
UltraLite™ for MobileVB
User’s Guide

Part number: DC36292-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001 Certicom Corp.
Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights reserved.
Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568; 5,761,305.
Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual v
SQL Anywhere Studio documentation vi
Documentation conventions ix
The CustDB sample database xi
Finding out more and providing feedback xii

1 Introduction to UltraLite for MobileVB 1
UltraLite for MobileVB features 2
UltraLite for MobileVB architecture 3

2 Understanding UltraLite for MobileVB Development 5
Preparing to use UltraLite for MobileVB 6
Working with the database schema 9
Connecting to an UltraLite database 11
Encryption and obfuscation 14
Working with data using dynamic SQL 15
Working with data using the table API 21
Accessing schema information 29
Handling errors . 30
Authenticating users . 31
Synchronizing data . 32
Deploying UltraLite applications 35
Maintaining state in UltraLite Palm applications 38

3 Tutorial: A Sample UltraLite for MobileVB Application 41
Introduction . 42
Lesson 1: Create a project architecture 43
Lesson 2: Create a form . 46
Lesson 3: Write the sample code 48
Lesson 4: Deploy to a device 57
Summary . 59

4 Tutorial: A Sample Application for AppForge Crossfire 61
Introduction . 62
Lesson 1: Create a project architecture 63
Lesson 2: Create the application interface 66
Lesson 3: Write the sample code 68
Lesson 4: Deploy to a device 77

iii

Summary . 79

5 UltraLite for MobileVB API Reference 81
ULAuthStatusCode enumeration 83
ULColumn class . 84
ULColumnSchema class . 90
ULConnection class . 91
ULConnectionParms class 102
ULDatabaseManager class 105
ULDatabaseSchema class 111
ULIndexSchema class . 114
ULPreparedStatement class 116
ULPublicationSchema class 121
ULResultSet class . 122
ULResultSetSchema class 128
ULSchemaUpgradeState enumeration 129
ULSQLCode enumeration . 130
ULSQLType enumeration . 134
ULStreamErrorCode enumeration 135
ULStreamErrorContext enumeration 138
ULStreamErrorID enumeration 139
ULStreamType enumeration 140
ULSyncParms class . 141
ULSyncResult class . 145
ULSyncState enumeration . 146
ULTable class . 148
ULTableSchema class . 157

Index 159

iv

About This Manual

Subject This manual describes UltraLite for MobileVB. With UltraLite for
MobileVB you can develop and deploy database applications to handheld,
mobile, or embedded devices, running Palm OS or Windows CE.

Audience This manual is intended for AppForge MobileVB and AppForge Crossfire
application developers who wish to take advantage of the performance,
resource efficiency, robustness, and security of an UltraLite relational
database for data storage and synchronization.

v

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere SNMP Extension Agent User’s Guide
This book describes how to configure the Adaptive Server Anywhere
SNMP Extension Agent for use with SNMP management applications to
manage Adaptive Server Anywhere databases.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

vi

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Server-Initiated Synchronization User’s Guide This book
describes MobiLink server-initiated synchronization, a feature of
MobiLink that allows you to initiate synchronization from the
consolidated database.

♦ MobiLink Tutorials This book provides several tutorials that walk you
through how to set up and run MobiLink applications.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

vii

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store, at
http://eshop.sybase.com/eshop/documentation.

viii

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

ix

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

x

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following diagram shows the tables in the CustDB database and how
they are related to each other.

ULOrderIDPool

pool_order_id
 integer

pool_emp_id
 integer

last_modified
 timestamp

ULCustomer

cust_id

integer

cust_name varchar(30)

last_modified

 timestamp

ULProduct

prod_id

integer

price
 integer

prod_name varchar(30)

ULOrder

order_id

integer

cust_id
 integer

prod_id
 integer

emp_id
 integer

disc
 integer

quant
 integer

notes
 varchar(50)

status
 varchar(20)

last_modified timestamp

ULEmployee

emp_id

integer

emp_name varchar(30)

last_download timestamp

ULEmpCust

emp_id

integer

cust_id

integer

action
 char(1)

last_modified timestamp

ULCustomerIDPool

pool_cust_id

integer

pool_emp_id
 integer

last_modified
 timestamp

ULIdentifyEmployee

emp_id
 integer
cust_id = cust_id

emp_id = emp_id

emp_id = emp_id

emp_id = pool_emp_id

prod_id = prod_id

cust_id = cust_id

emp_id = pool_emp_id

xi

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

xii

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xiii

xiv

CHAPTER 1

Introduction to UltraLite for MobileVB

About this chapter This chapter introduces UltraLite for MobileVB. It assumes that you are
familiar with the features of UltraLite, as described in“Welcome to
UltraLite” [UltraLite Database User’s Guide,page 3].

Contents Topic: page

UltraLite for MobileVB features 2

UltraLite for MobileVB architecture 3

1

UltraLite for MobileVB features
UltraLite for MobileVB is a relational data management system for mobile
devices. It has the performance, resource efficiency, robustness, and security
required by business applications. UltraLite also provides synchronization
with enterprise data stores.

System requirements and supported platforms

Development platforms To develop applications using UltraLite for MobileVB, you require the
following:

♦ Microsoft Visual Basic .NET or Visual Basic 6.

You must install a service pack that meets the requirements for the
version of AppForge MobileVB or AppForge Crossfire that you are
using. For more information, seethe AppForge web site. If you are using
Visual Basic 6, it is recommended that you install at least service pack 5.

AppForge Booster
To deploy applications using UltraLite for MobileVB you need the
AppForge Booster. If you are missing the AppForge Booster, you can
get it fromwww.appforge.com/booster.html. BoosterPlus is not needed
for UltraLite applications.

♦ AppForge MobileVB Version 3.x or later, or AppForge Crossfire.

Compatibility
If you are using versions of MobileVB earlier than 3.0 and
are developing for Windows CE on an ARM device, you must
copy ultralite\UltraLiteForMobileVB\ce\arm\ulmvb9.dllunder your
SQL Anywhere directory to the\Program Files\AppForgedirectory on
your device.

☞ For more information, see“UltraLite development platforms”
[Introducing SQL Anywhere Studio,page 99].

Target platforms UltraLite for MobileVB supports the following target platforms:

♦ Windows CE 3.0 and higher, with Pocket PC on the ARM and MIPS
processors.

♦ Palm OS version 3.5 and higher.

☞ For more information, see“UltraLite target platforms”[Introducing SQL
Anywhere Studio,page 109].

2

http://www.appforge.com
http://www.appforge.com/booster.html

Chapter 1. Introduction to UltraLite for MobileVB

UltraLite for MobileVB architecture
The UltraLite programming interface exposes a set of objects for data
manipulation using an UltraLite database. The following figure describes the
object hierarchy.

ULDatabaseManager

ULConnection
 ULDatabaseSchema

ULPublicationSchema

ULSyncParms

ULSyncResult

ULTable

ULTableSchema

ULIndexSchema

ULColumn

ULColumnSchema

ULPrepared Statement

ULResultSet

ULConnectionParms
 ULResultSetSchema

The following list describes some of the more commonly-used high level
objects.

♦ ULDatabaseManager manages connections to UltraLite databases.

☞ For more information, see“ULDatabaseManager class” on page 105.

♦ ULConnectionParms holds a set of connection parameters.

You can use a Connection Parameters control and specify connection
parameters in a Visual Basic property sheet.

☞ For more information, see“ULConnectionParms class” on page 102.

♦ ULConnection represents a database connection, and governs
transactions.

☞ For more information, see“ULConnection class” on page 91.

3

♦ ULPreparedStatement, ULResultSet, and ULResultSetSchema
manage database requests and their results using SQL.

☞ For more information, see“ULPreparedStatement class” on
page 116, “ULResultSet class” on page 122, and“ULResultSetSchema
class” on page 128.

♦ ULTable and ULColumn manage data using a table-based API.

☞ For more information, see“ULTable class” on page 148and
“ULColumn class” on page 84.

♦ ULSyncParms and ULSyncResult manage synchronization through
the MobiLink synchronization server.

☞ For more information about synchronization with MobiLink, see
“UltraLite Clients” [MobiLink Clients,page 277].

4

CHAPTER 2

Understanding UltraLite for MobileVB
Development

About this chapter This chapter explains how to develop applications using UltraLite for
MobileVB.

☞ For a hands-on tutorial, see“Tutorial: A Sample UltraLite for
MobileVB Application” on page 41.

Contents Topic: page

Preparing to use UltraLite for MobileVB 6

Working with the database schema 9

Connecting to an UltraLite database 11

Encryption and obfuscation 14

Working with data using dynamic SQL 15

Working with data using the table API 21

Accessing schema information 29

Handling errors 30

Authenticating users 31

Synchronizing data 32

Deploying UltraLite applications 35

Maintaining state in UltraLite Palm applications 38

5

Preparing to use UltraLite for MobileVB
The following procedures describe the steps you must take before you can
build an application using UltraLite for MobileVB.

Adding UltraLite to the MobileVB design environment

To access the UltraLite control from your MobileVB or Crossfire project,
you must add UltraLite for MobileVB to the design environment.

❖ To add the UltraLite connection parameters control

1. From the Visual Basic menu, choose Project➤ Components.

2. Click the Controls tab.

3. Scroll down the list to select UltraLite Connection Parameters 9.0. Click
OK.

If this item does not appear in the list of available controls, complete the
following steps:

♦ Close MobileVB and save your project.

♦ Open a command prompt atultralite\UltraLiteforMobileVB\win32and
run the following command:

ulmvbreg -r

♦ Restart MobileVB and open your project.

♦ Choose Project➤ Components.

♦ Select UltraLite Connection Parameters 9.0.

A database icon is added to your toolbar. To add a ULConnectionParms
object to your form you double-click this icon.

Adding a reference to
UltraLite for MobileVB

Once SQL Anywhere Studio is installed, UltraLite for MobileVB is
automatically added to any new MobileVB project. It is therefore not
usually necessary to manually add a reference to UltraLite for MobileVB to
a project. The following procedure is provided for occasional situations
where you may need to add a reference manually, such as if you install
MobileVB after installing SQL Anywhere Studio.

6

Chapter 2. Understanding UltraLite for MobileVB Development

❖ To add a reference to UltraLite for MobileVB

1. From the Visual Basic menu, choose Project➤ References.

2. If iAnywhere Solutions, UltraLite for MobileVB 9.0 is included in the list
of available references, select it and click OK.

If iAnywhere Solutions, UltraLite for MobileVB 9.0 does not appear in
the list of available references:

♦ Open a command prompt atultralite\UltraLiteforMobileVB\win32and
run the following command:

ulmvbreg -r

♦ Select iAnywhere Solutions, UltraLite for MobileVB 9.0 and click OK.

Adding UltraLite to the Crossfire design environment

Although the SQL Anywhere Studio Setup program automatically adds
UltraLite to your Crossfire design environment, there are cases where you
may have to add UltraLite to the environment manually. For example, if you
install Crossfire after you install SQL Anywhere Studio, you may need to
carry out this procedure.

To find out if you need to add UltraLite to Crossfire, check that a new
Crossfire project includes a reference to iAnywhere.UltraLiteForAppForge.
If it does not, you need to add UltraLite to the environment. Also, check if
the ULConnectionParms class appears in the AppForge panel of the toolbox.
If it does not, you need to add UltraLite to the environment.

❖ To add UltraLite references and controls to your Crossfire project

1. Register UltraLite for MobileVB with Crossfire.
a. Ensure that Crossfire is closed.

b. Open a command prompt at theultralite\UltraLiteforMobileVB\win32
subdirectory of your SQL Anywhere installation and run the following
command:

ulmvbreg -r

c. If you have upgraded a MobileVB project remove the reference to
UltraLiteAFLib from the Visual Basic.NET Solution Explorer.

d. Add a reference toiAnywhere.UltraLiteForAppForge.dll

i. From the Microsoft Development Environment menu, choose
Project➤ Add Reference and browse to the
ultralite\UltraLiteforMobileVB\win32subdirectory of your SQL
Anywhere installation.

7

ii. SelectiAnywhere.UltraLiteForAppForge.dlland click Open.

iii. Choose OK to add the reference.

2. Add the ULConnectionParms control to the AppForge toolbox.

a. In the Microsoft Development Environment, right click the AppForge
toolbox and choose Add/Remove Items. A dialog appears.

b. Click the COM Components tab.

c. Scroll down to the entry named ULConnectionParms Class. Check the
box beside this component and click OK.

d. The ULConnectionParms control is added to the toolbox.

8

Chapter 2. Understanding UltraLite for MobileVB Development

Working with the database schema
The schema is the structure of a database. It is the collection of table
definitions, index definitions, and publication definitions within the database,
and all the relationships between them.

You create UltraLite databases by creating an UltraLite database schema file
and apply that file to a database by calling a function in your application.

For information on creating UltraLite database schema files, see

Creating UltraLite database schema files

You can create an UltraLite schema file using the UltraLite Schema Painter
or theulinit utility.

♦ UltraLite Schema Painter The UltraLite Schema Painter is a graphical
utility for creating and editing UltraLite schema files.

To start the Schema painter, choose Start➤ Programs➤
SQL Anywhere 9➤ UltraLite ➤ UltraLite Schema Painter, or
double-click a schema (.usm) file in Windows Explorer.

☞ For more information about using the UltraLite Schema Painter, see
“Lesson 1: Create an UltraLite database schema”[UltraLite Database
User’s Guide,page 130].

♦ The ulinit utility If you have the Adaptive Server Anywhere database
management system, you can generate an UltraLite schema file using the
ulinit command line utility.

☞ For more information about using theulinit utility, see“The ulinit
utility” [UltraLite Database User’s Guide,page 112].

Changing the schema of a database

To change the schema of an existing database, create a schema file with the
new schema and apply this schema to the existing database. In most cases
there will be no data loss, but data loss can occur if columns are deleted or if
the data type for a column is changed to an incompatible type.

☞ For more information about these methods, see“ApplyFile method” on
page 112and“ApplyFileWithParms method” on page 112.

☞ For information about preparing a new schema file for deployment, see
“Upgrading UltraLite database schemas”[UltraLite Database User’s Guide,
page 54].

Example The following code applies a new schema file.

9

Connection.Schema.ApplyFile("schema_file= \My Documents \
myschema.usm")

10

Chapter 2. Understanding UltraLite for MobileVB Development

Connecting to an UltraLite database
UltraLite applications must connect to a database before carrying out
operations on the data in it. This section describes how to connect to an
UltraLite database.

Using the ULConnection
object

The following properties of the ULConnection object govern global
application behavior.

☞ For more information about the ULConnection object, see
“ULConnection class” on page 91.

♦ Commit behavior By default, UltraLite applications are in
AutoCommit mode. Each insert, update, or delete statement is committed
to the database immediately. Set ULConnection.AutoCommit to false to
build transactions into your application. Turning AutoCommit off and
performing commits directly can improve the performance of your
application.

☞ For more information, see“Commit method” on page 93.

♦ User authentication You can change the user ID and password for the
application from the default values of DBA and SQL by using the
GrantConnectTo and RevokeConnectFrom methods.

☞ For more information, see“Authenticating users” on page 31.

♦ Synchronization A set of objects governing synchronization are
accessed from the ULConnection object.

☞ For more information, see“Synchronizing data” on page 32.

♦ Tables UltraLite tables are accessed using the ULConnection.GetTable
method.

☞ For more information, see“GetTable method” on page 94.

Connecting to a
database

You can connect to a database using either a ULConnectionParms object or a
connection string. Methods that use a ULConnectionParms object allow you
to manipulate connection parameters with ease and accuracy. Methods that
use a connection string require that you successfully create a connections
string.

The following procedure uses a ULConnectionParms object to connect to an
UltraLite database.

☞ For more information about connecting to an UltraLite database using a
ULConnectionParms object, see“CreateDatabaseWithParms method” on
page 107and“OpenConnectionWithParms method” on page 109.

11

❖ To connect to an UltraLite database using ULConnectionParms

1. Create a ULDatabaseManager object.

You should create only one DatabaseManager object per application.
This object is at the root of the object hierarchy. For this reason, it is
often best to declare the DatabaseManager object as global to the
application or as a class-level variable.

’MobileVB
Public DatabaseMgr As ULDatabaseManager
Set DatabaseMgr = New ULDatabaseManager

’Crossfire
Public DatabaseMgr As New UltraLiteAFLib.ULDatabaseManager

2. Declare a ULConnection object.

Most applications use a single connection to an UltraLite database, and
keep the connection open all the time. For this reason, it is often best to
declare the ULConnection object as global to the application.

’MobileVB
Public Connection As New ULConnection

’Crossfire
Public Connection As UltraLiteAFLib.ULDatabaseManager

3. Create a ULConnectionParms object.

Double-click the ULConnectionParms object on the MobileVB tool
palette. A ULConnectionParms object appears on your form.

4. Set the required properties of the ULConnectionParms object.

In the ULConnectionParms properties window, specify properties such as
the location of the database, the schema file, and a username and
password for your database.

Using the following properties, you must specify a schema file for
CreateDatabaseWithParms or a database file for
OpenConnectionWithParms. For information about additional properties,
see“Properties” on page 102.

12

Chapter 2. Understanding UltraLite for MobileVB Development

Keyword Description

DatabaseOnCE The path and filename of the UltraLite database
on Windows CE.

DatabaseOnDesktop The path and filename of the UltraLite database
on the desktop machine

SchemaOnCE The path and filename of the UltraLite schema on
Windows CE.

SchemaOnDesktop The path and filename of the UltraLite schema on
the desktop machine.

5. Open a connection to the database.

CreateDatabaseWithParms and OpenConnectionWithParms return an
open connection as a ULConnection object. Each method takes a single
ULConnectionParms object as its argument.

The following code attempts to connect to an existing database. If the
database does not exist, the OpenConnectionWithParms method returns
an error. This causes CreateDatabaseWithParms to create a database
using the specified schema file.

In Crossfire, be sure to include the GetOcx method on the
ULConnectionParms object.

’MobileVB
On Error Resume Next
Set Connection = DatabaseMgr.OpenConnectionWithParms(

LoginParms)
If Err.Number <> ULSQLCode.ulSQLE_NOERROR Then

Set Connection = DatabaseManager.CreateDatabaseWithParms(
LoginParms)

End If

’Crossfire
Try

Connection = _
DatabaseMgr.OpenConnectionWithParms(_

ULConnectionParms1.GetOcx)
Catch

If Err.Number = _
UltraLiteAFLib.ULSQLCode.ulSQLE_ULTRALITE_DATABASE_NOT_

FOUND _
Then

Err.Clear()
Connection = _

DatabaseMgr.CreateDatabaseWithParms(_
ULConnectionParms1.GetOcx)

End Try

13

Encryption and obfuscation
You can encrypt or obfuscate your UltraLite database using UltraLite for
MobileVB.

Encryption To create a database with encryption, set the
ULConnectionParms.EncryptionKey property. When you call
CreateDatabaseWithParms and pass in the ConnectionParms object, the
database created and encrypted with the specified key.

☞ For more information about the EncryptionKey property, see
“Encryption Key connection parameter ”[UltraLite Database User’s Guide,
page 75]and“ChangeEncryptionKey method” on page 92.

Example You can change the encryption key by specifying the new encryption key on
the Connection object. In this example, “apricot” is the encryption key.

Connection.ChangeEncryptionKey("apricot")

After the database is encrypted, connections to the database must specify the
correct encryption key. Otherwise, the connection fails.

Obfuscation To obfuscate the database, specify obfuscate=1 as a creation parameter.

☞ For more information about database encryption, see“Encrypting
UltraLite databases”[UltraLite Database User’s Guide,page 36].

Example The following code obfuscates a new database.

open_parms = "ce_file= \tutorial.udb;ce_schema= \
tutorial.usm;obfuscate=1"

Set Connection = DatabaseManager.CreateDatabase(open_parms)

14

Chapter 2. Understanding UltraLite for MobileVB Development

Working with data using dynamic SQL
UltraLite applications can access table data using dynamic SQL or the Table
API. This section describes data access using dynamic SQL.

☞ For information about the Table API, see“Working with data using the
table API” on page 21.

This section explains how to perform the following tasks using dynamic
SQL.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Locating rows in a table.

♦ Inserting, deleting, and updating rows.

☞ This section does not describe the SQL language itself. For information
about dynamic SQL features, see“Dynamic SQL” [UltraLite Database User’s
Guide,page 159].

☞ The sequence of operations required is similar for any SQL operation.
For an overview, see“Using dynamic SQL”[UltraLite Database User’s Guide,
page 161].

Data manipulation: INSERT, UPDATE and DELETE

With UltraLite, you can perform SQL Data Manipulation Language
operations. These operations are performed using the ExecuteStatement
method, a member of the ULPreparedStatement class.

☞ For more information the ULPreparedStatement class, see
“ULPreparedStatement class” on page 116.

Using parameters in your prepared statements
Placeholders for parameters are supplied using the ? character. For any
INSERT, UPDATE or DELETE, each ? is referenced according to its
ordinal position in the prepared statement. For example, the first ? is
referred to as 1, and the second as 2.

15

❖ To INSERT a row

1. Declare a ULPreparedStatement object.

’MobileVB
Dim PrepStmt As ULPreparedStatement

’Crossfire
Dimr PrepStmt As UltraLiteAFLib.ULPreparedStatement

2. Assign an INSERT statement to your prepared statement object. In the
following code, TableName and ColumnName are the names of a table
and column.

’MobileVB
Set PrepStmt = Connection.PrepareStatement(_

"INSERT INTO TableName (ColumnName) VALUES (?)")

’Crossfire
PrepStmt = Connection.PrepareStatement(_

"INSERT INTO TableName (ColumnName) VALUES(?)")

3. Assign parameter values for the statement.

Dim NewValue As String
NewValue = "Bob"
PrepStmt.SetStringParameter 1, NewValue

4. Execute the statement.

PrepStmt.ExecuteStatement

❖ To UPDATE a row

1. Declare a ULPreparedStatement object.

Dim PrepStmt As ULPreparedStatement

2. Assign an UPDATE statement to your prepared statement object. In the
following code, TableName and ColumnName are the names of a table
and column.

Set PrepStmt = Connection.PrepareStatement(_
"UPDATE TableName SET ColumnName = ? WHERE ID = ?")

3. Assign parameter values for the statement.

Dim NewValue As String
NewValue = "Bob"
PrepStmt.SetParameter 1, NewValue
PrepStmt.SetParameter 2, "6"

16

Chapter 2. Understanding UltraLite for MobileVB Development

4. Execute the statement

PrepStmt.ExecuteStatement

❖ To DELETE a row

1. Declare a ULPreparedStatement object.

’MobileVB
Dim PrepStmt As ULPreparedStatement

’Crossfire
Dim PrepStmt As UltraLiteAFLib.ULPreparedStatement

2. Assign a DELETE statement to your prepared statement object.

’MobileVB
Set PrepStmt = Connection.PrepareStatement(_

"DELETE FROM customer WHERE ID = ?")

’Crossfire
PrepStmt = Connection.PrepareStatement(_

"DELETE FROM customer WHERE ID = ?")

3. Assign parameter values for the statement.

Dim IDValue As String
IDValue = "6"
PrepStmt.SetParameter 1, IDValue

4. Execute the statement.

PrepStmt.ExecuteStatement

Data retrieval: SELECT

When you execute a SELECT statement, the
ULPreparedStatement.ExecuteQuery method returns a ULResultSet object.

The ULResultSet class contains methods for navigating within a result set.
The values are then accessed using methods of the ULResultSet class.

☞ For more information about ULResultSet objects, see“ULResultSet
class” on page 122.

Example In the following code, the results of a SELECT query are accessed through a
ULResultSet. When first assigned, the ULResultSet is positioned before the
first row. The ULResultSet.MoveFirst method is then called to navigate to
the first record in the result set.

☞ For more information about navigating a result set, see“Navigation with
dynamic SQL” on page 19.

17

’MobileVB
Dim MyResultSet As ULResultSet
Dim PrepStmt As ULPreparedStatement
PrepStmt = Connection.PrepareStatement(_

"SELECT ID, Name FROM customer")
MyResultSet = PrepStmt.ExecuteQuery
MyResultSet.MoveFirst

’Crossfire
Dim MyResultSet As UltraLiteAFLib.ULResultSet
Dim PrepStmt As UltraLiteAFLib.ULPreparedStatement
PrepStmt = Connection.PrepareStatement(_

"SELECT ID, Name FROM customer")
MyResultSet = PrepStmt.ExecuteQuery
MyResultSet.MoveFirst

UltraLite for MobileVB provides you with methods to get data of particular
types from the UltraLite database into a result set. MobileVB does not
support the use of Variant data types and, because of this, UltraLite for
MobileVB includes functions to handle all types of data. Each of these
methods is called using the following template, whereIndex is the ordinal
position of the column name in your SELECT statement:

MyResultSetName. MethodName(Index)

Example The following code demonstrates how to use the GetString method to obtain
the column values for the current row.

The GetString method uses the following syntax, whereIndex is the ordinal
position of the column name in your SELECT statement.

MyResultSetName.GetString(Index)

The MoveRelative(0) method is called to refresh the contents of the current
buffer from the result set, so that the effects of any data modification are
included.

If MyResultSet.RowCount = 0 Then
lblID.Caption = ""
txtName.Text = ""

Else
lblID.Caption = MyResultSet.GetString(1)
txtName.Text = MyResultSet.GetString(2)

MyResultSet.MoveRelative(0)
End If

The following procedure uses a SELECT statement to retrieve information
from the database. The results of the query are assigned to a ULResultSet
object.

18

Chapter 2. Understanding UltraLite for MobileVB Development

❖ To perform a SELECT statement

1. Declare a ULPreparedStatement object.

’MobileVB
Dim PrepStmt As ULPreparedStatement

’Crossfire
Dim PrepStmt As UltraLiteAFLib.ULPreparedStatement

2. Assign a prepared statement to your ULPreparedStatement object. In the
following code, TableName and ColumnName are the names of a table
and column.

Set PrepStmt = Connection.PrepareStatement(_
"SELECT ColumnName FROM TableName")

3. Execute the query.

In the code below, an AFListBox captures the result of the SELECT
query.

Dim MyResultSet As ULResultSet
Set MyResultSet = PrepStmt.ExecuteQuery
While MyResultSet.MoveNext

aflistbox.AddItem MyResultSet.GetString(1)
Wend

Navigation with dynamic SQL

UltraLite for MobileVB provides you with a number of methods to navigate
a result set in order to perform a wide range of navigation tasks.

The following methods of the ULResultSet object allow you to navigate
your result set:

♦ MoveAfterLast moves to a position after the last row.

♦ MoveBeforeFirst moves to a position before the first row.

♦ MoveFirst moves to the first row.

♦ MoveLast moves to the last row.

♦ MoveNext moves to the next row.

♦ MovePrevious moves to the previous row.

♦ MoveRelative moves a certain number of rows relative to the current
row. Positive index values move forward in the result set, negative index
values move backward in the result set, and zero does not move the
cursor. Zero is useful if you want to repopulate a row buffer.

19

Example The following code demonstrates how to use the MoveFirst method to
navigate within a result set.

’MobileVB
Set PrepStmt = Connection.PrepareStatement(_

"SELECT ID, Name FROM customer")
Set MyResultSet = PrepStmt.ExecuteQuery
MyResultSet.MoveFirst

’Crossfire
PrepStmt = Connection.PrepareStatement(_

"SELECT ID, Name FROM customer")
MyResultSet = PrepStmt.ExecuteQuery
MyResultSet.MoveFirst

The same technique is used for all of the Move methods.

☞ For more information about these navigational methods, see
“ULResultSet class” on page 122.

ULResultSet schema property

The ULResultSet.Schema property allows you to retrieve information about
the columns in the query. The properties of this ULResultSetSchema object
include ColumnName, ColumnCount, ColumnPrecision, ColumnScale,
ColumnSize, and ColumnSQLType.

Example The following example shows how you can use ULResultSet.Schema to
display schema information in a MobileVB grid. The example assumes you
have a ULResultSet named MyResultSet and a MobileVB grid named
grdSchema.

Dim i As Integer
For i = 1 To MyResultSet.Schema.ColumnCount

grdSchema.AddItem (MyResultSet.Schema.ColumnName(i) _
& Chr(9) & MyResultSet.Schema.ColumnSQLType(i)), 0

Next i
grdSchema.AddItem _

("Column Name" & Chr(9) & "Column Type"), 0

20

Chapter 2. Understanding UltraLite for MobileVB Development

Working with data using the table API
UltraLite applications can access table data using dynamic SQL or the Table
API. This section describes data access using the Table API.

☞ For information about dynamic SQL, see“Working with data using
dynamic SQL” on page 15.

This section explains how to perform the following tasks using the Table
API.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

Navigation with the Table API

UltraLite for MobileVB provides you with a number of methods to navigate
a table in order to perform a wide range of navigation tasks.

The following methods of the ULTable object allow you to navigate your
result set:

♦ MoveAfterLast moves to a position after the last row.

♦ MoveBeforeFirst moves to a position before the first row.

♦ MoveFirst moves to the first row.

♦ MoveLast moves to the last row.

♦ MoveNext moves to the next row.

♦ MovePrevious moves to the previous row.

♦ MoveRelative moves a certain number of rows relative to the current
row. Positive index values move forward in the table, negative index
values move backward in the table, and zero does not move the cursor.
Zero is useful if you want to repopulate a row buffer.

Example The following code opens the customer table and scrolls through its rows. It
then displays a message box with the last name of each customer.

21

’MobileVB
Dim TCustomer as ULTable
Set TCustomer = Conn.GetTable("customer")
TCustomer.Open
While TCustomer.MoveNext

MsgBox TCustomer.Column("lname").StringValue
Wend

’Crossfire
Dim TCustomer as UltraLiteAFLib.ULTable
Set TCustomer = Conn.GetTable("Customer")
TCustomer.Open
While TCustomer.MoveNext

MsgBox TCustomer.Column("LName").StringValue
Wend

Example

Specifying an index You expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rows in a particular order.

Example The following code moves to the first row of the customer table as ordered
by the ix_name index.

’MobileVB
Set TCustomer = Conn.GetTable("customer")
TCustomer.Open "ix_name"
TCustomer.MoveFirst

’Crossfire
TCustomer = Conn.GetTable("customer")
TCustomer.Open "ix_name"
TCustomer.MoveFirst

Accessing the values of the current row

At any time, a ULTable object is positioned at one of the following places.

♦ Before the first row of the table.

♦ On a row of the table.

♦ After the last row of the table.

If the ULTable object is positioned on a row, you can use the Column
method together with an appropriate property to get the value of that column
for the current row.

Example The following code retrieves the value of three columns from the tCustomer
ULTable object, and displays them in text boxes.

22

Chapter 2. Understanding UltraLite for MobileVB Development

Dim colID, colFirstName, colLastName As ULColumn
Set colID = tCustomer.Column("ID")
Set colFirstName = tCustomer.Column("fname")
Set colLastName = tCustomer.Column("lname")
txtID.Text = colID.IntegerValue
txtFirstName.Text = colFirstName.StringValue
txtLastName.Text = colLastName.StringValue

You can also use the properties of ULColumn to set values.

colLastName.StringValue = "Kaminski"

By assigning values to these properties you do not alter the value of the data
in the database.

You can assign values to the properties even if you are before the first row or
after the last row of the table. You cannot, however, get values from the
column. For example, the following code generates an error.

’ This code is incorrect
TCustomer.MoveBeforeFirst
id = TCustomer.Column("ID").IntegerValue

To work with binary data, use the GetByteChunk method instead of a
property.

☞ For more information, see“GetByteChunk method” on page 86.

Casting values The ULColumn property you choose must match the Visual Basic data type
you wish to assign. UltraLite automatically casts incompatible data types, so
that you could use the StringValue method to fetch an integer value into a
string variable, and so on.

☞ For more information about accessing values of the current row, see
“ULColumn class” on page 84.

Searching rows with find and lookup

UltraLite has several modes of operation for working with data. Two of
these modes, the find and lookup modes, are used for searching. The
ULTable object has methods corresponding to these modes for locating
particular rows in a table.

Note
The columns searched using Find and Lookup methods must be in the
index used to open the table.

♦ Find methods move to the first row that exactly matches a specified
search value, under the sort order specified when the ULTable object was

23

opened.

☞ For more information about find methods, see“FindBegin method”
on page 149.

♦ Lookup methods move to the first row that matches or is greater than a
specified search value, under the sort order specified when the ULTable
object was opened.

☞ For more information about lookup methods, see“LookupBackward
method” on page 152.

❖ To search for a row

1. Enter find or lookup mode.

Call the FindBegin or LookupBegin method. For example, the following
code calls ULTable.FindBegin.

tCustomer.FindBegin

2. Set the search values.

You do this by setting values in the current row. Setting these values
affects the buffer, not the database. For example, the following code sets
the last name column in the buffer to Kaminski.

tCustomer.Column("lname").StringValue = "Kaminski"

For multi-column indexes, a value for the first column is required, but
you can omit the other columns.

3. Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index.

tCustomer.FindFirst

Inserting, updating, and deleting rows

UltraLite exposes the rows in a table to your application one at a time. The
ULTable object has a current position, which may be on a row, before the
first row, or after the last row of the table.

When your application changes location, UltraLite makes a copy of the row
in a buffer. Any operations to get or set values affect only the copy of data in
this buffer. They do not affect the data in the database.

24

Chapter 2. Understanding UltraLite for MobileVB Development

Example The following statement changes the value of the ID column in the buffer to
3.

colID.IntegerValue = 3

Using UltraLite modes The UltraLite mode determines the purpose for which the values in the
buffer will be used. UltraLite has the following four modes of operation, in
addition to a default mode.

♦ Insert mode The data in the buffer is added to the table as a new row
when the ULTable.Insert method is called.

♦ Update mode The data in the buffer replaces the current row when the
ULTable.Update method is called.

♦ Find mode Used to locate a row whose value exactly matches the data
in the buffer when one of the ULTable.Find methods is called.

♦ Lookup mode Used to locate a row whose value matches or is greater
than the data in the buffer when one of the ULTable.Lookup methods is
called.

❖ To update a row

1. Move to the row you wish to update.

You can move to a row by scrolling through the table or by searching
using Find and Lookup methods.

2. Enter Update mode.

For example, the following instruction enters Update mode on the table
tCustomer.

tCustomer.UpdateBegin

3. Set the new values for the row to be updated.

For example, the following instruction sets the new value to Elizabeth.

ColFirstName.StringValue = "Elizabeth"

4. Execute the Update.

tCustomer.Update

After the update operation, the current row is the row that was just updated.
If you changed the value of a column in the index specified when the
ULTable object was opened, the current position is undefined.

By default, UltraLite operates in AutoCommit mode, so that the update is
immediately applied to the row in permanent storage. If you have disabled

25

AutoCommit mode, the update is not applied until you execute a commit
operation. For more information, see“Transaction processing in UltraLite”
on page 28.

Caution
Do not update the primary key of a row: delete the row and add a new row
instead.

Inserting rows The steps to insert a row are similar to those for updating rows, except that
there is no need to locate any particular row in the table before carrying out
the insert operation. Rows are automatically sorted by the index specified
when opening the table.

❖ To insert a row

1. Enter Insert mode.

For example, the following instruction enters Insert mode on the table
CustomerTable.

CustomerTable.InsertBegin

2. Set the values for the new row.

If you do not set a value for one of the columns, and that column has a
default, the default value is used. If the column has no default, NULL is
used. If the column does not allow NULL, the following defaults are
used:

♦ For numeric columns, zero.

♦ For character columns, an empty string.

To set a value to NULL explicitly, use the setNull method.

CustomerTable.Column("FName").StringValue = fname
CustomerTable.Column("LName").StringValue = lname

3. Execute the insertion.

The inserted row is permanently saved to the database when a Commit is
carried out. In AutoCommit mode, a Commit is carried out as part of the
Insert method.

CustomerTable.Insert

Deleting rows There is no delete mode corresponding to the insert or update modes.

The following procedure deletes a row.

26

Chapter 2. Understanding UltraLite for MobileVB Development

❖ To delete a row

1. Move to the row you wish to delete.

2. Execute the deletion.

tCustomer.Delete

Working with BLOB data

You can fetch BLOB data for columns declared BINARY or LONG
BINARY using the GetByteChunk method.

☞ For more information, see“GetByteChunk method” on page 86.

Example The following code demonstrates how to use the ULColumn.GetByteChunk
method to get BLOB data.

’MobileVB
Dim table as ULTable
Dim col As ULColumn
Dim data(1 to 1024) As Byte
Dim data_fit As Boolean
Dim size As Long
Set table = Conn.GetTable("image")
table.Open
size = 1024
Set col = table.Column("img_data")
data_fit = col.GetByteChunk(VarPtr(data(1)), size)
If data_fit Then

’No truncation
Else

’data truncated at 1024
End if
table.Close

’Crossfire
Dim table as ULTable
Dim col As ULColumn
Dim data(1 to 1024) As Byte
Dim data_fit As Boolean
Dim size As Long
Set table = Conn.GetTable("image")
table.Open
size = 1024
Set col = table.Column("img_data")
’ The data argument must be a local variable
data_fit = col.GetByteChunk(data, size)
If data_fit Then

’No truncation
Else

’data truncated at 1024
End if
table.Close

27

Transaction processing in UltraLite

UltraLite provides transaction processing to ensure the integrity of the data
in your database. A transaction is a logical unit of work. Either the entire
transaction is executed, or none of the statements in the transaction are
executed.

By default, UltraLite operates in AutoCommit mode. In AutoCommit mode,
each insert, update, or delete is executed as a separate transaction. Once the
operation is completed, the change is made to the database.

If you set the ULConnection.AutoCommit property to false, you can use
multi-statement transactions. For example, if your application transfers
money between two accounts, the deduction from the source account and the
addition to the destination account constitute a single transaction. If
AutoCommit is false, you must execute a ULConnection.Commit statement
to complete a transaction and make changes to your database permanent, or
you may execute a ULConnection. Rollback statement to cancel all the
operations of a transaction. Turning off AutoCommit improves performance.

Note
Synchronization causes a Commit even if you have AutoCommit set to
False.

28

Chapter 2. Understanding UltraLite for MobileVB Development

Accessing schema information
Each ULConnection, ULTable, and ULColumn object contains a schema
property. These schema objects provide information about the tables,
columns, indexes, and publications in a database.

Note
You cannot modify the schema through the API. You can only retrieve
information about the schema.

☞ For information about modifying the schema, see“Changing the
schema of a database” on page 9.

♦ ULDatabaseSchema The number and names of the tables in the
database, as well as global properties such as the format of dates and
times.

To obtain a ULDatabaseSchema object, access the
ULConnection.Schema property.

♦ ULTableSchema The number and names of columns in the table, as
well as the Indexes collections for the table.

To obtain a ULTableSchema object, access the ULTable.Schema property.

♦ ULColumnSchema Information about an individual column, including
its default value, name, and whether it is autoincrement.

To obtain a ULColumnSchema object, access the ULColumn.Schema
property.

♦ ULIndexSchema Information about the column, or columns, in the
index. As an index has no data directly associated with it, there is no
separate ULIndex object, only a ULIndexSchema object.

The ULIndexSchema objects are accessed using the
ULTableSchema.GetIndex method.

♦ ULPublicationSchema The numbers and names of tables and columns
contained in a publication. Publications are also comprised of schema
only, so there is a ULPublicationSchema object but no ULPublication
object.

The ULPublicationSchema objects are accessible using the
ULDatabaseSchema.GetPublicationSchema method.

♦ ULResultSetSchema The number and names of the columns in a result
set.

The ULResultSetSchema objects are accessible using the
ULPreparedStatement.ResultSetSchema property.

29

Handling errors
In normal operation, UltraLite for MobileVB can throw errors. Errors are
expressed as SQLCODE values, negative numbers indicating the particular
kind of error.

☞ For a list of error codes thrown by UltraLite for MobileVB, see
“ULSQLCode enumeration” on page 130.

UltraLite for MobileVB throws errors only from the ULDatabaseManager
and ULConnection objects. The following methods of ULDatabaseManager
can throw errors.

♦ CreateDatabase

♦ CreateDatabaseWithParms

♦ DropDatabase

♦ DropDatabaseWithParms

♦ OpenConnection

♦ OpenConnectionWithParms

All other errors and exceptions within UltraLite for MobileVB are routed
through the ULConnection object.

☞ For more information about accessing error numbers from
ULDatabaseManager and ULConnection objects, see“ULConnection class”
on page 91and“ULDatabaseManager class” on page 105.

You can use the standard MobileVB or Crossfire error-handling features to
handle errors. When an UltraLite object is the source of an error, the Err
object is assigned a ULSQLCode number. ULSQLCodes are negative
numbers indicating the particular kind of error. The ULSQLCode
enumeration provides a set of descriptive constants associated with these
values.

☞ For more information, see“ULSQLCode enumeration” on page 130.

To make use of type completion in the MobileVB environment, you may
want to create an error handling function such as the following:

’MobileVB
Public Function GetError() As ULSQLCode

GetError = Err.Number
End Function

You can then easily access UltraLite errors using the GetError function.

30

Chapter 2. Understanding UltraLite for MobileVB Development

Authenticating users
New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password of DBA and SQL,
respectively, you must first connect as this initial user.

You cannot change a user ID: you add a user and delete an existing user. A
maximum of four user IDs are permitted for each UltraLite database.

☞ For more information about granting or revoking connection authority,
see“GrantConnectTo method” on page 94and“RevokeConnectFrom
method” on page 98.

❖ To add a user or change the password for an existing user

1. Connect to the database as a user with DBA authority.

2. Grant the user connection authority with the desired password.

conn.GrantConnectTo("Robert", "newPassword")

❖ To delete an existing user

1. Connect to the database as a user with DBA authority.

2. Revoke the user’s connection authority as follows.

conn.RevokeConnectFrom("Robert")

31

Synchronizing data
You can UltraLite applications with a central database. Synchronization
requires the MobiLink synchronization server and appropriate licensing.

This section provides a brief introduction to synchronization and describes
some features of particular interest to users of UltraLite for MobileVB. For a
detailed explanation of synchronization, see“UltraLite Clients” [MobiLink
Clients,page 277].

You can also find a working example of synchronization in the CustDB
sample application. This sample is described in“Tutorial: A Sample
UltraLite for MobileVB Application” on page 41

UltraLite for MobileVB supports TCP/IP, HTTP, and HTTPS
synchronization. Synchronization is initiated by the UltraLite application. In
all cases, you use methods and properties of the ULConnection object to
control synchronization.

Note
To synchronize using encrypted synchronization (HTTPS) or to use en-
cryption over TCP/IP you must obtain the separately-licensable security
option. To order this option, see the card in your SQL Anywhere Studio
package or seehttp://www.sybase.com/detail?id=1015780.

☞ For more information, see“Welcome to SQL Anywhere Studio”
[Introducing SQL Anywhere Studio,page 4].

❖ To synchronize over TCP/IP or HTTP

1. Prepare the synchronization information.

Assign values to the required properties of the ULConnection.SyncParms
object.

☞ For information about the properties and the values that you should
set, see“UltraLite Clients” [MobiLink Clients,page 277].

2. Synchronize.

Call the ULConnection.Synchronize method.

Adding the synchronization template

UltraLite for MobileVB includes a template form that can be used to
monitor the status of a synchronization session. A version of this form is
included for both Palm OS and Pocket PC. You can use these templates in

32

http://www.sybase.com/detail?id=1015780

Chapter 2. Understanding UltraLite for MobileVB Development

your application, you can customize them, or you can simply examine them
to learn how UltraLite synchronization events work.

The way to add this template to your application depends on whether you are
using MobileVB or Crossfire.

❖ To add a synchronization template to your application (MobileVB)

1. From the project menu, choose Add Form.

2. Select either UltraLite for MobileVB Sync Form (Windows CE) or
UltraLite for MobileVB Sync Form (Palm).

3. Click Open. A copy of the form is added to your application.

❖ To add a synchronization template to your application (Crossfire)

1. From the project menu, choose Add New Item.

2. From Local Project Items➤ Ultralite_Crossfire Forms, select UltraLite
Crossfire 9 Sync Form for CE, Palm or PalmHires depending on your
application.

3. Click Open. A copy of the form is added to your application.

Writing code to use the synchronization form

Call the InitSyncForm function, passing it your ULConnection object. This
must be done before each synchronization.

Example The following code uses a synchronization status form named Form_Sync
and a ULConnection object named Connection.

33

Form_Sync.InitSyncForm Connection
Connection.Synchronize

Each time your application synchronizes, the synchronization status form
appears. As synchronization progresses, your end user can observe the
progress bar and byte count. When synchronization completes, the form
closes. The Cancel button instructs UltraLite to cancel the current
synchronization.

☞ For more details, see“Tutorial: A Sample UltraLite for MobileVB
Application” on page 41.

34

Chapter 2. Understanding UltraLite for MobileVB Development

Deploying UltraLite applications
When you have completed your application or when you wish to test your
application, you need to deploy it to a device. This section outlines the steps
needed to deploy an UltraLite application to a device.

Deploying UltraLite for MobileVB applications to Windows CE

You must carry out the following steps to deploy an UltraLite application to
Windows CE:

♦ Deploy your application and UltraLite component.
1. Configure the application settings.

• From the MobileVB menu, choose MobileVB Settings. A dialog
appears.

• In the left pane, choose Dependencies and click the User
Dependencies tab.

• Click the Add button and select the
c:\tutorial\mvb\tutCustomer.usm. This indicates to MobileVB that
the file should be included in the deployment.

• Choose the PocketPC Settings item in the left pane

• Enter\tutorial\mvb for the Device Installation Path.

• Click OK to close the dialog.

2. From the MobileVB menu, choose Deploy to Device, and select the
PocketPC device. If a dialog appears asking if you want to save the
project, choose Yes.

3. If you are running MobileVB 3.0 or later, the UltraLite component is
deployed automatically along with your application.

If you are using an older version of MobileVB, you need to copy the
UltraLite component to the device. Copy the fileulmvb9.dll to
\Program Files\AppForgeon your device. The file is located in one of
the following platform-specific subdirectories of your SQL Anywhere
9 installation:\UltraLite\UltraLiteForMobileVB\ce\armor
\UltraLite\UltraLiteForMobileVB\ce\mips. This step only needs to be
performed once per device.

♦ Deploy an initial copy of the UltraLite database or schema.

In many situations it is sufficient to deploy an UltraLite schema file only.
UltraLite creates a database file from the schema on the first connection
attempt. You can then use synchronization to load an initial copy of the
data. You can deploy the.prc file in the standard manner from the Install
Tool included with your Palm Desktop Organizer Software.

35

You must place the database or schema file so that it can be located by the
application. The Database On CE and Schema On CE connection
parameters define the location.

☞ See“Database On CE connection parameter”[UltraLite Database
User’s Guide,page 69], and“Schema On CE connection parameter ”
[UltraLite Database User’s Guide,page 78].

♦ Deploy the MobiLink provider for ActiveSync.

This step is required only if the application is synchronizing using
ActiveSync.

☞ For instructions, see“Installing the MobiLink provider for
ActiveSync” [MobiLink Clients,page 310]

Deploying UltraLite for MobileVB applications to Palm OS

You must carry out the following steps to deploy an UltraLite application to
a Palm OS device:

♦ Deploy your application and UltraLite component.

1. Configure the application settings.

• From the MobileVB menu, choose MobileVB Settings. A dialog
appears.

• In the left pane, choose Dependencies and click the User
Dependencies tab.

• Click the Add button and select thec:\tutorial\mvb\tutCustomer.pdb.
This indicates to MobileVB that the file should be included in the
deployment.

• Choose the Palm OS Settings item in the left pane and enter the
Creator ID of your application. Select a valid HotSync name. Click
OK to close the dialog.

2. From the MobileVB menu, choose Deploy to Device, and select the
Palm OS device. If a dialog appears asking if you want to save the
project, choose Yes.

3. If you are running MobileVB 3.0 or later, the UltraLite component is
deployed automatically along with your application.

If you are using an older version of MobileVB, you need to copy the
UltraLite component to the device. Copy the fileulmvb9.prcto
\Program Files\AppForgeon your device. The file is located in the
\UltraLite\UltraLiteForMobileVB\palm\68ksubdirectory of your SQL
Anywhere installation. This step only needs to be performed once per
device.

36

Chapter 2. Understanding UltraLite for MobileVB Development

♦ Deploy an initial copy of the UltraLite database or schema.

In many situations it is sufficient to deploy an UltraLite schema file only.
UltraLite creates a database file from the schema on the first connection
attempt. You can then use synchronization to load an initial copy of the
data.

You can create.prc files for deployment to Palm OS from any of the
UltraLite utilities, including the Schema Painter, ulxml, and ulinit.

You must supply a schema or database using the correct creator ID, so
that it can be located by your application. The Database On Palm and
Schema On Palm connection parameters use the creator ID to find the
schema or database.

☞ See“Database On Palm connection parameter”[UltraLite Database
User’s Guide,page 71], and“Schema On Palm connection parameter ”
[UltraLite Database User’s Guide,page 80]. For information about using the
virtual file system, see“VFS On Palm parameter ”[UltraLite Database
User’s Guide,page 81].

♦ Deploy the MobiLink synchronization conduit for HotSync.

This step is required only if the application is synchronizing using
HotSync.

☞ For instructions, see“Deploying the MobiLink HotSync conduit”
[MobiLink Clients,page 302].

37

Maintaining state in UltraLite Palm applications
Palm OS devices run only one application at a time. However, when a user
switches from your application to another application, and then returns to
your application, it is common to make applications appear as they were
simply suspended while the user was working with other applications. To
maintain this illusion, the application must save its internal state when the
user switches to another application. When the application is launched
again, it must restore its internal state.

Saving and restoring state in a database application can be challenging, as
the application must re-open result sets and re-position the application
within those result sets. UltraLite provides a way for you to save and restore
application state.

The state of cursors on result sets is maintained automatically. MobileVB
applications that use the table-based API provide a value for the persistent
name parameter in the Open method of the ULTable object.

Understanding how state is maintained

For each table whose state is being preserved, UltraLite stores a name for the
table as well as enough information to restore the state of the table. The
name associated with the table may be, but is not required to be, the name of
the table. It is called thepersistent name.

UltraLite applications can open more than one instance of the same table at
the same time. In this case, the table name is not unique. For example, the
following code (using MobileVB) opens the same table twice:

’ MobileVB
Set table1 = Connection.GetTable("ULCustomer")
table1.Open "", "customer1"
’ operations here
Set table2 = Connection.GetTable("ULCustomer")
table2.Open "", "customer2"

When opening a table, an applications can optionally provide a persistent
name as a parameter. If the state of the persistent name has been saved, the
table is opened and positioned to the proper row. If not, the table is opened
and positioned before the first row.

When an application terminates, it may or may not explicitly close open
tables and close the connection. If it does not close an open table, then
UltraLite records the current row of each open table that was supplied with a
persistent name. Tables without a persistent name are closed.

Suppose the Connection object is of type ULConnection and a table called

38

Chapter 2. Understanding UltraLite for MobileVB Development

ULCustomer exists in the database.

’MobileVB
Dim table As ULTable
Set table = Connection.GetTable("ULCustomer")
table.Open "", "customer"

The second line of code gets the table object representing the ULCustomer
table. The table has not been opened for reading or writing yet.

In the Open call (the third line of code), the first parameter is the empty
string, which indicates that the data will be ordered by the primary key. The
second parameter is the persistent name being assigned to the table. If the
application terminates while this table is still open, the state PDB will
associatecustomerwith the ULCustomer table and save the current position.

Persistent name notes ♦ If the persistent name is empty, UltraLite does not store state information
for this table, or attempt to look it up when opening the table.

If you do not need to store the state of your tables, supply an empty
persistent name. The state is then not looked up in the state database.

♦ HotSync synchronization does not affect the state of your open tables.
When a user presses the HotSync button on a device, the operating system
closes the application in the same way it closes the application when any
other application is started. Consequently, the state of the open tables is
recorded in the state PDB and when the user returns to the application
and the tables are re-opened, the user is positioned on the expected row.
If that row has been deleted as part of the synchronization, the user is
positioned on the next row (or after the last row if it was the last row).

♦ Applications with auto-commit turned off could terminate with
uncommitted transactions. UltraLite maintains these transactions so that
when the application restarts, they are not lost.

♦ If UltraLite finds a table in the state PDB that matches the persistent
name you have provided, it checks that the table and index are the same
as the table and index used when the position information was recorded.
If they are not, then the call to Open fails.

♦ The use of the persistent name is unique to the Palm OS. If you create
UltraLite for MobileVB applications for Windows CE, they do not use
the persistent name. Applications on Windows CE run more like they do
on a desktop machine.

Example: Using the persistent name to maintain state information

The PersistentName example program is a relatively simple program that
shows how to use maintained state information. It is available at

39

http://www.sybase.com/detail?id=1022734. Here are some highlights from
the sample:

’MobileVB
CustomerTable.Open
AddRow "John", "Doe", "Atlanta"
AddRow "Mary", "Smith", "Toronto"
AddRow "Jane", "Anderson", "New York"
AddRow "Margaret", "Billington", "Vancouver"
AddRow "Fred", "Jones", "London"
AddRow "Jack", "Frost", "Dublin"
AddRow "David", "Reiser", "Berlin"
AddRow "Kathy", "Stevens", "Waterloo"
AddRow "Rebecca", "Gable", "Paris"
AddRow "George", "Jenkins", "Madrid"
CustomerTable.Close

This code adds ten rows to the ULCustomer table. It calls Open on the table,
but in this case a persistent name is not supplied because we are not
interested in maintaining the position in the table. Since the code only
inserts data, the position in the table is not relevant.

The following line opens the ULCustomer table, ordering rows by the
primary key and assigning a persistent name of customer.

CustomerTable.Open "" , "customer"

If the application has been run before, then a lookup is done in the state
database for customer. Otherwise, customer is associated with this table.

The customer table is left open for the duration of the running application. If
the user switches to another application, UltraLite records the position in the
table where the user left off. When the application is started again, the table
is opened and UltraLite determines that position information is known for a
table with the persistent name customer, so it positions the user back on that
row.

When the user clicks the End button, the customer table and the connection
are closed before the application disappears. This has the effect of
discarding any state information for the customer table, so when the
application is restarted, the user is positioned on the first row.

40

http://www.sybase.com/detail?id=1022734

CHAPTER 3

Tutorial: A Sample UltraLite for MobileVB
Application

About this chapter This chapter provides a tutorial to guide you through the process of building
an UltraLite for MobileVB application for either a PocketPC or a Palm OS
device.

Contents Topic: page

Introduction 42

Lesson 1: Create a project architecture 43

Lesson 2: Create a form 46

Lesson 3: Write the sample code 48

Lesson 4: Deploy to a device 57

Summary 59

41

Introduction
This tutorial guides you through the process of building an UltraLite for
MobileVB application using the table API. At the end of the tutorial you will
have an application and small database on your Windows CE device that
synchronizes with a central database.

☞ For more information about the table API, see the“UltraLite for
MobileVB API Reference” on page 81.

Timing The tutorial takes about 30 minutes if you copy and paste the code. If you
enter the code yourself, it takes significantly longer.

Competencies and
experience

This tutorial assumes:

♦ you have MobileVB and Microsoft Visual Basic 6 installed on your
computer

♦ you can write, test, and troubleshoot a MobileVB application

♦ you know how to create an UltraLite schema using the UltraLite Schema
Painter

☞ For more information, see“The UltraLite Schema Painter”[UltraLite
Database User’s Guide,page 124].

♦ you have the AppForge Booster installed

If you are missing Booster, you can get it from
http://www.appforge.com/booster.html.

Note
You can perform most of this tutorial without SQL Anywhere Studio. The
synchronization sections of the tutorial require SQL Anywhere Studio.

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite application.

42

http://www.appforge.com/booster.html

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

Lesson 1: Create a project architecture
The first procedure describes how to create an UltraLite database schema.
The database schema is a description of the database. It describes the tables,
indexes, keys, and publications within the database, and all the relationships
between them.

☞ For more information about database schemas, see“Creating UltraLite
database schema files” on page 9.

❖ To create an UltraLite database schema

1. Create a directory for this tutorial.

This tutorial assumes the directory isc:\Tutorial\mvb. If you create a
directory with a different name, use that directory instead of
c:\Tutorial\mvbthroughout the tutorial.

2. Create a database schema using the UltraLite Schema Painter.

☞ For more information about creating a database schema, see the
“Lesson 1: Create an UltraLite database schema”[UltraLite Database
User’s Guide,page 130].

♦ Schema filename tutcustomer.usm

♦ Table name customer

♦ Columns in customer

Column

Name

Data Type

(Size)

Column allows

NULL values?

Default value

id integer No autoincrement

fname char(15) No None

lname char(20) No None

city char(20) Yes None

phone char(12) Yes 555-1234

♦ Primary key ascending id

3. If you are using a Palm device, export the schema to Palm with a creator
id of Syb3.
a. From the File menu, choose Export Schema for Palm.

b. Enter Syb3 as the creator ID.

c. Save the file astutcustomer.pdbin your tutorial directory.

43

A note on Palm Creator ID’s
A Palm creator ID is assigned to you by Palm. You can use Syb3 as
your creator ID when you make sample applications. However, when
you create a commercial application, you should use your own creator
ID.

Create a MobileVB project

The following procedure creates a MobileVB project for your application
and adds a reference to the UltraLite for MobileVB control.

MobileVB tools appear in addition to the standard Visual Basic tools on the
Visual Basic toolbar to the left of the Visual Basic environment.

❖ To add the UltraLite connection parameters control

1. Start MobileVB.

♦ Choose Start➤ Programs➤ AppForge MobileVB➤ Start MobileVB.

The MobileVB Project Manager appears.

2. From the Visual Basic menu, choose Project➤ Components.

3. Click the Controls tab.

4. Scroll down the list to select UltraLite Connection Parameters 9.0. Click
OK.

If this item does not appear in the list of available controls, complete the
following steps:

♦ Close MobileVB and save your project.

♦ Open a command prompt atultralite\UltraLiteforMobileVB\win32and
run the following command:

ulmvbreg -r

♦ Restart MobileVB and open your project.

♦ Choose Project➤ Components.

♦ Select UltraLite Connection Parameters 9.0.

A database icon is added to your toolbar. Double-click this icon to add a
ULConnectionParms object to your form.

44

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

❖ To create a reference to the UltraLite for MobileVB control

1. Start MobileVB.

♦ Choose Start➤ Programs➤ AppForge MobileVB➤ Start MobileVB.

The MobileVB Project Manager appears.

2. Create a new project.

Click New Project. When asked for the Design Target, choose the
appropriate target. This tutorial provides instructions for Palm OS and
PocketPC devices.

3. Create a reference to UltraLite for MobileVB.

♦ Choose Project➤ References

♦ Select iAnywhere Solutions, UltraLite for MobileVB 9.0 and click OK.

If the control does not appear in the list of available references, exit
MobileVB and run the following command.

ulmvbreg -r

4. Give the Project a name.

♦ Click Project➤ MobileVBProject1 Properties

♦ Under Project Name, typeUltraLiteTutorial . This is the name of the
application as it will appear on your device.

♦ Click OK.

5. Save the Project:

♦ Choose File➤ Save Project.

♦ Save the form asc:\tutorial\mvb\Tutorial.frm.

♦ Save the project asc:\tutorial\mvb\Tutorial.vbp.

45

Lesson 2: Create a form
After completing the steps in“Lesson 1: Create a project architecture” on
page 43, the project should display a form. The following procedure uses the
form to create a user interface. This example uses labels as outputs, and text
boxes and buttons as inputs, similar to a real application.

❖ To add controls to your project

1. Add the controls and properties given in the table below to your form:

Type Name Caption or text

AFTextBox txtfname

AFTextBox txtlname

AFTextBox txtcity

AFTextBox txtphone

AFLabel lblID

AFButton btnInsert Insert

AFButton btnUpdate Update

AFButton btnDelete Delete

AFButton btnNext Next

AFButton btnPrevious Previous

AFButton btnSync Synchronize

AFButton btnDone End

2. Check the application.

♦ Choose MobileVB➤ Compile and Validate.

Your form should look like the following screen capture:

46

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

47

Lesson 3: Write the sample code
This lesson guides you through the process of writing Visual Basic code to
connect to a database, navigate within the database, and manipulate the data
in the database.

This lesson also includes instructions for synchronizing your application
with an Adaptive Server Anywhere database. This portion of the lesson is
optional, and requires SQL Anywhere Studio.

Write code to connect to your database

In this application, you connect to the database during the Form_Load event.
You can also connect to a database using the general module.

This example uses a ULConnectionParms object to connect to a database.
You can also use a connection string.

☞ For reference information, see“ULConnectionParms class” on
page 102.

❖ Write code to connect to the UltraLite database

1. Double-click the form to open the Code window.

2. Declare the required UltraLite objects.

Enter the following code in the declarations area of your form.

Public DatabaseMgr As New ULDatabaseManager
Public Connection As ULConnection
Public CustomerTable As ULTable

3. Specify the connection parameters.
♦ Add a ULConnectionParms object to your form named

ULConnectionParms1. The ULConnectionParms control is a database
icon on the toolbox.

♦ In the Properties window, specify the ULConnectionParms properties.
If you are deploying to a Windows CE device, specify the following
properties:

Property Value

DatabaseOnDesktop c:\tutorial\mvb\tutCustomer.udb

DatabaseOnCE \tutorial\mvb\tutCustomer.udb

SchemaOnDesktop c:\tutorial\mvb\tutCustomer.usm

SchemaOnCE \tutorial\mvb\tutCustomer.usm

48

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

If you are deploying to a Palm device, specify the following properties:

Property Value

DatabaseOnDesktop c:\tutorial\mvb\tutCustomer.pdb

DatabaseOnPalm Syb3

SchemaOnDesktop c:\tutorial\mvb\tutCustomer.usm

SchemaOnPalm tutCustomer

4. Add code to connect to the database in the Form_Load event.

The database manager tries to open a connection to the database specified
by the ULConnectionParms1 object. If the database does not exist, it
creates a new database using the given schema.

Sub Form_Load()
’ enable error handling
On Error Resume Next
’ try to connect to an existing database
Set Connection = _

DatabaseMgr.OpenConnectionWithParms(_
ULConnectionParms1)

’ if the database does not exist, create one
If Err.Number = ULSQLCode.ulSQLE_NOERROR Then

MsgBox "Connected to an existing database"
ElseIf Err.Number = _

ULSQLCode.ulSQLE_ULTRALITE_DATABASE_NOT_FOUND _
Then

Err.Clear
Set Connection = _
DatabaseMgr.CreateDatabaseWithParms(_

ULConnectionParms1)
If Err.Number = ULSQLCode.ulSQLE_NOERROR _

Then
MsgBox "Connected to a new database"

Else
MsgBox Err.Description

End If
Else

MsgBox Err.Description
End If

End Sub

5. Add code to end the application and close the connection when the End
button is clicked.

Sub btnDone_Click()
Connection.Close
End

End Sub

6. Run the application.

49

♦ Choose Run➤ Execute.

♦ After an initial message box, the form loads.

♦ To terminate the application, click End.

Write code for navigation and data manipulation

The following procedures implement data manipulation and navigation.

❖ To open the table

1. Write code to initialize the table and move to the first row.

This code assigns the customer table in the database to the
CustomerTable variable. The call to Open opens the table so that the
table data can be read or manipulated. It also positions the application
before the first row in the table.

Add the following code to the Form_Load event, just before the End Sub
instruction.

Set CustomerTable = Connection.GetTable("customer")
CustomerTable.Open
If Err.Number <> ULSQLCode.ulSQLE_NOERROR Then

MsgBox Err.Description
End If

2. Create a new procedure called DisplayCurrentRow and implement it as
shown below.

If the table has no rows, the following procedure causes the application to
display empty controls. Otherwise, it displays the values stored in each of
the columns of the current row of the database.

50

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

Private Sub DisplayCurrentRow()
If CustomerTable.RowCount = 0 Then

txtFname.Text = ""
txtLname.Text = ""
txtCity.Text = ""
txtPhone.Text = ""
lblID.Caption = ""

Else
lblID.Caption = _

CustomerTable.Column("Id").StringValue
txtFname.Text = _

CustomerTable.Column("Fname").StringValue
txtLname.Text = _

CustomerTable.Column("Lname").StringValue
If CustomerTable.Column ("City").IsNull Then

txtCity.text =""
Else

txtCity.Text = _
CustomerTable.Column("City").StringValue

End If
If CustomerTable.Column("Phone").IsNull Then

txtphone.Text = ""
Else

txtphone.Text = _
CustomerTable.Column("Phone").StringValue

End If
End If

End Sub

3. Call DisplayCurrentRow from the Form_Activate procedure. This call
ensures that the fields get updated when the application starts.

Private Sub Form_Activate()
DisplayCurrentRow

End Sub

51

❖ To insert rows into the table

1. Write code to implement the Insert button.

In the following procedure, the call to InsertBegin puts the application
into insert mode and sets all the values in the row to their defaults. For
example, the ID column receives the next autoincrement value. The
column values are set and then the new row is inserted.

Add the following procedure to the form.

Private Sub btnInsert_Click()
Dim fname As String
Dim lname As String
Dim city As String
Dim phone As String

fname = txtFname.Text
lname = txtLname.Text
city = txtCity.Text
phone = txtPhone.Text

On Error GoTo InsertError
CustomerTable.InsertBegin
CustomerTable.Column("Fname").StringValue = _

fname
CustomerTable.Column("Lname").StringValue = _

lname
If Len(city) > 0 Then

CustomerTable.Column("City").StringValue = _
city

End If
If Len(phone) > 0 Then

CustomerTable.Column("Phone").StringValue = _
phone

End If
CustomerTable.Insert
CustomerTable.MoveLast
DisplayCurrentRow
Exit Sub

InsertError:
MsgBox "Error: " & CStr(Err.Description)

End Sub

2. Run the application.

After an initial message box, the form is displayed.

3. Insert two rows into the database.
♦ Enter a first name of Jane in the first text box and a last name of Doe in

the second. Click Insert.
A row is added to the table with these values. The application moves to
the last row of the table and displays the row. The label displays the

52

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

automatically incremented value of the ID column that UltraLite
assigned to the row.

♦ Enter a first name of John in the first text box and a last name of Smith
in the second. Click Insert.

4. Click End to end the program.

❖ To move through the rows of the table

1. Write code to implement the Next and Previous buttons.

Add the following procedures to the form.

Private Sub btnNext_Click()
If Not CustomerTable.MoveNext Then

CustomerTable.MoveLast
End If
DisplayCurrentRow

End Sub
Private Sub btnPrevious_Click()

If Not CustomerTable.MovePrevious Then
CustomerTable.MoveFirst

End If
DisplayCurrentRow

End Sub

2. Run the application.

When the form is first displayed, the controls are empty as the current
position is before the first row.

After the form is displayed, click Next and Previous to move through the
rows of the table.

53

❖ To update and delete rows in the table

1. Write code to implement the Update button.

In the code below, the call to UpdateBegin puts the application into
update mode. The column values are updated and then the row itself is
updated with a call to Update.

Add the following procedure to the form.

Private Sub btnUpdate_Click()
Dim fname As String
Dim lname As String
Dim city As String
Dim phone As String

fname = txtFname.Text
lname = txtLname.Text
city = txtCity.Text
phone = txtPhone.Text
On Error GoTo UpdateError
CustomerTable.UpdateBegin
CustomerTable.Column("Fname").StringValue = fname
CustomerTable.Column("Lname").StringValue = lname
If Len(city) > 0 Then

CustomerTable.Column("City").StringValue = city
Else

CustomerTable.Column("City").SetNull
End If
If Len(phone) > 0 Then

CustomerTable.Column("Phone").StringValue = phone
End If
CustomerTable.Update
DisplayCurrentRow
Exit Sub

UpdateError:
MsgBox "Error: " & CStr(Err.Description)

End Sub

2. Write code to implement the Delete button.

In the code below, the call to Delete deletes the current row on which the
application is positioned.

Add the following procedure to the form.

Private Sub btnDelete_Click()
If CustomerTable.RowCount = 0 Then

Exit Sub
End If
CustomerTable.Delete
CustomerTable.MoveRelative 0
DisplayCurrentRow

End Sub

54

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

3. Run the application.

Write code to synchronize

The following procedure implements synchronization. Synchronization
requires SQL Anywhere Studio. This portion of the tutorial is optional.

❖ To write code for the synchronize button

1. Write code to implement the Synchronize button.

In the code below, the ULSyncParms object contains the synchronization
parameters. For example, the ULSyncParms.UserName property
specifies that when MobiLink is started, it will add a new user. The
ULSyncParms.SendColumnNames property specifies that the column
names will be sent to MobiLink so it can generate upload and download
scripts.

Add the following procedure to the form.

Private Sub btnSync_Click()
With Connection.SyncParms

.UserName = "afsample"

.Stream = ULStreamType.ulTCPIP

.Version = "ul_default"

.SendColumnNames = True
End With
Connection.Synchronize
DisplayCurrentRow

End Sub

Synchronize your application

The ASA 9.0 Sample database has a Customer table with columns matching
those in thecustomertable in your UltraLite database. The following
procedure synchronizes your database with the ASA 9.0 Sample database.

❖ To synchronize your application

1. From a command prompt, start the MobiLink synchronization server by
running the following command line.

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -v+ -zu+ -za

The-zu+ and-za command line options provide automatic addition of
users and generation of synchronization scripts. For more information
about these options, see“MobiLink Synchronization Server Options”
[MobiLink Administration Guide,page 189].

2. Start the UltraLite application.

55

3. Delete all the rows in your table.

Any rows in the table would be uploaded to the Customer table in the
ASA 9.0 Sample database.

4. Synchronize your application.

Click Synchronize.

The MobiLink synchronization server window displays the
synchronization progress.

5. When the synchronization is complete, click Next and Previous to move
through the rows of the table.

56

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

Lesson 4: Deploy to a device
The following procedures deploy your application to either a Palm OS or
PocketPC device.

❖ To deploy to a PocketPC device

1. Configure the application settings.

♦ From the MobileVB menu, choose MobileVB Settings. A dialog
appears.

♦ In the left pane, choose Dependencies and click the User Dependencies
tab.

♦ Click the Add button and select thec:\tutorial\mvb\tutCustomer.usm.
This indicates to MobileVB that the file should be included in the
deployment.

♦ Choose the PocketPC Settings item in the left pane

♦ Enter\tutorial\mvb for the Device Installation Path.

♦ Click OK to close the dialog.

2. From the MobileVB menu, choose Deploy to Device, and select the
PocketPC device. If a dialog appears asking if you want to save the
project, choose Yes.

3. If you are running a version of MobileVB that is older than 3.0, you will
also need to copy the UltraLite control to the device.

Copy the fileulmvb9.dll to \Program Files\AppForgeon your device.
The file is located in one of the following platform-specific subdirectories
of your SQL Anywhere 9 installation:
\UltraLite\UltraLiteForMobileVB\ce\armor
\UltraLite\UltraLiteForMobileVB\ce\mips. This step only needs to be
performed once per device.

4. On your device, tap Start➤ Programs.

5. Tap UltraLiteTutorial to run your application.

❖ To deploy to the Palm device

1. Configure the application settings.

♦ From the MobileVB menu, choose MobileVB Settings.

♦ In the dialog that appears, choose Dependencies in the left pane and
click the User Dependencies tab.

57

♦ Click the Add button and selectc:\tutorial\mvb\tutCustomer.pdb. This
indicates to MobileVB that the file should be included in the
deployment.

♦ Choose the Palm OS Settings item in the left pane and enter Syb3 for
the Creator ID. Select a valid HotSync name.

♦ Click OK to close the dialog.

2. From the MobileVB menu, choose Deploy to Device, and select the Palm
OS device. If a dialog appears asking if you want to save the project,
choose Yes.

3. HotSync your device and make sure the application gets sent to the
device. After the HotSync process is complete, your application files will
be extracted on the device.

4. Click Home on the device and choose UltraLiteTutorial to run your
application.

58

Chapter 3. Tutorial: A Sample UltraLite for MobileVB Application

Summary
Learning
accomplishments

During this tutorial, you:

♦ created a database schema

♦ created an UltraLite for MobileVB application

♦ synchronized an UltraLite remote database with an Adaptive Server
Anywhere consolidated database

♦ gained competence with the process of developing an UltraLite for
MobileVB application

More samples You can find more sample applications and utilities atiAnywhere
CodeXchange.

59

http://ianywhere.codexchange.sybase.com/
http://ianywhere.codexchange.sybase.com/

CHAPTER 4

Tutorial: A Sample Application for
AppForge Crossfire

About this chapter This tutorial guides you through the process of using AppForge Crossfire to
build an UltraLite application for either a PocketPC or a Palm OS device.

Contents Topic: page

Introduction 62

Lesson 1: Create a project architecture 63

Lesson 2: Create the application interface 66

Lesson 3: Write the sample code 68

Lesson 4: Deploy to a device 77

Summary 79

61

Introduction
This tutorial describes how to use AppForge Crossfire to build an UltraLite
application. At the end of the tutorial you will have an application and small
database on your Windows CE device that synchronizes with a central
consolidated database.

☞ For more information about the table API, see the“UltraLite for
MobileVB API Reference” on page 81.

Timing The tutorial takes about 30 minutes if you copy and paste the code. If you
enter the code yourself, it takes significantly longer.

Prerequisites This tutorial assumes that you have AppForge Crossfire installed on your
computer. It also assumes a basic familiarity with Crossfire development.

The tutorial also assumes that you know how to create an UltraLite schema
using the UltraLite Schema Painter. For more information, see“The
UltraLite Schema Painter”[UltraLite Database User’s Guide,page 124].

Note
Crossfire users can perform most of this tutorial without SQL Anywhere
Studio. The synchronization sections of the tutorial require SQL Anywhere
Studio.

62

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

Lesson 1: Create a project architecture
The first procedure describes how to create an UltraLite database schema.
The database schema is a description of the database. It describes the tables,
indexes, keys, and publications within the database, and all the relationships
between them.

☞ For more information about database schemas, see“Creating UltraLite
database schema files” on page 9.

❖ To create an UltraLite database schema

1. Create a directory for this tutorial.

This tutorial assumes the directory isc:\Tutorial\crossfire. If you create a
directory with a different name, use that directory throughout the tutorial.

2. Create a database schema using the UltraLite Schema Painter.

☞ For more information about creating a database schema, see the
“Lesson 1: Create an UltraLite database schema”[UltraLite Database
User’s Guide,page 130].

♦ Schema filename tutcustomer.usm

♦ Table name Customer

♦ Columns in Customer

Column

Name

Data Type

(Size)

Column allows

NULL values?

Default value

ID integer No autoincrement

FName char(15) No None

LName char(20) No None

City char(20) Yes None

Phone char(12) Yes 555-1234

In an application with synchronization, it is usual to choose a global
autoincrement or UUID data type for primary keys. An autoincrement
method is chosen here to make the tutorial quicker.

♦ Primary key Ascending ID

3. Save the database schema.

If you are developing an application for Windows or Windows CE,
choose File➤ Save and choosetutcustomer.usmin your tutorial directory
as the filename.

If you are developing an application for Palm OS:

63

a. From the File menu, choose Export Schema for Palm.

b. Enter Syb3 as the creator ID.

c. Save the file astutcustomer.pdbin your tutorial directory.

A note on Palm Creator IDs
The creator ID is assigned to you by Palm. You can use Syb3 as your
creator ID when you make sample applications. However, when you
create a commercial application, you should use your own creator ID.

Create a Crossfire project

The following procedure creates an AppForge Crossfire project for your
application and adds a reference to the UltraLite control.

AppForge tools appear in addition to the standard Visual Basic tools on the
toolbar to the left of the development environment.

❖ To create a Crossfire project for UltraLite

1. Start Crossfire.

a. Choose Start➤ Programs➤ AppForge➤ Crossfire. The Crossfire
Project Manager appears.

b. Choose New Project. The Microsoft Development Environment New
Project dialog appears.

c. In the Project Types window open the Visual Basic Projects folder.

d. In the Templates window, click Crossfire Application.

e. Leave the project name as CrossfireApp1, and enter your tutorial
directory (c:\tutorial\crossfire) as the location. Click OK.

f. Choose your deployment platform and click OK to create the project.

You should now see a Crossfire form in the Microsoft Visual Basic .NET
Development Environment.

2. If the Toolbox is not displayed, choose View➤ Toolbox to open it. Open
the AppForge tab.

3. Scroll down the list of AppForge controls to and double click
ULConnectionParms Class.

Troubleshooting If your Crossfire project does not include a reference to
iAnywhere.UltraLiteForAppForge.dll, and if the ULConnectionParms class
does not appear in the list of AppForge controls, you need to register
UltraLite with Crossfire. This may occur if, for example, you install
Crossfire after installing SQL Anywhere.

64

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

☞ For instructions on adding UltraLite to Crossfire, see“Adding UltraLite
to the Crossfire design environment” on page 7.

What’s next You now have an UltraLite database schema and a Crossfire project with an
UltraLite control on a form. The next step is to create the application
interface.

65

Lesson 2: Create the application interface
The following procedure uses the form to create a user interface. This
example uses labels as outputs, and text boxes and buttons as inputs, similar
to a real application.

❖ To add controls to your project

1. From the AppForge controls, add the following controls to your form:

Type Name Caption or Text

TextBox txtFName

TextBox txtLName

TextBox txtcity

TextBox txtphone

Label lblID

Button btnInsert Insert

Button btnUpdate Update

Button btnDelete Delete

Button btnNext Next

Button btnPrevious Previous

Button btnSync Synchronize

Button btnDone End

2. Check the application.

♦ Choose Build➤ Build Solution.

Your form should look as follows:

66

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

67

Lesson 3: Write the sample code
This lesson guides you through writing code to connect to a database,
navigate within the database, and manipulate the data in the database.

This lesson also includes instructions for synchronizing your application
with an Adaptive Server Anywhere database. This portion of the lesson is
optional, and requires SQL Anywhere Studio.

Write code to connect to your database

In this application, you connect to the database during the Form_Load event.
You can also connect to a database using the general module.

This example uses a the ULConnectionParms object to connect to your
tutcustomerdatabase.

❖ Write code to connect to the UltraLite database

1. Double-click the form to open the Code window.

2. Declare the required UltraLite objects.

Enter the following code immediately after the linePublic Class

CrossfireForm1 Inherits System.Windows.Forms.Form .

Public DatabaseMgr As New UltraLiteAFLib.ULDatabaseManager
Public Connection As UltraLiteAFLib.ULConnection
Public CustomerTable As UltraLiteAFLib.ULTable

3. Specify the connection parameters.

♦ Select the ULConnectionParm1 control. In the Properties window,
specify connection properties for this database.

If you are deploying to a Windows CE device, specify the following
properties:

Property Value

DatabaseOnCE \tutorial\crossfire\tutCustomer.udb

DatabaseOnDesktop c:\tutorial\crossfire\tutCustomer.-
udb

SchemaOnCE \tutorial\crossfire\tutCustomer.usm

SchemaOnDesktop c:\tutorial\crossfire\tutCustomer.-
usm

If you are deploying to a Palm device, specify the following properties:

68

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

Property Value

DatabaseOnDesktop c:\tutorial\crossfire\tutCustomer.-
pdb

DatabaseOnPalm Syb3

SchemaOnDesktop c:\tutorial\crossfire\tutCustomer.-
usm

SchemaOnPalm tutCustomer

4. In the Form Load event, add code to connect to the database.

The standard way of connecting is to try open a connection to the
database specified by the connection string. If the database does not exist,
create a new database using the schema. In Crossfire, you must use add
.GetOcx to the ULConnectionParms1 object.

Private Sub CrossfireForm1_Load(ByVal sender As
System.Object, _

ByVal e As System.EventArgs _
) Handles MyBase.Load

Try
Connection = _

DatabaseMgr.OpenConnectionWithParms(_
ULConnectionParms1.GetOcx)

’ if the database does not exist, create one
MsgBox("Connected to an existing database")

Catch
If Err.Number = _

UltraLiteAFLib.ULSQLCode.ulSQLE_ULTRALITE_DATABASE_
NOT_FOUND _

Then
Err.Clear()
Connection = _
DatabaseMgr.CreateDatabaseWithParms(_

ULConnectionParms1.GetOcx)
If Err.Number = UltraLiteAFLib.ULSQLCode.ulSQLE_
NOERROR _
Then

MsgBox("Connected to a new database")
Else

MsgBox(Err.Description)
End If

Else
MsgBox(Err.Description)

End If
End Try

End Sub

5. Add the following code to the click event of the End button (btnDone):

Connection.Close
End

69

6. Run the application.

♦ Choose Debug➤ Start.

♦ After an initial message box, the form loads.

♦ To terminate the application, click End.

On first connecting to the database, UltraLite creates the database file
(tutCustomer.udb) from the schema file. If you run the application again,
the message box indicates that the connection is to an existing database.

Troubleshooting You now have the basic code in place to connect to your database.

If you see a data type conversion error on the attempt to connect, make sure
you have supplied the GetOcx method on the ULConnectionParms1 object.

If the schema file is not found, check that the file exists in the location
pointed to by the ULConnectionParms1 SchemaOnDesktop setting.

Write code for navigation and data manipulation

The following procedures implement data manipulation and navigation. The
code uses the Table API, which provides methods for moving through and
changing the rows of a table, one at a time. For more complex applications,
UltraLite provides an implementation of SQL.

❖ To open the table

1. Write code to initialize the table and move to the first row.

This code assigns the Customer table in the database to the
CustomerTable variable. The call to Open opens the table so that the
table data can be read or manipulated. It also positions the application
before the first row in the table.

Add the following code to the Form_Load event, just before the End Sub
instruction.

Try
CustomerTable = Connection.GetTable("Customer")
CustomerTable.Open()

Catch
If Err.Number <> UltraLiteAFLib.ULSQLCode.ulSQLE_NOERROR

_
Then

MsgBox(Err.Description)
End If

End Try

2. Create a new procedure called DisplayCurrentRow and implement it as
shown below.

70

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

If the table has no rows, the following procedure causes the application to
display empty controls. Otherwise, it displays the values stored in each of
the columns of the current row of the database.

Private Sub DisplayCurrentRow()
If CustomerTable.RowCount = 0 Then

txtFname.Text = ""
txtLname.Text = ""
txtCity.Text = ""
txtPhone.Text = ""
lblID.Caption = ""

Else
lblID.Caption = _

CustomerTable.Column("ID").StringValue
txtFname.Text = _

CustomerTable.Column("FName").StringValue
txtLname.Text = _

CustomerTable.Column("LName").StringValue
If CustomerTable.Column ("City").IsNull Then

txtCity.text =""
Else

txtCity.Text = _
CustomerTable.Column("City").StringValue

End If
If CustomerTable.Column("Phone").IsNull Then

txtphone.Text = ""
Else

txtphone.Text = _
CustomerTable.Column("Phone").StringValue

End If
End If

End Sub

3. Call DisplayCurrentRow from the Form’s Activated event. This call
ensures that the fields get updated when the application starts.

DisplayCurrentRow

❖ To insert rows into the table

1. Write code to implement the Insert button.

In the following procedure, the call to InsertBegin puts the application
into insert mode and sets all the values in the row to their defaults. For
example, the ID column receives the next autoincrement value. The
column values are set and then the new row is inserted.

Add the following procedure to the Click event of the Insert button
(btnInsert).

71

Dim fname As String
Dim lname As String
Dim city As String
Dim phone As String

fname = txtFname.Text
lname = txtLname.Text
city = txtCity.Text
phone = txtPhone.Text

Try
CustomerTable.InsertBegin
CustomerTable.Column("FName").StringValue = _

fname
CustomerTable.Column("LName").StringValue = _

lname
If Len(city) > 0 Then

CustomerTable.Column("City").StringValue = _
city

End If
If Len(phone) > 0 Then

CustomerTable.Column("Phone").StringValue = _
phone

End If
CustomerTable.Insert
CustomerTable.MoveLast
DisplayCurrentRow
Exit Sub

Catch
MsgBox "Error: " & CStr(Err.Description)

End Try

2. Run the application.

After an initial message box, the form is displayed.

3. Insert two rows into the database.

♦ Enter a first name of Jane in the first text box and a last name of Doe in
the second. Click Insert.

A row is added to the table with these values. The application moves to
the last row of the table and displays the row. The label displays the
automatically incremented value of the ID column that UltraLite
assigned to the row.

♦ Enter a first name of John in the first text box and a last name of Smith
in the second. Click Insert.

4. Click End to end the program.

72

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

❖ To move through the rows of the table

1. Write code to implement the Next and Previous buttons.

Add the following code to the Click event of the Next button (btnNext).

If Not CustomerTable.MoveNext Then
CustomerTable.MoveLast

End If
DisplayCurrentRow

Add the following code to the Click event of the Previous button
(btnPrevious).

If Not CustomerTable.MovePrevious Then
CustomerTable.MoveFirst

End If
DisplayCurrentRow

2. Run the application.

When the form is first displayed, the controls are empty as the current
position is before the first row.

After the form is displayed, click Next and Previous to move through the
rows of the table.

At this stage you can enter data and scroll through the rows of the table.

73

❖ To update and delete rows in the table

1. Write code to implement the Update button.

In the code below, the call to UpdateBegin puts the application into
update mode. The column values are updated and then the row itself is
updated with a call to Update.

Add the following code to the Click event of the Update button
(btnUpdate):

Dim fname As String
Dim lname As String
Dim city As String
Dim phone As String

fname = txtFname.Text
lname = txtLname.Text
city = txtCity.Text
phone = txtPhone.Text
Try

CustomerTable.UpdateBegin
CustomerTable.Column("FName").StringValue = fname
CustomerTable.Column("LName").StringValue = lname
If Len(city) > 0 Then

CustomerTable.Column("City").StringValue = city
Else

CustomerTable.Column("City").SetNull
End If
If Len(phone) > 0 Then

CustomerTable.Column("Phone").StringValue = phone
End If
CustomerTable.Update
DisplayCurrentRow
Exit Sub

Catch
MsgBox "Error: " & CStr(Err.Description)

End Try

2. Write code to implement the Delete button.

In the code below, the call to Delete deletes the current row on which the
application is positioned.

Add the following code to the Click event of the Delete button
(btnDelete):

If CustomerTable.RowCount = 0 Then
Exit Sub

End If
CustomerTable.Delete
CustomerTable.MoveRelative 0
DisplayCurrentRow

3. Run the application.

74

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

Write code to synchronize

The following procedure implements synchronization. Synchronization
requires SQL Anywhere Studio.

❖ To write code for the synchronize button

1. Write code to implement the Synchronize button.

In the code below, the ULSyncParms object contains the synchronization
parameters. For example, the ULSyncParms.UserName property
specifies that when MobiLink is started, it will add a new user. The
ULSyncParms.SendColumnNames property specifies that the column
names will be sent to MobiLink so it can generate upload and download
scripts.

Add the following code to the Click event of the Synchronize button
(btnSync):

With Connection.SyncParms
.UserName = "CrossfireSample"
.Stream = UltraLiteAFLib.ULStreamType.ulTCPIP
.Version = "ul_default"
.SendColumnNames = True

End With
Connection.Synchronize
DisplayCurrentRow

Synchronize your application

The ASA 9.0 Sample database has a Customer table with columns matching
those in thecustomertable in your UltraLite database. The following
procedure synchronizes your database with the ASA 9.0 Sample database.

❖ To synchronize your application

1. From a command prompt, start the MobiLink synchronization server by
running the following command line.

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -v+ -zu+ -za

The-zu+ and-za command line options provide automatic addition of
users and generation of synchronization scripts. For more information
about these options, see“MobiLink Synchronization Server Options”
[MobiLink Administration Guide,page 189].

2. Start your UltraLite Crossfire application.

75

3. Click Delete repeatedly to delete all the rows in your table.

Any rows in the table would be uploaded to the Customer table in the
ASA 9.0 Sample database.

4. Synchronize your application.

Click Synchronize.

The MobiLink synchronization server window displays the
synchronization progress.

5. When the synchronization is complete, click Next and Previous to move
through the rows of the table.

76

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

Lesson 4: Deploy to a device
The following procedures deploy your application to either a Palm OS or
PocketPC device.

❖ To deploy to a PocketPC device

1. Configure the application settings.

♦ From the AppForge menu, choose Crossfire Settings. A dialog appears.

♦ In the left pane, choose Dependencies and click the User Dependencies
tab.

♦ Click the Add button and select the
c:\tutorial\crossfire\tutCustomer.usm. This indicates to Crossfire that
the file should be included in the deployment.

♦ Choose the PocketPC Settings item in the left pane

♦ Enter\tutorial\crossfirefor the Device Installation Path.

♦ Click OK to close the dialog.

2. From the AppForge menu, choose Deploy to Device, and select
PocketPC/Windows Mobile. If a dialog appears asking if you want to
save the project, choose Yes.

3. On your device, tap Start➤ Programs.

4. Tap UltraLiteTutorial to run your application.

❖ To deploy to the Palm device

1. Configure the application settings.

♦ From the AppForge menu, choose Crossfire Settings.

♦ In the dialog that appears, choose Dependencies in the left pane and
click the User Dependencies tab.

♦ Click the Add button and selectc:\tutorial\mvb\tutCustomer.pdb. This
indicates to Crossfire that the file should be included in the
deployment.

♦ Choose the Palm OS Settings item in the left pane and enter Syb3 for
the Creator ID. Select a valid HotSync name.

♦ Click OK to close the dialog.

2. From the AppForge menu, choose Deploy to Device, and select the Palm
OS device. If a dialog appears asking if you want to save the project,
choose Yes.

77

3. HotSync your device and make sure the application gets sent to the
device. After the HotSync process is complete, your application files will
be extracted on the device.

4. Click Home on the device and choose UltraLiteTutorial to run your
application.

78

Chapter 4. Tutorial: A Sample Application for AppForge Crossfire

Summary
Learning
accomplishments

During this tutorial, you:

♦ created a database schema

♦ created an UltraLite application for Crossfire

♦ synchronized an UltraLite remote database with an Adaptive Server
Anywhere consolidated database

More samples You can find more sample applications and utilities atiAnywhere
CodeXchange.

79

http://ianywhere.codexchange.sybase.com/
http://ianywhere.codexchange.sybase.com/

CHAPTER 5

UltraLite for MobileVB API Reference

About this chapter This chapter describes the UltraLite MobileVB API, a set of classes and
methods that allow you to write MobileVB code for applications that use
UltraLite databases. Each topic contains information about a specific class,
method, constant, or enum. The reference is organized by class, with
associated methods beneath.

Contents Topic: page

ULAuthStatusCode enumeration 83

ULColumn class 84

ULColumnSchema class 90

ULConnection class 91

ULConnectionParms class 102

ULDatabaseManager class 105

ULDatabaseSchema class 111

ULIndexSchema class 114

ULPreparedStatement class 116

ULPublicationSchema class 121

ULResultSet class 122

ULResultSetSchema class 128

ULSchemaUpgradeState enumeration 129

ULSQLCode enumeration 130

ULSQLType enumeration 134

ULStreamErrorCode enumeration 135

ULStreamErrorContext enumeration 138

ULStreamErrorID enumeration 139

ULStreamType enumeration 140

81

Topic: page

ULSyncParms class 141

ULSyncResult class 145

ULSyncState enumeration 146

ULTable class 148

ULTableSchema class 157

82

Chapter 5. UltraLite for MobileVB API Reference

ULAuthStatusCode enumeration
The ULAuthStatusCode is the auth_status synchronization parameter used
in the ULSyncResult object.

Constant Value

ulAuthStatusUnknown 0

ulAuthStatusValid 1000

ulAuthStatusValidButExpiresSoon 2000

ulAuthStatusExpired 3000

ulAuthStatusInvalid 4000

ulAuthStatusInUse 5000

83

ULColumn class
The ULColumn object allows you to get and set values from a table in a
database. Each column object represents a particular value in a table; the
row is determined by the ULTable object.

A note on converting from UltraLite database types to Visual Basic
types.
UltraLite attempts to convert from the database column data type to the
Visual Basic data type. If a conversion cannot be successfully done, then a
ulSQLE_CONVERSION_ERROR is raised.

☞ For information about the table object, see“ULTable class” on page 148.

Properties

Prototype Description

BooleanValue As
Boolean

Gets or sets the value of this column for the
current row as Boolean.

ByteValue As Byte Gets or sets the value of this column for the
current row as Byte.

DatetimeValue As Date Gets or sets the value of this column for the
current row as Date.

DoubleValue As Double Gets or sets the value of this column for the
current row as Double.

IntegerValue As Integer Gets or sets the value of this column for the
current row as Integer.

IsNull As Boolean (read
only)

Indicates whether the column value is NULL.

LongValue As Long Gets or sets the value of this column for the
current row as Long.

RealValue As Single Gets or sets the value of this column for the
current row as Single.

Schema As ULColumn-
Schema (read only)

Gets the object representing the schema of the
column.

StringValue As String Gets or sets the value of this column for the
current row as a String.

84

Chapter 5. UltraLite for MobileVB API Reference

Prototype Description

UUIDValue As String Gets or sets the value of this column as a
UNIQUEIDENTIFIER data type.

When getting this property, UltraLite converts
the column value to a string representation of
the UUID. If the value is not a valid UUID, a
SQLE_CONVERSION_ERROR is raised.

When setting this property, UltraLite converts the
string form of the UUID to a binary value before
storing it in the database.

AppendByteChunk method

Prototype AppendByteChunk(_
data As Long, _
data_len As Long _

)
Member of UltraLiteAFLib.ULColumn

Description Appends bytes to the row’s column if the type is ulTypeLongBinary or
TypeBinary.

Parameters data In MobileVB, a pointer to an array of Bytes. To get the pointer to the
array of bytes, use the Visual Basic VarPtr() function. In Crossfire, a local
variable that is an array of Bytes.

data_len The number of bytes from the array to append.

Errors set ulSQLE_INVALID_PARAMETER The error occurs if data length is less
than 0.

ulSQLE_CONVERSION_ERROR The error occurs if the column data type
is not LONG BINARY.

Example The following examples append data to the edata column.

’MobileVB
Dim data (1 to 512) As Byte
’ ...
table.Column("edata").AppendByteChunk(_

VarPtr(data(1)), 232)

’Crossfire
Dim data (1 to 512) As Byte
’ ...
table.Column("edata").AppendByteChunk(data, 232)

85

AppendStringChunk method

Prototype AppendStringChunk(chunk As String)
Member of UltraLiteAFLib.ULColumn

Description Appends the string to the column if the type is TypeLongString or
TypeString.

Parameters data A string to append to the existing string in a table.

Errors set ulSQLE_CONVERSION_ERROR The error occurs if the column data type
is not CHAR or LONG VARCHAR.

GetByteChunk method

Prototype GetByteChunk (_
offset As Long, _
data As Long, _
data_len As Long, _
filled_len As Long _

) As Boolean
Member of UltraLiteAFLib.ULColumn

Description Gets data from a TypeBinary or TypeLongBinary column.

Parameters offset The offset into the underlying array of bytes. The source offset must
be greater than or equal to 0, otherwise a
ulSQLE_INVALID_PARAMETER error will be raised.

data A pointer to an array of bytes. To get the pointer to the array of bytes,
use the Visual Basic VarPtr() function.

data_len The length of the buffer, or array. The data_len must be greater
than or equal to 0.

filled_len This is an OUT parameter. After the method is called, it
indicates how many bytes were fetched with valid data. If the size of BLOB
data is unknown in advance, it is fetched using a fixed-length chunk - one
chunk at a time. The last chunk fetched can be smaller than chunk size, so
filled_len informs how many bytes of valid data exist in the buffer.

Returns True if this column value contains more data

Falseif there is no more data for this column in the database.

Errors set ulSQLE_CONVERSION_ERROR The error occurs if the column data type
isn’t BINARY or LONG BINARY.

ulSQLE_INVALID_PARAMETER The error occurs if the column data type
is BINARY and the offset is not 0 or 1, or, the data length is less than 0.

86

Chapter 5. UltraLite for MobileVB API Reference

The error also occurs if the column data type is LONG BINARY and the
offset is less than 1.

Example In the following example, edata is a column name.

’MobileVB
Dim filled As Long
Dim more_data As Boolean
Dim data (1 to 512) As Byte
more_data = table.Column("edata").GetByteChunk(0, _
VarPtr(data(1)), 512, filled)

’Crossfire
Dim filled As Long
Dim more_data As Boolean
Dim data (1 to 512) As Byte
more_data = table.Column("edata").GetByteChunk(0, _
data, 512, filled)

GetStringChunk method

Prototype GetStringChunk(_
offset As Long, _
data As String, _
string_len As Long, _
filled_len As Long _

) As Boolean
Member of UltraLiteAFLib.ULColumn

Description Gets data from a TypeString or TypeLongString column.

Parameters offset The character offset into the underlying data from which you start
getting the String.

data The variable to receive the string data.

string_length The length of the String you want returned.

filled_len The length of the String fetched.

Returns True if there is more data to be retrieved from the database.

Falseif there is no more data.

Errors ulSQLE_CONVERSION_ERROR The error occurs if the column data type
isn’t CHAR or LONG VARCHAR.

ulSQLE_INVALID_PARAMETER The error occurs if the column data type
is CHAR and the src_offset is greater than 64K.

The error also occurs if src_offset is less than 0 or string length is less than 0.

87

SetByteChunk method

Prototype SetByteChunk (_
data As Long, _
length As Long _

)
Member of UltraLiteAFLib.ULColumn

Description Sets data in a TypeBinary or TypeLongBinary column.

☞ To append rather than overwriting data, use the“AppendByteChunk
method” on page 85.

Parameters data In MobileVB, a pointer to an array of Bytes. To get the pointer to the
array of bytes, use the Visual Basic VarPtr() function. In Crossfire, a local
variable that is an array of Bytes.

length The length of the array.

Errors set ulSQLE_CONVERSION_ERROR The error occurs if the column data type
is not BINARY or LONG BINARY.

ulSQLE_INVALID_PARAMETER The error occurs if the data length is less
than 0 or greater than 64K.

Example In the following example, edata is a column name and the first 232 bytes of
the data variable are stored in the database.

’MobileVB
Dim data (1 to 512) As Byte
’ ...
table.Column("edata").SetByteChunk(VarPtr(data(1)), 232)

’Crossfire
Dim data (1 to 512) As Byte
’ ...
table.Column("edata").SetByteChunk(data, 232)

SetNull method

Prototype SetNull()
Member of UltraLiteAFLib.ULColumn

Description Sets the column value to null.

SetToDefault method

Prototype SetToDefault()
Member of UltraLiteAFLib.ULColumn

Description Sets the current column to its default value as defined by the database

88

Chapter 5. UltraLite for MobileVB API Reference

schema. For example, an autoincrement column will be assigned the next
available value.

89

ULColumnSchema class
The ULColumnSchema object allows you to obtain metadata, the attributes
of a column, in a table. The attributes are independent of the data in the
table.

Properties

Prototype Description

AutoIncrement As Boolean
(read-only)

Indicates whether this column defaults to an
autoincrement value. True if AutoIncrement.

DefaultValue As String
(read-only)

Gets the value used if one was not provided
when a row was inserted.

GlobalAutoIncrement As
Boolean (read-only)

Indicates whether this column defaults to a
global autoincrement value.

ID As Integer(read-only) Gets the ID of the column.

Name As String (read-
only)

Gets the column name.

Nullable As Boolean (read-
only)

Indicates whether the column permits NULLs.

OptimalIndex As ULIn-
dexSchema (read-only)

Gets the index with this column as its first
column.

Precision As Integer (read-
only)

Gets the precision value for the column if it is
of type ulTypeNumeric.

Scale As Integer (read-
only)

Gets the scale value for the column if it is of
type ulTypeNumeric.

Size As Long (read-only) Gets the column size for binary, numeric, and
character data types.

SQLType As ULSQLType
(read-only)

Gets the SQL type assigned to the column when
it was created.

90

Chapter 5. UltraLite for MobileVB API Reference

ULConnection class
The ULConnection object represents an UltraLite database connection. It
provides methods to get database objects like tables, and to synchronize.

Use WithEvents when receiving synchronization progress
When synchronizing, the ULConnection object can also receive progress
information. If you wish to receive this information, you must declare
your connection WithEvents. You can perform synchronization without
declaring your connection WithEvents; however, your connection object
will not receive notification of synchronization progress.

Example To declare a connectionWithEvents, in a MobileVB form, use the
following syntax:

Public WithEvents Connection As ULConnection

The addition ofWithEvents makes receipt of synchronization progress
information possible.

Properties

The following are properties of ULConnection:

Prototype Description

AutoCommit As Boolean Indicates the AutoCommit value. If true,
all data changes are committed immediately
after they are made. Otherwise, changes are
not committed to the database until Commit
is called. By default, this property is True.

CollationName As String
(read-only)

Gets the database character set and sort
order.

DatabaseID As Long Gets or sets the database ID, which deter-
mines the starting value for global autoin-
crement columns.

If the database ID has never been set, the
value is -1.

DatabaseNew As Boolean
(read-only)

Indicates whether the database was newly
created for this connection or not.

GlobalAutoIncrementUsage
As Integer (read-only)

Gets the percentage of available global
autoincrement values that have been used.

91

Prototype Description

IsCaseSensitive As Boolean
(read-only)

Indicates whether the database is case
sensitive or not.

LastIdentity As Long (read-
only)

Gets the most recent value inserted into a
column with a default of autoincrement or
global autoincrement.

OpenParms As String (read-
only)

Gets the string used to open the connection
to the database.

Schema As ULDatabas-
eSchema (read-only)

Gets the ULDatabaseSchema object which
represents the definition of the database.

SQLErrorOffset As Integer
(read-only)

If PrepareStatement raises an error, indi-
cates the 1-based offset in the SQL state-
ment where the error was noted. If this
value is less than or equal to 0, no offset
information is available.

SyncParms As ULSyncParms
(read-only)

Gets the synchronization parameters object.

SyncResult As ULSyncResult
(read-only)

Gets the results of the most recent synchro-
nization.

CancelSynchronize method

Prototype CancelSynchronize()
Member of UltraLiteAFLib.ULConnection

Description When called during synchronization, the method cancels the
synchronization. The user can only call this method during one of the
synchronization events.

To allow this the ULConnection object must be declaredWithEvents.

ChangeEncryptionKey method

Prototype ChangeEncryptionKey(newkeyAs String)
Member of UltraLiteAFLib.ULConnection

Description Encrypt the database with the specified key.

Parameters newkey The new encryption key value for the database.

Example When you call CreateDatabaseWithParms and pass in the parms object, with
a value in place for EncryptionKey, the database is created with encryption.

92

Chapter 5. UltraLite for MobileVB API Reference

Another way to change the encryption key is by specifying the new
encryption key on the ULConnection object. In this example, “apricot” is
the key.

Connection.ChangeEncryptionKey("apricot")

Connections to the database, such as OpenConnectionWithParms, must,
after the database is encrypted, specifyapricotas the EncryptionKey
property too. Otherwise, the connection will fail.

Close method

Prototype Close()
Member of UltraLiteAFLib.ULConnection

Description Closes the connection to the database. No methods on the ULConnection
object or any other database object for this connection should be called after
this method is called. If a connection is not explicitly closed, it will be
implicitly closed when the application terminates.

Commit method

Prototype Commit()
Member of UltraLiteAFLib.ULConnection

Description Commits outstanding changes to the database. This is only useful if
AutoCommit is false.

For more information, see Autocommit under ULConnection“Properties”
on page 91

CountUploadRows method

Prototype CountUploadRows(
[mask As Long = 0], _
[threshold As Long = -1] _

) As Long
Member of UltraLiteAFLib.ULConnection

Description Returns the number of rows that need to be uploaded when synchronization
next takes place.

Parameters mask An optional, unique identifier that refers to the publications to check.
Use 0 for all publications. If not specified, then the value is zero.

threshold An optional parameter representing the maximum number of
rows to count. Use -1 to indicate no maximum. If not specified, this value
is -1.

93

Returns Returns the number of rows that need to be uploaded in next
synchronization.

GetNewUUID method

Prototype GetNewUUID() As String
Member of UltraLiteAFLib.ULConnection

Description Returns a new universally unique identifier. The value is a string of the form
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, and is typically stored in a
column of data type UNIQUEIDENTIFIER.

Returns Each call returns a new UUID.

GetTable method

Prototype GetTable(name As String) As ULTable
Member of UltraLiteAFLib.ULConnection

Description Returns theULTable object for the specified table. You must then open the
table before data can be read from it.

Parameters name The name of the table sought.

Returns Returns the ULTable object.

GrantConnectTo method

Prototype GrantConnectTo(
userid As String, _
password As String _

)
Member of UltraLiteAFLib.ULConnection

Description Grants the specified user permission to connect to the database with the
given password.

Parameters userid The user ID being granted authority to connect.

password The password the user ID must specify to connect.

LastDownloadTime method

Prototype LastDownloadTime([mask As Long = 0]) As Date
Member of UltraLiteAFLib.ULConnection

Description Returns the time of last download for the publication(s).

Parameters mask An optional, unique identifier that refers to the publications to check.
Use 0 for all publications. If this parameter is omitted, 0 is used.

94

Chapter 5. UltraLite for MobileVB API Reference

Returns The last download time in the form of a date.

OnReceive event

Prototype OnReceive(
nBytes As Long, _
nInserts As Long, _
nUpdates As Long, _
nDeletes As Long _

)
Member of UltraLiteAFLib.ULConnection

Description Reports download information to the application from the consolidated
database via MobiLink. This event may be called several times.

Parameters nBytes Cumulative count of bytes received at the remote application from
the consolidated database.

nInserts Cumulative count of inserts received at the remote application
from the consolidated database.

nUpdates Cumulative count of updates received at the remote application
from the consolidated database.

nDeletes Cumulative count of deletes received at the remote application
from the consolidated database.

Example See the CustDB application for an example of this method.

OnSchemaUpgradeProgress event

Prototype OnSchemaUpgradeProgress (
nProgress As Long, _
nFinalProgress As Long, _
nOperations As Long _

)
Member of UltraLiteAFLib.ULConnection

Description Reports the progress of schema upgrades, for display in a status dialog.

Parameters ♦ nProgress An approximation of the progress so far. The value is a
number between zero and nFinalProgress, enabling you to display a
percentage complete value in a dialog box.

♦ nFinalProgress The value of the nProgress when the upgrade
completes successfully.

♦ nOperations An approximation of the amount of work done during the
upgrade. The value starts at zero and increases as the upgrade proceeds.

95

It is updated more frequently than nProgress. It can be used as a relative
measure to compare against other schema upgrades.

See also ♦ “Monitoring schema upgrades”[UltraLite Database User’s Guide,page 55]

OnSchemaUpgradeStateChange event

Prototype OnSchemaUpgradeStateChange (
newState As ULSchemaUpgradeState, _
oldState As ULSchemaUpgradeState _)

Description This event is triggered during a database schema upgrade, when the upgrade
reaches a new state. The states available are specified in the
ULSchemaUpgradeState enumeration.

Parameters ♦ newState The state the upgrade is starting.

♦ oldState The state just completed.

See also ♦ “Monitoring schema upgrades”[UltraLite Database User’s Guide,page 55]
♦ “ULSchemaUpgradeState enumeration” on page 129

OnSend event

Prototype OnSend(
nBytes As Long, _
nInserts As Long, _
nUpdates As Long, _
nDeletes As Long _

)
Member of UltraLiteAFLib.ULConnection

Description Reports upload information from the remote database via MobiLink to the
consolidated database. This event may be called several times.

Parameters nBytes Cumulative count of bytes sent by the remote application to the
consolidated database via MobiLink.

nInserts Cumulative count of inserts sent by the remote application to the
consolidated database via MobiLink.

nUpdates Cumulative count of updates sent by the remote application to
the consolidated database via MobiLink.

nDeletes Cumulative count of deletes sent by the remote application to the
consolidated database via MobiLink.

Example See the CustDB application for an example of this method.

96

Chapter 5. UltraLite for MobileVB API Reference

OnStateChange event

Prototype OnStateChange(
newState As ULSyncState, _
oldState As ULSyncState _

)
Member of UltraLiteAFLib.ULConnection

Description This event is called whenever the state of the synchronization changes. For
more information, see“ULSyncState enumeration” on page 146.

Parameters newState The state that the synchronization process is about to enter.

oldState The state that the synchronization process just completed.

Example See the CustDB application for an example of this method.

OnTableChange event

Prototype OnTableChange(
newTableIndex As Long, _
numTables As Long _

)
Member of UltraLiteAFLib.ULConnection

Description This event is called whenever the synchronization process begins
synchronizing another table.

Parameters newTableIndex The index number of the table currently being
synchronized. This number is not the same as the table ID, therefore, it
cannot be used with the ULDatabaseSchema.GetTableName method.

numTables The number of tables eligible to be synchronized.

Example See the CustDB application for an example of this method.

PrepareStatement method

Prototype PrepareStatement(
sqlStatement As String, _
persistent_name As String _

) As ULPreparedStatement
Member of UltraLiteAFLib.ULConnection

Description Prepares a SQL statement for execution.

Parameters sqlStatement The SQL statement to prepare.

persistent_name For Palm applications, the persistent name of the
statement.

97

Returns Returns a ULPreparedStatement. If there was a problem preparing the
statement, an error will be raised. The offset into the statement where the
error occurred can be determined from the SQLErrorOffset property.

ResetLastDownloadTime method

Prototype ResetLastDownloadTime([mask As Long])
Member of UltraLiteAFLib.ULConnection

Description Resets the time of the most recent download for the publications specified in
the mask.

Parameters mask The mask of the publications to reset. The default is 0, specifying all
publications.

RevokeConnectFrom method

Prototype RevokeConnectFrom(userID As String)
Member of UltraLiteAFLib.ULConnection

Description Revokes the specified user’s ability to connect to the database.

Parameters userid The user ID whose authority to connect is being revoked.

Rollback method

Prototype Rollback()
Member of UltraLiteAFLib.ULConnection

Description Rolls back outstanding changes to the database. This is only useful if
AutoCommit is false.

RollbackPartialDownload method

Roll back the changes from a failed synchronization.

Prototype RollbackPartialDownload ()
Member of UltraLiteAFLib.ULConnection

Description When a communication error occurs during the download phase of
synchronization, UltraLite can apply the downloaded changes, so that the
synchronization can be resumed from the place it was interrupted. If the
download changes are not needed (the user or application does not want to
resume the download at this point), RollbackPartialDownload rolls back the
failed download transaction.

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Keep Partial Download synchronization parameter”[MobiLink Clients,

page 321]

98

Chapter 5. UltraLite for MobileVB API Reference

♦ “Partial Download Retained synchronization parameter”[MobiLink
Clients,page 324]

♦ “Resume Partial Download synchronization parameter”[MobiLink Clients,
page 327]

StartSynchronizationDelete method

Prototype StartSynchronizationDelete()
Member of UltraLiteAFLib.ULConnection

Description Once StartSynchronizationDelete is called, all delete operations are again
synchronized.

StopSynchronizationDelete method

Prototype StopSynchronizationDelete()
Member of UltraLiteAFLib.ULConnection

Description Prevents delete operations from being synchronized. This is useful for
deleting old information from an UltraLite database to save space, while not
deleting this information on the consolidated database.

StringToUUID method

Prototype StringToUUID(
s_uuid As String, _
buffer_16_bytes As Long _

)
Member of UltraLiteAFLib.ULConnection

Description Converts a universally unique identifier represented as a String in the form
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx to a Byte array of 16 bytes. In a
MobileVB application, it may be useful to refer to them in their string
format. Consequently, the UUIDValue property on the ULColumn object
converts from string to binary(16) and vice versa. The StringToUUID
function is provided as an easy way to convert a MobileVB String to a Byte
array. It does not reference the UltraLite database in any way.

The pointer to the buffer:
The pointer to the buffer must be declared as at least16 bytes. Since Visual
Basic does not provide bounds checking, memory could be overwritten if
the buffer is too small. In MobileVB, use the VarPtr() function to get the
pointer to the buffer. See also ULColumn.UUIDValue property

99

Not needed in newer databases
In databases created before version 9.0.2, the UNIQUEIDENTIFIER data
type is defined as a user-defined data type and functions are needed to
convert between binary and string representations of UUID values.

In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER
data type is a native data type and UltraLite carries out conversions as
needed. The StringToUUID function is therefore not needed.

☞ For more information, see“UNIQUEIDENTIFIER data type [Binary]”
[ASA SQL Reference,page 75].

Parameters s_uuid A Universally Unique Identifier passed in as a string. You can
obtain a new string UUID using GetNewUUID.

buffer_16_bytes A pointer to a byte array that has at least 16 elements.
Use the VarPtr() function to get the pointer value.

Example The following example will convert the string form of the UUID
0a141e28-323c-4650-5a64-6e78828c96a0 to a binary array:

Dim buff(1 to 16) As Byte
conn.StringToUUID("0a141e28-323c-4650-5a64-6e78828c96a0",

VarPtr(buff(1)))

Synchronize method

Prototype Synchronize()
Member of UltraLiteAFLib.ULConnection

Description Synchronizes a consolidated database using MobiLink. This function does
not return until synchronization is complete, but you can be notified of
events if the connection was declared WithEvents.

UUIDToString method

Prototype UUIDToString(buffer_16_bytes As Long) As String
Member of UltraLiteAFLib.ULConnection

Description Converts a UUID from a byte array to a string of the form
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

100

Chapter 5. UltraLite for MobileVB API Reference

Not needed in newer databases
In databases created before version 9.0.2, the UNIQUEIDENTIFIER data
type is defined as a user-defined data type and functions are needed to
convert between binary and string representations of UUID values.

In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER
data type is a native data type and UltraLite carries out conversions as
needed. The UUIDToString function is therefore not needed.

☞ For more information, see“UNIQUEIDENTIFIER data type [Binary]”
[ASA SQL Reference,page 75].

Parameters buffer_16_bytes An array of 16 bytes containing a UUID.

Returns Each call returns a string of the form
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

101

ULConnectionParms class
The ULConnectionParms object allows you to set userID, password, schema
file, file on your desktop, and numerous other parameters that specify your
connection.

Properties

The ULConnectionParms class specifies parameters for opening a
connection to an UltraLite database.

In UltraLite for MobileVB, ensure you have the ULConnectionParms object
on your form and you set connection properties in the ConnectionParms
dialog. You use the ULConnectionParms object in conjunction with
ULDatabaseManager.CreateDatabaseWithParmsand
ULDatabaseManager.OpenConnectionWithParmsmethods.

Note
Databases are created with a single authenticated user, DBA, whose initial
password is SQL. By default, connections are opened using the user ID
DBA and password SQL.

☞ For more information about the meaning of these parameters, see
“Connection Parameters”[UltraLite Database User’s Guide,page 63].

Prototype Description

AdditionalParms As String
(read-write)

Additional parameters specified asname=value
pairs separated with semi-colons.

☞ See“Additional Parms connection pa-
rameter” [UltraLite Database User’s Guide,
page 68].

CacheSize As Integer (read-
write)

The size of the cache. CacheSize values are
specified in bytes. Use the suffix k or K
for kilobytes and use the suffix m or M for
megabytes. The default cache size is sixteen
pages. Given a default page size of 4 KB, the
default cache size is 64 KB.

☞ See“Cache Size connection parameter ”
[UltraLite Database User’s Guide,page 73].

102

Chapter 5. UltraLite for MobileVB API Reference

Prototype Description

ConnectionName As String
(read-write)

A name for the connection. This is needed only
if you create more than one connection to the
database.

☞ See“Connection Name connection pa-
rameter” [UltraLite Database User’s Guide,
page 74].

DatabaseOnCE As String
(read-write)

The filename of the database deployed to
PocketPC.

☞ See“Database On CE connection pa-
rameter” [UltraLite Database User’s Guide,
page 69].

DatabaseOnDesktop As
String (read-write)

The filename of the database during develop-
ment.

☞ See“Database On Desktop connection
parameter” [UltraLite Database User’s Guide,
page 70].

DatabaseOnPalm As String
(read-write)

The creator ID for the UltraLite database on the
Palm device.

☞ See“Database On Palm connection pa-
rameter” [UltraLite Database User’s Guide,
page 71].

EncryptionKey As String
(read-write)

A key for encrypting the database. OpenCon-
nection and OpenConnectionWithParms must
use the same key as specified during database
creation. Suggestions for keys are:

1. Select an arbitrary, lengthy string

2. Select strings with a variety of numbers, let-
ters and special characters, so as to decrease
the chances of key penetration.

☞ See“Encryption Key connection parameter
” [UltraLite Database User’s Guide,page 75].

PageSize As Integer (read-
write)

The page size for the database.

☞ See“Page Size connection parameter ”
[UltraLite Database User’s Guide,page 83].

ParmsUsed As String (read-
only)

The parameters used by the ULDatabaseMan-
ager. Useful for debugging purposes.

103

Prototype Description

Password As String (read-
write)

The password for an authenticated user.
Databases are initially created with one au-
thenticated user passwordSQL. Passwords
are case-insensitive if the database is case-
insensitive and case-sensitive if the database is
case-sensitive. The default value isSQL.

☞ See“Password connection parameter”
[UltraLite Database User’s Guide,page 76].

ReserveSize As Integer
(read-write)

The amount of file system space to reserve for
storage of UltraLite persistent data.

☞ See“Reserve Size connection parameter ”
[UltraLite Database User’s Guide,page 84].

SchemaOnCE As String
(read-write)

The schema filename deployed to PocketPC.

☞ See“Schema On CE connection parameter
” [UltraLite Database User’s Guide,page 78].

SchemaOnDesktop As
String (read-write)

The schema filename during development.

☞ See“Schema On Desktop connection
parameter ” [UltraLite Database User’s Guide,
page 79].

SchemaOnPalm As String
(read-write)

The schema PDB on the Palm device.

☞ See“Schema On Palm connection pa-
rameter ” [UltraLite Database User’s Guide,
page 80].

UserID As String (read-
write)

The authenticated user for the database.
Databases are initially created with one au-
thenticated user DBA. The UserID is case-
insensitive if the database is case-insensitive
and case-sensitive if the database is case-
sensitive. The default value isDBA.

☞ See“User ID connection parameter”
[UltraLite Database User’s Guide,page 76].

VFSOnPalm As Boolean
(read-write)

Indicates whether the Palm database is on a
virtual file system (true) or on the Palm store
(false).

☞ See“VFS On Palm parameter ” [UltraLite
Database User’s Guide,page 81].

104

Chapter 5. UltraLite for MobileVB API Reference

ULDatabaseManager class
The ULDatabaseManager class is used to manage connections and
databases. Your application should only have one instance of this object.
Creating a database and establishing a connection to it is a necessary first
step in using UltraLite. It is suggested that you use
CreateDatabaseWithParms, OpenConnectionWithParms and
DropDatabaseWithParms, and include checks in your code to ensure that
you are connected properly before attempting any DML with the database.

Parms or no parms?
Two types of methods exist for creating, opening and dropping connections
to your database: Methods WithParms and methods that do not use the
ULConnectionParms object. Methods WithParms allow you to use a
ULConnectionParms object to manipulate connection parameters with ease
and accuracy. Methods that do not use the ULConnectionParms object
require that you can successfully create a connections string and use that
connection string in a CreateDatabase, OpenConnection or DropDatabase
method.

Properties

The following are properties of ULDatabaseManager:

Prototype Description

Version As String
(read-only)

Gets the version string of the UltraLite component.

CreateDatabase method

CreateDatabase creates a new database and returns a connection to it.

Prototype CreateDatabase(parms As String) As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

Description Creates a new database and returns a connection to it. It fails if the specified
database already exists. A valid schema file must be specified to successfully
create a database. To alter the schema of an existing database, use the
ULDatabaseSchema ApplyFile method.

Caution
Only one database may be active at a given time. Attempts to create a
different database while other connections are open will result in an error.

105

☞ For more information about ApplyFile, see“ULDatabaseSchema class”
on page 111and“ApplyFile method” on page 112.

Parameters parms A semicolon-separated list of database creation parameters.

Note for VFS card for Palm users
The Palm_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection methods if you want to have the database reside on
the virtual file system.

☞ For information about connection parameters, see“Connection
Parameters”[UltraLite Database User’s Guide,page 63].

☞ For more information about the Palm_fs parameter, see“VFS On Palm
parameter ”[UltraLite Database User’s Guide,page 81].

Returns Returns a connection to a newly created UltraLite database.

Examples The following code creates a ULDatabaseManager object. This is the first
object you create when writing for UltraLite for MobileVB. Note that
CreateDatabase requires that no.udb file exists, and OpenConnection is
used when a.udb file already exists.

Dim conn_parms As String
Dim open_parms As String
Dim schema_parms As String

conn_parms = "uid=DBA;pwd=SQL"
open_parms = conn_parms & ";" & _

"PALM_DB=Syb3;file_name=c: \tutorial \tutCustomer.udb"
schema_parms = open_parms & ";" & _

"PALM_SCHEMA=tutCustomer;" & _
"schema_file=c: \tutorial \tutCustomer.usm"

On Error Resume Next

Set Connection = DatabaseMgr.OpenConnection(open_parms)
If Err.Number = _

ULSQLCode.ulSQLE_DATABASE_NOT_FOUND _
Then

Err.Clear
Set Connection = _

DatabaseMgr.CreateDatabase(schema_parms)
If Err.Number <> 0 Then

MsgBox Err.Description
End If

End If

☞ For information about connection parameters, see“OpenConnection
method” on page 108.

106

Chapter 5. UltraLite for MobileVB API Reference

CreateDatabaseWithParms method

CreateDatabaseWithParms creates a new database using a connection
parameter object, and returns a connection to it.

Prototype CreateDatabaseWithParms(parms As ULConnectionParms)
As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

Description Creates a new database and returns a connection to it. It fails if the specified
database already exists. A valid schema file must be specified to successfully
create a database. To alter the schema of an existing database, use the
ULDatabaseSchema.ApplyFileWithParmsmethod.

Caution
Only one database may be active at a given time. Attempts to create a
different database while other connections are open will result in an error.

Parameters parms A ULConnectionParms object that holds a set of connection
parameters.

Note for VFS card for Palm users
You specify VFSOnPalm in the ULConnectionParms interface.

☞ For more information about the Palm_fs parameter, see“VFS On Palm
parameter ”[UltraLite Database User’s Guide,page 81].

Returns Returns a connection to a newly created UltraLite database. Fails if the
specified database already exists.

Examples The following example assumes you have placed the ULConnectionParms
object on your form, named itLoginParms and have specified the database
locations and schema locations in the Connection parms properties window.

The following code creates a ULDatabaseManager object. This is the first
object you create when writing for UltraLite for MobileVB.

Note that CreateDatabaseWithParms requires that no.udb file exists, and
OpenConnectionWithParms is used when a.udb file already exists.

DatabaseMgr.DropDatabaseWithParms LoginParms
Set Connection = DatabaseMgr.CreateDatabaseWithParms(LoginParms)

DropDatabase method

The DropDatabase method deletes a database file.

107

Prototype DropDatabase(parms As String)
Member of UltraLiteAFLib.ULDatabaseManager

Description Deletes the database file. All information in the database file is lost. Fails if
the specified database does not exist, or if there exist open connections at the
time of DropDatabase is executed.

Parameters parms The filename for the database.

Example The following example drops a database:

Dim parms As String
parms = "PALM_DB=Syb1;NT_FILE=c: \temp \ul_CustDB.udb"
DropDatabase(parms)

DropDatabaseWithParms method

The DropDatabaseWithParms method deletes a database file.

Prototype DropDatabaseWithParms(parms As ULConnectionParms)
Member of

Description Deletes the database file. All information in the database file is lost.

Parameters parms The ULConnectionParms object containing vital connection
parameters .

Example The following example assumes you have declared and instantiated a
ULConnectionParms object namedLoginParms and used it to specify the
database location.

DatabaseMgr.DropDatabaseWithParms LoginParms

OpenConnection method

Prototype OpenConnection(connparms As string) As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

Description If a database exists, use this method to connect to the database. If a database
does not exist, or the connection parameters are invalid, the call will fail.
Use the error object to determine why the call failed.

The function returns a ULConnection object which provides an open
connection to a specified UltraLite database. The database filename is
specified using the connparms string. Parameters are specified using a
sequence ofname=valuepairs. If no user ID or password is given, the
default is used.

It should contain a value of the form

108

Chapter 5. UltraLite for MobileVB API Reference

file_name=UDBFILE
DBF=UDBFILE
palm_db=CreatorID.

Parameters connparms The parameter used to establish a connection to a database.
Parameters are specified as a semicolon separated list ofkeyword=value
pairs. If no user ID or password is given, the default is used.

Note for Palm users
The Palm_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection methods when using a database on the Palm virtual
file system.

Returns ☞ For more information about the Palm_fs parameter, see“VFS On Palm
parameter ”[UltraLite Database User’s Guide,page 81].

The ULConnection object is returned if the connection was successful.

Example The following example creates a new database connection from the CustDB
sample application:

Set Connection = DatabaseMgr.OpenConnection(
"file_name=d: \Dbfile.udb;palm_db=Syb3;CE_file= \myapp\MyDB.udb")

OpenConnectionWithParms method

Prototype OpenConnectionWithParms(connparms As ULConnectionParms)
As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

Description If a database exists, use this method to receive a connection. If a database
does not exist, or the connection parameters are invalid, the call will fail.
Use the error object to determine why the call failed.

The function returns a ULConnection object which provides an open
connection to a specified UltraLite database. The database filename is
specified using the connparms object. Parameters are specified using a
sequence ofname=valuepairs. If no user ID or password is given, the
default is used.

Parameters connparms The parameters defining this connection.

Returns The ULConnection object is returned if the connection was successful.

Example The following example assumes you have placed the ULConnectionParms
object on your form, named itLoginParms and have specified the database
locations and schema locations in the ULConnection parms properties
window.

109

Set Connection = DatabaseMgr.OpenConnection(LoginParms)

110

Chapter 5. UltraLite for MobileVB API Reference

ULDatabaseSchema class
The ULDatabaseSchema object allows you to obtain the attributes of the
database to which you are connected.

Properties

The following are properties of ULDatabaseSchema:

Prototype Description

DateFormat As String (read-only) Gets the format for dates retrieved from
the database; ‘YYYY-MM-DD’ is the
default. The format of the date retrieved
depends on the format used when you
created the schema file.

DateOrder As String (read-only) Indicates the interpretation of date for-
mats; valid values are ‘MDY’, ‘YMD’,
or ‘DMY’.

NearestCentury As String (read-
only)

Indicates the interpretation of two-digit
years in string-to-date conversions. This
is a numeric value that acts as a rollover
point. Two digit years less than the
value are converted to 20yy, while years
greater than or equal to the value are
converted to 19yy. The default is 50.

Precision As String (read-only) Gets the maximum number of digits in
the result of any decimal arithmetic.

PublicationCount As Integer
(read-only)

Gets the number of publications in the
connected database.

Signature As String (read-only) Gets the database signature, an inter-
nal identifier representing the database
schema.

TableCount As Integer (read-only) Gets the number of tables in the con-
nected database.

TimeFormat As String (read-only) Gets the format for times retrieved from
the database.

TimestampFormat As String
(read-only)

Gets the format for timestamps retrieved
from the database.

111

ApplyFile method

Prototype ApplyFile(parms As String)
Member of UltraLiteAFLib.ULDatabaseSchema

Description Changes the schema of this database.Parmspoints to the schema file(s) you
are applying to the database. This method is only useful on those occasions
where you want to modify your existing database structure.

Caution
Although ApplyFile is very safe, ApplyFile can cause data loss under a
number of circumstances including (1) if columns are deleted, or (2) if the
data type for a column is changed to an incompatible type, or (3) if you
upgrade an 8.0.2 database using ApplyFile in UltraLite 9.0.

Parameters parms The files containing the changes you wish to make to your database
schema.

Example DatabaseSchema.ApplyFile(_
"schema_file=MySchemaFile.usm;palm_schema=MySchema")

ApplyFileWithParms method

Prototype ApplyFileWithParms(parms As ULConnectionParms)
Member of UltraLiteAFLib.ULDatabaseSchema

Description Upgrades the schema of this database using the parameter objectParms,
which points to the schema file(s) you are applying to the database. This
method is only useful on those occasions where you want to modify your
existing database structure.

Caution
Although ApplyFile is very safe, ApplyFileWithParms can cause data loss
under a number of circumstances including (1) if columns are deleted, or
(2) if the data type for a column is changed to an incompatible type, or (3)
if you upgrade an 8.0.2 database using ApplyFile in UltraLite 9.0.

Parameters parms The object identifying the schema file to apply.

GetPublicationName method

Prototype GetPublicationName(id As Integer) As String
Member of UltraLiteAFLib.ULDatabaseSchema

Description Returns the name of the specified publication. The publicationID can range
from 1 to PublicationCount.

112

Chapter 5. UltraLite for MobileVB API Reference

Parameters id Theid is the identifier of the publication whose name will be returned.

Returns Returns the name of a publication in the connected database.

For information about the ULPublicationSchema object, see
“ULPublicationSchema class” on page 121.

For more information, see ULDatabaseSchema“Properties” on page 111

GetPublicationSchema method

Prototype GetPublicationSchema(Name As String) As ULPublicationSchema
Member of UltraLiteAFLib.ULDatabaseSchema

Description Use the publication name to retrieve the ULPublicationSchema object.

Parameters name Thenameof the publication.

Returns Returns the ULPublicationSchema object.

GetTableName method

Prototype GetTableName(id As Integer) As String
Member of UltraLiteAFLib.ULDatabaseSchema

Description Returns the name of the table in the connected database that corresponds to
theid value you supply. The TableCount property returns the number of
tables in the connected database. Each table has a unique number from 1 to
the TableCount value, where 1 is the first table in the database, 2 is the
second table in the database, and so on. The id for a table my change after a
database has had its schema changed.

Parameters id Theid of the table.

Returns Returns the name of the table for the specifiedid.

113

ULIndexSchema class
The ULIndexSchema object allows you to obtain the attributes of an index.
An index is an ordered set of columns by which data in a table will be
sorted. The primary use of an index is to order the data in a table by one or
more columns.

An index can be a foreign key, which is used to maintain referential integrity
in a database.

Properties

Prototype Description

ColumnCount As Integer (read-only) Gets the number of columns in the
index

ForeignKey As Boolean (read-only) Indicates whether this is a foreign
key.

ForeignKeyCheckOnCommit (read-
only)

Indicates whether referential in-
tegrity is checked only when a
commit is done (TRUE) or imme-
diately (FALSE).

ForeignKeyNullable (read-only) Indicates whether the foreign key
columns allow NULL.

Name As String (read-only) Gets the name of the index

PrimaryKey As Boolean (read-only) Gets whether this is the primary
key for this table.

ReferencedIndexName As String
(read-only)

Gets the name of the index refer-
enced by this index if it is a foreign
key

ReferencedTableName As String
(read-only)

Gets the name of the table refer-
enced by this index if it is a foreign
key

UniqueIndex As Boolean (read-only) Indicates whether values in the
index must be unique.

UniqueKey As Boolean (read-only) Indicates whether the index is a
unique constraint on a table. If
True, the columns in the index are
unique and do not permit NL values

114

Chapter 5. UltraLite for MobileVB API Reference

GetColumnName method

Prototype GetColumnName(col_pos_in_index As Integer) As String
Member of UltraLiteAFLib.ULIndexSchema

Description Used to return the names of the columns in the index. The parameter
col_pos_in_indexmust be at least 1 and at most ColumnCount.

Parameters col_pos_in_index The column position in the index.

Returns Returns the name of a column in the index.

IsColumnDescending method

Prototype IsColumnDescending(col_name As String) As Boolean
Member of UltraLiteAFLib.ULIndexSchema

Description Indicates whether the specified column in the index is in descending order.

Parameters col_name The index column name.

Returns True if the column is descending.

Falseif the column is ascending.

115

ULPreparedStatement class
The ULPreparedStatement represents a pre-compiled SQL statement ready
for execution. You can use Prepared Statement to run a SQL query. You can
also use the ULPreparedStatement to execute the same statement multiple
times using numerous input parameters. Since the prepared statement is
precompiled, any further additions beyond the first execution take very little
extra processing. Use ULPreparedStatement and Dynamic SQL when you
want relatively fast DML over multiple rows.

Properties

Prototype Description

HasResultSet As Boolean
(read-only)

Indicates whether the prepared statement
generates a result set.

True if the statement has a result set, other-
wise, false.

If true, ExecuteQuery should be called
instead of ExecuteStatement.

Plan (read-only) As String Gets the access plan UltraLite will use to
execute a query. This property is intended
primarily for use during development.

ResultSetSchema As ULRe-
sultSetSchema (read-only)

Gets the schema description for the result set
if the statement is for a result set

AppendByteChunkParameter method

Prototype AppendByteChunkParameter (
param_id As Integer,
data As Long,
data_len As Long)

Member of UltraLiteAFLib.ULPreparedStatement

Description Appends the buffer of bytes to the row’s column if the type is
ulTypeLongBinary.

Parameters parameter_id The 1-based parameter number to set.

data The array of bytes to append.

data_len The number of bytes from the array to append.

116

Chapter 5. UltraLite for MobileVB API Reference

Errors set ulSQLE_INVALID_PARAMETER The error occurs if the data length is less
than 0.

ulSQLE_CONVERSION_ERROR The error occurs if the column data type
is not LONG BINARY.

AppendStringChunkParameter method

Prototype AppendStringChunkParameter(
param_id As Integer ,
chunk As String)

Member of UltraLiteAFLib.ULPreparedStatement

Description Appends the string to the column if the type is ulTypeLongString.

Parameters parameter_id The 1-based parameter number to set.

chunk A string to append to the existing string in a table.

Errors set ulSQLE_CONVERSION_ERROR The error occurs if the column data type
is not LONG VARCHAR.

Close method

Prototype Close()
Member of UltraLiteAFLib.ULPreparedStatement

Description Frees resources associated with the ULPreparedStatement.

ExecuteQuery method

Prototype ExecuteQuery() As ULResultSet
Member of UltraLiteAFLib.ULPreparedStatement

Description Executes the query and returns a result set.

Returns A ULResultSet object. The ULResultSet is the data you requested in your
SELECT statement. To describe the product of your query, see
“ULResultSetSchema class” on page 128

ExecuteStatement method

Prototype ExecuteStatement() As Long
Member of UltraLiteAFLib.ULPreparedStatement

Description Executes the statement.

Returns The number of rows updated.

117

SetBooleanParameter method

Prototype SetBooleanParameter(
param_number As Integer
param_value As Boolean

)
Member of UltraLiteAFLib.ULPreparedStatement

Description Set the parameter to the Boolean value passed in.

Parameters param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetByteChunkParameter method

Prototype SetByteChunkParameter(
param_number As Integer,
data As Long,
data_len As Long

)
Member of UltraLiteAFLib.ULPreparedStatement

Description Sets data in a binary or long binary column.

Parameters param_number The 1-based parameter number to set.

data An array of bytes.

data_len The number of bytes from the array to set. SetByteChunk writes
over the current content. To append to an existing value, see
“AppendByteChunkParameter method” on page 116

SetByteParameter method

Prototype SetByteParameter(
param_number As Integer
param_value As Byte

)
Member of UltraLiteAFLib.ULPreparedStatement

Description Set the parameter to the Byte value passed in.

Parameters param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

118

Chapter 5. UltraLite for MobileVB API Reference

SetDatetimeParameter method

Prototype SetDatetimeParameter(
param_number As Integer
param_value As String

)
Member of UltraLiteAFLib.ULPreparedStatement

Description Set the parameter to the Datetime value passed in.

Parameters param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetDoubleParameter method

Prototype SetDoubleParameter(
param_number As Integer
param_value As String

)
Member of UltraLiteAFLib.ULPreparedStatement

Description Set the parameter to the Double value passed in.

Parameters param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetIntegerParameter method

Prototype SetIntegerParameter(
param_number As Integer
param_value As String

)
Member of UltraLiteAFLib.ULPreparedStatement

Description Set the parameter to the Integer value passed in.

Parameters param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetLongParameter method

Prototype SetLongParameter(
param_number As Integer
param_value As String

)
Member of UltraLiteAFLib.ULPreparedStatement

119

Description Set the parameter to the Long value passed in.

Parameters param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetNullParameter method

Prototype SetNullParameter(param_id As Integer)
Member of UltraLiteAFLib.ULPreparedStatement

Description Set the parameter to NL.

Parameters parameter_id The 1-based parameter number to set.

SetRealParameter method

Prototype SetRealParameter(
param_number As Integer
param_value As String

)
Member of UltraLiteAFLib.ULPreparedStatement

Description Set the parameter to the Long value passed in.

Parameters param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetStringParameter method

Prototype SetStringParameter(
param_number As Integer
param_value As String

)
Member of UltraLiteAFLib.ULPreparedStatement

Description Set the parameter to the string passed in.

Parameters param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

120

Chapter 5. UltraLite for MobileVB API Reference

ULPublicationSchema class
The ULPublicationSchema object allows you to obtain the attributes of a
publication.

Properties

Prototype Description

Mask As Long (read-only) Gets the mask for the publication

Name As String (read-
only)

Gets the name of the publication

ContainsTable method

Prototype ContainsTable(name As String) As Boolean
Member of UltraLiteAFLib.ULPublicationSchema

Description Indicates whether the specified table is part of this publication.

Parameters name The target table name.

Returns True if the table is in the publication.

Falseif the table is not in the publication.

121

ULResultSet class
The ULResultSet object moves over rows returned by a SQL query. Since
the ULResultSet object contains the data returned by a query, you must
refresh any query resultset after you have performed DML operations such
as INSERT, UPDATE or DELETE. To do this, you should perform
ExecuteQuery after you perform ExecuteStatement.

Properties

Prototype Description

BOF As Boolean (read-only) Indicates whether the current row position
is before the first row. Returns True if the
current row position is before the first row,
otherwise false.

EOF As Boolean (read-only) Indicates whether the current row position
is after the last row. EOF is true if beyond
the last row, otherwise false.

RowCount As Long (read-
only)

The number of rows in the result set.

Schema As ULResult-
SetSchema (read-only)

The schema description for this result set.

Close method

Prototype Close()
Member of UltraLiteAFLib.ULResultSet

Description Frees all resources associated with this object.

GetByteChunk method

Prototype GetByteChunk (_
index As Integer, _
src_offset As Long, _
data As Long, _
data_len As Long, _
filled_len As Long _

) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description Fills the buffer passed in (which should be an array) with the binary data in
the column. Suitable for BLOBS.

122

Chapter 5. UltraLite for MobileVB API Reference

Parameters index The 1-based ordinal of the column containing the binary data.

offset The offset into the underlying array of bytes. The source offset must
be greater than or equal to 0, otherwise a SQLE_INVALID_PARAMETER
error will be raised. A buffer bigger than 64K is also permissible.

data A pointer to an array of bytes. To get the pointer to the array of bytes,
use the Visual Basic VarPtr() function.

data_len The length of the buffer, or array. The data_len must be greater
than or equal to 0.

filled_len The number of bytes fetched. Because you don’t know how big
the BLOB data is in advance, you generally fetch it using a fixed-length
chunk, one chunk at a time. The last chunk may be smaller than your chunk
size. filled_len reports how many bytes were actually fetched.

Returns The number of bytes read.

Errors set ulSQLE_CONVERSION_ERROR The error occurs if the column data type
is not BINARY or LONG BINARY.

ulSQLE_INVALID_PARAMETER The error occurs if the column data type
is BINARY and the offset is not 0 or 1, or, the data length is less than 0.

The error also occurs if the column data type is LONG BINARY and the
offset is less than 1.

Example In the following example, edata is a column name. If thedata_lenparameter
passed in is not sufficiently long, the entire application will terminate.

Dim data (512) As Byte
...
table.Column("edata").GetByteChunk(0,data)

GetStringChunk method

Prototype GetStringChunk(_
index As Integer, _
offset As Long, _
data As String, _
string_len As Long, _
filled_len As Long _

) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description Fills the string passed in with the binary data in the column. Suitable for
Long Varchars.

Parameters index The 1-based column ID of the target column.

123

offset The character offset into the underlying data from which you start
getting the string.

data The data string.

string_len The length of the string you want returned.

filled_len The length of the string filled.

Returns Gets BLOB data from a binary or long binary column.

Errors set ulSQLE_CONVERSION_ERROR The error occurs if the column data type
is not CHAR or LONG VARCHAR.

ulSQLE_INVALID_PARAMETER The error occurs if the column data type
is CHAR and the src_offset is greater than 64K.

This error also occurs if offset is less than 0 or string length is less than 0.

MoveAfterLast method

Prototype MoveAfterLast()
Member of UltraLiteAFLib.ULResultSet

Description Moves to a position after the last row of the ULResultSet.

MoveBeforeFirst method

Prototype MoveBeforeFirst()
Member of UltraLiteAFLib.ULResultSet

Description Moves to a position before the first row.

MoveFirst method

Prototype MoveFirst() As Boolean
Member of UltraLiteAFLib.ULResultSet

Description Moves to the first row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

MoveLast method

Prototype MoveLast() As Boolean
Member of UltraLiteAFLib.ULResultSet

Description Moves to the last row.

Returns True if successful.

124

Chapter 5. UltraLite for MobileVB API Reference

Falseif unsuccessful. The method fails, for example, if there are no rows.

MoveNext method

Prototype MoveNext() As Boolean
Member of UltraLiteAFLib.ULResultSet

Description Moves to the next row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

MovePrevious method

Prototype MovePrevious() As Boolean
Member of UltraLiteAFLib.ULResultSet

Description Moves to the previous row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

MoveRelative method

Prototype MoveRelative(index As Long) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description Moves a certain number of rows relative to the current row. Relative to the
current position of the cursor in the resultset, positive index values move
forward in the resultset, negative index values move backward in the
resultset and zero does not move the cursor.

Parameters index The number of rows to move. The value can be positive, negative, or
zero.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

IsNull method

Prototype IsNull(index As Integer) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description Indicates whether this column contains a null value.

Parameters index The column index value.

Returns True if the value is Null.

125

GetDatetime method

Prototype GetDatetime(index As Integer) As Date
Member of UltraLiteAFLib.ULResultSet

Description Gets the column value as an Date.

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Date.

GetDouble method

Prototype GetDouble(index As Integer) As Double
Member of UltraLiteAFLib.ULResultSet

Description Gets the column value as a Double.

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Double.

GetInteger method

Prototype GetInteger(index As Integer) As Integer
Member of UltraLiteAFLib.ULResultSet

Description Gets the column value as an Integer.

Parameters index The 1-based ordinal in the result set to get.

Returns The value as an Integer.

GetLong method

Prototype GetLong(index As Integer) As Long
Member of UltraLiteAFLib.ULResultSet

Description Gets the column value as a Long.

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a Long.

GetReal method

Prototype GetReal(index As Integer) As Single
Member of UltraLiteAFLib.ULResultSet

Description Gets the column value as a Single.

Parameters index The 1-based ordinal in the result set to get.

126

Chapter 5. UltraLite for MobileVB API Reference

Returns The value as a Real.

GetString method

Prototype GetString(index As Integer) As String
Member of UltraLiteAFLib.ULResultSet

Description Gets the column value as a String.

Parameters index The 1-based ordinal in the result set to get.

Returns The value as a String.

127

ULResultSetSchema class
The ULResultSetSchema provides information about the schema of the
result set.

Properties

Prototype Description

ColumnCount As Integer
(read-only)

Gets the number of columns in the result set

ColumnName As String
(read-only)

Gets the name of the column in the result
set.

ColumnPrecision As Integer
(read-only)

Gets the precision of the datatype for the
column if it is numeric.

ColumnScale As Integer
(read-only)

Gets the scale of the datatype for the column
if it is numeric.

ColumnSize As Integer (read-
only)

Gets the size of the datatype for the column.

ColumnSQLType As ULSQL-
Type (read-only)

Gets the ULSQLType of the column.

128

Chapter 5. UltraLite for MobileVB API Reference

ULSchemaUpgradeState enumeration
The ULSchemaUpgradeState constants identify states during the upgrade of
a database schema.

Constant Description

ulUpgradeStateStarting The schema upgrade is starting.

This is the only state during which the up-
grade may be canceled. If the upgrade is
canceled, you receive a second event with
state ulUpgradeStateAbort.

ulUpgradeStateUpgrading The schema upgrade is in progress.

ulUpgradeStateAbort The schema upgrade has been canceled and
the old database is preserved.

This state may occur as the result of a recov-
erable error or user action.

ulUpgradeStateDone The schema upgrade completed successfully.

ulUpgradeStateError A critical error occurred and the database is
unusable.

See also ♦ “Upgrading UltraLite database schemas”[UltraLite Database User’s Guide,
page 54]

♦ “OnSchemaUpgradeProgress event” on page 95
♦ “OnSchemaUpgradeStateChange event” on page 96

129

ULSQLCode enumeration
The ULSQLCode constants identify SQL codes that may be reported by
UltraLite.

☞ For a description of the errors, see theAdaptive Server Anywhere Error
Messagesbook.

Constant Value

ulSQLE_AGGREGATES_NOT_ALLOWED -150

ulSQLE_ALIAS_NOT_UNIQUE -830

ulSQLE_ALIAS_NOT_YET_DEFINED -831

ulSQLE_BAD_ENCRYPTION_KEY -840

ulSQLE_BAD_PARAM_INDEX -689

ulSQLE_CANNOT_ACCESS_FILE -602

ulSQLE_CANNOT_CHANGE_USER_NAME -867

ulSQLE_CANNOT_MODIFY -191

ulSQLE_CANNOT_EXECUTE_STMT -111

ulSQLE_COLUMN_AMBIGUOUS -144

ulSQLE_COLUMN_CANNOT_BE_NL -195

ulSQLE_COLUMN_IN_INDEX -127

ulSQLE_COLUMN_NOT_FOUND -143

ulSQLE_COMMUNICATIONS_ERROR -85

ulSQLE_CONNECTION_NOT_FOUND -108

ulSQLE_CONVERSION_ERROR -157

ulSQLE_CURSOROP_NOT_ALLOWED -187

ulSQLE_CURSOR_ALREADY_OPEN -172

ulSQLE_CURSOR_NOT_OPEN -180

ulSQLE_DATABASE_ERROR -301

ulSQLE_DATABASE_NEW 123

ulSQLE_DATABASE_NOT_CREATED -645

ulSQLE_DATABASE_NOT_FOUND -83

130

Chapter 5. UltraLite for MobileVB API Reference

Constant Value

ulSQLE_DATABASE_UPGRADE_FAILED -672

ulSQLE_DATABASE_UPGRADE_NOT_-
POSSIBLE

-673

ulSQLE_DATATYPE_NOT_ALLOWED -624

ulSQLE_DBSPACE_FL -604

ulSQLE_DIV_ZERO_ERROR -628

ulSQLE_DOWNLOAD_CONFLICT -839

ulSQLE_DROP_DATABASE_FAILED -651

ulSQLE_DYNAMIC_MEMORY_EXHAUSTED -78

ulSQLE_ENGINE_ALREADY_RUNNING -96

ulSQLE_ENGINE_NOT_MTIUSER -89

ulSQLE_ERROR -300

ulSQLE_ERROR_CALLING_FUNCTION -622

ulSQLE_EXPRESSION_ERROR -156

ulSQLE_IDENTIFIER_TOO_LONG -250

ulSQLE_INDEX_NOT_FOUND -183

ulSQLE_INDEX_NOT_UNIQUE -196

ulSQLE_INTERRUPTED -299

ulSQLE_INVALID_AGGREGATE_-
PLACEMENT

-862

ulSQLE_INVALID_FOREIGN_KEY -194

ulSQLE_INVALID_FOREIGN_KEY_DEF -113

ulSQLE_INVALID_GROUP_SELECT -149

ulSQLE_INVALID_LOGON -103

ulSQLE_INVALID_OPTION_SETTING -201

ulSQLE_INVALID_ORDER -152

ulSQLE_INVALID_ORDERBY_COLUMN -854

ulSQLE_INVALID_PARAMETER -735

131

Constant Value

ulSQLE_INVALID_SQL_IDENTIFIER -760

ulSQLE_INVALID_STATEMENT -130

ulSQLE_LOCKED -210,

ulSQLE_MEMORY_ERROR -309

ulSQLE_METHOD_CANNOT_BE_CALLED -669

ulSQLE_NAME_NOT_UNIQUE -110

ulSQLE_NOERR 0

ulSQLE_NOTFOUND 100

ulSQLE_NOT_IMPLEMENTED -134

ulSQLE_NO_CURRENT_ROW -197

ulSQLE_NO_INDICATOR -181

ulSQLE_OVERFLOW_ERROR -158

ulSQLE_PERMISSION_DENIED -121

ulSQLE_PRIMARY_KEY_NOT_UNIQUE -193

ulSQLE_PRIMARY_KEY_VALUE_REF -198

ulSQLE_PUBLICATION_NOT_FOUND -280

ulSQLE_RESOURCE_GOVERNOR_-
EXCEEDED

-685

ulSQLE_ROW_DROPPED_DURING_-
SCHEMA_UPGRADE

130

ulSQLE_SERVER_SYNCHRONIZATION_-
ERROR

-857

ulSQLE_START_STOP_DATABASE_DENIED -75

ulSQLE_STATEMENT_ERROR -132

ulSQLE_SYNTAX_ERROR -131

ulSQLE_STRING_RIGHT_TRUNCATION -638

ulSQLE_TABLE_HAS_PUBLICATIONS -281

ulSQLE_TABLE_IN_USE -214

ulSQLE_TABLE_NOT_FOUND -141

132

Chapter 5. UltraLite for MobileVB API Reference

Constant Value

ulSQLE_TOO_MANY_CONNECTIONS -102

ulSQLE_TRALITE_OBJ_CLOSED -908

ulSQLE_UNABLE_TO_CONNECT_OR_START -764

ulSQLE_UNABLE_TO_START_DATABASE -82

ulSQLE_UNCOMMITTED_TRANSACTIONS -755

ulSQLE_UNKNOWN_FUNC -148

ulSQLE_UNKNOWN_USERID -140

ulSQLE_UNSUPPORTED_CHARACTER_SET_-
ERROR

-869

ulSQLE_UPLOAD_FAILED_AT_SERVER -794

ulSQLE_WRONG_PARAMETER_COUNT -154

133

ULSQLType enumeration
ULSQLType lists the available UltraLite SQL database types used as table
column types.

Constant UltraLite Database

Type

Value

ulTypeLong Integer 0

ulTypeUnsignedLong SmallInt 2

ulTypeShort UnsignedInteger 1

ulTypeUnsignedShort UnsignedSmallInt 3

ulTypeBig Big 4

ulTypeUnsignedBig UnsignedBig 5

ulTypeByte Byte 6

ulTypeBit Bit 7

ulTypeDateTime Time 8

ulTypeDate Date 9

ulTypeTime Timestamp 10

ulTypeDouble Double 11

ulTypeReal Real 12

ulTypeNumeric (Var)Binary 17

ulTypeBinary LongBinary 13

ulTypeString (Var)Char 15

ulTypeLongString LongVarchar 16

ulTypeLongBinary Numeric 14

ulTypeUUID UniqueIdentifier 18

134

Chapter 5. UltraLite for MobileVB API Reference

ULStreamErrorCode enumeration
The ULStreamErrorCode constants identify communications errors during
synchronization.

☞ For more information about these errors, see“MobiLink
Communication Error Messages”[ASA Error Messages,page 549].

Constant Value

ulStreamErrorCodeNone 0

ulStreamErrorCodeParameter 1

ulStreamErrorCodeParameterNotUint32 2

ulStreamErrorCodeParameterNotUint32Range 3

ulStreamErrorCodeParameterNotBoolean 4

ulStreamErrorCodeParameterNotHex 5

ulStreamErrorCodeMemoryAllocation 6

ulStreamErrorCodeParse 7

ulStreamErrorCodeRead 8

ulStreamErrorCodeWrite 9

ulStreamErrorCodeEndWrite 10

ulStreamErrorCodeEndRead 11

ulStreamErrorCodeNotImplemented 12

ulStreamErrorCodeWouldBlock 13

ulStreamErrorCodeGenerateRandom 14

ulStreamErrorCodeInitRandom 15

ulStreamErrorCodeSeedRandom 16

ulStreamErrorCodeCreateRandomObject 17

ulStreamErrorCodeShuttingDown 18

ulStreamErrorCodeDequeuingConnection 19

ulStreamErrorCodeSecureCertificateRoot 20

ulStreamErrorCodeSecureCertificateCompanyName 21

ulStreamErrorCodeSecureCertificateChainLength 22

135

Constant Value

ulStreamErrorCodeSecureCertificateRef 23

ulStreamErrorCodeSecureCertificateNotTrusted 24

ulStreamErrorCodeSecureDuplicateContext 25

ulStreamErrorCodeSecureSetIo 26

ulStreamErrorCodeSecureSetIoSemantics 27

ulStreamErrorCodeSecureCertificateChainFunc 28

ulStreamErrorCodeSecureCertificateChainRef 29

ulStreamErrorCodeSecureEnableNonBlocking 30

ulStreamErrorCodeSecureSetCipherSuites 31

ulStreamErrorCodeSecureSetChainNumber 32

ulStreamErrorCodeSecureCertificateFileNotFound 33

ulStreamErrorCodeSecureReadCertificate 34

ulStreamErrorCodeSecureReadPrivateKey 35

ulStreamErrorCodeSecureSetPrivateKey 36

ulStreamErrorCodeSecureCertificateExpiryDate 37

ulStreamErrorCodeSecureExportCertificate 38

ulStreamErrorCodeSecureAddCertificate 39

ulStreamErrorCodeSecureTrustedCertificateFileNotFound40

ulStreamErrorCodeSecureTrustedCertificateRead 41

ulStreamErrorCodeSecureCertificateCount 42

ulStreamErrorCodeSecureCreateCertificate 43

ulStreamErrorCodeSecureImportCertificate 44

ulStreamErrorCodeSecureSetRandomRef 45

ulStreamErrorCodeSecureSetRandomFunc 46

ulStreamErrorCodeSecureSetProtocolSide 47

ulStreamErrorCodeSecureAddTrustedCertificate 48

ulStreamErrorCodeSecureCreatePrivateKeyObject 49

ulStreamErrorCodeSecureCertificateExpired 50

136

Chapter 5. UltraLite for MobileVB API Reference

Constant Value

ulStreamErrorCodeSecureCertificateCompanyUnit 51

ulStreamErrorCodeSecureCertificateCommonName 52

ulStreamErrorCodeSecureHandshake 53

ulStreamErrorCodeHttpVersion 54

ulStreamErrorCodeSecureSetReadFunc 55

ulStreamErrorCodeSecureSetWriteFunc 56

ulStreamErrorCodeSocketHostNameNotFound 57

ulStreamErrorCodeSocketGetHostByAddr 58

ulStreamErrorCodeSocketLocalhostNameNotFound 59

ulStreamErrorCodeSocketCreateTcpip 60

ulStreamErrorCodeSocketCreateUdp 61

ulStreamErrorCodeSocketBind 62

ulStreamErrorCodeSocketCleanup 63

ulStreamErrorCodeSocketClose 64

ulStreamErrorCodeSocketConnect 65

ulStreamErrorCodeSocketGetName 66

ulStreamErrorCodeSocketGetOption 67

ulStreamErrorCodeSocketSetOption 68

ulStreamErrorCodeSocketListen 69

ulStreamErrorCodeSocketShutdown 70

ulStreamErrorCodeSocketSelect 71

ulStreamErrorCodeSocketStartup 72

ulStreamErrorCodeSocketPortOutOfRange 73

ulStreamErrorCodeLoadNetworkLibrary 74

ulStreamErrorCodeActsyncNoPort 75

ulStreamErrorCodeHttpExpectedPost 89

137

ULStreamErrorContext enumeration
The ULStreamErrorContext constants identify constants you can use to
specify ULStreamErrorContext. The ULStreamErrorContext is the network
operation performed when the stream error happens.

Constant Value

ulStreamErrorContextUnknown 0

ulStreamErrorContextRegister 1

ulStreamErrorContextUnregister 2

ulStreamErrorContextCreate 3

ulStreamErrorContextDestroy 4

ulStreamErrorContextOpen 5

ulStreamErrorContextClose 6

ulStreamErrorContextRead 7

ulStreamErrorContextWrite 8

ulStreamErrorContextWriteFlush 9

ulStreamErrorContextEndWrite 10

ulStreamErrorContextEndRead 11

ulStreamErrorContextYield 12

ulStreamErrorContextSoftshutdown 13

138

Chapter 5. UltraLite for MobileVB API Reference

ULStreamErrorID enumeration
The ULStreamErrorID is an enumeration of the possible network layers that
caused an error in an unsuccessful synchronization.

Constant Value

ulStreamErrorIDTcpip 0

ulStreamErrorIDSerial 1

ulStreamErrorIDFake 2

ulStreamErrorIDPalmConduit 3

ulStreamErrorIDPalmSs 4

ulStreamErrorIDNettech 5

ulStreamErrorIDRimbb 6

ulStreamErrorIDHttp 7

ulStreamErrorIDHttps 8

ulStreamErrorIDDhCast 9

ulStreamErrorIDSecure 10

ulStreamErrorIDCerticom 11

ulStreamErrorIDJavaCerticom 12

ulStreamErrorIDCerticomSsl 13

ulStreamErrorIDCerticomTls 14

ulStreamErrorIDWirestrm 15

ulStreamErrorIDWireless 16

ulStreamErrorIDReplay 17

ulStreamErrorIDStrm 18

ulStreamErrorIDUdp 19

ulStreamErrorIDEmail 20

ulStreamErrorIDFile 21

ulStreamErrorIDActivesync 22

ulStreamErrorIDRsaTls 23

ulStreamErrorIDJavaRsa 24

139

ULStreamType enumeration
The ULStreamType constants identify constants you can use to specify
stream type. These represent the types of MobiLink synchronization streams
you can use for synchronization.

Constant Value Description

ulUnknown 0 No stream type has been set. You must
set a stream type before synchroniza-
tion.

ulTCPIP 1 TCP/IP stream

ulHTTP 2 HTTP stream

ulHTTPS 3 HTTPS synchronization

ulPalmConduit 4 For HotSync synchronization

140

Chapter 5. UltraLite for MobileVB API Reference

ULSyncParms class
The attributes set for the ULSyncParms object determine how the database
synchronizes with the consolidated or desktop database. Attributes that are
read-only reflect the status of the last synchronization.

Properties

The following are properties of ULSyncParms:

Prototype Description

CheckpointStore As Boolean If true, adds checkpoints of the database
during synchronization to limit database
growth during the synchronization pro-
cess. This is most useful for large
downloads with many updates.

See“Checkpoint Store synchroniza-
tion parameter” [MobiLink Clients,
page 318].

DownloadOnly As Boolean Indicates if a synchronization only
downloads data.

See“Download Only synchroniza-
tion parameter” [MobiLink Clients,
page 320].

KeepPartialDownload As Boolean If the synchronisation fails during down-
load because of a communications error,
apply those changes that were success-
fully downloaded, rather than rolling
back all the changes.

See“Keep Partial Download synchro-
nization parameter” [MobiLink Clients,
page 321].

NewPassword As String Change a user password to this new
password string on the next synchro-
nization.

See“New Password synchronization pa-
rameter” [MobiLink Clients,page 322].

Password As String The password corresponding to a given
user name.

See“Password synchronization parame-
ter” [MobiLink Clients,page 324].

141

Prototype Description

PingOnly As Boolean If true, check the server for liveness, but
do not synchronize data.

See“Ping synchronization parameter”
[MobiLink Clients,page 325].

PublicationMask As Long Specify the publications to synchronize.
The default is to synchronize all data.

See“Publication synchronization pa-
rameter” [MobiLink Clients,page 326].

ResumePartialDownload As
Boolean

Resume a synchronization that failed
during download because of a com-
munications error, applying only those
changes that were scheduled to be down-
loaded in the failed synchronization.

See“Resume Partial Download synchro-
nization parameter” [MobiLink Clients,
page 327].

SendColumnNames As Boolean If SendColumnNames is true, column
names are sent to the MobiLink synchro-
nization server. Column names must be
sent to the MobiLink synchronization
server for automatic script generation.

See“Send Column Names synchro-
nization parameter” [MobiLink Clients,
page 330].

SendDownloadAck As Boolean If SendDownloadAck is true, a down-
load acknowledgement is sent during
synchronization.

See“Send Download Acknowledge-
ment synchronization parameter” [Mo-
biLink Clients,page 331].

Stream As ULStreamType con-
stants

Set the type of stream to use during
synchronization.

See“Stream Type synchronization pa-
rameter” [MobiLink Clients,page 332].

142

Chapter 5. UltraLite for MobileVB API Reference

Prototype Description

StreamParms As String Set network protocol options for the
given stream type.

See“Stream Parameters synchroniza-
tion parameter” [MobiLink Clients,
page 334]and “Network protocol
options for UltraLite synchronization
clients” [MobiLink Clients,page 341].

UploadOnly As Boolean Indicates whether a synchronization
only uploads data.

See“Upload Only synchronization pa-
rameter” [MobiLink Clients,page 337].

UserName As String The MobiLink user name for synchro-
nization.

See“User Name synchronization pa-
rameter” [MobiLink Clients,page 338].

Version As String The synchronization script version to
run.

See“Version synchronization parame-
ter” [MobiLink Clients,page 339].

Examples The following example sets synchronization parameters for an UltraLite for
MobileVB application.

With Connection.SyncParms
.UserName = "afsample"
.Stream = ULStreamType.ulTCPIP
.Version = "ul_default"
.SendColumnNames = True

End With
Connection.Synchronize

AddAuthenticationParm method

Prototype AddAuthenticationParm(BSTR parm)
Member of UltraLiteAFLib.ULSyncParms

Description Adds a parameter to be passed to the authenticate_parms MobiLink
synchronization script.

Parameters parm The parameter being added.

Returns No return value.

143

See also “Authentication Parameters synchronization parameter”[MobiLink Clients,
page 316]

“authenticate_parameters connection event”[MobiLink Administration Guide,
page 334]

ClearAuthenticationParms method

Prototype ClearAuthenticationParms()
Member of UltraLiteAFLib.ULSyncParms

Description Clears all parameters that were to be passed to the authenticate_parms
MobiLink synchronization script.

Returns No return value.

See also “Authentication Parameters synchronization parameter”[MobiLink Clients,
page 316]

“authenticate_parameters connection event”[MobiLink Administration Guide,
page 334]

144

Chapter 5. UltraLite for MobileVB API Reference

ULSyncResult class
The attributes of the ULSyncResult object store the results of the last
synchronization.

Properties

The following are properties of ULSyncResult:

Prototype Description

AuthStatus As AuthStatusCode
(read-only)

Gets the authorization status code for
the last synchronization.

See“Authentication Status synchro-
nization parameter” [MobiLink Clients,
page 317].

PartialDownloadRetained (read-
only)

Indicates that the synchronization failed
during download, and that a partial
download was kept.

See“Partial Download Retained syn-
chronization parameter” [MobiLink
Clients,page 324].

IgnoredRows As Boolean (read-
only)

Indicates whether rows were ignored
during the last synchronization.

See“Ignored Rows synchronization pa-
rameter” [MobiLink Clients,page 320].

StreamErrorCode As ULStream-
ErrorCode (read-only)

Gets the error code reported by the
synchronization stream.

StreamErrorContext As UL-
StreamErrorContext (read-only)

Gets the basic network operation per-
formed.

StreamErrorID As ULStreamEr-
rorID (read-only)

Gets the network layer reporting the
error.

StreamErrorSystem As Long
(read-only)

Gets the stream error system-specific
code.

UploadOK As Boolean (read-
only)

Indicates whether data was uploaded
successfully in the last synchronization.

See“Version synchronization parame-
ter” [MobiLink Clients,page 339].

145

ULSyncState enumeration

Constant Description

ulSyncStateStarting No synchronization actions have
been taken yet.

ulSyncStateConnecting The synchronization stream has
been built, but not yet opened.

ulSyncStateSendingHeader The synchronization stream has
been opened and the header is
about to be sent.

ulSyncStateSendingTable A table is being sent.

ulSyncStateSendingData Data for the current table is being
sent.

ulSyncStateFinishingUpload The upload is completing. The final
count of rows sent is included with
this event.

ulSyncStateReceivingUploadAck An acknowledgement that the up-
load is complete is being received.

ulSyncStateReceivingTable A table is being received.

ulSyncStateReceivingData Data for the current table is being
received.

ulSyncStateCommittingDownload The download is being committed.
The final count of rows received is
included with this event.

ulSyncStateSendingDownloadAck An acknowledgement that the
download is complete is being
sent.

ulSyncStateDisconnecting The synchronization stream is
about to be closed.

ulSyncStateDone Synchronization has successfully
completed. The SyncResult object
has been updated.

ulSyncStateError Synchronization has completed but
an error occurred. Check SyncRe-
sult and SQLCode for details.

146

Chapter 5. UltraLite for MobileVB API Reference

Constant Description

ulSyncStateRollingBackDownload Synchronization is rolling back the
download because an error was
encountered during the download.
The error will be reported with
a subsequent ulSyncStateError
progress report.

ulSyncStateCancelled Synchronization has been canceled.

147

ULTable class
The ULTable class is used to store, remove, update, and read data from a
table.

Before you can work with table data, you must call the Open method.
ULTable uses table modes for table operations:

Mode Description

FindBegin Begins find mode

InsertBegin Begins insert mode

LookupBegin Begins lookup mode

UpdateBegin Begins update mode

Properties

Prototype Description

BOF As Boolean (read-only) Indicates whether the current row
position is before the first row.
Returns True if the current row
position is before the first row,
otherwise false.

EOF As Boolean (read-only) Indicates whether the current row
position is after the last row. Re-
turns True if the current row posi-
tion is before the first row, other-
wise false.

IsOpen As Boolean (read-only) Indicates whether or not the table is
currently open.

RowCount As Long (read-only) Gets the number of rows in the
table.

Schema As ULTableSchema (read-
only)

Gets information about the table
schema.

Close method

Prototype Close()
Member of UltraLiteAFLib.ULTable

Description Frees resources associated with the table. This method should be called after

148

Chapter 5. UltraLite for MobileVB API Reference

all processing involving the table is complete.

For the Palm OS, if a table is not closed it can be reopened to its current
position.

Column method

Column(name As String) As ULColumn
Member of UltraLiteAFLib.ULTable

Description Returns the object for the specified column name.

For information about theULColumn object, see“ULColumn class” on
page 84

Parameters name The name of the column to return.

Returns Returns a Columns object.

Delete method

Prototype Delete()
Member of UltraLiteAFLib.ULTable

Description Deletes the current row from the table.

DeleteAllRows method

Prototype DeleteAllRows()
Member of UltraLiteAFLib.ULTable

Description Deletes all rows in the table.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of data into the table. Rows can be deleted from the
UltraLite database without being deleted from the consolidated database
using theULConnection.StopSynchronizationDeletemethod or calling
Truncate instead ofDeleteAllRows.

FindBegin method

Prototype FindBegin()
Member of UltraLiteAFLib.ULTable

Description Prepares a table for a find.

FindFirst method

Prototype FindFirst([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

149

Description Move forwards through the table from the beginning, looking for a row that
exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is after the last row (EOF).

Note : Requires that FindBegin be called prior to using this method.

Parameters num_columns An optional parameter referring to the number of columns
to be used in the FindFirst. For example, if 2 is passed, the first two columns
are used for the FindFirst. If num_columns exceeds the number of columns
indexed, all columns are used in FindFirst.

Returns True if successful.

Falseif unsuccessful.

FindLast method

Prototype FindLast([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description Move backwards through the table from the end, looking for a row that
matches a value or set of values in the current index.

The current index is used to specify the sort order of the table. It is specified
when your application calls theOpenmethod. The default index is the
primary key.

☞ For more information, see“Open method” on page 155.

To specify the value to search for, set the column value for each column in
the index for which you want to find the value. The cursor is left on the last
row found that exactly matches the index value. On failure the cursor
position is before the first row (BOF).

Note
Requires that FindBegin be called prior to using this method.

Parameters num_columns An optional parameter referring to the number of columns
to be used in the FindLast. For example, if 2 is passed, the first two columns
are used for the FindLast. If num_columns exceeds the number of columns
indexed, all columns are used in FindLast.

Returns True if successful.

150

Chapter 5. UltraLite for MobileVB API Reference

Falseif unsuccessful.

FindNext method

Prototype FindNext([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description Move forwards through the table from the current position, looking for the
next row that exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls theOpenmethod. The default index is
the primary key.

☞ For more information, see“Open method” on page 155.

The cursor is left on the first row found that exactly matches the index value.
On failure, the cursor position is after the last row (EOF).

Note : Must be preceded by FindFirst or FindLast.

Parameters num_columns An optional parameter referring to the number of columns
to be used in the FindNext. For example, if 2 is passed, the first two columns
are used for the FindNext. If num_columns exceeds the number of columns
indexed, all columns are used in FindNext.

Returns True if successful.

Falseif unsuccessful (EOF).

FindPrevious method

Prototype FindPrevious([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description Move backwards through the table from the current position, looking for the
previous row that exactly matches a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls theOpenmethod. The default index is
the primary key.

☞ For more information, see“Open method” on page 155.

On failure it is positioned before the first row (BOF).

Parameters num_columns An optional parameter referring to the number of columns
to be used in the FindPrevious. For example, if 2 is passed, the first two
columns are used for the FindPrevious. If num_columns exceeds the number
of columns indexed, all columns are used in FindPrevious.

151

Returns True if successful.

Falseif unsuccessful (BOF).

Insert method

Prototype Insert() As Boolean
Member of UltraLiteAFLib.ULTable

Description Inserts a row in the table with values specified in previousSetmethods.
Must be preceded byInsertBegin. Set for each ULColumn object.

Returns True if successful.

Falseif unsuccessful (BOF).

InsertBegin method

Prototype InsertBegin()
Member of UltraLiteAFLib.ULTable

Description Prepares a table for inserting a new row, setting column values to their
defaults.

Examples In this example, InsertBegin sets insert mode to allow you to begin assigning
data values to CustomerTable columns.

CustomerTable.InsertBegin
CustomerTable.Column("Fname").StringValue = fname
CustomerTable.Column("Lname").StringValue = lname
CustomerTable.Insert

See also “UpdateBegin method” on page 156

LookupBackward method

Prototype LookupBackward([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description Move backwards through the table starting from the end, looking for the first
row that matches or is less than a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls theOpenmethod. The default index is
the primary key.

☞ For more information, see“Open method” on page 155.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the last row that matches or is less than the
index value. On failure (that is, if no row is less than the value being looked

152

Chapter 5. UltraLite for MobileVB API Reference

for), the cursor position is before the first row (BOF).

Parameters num_columns For composite indexes, the number of columns to use in
the lookup.

Returns True if successful.

Falseif unsuccessful.

LookupBegin method

Prototype LookupBegin()
Member of UltraLiteAFLib.ULTable

Description Prepares a table for a lookup.

LookupForward method

Prototype LookupForward([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls theOpenmethod. The default index is
the primary key.

☞ For more information, see“Open method” on page 155.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is greater than
the index value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position is after the last row (EOF).

Parameters num_columns For composite indexes, the number of columns to use in
the lookup.

Returns True if successful.

Falseif unsuccessful.

MoveAfterLast method

Prototype MoveAfterLast() As Boolean
Member of UltraLiteAFLib.ULTable

Description Moves to a position after the last row.

Returns True if successful.

153

Falseif the operation fails.

MoveBeforeFirst method

Prototype MoveBeforeFirst() As Boolean
Member of UltraLiteAFLib.ULTable

Description Moves to a position before the first row.

Returns True if successful.

Falseif the operation fails.

MoveFirst method

Prototype MoveFirst() As Boolean
Member of UltraLiteAFLib.ULTable

Description Moves to the first row.

Returns True if successful.

Falseif there is no data in the table.

MoveLast method

Prototype MoveLast() As Boolean
Member of UltraLiteAFLib.ULTable

Description Moves to the last row.

Returns True if successful.

Falseif there is no data in the table.

MoveNext method

Prototype MoveNext() As Boolean
Member of UltraLiteAFLib.ULTable

Description Moves to the next row.

Returns True if successful.

Falseif there is no more data in the table. For example, MoveNext fails if
there are no more rows.

MovePrevious method

Prototype MovePrevious() As Boolean
Member of UltraLiteAFLib.ULTable

Description Moves to the previous row.

154

Chapter 5. UltraLite for MobileVB API Reference

Returns True if successful.

Falseif there is no more data in the table. For example, MovePrevious fails
if there are no rows.

MoveRelative method

Prototype MoveRelative(index As Long) As Boolean
Member of UltraLiteAFLib.ULTable

Description Moves a certain number of rows relative to the current row.

Parameters index The number of rows to move. The value can be positive, negative, or
zero. Zero is useful if you want to repopulate a row buffer.

Returns True if successful.

Falseif the move failed, as may happen, for example, if the cursor is
positioned beyond the first or last row.

Open method

Prototype Open(
[index_name As String], _
[persistent_name As String] _

)
Member of UltraLiteAFLib.ULTable

Description Opens the table so it can be read or manipulated. By default, the rows are
ordered by primary key. By supplying an index name, the rows can be
ordered in other ways.

The cursor is positioned before the first row in the table.

Parameters index_name An optional parameter referring to the name of the index.

persistent_name For Palm Computing Platform applications, an optional
parameter referring to the stored name of the table.

Truncate method

Prototype Truncate()
Member of UltraLiteAFLib.ULTable

Description Removes all data from this table. The changes are not synchronized, so that
on synchronization, it does not affect the data in the consolidated database.

☞ For more information, see“StartSynchronizationDelete method” on
page 99.

155

Update method

Prototype Update()
Member of UltraLiteAFLib.ULTable

Description Updates a row in the table with values specified inULColumn methods.

Note : Must be preceded by a call to UpdateBegin.

UpdateBegin method

Prototype UpdateBegin()
Member of UltraLiteAFLib.ULTable

Description Prepares a table for modifying the contents of the current row.

Example CustomerTable.UpdateBegin
CustomerTable.Column("Fname").StringValue = fname
’...
CustomerTable.Update

156

Chapter 5. UltraLite for MobileVB API Reference

ULTableSchema class
The ULTableSchema object allows you to obtain the attributes of a table.

Properties

The ULTableSchema represents metadata about the table. The following are
properties of the ULTableSchema class:

Prototype Description

ColumnCount As Integer (read-
only)

The number of columns in this table

IndexCount As Integer (read-only) The number of indexes on this table

Name As String (read-only) This table’s name

NeverSynchronized As Boolean
(read-only)

Indicates if the table is always excluded
from synchronization.

PrimaryKey As ULIndexSchema
(read-only)

The primary key for this table.

UploadUnchangedRows As
Boolean (read-only)

Indicates if all rows in the table should
be uploaded on synchronization, rather
than just the rows changed since the
last synchronization.

GetColumnName method

Prototype GetColumnName(id As Integer) As String
Member of UltraLiteAFLib.ULTableSchema

Description Returns the name of the column that corresponds to theid value you supply.
The ColumnCount property returns the number of columns in the table. Each
column has a unique number from 1 to the ColumnCount value, where 1 is
the first column in the table, 2 is the second column in the table, and so on.

Parameters id The id of the column.

Returns The name of a column.

GetIndex method

Prototype GetIndex(name As String) As ULIndexSchema
Member of UltraLiteAFLib.ULTableSchema

Description Returns the ULIndexSchema object for the specified index.

157

☞ For information about the ULIndexSchema object, see
“ULIndexSchema class” on page 114.

Parameters name The name of the index.

Returns Returns a schema object for a given index on the table.

GetIndexName method

Prototype GetIndexName(id As Integer) As String
Member of UltraLiteAFLib.ULTableSchema

Description Returns the name of the index in the table that corresponds to theid value
you supply. The IndexCount property returns the number of indexes in the
table. Each index has a unique number from 1 to the IndexCount value,
where 1 is the first index in the table, 2 is the second index in the table, and
so on.

Parameters name The id of the index.

Returns Returns the name of the index.

InPublication method

Prototype InPublication(publicationName As String) As Boolean
Member of UltraLiteAFLib.ULTableSchema

Description Indicates whether this table is part of the specified publication.

Parameters publicationName The name of the publication you are checking.

Returns True if the table is part of the publication.

Falseif the table is not part of the publication.

158

Index

A
accessing schema information

UltraLite for MobileVB 29
AddAuthenticationParm method (ULSyncParms

class)
UltraLite for MobileVB API 143

API reference
UltraLite for MobileVB 81

APIs
UltraLite for MobileVB 81

AppendByteChunk method (ULColumn class)
UltraLite for MobileVB API 85

AppendByteChunkParameter method
(ULPreparedStatement class)

UltraLite for MobileVB API 116
AppendStringChunk method (ULColumn class)

UltraLite for MobileVB API 86
AppendStringChunkParameter method (ULColumn

class)
UltraLite for MobileVB API 117

AppForge Booster
MobileVB 2

AppForge Crossfire
adding references 7

AppForge MobileVB
adding references 6
AppForge Booster 2
UltraLite 2

ApplyFile method
UltraLite for MobileVB 9

ApplyFile method (ULDatabaseSchema class)
UltraLite for MobileVB API 112

ApplyFileWithParms method
UltraLite for MobileVB 9

ApplyFileWithParms method (ULDatabaseSchema
class)

UltraLite for MobileVB API 112
architecture

UltraLite for MobileVB 3
AuthStatus property (ULSyncResult class)

UltraLite for MobileVB 145
AutoCommit mode

UltraLite for MobileVB 28
AutoCommit property (ULConnection class)

UltraLite for MobileVB API 91
AutoIncrement property (ULColumnSchema class)

UltraLite for MobileVB API 90
AutoIncrement property (ULConnectionParms

class)
UltraLite for MobileVB API 102

B
BLOBs

GetByteChunk method in UltraLite for
MobileVB 27

UltraLite for MobileVB 27
BOF property (ULTable class)

UltraLite for MobileVB API 148
BooleanValue property (ULColumn class)

UltraLite for MobileVB API 84
ByteValue property (ULColumn class)

UltraLite for MobileVB API 84

C
CancelSynchronize method (ULConnection class)

UltraLite for MobileVB API 92
casting

data types in UltraLite for MobileVB 23
ChangeEncryptionKey method (ULConnection

class)
UltraLite for MobileVB API 92

CheckpointStore property (ULSyncParms class)
UltraLite for MobileVB 141

ClearAuthenticationParms method (ULSyncParms
class)

UltraLite for MobileVB API 144
Close method (ULConnection class)

UltraLite for MobileVB API 93
Close method (ULPreparedStatement class)

UltraLite for MobileVB API 117
Close method (ULResultSet class)

UltraLite for MobileVB API 122
Close method (ULTable class)

UltraLite for MobileVB API 148

159

Index

CodeXchange
downloadable samples 79

CollationName property (ULConnection class)
UltraLite for MobileVB API 91

Column method (ULTable class)
UltraLite for MobileVB API 149

ColumnCount property (ULIndexSchema class)
UltraLite for MobileVB API 114

ColumnCount property (ULTableSchema class)
UltraLite for MobileVB API 157

columns
accessing schema information in UltraLite for

MobileVB 29
Columns collection

UltraLite for MobileVB 21
Commit method

UltraLite for MobileVB 28
Commit method (ULConnection class)

UltraLite for MobileVB API 93
commits

UltraLite for MobileVB 28
connecting

UltraLite for MobileVB databases 11
ContainsTable method (ULPublicationSchema class)

UltraLite for MobileVB API 121
conventions

documentation viii
CountUploadRows method (ULConnection class)

UltraLite for MobileVB API 93
CreateDatabase method (ULDatabaseManager class)

UltraLite for MobileVB API 105
CreateDatabaseWithParms method

(ULDatabaseManager class)
UltraLite for MobileVB API 107

D
data manipulation

dynamic SQL in UltraLite for MobileVB 15
table API in UltraLite for MobileVB 21
UltraLite for MobileVB 15

data types
accessing in UltraLite for MobileVB 22
casting in UltraLite for MobileVB 23

database schemas
accessing in UltraLite for MobileVB 29
UltraLite for MobileVB 9

database state:

maintaining on Palm OS with UltraLite for
MobileVB 38

DatabaseID property (ULConnection class)
UltraLite for MobileVB API 91

DatabaseNew property (ULConnection class)
UltraLite for MobileVB API 91

databases
accessing schema information in UltraLite for

MobileVB 29
connecting in UltraLite for MobileVB 11

DateFormat property (ULDatabaseSchema class)
UltraLite for MobileVB API 111

DateOrder property (ULDatabaseSchema class)
UltraLite for MobileVB API 111

DatetimeValue property (ULColumn class)
UltraLite for MobileVB API 84

DefaultValue property (ULColumnSchema class)
UltraLite for MobileVB API 90

Delete method (ULTable class)
UltraLite for MobileVB API 149

DeleteAllRows method (ULTable class)
UltraLite for MobileVB API 149

deleting
rows in UltraLite for MobileVB 24

deploying
UltraLite applications 35
UltraLite for MobileVB applications 35, 36

development
UltraLite for MobileVB 5

development platforms
UltraLite for MobileVB 2

DML operations
UltraLite for MobileVB 15

documentation
conventions viii
SQL Anywhere Studio vi

DoubleValue property (ULColumn class)
UltraLite for MobileVB API 84

DownloadOnly property (ULSyncParms class)
UltraLite for MobileVB 141

DropDatabase method (ULDatabaseManager class)
UltraLite for MobileVB API 107

DropDatabaseWithParms method
(ULDatabaseManager class)

UltraLite for MobileVB API 108
dynamic SQL

UltraLite for MobileVB development 15

160

Index

E
encryption

UltraLite for MobileVB development 14
EOF property (ULTable class)

UltraLite for MobileVB API 148
error handling

UltraLite for MobileVB 30
errors

handling in UltraLite for MobileVB 30
ExecuteQuery method (ULPreparedStatement class)

UltraLite for MobileVB API 117
ExecuteStatement method (ULPreparedStatement

class)
UltraLite for MobileVB API 117

F
features

for MobileVB 2
feedback

documentation xii
providing xii

find methods
UltraLite for MobileVB 23

find mode
UltraLite for MobileVB 25

FindBegin method (ULTable class)
UltraLite for MobileVB API 149

FindFirst method (ULTable class)
UltraLite for MobileVB API 149

FindLast method (ULTable class)
UltraLite for MobileVB API 150

FindNext method (ULTable class)
UltraLite for MobileVB API 151

FindPrevious method (ULTable class)
UltraLite for MobileVB API 151

ForeignKey property (ULIndexSchema class)
UltraLite for MobileVB API 114

G
GetByteChunk method

UltraLite for MobileVB 27
GetByteChunk method (ULColumn class)

UltraLite for MobileVB API 86
GetByteChunk method (ULResultSet class)

UltraLite for MobileVB API 122
GetColumnName method (ULIndexSchema class)

UltraLite for MobileVB API 115
GetColumnName method (ULTableSchema class)

UltraLite for MobileVB API 157
GetDatetime method (ULResultSet class)

UltraLite for MobileVB API 126
GetDouble method (ULResultSet class)

UltraLite for MobileVB API 126
GetIndex method (ULTableSchema class)

UltraLite for MobileVB API 157
GetIndexName method (ULTableSchema class)

UltraLite for MobileVB API 158
GetInteger method (ULResultSet class)

UltraLite for MobileVB API 126
GetLong method (ULResultSet class)

UltraLite for MobileVB API 126
GetNewUUID method (ULConnection class)

UltraLite for MobileVB API 94
GetPublicationName method (ULDatabaseSchema

class)
UltraLite for MobileVB API 112

GetPublicationSchema method
(ULDatabaseSchema class)

UltraLite for MobileVB API 113
GetReal method (ULResultSet class)

UltraLite for MobileVB API 126
GetString method (ULResultSet class)

UltraLite for MobileVB API 127
GetStringChunk method (ULColumn class)

UltraLite for MobileVB API 87
GetStringChunk method (ULResultSet class)

UltraLite for MobileVB API 123
GetTable function (ULConnection class)

UltraLite for MobileVB API 94
GetTableName method (ULDatabaseSchema class)

UltraLite for MobileVB API 113
GlobalAutoIncrement property (ULColumnSchema

class)
UltraLite for MobileVB API 90

GlobalAutoIncrementUsage property
(ULConnection class)

UltraLite for MobileVB API 91
grantConnectTo method

UltraLite for MobileVB 31
GrantConnectTo method (ULConnection class)

UltraLite for MobileVB API 94

161

Index

I
iAnywhere.UltraLiteForAppForge

UltraLite development with Crossfire 7
icons

used in manuals x
ID property (ULColumnSchema class)

UltraLite for MobileVB API 90
IgnoredRows property (ULSyncResult class)

UltraLite for MobileVB 145
IndexCount property (ULTableSchema class)

UltraLite for MobileVB API 157
indexes

accessing schema information in UltraLite for
MobileVB 29

InPublication method (ULTableSchema class)
UltraLite for MobileVB API 158

Insert method (ULTable class)
UltraLite for MobileVB API 152

insert mode
UltraLite for MobileVB 25

InsertBegin method (ULTable class)
UltraLite for MobileVB API 152

inserting
rows in UltraLite for MobileVB 24

IntegerValue property (ULColumn class)
UltraLite for MobileVB API 84

IsCaseSensitive property (ULConnection class)
UltraLite for MobileVB API 91

IsColumnDescending method (ULIndexSchema
class)

UltraLite for MobileVB API 115
IsNull method (ULResultSet class)

UltraLite for MobileVB API 125
IsNull property (ULColumn class)

UltraLite for MobileVB API 84
IsOpen property (ULTable class)

UltraLite for MobileVB API 148

K
KeepPartialDownload property (ULSyncParms

class)
UltraLite for MobileVB 141

L
LastDownloadTime method (ULConnection class)

UltraLite for MobileVB API 94

LastIdentity property (ULConnection class)
UltraLite for MobileVB API 91

library functions
RollbackPartialDownload (UltraLite for

MobileVB API) 98
LongValue property (ULColumn class)

UltraLite for MobileVB API 84
lookup methods

UltraLite for MobileVB 23
lookup mode

UltraLite for MobileVB 25
LookupBackward method (ULTable class)

UltraLite for MobileVB API 152
LookupBegin method (ULTable class)

UltraLite for MobileVB API 153
LookupForward method (ULTable class)

UltraLite for MobileVB API 153

M
Mask property (ULPublicationSchema class)

UltraLite for MobileVB 121
Mask property (ULResultSet class)

UltraLite for MobileVB 122
Mask property (ULResultSetSchema class)

UltraLite for MobileVB API 128
MobileVB seeAppForge MobileVB
modes

UltraLite for MobileVB 25
MoveAfterLast method (ULResultSet class)

UltraLite for MobileVB API 124
MoveAfterLast method (ULTable class)

UltraLite for MobileVB API 153
MoveBeforeFirst method (ULResultSet class)

UltraLite for MobileVB API 124
MoveBeforeFirst method (ULTable class)

UltraLite for MobileVB API 154
MoveFirst method

UltraLite for MobileVB 21
UltraLite for MobileVB development 17

MoveFirst method (ULResultSet class)
UltraLite for MobileVB API 124

MoveFirst method (ULTable class)
UltraLite for MobileVB API 154

MoveLast method (ULResultSet class)
UltraLite for MobileVB API 124

MoveLast method (ULTable class)
UltraLite for MobileVB API 154

162

Index

MoveNext method
UltraLite for MobileVB 21
UltraLite for MobileVB development 17

MoveNext method (ULResultSet class)
UltraLite for MobileVB API 125

MoveNext method (ULTable class)
UltraLite for MobileVB API 154

MovePrevious method (ULResultSet class)
UltraLite for MobileVB API 125

MovePrevious method (ULTable class)
UltraLite for MobileVB API 154

MoveRelative method (ULResultSet class)
UltraLite for MobileVB API 125

MoveRelative method (ULTable class)
UltraLite for MobileVB API 155

N
Name property (ULColumnSchema class)

UltraLite for MobileVB API 90
Name property (ULIndexSchema class)

UltraLite for MobileVB API 114
Name property (ULPublicationSchema class)

UltraLite for MobileVB 121
Name property (ULResultSet class)

UltraLite for MobileVB 122
Name property (ULResultSetSchema class)

UltraLite for MobileVB API 128
Name property (ULTableSchema class)

UltraLite for MobileVB API 157
NearestCentury property (ULDatabaseSchema class)

UltraLite for MobileVB API 111
network protocol options

UltraLite for MobileVB 141
NeverSynchronized property (ULTableSchema

class)
UltraLite for MobileVB API 157

NewPassword property (ULSyncParms class)
UltraLite for MobileVB 141

newsgroups
technical support xii

Nullable property (ULColumnSchema class)
UltraLite for MobileVB API 90

O
obfuscation

UltraLite for MobileVB 14
object hierarchy

UltraLite for MobileVB 3
OnReceive event (ULConnection class)

UltraLite for MobileVB API 95
OnSchemaUpgradeProgress event (ULConnection

class)
UltraLite for MobileVB API 95

OnSchemaUpgradeStateChange event
(ULConnection class)

UltraLite for MobileVB API 96
OnSend event (ULConnection class)

UltraLite for MobileVB API 96
OnStateChange event (ULConnection class)

UltraLite for MobileVB API 97
OnTableChange event (ULConnection class)

UltraLite for MobileVB API 97
Open method

ULTable object in MobileVB 21
ULTable object in UltraLite for MobileVB 17

Open method (ULTable class)
UltraLite for MobileVB API 155

OpenByIndex method
ULTable object in UltraLite for MobileVB 17

OpenConnection method (ULDatabaseManager
class)

UltraLite for MobileVB API 108
OpenConnectionWithparms method

(ULDatabaseManager class)
UltraLite for MobileVB API 109

OpenParms property (ULConnection class)
UltraLite for MobileVB API 91

OptimalIndex property (ULColumnSchema class)
UltraLite for MobileVB API 90

P
Palm Computing Platform

target platform in UltraLite for MobileVB 2
Palm OS

maintaining state with UltraLite for MobileVB 38
UltraLite for MobileVB example 39

PartialDownloadRetained property (ULSyncResult
class)

UltraLite for MobileVB 145
Password property (ULSyncParms class)

UltraLite for MobileVB 141
passwords

authentication in UltraLite for MobileVB 31
persistent name

163

Index

UltraLite for MobileVB example 39
persistent name:

maintaining 38
using 38
using with UltraLite for MobileVB on Palm OS38

PingOnly property (ULSyncParms class)
UltraLite for MobileVB 141

platforms
supported in UltraLite for MobileVB 2

Precision property (ULColumnSchema class)
UltraLite for MobileVB API 90

Precision property (ULDatabaseSchema class)
UltraLite for MobileVB API 111

prepared statements
UltraLite for MobileVB 15

PrepareStatement method (ULConnection class)
UltraLite for MobileVB API 97

preparing to work with UltraLite for MobileVB
about 6

PrimaryKey property (ULIndexSchema class)
UltraLite for MobileVB API 114

PrimaryKey property (ULTableSchema class)
UltraLite for MobileVB API 157

projects
creating in AppForge Crossfire 63
creating in UltraLite for MobileVB 43

PublicationCount property (ULDatabaseSchema
class)

UltraLite for MobileVB API 111
PublicationMask property (ULSyncParms class)

UltraLite for MobileVB 141
publications

accessing schema information in UltraLite for
MobileVB 29

R
RealValue property (ULColumn class)

UltraLite for MobileVB API 84
ReferencedIndexName property (ULIndexSchema

class)
UltraLite for MobileVB API 114

ReferencedTableName property (ULIndexSchema
class)

UltraLite for MobileVB API 114
ResetLastDownloadTime method (ULConnection

class)
UltraLite for MobileVB API 98

restartable downloads
UltraLite for MobileVB API 98

ResumePartialDownload property (ULSyncParms
class)

UltraLite for MobileVB 141
RevokeConnectFrom method (ULConnection class)

UltraLite for MobileVB API 98
revokeConnectionFrom method

UltraLite for MobileVB 31
Rollback method

UltraLite for MobileVB 28
Rollback method (ULConnection class)

UltraLite for MobileVB API 98
RollbackPartialDownload method (ULConnection

class)
UltraLite for MobileVB API 98

rollbacks
UltraLite for MobileVB 28

RowCount property (ULTable class)
UltraLite for MobileVB API 148

rows
accessing values in UltraLite for MobileVB 22

S
samples

CodeXchange 79
Scale property (ULColumnSchema class)

UltraLite for MobileVB API 90
schema changes

UltraLite for MobileVB databases 9
schema files

creating in UltraLite for MobileVB 9
UltraLite for MobileVB 9

Schema property (ULColumn class)
UltraLite for MobileVB API 84

Schema property (ULConnection class)
UltraLite for MobileVB API 91

Schema property (ULTable class)
UltraLite for MobileVB API 148

schema upgrades
UltraLite for MobileVB databases 9

schemas
UltraLite for MobileVB 9, 29

scrolling
UltraLite for MobileVB 21

SELECT statement
UltraLite MobileVB development 17

164

Index

SendColumnNames property (ULSyncParms class)
UltraLite for MobileVB 141

SendDownloadAck property (ULSyncParms class)
UltraLite for MobileVB 141

SetBooleanParameter method
(ULPreparedStatement class)

UltraLite for MobileVB API 118
SetByteChunk method (ULColumn class)

UltraLite for MobileVB API 88
SetByteChunkParameter method

(ULPreparedStatement class)
UltraLite for MobileVB API 118

SetByteParameter method (ULPreparedStatement
class)

UltraLite for MobileVB API 118
SetDatetimeParameter method

(ULPreparedStatement class)
UltraLite for MobileVB API 119

SetDoubleParameter method (ULPreparedStatement
class)

UltraLite for MobileVB API 119
SetIntegerParameter method (ULPreparedStatement

class)
UltraLite for MobileVB API 119

SetLongParameter method (ULPreparedStatement
class)

UltraLite for MobileVB API 119
SetNull method (ULColumn class)

UltraLite for MobileVB API 88
SetNullParameter method (ULPreparedStatement

class)
UltraLite for MobileVB API 120

SetRealParameter method (ULPreparedStatement
class)

UltraLite for MobileVB API 120
SetStringParameter method (ULPreparedStatement

class)
UltraLite for MobileVB API 120

SetToDefault method (ULColumn class)
UltraLite for MobileVB API 88

Signature property (ULDatabaseSchema class)
UltraLite for MobileVB API 111

Size property (ULColumnSchema class)
UltraLite for MobileVB API 90

SQL Anywhere Studio
documentation vi

SQLErrorOffset property (ULConnection class)

UltraLite for MobileVB API 91
SQLType property (ULColumnSchema class)

UltraLite for MobileVB API 90
StartSynchronizationDelete method (ULConnection

class)
UltraLite for MobileVB API 99

StopSynchronizationDelete method (ULConnection
class)

UltraLite for MobileVB API 99
Stream property (ULSyncParms class)

UltraLite for MobileVB 141
StreamErrorContext property (ULSyncResult class)

UltraLite for MobileVB 145
StreamErrorID property (ULSyncResult class)

UltraLite for MobileVB 145
StreamErrorSystem property (ULSyncResult class)

UltraLite for MobileVB 145
StreamParms property (ULSyncParms class)

UltraLite for MobileVB 141
StringToUUID method (ULConnection class)

UltraLite for MobileVB API 99
StringValue property (ULColumn class)

UltraLite for MobileVB API 84
support

newsgroups xii
supported platforms

UltraLite for MobileVB 2
synchronization

HTTP in UltraLite for MobileVB 32
monitoring in UltraLite for MobileVB 32
TCP/IP in UltraLite for MobileVB 32
template in UltraLite for MobileVB 32
UltraLite for MobileVB development 32
writing code in UltraLite for MobileVB 33

Synchronize method (ULConnection class)
UltraLite for MobileVB API 100

synchronizing UltraLite applications
MobileVB development 32

SyncParms property (ULConnection class)
UltraLite for MobileVB API 91

SyncResult property (ULConnection class)
UltraLite for MobileVB API 91

T
TableCount property (ULDatabaseSchema class)

UltraLite for MobileVB API 111
tables

165

Index

accessing schema information in UltraLite for
MobileVB 29

target platforms
UltraLite for MobileVB 2

technical support
newsgroups xii

TimeFormat property (ULDatabaseSchema class)
UltraLite for MobileVB API 111

transaction processing
UltraLite for MobileVB 28

transactions
UltraLite for MobileVB 28

Truncate method (ULTable class)
UltraLite for MobileVB API 155

tutorials
UltraLite for AppForge Crossfire 61
UltraLite for MobileVB 41

U
ULAuthStatusCode constants

UltraLite for MobileVB API 83
ULColumn class

properties in UltraLite for MobileVB API 84
UltraLite for MobileVB API 84

ULColumnSchema class
properties in UltraLite for MobileVB API 90
UltraLite for MobileVB API 90
UltraLite for MobileVB development 29

ULConnection class
properties in UltraLite for MobileVB API 91
UltraLite for MobileVB API 91

ULConnectionParms class
properties in UltraLite for MobileVB API 102
UltraLite for MobileVB API 102

ULDatabaseManager class
properties in UltraLite for MobileVB API 105
UltraLite for MobileVB API 105

ULDatabaseSchema class
properties in UltraLite for MobileVB API 111
UltraLite for MobileVB API 111
UltraLite for MobileVB development 29

ULIndexSchema class
properties in UltraLite for MobileVB API 114
UltraLite for MobileVB API 114
UltraLite for MobileVB development 29

ULPreparedStatement
UltraLite for MobileVB 15

ULPreparedStatement class
properties in UltraLite for MobileVB 116
UltraLite for MobileVB API 116

ULPublicationSchema class
properties in UltraLite for MobileVB 121
UltraLite for MobileVB API 121
UltraLite for MobileVB development 29

ULResultSet class
properties in UltraLite for MobileVB 122
UltraLite for MobileVB API 122

ULResultSetSchema class
properties in UltraLite for MobileVB 128
UltraLite for MobileVB API 128

ULSchemaUpgradeState enumeration
UltraLite for MobileVB API 129

ULSQLCode constants
UltraLite for MobileVB API 130

ULSQLType constants
UltraLite for MobileVB API 134

ULStreamErrorCode enumeration
UltraLite for MobileVB API 135

ULStreamErrorCode property (ULSyncResult class)
UltraLite for MobileVB 145

ULStreamErrorContext enumeration
UltraLite for MobileVB API 138

ULStreamErrorID constants
UltraLite for MobileVB API 139

ULStreamType enumeration
UltraLite for MobileVB API 140

ULSyncParms class
properties in UltraLite for MobileVB 141
UltraLite for MobileVB API 141

ULSyncResult class
properties in UltraLite for MobileVB 145
UltraLite for MobileVB API 145

ULSyncState enumeration
UltraLite for MobileVB API 146

ULTable class
properties in UltraLite for MobileVB 148
UltraLite for MobileVB API 148
UltraLite for MobileVB development 17

ULTableSchema class
properties in UltraLite for MobileVB 157
UltraLite for MobileVB API 157
UltraLite for MobileVB development 29

UltraLite
deploying applications 35

166

Index

UltraLite databases
connecting in UltraLite for MobileVB 11

UltraLite for MobileVB
about 1
accessing schema information 29
API reference 81
architecture 3
connecting to UltraLite databases 11
data manipulation using dynamic SQL 15
data manipulation with Table API 21
deploying applications 35, 36
development 5
encryption 14
Error handling 30
features 2
FindFirst method (ULTable class) 149
GetNewUUID method (ULConnection class) 94
object hierarchy 3
preparing to work with 6
project architecture 43, 63
supported platforms 2
synchronizing UltraLite applications 32
tutorial 41
tutorial (Crossfire) 61
ULStreamErrorCode enumeration 135
User authentication 31

UltraLite for MobileVB API
about 81
AddAuthenticationParm method (ULSyncParms

class) 143
API reference 81
AppendByteChunk method (ULColumn class) 85
AppendByteChunkParameter method

(ULPreparedStatement class) 116
AppendStringChunk method (ULColumn class)

86
AppendStringChunkParameter method

(ULColumn class) 117
ApplyFile method (ULDatabaseSchema class)112
ApplyFileWithParms method

(ULDatabaseSchema class) 112
CancelSynchronize method (ULConnection

class) 92
ChangeEncryptionKey method (ULConnection

class) 92
ClearAuthenticationParms method

(ULSyncParms class) 144

Close method (ULConnection class) 93
Close method (ULPreparedStatement class) 117
Close method (ULResultSet class) 122
Close method (ULTable class) 148
Column method (ULTable class) 149
Commit method (ULConnection class) 93
ContainsTable method (ULPublicationSchema

class) 121
CountUploadRows method (ULConnection class)

93
CreateDatabase method (ULDatabaseManager

class) 105
CreateDatabaseWithParms method

(ULDatabaseManager class) 107
Delete method (ULTable class) 149
DeleteAllRows method (ULTable class) 149
DropDatabase method (ULDatabaseManager

class) 107
DropDatabaseWithParms method

(ULDatabaseManager class) 108
ExecuteQuery method (ULPreparedStatement

class) 117
ExecuteStatement method (ULPreparedStatement

class) 117
FindBegin method (ULTable class) 149
FindLast method (ULTable class) 150
FindNext method (ULTable class) 151
FindPrevious method (ULTable class) 151
GetByteChunk method (ULColumn class) 86
GetByteChunk method (ULResultSet class) 122
GetColumnName method (ULIndexSchema

class) 115
GetColumnName method (ULTableSchema class)

157
GetDatetime method (ULResultSet class) 126
GetDouble method (ULResultSet class) 126
GetIndex method (ULTableSchema class) 157
GetIndexName method (ULTableSchema class)

158
GetInteger method (ULResultSet class) 126
GetLong method (ULResultSet class) 126
GetPublicationName method

(ULDatabaseSchema class) 112
GetPublicationSchema method

(ULDatabaseSchema class) 113
GetReal method (ULResultSet class) 126
GetString method (ULResultSet class) 127

167

Index

GetStringChunk method (ULColumn class) 87
GetStringChunk method (ULResultSet class) 123
GetTable function (ULConnection class) 94
GetTableName method (ULDatabaseSchema

class) 113
GrantConnectTo method (ULConnection class)94
InPublication method (ULTableSchema class) 158
Insert method (ULTable class) 152
InsertBegin method (ULTable class) 152
IsColumnDescending method (ULIndexSchema

115
IsNull method (ULResultSet class) 125
LookupBackward method (ULTable class) 152
LookupBegin method (ULTable class) 153
LookupForward method (ULTable class) 153
MoveAfterLast method (ULResultSet class) 124
MoveAfterLast method (ULTable class) 153
MoveBeforeFirst method (ULResultSet class) 124
MoveBeforeFirst method (ULTable class) 154
MoveFirst method (ULResultSet class) 124
MoveFirst method (ULTable class) 154
MoveLast method (ULResultSet class) 124
MoveLast method (ULTable class) 154
MoveNext method (ULResultSet class) 125
MoveNext method (ULTable class) 154
MovePrevious method (ULResultSet class) 125
MovePrevious method (ULTable class) 154
MoveRelative method (ULResultSet class) 125
MoveRelative method (ULTable class) 155
OnReceive event (ULConnection class) 95
OnSchemaUpgradeProgress event

(ULConnection class) 95
OnSchemaUpgradeStateChange event

(ULConnection class) 96
OnSend event (ULConnection class) 96
OnStateChange event (ULConnection class) 97
OnTableChange event (ULConnection class) 97
Open method (ULTable class) 155
OpenConnection method (ULDatabaseManager

class) 108
OpenConnectionWithparms method

(ULDatabaseManager class) 109
PrepareStatement method (ULConnection class)

97
ResetLastDownloadTime method (ULConnection

class) 98
Rollback method (ULConnection class) 98

RollbackPartialDownload method
(ULConnection class) 98

SetBooleanParameter method
(ULPreparedStatement class) 118

SetByteChunk method (ULColumn class) 88
SetByteChunkParameter method

(ULPreparedStatement class) 118
SetByteParameter method (ULPreparedStatement

class) 118
SetDatetimeParameter method

(ULPreparedStatement class) 119
SetDoubleParameter method

(ULPreparedStatement class) 119
SetIntegerParameter method

(ULPreparedStatement class) 119
SetLongParameter method

(ULPreparedStatement class) 119
SetNull method (ULColumn class) 88
SetNullParameter method (ULPreparedStatement

class) 120
SetRealParameter method (ULPreparedStatement

class) 120
SetToDefault method (ULColumn class) 88
StartSynchronizationDelete method

(ULConnection class) 99
StopSynchronizationDelete method

(ULConnection class) 99
StringToUUID method (ULConnection class) 99
Synchronize method (ULConnection class) 100
Truncate method (ULTable class) 155
ULAuthStatusCode constants 83
ULColumnSchema class 90
ULConnection class 91
ULConnectionParms class 102
ULDatabaseManager class 105
ULDatabaseSchema class 111
ULIndexSchema class 114
ULPreparedStatement class 116
ULPublicationSchema class 121
ULResultSet class 122
ULResultSetSchema class 128
ULSchemaUpgradeState enumeration 129
ULSQLCode constants 130
ULSQLType constants 134
ULStreamErrorContext enumeration 138
ULStreamErrorID constants 139
ULStreamType enumeration 140

168

Index

ULSyncParms class 141
ULSyncResult class 145
ULSyncState enumeration 146
ULTable class 148
ULTableSchema class 157
Update method (ULTable class) 156
UpdateBegin method (ULTable class) 156
UUIDToString method (ULConnection class) 100

UltraLite for MobileVB API API
ULColumn class 84

UltraLite for MobileVB API reference
alphabetic listing 81

UltraLite for MobileVB APISetStringParameter
method (ULPreparedStatement class)

SetStringParameter method
(ULPreparedStatement class) 120

UniqueIndex property (ULIndexSchema class)
UltraLite for MobileVB API 114

UniqueKey property (ULIndexSchema class)
UltraLite for MobileVB API 114

Update method (ULTable class)
UltraLite for MobileVB API 156

update mode
UltraLite for MobileVB 25

UpdateBegin method (ULTable class)
UltraLite for MobileVB API 156

updating
rows UltraLite for MobileVB 24

UploadOK property (ULSyncResult class)
UltraLite for MobileVB 145

UploadOnly property (ULSyncParms class)
UltraLite for MobileVB 141

user authentication
UltraLite for MobileVB 31

UserName property (ULSyncParms class)
UltraLite for MobileVB 141

users
authentication in UltraLite for MobileVB 31

usm files
creating in UltraLite for MobileVB 9
UltraLite for MobileVB 9

UUIDs
getting as string in UltraLite for MobileVB API94
StringToUUID method 99
UUIDToString method 100

UUIDToString method (ULConnection class)
UltraLite for MobileVB API 100

UUIDValue property (ULColumn class)
UltraLite for MobileVB API 84

V
values

accessing in UltraLite for MobileVB 22
Version property (ULDatabaseManager class)

UltraLite for MobileVB API 105
Version property (ULSyncParms class)

UltraLite for MobileVB 141
Visual Basic

supported versions in UltraLite for MobileVB 2
Visual Basic programming language

UltraLite for MobileVB 81

W
Windows CE

target platform in UltraLite for MobileVB 2

169

	UltraLite for MobileVB User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Introduction to UltraLite for MobileVB
	UltraLite for MobileVB features
	System requirements and supported platforms

	UltraLite for MobileVB architecture

	Understanding UltraLite for MobileVB Development
	Preparing to use UltraLite for MobileVB
	Adding UltraLite to the MobileVB design environment
	Adding UltraLite to the Crossfire design environment

	Working with the database schema
	Creating UltraLite database schema files
	Changing the schema of a database

	Connecting to an UltraLite database
	Encryption and obfuscation
	Working with data using dynamic SQL
	Data manipulation: INSERT, UPDATE and DELETE
	Data retrieval: SELECT
	Navigation with dynamic SQL
	 ULResultSet schema property

	Working with data using the table API
	Navigation with the Table API
	Accessing the values of the current row
	Searching rows with find and lookup
	Inserting, updating, and deleting rows
	Working with BLOB data
	Transaction processing in UltraLite

	Accessing schema information
	Handling errors
	Authenticating users
	Synchronizing data
	Adding the synchronization template
	Writing code to use the synchronization form

	Deploying UltraLite applications
	Deploying UltraLite for MobileVB applications to Windows CE
	Deploying UltraLite for MobileVB applications to Palm OS

	Maintaining state in UltraLite Palm applications
	Understanding how state is maintained
	Example: Using the persistent name to maintain state information

	Tutorial: A Sample UltraLite for MobileVB Application
	Introduction
	Lesson 1: Create a project architecture
	Create a MobileVB project

	Lesson 2: Create a form
	Lesson 3: Write the sample code
	Write code to connect to your database
	Write code for navigation and data manipulation
	Write code to synchronize
	Synchronize your application

	Lesson 4: Deploy to a device
	Summary

	Tutorial: A Sample Application for AppForge Crossfire
	Introduction
	Lesson 1: Create a project architecture
	Create a Crossfire project

	Lesson 2: Create the application interface
	Lesson 3: Write the sample code
	Write code to connect to your database
	Write code for navigation and data manipulation
	Write code to synchronize
	Synchronize your application

	Lesson 4: Deploy to a device
	Summary

	UltraLite for MobileVB API Reference
	ULAuthStatusCode enumeration
	ULColumn class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	GetByteChunk method
	GetStringChunk method
	SetByteChunk method
	SetNull method
	SetToDefault method

	ULColumnSchema class
	Properties

	ULConnection class
	Properties
	CancelSynchronize method
	ChangeEncryptionKey method
	Close method
	Commit method
	CountUploadRows method
	GetNewUUID method
	GetTable method
	GrantConnectTo method
	LastDownloadTime method
	OnReceive event
	OnSchemaUpgradeProgress event
	OnSchemaUpgradeStateChange event
	OnSend event
	OnStateChange event
	OnTableChange event
	PrepareStatement method
	ResetLastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	RollbackPartialDownload method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	StringToUUID method
	Synchronize method
	UUIDToString method

	ULConnectionParms class
	Properties

	ULDatabaseManager class
	Properties
	CreateDatabase method
	CreateDatabaseWithParms method
	DropDatabase method
	DropDatabaseWithParms method
	OpenConnection method
	OpenConnectionWithParms method

	ULDatabaseSchema class
	Properties
	ApplyFile method
	ApplyFileWithParms method
	GetPublicationName method
	GetPublicationSchema method
	GetTableName method

	ULIndexSchema class
	Properties
	GetColumnName method
	IsColumnDescending method

	ULPreparedStatement class
	Properties
	AppendByteChunkParameter method
	AppendStringChunkParameter method
	Close method
	ExecuteQuery method
	ExecuteStatement method
	SetBooleanParameter method
	SetByteChunkParameter method
	SetByteParameter method
	SetDatetimeParameter method
	SetDoubleParameter method
	SetIntegerParameter method
	SetLongParameter method
	SetNullParameter method
	SetRealParameter method
	SetStringParameter method

	ULPublicationSchema class
	Properties
	ContainsTable method

	ULResultSet class
	Properties
	Close method
	GetByteChunk method
	GetStringChunk method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	IsNull method
	GetDatetime method
	GetDouble method
	GetInteger method
	GetLong method
	GetReal method
	GetString method

	ULResultSetSchema class
	Properties

	ULSchemaUpgradeState enumeration
	ULSQLCode enumeration
	ULSQLType enumeration
	ULStreamErrorCode enumeration
	ULStreamErrorContext enumeration
	ULStreamErrorID enumeration
	ULStreamType enumeration
	ULSyncParms class
	Properties
	AddAuthenticationParm method
	ClearAuthenticationParms method

	ULSyncResult class
	Properties

	ULSyncState enumeration
	ULTable class
	Properties
	Close method
	Column method
	Delete method
	DeleteAllRows method
	FindBegin method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Insert method
	InsertBegin method
	LookupBackward method
	LookupBegin method
	LookupForward method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	Open method
	Truncate method
	Update method
	UpdateBegin method

	ULTableSchema class
	Properties
	GetColumnName method
	GetIndex method
	GetIndexName method
	InPublication method

	Index

