCollationName()

Returns A string identifying the character set and sort order used in this database.

79

Method getDatabaseProperty

Prototype String getDatabaseProperty(String name)

Parameters ♦ name name of the database property.

Returns Returns the value of the specified database property. Recognized properties
are:

♦ " DATE_FORMAT " The date format used for string conversions by the
database.

♦ " DATE_ORDER" The date order used for string conversions by the
database.

♦ " NEAREST_CENTURY" The nearest century used for string
conversions by the database.

♦ " PRECISION" The floating point precision used for string conversions
by the database.

♦ " SCALE " The minimum number of digits after the decimal point when
an arithmetic result is truncated to the maximum PRECISION during
string conversions by the database.

♦ " TIME_FORMAT" The time format used for string conversions by the
database.

♦ " TIMESTAMP_FORMAT " The timestamp format used for string
conversions by the database.

♦ " TIMESTAMP_INCREMENT" The minimum difference between two
unique timestamps, in nanoseconds (1,000,000th of a second).

Method getDateFormat

Prototype String getDateFormat()

Returns The date format used for string conversions.

Method getDateOrder

Prototype String getDateOrder()

Returns The date order used for string conversions.

80

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method getNearestCentury

Prototype String getNearestCentury()

Returns The nearest century used for string conversions.

Method getPrecision

Prototype String getPrecision()

Returns The floating point precision used for string conversions.

Method getPublicationCount

Prototype UInt16 getPublicationCount()

Returns The number of publications in the database.

Remarks Publication IDs range from 1 togetPublicationCount(), inclusively.
Publication IDs are not publication masks.

Note: Publication IDs, masks, and count may change during a schema
upgrade. To correctly identify a publication, access it by name or refresh the
cached IDs, masks, and counts after a schema upgrade.

Method getPublicationName

Prototype String getPublicationName(UInt16 pubID)

Parameters ♦ pubID ID of the publication.pubID must be in range
[1,getPublicationCount().

Returns The name of the publication identified by the specified publication ID.
Publication IDs are not publication masks.

Remarks Note: Publication IDs, masks, and count may change during a schema
upgrade. To correctly identify a publication, access it by name or refresh the
cached IDs, masks, and counts after a schema upgrade.

Method getPublicationSchema

Prototype PublicationSchema getPublicationSchema(String name)

Parameters ♦ name name of the publication.

Returns The publication schema corresponding to the named publication.

81

Method getSignature

Prototype String getSignature()

Returns The signature of this database.

Method getTableCount

Prototype UInt16 getTableCount()

Returns The number of tables, or 0 if the connection is not open.

Remarks Returns the number of tables in the database. Table IDs range from 1 to
getTableCount(), inclusively.

Note: Table IDs and count may change during a schema upgrade. To
correctly identify a table, access it by name or refresh the cached IDs and
counts after a schema upgrade.

Method getTableCountInPublications

Prototype UInt16 getTableCountInPublications(UInt32 mask)

Parameters ♦ mask set of publications to check.

Returns The number of tables included in the specified publication mask. The count
does not include tables whose names end in _nosync.

Remarks Note: Publication IDs, masks, and count may change during a schema
upgrade. To correctly identify a publication, access it by name or refresh the
cached IDs, masks, and counts after a schema upgrade.

Method getTableName

Prototype String getTableName(UInt16 tableID)

Parameters ♦ tableID ID of the table.tableID must be in range[1,getTableCount()].

Returns The name of the table identified by the specified table ID.

Remarks Note: Table IDs may change during a schema upgrade. To correctly identify
a table, access it by name or refresh the cached IDs after a schema upgrade.

Method getTimeFormat

Prototype String getTimeFormat()

Returns The time format used for string conversions.

82

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method getTimestampFormat

Prototype String getTimestampFormat()

Remarks The timestamp format used for string conversions.

Method isCaseSensitive

Prototype Boolean isCaseSensitive()

Returns True if the database is case sensitive, false otherwise.

Method isOpen

Prototype Boolean isOpen()

Returns True if the database schema is open, false otherwise.

Remarks Checks whether this database schema is currently open.

83

Class IndexSchema
Represents the schema of an UltraLite table index.

This object cannot be directly instantiated. Index schemas are created using
the TableSchema.getPrimaryKey, TableSchema.getIndex and
TableSchema.getOptimalIndex methods.

Method getColumnCount

Prototype UInt16 getColumnCount()

Returns The number of columns in this index. Column IDs in indexes range from 1
to getColumnCount(), inclusively.

Column IDs and count may change during a schema upgrade. Column IDs
from an index are different than the column IDs in a table or another index.

Method getColumnName

Prototype String getColumnName(UInt16 colIDInIndex)

Parameters ♦ colIDInIndex ID in this index of the column. colIDInIndex must be in
range [1, getColumnCount()].

Returns The name of thecolIDInIndex’th column in this index.

Column IDs and count may change during a schema upgrade. Column IDs
from an index are different than the column IDs in a table or another index.

Method getName

Prototype String getName()

Returns The name of this index.

Method getReferencedIndexName

Prototype String getReferencedIndexName()

Returns The name of the referenced primary index if this index is a foreign key.

Method getReferencedTableName

Prototype String getReferencedTableName()

Returns The name of the referenced primary table if index is a foreign key.

84

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method isColumnDescending

Prototype Boolean isColumnDescending(String name)

Parameters ♦ name name of the column.

Returns True if column is used in descending order, false if column is used in
ascending order.

Method isForeignKey

Prototype Boolean isForeignKey()

Returns True if index is the foreign key, false if index is not the foreign key.

Remarks Columns in a foreign key may reference a non-null unique index of another
table.

Method isForeignKeyCheckOnCommit

Prototype Boolean isForeignKeyCheckOnCommit()

Returns true if referential integrity is checked on commits, false if it is checked on
inserts and updates.

Method isForeignKeyNullable

Prototype Boolean isForeignKeyNullable()

Returns true if this foreign key is nullable, false if this foreign key is not nullable.

Method isPrimaryKey

Prototype Boolean isPrimaryKey()

Returns True if index is the primary key, false if index is not the primary key.

Remarks Columns in the primary key may not be null.

Method isUniqueIndex

Prototype Boolean isUniqueIndex()

Returns True if the index is unique, false otherwise.

Remarks Columns in a unique index may be null.

85

Method isUniqueKey

Prototype Boolean isUniqueKey()

Returns True if index is unique key, false if index is not unique key.

Remarks Columns in a unique key may not be null.

86

Chapter 4. UltraLite for M-Business Anywhere API Reference

Class PreparedStatement
Represents a pre-compiled SQL statement with or without IN parameters.
Created at runtime using Connection.prepareStatement.

This object can then be used to efficiently execute this statements multiple
times.

When a prepared statement is closed, all ResultSet and ResultSetSchema
objects associated with it are also closed. For resource management reasons,
it is preferred that you explicitly close prepared statements when you are
done with them.

Method appendBytesParameter

Prototype appendBytesParameter(
UInt16 parameterID,
Array value,
UInt32 srcOffset ,
UInt32 count

)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the value to append to the current new value for the parameter.

♦ srcOffset start position in the source array.

♦ count the number of bytes to be copied.

Remarks Appends the specified subset of the specified array of bytes to the new value
for the specified SQLType.LONGBINARY column. The bytes at position
srcOffset (starting from 0) throughsrcOffset+count-1 of the arrayvalue
are appended to the value for the specified parameter. When inserting,
insertBegin initializes the new value to the parameter.’s default value.

If any of the following is true, an Error with code
SQLError.SQLE_INVALID_PARAMETER is thrown and the destination is
not modified:

♦ Thevalueargument is null.

♦ ThesrcOffsetargument is negative.

♦ Thecount argument is negative.

♦ srcOffset+countis greater thanvalue.length, the length of the source
array.

87

Method appendStringChunkParameter

Prototype appendStringChunkParameter(
UInt16 parameterID,
String value,

)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the value to append to the current new value for the parameter.

Remarks Appends the String to the new value for the specified
SQLType.LONGVARCHAR.

Example The following statement appends one hundred instances of the stringXYZ
to the first parameter:

for (i = 0; i < 100; i++){
stmt.appendStringChunkParameter(1, "XYZ");

}

Method close

Prototype close()

Remarks Close the prepared statement.

When a prepared statement is closed, all ResultSet and ResultSetSchema
objects associated with it are also closed.

It is recommended that you set the preparedStatement object to null
immediately after you close it.

Method executeQuery

Prototype ResultSet executeQuery(String persistName)

Parameter ♦ persistName The name for cross-page JavaScript object persistence.
Set to null if no persistence is required (for example, if the application
has only a single HTML page).

Returns The result set of the query, as a set of rows.

Remarks Executes a SQL SELECT statement and returns the result set.

Method executeStatement

Prototype Int32 executeStatement()

88

Chapter 4. UltraLite for M-Business Anywhere API Reference

Returns The number of rows affected by the statement.

Remarks Executes a statement that does not return a result set, such as a SQL
INSERT, DELETE or UPDATE statement.

If Connection.autoCommit is true, the statement will be committed only if
one or more rows is affected by the statement.

Method getPlan

Prototype String getPlan()

Returns A string describing the access plan UltraLite will use to execute a query.
This method is intended primarily for use during development.

See also ♦ “Query optimization”[UltraLite Database User’s Guide,page 185].

Method getResultSetSchema

Prototype ResultSetSchema getResultSetSchema()

Returns The schema describing the result set of this query statement.

Method hasResultSet

Prototype Boolean hasResultSet()

Returns true if a result set is generated when this statement is executed, false if no
result set is generated.

Method isOpen

Prototype Boolean isOpen()

Returns true if the prepared statement is open, false otherwise.

Method setBooleanParameter

Prototype setBooleanParameter(UInt16 parameterID, Boolean value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter using a Boolean.

Example The following statement sets a value for the first parameter:

stmt.setBooleanParameter(1, false);

89

Method setBytesParameter

Prototype setBytesParameter(UInt16 parameterID, Array value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter using an array of bytes. Suitable
for columns of type SQLType.BINARY or SQLType.LONGBINARY only.

Example The following statement sets a value for the first parameter:

var blob = new Array(3);
blob[0] = 78;
blob[1] = 0;
blob[2] = 68;
stmt.setBytesParameter(1, blob);

Method setDateParameter

Prototype setDateParameter(UInt16 parameterID, Date value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified SQLType.DATE type parameter using a date.
Only the year, month, and day fields of the Date object are relevant.

Example The following statement sets a value for the first parameter to 2004/10/27:

stmt.setDateParameter(
1, new Date(2004,9,27,0,0,0,0)

);

Method setDoubleParameter

Prototype setDoubleParameter(UInt16 parameterID, Double value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter using adouble.

Example The following statement sets a value for the first parameter:

90

Chapter 4. UltraLite for M-Business Anywhere API Reference

stmt.setDoubleParameter(1, Number.MAX_VALUE);

Method setFloatParameter

Prototype setFloatParameter(UInt16 parameterID, Float value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified SQLType.REAL parameter.

Example The following statement sets a floating point value for the first parameter:

stmt.setFloatParameter(1,
(2 - Math.pow(2,-23)) * Math.pow(2,127)

);

Method setIntParameter

Prototype setUInt16Parameter(UInt16 parameterID, UInt16 value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter using a Uint16.

Example The following statement sets the value for the first parameter to2147483647:

stmt.setIntParameter(1, 2147483647);

Method setLongParameter

Prototype setLongParameter(UInt16 parameterID, Int64 value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter.

Example The following statement sets the value for the first parameter to
9223372036854770000:

stmt.setLongParameter(1, 9223372036854770000);

91

Method setNullParameter

Prototype setNullParameter(UInt16 parameterID)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

Remarks Sets the specified parameter to the SQL NULL value.

Method setShortParameter

Prototype setUInt16Parameter(UInt16 parameterID, UInt16 value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter.

Example The following statement sets the value for the first parameter to32767:

stmt.setShortParameter(1, 32767);

Method setStringParameter

Prototype setStringParameter(UInt16 parameterID, String value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter.

Example The following statement sets the value for the first parameter toABC:

stmt.setStringParameter(1, "ABC");

Method setTimeParameter

Prototype setTimeParameter(UInt16 parameterID, Date value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

92

Chapter 4. UltraLite for M-Business Anywhere API Reference

Remarks Sets the value for the specified SQLType.TIME type parameter using a date.
Only the hour, minute, and second fields of the Date object are relevant.

Example The following statement sets a value for the first parameter to 18:02:13:0000:

stmt.setTimeParameter(
1, new Date(1966,4,1,18,2,13,0)

);

Method setTimestampParameter

Prototype setTimestampParameter(UInt16 parameterID, Date value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter using aTimestamp.

Example The following statement sets a value for the first parameter to 1966/05/01
18:02:13:0000:

stmt.setTimestampParameter(
1, new Date(1966,4,1,18,2,13,0)

);

Method setULongParameter

Prototype setULongParameter(UInt16 parameterID, UInt64 value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

♦ value the new value for the parameter. Uses a Double to represent the
value of an unsigned 64-bit integer.

Remarks Sets the value for the specified parameter using a Double treated as an
unsigned value. See class Unsigned64 for more information.

Example The following statement sets the value for the first parameter:

stmt.setLongParameter(1, 9223372036854770000 * 4096);

Method setUUIDParameter

Prototype setUUIDParameter(UInt16 parameterID, UUID value)

Parameters ♦ parameterID the ID number of the parameter. The first parameter in
the result set has an ID value of one.

93

♦ value the new value for the parameter.

Remarks Sets the value for the specified parameter using aUUID .

94

Chapter 4. UltraLite for M-Business Anywhere API Reference

Class PublicationSchema
Represents the schema of an UltraLite publication.

This class cannot be directly instantiated. Publication schemas are created
using the DatabaseSchema.getPublicationSchema method.

UltraLite methods requiring a publication mask actually require a set of
publications to check. A set is formed by or’ing the publication masks of
individual publications. For example:

pub1.getMask() | pub2.getMask()

Two special mask values are provided by DatabaseSchema object.
SYNC_ALL_DB corresponds to the entire database. SYNC_ALL_PUBS
corresponds to all publications.

Publication masks may change during a schema upgrade. To correctly
identify a publication, access it by name or refresh the cached masks after a
schema upgrade.

Method getMask

Prototype UInt32 getMask()

Returns The publication mask of this publication.

Note: Publication IDs, masks, and count may change during a schema
upgrade. To correctly identify a publication, access it by name or refresh the
cached masks, and counts after a schema upgrade.

Method getName

Prototype String getName()

Returns The name of this publication.

95

Class ResultSet
Represents a result set in an UltraLite database. Created at runtime using
PreparedStatement.executeQuery.

Properties

The properties of the class are listed here.

Property Description

ResultSetSchema schema (read-only)The schema of this result set. This
property is only valid while its pre-
pared statement is open.

NULL_TIMESTAMP_VAL A constant indicating that a times-
tamp value is NULL.

Method close

Prototype close()

Remarks Frees all resources associated with this object.

Method getBoolean

Prototype Boolean getBoolean(UInt16 index)

Parameters ♦ index The ID number of the column. The first column in the result set
has an ID of one.

Returns The value for the specified column as a Boolean.

Method getBytes

Prototype Array getBytes(UInt16 index)

Parameters ♦ index The ID number of the column. The first column in the result set
has an ID of one.

Returns The value for the specified column as an array of bytes.

Remarks Only valid for columns of type SQLType.BINARY or
SQLType.LONGBINARY.

96

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method getBytesSection

Prototype UInt32 getBytesSection(
UInt16 index
UInt32 srcOffset ,
Array dst ,
UInt32 dstOffset ,
UInt32 count

)

Parameters index The 1-based ordinal of the column containing the binary data.

offset The offset into the underlying array of bytes. The source offset must
be greater than or equal to 0, otherwise a SQLE_INVALID_PARAMETER
error will be raised. A buffer bigger than 64K is also permissible.

data An array of bytes.

data_len The length of the buffer, or array. The data_len must be greater
than or equal to 0.

Returns The number of bytes read.

Remarks Copies a subset of the value for the specified SQLType.LONGBINARY
column, beginning at the specified offset, to the specified offset of the
destination byte array.

The bytes at positionsrcOffset (starting from 0) through
srcOffset+count-1 of the value are copied into positions dstOffset
through dstOffset+count-1, respectively, of the destination array. If the end
of the value is encountered before count bytes are copied, the remainder of
the destination array is left unchanged.

If any of the following is true, an error is thrown, SQLError code
SQLCode.SQLE_INVALID_PARAMETER is set, and the destination is not
modified:

♦ The dst argument is null
♦ The srcOffset argument is negative
♦ The dstOffset argument is negative
♦ The count argument is negative
♦ dstOffset + count is greater than the length of the destination array,

dst.length.

Errors set SQLE_CONVERSION_ERROR The error occurs if the column data type is
not BINARY or LONG BINARY.

SQLE_INVALID_PARAMETER The error occurs if the column data type is
BINARY and the offset is not 0 or 1, or, the data length is less than 0.

97

The error also occurs if the column data type is LONG BINARY and the
offset is less than 1.

Method getDate

Prototype Date getDate(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Date.

Method getDouble

Prototype Double getDouble(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Double.

Method getFloat

Prototype Float getFloat(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value for the specified column.

Method getInteger

Prototype UInt32 getInt(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value for the specified column.

Method getLong

Prototype Int64 getLong(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value for the specified column.

Method getRowCount

Prototype UInt32 getRowCount()

Returns The number of rows in the result set.

98

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method getShort

Prototype Int16 getShort(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as an Int16.

Method getString

Prototype String getString(UInt32 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a String.

Method getStringChunk

Prototype String getStringChunk(
UInt16 index ,
UInt32 srcOffset ,
UInt32 count

)

Parameters ♦ index The 1-based ordinal in the result set to get

♦ srcOffset The o-based start position in the string value.

♦ count The number of characters to be copied.

Returns The string, with specified characters copied.

Remarks Copies a subset of the value for the specified SQLType.LONGVARCHAR
column, starting at the specified offset, to the String object.

Method getTime

Prototype Date getTime(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Date.

Method getTimestamp

Prototype Date getTimestamp(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

99

Returns The value as a Date.

Method getULong

Prototype UInt64 getULong(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as an unsigned 64-bit integer.

Method getUUID

Prototype UUID getUUID(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value of the column as a UUID. The column must be of type
SQLType.BINARY with length 16.

Method isBOF

Prototype Boolean isBOF()

Returns true if the current row position is before first row.

falseotherwise

Method isEOF

Prototype Boolean isEOF()

Returns true if the current row position if after the last row.

falseotherwise.

Method isNull

Prototype Boolean isNull(Uint16 index)

Parameters index The column index value.

Returns true if the value is null.

falseotherwise.

Method isOpen

Prototype Boolean isOpen()

Returns true if the ResultSet is open, false otherwise.

100

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method moveAfterLast

Prototype Boolean moveAfterLast()

Remarks Moves to a position after the last row of the ULResultSet.

Returns true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method moveBeforeFirst

Prototype Boolean moveBeforeFirst()

Remarks Moves to a position before the first row.

Returns true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method moveFirst

Prototype Boolean moveFirst()

Remarks Moves to the first row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

Method moveLast

Prototype Boolean moveLast()

Remarks Moves to the last row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

Method moveNext

Prototype Boolean moveNext()

Remarks Moves to the next row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

101

Method movePrevious

Prototype Boolean movePrevious()

Remarks Moves to the previous row.

Returns true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method moveRelative

Prototype Boolean moveRelative(Int32 index)

Remarks Moves a certain number of rows relative to the current row. Relative to the
current position of the cursor in the resultset, positive index values move
forward in the resultset, negative index values move backward in the
resultset and zero does not move the cursor.

Parameters index The number of rows to move. The value can be positive, negative, or
zero.

Returns true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

102

Chapter 4. UltraLite for M-Business Anywhere API Reference

Class ResultSetSchema
Represents the schema of an UltraLite result set.

Method getColumnCount

Prototype UInt16 getColumnCount() ;

Returns The number of columns in this cursor. Column IDs range from 1 to
getColumnCount() inclusively.

Remarks Column IDs and count may change during a schema upgrade. To correctly
identify a column, access it by name or refresh the cached IDs and counts
after a schema upgrade.

Method getColumnID

Prototype UInt16 getColumnID(String name)

Parameters ♦ name name of the column.

Returns The column ID of the named column. Column IDs range from 1 to
getColumnCount(), inclusively.

Remarks Column IDs and count may change during a schema upgrade. To correctly
identify a column, access it by name or refresh the cached IDs and counts
after a schema upgrade.

Method getColumnName

Prototype String getColumnName(UInt16 columnID)

Parameters ♦ columnID ID of the column.columnID must be in the range
[1,getColumnCount()].

Returns The name of column identified by the specified column ID.

Remarks Column IDs and count may change during a schema upgrade. To correctly
identify a column, access it by name or refresh the cached IDs and counts
after a schema upgrade.

Method getColumnPrecision

Prototype Int32 getColumnPrecision(String name)

Parameters ♦ name name of the column.

Returns The precision of the named column. The column must be of type
SQLType.NUMERIC.

103

Method getColumnPrecisionByColID

Prototype Int32 getColumnPrecisionByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the result
set has an ID value of one.

Returns The precision of the column. The column must be of type
SQLType.NUMERIC.

Method getColumnScale

Prototype Int32 getColumnScale(String name)

Parameters ♦ name name of the column.

Returns The scale of the column. The column must be of type SQLType.NUMERIC.

Method getColumnScaleByColID

Prototype Int32 getColumnScaleByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the result
set has an ID value of one.

Returns The scale of the column. The column must be of type SQLType.NUMERIC.

Method getColumnSize

Prototype UInt32 getColumnSize(String name)

Parameters ♦ name name of the column.

Returns The size of the named column. The column must be of type
SQLType.NUMERIC.

Method getColumnSizeByColID

Prototype UInt32 getColumnSizeByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the result
set has an ID value of one.

Returns The size of the column. The column must be of type SQLType.NUMERIC.

Method getColumnSQLType

Prototype UInt16 getColumnSQLType(String name)

104

Chapter 4. UltraLite for M-Business Anywhere API Reference

Parameters ♦ name name of the column.

Remarks The code for the SQL data type of the named column.

Method getColumnSQLTypeByColID

Prototype UInt16 getColumnSQLTypeByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the result
set has an ID value of one.

Returns The SQLType of the column, in a SQLType enumerated integer.

Method isOpen

Prototype Boolean isOpen() ;

Returns true if the result set is open, false otherwise.

105

Class SQLError
Enumerates the SQL codes that may be reported by UltraLite for
M-Business Anywhere. This class provides static constants and can not be
directly instantiated.

☞ For more information about the meaning of these constants, see
“MobiLink Communication Error Messages”[ASA Error Messages,page 549].

Constant Value

SQLE_AGGREGATES_NOT_ALLOWED -150

SQLE_ALIAS_NOT_UNIQUE -830

SQLE_ALIAS_NOT_YET_DEFINED -831

SQLE_BAD_ENCRYPTION_KEY -840

SQLE_BAD_PARAM_INDEX -689

SQLE_CANNOT_ACCESS_FILE -602

SQLE_CANNOT_CHANGE_USER_NAME -867

SQLE_CANNOT_MODIFY -191

SQLE_CANNOT_EXECUTE_STMT -111

SQLE_COLUMN_AMBIGUOUS -144

SQLE_COLUMN_CANNOT_BE_NL -195

SQLE_COLUMN_IN_INDEX -127

SQLE_COLUMN_NOT_FOUND -143

SQLE_COMMUNICATIONS_ERROR -85

SQLE_CONNECTION_NOT_FOUND -108

SQLE_CONVERSION_ERROR -157

SQLE_CURSOROP_NOT_ALLOWED -187

SQLE_CURSOR_ALREADY_OPEN -172

SQLE_CURSOR_NOT_OPEN -180

SQLE_DATABASE_ERROR -301

SQLE_DATABASE_NEW 123

SQLE_DATABASE_NOT_CREATED -645

106

Chapter 4. UltraLite for M-Business Anywhere API Reference

Constant Value

SQLE_DATABASE_NOT_FOUND -83

SQLE_DATABASE_UPGRADE_FAILED -672

SQLE_DATABASE_UPGRADE_NOT_-
POSSIBLE

-673

SQLE_DATATYPE_NOT_ALLOWED -624

SQLE_DBSPACE_FL -604

SQLE_DIV_ZERO_ERROR -628

SQLE_DOWNLOAD_CONFLICT -839

SQLE_DROP_DATABASE_FAILED -651

SQLE_DYNAMIC_MEMORY_EXHAUSTED -78

SQLE_ENGINE_ALREADY_RUNNING -96

SQLE_ENGINE_NOT_MTIUSER -89

SQLE_ERROR -300

SQLE_ERROR_CALLING_FUNCTION -622

SQLE_EXPRESSION_ERROR -156

SQLE_IDENTIFIER_TOO_LONG -250

SQLE_INDEX_NOT_FOUND -183

SQLE_INDEX_NOT_UNIQUE -196

SQLE_INTERRUPTED -299

SQLE_INVALID_AGGREGATE_PLACEMENT -862

SQLE_INVALID_FOREIGN_KEY -194

SQLE_INVALID_FOREIGN_KEY_DEF -113

SQLE_INVALID_GROUP_SELECT -149

SQLE_INVALID_LOGON -103

SQLE_INVALID_OPTION_SETTING -201

SQLE_INVALID_ORDER -152

SQLE_INVALID_ORDERBY_COLUMN -854

SQLE_INVALID_paraMETER -735

107

Constant Value

SQLE_INVALID_SQL_IDENTIFIER -760

SQLE_INVALID_STATEMENT -130

SQLE_LOCKED -210,

SQLE_MEMORY_ERROR -309

SQLE_METHOD_CANNOT_BE_CALLED -669

SQLE_NAME_NOT_UNIQUE -110

SQLE_NOERR 0

SQLE_NOTFOUND 100

SQLE_NOT_IMPLEMENTED -134

SQLE_NO_CURRENT_ROW -197

SQLE_NO_INDICATOR -181

SQLE_OVERFLOW_ERROR -158

SQLE_PERMISSION_DENIED -121

SQLE_PRIMARY_KEY_NOT_UNIQUE -193

SQLE_PRIMARY_KEY_VALUE_REF -198

SQLE_PUBLICATION_NOT_FOUND -280

SQLE_RESOURCE_GOVERNOR_EXCEEDED -685

SQLE_ROW_DROPPED_DURING_SCHEMA_-
UPGRADE

130

SQLE_SERVER_SYNCHRONIZATION_ERROR -857

SQLE_START_STOP_DATABASE_DENIED -75

SQLE_STATEMENT_ERROR -132

SQLE_SYNTAX_ERROR -131

SQLE_STRING_RIGHT_TRUNCATION -638

SQLE_TABLE_HAS_PUBLICATIONS -281

SQLE_TABLE_IN_USE -214

SQLE_TABLE_NOT_FOUND -141

SQLE_TOO_MANY_CONNECTIONS -102

108

Chapter 4. UltraLite for M-Business Anywhere API Reference

Constant Value

SQLE_UTRALITE_OBJ_CLOSED -908

SQLE_UNABLE_TO_CONNECT_OR_START -764

SQLE_UNABLE_TO_START_DATABASE -82

SQLE_UNCOMMITTED_TRANSACTIONS -755

SQLE_UNKNOWN_FUNC -148

SQLE_UNKNOWN_USERID -140

SQLE_UNSUPPORTED_CHARACTER_SET_-
ERROR

-869

SQLE_UPLOAD_FAILED_AT_SERVER -794

SQLE_WRONG_PARAMETER_COUNT -154

109

Class SQLType
This enumeration lists as constants the available UltraLite SQL database
types used as table column types.

Constant UltraLite Database Type

BAD_INDEX

S_LONG INT

U_LONG UNSIGNED INT

S_SHORT SMALLINT

U_SHORT UNSIGNED SMALLINT

S_BIG BIGINT

U_BIG UNSIGNED BIGINT

TINY TYNY INT

BIT BIT

TIMESTAMP TIMESTAMP

DATE DATE

TIME TIMESTAMP

DOUBLE DOUBLE

REAL REAL

NUMERIC NUMERIC

BINARY BINARY

CHAR CHAR or VARCHAR

LONGVARCHAR LONG VARCHAR

LONGBINARY LONG BINARY

MAX_INDEX

Method toString

Prototype String toString(UInt16 code)

Parameters ♦ code The SQL column type constant.

110

Chapter 4. UltraLite for M-Business Anywhere API Reference

Returns The string name of the specified SQL column type constant or
BAD_SQL_TYPE if not a a recognized type.

111

Class SyncParms
Represents synchronization parameters that define how to synchronize an
UltraLite database. Each connection has its own SyncParms instance.

Constants

Constant Value Description

STREAM_TYPE_-
UNKNOWN

0 No stream type has been set. You must
set a stream type before synchroniza-
tion.

STREAM_TYPE_-
TCPIP

1 TCP/IP stream

STREAM_TYPE_HTTP 2 HTTP stream

STREAM_TYPE_-
HTTPS

3 HTTPS synchronization

STREAM_TYPE_-
HOTSYNC

4 For HotSync synchronization

Method getAuthenticationParms

Prototype Array getAuthenticationParms()

Returns Parameters provided to a custom user authentication script or null if no
parameters are specified.

Method getCheckpointStore

Prototype Boolean getCheckpointStore()

Returns true if the client will perform extra checkpoints, false if the client will only
perform required checkpoints.

Method getDisableConcurrency

Prototype Boolean getDisableConcurrency()

Returns true if concurrent synchronization is disabled, false if concurrent
synchronization is enabled.

112

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method getDownloadOnly

Prototype Boolean getDownloadOnly()

Returns true if uploads are disabled, false if uploads are enabled.

Method getKeepPartialDownload

Prototype Boolean getKeepPartialDownload()

Returns true if partial downloads are to be kept, false if partial downloads should be
rolled back.

Method getNewPassword

Prototype String getNewPassword()

Returns The new password that will be associated with the MobiLink user after the
next synchronization.

Method getPartialDownloadRetained

Prototype Boolean getPartialDownloadRetained()

Returns true if a download failed because of a communications error and the partial
download was retained, false if the download was not interrupted, or if the
partial download was rolled back.

Method getPassword

Prototype String getPassword() ;

Returns The MobiLink password for the user specified with setUserName.

Method getPingOnly

Prototype Boolean getPingOnly()

Returns true if client will only ping the server, false if client will perform a
synchronization.

Method getPublicationMask

Prototype UInt32 getPublicationMask() ;

113

Returns The publications to be synchronized. See PublicationSchema class for more
information.

Method getResumePartialDownload

Prototype Boolean getResumePartialDownload()

Returns true if the previous partial download is to be resumed, false if the previous
partial download is to be rolled back.

Method getSendColumnNames

Prototype Boolean getSendColumnNames()

Returns true if client will send column names to the MobiLink synchronization
server during synchronization, false if client will not send column names.

Method getSendDownloadAck

Prototype Boolean getSendDownloadAck()

Returns true if client will provide a download acknowledgement to the MobiLink
server, false if the client will not provide a download acknowledgement.

Method getStream

Prototype UInt16 getStream() ;

Returns The type of MobiLink synchronization stream to use for synchronization.

Method getStreamParms

Prototype String getStreamParms() ;

Remarks A string containing all the network protocol options used for
synchronization streams.

Method getUploadOnly

Prototype Boolean getUploadOnly()

Remarks true if downloads are disabled, false if downloads are enabled.

Method getUserName

Prototype String getUserName()

114

Chapter 4. UltraLite for M-Business Anywhere API Reference

Returns The MobiLink user name.

Method getVersion

Prototype String getVersion()

Remarks The version string that indicates which synchronization scripts are to be
used.

Method setAuthenticationParms

Prototype setAuthenticationParms(Array value)

Parameters ♦ value an array of strings, each containing an authentication parameter
(null array entries will result in a synchronization error).

Remarks Specifies parameters for a custom user authentication script (MobiLink
authenticate_parameters connection event).

Only the first 255 strings are used and each string should be no longer than
128 characters (longer strings will be truncated when sent to MobiLink).

Method setCheckpointStore

Prototype setCheckpoint16Store(Boolean value)

Parameters ♦ value set to true to perform extra checkpoints, or set to false to only
perform the required checkpoints.

Remarks Specifies whether the client should perform extra store checkpoints to
control the growth of the database store during synchronization.

The checkpoint operation adds I/O operations for the application, and so
slows synchronization. This option is most useful for large downloads with
many updates. Devices with slow flash memory may not want to pay the
performance penalty.

Method setDisableConcurrency

Prototype setDisableConcurrency(Boolean value);

Parameters ♦ value set to true to disable concurrent synchronization, or set to false to
enable concurrent synchronization.

Remarks Specifies whether to disable or enable concurrent access to UltraLite while
performing a synchronization.

By default, other threads may perform UltraLite operations while a thread is
synchronizing. When concurrent synchronization is disabled, other threads
will block on UltraLite calls until the synchronization has completed.

115

Method setDownloadOnly

Prototype setDownloadOnly(Boolean value)

Parameters ♦ value set to true to disable uploads, or set to false to enable uploads.

Remarks Specifies whether to disable or enable uploads when synchronizing.

Method setMBAServer

Prototype setMBAServer(String host , String port , String url_suffix)

Parameters ♦ host The host or IP value of the M-Business Anywhere server. If host
is null, UltraLite sets it to the current M-Business Anywhere host.

♦ port The port on which the M-Business Anywhere server is listening.
If port is null, UltraLite sets it to the current M-Business Anywhere port
value.

♦ url_suffix This corresponds to the url_suffix parameter set in the
sync.conffile of M-Business Anywhere.

Remarks Provides a quick way to set the synchronization parameters for the MobiLink
host and port to those of the M-Business Anywhere server used by the
M-Business client. You should use the MobiLink redirector for M-Business
Anywhere to route data to and from the MobiLink synchronization server.

If you are using one-button synchronization, you must save the
synchronization parameters using Connection.saveSyncParms.

☞ For information about configuring M-Business Server to route HTTP
database traffic through the M-Business Anywhere Redirector, see
“M-Business Anywhere Redirector”[MobiLink Administration Guide,
page 153].

Method setNewPassword

Prototype setNewPassword(String value)

Parameters ♦ value new password for MobiLink user.

Remarks Sets a new MobiLink password for the user specified with setUserName.
The new password will take effect after the next synchronization.

Method setPassword

Prototype setPassword(String value)

Parameters ♦ value password for MobiLink user.

116

Chapter 4. UltraLite for M-Business Anywhere API Reference

Remarks Sets the MobiLink password for the user specified with setUserName. This
user name and password are separate from any database user ID and
password, and serves to identify and authenticate the application to the
MobiLink synchronization server.

Method setPingOnly

Prototype setPingOnly(Boolean value);

Parameters ♦ value set to true to only ping the MobiLink synchronization server, or
to false to perform a synchronization.

Remarks Specifies whether the client should only ping the MobiLink synchronization
server instead of performing a real synchronization.

Method setPublicationMask

Prototype setPublicationMask(UInt16 mask)

Parameters ♦ mask set of publications to synchronize.

Remarks Specifies the publications to be synchronized. SeePublicationSchemaclass
for more information.

Method setSendColumnNames

Prototype setSendColumnNames(Boolean value)

Parameters ♦ value set to true to send column names, or set to false to not send
column names.

Remarks Specifies whether the client should send column names to the MobiLink
synchronization server during synchronization.

This parameter is typically used together with the -za or -ze switch on the
MobiLink synchronization server for automatically generating
synchronization scripts.

Method setSendDownloadAck

Prototype setSendDownloadAck(Boolean value)

Parameters ♦ value set to true to send a download acknowledgement, to false to tell
the server that no download acknowledgement will be sent.

Remarks Specifies whether the client should send a download acknowledgement to
the MobiLink synchronization server during synchronization.

If the client does send a download acknowledgement, the MobiLink
synchronization server worker thread must wait for the client to apply the

117

download. If the client does not sent a download acknowledgement, the
MobiLink synchronization server is freed up sooner for its next
synchronization.

Method setStream

Prototype setStream(UInt16 value)

Parameters ♦ value type of MobiLink synchronization stream to use for
synchronization. Valid choices are listed in

For a list of valid choices, see“Constants” on page 112.

Remarks Sets the MobiLink synchronization stream to use for synchronization. Most
synchronization streams require parameters to identify the MobiLink
synchronization server address and control other behavior. These parameters
are supplied with thesetStreamParms()method.

If the specified stream type is invalid for the platform, the stream type will
be set toUNKNOWN .

Method setStreamParms

Prototype setStreamParms(String value)

Parameters ♦ value string containing all the network protocol oiptions used for
synchronization streams. Options are specified as a semicolon-separated
list of name=value pairs (" param1=value1;param2=value2").

Remarks Sets the parameters to configure the synchronization stream. For information
on configuring specific stream types, refer to theSynchronization Stream
Parameters Referencesection of theUltraLite Database User’ s Guide
online book.

Method setUploadOnly

Prototype setUploadOnly(Boolean value)

Parameters ♦ value set to true to disable downloads, or set to false to enable
downloads.

Remarks Specifies whether to disable or enable downloads when synchronizing.

Method setUserName

Prototype setUserName(String value)

Parameters ♦ value MobiLink user name.

118

Chapter 4. UltraLite for M-Business Anywhere API Reference

Remarks Sets the user name that uniquely identifies the MobiLink client to the
MobiLink synchronization server. MobiLink uses this value to determine the
download content, to record the synchronization state, and to recover from
interruptions during synchronization. This user name and password are
separate from any database user ID and password, and serve to identify and
authenticate the application to the MobiLink synchronization server.

Method setVersion

Prototype setVersion(String value)

Parameters ♦ value script version string.

Remarks Specifies which synchronization script version to use. Each synchronization
script in the consolidated database is marked with a version string. For
example, there may be two different download_cursor scripts, and each one
is identified by different version strings. The version string allows an
UltraLite application to choose from a set of synchronization scripts.

119

Class SyncResult
Represents the status of the last synchronization. Each connection has its
own SyncResult instance.

This class can not be directly instantiated.

Method getAuthStatus

Prototype UInt16 getAuthStatus()

Remarks Returns the authorization status code for the last synchronization attempt.

Method getIgnoredRows

Prototype Boolean getIgnoredRows()

Parameters ♦ return true if any uploaded rows were ignored, false if no uploaded
rows were not ignored.

Returns true if any uploaded rows were ignored during the most recent
synchronization, false if no uploaded rows were ignored.

Method getPartialDownloadRetained

Prototype Boolean getPartialDownloadRetained()

Returns true if a download was interrupted and the partial download was retained,
false if the download was not interrupted or the partial download was rolled
back.

Method getStreamErrorCode

Prototype UInt16 getStreamErrorCode()

Parameters ♦ return error code reported by the synchronization stream.

Returns An integer representing the error reported by the stream itself. The following
table gives a brief description of the error codes. For more complete
descriptions, see“MobiLink Communication Error Messages”[ASA Error
Messages,page 549]

Value Description

0 None

1 Parameter

120

Chapter 4. UltraLite for M-Business Anywhere API Reference

Value Description

2 Parameter not uint32

3 Parameter not uint32 range

4 Parameter not boolean

5 Parameter not hex

6 Memory allocation

7 Parse

8 Read

9 Write

10 End write

11 End read

12 Not implemented

13 Would block

14 Generate random

15 Init random

16 Seed random

17 Create random object

18 Shutting down

19 Dequeuing connection

20 Secure certificate root

21 Secure certificate company name

22 Secure certificate chain length

23 Secure certificate ref

24 Secure certificate not trusted

25 Secure duplicate context

26 Secure set io

27 Secure set io semantics

28 Secure certificate chain func

29 Secure certificate chain ref

121

Value Description

30 Secure enable non blocking

31 Secure set cipher suites

32 Secure set chain number

33 Secure certificate file not found

34 Secure read certificate

35 Secure read private key

36 Secure set private key

37 Secure certificate expiry date

38 Secure export certificate

39 Secure add certificate

40 Secure trusted certificate file not found

41 Secure trusted certificate read

42 Secure certificate count

43 Secure create certificate

44 Secure import certificate

45 Secure set random ref

46 Secure set random func

47 Secure set protocol side

48 Secure add trusted certificate

49 Secure create private key object

50 Secure certificate expired

51 Secure certificate company unit

52 Secure certificate common name

53 Secure handshake

54 HTTP version

55 Secure set read func

56 Secure set write func

57 Socket host name not found

122

Chapter 4. UltraLite for M-Business Anywhere API Reference

Value Description

58 Socket get host by addr

59 Socket localhost name not found

60 Socket create TCP/IP

61 Socket create UDP

62 Socket bind

63 Socket cleanup

64 Socket close

65 Socket connect

66 Socket get name

67 Socket get option

68 Socket set option

69 Socket listen

70 Socket shutdown

71 Socket select

72 Socket startup

73 Socket port out of range

74 Load network library

75 ActiveSync no port

89 HTTP expected post

Method getStreamErrorContext

Prototype UInt16 getStreamErrorContext()

Remarks The basic network operation being performed when the stream error
occurred. The known contexts are as follows:

Value Context

0 Unknown

1 Register

2 Unregister

123

Value Context

3 Create

4 Destroy

5 Open

6 Close

7 Read

8 Write

9 WriteFlush

10 EndWrite

11 EndRead

12 Yield

13 Softshutdown

Method getStreamErrorID

Prototype UInt32 getStreamErrorID()

Returns The network layer reporting the error. The value is the ID of network layer.

The known IDs are as follows:

Value Description

0 TCP/IP stream

7 HTTP stream

8 HTTPS synchronization

3 For HotSync synchronization

Method getStreamErrorSystem

Prototype UInt16 getStreamErrorSystem()

Parameters ♦ return a system-specific error code.

Remarks Returns the stream error system-specific code.

124

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method getTimestamp

Prototype Date getTimestamp()

Returns The timestamp of the most recent synchronization.

Method getUploadOK

Prototype Boolean getUploadOK()

Remarks true if last upload synchronization was successful, false if last upload
synchronization was unsuccessful.

125

Class TableSchema
Represents the schema of an UltraLite table.

Method getColumnCount

Prototype UInt16 getColumnCount()

Returns The 1-based number of columns in this table. Column IDs range from 1 to
getColumnCount().

Method getColumnDefaultValue

Prototype String getColumnDefaultValue(String name)

Parameters ♦ name name of the column.

Remarks The default value of the named column or null if the default value isnull .

Method getColumnDefaultValueByColID

Prototype String getColumnDefaultValueByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns The default value of the column or null if the default value isnull .

Method getColumnID

Prototype UInt16 getColumnID(String name)

Parameters ♦ name name of the column.

Returns The 1-based ID of the specified column.

Method getColumName

Prototype String getColumnName(UInt16 colID)

Parameters ♦ colID The 1-based column ID of the column.

Returns The name of the specified column.

Method getColumnPartitionSize

Prototype UInt64 getColumnPartitionSize(String name)

Parameters ♦ name name of the column.

126

Chapter 4. UltraLite for M-Business Anywhere API Reference

Returns The column’s global autoincrement partition size as an unsigned 64-bit
number represented by a Double. All global autoincrement columns in a
given table share the same global autoincrement partition.

Method getColumnPartitionSizeByColID

Prototype UInt64 getColumnPartitionSizeByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns The column’s global autoincrement partition size as an unsigned 64-bit
number represented by a Double. All global autoincrement columns in a
given table share the same global autoincrement partition.

Method getColumnPrecision

Prototype Int32 getColumnPrecision(String name)

Parameters ♦ name name of the column.

Returns The precision of the column. The column must be of type
SQLType.NUMERIC.

Method getColumnPrecisionByColID

Prototype Int32 getColumnPrecisionByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns The precision of the column. The column must be of type
SQLType.NUMERIC

Method getColumnScale

Prototype Int32 getColumnScale(String name)

Parameters ♦ name name of the column.

Returns The scale of the column. The column must be of type SQLType.NUMERIC.

Method getColumnScaleByColID

Prototype Int32 getColumnScaleByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

127

Returns The scale of the column. The column must be of type SQLType.NUMERIC.

Method getColumnSize

Prototype UInt32 getColumnSize(String name)

Parameters ♦ name name of the column.

Returns The size of the column. The column must be of type SQLType.BINARY or
SQLType.CHAR.

Method getColumnSizeByColID

Prototype UInt32 getColumnSizeByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns The size of the column. The column must be of type SQLType.BINARY or
SQLType.CHAR.

Method getColumnSQLType

Prototype Int16 getColumnSQLType(String name)

Parameters ♦ name name of the column.

Returns The SQLType of the column, in a SQLType enumerated integer.

Method getColumnSQLTypeByColID

Prototype Int16 getColumnSQLTypeByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns The SQLType of the column, in a SQLType enumerated integer.

Method getIndex

Prototype IndexSchema getIndex(String name)

Parameters ♦ name name of the index.

Returns The index schema of the named index.

Method getIndexCount

Prototype UInt16 getIndexCount()

128

Chapter 4. UltraLite for M-Business Anywhere API Reference

Returns The number of indexes on this table. Index IDs range from 1 to
getIndexCount(), inclusively.

Remarks Note: Index IDs and count may change during a schema upgrade. To
correctly identify an index, access it by name or refresh the cached IDs and
counts after a schema upgrade.

Method getIndexName

Prototype String getIndexName(UInt16 indexID)

Parameters ♦ indexID ID of the index.indexID must be in the range
[1,getIndexCount()].

Returns The name of the index identified by the specified index ID.

Remarks Note: Index IDs and count may change during a schema upgrade. To
correctly identify an index, access it by name or refresh the cached IDs and
counts after a schema upgrade.

Method getName

Prototype String getName()

Returns The name of this table.

Method getOptimalIndex

Prototype IndexSchema getOptimalIndex(String name)

Parameters ♦ name name of the column.

Returns The optimal index for searching a table using the named column. The named
column will be the first column in the index but the index may have more
than one column.

Method getPrimaryKey

Prototype IndexSchema getPrimaryKey()

Returns The index schema of the primary key for this table.

Method getUploadUnchangedRows

Prototype Boolean getUploadUnchangedRows()

Returns true if the table is marked to upload all rows, false if the table is not marked
to upload all rows.

129

Remarks Tables for which this method returns true always upload unchanged rows, as
well as changed rows, when the table is synchronized. These tables are
sometimes referred to as “all sync” tables.

Method isColumnAutoIncrement

Prototype Boolean isColumnAutoIncrement(String name)

Parameters ♦ name name of the column.

Returns true if the column is autoincrementing, false otherwise.

Method isColumnAutoIncrementByColID

Prototype Boolean isColumnAutoIncrementByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns true if the column is autoincrementing, false otherwise.

Method isColumnCurrentDate

Prototype Boolean isColumnCurrentDate(String name)

Parameters ♦ name name of the column.

Returns true if the column defaults to the current date, false otherwise.

Remarks The column must be of type SQLType.DATE.

Method isColumnCurrentDateByColID

Prototype Boolean isColumnCurrentDateByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns true if the column defaults to the current date, false otherwise.

Remarks The column must be of type SQLType.DATE.

Method isColumnCurrentTime

Prototype Boolean isColumnCurrentTime(String name)

Parameters ♦ name name of the column.

Returns true if the column defaults to the current time, false otherwise.

Remarks The column must be of type SQLType.TIME.

130

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method isColumnCurrentTimeByColID

Prototype Boolean isColumnCurrentTimeByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns true if the column defaults to the current time, false otherwise.

Remarks The column must be of type SQLType.TIME.

Method isColumnCurrentTimestamp

Prototype Boolean isColumnCurrentTimestamp(String name)

Parameters ♦ name name of the column.

Returns true if the column defaults to the current timestamp, false otherwise.

Remarks The column must be of type SQLType.TIMESTAMP.

Method isColumnCurrentTimestampByColID

Prototype Boolean isColumnCurrentTimestampByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns true if the column defaults to the current timestamp, false otherwise.

Remarks The column must be of type SQLType.TIME.

Method isColumnGlobalAutoIncrement

Prototype Boolean isColumnGlobalAutoIncrement(String name)

Parameters ♦ name name of the column.

♦ return true if the column is global autoincrementing, false if not global
autoincrementing.

Returns true if the column defaults to global autoincrement, false otherwise.

Method isColumnGlobalAutoincrementByColID

Prototype Boolean isColumnGlobalAutoincrementByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

131

Returns true if the column defaults to global autoincrement, false otherwise.

Method isColumnNewUUID

Prototype Boolean isColumnNewUUID(String name)

Parameters ♦ name name of the column.

Returns true if the column defaults to a new UUID, false otherwise.

Method isColumnNewUUIDByColID

Prototype Boolean isColumnNewUUIDByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns true if the column defaults to a new UUID, false otherwise.

Method isColumnNullable

Prototype Boolean isColumnNullable(String name)

Parameters ♦ name name of the column.

Returns true if the column is nullable, false otherwise.

Method isColumnNullableByColID

Prototype Boolean isColumnNullableByColID(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Returns true if the column defaults to a new UUID, false otherwise.

Method isInPublication

Prototype Boolean isInPublication(String pubName)

Parameters ♦ pubName name of the publication.

Returns true if table in publication, false if table not in publication.

Method isNeverSynchronized

Prototype Boolean isNeverSynchronized()

Returns true if the table is marked as never synchronized, false if the table is not
marked as never synchronized.

132

Chapter 4. UltraLite for M-Business Anywhere API Reference

Remarks Tables for which this method returns true are never synchronized, even if
they are included in a publication. These tables are sometimes referred to as
“no sync” tables.

133

Class ULTable
Represents an UltraLite table.

Properties

The properties of the class are listed here.

Property Description

TableSchema schema (read-only) The schema of this result set. This
property is only valid while its pre-
pared statement is open.

NULL_TIMESTAMP_VAL A constant indicating that a times-
tamp value is NULL.

Method appendBytes

Prototype appendBytes(
UInt16 columnID,
Array value,
UInt32 srcOffset ,
UInt32 count

)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

♦ srcOffset The value to append to the current new value for the column.

♦ count The number of bytes to be copied.

Remarks Appends the specified subset of the specified array of bytes to the new value
for the specified SQLType.LONGBINARY column. The bytes at position
srcOffset (starting from 0) throughsrcOffset+count-1of the arrayvalueare
appended to the value for the specified column. When inserting, insertBegin
initializes the new value to the column’s default value. The data in the row is
not actually changed until you execute aninsert, and that change is not
permanent until it is committed.

If any of the following is true, an Error with code
SQLCode.SQLE_INVALID_PARAMETER is thrown and the destination is
not modified:

♦ Thevalueargument is null.

134

Chapter 4. UltraLite for M-Business Anywhere API Reference

♦ ThesrcOffsetargument is negative.

♦ Thecount argument is negative.

♦ srcOffset+countis greater thanvalue.length, the length of the source
array.

For other errors, aSQLExceptionwith the appropriate error code is thrown.

Method appendStringChunk

Prototype appendChars (
UInt16 columnID,
String value

)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Appends the specified string to the new value for the specified
SQLType.LONGVARCHAR column.

Example The following statements append one hundred instances of the stringXYZ
to the value in the first column:

for (i = 0; i < 100; i++){
t.appendStringChunk(1, "XYZ");

}

Method deleteRow

Prototype deleteRow()

Remarks Deletes the current row.

Method deleteAllRows

Prototype deleteAllRows()

Remarks Deletes all rows in the table.

In some applications, it can be useful to delete all rows from a table before
downloading a new set of data into the table. Rows can be deleted from the
UltraLite database without being deleted from the consolidated database
using the Connection.startSynchronizationDelete method.

135

Method findBegin

Prototype findBegin()

Remarks Prepares to perform a new find on this table. The value(s) to search for are
specified by calling the appropriate setType method(s) on the columns in the
index this table was opened with.

Method findFirst

Prototype Boolean findFirst()

Returns true if successful,falseotherwise

Remarks Move forwards through the table from the beginning, looking for a row that
exactly matches a value or full set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is after the last row (isEOF()).

Each search must be preceded by a call tofindBegin().

Method findFirstForColumns

Prototype Boolean findFirstForColumns(
UInt16 numColumns

)

Parameters ♦ numColumns For composite indexes, the number of columns to use in
the lookup. For example, if you have a three column index, and you want
to look up a value that matches based on the first column only, you should
set the value for the first column, and then supply anumColumnsvalue
of 1.

Returns true if successful,falseotherwise

Remarks Move forwards through the table from the beginning, looking for a row that
exactly matches a value or partial set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is after the last row (isEOF()).

Each search must be preceded by a call tofindBegin().

136

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method findLast

Prototype Boolean findLast()

Returns true if successful,falseotherwise.

Remarks Move backwards through the table from the end, looking for a row that
exactly matches a value or full set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position is before the first row (isBOF()).

Each search must be preceded by a call tofindBegin().

Method findLastForColumns

Prototype Boolean findLastForColumns(UInt16 numColumns)

Parameters ♦ numColumns For composite indexes, the number of columns to use in
the lookup. For example, if you have a three column index, and you want
to look up a value that matches based on the first column only, you should
set the value for the first column, and then supply anumColumnsvalue
of 1.

Returns true if successful,falseotherwise.

Remarks Move backwards through the table from the end, looking for a row that
exactly matches a value or partial set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position is before the first row (isBOF()).

Each search must be preceded by a call tofindBegin().

Method findNext

Prototype Boolean findNext()

Returns true if successful,falseotherwise.

Remarks Continues afindFirst() search by moving forward through the table from
the current position, looking to see if the next row exactly matches a value or
full set of values in the current index.

The cursor is left on the next row if it exactly matches the index value. On
failure the cursor position is after the last row (isEOF()).

137

findNext behavior is undefined if the column values being searched for are
modified during a row update.

Method findNextForColumns

Prototype Boolean findNextForColumns(UInt16 numColumns)

Parameters ♦ numColumns For composite indexes, the number of columns to use in
the lookup. For example, if you have a three column index, and you want
to look up a value that matches based on the first column only, you should
set the value for the first column, and then supply anumColumnsvalue
of 1.

Returns true if successful,falseotherwise.

Remarks Continues afindFirst search by moving forward through the table from the
current position, looking to see if the next row exactly matches a value or
partial set of values in the current index.

The cursor is left on the next row if it exactly matches the index value. On
failure the cursor position is after the last row (isEOF()).

findNext behavior is undefined if the column values being searched for are
modified during a row update.

Method findPrevious

Prototype Boolean findPrevious()

Returns true if successful,falseotherwise.

Remarks Continues afindLast() search by moving backward through the table from
the current position, looking to see if the previous row exactly matches a
value or full set of values in the current index.

The cursor is left on the previous row if it exactly matches the index value.
On failure the cursor position is before the first row (isBOF()).

findPreviousbehavior is undefined if the column values being searched for
are modified during a row update.

Method findPreviousForColumns

Prototype Boolean findPreviousForColumns(
UInt16 numColumns

)

Parameters

138

Chapter 4. UltraLite for M-Business Anywhere API Reference

♦ numColumns For composite indexes, the number of columns to use in
the lookup. For example, if you have a three column index, and you want
to look up a value that matches based on the first column only, you should
set the value for the first column, and then supply anumColumnsvalue
of 1.

Returns true if successful,falseotherwise.

Remarks Continues afindLast search by moving backward through the table from the
current position, looking to see if the previous row exactly matches a value
or partial set of values in the current index.

The cursor is left on the previous row if it exactly matches the index value.
On failure the cursor position is before the first row (isBOF()).

findPreviousbehavior is undefined if the column values being searched for
are modified during a row update.

Method getBoolean

Prototype Boolean getBoolean(UInt16 index)

Parameters ♦ index The ID number of the column. The first column in the result set
has an ID of one.

Returns The value for the specified column as a Boolean.

Method getBytes

Prototype Array getBytes(UInt16 index)

Parameters ♦ index The ID number of the column. The first column in the result set
has an ID of one.

Returns The value for the specified column as an array of bytes.

Remarks Only valid for columns of type SQLType.BINARY or
SQLType.LONGBINARY.

Method getBytesSection

Prototype UInt32 getBytesSection(
UInt16 index
UInt32 srcOffset ,
Array dst ,
UInt32 dstOffset ,
UInt32 count

)

139

Parameters index The 1-based ordinal of the column containing the binary data.

srcOffset The start position in the column value. Zero is the beginning of
the value.

dst The destination array.

dstOffset The start position in the destination array.

count The number of bytes to be copied

Returns The number of bytes read.

Remarks Copies a subset of the value for the specified SQLType.LONGBINARY
column, beginning at the specified offset, to the specified offset of the
destination byte array.

The bytes at position srcOffset (starting from 0) through srcOffset+count-1
of the value are copied into positions dstOffset through dstOffset+count-1,
respectively, of the destination array. If the end of the value is encountered
before count bytes are copied, the remainder of the destination array is left
unchanged.

If any of the following is true, an Error is thrown, Connection.sqlCode set to
SQLError.SQLE_INVALID_PARAMETER and the destination is not
modified:

♦ The dst argument is null
♦ The srcOffset argument is negative
♦ The dstOffset argument is negative
♦ The count argument is negative
♦ dstOffset + count is greater than dst.length, the length of the destination

array.

Method getDate

Prototype Date getDate(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Date.

Method getDouble

Prototype Double getDouble(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Double.

140

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method getFloat

Prototype Float getFloat(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value for the specified column.

Method getInt

Prototype Int32 getInt(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value for the specified column.

Method getLong

Prototype Int64 getLong(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value for the specified column.

Method getRowCount

Prototype UInt32 getRowCount()

Returns The number of rows in the result set.

Method getShort

Prototype Int16 getShort(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as an Int16.

Method getString

Prototype String getString(UInt32 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a String.

141

Method getStringChunk

Prototype String getStringChunk(
UInt16 index ,
UInt32 srcOffset ,
UInt32 count

)

Parameters ♦ index The 1-based ordinal in the result set to get

♦ srcOffset The o-based start position in the string value.

♦ count The number of characters to be copied.

Returns The string, with specified characters copied.

Remarks Copies a subset of the value for the specified SQLType.LONGVARCHAR
column, starting at the specified offset, to the String object.

Method getTime

Prototype Date getTime(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Date.

Method getTimestamp

Prototype Date getTimestamp(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Date.

Method getULong

Prototype UInt64 getULong(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

Returns The value as an unsigned 64-bit integer.

Method getUUID

Prototype UUID getUUID(UInt16 index)

Parameters index The 1-based ordinal in the result set to get.

142

Chapter 4. UltraLite for M-Business Anywhere API Reference

Returns The value of the column as a UUID. The column must be of type
SQLType.BINARY with length 16.

Method insert

Prototype insert ()

Remarks Inserts a new row with the current column values (specified using the set
methods).

Each insert must be preceded by a call toinsertBegin.

Method insertBegin

Prototype insertBegin()

Remarks Prepares to insert a new row into this table by setting all current column
values to their default values. Call the appropriate setType method(s) to
specify the non-default values that are to be inserted.

The row is not actually inserted and the data in the row is not actually
changed until you execute theinsert(), and that change is not permanent
until it is committed.

Method lookupBackward

Prototype Boolean lookupBackward()

Returns true if successful,falseotherwise.

Remarks Move backwards through the table from the end, looking for a row that
matches or is less than a value or full set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is less than the
index value. On failure (no rows less than the value being looked for) the
cursor position is before the first row (isBOF()).

Each search must be preceded by a call tolookupBegin().

Method lookupBackwardForColumns

Prototype Boolean lookupBackwardForColumns(UInt16 numColumns)

Parameters ♦ numColumns For composite indexes, the number of columns to use in
the lookup. For example, if you have a three column index, and you want
to look up a value that matches based on the first column only, you should
set the value for the first column, and then supply anumColumnsvalue

143

of 1.

Returns true if successful,falseotherwise.

Remarks Move backwards through the table from the beginning, looking for a row that
matches or is less than a value or partial set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is less than the
index value. On failure (no rows less than the value being looked for) the
cursor position is before the first row (isBOF()).

Each search must be preceded by a call tolookupBegin().

Method lookupBegin

Prototype lookupBegin()

Remarks Prepares to perform a new lookup on this table. The value(s) to search for
are specified by calling the appropriate setType method(s) on the columns in
the index this table was opened with.

Method lookupForward

Prototype Boolean lookupForward()

Returns true if successful,falseotherwise.

Remarks Move forwards through the table from the beginning, looking for a row that
matches or is greater than a value or full set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is greater than
the index value. On failure (no rows greater than the value being looked for)
the cursor position is after the last row (isEOF()).

Each search must be preceded by a call tolookupBegin().

Method lookupForwardForColumns

Prototype Boolean lookupForwardForColumns(UInt16 numColumns)

Parameters ♦ numColumns For composite indexes, the number of columns to use in
the lookup. For example, if you have a three column index, and you want
to look up a value that matches based on the first column only, you should
set the value for the first column, and then supply anumColumnsvalue
of 1.

144

Chapter 4. UltraLite for M-Business Anywhere API Reference

Returns true if successful,falseotherwise.

Remarks Move forwards through the table from the beginning, looking for a row that
matches or is greater than a value or partial set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is greater than
the index value. On failure (no rows greater than the value being looked for)
the cursor position is after the last row (isEOF()).

Each search must be preceded by a call tolookupBegin().

Method isBOF

Prototype Boolean isBOF()

Returns true if successful,falseotherwise.

Method isEOF

Prototype Boolean isEOF()

Returns true if successful,falseotherwise.

Method isNull

Prototype Boolean isNull(Uint16 index)

Parameters index The column index value.

Returns true if the value is null.

falseotherwise.

Method isOpen

Prototype Boolean isOpen()

Returns true if the ResultSet is open, false otherwise.

Method moveAfterLast

Prototype Boolean moveAfterLast()

Remarks Moves to a position after the last row of the ULResultSet.

Returns true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

145

Method moveBeforeFirst

Prototype Boolean moveBeforeFirst()

Remarks Moves to a position before the first row.

Returns true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method moveFirst

Prototype Boolean moveFirst()

Remarks Moves to the first row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

Method moveLast

Prototype Boolean moveLast()

Remarks Moves to the last row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

Method moveNext

Prototype Boolean moveNext()

Remarks Moves to the next row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

Method movePrevious

Prototype Boolean movePrevious()

Remarks Moves to the previous row.

Returns true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

146

Chapter 4. UltraLite for M-Business Anywhere API Reference

Method moveRelative

Prototype Boolean moveRelative(Int32 index)

Remarks Moves a certain number of rows relative to the current row. Relative to the
current position of the cursor in the resultset, positive index values move
forward in the resultset, negative index values move backward in the
resultset and zero does not move the cursor.

Parameters index The number of rows to move. The value can be positive, negative, or
zero.

Returns true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method open

Prototype open ()

Remarks Opens this table for data access using its primary key.

Method openWithIndex

Prototype openWithIndex (String index)

Parameters ♦ index The name of the index with which to open the table. If null, the
primary key is used.

Remarks Opens this table for data access using the specified index.

Method setBoolean

Prototype setBoolean (short columnID, boolean value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using aboolean. The data in the row
is not actually changed until you execute aninsert or update, and that
change is not permanent until it is committed.

Example The following statement sets the value for the first column tofalse:

t.setBoolean(1, false);

147

Method setBytes

Prototype setBytes(UInt16 columnID, Array value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using an array ofbytes. Suitable for
columns of typeSQLType.BINARY or SQLType.LONGBINARY only.
The data in the row is not actually changed until you execute aninsert or
update, and that change is not permanent until it is committed.

Example The following statements set the value of the first column:

var blob = new Array(3);
blob[0] = 78;
blob[1] = 0’
blob[2] = 68;
t.setBytes(1, blob);

Method setDate

Prototype setDate(UInt16 columnID, Date value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using aDate. The data in the row is
not actually changed until you execute an insert or update, and that change is
not permanent until it is committed.

Example The following statement sets the value of the first column to 2004/10/27:

t.setDate(
1, new Date(2002,9,27,0,0,0,0)

);

Method setDouble

Prototype setDouble(UInt16 columnID, Double value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

148

Chapter 4. UltraLite for M-Business Anywhere API Reference

Remarks Sets the value for the specified column using adouble. The data in the row
is not actually changed until you execute an insert or update, and that change
is not permanent until it is committed.

Example The following example sets the value of the first column:

t.setDouble(1, Number.MAX_VALUE);

Method setFloat

Prototype setFloat(UInt16 columnID, Float value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using a Float. The data in the row is
not actually changed until you execute an insert or update, and that change is
not permanent until it is committed.

Example The following statement sets the value of the first column:

t.setFloat(
1,
(2 - Math.pow(2,-23)) * Math.pow(2,127)

);

Method setInt

Prototype setInt(UInt16 columnID, Int32 value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using an Integer. The data in the row
is not actually changed until you execute an insert or update, and that change
is not permanent until it is committed.

Example The following statement sets the value of the first column to 2147483647:

t.setInt(1, 2147483647);

Method setLong

Prototype setLong(UInt16 columnID, Int64 value)

149

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using an Int64. The data in the row is
not actually changed until you execute an insert or update, and that change is
not permanent until it is committed.

Example The following statement sets the value of the first column to
9223372036854770000:

t.setLong(1, 9223372036854770000);

Method setNull

Prototype setNull(UInt16 columnID)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Remarks Sets a column to the SQL NULL. The data is not actually changed until you
execute an insert or update, and that change is not permanent until it is
committed.

Method setShort

Prototype setShort(UInt16 columnID, Int16 value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using a UInt16. The data in the row
is not actually changed until you execute an insert or update, and that change
is not permanent until it is committed.

Example The following statement sets the value of the first column to 32767:

t.setShort(1, 32767);

Method setString

Prototype setString(UInt16 columnID, String value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

150

Chapter 4. UltraLite for M-Business Anywhere API Reference

Remarks Sets the value for the specified column using a String. The data in the row is
not actually changed until you execute an insert or update, and that change is
not permanent until it is committed.

Example The following statement sets the value of the first column toabc.

t.setString(1, "abc");

Method setTime

Prototype setTime(UInt16 columnID, Date value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using a Date. The data in the row is
not actually changed until you execute an insert or update, and that change is
not permanent until it is committed.

Example The following statement sets the value for the first column to 18:02:13:0000:

t.setTime(
1, new Date(1966,4,1,18,2,13,0)

);

Method setTimestamp

Prototype setTimestamp(UInt16 columnID, Date value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using a Date. The data in the row is
not actually changed until you execute an insert or update, and that change is
not permanent until it is committed.

Example The following statement sets the value of the first column to 1966/05/01
18:02:13:0000:

t.setTimestamp(
1, new Date(1966,4,1,18,2,13,0)

);

Method setToDefault

Prototype setToDefault(UInt16 columnID)

151

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

Remarks Sets the value for the specified column to its default value. The data in the
row is not actually changed until you execute an insert or update, and that
change is not permanent until it is committed.

Method setULong

Prototype setULong(UInt16 columnID, UInt64 value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using a 64-bit integer treated as an
unsigned value. The data in the row is not actually changed until you execute
an insert or update, and that change is not permanent until it is committed.

Example The following statement sets the value for the first column:

t.setULong(
1, 9223372036854770000 * 4096

);

Method setUUID

Prototype setUUID(UInt16 columnID, UUID value)

Parameters ♦ columnID The ID number of the column. The first column in the table
has an ID value of one.

♦ value The new value for the column.

Remarks Sets the value for the specified column using a UUID. The data in the row is
not actually changed until you execute an insert or update, and that change is
not permanent until it is committed. Only valid for columns of type
SQLType.BINARY and length 16.

Example The following statement sets a new UUID value for the first column in the
table:

t.setUUID(1, conn.getNewUUID(););

See also ♦ “Maintaining unique primary keys using UUIDs”[MobiLink Administration
Guide,page 56]

Method truncate

Prototype truncate ()

152

Chapter 4. UltraLite for M-Business Anywhere API Reference

Remarks Deletes all rows in the table while temporarily activating stop
synchronization delete.

Method update

Prototype update ()

Remarks Updates the current row with the current column values (specified using the
set methods).

Each update must be preceded by a call to updateBegin.

Method updateBegin

Prototype updateBegin ()

Remarks Prepares to update the current row in this table. Column values are modified
by calling the appropriate setType method or methods.

The data in the row is not actually changed until you execute the update, and
that change is not permanent until it is committed.

Modifying columns in the index used to open the table will affect any active
searches in unpredictable ways. Columns in the primary key of the table can
not be updated.

153

Class UUID
Represents a UUID. A UUID (Universally Unique Identifer) or GUID
(Globally Unique Identifier) is a generated value guaranteed to be unique
across all computers and databases. UUIDs are stored as
SQLType.BINARY(16) values in UltraLite databases and can be used to
uniquely identify rows. The UUID class stores immutable UUIDs.

A UUID is associated with the Connection that created it and can no longer
be converted to a string after the connection is closed.

Method equals

Prototype Boolean equals (UUID other)

Parameters ♦ other UUID with which to compare.

Returns true if this UUID is the same as the other argument,falseotherwise.

Method toString

Prototype String toString()

Returns A string representation of this UUID.

Remarks The string is of the format
XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX, where X is a
hexadecimal digit or null if the Connection associated with the UUID is
closed.

154

Index

A
accessing schema information

UltraLite for M-Business Anywhere 30
API reference

UltraLite for M-Business Anywhere API 61
APIs

UltraLite for M-Business Anywhere 61
appendBytes method

UltraLite for M-Business Anywhere API 134
appendBytesParameter method

UltraLite for M-Business Anywhere API 87
appendStringChunk method

UltraLite for M-Business Anywhere API 135
appendStringChunkParameter method

UltraLite for M-Business Anywhere API 88
applyFile method

UltraLite for M-Business Anywhere API 79
applyFileWithParms method

UltraLite for M-Business Anywhere API 79
architecture

UltraLite for M-Business Anywhere 3
AuthStatusCode properties

UltraLite for M-Business Anywhere API 63
AutoCommit mode

UltraLite for M-Business Anywhere 28
AvantGo seeM-Business Anywhere
AvantGo M-Business Server seeM-Business

Anywhere
AvGo

UltraLite for M-Business Anywhere creator ID 9

B
BLOBs

GetByteChunk method in UltraLite for
M-Business Anywhere 28

UltraLite for M-Business Anywhere 28

C
casting

data types in UltraLite for M-Business Anywhere
25

changeEncryptionKey method
UltraLite for M-Business Anywhere API 65

close method
UltraLite for M-Business Anywhere API 66, 88,

96
columns

accessing schema information in UltraLite for
M-Business Anywhere 30

Columns collection
UltraLite for M-Business Anywhere 23

Commit method
UltraLite for M-Business Anywhere 28

commit method
UltraLite for M-Business Anywhere API 66

commits
UltraLite for M-Business Anywhere 28

connecting
UltraLite for M-Business Anywhere databases 13

conventions
documentation viii

countUploadRow method
UltraLite for M-Business Anywhere API 66

createDatabase method
UltraLite for M-Business Anywhere API 75

createDatabaseWithParms method
UltraLite for M-Business Anywhere API 76

creator IDs
UltraLite for M-Business Anywhere 9

D
data manipulation

dynamic SQL in UltraLite for M-Business
Anywhere 18

table API in UltraLite for M-Business Anywhere
23

UltraLite for M-Business Anywhere 18
data types

accessing in UltraLite for M-Business Anywhere
24

casting in UltraLite for M-Business Anywhere 25
JavaScript 62
UltraLite for M-Business Anywhere 62

155

Index

database schemas
accessing in UltraLite for M-Business Anywhere

30
UltraLite for M-Business Anywhere 11

databases
accessing schema information in UltraLite for

M-Business Anywhere 30
connecting in UltraLite for M-Business

Anywhere 13
DatabaseSchema class

UltraLite for M-Business Anywhere development
30

deleteAllRows method
UltraLite for M-Business Anywhere API 135

deleteRow method
UltraLite for M-Business Anywhere API 135

deleting
rows in UltraLite for M-Business Anywhere 26

deploying
UltraLite for M-Business Anywhere 37
UltraLite for M-Business Anywhere applications

to Palm OS 37
UltraLite for M-Business Anywhere to Windows

CE 37
UltraLite for M-Business Anywhere to Windows

XP 37
development platforms

UltraLite for M-Business Anywhere 2
DML operations

UltraLite for M-Business Anywhere 18
documentation

conventions viii
SQL Anywhere Studio vi

dropDatabase method
UltraLite for M-Business Anywhere API 76

dropDatabaseWithParms method
UltraLite for M-Business Anywhere API 77

dynamic SQL
UltraLite for M-Business Anywhere development

18

E
encryption

UltraLite for M-Business Anywhere development
17

equals method
UltraLite for M-Business Anywhere API 154

error handling
UltraLite for M-Business Anywhere 31

errors
handling in UltraLite for M-Business Anywhere

31
executeQuery method

UltraLite for M-Business Anywhere API 88
executeStatement method

UltraLite for M-Business Anywhere API 88

F
features

for M-Business Anywhere 2
feedback

documentation xii
providing xii

find methods
UltraLite for M-Business Anywhere 25

find mode
UltraLite for M-Business Anywhere 26

findBegin method
UltraLite for M-Business Anywhere API 136

findFirst method
UltraLite for M-Business Anywhere API 136

findFirstForColumns method
UltraLite for M-Business Anywhere API 136

findLast method
UltraLite for M-Business Anywhere API 137

findLastForColumns method
UltraLite for M-Business Anywhere API 137

findNext method
UltraLite for M-Business Anywhere API 137

findNextForColumns method
UltraLite for M-Business Anywhere API 138

findPrevious method
UltraLite for M-Business Anywhere API 138

findPreviousForColumns method
UltraLite for M-Business Anywhere API 138

firewalls
M-Business Anywhere synchronization 35

G
getAuthenticationParms method

UltraLite for M-Business Anywhere API 112
getAuthStatus method

UltraLite for M-Business Anywhere API 120
getBoolean method

156

Index

UltraLite for M-Business Anywhere API 96, 139
GetByteChunk method

UltraLite for M-Business Anywhere 28
getBytes method

UltraLite for M-Business Anywhere API 96, 139
getBytesSection method

UltraLite for M-Business Anywhere API 97, 139
getCheckpointStore method

UltraLite for M-Business Anywhere API 112
getCollationName method

UltraLite for M-Business Anywhere API 79
getColumnCount method

UltraLite for M-Business Anywhere API 84, 103,
126

getColumnDefaultValue method
UltraLite for M-Business Anywhere API 126

getColumnDefaultValueByColID method
UltraLite for M-Business Anywhere API 126

getColumnID method
UltraLite for M-Business Anywhere API 103, 126

getColumnName method
UltraLite for M-Business Anywhere API 84, 103

getColumnPartitionSize method
UltraLite for M-Business Anywhere API 126

getColumnPartitionSizeByColID method
UltraLite for M-Business Anywhere API 127

getColumnPrecision method
UltraLite for M-Business Anywhere API 103, 127

getColumnPrecisionByColID method
UltraLite for M-Business Anywhere API 104, 127

getColumnScale method
UltraLite for M-Business Anywhere API 104, 127

getColumnScaleByColID method
UltraLite for M-Business Anywhere API 104, 127

getColumnSize method
UltraLite for M-Business Anywhere API 104, 128

getColumnSizeByColID method
UltraLite for M-Business Anywhere API 104, 128

getColumnSQLType method
UltraLite for M-Business Anywhere API 104, 128

getColumnSQLTypeByColID method
UltraLite for M-Business Anywhere API 105, 128

getDatabaseID method
UltraLite for M-Business Anywhere API 66

getDatabaseProperty method
UltraLite for M-Business Anywhere API 80

getDate method

UltraLite for M-Business Anywhere API 98, 140
getDateFormat method

UltraLite for M-Business Anywhere API 80
getDateOrder method

UltraLite for M-Business Anywhere API 80
getDisableConcurrency method

UltraLite for M-Business Anywhere API 112
getDouble method

UltraLite for M-Business Anywhere API 98, 140
getDownloadOnly method

UltraLite for M-Business Anywhere API 113
getFloat method

UltraLite for M-Business Anywhere API 98, 141
getGlobalAutoIncrementUsage method

UltraLite for M-Business Anywhere API 67
getIgnoredRows method

UltraLite for M-Business Anywhere API 120
getIndex method

UltraLite for M-Business Anywhere API 128
getIndexCount method

UltraLite for M-Business Anywhere API 128
getIndexName method

UltraLite for M-Business Anywhere API 129
getInt method

UltraLite for M-Business Anywhere API 141
getInteger method

UltraLite for M-Business Anywhere API 98
getKeepPartialDownload method

UltraLite for M-Business Anywhere API 113
getLastDownloadTime method

UltraLite for M-Business Anywhere API 67
getLastIdentity method

UltraLite for M-Business Anywhere API 67
getLong method

UltraLite for M-Business Anywhere API 98, 141
getMask method

UltraLite for M-Business Anywhere API 95
getName method

UltraLite for M-Business Anywhere API 84, 95,
129

getNearestCentury method
UltraLite for M-Business Anywhere API 81

getNewPassword method
UltraLite for M-Business Anywhere API 113

getNewUUID method
UltraLite for M-Business Anywhere API 68

getOptimalIndex method

157

Index

UltraLite for M-Business Anywhere API 129
getPartialDownloadRetained method

UltraLite for M-Business Anywhere API 113, 120
getPassword method

UltraLite for M-Business Anywhere API 113
getPingOnly method

UltraLite for M-Business Anywhere API 113
getPlan method

UltraLite for M-Business Anywhere API 89
getPrecision method

UltraLite for M-Business Anywhere API 81
getPrimaryKey method

UltraLite for M-Business Anywhere API 129
getPublicationCount method

UltraLite for M-Business Anywhere API 81
getPublicationMask method

UltraLite for M-Business Anywhere API 113
getPublicationName method

UltraLite for M-Business Anywhere API 81
getPublicationSchema method

UltraLite for M-Business Anywhere API 81
getReferencedIndexName method

UltraLite for M-Business Anywhere API 84
getReferencedTableName method

UltraLite for M-Business Anywhere API 84
getResultSetSchema method

UltraLite for M-Business Anywhere API 89
getResumePartialDownload method

UltraLite for M-Business Anywhere API 114
getRowCount method

UltraLite for M-Business Anywhere API 98, 141
getSendColumnNames method

UltraLite for M-Business Anywhere API 114
getSendDownloadAck method

UltraLite for M-Business Anywhere API 114
getShort method

UltraLite for M-Business Anywhere API 99, 141
getSignature method

UltraLite for M-Business Anywhere API 82
getStream method

UltraLite for M-Business Anywhere API 114
getStreamErrorCode method

UltraLite for M-Business Anywhere API 120
getStreamErrorContext method

UltraLite for M-Business Anywhere API 123
getStreamErrorID method

UltraLite for M-Business Anywhere API 124

getStreamErrorSystem method
UltraLite for M-Business Anywhere API 124

getStreamParms method
UltraLite for M-Business Anywhere API 114

getString method
UltraLite for M-Business Anywhere API 99, 141

getStringChunk method
UltraLite for M-Business Anywhere API 99, 142

getTable method
UltraLite for M-Business Anywhere API 68

getTableCount method
UltraLite for M-Business Anywhere API 82

getTableCountInPublications method
UltraLite for M-Business Anywhere API 82

getTableName method
UltraLite for M-Business Anywhere API 82

getTime method
UltraLite for M-Business Anywhere API 99, 142

getTimeFormat method
UltraLite for M-Business Anywhere API 82

getTimestamp method
UltraLite for M-Business Anywhere API 99, 125,

142
getTimestampFormat method

UltraLite for M-Business Anywhere API 83
getULong method

UltraLite for M-Business Anywhere API 100, 142
getUploadOK method

UltraLite for M-Business Anywhere API 125
getUploadOnly method

UltraLite for M-Business Anywhere API 114
getUploadUnchangedRows method

UltraLite for M-Business Anywhere API 129
getUserName method

UltraLite for M-Business Anywhere API 114
getUUID method

UltraLite for M-Business Anywhere API 100, 142
getVersion method

UltraLite for M-Business Anywhere API 115
grantConnectTo method

UltraLite for M-Business Anywhere 32
UltraLite for M-Business Anywhere API 68

H
hasResultSet method

UltraLite for M-Business Anywhere API 89
HotSync

158

Index

UltraLite for M-Business Anywhere 9
HotSync synchronization

UltraLite for M-Business Anywhere
synchronization parameters 70

I
icons

used in manuals x
insert method

UltraLite for M-Business Anywhere API 143
insert mode

UltraLite for M-Business Anywhere 26
insertBegin method

UltraLite for M-Business Anywhere API 143
inserting

rows in UltraLite for M-Business Anywhere 26
isBOF method

UltraLite for M-Business Anywhere API 100, 145
isCaseSensitive method

UltraLite for M-Business Anywhere API 83
isColumnAutoIncrement method

UltraLite for M-Business Anywhere API 130
isColumnAutoIncrementByColID method

UltraLite for M-Business Anywhere API 130
isColumnCurrentDate method

UltraLite for M-Business Anywhere API 130
isColumnCurrentDateByColID method

UltraLite for M-Business Anywhere API 130
isColumnCurrentTime method

UltraLite for M-Business Anywhere API 130
isColumnCurrentTimeByColID method

UltraLite for M-Business Anywhere API 131
isColumnCurrentTimestamp method

UltraLite for M-Business Anywhere API 131
isColumnCurrentTimestampByColID method

UltraLite for M-Business Anywhere API 131
isColumnDescending method

UltraLite for M-Business Anywhere API 85
isColumnGlobalAutoIncrement method

UltraLite for M-Business Anywhere API 131
isColumnGlobalAutoincrementByColID method

UltraLite for M-Business Anywhere API 131
isColumnNewUUID method

UltraLite for M-Business Anywhere API 132
isColumnNewUUIDByColID method

UltraLite for M-Business Anywhere API 132
isColumnNullable method

UltraLite for M-Business Anywhere API 132
isColumnNullableByColID method

UltraLite for M-Business Anywhere API 132
isEOF method

UltraLite for M-Business Anywhere API 100, 145
isForeignKey method

UltraLite for M-Business Anywhere API 85
isForeignKeyCheckOnCommit method

UltraLite for M-Business Anywhere API 85
isForeignKeyNullable method

UltraLite for M-Business Anywhere API 85
isInPublication method

UltraLite for M-Business Anywhere API 132
isNeverSynchronized method

UltraLite for M-Business Anywhere API 132
isNull method

UltraLite for M-Business Anywhere API 100, 145
isOpen method

UltraLite for M-Business Anywhere API 68, 83,
89, 100, 105, 145

isPrimaryKey method
UltraLite for M-Business Anywhere API 85

isUniqueIndex method
UltraLite for M-Business Anywhere API 85

isUniqueKey method
UltraLite for M-Business Anywhere API 86

J
JavaScript

maintaining application state 16
JavaScript data types

UltraLite for M-Business Anywhere 62
JavaScript programming language

UltraLite for M-Business Anywhere 61

L
lookup methods

UltraLite for M-Business Anywhere 25
lookup mode

UltraLite for M-Business Anywhere 26
lookupBackward method

UltraLite for M-Business Anywhere API 143
lookupBackwardForColumns method

UltraLite for M-Business Anywhere API 143
lookupBegin method

UltraLite for M-Business Anywhere API 144
lookupForward method

159

Index

UltraLite for M-Business Anywhere API 144
lookupForwardForColumns method

UltraLite for M-Business Anywhere API 144

M
M-Business Anywhere

UltraLite 2
modes

UltraLite for M-Business Anywhere 26
moveAfterLast method

UltraLite for M-Business Anywhere API 101, 145
moveBeforeFirst method

UltraLite for M-Business Anywhere API 101, 146
MoveFirst method

UltraLite for M-Business Anywhere 23
UltraLite for M-Business Anywhere development

20
moveFirst method

UltraLite for M-Business Anywhere API 101, 146
moveLast method

UltraLite for M-Business Anywhere API 101, 146
MoveNext method

UltraLite for M-Business Anywhere 23
UltraLite for M-Business Anywhere development

20
moveNext method

UltraLite for M-Business Anywhere API 101, 146
movePrevious method

UltraLite for M-Business Anywhere API 102, 146
moveRelative method

UltraLite for M-Business Anywhere API 102, 147

N
network protocol options

UltraLite for M-Business Anywhere AP 118
newsgroups

technical support xii

O
obfuscation

UltraLite for M-Business Anywhere 17
object hierarchy

UltraLite for M-Business Anywhere 3
one-button synchronization

UltraLite for M-Business Anywhere 33
Open method

ULTable object in UltraLite for M-Business
Anywhere 20, 23

open method
UltraLite for M-Business Anywhere API 147

OpenByIndex method
ULTable object in UltraLite for M-Business

Anywhere 20
openConnection method

UltraLite for M-Business Anywhere API 77
openConnectionWithParms method

UltraLite for M-Business Anywhere API 77

P
passwords

authentication in UltraLite for M-Business
Anywhere 32

persistent names
UltraLite for M-Business Anywhere 16

platforms
supported in UltraLite for M-Business Anywhere

2
prepared statements

UltraLite for M-Business Anywhere 18
PreparedStatement

UltraLite for M-Business Anywhere 18
prepareStatement method

UltraLite for M-Business Anywhere API 68
publications

accessing schema information in UltraLite for
M-Business Anywhere 30

PublicationSchema class
UltraLite for M-Business Anywhere development

30

R
reOpenConnection method

UltraLite for M-Business Anywhere API 78
resetLastDownloadTime method

UltraLite for M-Business Anywhere API 69
revokeConnectFrom method

UltraLite for M-Business Anywhere 32
UltraLite for M-Business Anywhere API 69

Rollback method
UltraLite for M-Business Anywhere 28

rollback method
UltraLite for M-Business Anywhere API 69

rollbackPartialDownload method

160

Index

UltraLite for M-Business Anywhere API 69
rollbacks

UltraLite for M-Business Anywhere 28
rows

accessing values in UltraLite for M-Business
Anywhere 24

S
saveSyncParms method

UltraLite for M-Business Anywhere API 70
schema files

creating in UltraLite for M-Business Anywhere11
UltraLite for M-Business Anywhere 11

schemas
UltraLite for M-Business Anywhere 11, 30

scope
variables in UltraLite for M-Business Anywhere

16
scrolling

UltraLite for M-Business Anywhere 23
security

UltraLite for M-Business Anywhere 16
SELECT statement

UltraLite for M-Business Anywhere development
20

setAuthenticationParms method
UltraLite for M-Business Anywhere API 115

setBoolean method
UltraLite for M-Business Anywhere API 147

setBooleanParameter method
UltraLite for M-Business Anywhere API 89

setBytes method
UltraLite for M-Business Anywhere API 148

setBytesParameter method
UltraLite for M-Business Anywhere API 90

setCheckpointStore method
UltraLite for M-Business Anywhere API 115

setDatabaseID method
UltraLite for M-Business Anywhere API 69

setDate method
UltraLite for M-Business Anywhere API 148

setDateParameter method
UltraLite for M-Business Anywhere API 90

setDisableConcurrency method
UltraLite for M-Business Anywhere API 115

setDouble method
UltraLite for M-Business Anywhere API 148

setDoubleParameter method
UltraLite for M-Business Anywhere API 90

setDownloadOnly method
UltraLite for M-Business Anywhere API 116

setFloat method
UltraLite for M-Business Anywhere API 149

setFloatParameter method
UltraLite for M-Business Anywhere API 91

setInt method
UltraLite for M-Business Anywhere API 149

setIntParameter method
UltraLite for M-Business Anywhere API 91

setLong method
UltraLite for M-Business Anywhere API 149

setLongParameter method
UltraLite for M-Business Anywhere API 91

setMBAServer method
UltraLite for M-Business Anywhere API 116

setNewPassword method
UltraLite for M-Business Anywhere API 116

setNull method
UltraLite for M-Business Anywhere API 150

setNullParameter method
UltraLite for M-Business Anywhere API 92

setPassword method
UltraLite for M-Business Anywhere API 116

setPingOnly method
UltraLite for M-Business Anywhere API 117

setPublicationMask method
UltraLite for M-Business Anywhere API 117

setSendColumnNames method
UltraLite for M-Business Anywhere API 117

setSendDownloadAck method
UltraLite for M-Business Anywhere API 117

setShort method
UltraLite for M-Business Anywhere API 150

setShortParameter method
UltraLite for M-Business Anywhere API 92

setStream method
UltraLite for M-Business Anywhere API 118

setStreamParms method
UltraLite for M-Business Anywhere API 118

setString method
UltraLite for M-Business Anywhere API 150

setStringParameter method
UltraLite for M-Business Anywhere API 92

setTime method

161

Index

UltraLite for M-Business Anywhere API 151
setTimeParameter method

UltraLite for M-Business Anywhere API 92
setTimestamp method

UltraLite for M-Business Anywhere API 151
setTimestampParameter method

UltraLite for M-Business Anywhere API 93
setToDefault method

UltraLite for M-Business Anywhere API 151
setULong method

UltraLite for M-Business Anywhere API 152
setULongParameter method

UltraLite for M-Business Anywhere API 93
setUploadOnly method

UltraLite for M-Business Anywhere API 118
setUserName method

UltraLite for M-Business Anywhere API 118
setUUID method

UltraLite for M-Business Anywhere API 152
setUUIDParameter method

UltraLite for M-Business Anywhere API 93
setVersion method

UltraLite for M-Business Anywhere API 119
SQL Anywhere Studio

documentation vi
startSynchronizationDelete method

UltraLite for M-Business Anywhere API 70
stopSynchronizationDelete method

UltraLite for M-Business Anywhere API 70
support

newsgroups xii
supported platforms

UltraLite for M-Business Anywhere 2
synchronization

HTTP in UltraLite for M-Business Anywhere 35
TCP/IP in UltraLite for M-Business Anywhere 35
UltraLite for M-Business Anywhere development

33
synchronize method

UltraLite for M-Business Anywhere API 70
synchronizeWithParm method

UltraLite for M-Business Anywhere API 70
synchronizing UltraLite applications

UltraLite for M-Business Anywhere development
33

T
tables

accessing schema information in UltraLite for
M-Business Anywhere 30

TableSchema class
UltraLite for M-Business Anywhere development

30
target platforms

UltraLite for M-Business Anywhere 2
technical support

newsgroups xii
toString method

UltraLite for M-Business Anywhere API 63, 110,
154

transaction processing
UltraLite for M-Business Anywhere 28

transactions
UltraLite for M-Business Anywhere 28

truncate method
UltraLite for M-Business Anywhere API 152

U
ULTable class

UltraLite for M-Business Anywhere development
20

UltraLite databases
connecting in UltraLite for M-Business

Anywhere 13
UltraLite for M-Business Anywhere

about 1
accessing schema information 30
architecture 3
connecting to UltraLite databases 13
data manipulation using dynamic SQL 18
data manipulation with Table API 23
deploying applications 37
deploying applications to Palm OS 37
deploying applications to Windows CE 37
deploying applications to Windows XP 37
encryption 17
error handling 31
features 2
maintaining state 16
object hierarchy 3
project architecture 41
quick start 6

162

Index

supported platforms 2
synchronizing UltraLite applications 33
User authentication 32

UltraLite for M-Business Anywhere API
API reference 61

UltraLite for M-Business Anywhere API reference
alphabetic listing 61

update method
UltraLite for M-Business Anywhere API 153

update mode
UltraLite for M-Business Anywhere 26

updateBegin method
UltraLite for M-Business Anywhere API 153

updating
rows UltraLite for M-Business Anywhere 26

user authentication
UltraLite for M-Business Anywhere 32

users
authentication in UltraLite for M-Business

Anywhere 32
usm files

creating in UltraLite for M-Business Anywhere11
UltraLite for M-Business Anywhere 11

V
values

accessing in UltraLite for M-Business Anywhere
24

Visual Basic
supported versions in UltraLite for M-Business

Anywhere 2

W
Windows CE

target platform in UltraLite for M-Business
Anywhere 2

163

	UltraLite for M-Business Anywhere User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Introduction to UltraLite for M-Business Anywhere
	UltraLite for M-Business Anywhere features
	System requirements and supported platforms

	UltraLite for M-Business Anywhere architecture

	Understanding UltraLite for M-Business Anywhere Development
	UltraLite for M-Business Anywhere Quick Start
	Working with the database schema
	Creating UltraLite database schema files
	Changing the schema of a database

	Connecting to an UltraLite database
	Using ConnectionParms to connect to a database

	Maintaining connections and application state across pages
	Encryption and obfuscation
	Working with data using dynamic SQL
	Data manipulation: INSERT, UPDATE and DELETE
	Data retrieval: SELECT
	Navigation with dynamic SQL
	 The ResultSetSchema object

	Working with data using the table API
	Navigation with the Table API
	Accessing the values of the current row
	Searching rows with find and lookup
	Inserting, updating, and deleting rows
	Working with BLOB data
	Transaction processing in UltraLite

	Accessing schema information
	Handling errors
	Authenticating users
	Synchronizing data
	One-button synchronization
	Synchronizing data
	Synchronizing data via M-Business Anywhere

	Deploying UltraLite for M-Business Anywhere applications
	Deploying applications to Windows CE and Windows XP
	Deploying applications to Palm OS

	Tutorial: A Sample Application for M-Business Anywhere
	Introduction
	Lesson 1: Create a project architecture
	Lesson 2: Create the application files
	Lesson 3: Set up the M-Business Anywhere Server and Client
	Lesson 4: Add startup code to your application
	Lesson 5: Add inserts to your application
	Lesson 6: Add navigation to your application
	Lesson 7: Add updates and deletes to your application
	Lesson 8: Add synchronization to your application

	UltraLite for M-Business Anywhere API Reference
	Data types in UltraLite for M-Business Anywhere
	Class AuthStatusCode
	Properties
	Method toString

	Class Connection
	Properties
	Method changeEncryptionKey
	Method close
	Method commit
	Method countUploadRow
	Method getDatabaseID
	Method getGlobalAutoIncrementUsage
	Method getLastDownloadTime
	Method getLastIdentity
	Method getNewUUID
	Method getTable
	Method grantConnectTo
	Method isOpen
	Method prepareStatement
	Method resetLastDownloadTime
	Method revokeConnectFrom
	Method rollback
	Method rollbackPartialDownload
	Method setDatabaseID
	Method saveSyncParms
	Method startSynchronizationDelete
	Method stopSynchronizationDelete
	Method synchronize
	Method synchronizeWithParm

	Class ConnectionParms
	Properties

	Class DatabaseManager
	Properties
	Method createDatabase
	Method createDatabaseWithParms
	Method dropDatabase
	Method dropDatabaseWithParms
	Method openConnection
	Method openConnectionWithParms
	Method reOpenConnection

	Class DatabaseSchema
	Constants
	Method applyFile
	Method applyFileWithParms
	Method getCollationName
	Method getDatabaseProperty
	Method getDateFormat
	Method getDateOrder
	Method getNearestCentury
	Method getPrecision
	Method getPublicationCount
	Method getPublicationName
	Method getPublicationSchema
	Method getSignature
	Method getTableCount
	Method getTableCountInPublications
	Method getTableName
	Method getTimeFormat
	Method getTimestampFormat
	Method isCaseSensitive
	Method isOpen

	Class IndexSchema
	Method getColumnCount
	Method getColumnName
	Method getName
	Method getReferencedIndexName
	Method getReferencedTableName
	Method isColumnDescending
	Method isForeignKey
	Method isForeignKeyCheckOnCommit
	Method isForeignKeyNullable
	Method isPrimaryKey
	Method isUniqueIndex
	Method isUniqueKey

	Class PreparedStatement
	Method appendBytesParameter
	Method appendStringChunkParameter
	Method close
	Method executeQuery
	Method executeStatement
	Method getPlan
	Method getResultSetSchema
	Method hasResultSet
	Method isOpen
	Method setBooleanParameter
	Method setBytesParameter
	Method setDateParameter
	Method setDoubleParameter
	Method setFloatParameter
	Method setIntParameter
	Method setLongParameter
	Method setNullParameter
	Method setShortParameter
	Method setStringParameter
	Method setTimeParameter
	Method setTimestampParameter
	Method setULongParameter
	Method setUUIDParameter

	Class PublicationSchema
	Method getMask
	Method getName

	Class ResultSet
	Properties
	Method close
	Method getBoolean
	Method getBytes
	Method getBytesSection
	Method getDate
	Method getDouble
	Method getFloat
	Method getInteger
	Method getLong
	Method getRowCount
	Method getShort
	Method getString
	Method getStringChunk
	Method getTime
	Method getTimestamp
	Method getULong
	Method getUUID
	Method isBOF
	Method isEOF
	Method isNull
	Method isOpen
	Method moveAfterLast
	Method moveBeforeFirst
	Method moveFirst
	Method moveLast
	Method moveNext
	Method movePrevious
	Method moveRelative

	Class ResultSetSchema
	Method getColumnCount
	Method getColumnID
	Method getColumnName
	Method getColumnPrecision
	Method getColumnPrecisionByColID
	Method getColumnScale
	Method getColumnScaleByColID
	Method getColumnSize
	Method getColumnSizeByColID
	Method getColumnSQLType
	Method getColumnSQLTypeByColID
	Method isOpen

	Class SQLError
	Class SQLType
	Method toString

	Class SyncParms
	Constants
	Method getAuthenticationParms
	Method getCheckpointStore
	Method getDisableConcurrency
	Method getDownloadOnly
	Method getKeepPartialDownload
	Method getNewPassword
	Method getPartialDownloadRetained
	Method getPassword
	Method getPingOnly
	Method getPublicationMask
	Method getResumePartialDownload
	Method getSendColumnNames
	Method getSendDownloadAck
	Method getStream
	Method getStreamParms
	Method getUploadOnly
	Method getUserName
	Method getVersion
	Method setAuthenticationParms
	Method setCheckpointStore
	Method setDisableConcurrency
	Method setDownloadOnly
	Method setMBAServer
	Method setNewPassword
	Method setPassword
	Method setPingOnly
	Method setPublicationMask
	Method setSendColumnNames
	Method setSendDownloadAck
	Method setStream
	Method setStreamParms
	Method setUploadOnly
	Method setUserName
	Method setVersion

	Class SyncResult
	Method getAuthStatus
	Method getIgnoredRows
	Method getPartialDownloadRetained
	Method getStreamErrorCode
	Method getStreamErrorContext
	Method getStreamErrorID
	Method getStreamErrorSystem
	Method getTimestamp
	Method getUploadOK

	Class TableSchema
	Method getColumnCount
	Method getColumnDefaultValue
	Method getColumnDefaultValueByColID
	Method getColumnID
	Method getColumName
	Method getColumnPartitionSize
	Method getColumnPartitionSizeByColID
	Method getColumnPrecision
	Method getColumnPrecisionByColID
	Method getColumnScale
	Method getColumnScaleByColID
	Method getColumnSize
	Method getColumnSizeByColID
	Method getColumnSQLType
	Method getColumnSQLTypeByColID
	Method getIndex
	Method getIndexCount
	Method getIndexName
	Method getName
	Method getOptimalIndex
	Method getPrimaryKey
	Method getUploadUnchangedRows
	Method isColumnAutoIncrement
	Method isColumnAutoIncrementByColID
	Method isColumnCurrentDate
	Method isColumnCurrentDateByColID
	Method isColumnCurrentTime
	Method isColumnCurrentTimeByColID
	Method isColumnCurrentTimestamp
	Method isColumnCurrentTimestampByColID
	Method isColumnGlobalAutoIncrement
	Method isColumnGlobalAutoincrementByColID
	Method isColumnNewUUID
	Method isColumnNewUUIDByColID
	Method isColumnNullable
	Method isColumnNullableByColID
	Method isInPublication
	Method isNeverSynchronized

	Class ULTable
	Properties
	Method appendBytes
	Method appendStringChunk
	Method deleteRow
	Method deleteAllRows
	Method findBegin
	Method findFirst
	Method findFirstForColumns
	Method findLast
	Method findLastForColumns
	Method findNext
	Method findNextForColumns
	Method findPrevious
	Method findPreviousForColumns
	Method getBoolean
	Method getBytes
	Method getBytesSection
	Method getDate
	Method getDouble
	Method getFloat
	Method getInt
	Method getLong
	Method getRowCount
	Method getShort
	Method getString
	Method getStringChunk
	Method getTime
	Method getTimestamp
	Method getULong
	Method getUUID
	Method insert
	Method insertBegin
	Method lookupBackward
	Method lookupBackwardForColumns
	Method lookupBegin
	Method lookupForward
	Method lookupForwardForColumns
	Method isBOF
	Method isEOF
	Method isNull
	Method isOpen
	Method moveAfterLast
	Method moveBeforeFirst
	Method moveFirst
	Method moveLast
	Method moveNext
	Method movePrevious
	Method moveRelative
	Method open
	Method openWithIndex
	Method setBoolean
	Method setBytes
	Method setDate
	Method setDouble
	Method setFloat
	Method setInt
	Method setLong
	Method setNull
	Method setShort
	Method setString
	Method setTime
	Method setTimestamp
	Method setToDefault
	Method setULong
	Method setUUID
	Method truncate
	Method update
	Method updateBegin

	Class UUID
	Method equals
	Method toString

	Index

