
QAnywhere™ User’s Guide

Part number: DC20051-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001
Certicom Corp. Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All
rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028;
4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual vii
SQL Anywhere Studio documentation viii
Documentation conventions xi
Finding out more and providing feedback xiii

1 Introduction to QAnywhere 1
Application-to-application messaging 2
What QAnywhere does . 3
QAnywhere architecture . 5
Quick start . 10

2 Tutorial: A Sample QAnywhere Application 11
About the tutorial . 12
Lesson 1: Start MobiLink with messaging 13
Lesson 2: Create a client message store 16
Lesson 3: Run the TestMessage application 18
Lesson 4: Send a message 20
Lesson 5: Explore the TestMessage client source code . . . 22
Lesson 6: Start a JMS connector 27
Tutorial cleanup . 29

3 Setting Up QAnywhere Messaging 31
Setting up server-side components 32
Setting up client-side components 35
Using push notifications . 40
Using JMS Connectors . 42
Using QAnywhere messaging and MobiLink data synchro-

nization together . 51
Setting up a failover mechanism 53

4 Writing QAnywhere Client Applications 55
Introduction . 56
Overview of writing a client application 58
Understanding QAnywhere message addresses 59
Initializing the QAnywhere client API 60
Setting QAManager properties 64
Sending QAnywhere messages 67
Receiving messages synchronously 69

iii

Receiving messages asynchronously 70
Reading very large messages 72
Handling push notifications and network status changes . . . 73
Implementing transactional messaging 75
Shutting down QAnywhere 77
Deploying QAnywhere applications 78

5 QAnywhere Agent 79
QAnywhere Agent syntax . 80

6 Writing Secure Messaging Applications 95
Creating a secure client message store 96
Encrypting the communication stream 98
Using password authentication with MobiLink 99

7 QAnywhere Transmission Rules 101
Transmission rules . 102
Schedule syntax . 105
Transmission rule variables 110
Delete rules . 118

8 QAnywhere C++ API Reference 121
Class AcknowledgementMode 122
Class MessageProperties . 123
Class MessageType . 126
Class QABinaryMessage . 127
Class QAError . 135
Class QAManager . 138
Class QAManagerBase . 141
Class QAManagerFactory . 153
Class QAMessage . 155
Class QAMessageListener 167
Class QATextMessage . 168
Class QATransactionalManager 171

9 iAnywhere.QAnywhere.Client namespace 173
AcknowledgementMode enumeration 174
MessageProperties class . 175
MessageType enumeration 180
QABinaryMessage class . 181
QAException class . 192
QAManager class . 195
QAManagerBase class . 201
QAManagerBase.MessageListener delegate 219

iv

QAManagerFactory class . 220
QAMessage class . 224
QAPropertyType enumeration 237
QATextMessage class . 238
QATransactionalManager class 242

Index 249

v

vi

About This Manual

Subject This manual describes QAnywhere, which defines a messaging platform for
mobile and wireless clients as well as traditional desktop and laptop clients.

Audience This manual is for users of Adaptive Server Anywhere and other relational
database systems who want to add messaging to their mobile applications, or
who want to build new mobile application-to-application messaging
solutions.

vii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere SNMP Extension Agent User’s Guide
This book describes how to configure the Adaptive Server Anywhere
SNMP Extension Agent for use with SNMP management applications to
manage Adaptive Server Anywhere databases.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

viii

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Tutorials This book provides several tutorials to help you
learn MobiLink technology.

♦ MobiLink Server-Initiated Synchronization User’s Guide This book
describes MobiLink server-initiated synchronization, a feature of
MobiLink that allows you to initiate synchronization from the
consolidated database.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

ix

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store, at
http://eshop.sybase.com/eshop/documentation.

x

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xi

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xii

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

xiii

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xiv

CHAPTER 1

Introduction to QAnywhere

About this chapter QAnywhere is a comprehensive application-to-application messaging
system for mobile users. It provides the infrastructure for you to write
applications that exchange messages with remote applications located on a
variety of devices running on Windows or Windows CE operating systems.

Contents Topic: page

Application-to-application messaging 2

What QAnywhere does 3

QAnywhere architecture 5

Quick start 10

1

Application-to-application messaging
Application-to-application messaging, including mobile device to mobile
device and mobile device to and from the enterprise, permits communication
between custom programs running on mobile or wireless devices and a
centrally located server application. Messaging is a useful
application-to-application communication mechanism in a variety of
situations:

♦ It provides communication in occasionally-connected environments.

The store-and-forward nature of messaging means that messages can be
constructed even when the destination application is not reachable over
the network; the message is delivered when the network becomes
available.

QAnywhere messages are exchanged via a central server, so that the
sender and recipient of a message never have to be connected to the
network at the same time.

♦ It provides network-independent communication.

QAnywhere messages can be transported over TCP/IP, HTTP, or HTTPS
protocols. They can also be delivered from a Windows CE handheld
device by ActiveSync. The message itself is independent of the network
protocol, and can be received by an application that communicates over a
different network.

QAnywhere handles the challenges of wireless networks, such as slow
speed, spotty geographic coverage, and dropped network connections. It can
protect proprietary or sensitive information by encrypting all messages sent
over public networks. You can customize the delivery of messages using
transmission rules so that, for example, messages are transmitted at the most
convenient times.

QAnywhere compresses and, optionally, encrypts data sent between mobile
applications and enterprise servers. Furthermore, it implements a
store-and-forward messaging paradigm that guarantees message delivery.

QAnywhere is designed for messaging solutions on a variety of handheld
devices. This system provides both a QAnywhere C++ API and a
QAnywhere .NET API to provide solutions to developers with different skill
sets.

QAnywhere permits seamless communication with other messaging systems
that have a JMS interface. This allows integration with J2EE applications.

2

Chapter 1. Introduction to QAnywhere

What QAnywhere does
QAnywhere provides the following application-to-application features and
components.

♦ Programming API The object-oriented QAnywhere API provides the
infrastructure to build messaging applications for Windows desktop and
Windows CE devices.

♦ Store-and-forward QAnywhere applications store messages in queues
until a connection between the client and the server is available for data
transmission.

♦ Complements data synchronization QAnywhere applications use
relational databases as a temporary message store. The relational
database ensures that the message store has security, transaction-based
computing, and the other benefits of relational databases.

The use of Adaptive Server Anywhere relational databases as message
stores makes it easy to use QAnywhere together with a data
synchronization solution. Both use MobiLink synchronization as the
underlying mechanism for exchanging information between client and
server.

♦ Integration with external messaging systems In addition to
exchanging messages among QAnywhere applications, you can integrate
QAnywhere clients into external messaging systems that support a JMS
interface.

♦ Encryption Messages can be sent encrypted using a 128-bit encryption
key. In addition, messages stores can be encrypted using the AES
algorithm.

♦ Compression Messages can be stored compressed using the L277
(deflation variant) algorithm. Doing so reduces inflation of compressed
data that is sometimes seen with the more common LZW algorithm.

♦ Authentication Users can be authenticated using an existing
authentication service provided by another application in your
organization.

♦ Multiple networks QAnywhere works over any wired or wireless
network that supports TCP/IP or HTTP.

♦ Failover You can run multiple MobiLink synchronization servers so
that there are alternate servers in case one fails.

3

♦ Multiple queues Support for multiple arbitrarily-named queues on
client devices permits multiple client applications to coexist on a single
device. Applications can send and receive on any number of queues.
Messages can be sent between applications that are coexisting on the
same device and between applications on different devices.

♦ Server-initiated send and receive QAnywhere can push messages to
client devices, allowing client applications to implement message-driven
logic.

♦ Rules for managing the message store You can create rules that
specify when message transmission should occur, as well as customize
the persistence of messages in the message stores.

♦ Resumable downloads Large messages or groups of messages are sent
to QAnywhere clients in piecemeal fashion to minimize the
retransmission of data during network failures.

♦ Guaranteed delivery QAnywhere guarantees the delivery of messages
once and only once.

4

Chapter 1. Introduction to QAnywhere

QAnywhere architecture
This section explains the architecture of QAnywhere messaging
applications. The discussion begins with a simple messaging scenario and
then progresses to more advanced scenarios.

Client applications send and receive messages using the QAnywhere
programming API. Messages are queued in the client message store.
Message transmission is the exchange of messages between client message
stores through a central QAnywhere server message store.

Following are typical messaging scenarios that are supported by
QAnywhere:

♦ Simple messaging For exchanging messages among QAnywhere
clients. Client applications control when to transmit messages between
the client and server message stores.

☞ See“Simple messaging scenario” on page 5.

♦ Messaging with push notifications For exchanging messages among
QAnywhere clients. In this scenario, the QAnywhere server can initiate
message transmission between client and server message stores.

☞ See“Scenario for messaging with push notifications” on page 6.

♦ Messaging with external messaging systems For exchanging
messages among QAnywhere clients or an external system that supplies a
JMS provider, such as BEA WebLogic or Sybase EAServer.

☞ See“Scenario for messaging with external messaging systems” on
page 8.

Push notifications and external messaging systems can be used together,
providing the most general solution.

Simple messaging scenario

A simple QAnywhere messaging setup is illustrated in the following
diagram. For simplicity, only a single client is shown.

Client

message
store

This setup includes the following components:

♦ Server message store At the server, the messages are stored in a
relational database. The database must be set up as a MobiLink
consolidated database, and may be any supported consolidated database

5

(Adaptive Server Anywhere, Adaptive Server Enterprise, Microsoft SQL
Server, DB2, or Oracle).

♦ Client message store The messages at each client are also stored in a
relational database. The database used is Adaptive Server Anywhere.

♦ MobiLink synchronization server with messaging MobiLink
synchronization provides the transport for transmitting and tracking
messages between QAnywhere clients and the server. MobiLink provides
security, authentication, encryption, and flexibility. It also allows
messaging to be combined with data synchronization.

The MobiLink synchronization server must be started with messaging
enabled in order to manage QAnywhere message transmission. You do
this by supplying the MobiLink synchronization server -m command line
option.

☞ For more information, see“Starting the MobiLink synchronization
server for QAnywhere messaging” on page 33.

♦ QAnywhere Agent The QAnywhere Agent manages transmitting
messages on the client side.

☞ For more information, see“Running the QAnywhere Agent” on
page 37.

♦ QAnywhere client application An application written using the
QAnywhere C++ API or the QAnywhere .NET API makes function calls
to send and receive messages.

☞ For information about writing applications using the QAnywhere
API, see“Writing QAnywhere Client Applications” on page 55.

Messages are sent and received by the QAnywhere clients. Messages at the
server will not be picked up until the client initiates a message transmission.
QAnywhere clients usepoliciesto determine when to carry out a message
transmission. Policies include on-demand, automatic, scheduled, and
custom. The on-demand policy permits the user to control message
transmission. The automatic policy initiates a message transmission each
time a message at the client is ready for delivery.

☞ For more information, see“Determining when message transmission
should occur on the client” on page 37.

Scenario for messaging with push notifications

A push notification is a special message delivered from the server to a
QAnywhere client. The push notification occurs when a message arrives at

6

Chapter 1. Introduction to QAnywhere

the server message store, and it prompts the client to initiate a message
transmission that picks up messages that are ready for the client at the server.

Push notifications introduce two extra components to the QAnywhere
architecture. At the server, a QAnywhere Notifier sends push notifications.
At the client, a QAnywhere Listener receives these push notifications and
passes them on to the QAnywhere Agent.

If you do not use push notifications, messages are still transmitted from the
server message store to the client message store, but the transmission must
be initiated at the client, such as by using a scheduled transmission.

The architecture for messaging with push notifications is an extension of that
described in“Simple messaging scenario” on page 5. It looks like this:

MobiLink
synchronization
server with

messaging

Client
message

store
QAnywhere

Agent

QAnywhere
client

application

Server

message
store

Messaging

Server

Client

Notifier

Listener

The components that are added to the“Simple messaging scenario” on
page 5in order to enable push notification are as follows:

♦ QAnywhere Notifier The Notifier is a component of the MobiLink
synchronization server that is used to deliver push notifications.

The QAnywhere Notifier is a specially configured instance of the Notifier
that sends push notifications when a message is ready for delivery.

7

♦ QAnywhere Listener The QAnywhere Listener is a separate process
that runs at the client. It receives push notifications and passes them on to
the QAnywhere Agent.

See also ☞ For more information, see:

♦ “Using push notifications” on page 40
♦ “Receiving messages asynchronously” on page 70
♦ “Introducing Server-Initiated Synchronization”[MobiLink Server-Initiated

Synchronization User’s Guide,page 1]

Scenario for messaging with external messaging systems

In addition to exchanging messages among QAnywhere applications, you
can exchange messages with systems that have a JMS interface using a
specially configured client known as a connector. JMS is the Java Message
Service API for adding messaging capabilities to Java applications.

The external messaging system is set up to act like a special client. It has its
own address and configuration.

The architecture for messaging with external messaging systems is an
extension of that described in“Simple messaging scenario” on page 5. It
looks like this:

8

Chapter 1. Introduction to QAnywhere

MobiLink
synchronization
server with

messaging

Client
message

store
QAnywhere

Agent

QAnywhere
client

application

Server

message
store

Messaging

Server

Client

Connector

External JMS

system

JMS
application

The component that is added to“Simple messaging scenario” on page 5in
order to enable messaging with an external messaging system is as follows:

♦ QAnywhere JMS Connector The JMS Connector provides an
interface between QAnywhere and the external messaging system.

The JMS Connector is a special QAnywhere client that moves messages
between QAnywhere and the external JMS system.

See also For more information, see:

♦ “Using JMS Connectors” on page 42
♦ “Lesson 6: Start a JMS connector” on page 27

9

Quick start
Following are the steps to set up and run a QAnywhere messaging system.

❖ To set up and run QAnywhere messaging

1. Set up a server message store or use an existing MobiLink consolidated
database.

☞ See“Setting up the server message store” on page 32.

2. Start the MobiLink synchronization server with the -m option and a
connection to the server message store.

☞ See“Starting the MobiLink synchronization server for QAnywhere
messaging” on page 33.

3. Set up client message stores. These are Adaptive Server Anywhere
databases that are used to temporarily store messages.

☞ See“Setting up the client message store” on page 35.

4. If you want to integrate with an external JMS messaging system, set up
JMS messaging for QAnywhere.

☞ See“Using JMS Connectors” on page 42.

5. For each client, write a messaging application.

☞ See“Writing QAnywhere Client Applications” on page 55.

6. For each client, start the QAnywhere Agent with a connection to the local
client message store.

☞ See“Running the QAnywhere Agent” on page 37.

Other resources for
getting started

♦ “Tutorial: A Sample QAnywhere Application” on page 11
♦ Sample applications are installed toSamples\QAnywherein your SQL

Anywhere Studio installation directory.

10

CHAPTER 2

Tutorial: A Sample QAnywhere
Application

About this chapter This tutorial explores the capabilities of QAnywhere through a sample client
application named TestMessage. QAnywhere applications can run on many
devices, such as PDAs, extending application-to-application messaging to
these devices. However, for demonstration purposes, this tutorial runs the
client on a Windows personal computer.

Contents Topic: page

About the tutorial 12

Lesson 1: Start MobiLink with messaging 13

Lesson 2: Create a client message store 16

Lesson 3: Run the TestMessage application 18

Lesson 4: Send a message 20

Lesson 5: Explore the TestMessage client source code 22

Lesson 6: Start a JMS connector 27

Tutorial cleanup 29

11

About the tutorial
TestMessage is a sample QAnywhere client application. This application
demonstrates how you can use QAnywhere to create your own messaging
client applications. TestMessage provides a single client-to-client interface
to send, receive, and display messages. Being human-readable, text
messages provide a useful demonstration of QAnywhere messaging, but
QAnywhere provides much more than text messaging. It is a general
purpose application-to-application messaging system that provides
message-based communication among many clients.

The tutorial is written for a Windows NT/2000/XP system. While these
platforms are convenient for demonstration purposes, you can also use
QAnywhere to write applications that run on Windows CE devices.

12

Chapter 2. Tutorial: A Sample QAnywhere Application

Lesson 1: Start MobiLink with messaging
Background QAnywhere uses MobiLink synchronization to send and receive messages.

All messages from one client to another are delivered through a central
MobiLink synchronization server. The architecture of a typical system, with
only two QAnywhere clients, is shown in the following diagram.

Messaging

MobiLink
synchronization

server with
messaging

Server
message

store

Messaging

Client

message
store

QAnywhere
Agent

QAnywhere
client

application

Server

ClientClient

Client

message
store

QAnywhere
Agent

QAnywhere
client

application

The server message store is a database configured for use as a MobiLink
consolidated database. The TestMessage sample uses an Adaptive Server
Anywhere consolidated database as its server message store.

The only tables needed in the server message store are MobiLink system
tables that are automatically added to any Adaptive Server Anywhere
database when it is created. Any supported database that is set up as a
MobiLink consolidated database also has these system tables.

The system tables are maintained by MobiLink. Using a relational database
as a message store provides a secure, high performance store and means that
you can easily integrate messaging into an existing data management and

13

synchronization system.

QAnywhere messaging is usually carried out over separate machines, but in
this tutorial all components are running on a single machine. It is important
to keep track of which activities are client activities and which are server
activities.

In this lesson, you are carrying out actions at the server.

Activity The MobiLink synchronization server can be started with messaging by
supplying the -m option, as well as specifying a connection string to the
server message store. The TestMessage sample uses a QAnywhere Adaptive
Server Anywhere sample database for the server message store. For the
TestMessage sample, you can start the MobiLink synchronization server for
messaging using the command line options, or using a sample shortcut in
your SQL Anywhere Studio install.

❖ Start the messaging server

1. From the Windows Start menu, choose Programs➤ SQL Anywhere 9➤

MobiLink ➤ MobiLink with Messaging Sample.

Alternatively, from a command prompt, navigate to
Samples\QAnywhere\serversubdirectory of your SQL Anywhere Studio
installation and type the following command:

dbmlsrv9 -m qanyserv.props -c "dsn=QAnywhere 9.0 Sample" -
vcrs -zu+

This example uses the following dbmlsrv9 options:

Option Description

-m The -m option enables messaging. It also specifies the file
qanyserv.props, which contains some sample messaging prop-
erty settings.

☞ See“-m option” [MobiLink Administration Guide,
page 201].

-c The -c option specifies the connection string to the server
message store, in this case using the QAnywhere 9.0 Sample
ODBC data source.

☞ See“-c option” [MobiLink Administration Guide,
page 196].

-vcrs The -vcrs option provides verbose logging of server activities,
which is useful during development.

☞ See“-v option” [MobiLink Administration Guide,
page 211].

14

Chapter 2. Tutorial: A Sample QAnywhere Application

Option Description

-zu+ The -zu+ option automatically adds user names to the system;
this is convenient for a tutorial or development but is not
normally used in a production environment.

☞ See“-zu option” [MobiLink Administration Guide,
page 222].

2. Move the MobiLink synchronization server window to the left side of
your screen, which represents the server machine in this tutorial.

Once the MobiLink synchronization server is started and its console window
is displaying the message “Ready to handle requests”, you are ready to move
on to the next lesson.

Further reading ☞ For more information, see:

♦ “Starting the MobiLink synchronization server for QAnywhere
messaging” on page 33

♦ “-m option” [MobiLink Administration Guide,page 201]
♦ “Quick start” on page 10
♦ “Simple messaging scenario” on page 5

15

Lesson 2: Create a client message store
Background The QAnywhere Agent is a component that runs on each client device. It

manages the transmission of messages by moving messages between server
message stores and client message stores. The client message store is an
Adaptive Server Anywhere database.

The QAnywhere Agent is designed to be running at all times when the
device is turned on. QAnywhere applications, in contrast, may be launched
and shut down at any time.

In this lesson, you are carrying out activities at a client. Typically, clients run
on separate machines from the server, but in this lesson you can create them
on the same machine.

In this lesson you will create a client message store.

Activity

❖ Create a client message store

1. Create an Adaptive Server Anywhere database.

There are several ways to create a database, but in this lesson you will use
the dbinit command line utility. Navigate to a directory (for example,
c:\sample\qanywhere) and type:

dbinit -I clientstore.db

The dbinit -I option causes the database to be smaller, which is better for
many remote devices.

2. Initialize the database as a client message store.

Type:

qaagent -si -c "DBF=clientstore.db" -id MyclientID

This example uses the following options:

16

Chapter 2. Tutorial: A Sample QAnywhere Application

Option Description

-si The -si option initializes an Adaptive Server Anywhere database
for use as a client message store.

☞ See“-si option” on page 91.

-c The -c option specifies the connection string to the client
message store. The connection string that is supplied specifies
the database file name asclientstore.db.

☞ See“-c option” on page 82.

-id The -id option specifies an ID for the client message store.
Every time you connect to this client message store, you must
specify this ID.

☞ See“-id option” on page 84.

The QAnywhere Agent automatically shuts down after initializing a
client message store.

Further reading ☞ For more information about creating a client message store, see:

♦ “Initialization utility options” [ASA Database Administration Guide,
page 532]

♦ “Setting up the client message store” on page 35

17

Lesson 3: Run the TestMessage application
Background TestMessage is a simple application that uses QAnywhere to send and

receive text messages. Text messaging is used in this tutorial because it
provides a simple and accessible demonstration of messaging. QAnywhere
is, however, not just a text messaging system; it provides general purpose
application-to-application messaging.

In this lesson, you are carrying out activities at a client. Typically, clients run
on separate machines from the server.

In this Lesson, you start the client message store that is part of the
TestMessage sample. In Lesson 4, you will use this message store to send a
message to the client message store that you created in Lesson 2.

Activity

❖ Start the QAnywhere Agent with the TestMessage client message
store
1. From the Windows Start menu, choose Programs➤ SQL Anywhere

Studio 9➤ QAnywhere➤ QAnywhere Agent.

This starts the TestMessage sample client message store.

2. The QAnywhere Agent window displays the client message store ID,
which by default is your machine name. Make a note of the ID.

3. Move the QAnywhere Agent window to the right side of your screen,
which represents the client machine in this tutorial.

❖ Start TestMessage

1. From the Windows Start menu, choose Programs➤ SQL Anywhere 9➤

QAnywhere➤ TestMessage Sample Application.

The TestMessage window is displayed. The application is connected to
the TestMessage client message store that you started in the above
procedure.

2. Move the TestMessage window to the right side of your screen, together
with the QAnywhere Agent. Both these components belong on the client.

3. Set a preferred name and check the message queue.

From the TestMessage Tools menu, choose Options. Enter a preferred
name, which is the name displayed when messages are sent. This name
may include spaces.

You will see that the queue nametestmessageis specified. Do not
change this name.

18

Chapter 2. Tutorial: A Sample QAnywhere Application

Discussion You will see messages scrolling by in the MobiLink synchronization server
window. This shows that the QAnywhere Agent is periodically transmitting
messages between the server message store and client message store.

In a production environment there is generally no need for the frequent
transmission activity you see in this tutorial. You can configure the way that
the QAnywhere Agent monitors messages by setting a message transmission
policy on the command line. The default policy setting isscheduled, which
instructs the QAnywhere Agent to transmit periodically. If you don’t specify
an interval, the default is every 10 seconds. Other settings include
automatic, which sets the QAnywhere Agent to send messages as soon as
they are entered in the client message store,ondemand, which causes a
message to be sent only when instructed to by an application, and acustom
mode in which you provide a set of rules in a rules file to specify more
complicated transmission behavior.

QAnywhere messages are delivered to a QAnywhere address, which consists
of a client message store ID and a queue name. The default ID is the
machine name on which the QAnywhere Agent is running. Each machine
requires only one QAnywhere Agent, even if there are several messaging
applications running on the machine. Each application can listen to multiple
queues, but each queue should be specific to a single application.

Further reading ♦ “Running the QAnywhere Agent” on page 37
♦ “Determining when message transmission should occur on the client” on

page 37
♦ “QAnywhere Agent syntax” on page 80
♦ “QAnywhere Transmission Rules” on page 101
♦ “Writing QAnywhere Client Applications” on page 55
♦ The QAnywhere samples, which are installed toSamples\QAnywherein

your SQL Anywhere Studio directory

19

Lesson 4: Send a message
Background The TestMessage sample includes a client message store, which you started

in Lesson 3. In addition, you created a client message store in Lesson 2. In
this lesson you will send a message from the TestMessage sample store to
the client message store that you created in Lesson 2.

Activity

❖ Send a message from TestMessage

1. From the TestMessage Message menu, choose New. The New Message
window appears.

2. In the To field, enter MyclientID. This is the ID that you specified for the
client message store that you created in Lesson 2.

QAnywhere appends the queue name specified in the Options dialog to
the ID to create a message address. If no queue name is specified in the
Options dialog, TestMessage appends the queue name testmessage to the
address.

3. Fill out the Subject and Message fields with sample text, and click Send.

When testing messaging, it is often useful to use the current time as a
subject line to make it easy to track individual messages.

4. Shut down TestMessage and the QAnywhere Agent. You should wait at
least 10 seconds before doing this.

In the TestMessage window, click File➤ Exit.

On the QAnywhere Agent window, click Shutdown.

5. Start the QAnywhere Agent with a connection to the client message store
that you created in Lesson 2.

To do this, navigate to the directory where you created the client message
store in Lesson 2 and type:

qaagent -c "DBF=clientstore.db;eng=qanywhere" -id MyclientID

This example uses the following options:

20

Chapter 2. Tutorial: A Sample QAnywhere Application

Option Description

-c The connection string in this example connects to the client
message store that you created in Lesson 2, calledclientstore.-
db. It specifies eng=qanywhere because the TestMessage
sample will attempt to connect to a message store with the
database server name qanywhere.

-id You need to specify MyclientID as the ID because this is the
ID you gave this client message store in Lesson 2.

6. Start TestMessage.

From the Windows Start menu, choose Programs➤ SQL Anywhere 9➤

QAnywhere➤ TestMessage Sample Application.

Your message appears in the TestMessage window. (If your message does
not appear, you probably shut down the application too quickly in Step 4.)

7. Read the message.

Select the message to display its contents in the bottom pane of the
window.

The next time you start TestMessage, the message will not appear, as
TestMessage is configured to delete messages once you have read them.
You can change this default behavior by specifying delete rules.

Discussion Like other QAnywhere applications, TestMessage uses the QAnywhere API
to manage messages. The QAnywhere API is supplied as both a C++ API
and as a Microsoft .NET API that can be used by Visual Basic .NET, C#,
and C++ applications developed using Microsoft Visual Studio .NET.

Further reading ☞ For more information, see:

♦ “Understanding QAnywhere message addresses” on page 59
♦ “Sending QAnywhere messages” on page 67
♦ “Delete rules” on page 118

21

Lesson 5: Explore the TestMessage client source
code
Background This section of the tutorial takes you on a brief tour of the source code

behind the TestMessage client application.

A good deal of the code implements the Windows interface, through which
you can send, receive, and view the messages. This portion of the tutorial,
however, focuses on the portions of the code given to QAnywhere.

You can find the TestMessage source code in theSamples\QAnywhere
subdirectory of your SQL Anywhere Studio installation.

Several versions of the TestMessage source code are provided. The
following versions are provided for Windows 2000 and Windows XP:

♦ A C++ version built using the Microsoft Foundation Classes is provided
asSamples\QAnywhere\Desktop\MFC\TestMessage\TestMessage.sln.

♦ A Visual Basic .NET version built on the .NET Framework is provided as
Samples\QAnywhere\Desktop\.NET\VB\TestMessage\TestMessage.sln.

♦ A C# version built on the .NET Framework is provided as
Samples\QAnywhere\Desktop\.NET\CS\TestMessage\TestMessage.sln.

♦ A C++ version built on the .NET Framework is provided as
Samples\QAnywhere\Desktop\.NET\CPP\TestMessage\TestMessage.sln.

The following version is provided for Pocket PC:

♦ A C# version built on the .NET Compact Framework is provided as
Samples\QAnywhere\PocketPC\.NET\CS\TestMessage\TestMessage.sln.

Required software Visual Studio .NET 2003 is required to open the solution files and build the
.NET Framework projects and the .NET Compact Framework project.

Exploring the C# or
Visual Basic .NET source

This section takes you through the C# source code. The two versions are
structured in a very similar manner.

Rather than look at each line in the application, this lesson picks out certain
lines that are particularly useful for understanding QAnywhere applications.
It uses the C# version to illustrate particular lines.

1. Open the version of the TestMessage project that you are interested in.

Double-click the solution file to open the project in Visual Studio .NET.
For example,
Samples\QAnywhere\Desktop\.NET\CS\TestMessage\TestMessage.slnis
a solution file. There are several solution files for different environments.

22

Chapter 2. Tutorial: A Sample QAnywhere Application

2. Ensure the Solution Explorer is displayed.

You can open the Solution Explorer from the View menu.

3. Inspect the Source Files folder.

There are two files of particular importance. TheMessageListfile
(MessageList.cs) receives messages and lets you view them. The
NewMessagefile (NewMessage.cs) allows you to construct and send
messages.

4. From the Solution Explorer, open theMessageListfile.

5. Inspect the included namespaces.

Every QAnywhere application requires the
iAnywhere.QAnywhere.Client namespace. The assembly that defines this
namespace is supplied as the DLLiAnywhere.QAnywhere.Client.dll, in
thece or win32 subdirectory of your SQL Anywhere Studio installation.
For your own projects, you must add this DLL as a reference. The
namespace is included using the following line at the top of each file:

using iAnywhere.QAnywhere.Client;

6. Inspect the MessageList_Load method.

This method performs initialization tasks that are common to
QAnywhere applications:

♦ Create a QAManager object.

_qaManager =
QAManagerFactory.Instance.CreateQAManager(null);

QAnywhere provides a QAManagerFactory object to create
QAManager objects. The QAManager object handles QAnywhere
messaging operations: in particular, receiving messages (getting
messages from a queue) and sending messages (putting messages on a
queue).

QAnywhere provides two types of manager: QAManager and
QATransactionalManager. The difference is that when using the
transactional manager all send and receive operations occur within a
transaction, so that either all messages are sent (or received) or none
are.

♦ Write a method to handle messages.

The onMessage function that handles regular non-system messages
calls the addMessage function. The message it receives is encoded as a
QAMessage object. The QAMessage class together with its children
(QATextMessage and QABinaryMessage) provide properties and

23

methods that hold all the information QAnywhere applications need
about a message.

private void onMessage(QAMessage msg)
{

if(addMessage(msg)) {
String info_msg = _resources.GetString(

"MessageReceived");
MessageBox.Show(this, info_msg, "Test

Message",
MessageBoxButtons.OK,

MessageBoxIcon.Information);
}

}

♦ Declare a MessageListener.

_receiveListener = new
QAManager.MessageListener(onMessage);

The OnMessage method is called whenever a message is received by
the QAnywhere Agent and placed in the queue that the application
listens to.

Message listeners and notification listeners
Message listeners are different from the Listener component de-
scribed in“Scenario for messaging with push notifications” on
page 6. The Listener component receives notifications, while mes-
sage listener objects retrieve messages from the queue.

7. Inspect the startReceiver method in the same file.

This step assigns message listeners to queues. When you set a message
listener for the queue, the QAnywhere Manager will pass messages that
arrive on that queue to that listener. Only one listener can be set for a
given queue. Setting with a null listener clears out any listener for that
queue.

Using a MessageListener is anasynchronousway of receiving messages.
You can also receive messagessynchronously; that is, the application
explicitly goes and looks for messages on the queue, perhaps in response
to a user action such as clicking a Refresh button, rather than being
notified when messages appear.

This method completes the initialization tasks:
♦ Open and start the QAManager object.

_qaManager.Open(
AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

_qaManager.Start();

The AcknowledgementMode enumeration constants determine how
the receipt of messages is acknowledged to the sender. The

24

Chapter 2. Tutorial: A Sample QAnywhere Application

EXPLICIT_ACKNOWLEDGEMENT constant indicates that
messages are not acknowledged until a call to one of the QAManager
acknowledge methods is made.

♦ Load any messages that are waiting in the queue.

_mainWindow.LoadMessages();

♦ Assign a listener to a queue for future messages.

The listener was declared in the MessageList_Load method.

_qaManager.SetMessageListener(
Options.GetReceiveQueueName(),
_receiveListener);

The Options.GetReceiveQueueName() function returns the string
testmessage, which is the TestMessage queue as set in the
TestMessage Options dialog.

8. Inspect the addMessage function in the same file.

This method is called whenever the application receives a message. It
gets properties of the message such as its ReplyToAddress,
PreferredName, and the time it was sent (Timestamp), and displays the
information in the TestMessage user interface. Here are the lines that cast
the incoming message into a QATestMessage object and get the
ReplyToAddress of the message:

text_msg = (QATextMessage)msg;
from = text_msg.ReplyToAddress;

This completes a brief look at some of the major tasks carried out in the
MessageListfile.

9. From the Solution Explorer, open theNewMessagefile.

10. Inspect the sendMessage function.

This function takes the information entered in the New Message dialog
and constructs a QATextMessage object. The QAManager then puts the
message in the queue to be sent.

Here are the lines that create a QATextMessage object and set its
ReplyToAddress property:

qa_manager = MessageList.GetQAManager();
msg = qa_manager.CreateTextMessage();
msg.ReplyToAddress = Options.GetReceiveQueueName();

Here are the lines that put the message in the queue to be sent. The
variableto is the destination address, supplied as an argument to the
function.

25

to = BuildQueue(to);
qa_manager.PutMessage(to, msg);

Further reading ☞ For more information, see:

♦ “QAnywhere C++ API Reference” on page 121
♦ “iAnywhere.QAnywhere.Client namespace” on page 173
♦ “Writing QAnywhere Client Applications” on page 55
♦ The TestMessage sample, which is installed toSamples\QAnywherein

your SQL Anywhere Studio directory

26

Chapter 2. Tutorial: A Sample QAnywhere Application

Lesson 6: Start a JMS connector
A JMS connector provides connectivity between a JMS message system and
QAnywhere.

Required software For this lesson, you need access to a JMS provider and basic knowledge of
how to configure it. In addition, you need JDK version 1.3.1 or later and any
JAR files required by a JMS client of the JMS provider.

Activity

❖ Prepare your JMS provider

1. Start your JMS server.

☞ See the documentation for your JMS server.

2. Create two queues within your JMS server: qa_testmessage and
qa_receive.

☞ See the documentation for your JMS server. You may need to restart
your JMS server after creating the queues.

❖ Start QAnywhere client and server compnents

1. Create a QAnywhere connector properties file.

There are sample connector properties files in the
Samples\QAnywhere\connectorssubdirectory of your SQL Anywhere
Studio installation.

2. Specify your QAnywhere connector properties file in the file
Samples\QAnywhere\server\qanyserv.props.

This sample file contains commented lines that specify the sample
connector properties files. You may just need to uncomment one of these
lines.

3. Start the MobiLink synchronization server for messaging, as described in
“Lesson 1: Start MobiLink with messaging” on page 13.

4. Start QAnywhere Agent as described in“Lesson 2: Create a client
message store” on page 16.

5. Start TestMessage as described in“Lesson 3: Run the TestMessage
application” on page 18.

27

❖ Start the TestMessage client

1. At a command prompt, navigate to
Samples\QAnywhere\connectors\JMS\TestMessageand type the
following:

java -cp .; JMS-client-jar-files
ianywhere.message.samples.TestMessage

whereJMS-client-jar-filesis a semi-colon delimited list of jar files that
the JMS server requires. See your JMS server documentation for details.
For Sybase EAServer, this command would be:

java -cp .; path \easclient.jar; path \easj2ee.jar
ianywhere.message.samples.TestMessage

wherepath is the location of the jar files.

2. Move the JMS TestMessage window to the right side of your screen
under the existing TestMessage window.

3. From the JMS TestMessage Message menu, choose New.

The New Message window appears.

4. In the To field, enter the client message store ID that you noted in Lesson
2.

5. Fill out the Subject and Message fields with sample text, and click Send.

Within a short time a message box appears, indicating that a message has
been received by the previously running instance of TestMessage.

6. Switch to the other instance of TestMessage to receive the message.

Further reading ☞ For more information, see:

♦ “Using JMS Connectors” on page 42
♦ “Scenario for messaging with external messaging systems” on page 8
♦ The JMS sample properties files and other JMS samples that are installed

to Samples\QAnywhere\connectorsin your SQL Anywhere Studio
directory

28

Chapter 2. Tutorial: A Sample QAnywhere Application

Tutorial cleanup
Shut down TestMessage, the QAnywhere Agent, and the MobiLink
synchronization server.

29

CHAPTER 3

Setting Up QAnywhere Messaging

About this chapter This chapter describes how to set up and run QAnywhere messaging.

QAnywhere uses MobiLink synchronization to transport messages. This
chapter describes how to set up and run the MobiLink synchronization
server with messaging.

Contents Topic: page

Setting up server-side components 32

Setting up client-side components 35

Using push notifications 40

Using JMS Connectors 42

Using QAnywhere messaging and MobiLink data synchronization
together

51

Setting up a failover mechanism 53

31

Setting up server-side components

❖ Overview of setting up QAnywhere server-side components

1. Set up a server message store and start it. This can be any MobiLink
consolidated database.

☞ See“Setting up the server message store” on page 32.

2. Start dbmlsrv9 with the -m option and a connection to the server message
store.

☞ See“Starting the MobiLink synchronization server for QAnywhere
messaging” on page 33.

3. Add client message store IDs to the server message store.

☞ See“Adding client message store IDs” on page 34.

Setting up the server message store

The server message store is a relational database on the server that
temporarily stores messages until they are transmitted to a client message
store or JMS system. Messages are exchanged between clients via the server
message store.

A server message store is a MobiLink consolidated database, and so can be
any RDBMS that MobiLink supports (Adaptive Server Anywhere, Adaptive
Server Enterprise, Microsoft SQL Server, Oracle, or DB2). You can create a
new database for this purpose, or use an existing database. The database
does not need to be dedicated to acting as a server message store and so can
also be used for other purposes.

Adaptive Server Anywhere databases are automatically configured so that
they can be used as consolidated databases.

☞ For information about creating Adaptive Server Anywhere databases,
see“The Initialization utility” [ASA Database Administration Guide,page 530].

If you are using an Adaptive Server Anywhere database that was created
before version 9.0.2, it must be upgraded.

☞ To upgrade your database, see“Upgrading Software and Databases”
[What’s New in SQL Anywhere Studio,page 227].

For databases other than Adaptive Server Anywhere, you need to run a setup
script that enables the database to be used as a consolidated database (if you
have not already done so).

32

Chapter 3. Setting Up QAnywhere Messaging

☞ To set up a server message store for databases other than Adaptive
Server Anywhere, see“Setting up a consolidated database”[MobiLink
Administration Guide,page 33].

Notes ♦ You can integrate messaging with MobiLink synchronization applications
by using your MobiLink consolidated database as the server message
store.

☞ See“Using QAnywhere messaging and MobiLink data
synchronization together” on page 51.

Example To create an Adaptive Server Anywhere database calledqanysrv.db, type the
following at a command prompt:

dbinit qanysrv.db

This database is ready to use as a server message store.

Starting the MobiLink synchronization server for QAnywhere messaging

QAnywhere uses MobiLink synchronization to transport messages. To use
QAnywhere messaging, you must start the MobiLink synchronization server
(dbmlsrv9) with the following options:

♦ -c connection-string To connect to the server message store.

☞ See“-c option” [MobiLink Administration Guide,page 196].

♦ -m To enable QAnywhere messaging. The -m option also allows you to
optionally specify configuration information.

☞ See“-m option” [MobiLink Administration Guide,page 201].

♦ -zu+ Optionally, you may want to specify -zu+ while in development
mode. When you create client message stores, the client message store
ID must be added to the consolidated database, and -zu+ allows this to
happen automatically.

☞ See“-zu option” [MobiLink Administration Guide,page 222].

☞ You can also use other MobiLink synchronization server options to
customize your operations. For more information, see“MobiLink
synchronization server”[MobiLink Administration Guide,page 190].

Notes ♦ If you are integrating with a JMS messaging system, there are other
options you must specify when you start the MobiLink synchronization
server.

☞ See“Starting the MobiLink server for JMS integration” on page 43.

33

Example To start QAnywhere messaging when you are using a server message store
calledqanysrv.db, type the following at a command prompt:

dbmlsrv9 -m -c "dbf=qanysrv.db"

Adding client message store IDs

Each client message store has a unique ID that identifies it. The client
message store ID is a MobiLink user name. You may need to add this
MobiLink user name to the server message store. There are several methods
for doing this:

♦ Use the dbmluser utility.

☞ For more information, see“MobiLink user authentication utility”
[MobiLink Administration Guide,page 492].

♦ Use Sybase Central.

♦ Specify the -zu+ command line option with dbmlsrv9. In this case, any
existing MobiLink users that have not been added to the consolidated
database are added when they first synchronize. This is useful during
development, but is not recommended for production environments.

☞ For more information, see“-zu option” [MobiLink Administration
Guide,page 222].

☞ For more information about MobiLink user names, see“About
MobiLink users”[MobiLink Clients,page 10].

☞ For more information about client message store IDs, see“-id option”
on page 84.

34

Chapter 3. Setting Up QAnywhere Messaging

Setting up client-side components

❖ Overview of setting up client-side components

1. Create an Adaptive Server Anywhere database and initialize it as a client
message store.

☞ See“Setting up the client message store” on page 35.

2. Ensure that the ID of the client message store is registered on the server
message store.

☞ See“Adding client message store IDs” on page 34.

3. Write client applications.

☞ See“Writing QAnywhere Client Applications” on page 55.

4. Start the QAnywhere Agent.

☞ See“Running the QAnywhere Agent” on page 37.

Setting up the client message store

The client message store is an Adaptive Server Anywhere database on the
remote device. The application connects to this message store using the
QAnywhere client API.

The database that you use for the client message store must not be used by
any other non-messaging applications. However, you can use a MobiLink
remote database in conjunction with a client message store to integrate
messaging with data synchronization.

Using a relational database as a message store provides a secure and
high-performance store, and also enables easy integration of messaging with
data synchronization.

☞ For more information, see“Using QAnywhere messaging and
MobiLink data synchronization together” on page 51and“Creating a secure
client message store” on page 96.

❖ To create a client message store

1. Create an Adaptive Server Anywhere database.

☞ See“Creating a database”[ASA SQL User’s Guide,page 31].

2. Initialize each client message store by running the QAnywhere Agent
(qaagent) with the following options:

35

♦ -c option to specify a connection string to the database you just
created.
☞ See“-c option” on page 82.

♦ -si option to initialize the database.
☞ See“-si option” on page 91.

♦ -id option optionally, if you want to pre-assign a client message
store ID.
☞ See“Creating client message store IDs” on page 36and“-id
option” on page 84.

3. Add client message store IDs to the server message store. This can be
done automatically using the dbmlsrv9 -zu+ option, or can be done in
other ways.

☞ See“Adding client message store IDs” on page 34.

4. Change the default passwords and take other steps to ensure that the
client message store is secure.

☞ See“Creating a secure client message store” on page 96.

You can also upgrade a client message store that was created in a previous
version of QAnywhere.

☞ See“-su option” on page 92.

Creating client message
store IDs

Client message store IDs can be set in various ways:

♦ You can specify the ID with the qaagent -id option when you use the
qaagent -si option to initialize the client message store.

♦ You can specify the ID with the -id option the first time you run qaagent
after you initialize the client message store.

♦ If you do not specify an ID in either of the previous ways, then the first
time you run qaagent after you run qaagent with -si, the device name is
assigned as the client message store ID.

☞ For more information, see“QAnywhere Agent” on page 79.

Example of creating a
client message store

The following command creates an Adaptive Server Anywhere database
called qanyclient.db. (The dbinit -i option is not required, but is good
practice as it reduces the size of the database.)

dbinit -i qanyclient.db

The following command connects toqanyclient.dband initializes it as a
QAnywhere client database:

qaagent -si -c "DBF=qanyclient.db"

36

Chapter 3. Setting Up QAnywhere Messaging

☞ For more information about dbinit, see“Creating a database using the
dbinit command-line utility”[ASA Database Administration Guide,page 531].

Running the QAnywhere Agent

The QAnywhere Agent (qaagent) is a separate process running on the client
device that monitors the client message store and determines when message
transmission should occur.

The QAnywhere Agent transmits messages between the server message
store and the client message store. You can run only one instance of the
QAnywhere Agent on a device at a time.

At a minimum, you need to start qaagent with the following options:

♦ -c “ connection-string ” to connect to the client message store.

♦ -id client-message-store-id to identify the client message store. The
first time you run qaagent after you have initialized a client message
store, you can optionally use this option to name the message store; if
you do not, the device name is used by default. After that, you must use
the -id option every time you start qaagent to specify the client message
store ID.

♦ -x protocol [(protocol-options)] to connect to the MobiLink
synchronization server (necessary unless the MobiLink synchronization
server is running on the same device as the QAnywhere agent).

☞ For details of these options as well as a complete list of all qaagent
options, see“QAnywhere Agent syntax” on page 80.

Determining when message transmission should occur on the client

On the client side, you determine when message transmission should occur
by specifying policies. A policy tells the QAnywhere Agent when a message
should be moved from the client message store to the server message store.
If you do not specify a policy, transmission occurs every 10 seconds by
default. There are three pre-defined policies: scheduled, automatic and
on-demand. These policies are specified using the qaagent -policy option.

You can also define a custom policy. A custom policy is a set a rules that
determine when a message transmission is to occur. In addition, a custom
policy can specify which messages should be transmitted. A custom policy
is used when a file containing the transmission rules is specified using the
-policy option.

Scheduled policy The scheduled policy instructs the Agent to perform a transmission at a
specified time interval. To invoke a schedule, use thescheduledkeyword

37

when you start the QAnywhere Agent:

qaagent –policy scheduled[interval] ...

whereinterval is in seconds. The default is 10 seconds.

When a schedule is specified, everyn seconds the Agent performs a message
transmission if any of the following conditions are met:

♦ New messages were placed in the client message store since the previous
time interval elapsed.

♦ A message status change occurred since the previous time interval
elapsed. This typically occurs when a message is acknowledged by the
application.

♦ A push notification was received since the previous time interval elapsed.

♦ A network status change notification was received since the previous time
interval elapsed.

♦ Push notifications are disabled.

You can call the TriggerSendReceive() method to override the time interval.
It forces a message transmission to occur before the time interval elapses.

Automatic policy The automatic policy attempts to keep the client and server message stores
as up-to-date as possible. To set up automatic message transmission, use the
automatic keyword when you start the QAnywhere Agent:

qaagent –policy automatic

When using the automatic policy, a message transmission will be performed
when any of the following occurs:

♦ PutMessage() is called.

♦ A message status change has occurred. This typically occurs when a
message is acknowledged by the application.

♦ A Push Notification is received.

♦ A Network Status Change Notification is received.

♦ TriggerSendReceive() is called.

On-demand policy The on-demand policy causes a message transmission to occur only when
instructed to do so by an application. To start this mode, use theondemand
keyword when you start the QAnywhere Agent:

qaagent –policy ondemand

38

Chapter 3. Setting Up QAnywhere Messaging

An application forces a message transmission to occur by calling the
TriggerSendReceive() method.

When the agent receives a Push Notification or a Network Status Change
Notification, a corresponding message is sent to the “system” queue. This
allows an application to detect these events and force a message
transmission by calling the TriggerSendReceive() method.

Custom policy A custom policy allows you to define when a message transmission is to
occur and which messages are sent in the message transmission. The custom
policy is defined by a set of rules stored in a file. To define a custom policy,
specify a rules file when you start the QAnywhere Agent:

qaagent –policyrules-file

Each rule is of the following form:

schedule= condition

wherescheduledefines whencondition is evaluated. For more information,
see“Schedule syntax” on page 105.

All messages satisfyingconditionare transmitted. In particular, ifschedule
is automatic, the condition is evaluated when any of the following occurs.

♦ PutMessage() is called.

♦ A message status change has occurred. This typically occurs when a
message is acknowledged by the application.

♦ A Push Notification is received.

♦ A Network Status Change Notification is received.

♦ TriggerSendReceive () is called.

☞ For more information about specifying a custom policy in a rules file,
see“Transmission rules” on page 102.

☞ For more information about creating policies, see“-policy option” on
page 88.

39

Using push notifications
A push notification is a special message delivered from the server to a
QAnywhere client that prompts the client to initiate a message transmission.
Push notifications introduce two extra components to the QAnywhere
architecture:

♦ At the server, a QAnywhere Notifier sends push notifications.

♦ At the client, a QAnywhere Listener receives these push notifications and
passes them on to the QAnywhere Agent.

Notification is enabled by default: the qaagent -push_notification option is
by default set to enabled. Push notifications are delivered either over the
UDP protocol or as SMS messages.

If you are using UDP, push notifications will probably work without any
configuration, but due to a limitation in the UDP implementation of
ActiveSync, they will not work with ActiveSync.

If you are using SMS, you need to start a Listener to use notifications. For
more information, see“Using push notifications with SMS” on page 40.

☞ To disable push notifications, see“-push_notifications option” on
page 90.

See also ☞ For more information about push notifications, see:

♦ “Scenario for messaging with push notifications” on page 6
♦ “Handling push notifications and network status changes” on page 73
♦ “-push_notifications option” on page 90
♦ “Using push notifications with SMS” on page 40

Using push notifications with SMS

You can use QAnywhere notifications when your message transmission is
occurring over SMS, but you must start a Listener using the dblsn
executable.

☞ For more information, see“Listeners” [MobiLink Server-Initiated
Synchronization User’s Guide,page 28].

Start the QAnywhere Agent as you normally would:

qaagent -id device-id -c " connect-string "

On the server side, set SMTP properties that are required to send SMS
messages.

40

Chapter 3. Setting Up QAnywhere Messaging

☞ For more information, see“SMTP gateway properties”[MobiLink
Server-Initiated Synchronization User’s Guide,page 70].

41

Using JMS Connectors
JMS is the Java Message Service API for adding messaging capabilities to
Java applications. In addition to exchanging messages among QAnywhere
client applications, you can exchange messages with external messaging
systems that support a JMS interface. You do this using a specially
configured client known as a connector. In a QAnywhere application, the
external messaging system is set up to act like a QAnywhere client. It has its
own address and configuration.

☞ For more information about the architecture of this approach, see
“Scenario for messaging with external messaging systems” on page 8.

❖ Overview of integrating a QAnywhere application with an external
JMS system

1. Create JMS queues using the JMS administration tools for your JMS
system. The QAnywhere connector listens on a single JMS queue for
JMS messages. You must create this queue if it does not already exist.

☞ See the documentation of your JMS product for information about
how to create queues.

2. Create a JMS connector properties file and set the
ianywhere.connector.address property to specify the connector address.
This is the address used by QAnywhere applications to send messages
through the connector.

☞ See“Configuring the JMS connector properties file” on page 43.

3. Create a MobiLink messaging properties file and set the
ianywhere.qa.server.connectorPropertiesFiles property to the name of the
JMS connector properties file.

☞ For more information about specifying a Mobilink messaging
properties file, see“-m option” [MobiLink Administration Guide,page 201].

4. Start the MobiLink synchronization server with a connection to the server
message store and the options -m and -sl java. The MobiLink messaging
properties file you created in the previous step is referenced by the -m
option.

☞ See“Starting the MobiLink server for JMS integration” on page 43.

5. To send a message from an application in your QAnywhere system to the
external messaging system, create a QAnywhere message and send it to
connector-address\JMS-queue.

☞ See“Addressing QAnywhere messages meant for JMS” on page 46.

42

Chapter 3. Setting Up QAnywhere Messaging

6. To send a message from the external messaging system to an application
in your QAnywhere system, create a JMS message, set the
ias_ToAddress property to the QAnywhereid \queue (whereid is the ID
of your client message store andqueueis your application queue name),
put the message in the JMS queue and use the Send operation.

☞ See“Addressing JMS messages meant for QAnywhere” on page 48.

Starting the MobiLink server for JMS integration

To exchange messages with an external messaging system that supports a
JMS interface, you must start the MobiLink synchronization server
(dbmlsrv9) with the following options:

♦ -c connection-string To connect to the server message store.

☞ See“-c option” [MobiLink Administration Guide,page 196].

♦ -m message-properties-file Themessage-properties-filemust define
an ianywhere.qa.server.connectorPropertiesFiles property that specifies a
JMS Connector properties file or files. The message properties file should
contain the following statement:

ianywhere.qa.server.connectorPropertiesFiles= file1 ;[file2 ;
]...

See“-m option” [MobiLink Administration Guide,page 201].

♦ -sl java (-cp “ jarfile .jar”) To add the client jar files required to use the
external JMS provider.

☞ See“-sl java option” [MobiLink Administration Guide,page 209].

Example The following example starts a MobiLink synchronization server using a
message properties file calledmsg.props(in the current working directory),
a JMS client library calledjmsclient.jar(also in the current working
directory), and the QAnywhere 9.0 Sample database as a message store. The
command should be entered all on one line.

dbmlsrv9 -sl java(-cp "jmsclient.jar")
-m msg.props
-c "QAnywhere 9.0 Sample" ...

Configuring the JMS connector properties file

The JMS Connector properties file contains entries that specify connection
information with the JMS system. It configures a connector to a third party
JMS messaging system such as BEA WebLogic or Sybase EAServer.

The following properties are used to configure the JMS Connector.

43

♦ ianywhere.connector.nativeConnection The Java class that
implements the connector. This Java class is provided by QAnywhere
and should always be set to
ianywhere.message.connector.jms.NativeConnectionJMS.

♦ ianywhere.connector.id An identifier that uniquely identifies the
connector. This identifier is also used to prefix all logged error, warning,
and informational messages appearing in the QAnywhere server console
for this connector.

♦ ianywhere.connector.address The connector address that a
QAnywhere client should use to address the connector.

☞ For more information, see“Addressing QAnywhere messages meant
for JMS” on page 46.

♦ ianywhere.connector.outgoing.deadMessageAddress The address
that a message is sent to when it cannot be processed. For example, if a
message contains an address that is malformed or unknown, the message
is sent to the dead message address.

The default dead message address is ianywhere.connector.deadMessage.

♦ ianywhere.connector.logLevel The amount of connector information
displayed in the console and log file. Values for the log level are as
follows:
• 1 Log error messages.

• 2 Log error and warning messages.

• 3 Log error, warning, and information messages.

• 4 Debug mode: provide most verbose logging.

♦ ianywhere.connector.compressionLevel The default message
compression factor of messages received from JMS: an integer between 0
and 9, with 0 indicating no compression and 9 indicating maximum
compression.

You can set the compression level for all connectors using the
ianywhere.qa.compressionLevel property in the configuration file that
you supply with the dbmlsrv9 -m option. If you set the compression level
in both places, this setting for an individual connector overrides the
setting for all connectors. For more information, see“-m option”
[MobiLink Administration Guide,page 201].

♦ xjms.jndi.authName The authentication name to connect to the
external JMS JNDI name service.

♦ xjms.jndi.factory The factory name used to access the external JMS
JNDI name service.

44

Chapter 3. Setting Up QAnywhere Messaging

♦ xjms.jndi.password.e The authentication password to connect to the
external JMS JNDI name service.

♦ xjms.jndi.url The URL to access the JMS JNDI name service.

♦ xjms.password.e The authentication password to connect to the
external JMS provider.

♦ xjms.queueFactory The external JMS provider queue factory name.

♦ xjms.queueConnectionAuthName The user ID to connect to the
external JMS queue connection.

♦ xjms.queueConnectionPassword.e The password to connect to the
external JMS queue connection.

♦ xjms.topicFactory The external JMS provider topic factory name.

♦ xjms.topicConnectionAuthName The used ID to connect to the
external JMS topic connection.

♦ xjms.topicConnectionPassword.e The password to connect to the
external JMS topic connection.

♦ xjms.receiveDestination The queue name used by the connector to
listen for messages from JMS targeted for QAnywhere clients.

Example You can find sample connector property files in the
Samples\QAnywhere\connectorssubdirectory of your SQL Anywhere
Studio installation. Here is a sample properties file for Sybase EAServer:

ianywhere.connector.nativeConnection=ianywhere.message.connector
.jms.NativeConnectionJMS

ianywhere.connector.id=easerver
ianywhere.connector.logLevel=4
ianywhere.connector.address=ianywhere.connector.easerver
xjms.jndi.factory=com.sybase.jms.InitialContextFactory
xjms.jndi.url=iiop://<substitute with host name>:9000
xjms.jndi.authName=jagadmin
xjms.jndi.password.e=
xjms.topicFactory=javax.jms.TopicConnectionFactory
xjms.topicConnectionAuthName=
xjms.topicConnectionPassword.e=
xjms.queueFactory=javax.jms.QueueConnectionFactory
xjms.queueConnectionAuthName=
xjms.queueConnectionPassword.e=
xjms.receiveDestination=qanywhere

Configuring multiple connectors

QAnywhere can connect to multiple JMS message systems by defining a
JMS connector file for each JMS system. Each connector to a JMS message

45

system must be configured using its own JMS Connector properties file. The
only property values that must be unique among the configured connectors
are ianywhere.connector.id and ianywhere.connector.address.

♦ The ianywhere.connector.id property must be unique. It is used to prefix
all connector messages in the QAnywhere server console.

♦ The ianywhere.connector.address property is the address prefix that
QAnywhere clients must specify to address messages meant for the JMS
system.

☞ For information about specifying the address of QAnywhere clients,
see“Addressing QAnywhere messages meant for JMS” on page 46.

☞ For information about the connector properties file, see“Configuring the
JMS connector properties file” on page 43.

Addressing QAnywhere messages meant for JMS

A QAnywhere client can send a message to a JMS system by setting the
address toconnector_address\JMS_destination. Theconnector_addressis
the value of the connector property ianywhere.connector.address, while
JMS_destinationis the name used to look up the JMS queue or topic using
the Java Naming and Directory Interface.

☞ For more information, see“Understanding QAnywhere message
addresses” on page 59.

Example For example, if the ianywhere.connector.address is set to
ianywhere.connector.easerver and the JMS queue name is myqueue, then the
code to set the address would be:

C#
QAManagerBase mgr;
QAMessage msg;
// Initialize the manager
...
msg = mgr.CreateTextMessage();
// Set the message content
...
mgr.PutMessage(@"ianywhere.connector.easerver \myqueue", msg);

C++
QAManagerBase * mgr;
QATextMessage * msg;
// Initialize the manager
...
msg = mgr.createTextMessage();
// Set the message content
...
mgr->putMessage("ianywhere.connector.easerver \\myqueue", msg);

46

Chapter 3. Setting Up QAnywhere Messaging

Mapping QAnywhere messages on to JMS messages

QAnywhere messages are mapped naturally on to JMS messages.

QAnywhere message
content

QAnywhere JMS Remarks

QATextMessage javax.jms.TextMessage message text copied as Uni-
code

QABinaryMes-
sage

javax.jms.BytesMessage message bytes copied ex-
actly

QAnywhere built-in
headers

The following table describes the mapping of built-in headers. In C++ and
JMS, these are method names; for example, Address is called getAddress or
setAddress for QAnywhere, and getJMSDestination or setJMSDestination
for JMS. In .NET, these are properties with the exact name given below; for
example, Address is Address.

QAnywhere JMS Remarks

Address JMS Destination and
JMS property

ias_ToAddress

Only the JMS part of the
address is mapped to the
Destination. Under rare cir-
cumstances, in the case of a
message looping back into
QAnywhere, there may be
an additional QAnywhere
address suffix. This is put
in ias_ToAddress.

Expiration JMS Expiration

InReplyToID JMS CorrelationID

MessageID N/A Not mapped.

Priority JMS Priority

Redelivered N/A Not mapped.

ReplyToAddress JMS property

ias_ReplyToAddress

Mapped to JMS property.

Connector’s xjms.-
receiveDestination
property value

JMS ReplyTo ReplyTo set to Destina-
tion used by connector to
receive JMS messages.

47

QAnywhere JMS Remarks

Timestamp N/A Not mapped.

QAnywhere properties

QAnywhere properties are all mapped naturally to JMS properties,
preserving type, with one exception. If the QAnywhere message has a
property called JMSType, then this is mapped to the JMS header property
JMSType.

Addressing JMS messages meant for QAnywhere

A JMS client can send a message to a QAnywhere client by setting the JMS
message property ias_ToAddress to the QAnywhere address, and then
sending the message to the JMS Destination corresponding to the connector
property xjms.receiveDestination.

☞ For more information, see“Understanding QAnywhere message
addresses” on page 59.

Example For example, to send a message to the QAnywhere address “qaddr” (where
the connector setting of xjms.receiveDestination is
“ianywhere.connector.jms_receive”):

import javax.jms. * ;
...
try {

QueueSession session;
QueueSender sender;
TextMessage mgr;
Queue connectorQueue;
// Initialize the session
...
connectorQueue = session.createQueue(

"ianywhere.connector.jms_receive");
sender = session.createSender(connectorQueue);
msg = session.createTextMessage();
msg.setStringProperty("ias_ToAddress", "qaddr");
// Set the message content
...
sender.send(msg);
} catch(JMSException e) {

// Handle the exception
...

}

48

Chapter 3. Setting Up QAnywhere Messaging

Mapping JMS messages on to QAnywhere messages

QAnywhere messages are mapped naturally on to JMS messages.

JMS message content

JMS QAnywhere Remarks

javax.jms.TextMessage QATextMessage Message text copied as
Unicode

javax.jms.-
BytesMessage

QABinaryMessage Message bytes copied
exactly

javax.jms.-
StreamMessage

N/A Not supported

javax.jms.MapMessage N/A Not supported

javax.jms.-
ObjectMessage

N/A Not supported

JMS built-in headers The following table describes the mapping of built-in headers. In C++ and
JMS, these are method names; for example, Address is called getAddress or
setAddress for QAnywhere, and getJMSDestination or setJMSDestination
for JMS. In .NET, these are properties with the exact name given below; for
example, Address is Address.

JMS QAnywhere Remarks

JMS Destination N/A The JMS destination
must be set to the queue
specified in the connec-
tor property ianywhere.-
connector. jms_receive.

JMS Expiration Expiration

JMS CorrelationID InReplyToID

JMS MessageID N/A Not mapped.

JMS Priority Priority

JMS Redelivered N/A Not mapped.

49

JMS QAnywhere Remarks

JMS ReplyTo and con-
nector’s ianywhere.-
connector.address prop-
erty value

ReplyToAddress The connector address
is concatenated with the
JMS ReplyTo Destina-
tion name delimited by
‘\’.

JMS DeliveryMode N/A Not mapped.

JMS Type QAnywhere message
property JMSType

JMS Timestamp N/A Not mapped.

JMS properties

JMS properties are all mapped naturally to QAnywhere properties,
preserving type, with a few exceptions. The QAnywhere Address property is
set from the value of the JMS message property ias_ToAddress. If the JMS
message property ias_ReplyToAddress is set, then the QAnywhere
ReplyToAddress is additionally suffixed with this value delimited by a ‘\’.

50

Chapter 3. Setting Up QAnywhere Messaging

Using QAnywhere messaging and MobiLink data
synchronization together

You can integrate QAnywhere messaging into MobiLink synchronization
applications that use Adaptive Server Anywhere clients.

To do this,

♦ The QAnywhere client message store database and the database used by
the data synchronization application must be different database files.
However, for efficiency on small devices, you can run both databases on
the same database server.

♦ You must use your MobiLink consolidated database as the server
message store. This can be any supported MobiLink consolidated
database (Adaptive Server Anywhere, Adaptive Server Enterprise,
Oracle, DB2, or Microsoft SQL Server).

♦ You can create a separate QAnywhere messaging application or integrate
messaging into your data synchronization application.

Example The following example integrates QAnywhere messaging into a MobiLink
synchronization system that has a server named MyServer and an Adaptive
Server Anywhere client database file calledMyAppData.db.

Create the client message store database:

dbinit -i MyAppData.db

Initialize the client message store:

qaagent -id MyID -si -c "dbf=MyAppData.db"

Start the database server on the remote device with theMyAppData.dband
qanywhere.dbdatabase files.

dbsrv9 -n MyServer MyAppData.db -n MyAppData qanywhere.db -n
qanywhere

Start the QAnywhere Agent, usingqanywhere.dbas the message store:

qaagent -id MyID -c "eng=MyServer;dbn=qanywhere"

When creating a QAManager instance, use a QAManager properties file that
includes the following line:

CONNECT_PARAMS=eng=MyServer;dbn=qanywhere

You can then start the MobiLink synchronization server just as you would

51

for any other QAnywhere messaging application, but use your MobiLink
consolidated database as the server message store. For example:

dbmlsrv9 -m -c "dbf=your_consolidated.db"

52

Chapter 3. Setting Up QAnywhere Messaging

Setting up a failover mechanism
QAnywhere applications can be set up with failover mechanisms, such that
there are alternate MobiLink synchronization servers that can be used if one
fails. In order to support failover, each QAnywhere Agent must be started
with a list of MobiLink servers. The first MobiLink server specified in the
list is the primary server. The remaining servers in the list are alternate
servers.

For example, running the following command on the remote device will start
the QAnywhere Agent with one primary server and one alternate server:

qaagent -x tcpip(host=ml1.ianywhere.com)
-x tcpip(host=ml2.ianywhere.com)

Each QAnywhere Agent can have a different primary server.

The following diagram describes a failover configuration in which you have
multiple MobiLink servers and multiple QAnywhere agents. You have
multiple client message stores, but all MobiLink servers are connected to the
same server-side message store.

Client
Message
Store 1

Server
message

store

MobiLink
Server n

MobiLink
Server 1 ...

 Agent 1 Agent m

Client
Message
Store m

...

This configuration has the following characteristics:

♦ When a message transmission occurs, all messages in the server message
store will be delivered to the client message store regardless of the server
that the QAnywhere Agent is connected to.

53

♦ Push Notifications will be sent to a QAnywhere Agent only when the
QAnywhere Agent is connected to its primary server.

♦ There is a single point of failure. If the machine with the server message
store is unavailable, no messaging can take place.

54

CHAPTER 4

Writing QAnywhere Client Applications

About this chapter This chapter describes how to use the QAnywhere API. The API is provided
both as a C++ API and as the iAnywhere.QAnywhere.Client namespace.

Contents Topic: page

Introduction 56

Overview of writing a client application 58

Understanding QAnywhere message addresses 59

Initializing the QAnywhere client API 60

Setting QAManager properties 64

Sending QAnywhere messages 67

Receiving messages synchronously 69

Receiving messages asynchronously 70

Reading very large messages 72

Handling push notifications and network status changes 73

Implementing transactional messaging 75

Shutting down QAnywhere 77

Deploying QAnywhere applications 78

55

Introduction
QAnywhere client applications manage the receiving and sending of
QAnywhere messages. The applications can be written using one of the
following programming interfaces:

♦ QAnywhere .NET API A programming interface for deployment to
Windows computers using the Microsoft .NET Framework and to
handheld devices running the Microsoft .NET Compact Framework. The
QAnywhere .NET API is provided as the iAnywhere.QAnywhere.Client
namespace.

QAnywhere supports Microsoft Visual Studio 2003.

In this chapter, code samples for the .NET API use the C# programming
language, but the API can be used from any programming language
supported by Microsoft .NET.

Versions of the TestMessage sample application written in C#, Visual
Basic .NET, and managed C++ are all supplied. For more information,
see“Lesson 5: Explore the TestMessage client source code” on page 22.

☞ For more information about the QAnywhere .NET API, see
“iAnywhere.QAnywhere.Client namespace” on page 173.

♦ QAnywhere C++ API A programming interface for deployment to
Windows computers. This interface is for programmers using C++.

QAnywhere supports Microsoft Visual C++ 6.0, Microsoft Visual Studio
.NET 2003, Microsoft eMbedded Visual C++ 3.0, and Microsoft
eMbedded Visual C++ 4.0.

The QAnywhere C++ API consists of the following:

• A set of header files (the main one beingqa.hpp) located in the
QAnywhere\hsubdirectory of your SQL Anywhere Studio installation.

• An import library (qany9.lib) located in theQAnywhere\ce\arm.30\lib,
QAnywhere\lib, andQAnywhere\ce\x86.30\libsubdirectories of your
SQL Anywhere Studio installation.

• A run-time DLL (qany9.dll) located in thewin32, ce\arm.30, and
ce\x86.30subdirectories of your SQL Anywhere Studio installation.

Your source code file must include the header file in order to access the
API. The import library is used to link your application to the run-time
DLL. The run-time DLL must be deployed with your application.

A version of the TestMessage sample application written in C++ is
supplied in theSamples\QAnywheresubdirectory of your SQL
Anywhere Studio installation. For more information, see“Lesson 5:
Explore the TestMessage client source code” on page 22.

56

Chapter 4. Writing QAnywhere Client Applications

☞ For more information about the C++ API, see“QAnywhere C++ API
Reference” on page 121.

57

Overview of writing a client application

❖ To build a client application (C++ or .NET)

1. Initialize the QAnywhere client API.

☞ See“Initializing the QAnywhere client API” on page 60.

2. Set QAManager properties.

☞ See“Setting QAManager properties” on page 64.

3. Write application code and compile. See:

♦ “Sending QAnywhere messages” on page 67

♦ “Receiving messages synchronously” on page 69

♦ “Receiving messages asynchronously” on page 70

♦ “Reading very large messages” on page 72

♦ “Handling push notifications and network status changes” on page 73

♦ “Implementing transactional messaging” on page 75

♦ “Shutting down QAnywhere” on page 77

4. Deploy the application to the target device.

☞ See“Deploying QAnywhere applications” on page 78.

58

Chapter 4. Writing QAnywhere Client Applications

Understanding QAnywhere message addresses
A QAnywhere message destination has two parts:

♦ The client message store ID.

☞ For information about client message store IDs, see“Setting up the
client message store” on page 35.

♦ The application queue name.

The queue name is specified inside the application, and must be known to
instances of the sending application on other devices.

The form of the destination address is:

id \queue-name

Escape characters and addresses
When constructing addresses as strings in an application, be sure to escape
the backslash character if necessary. Follow the string escaping rules for
the programming language you are using.

Sending a message to a
JMS connector

A QAnywhere-to-JMS destination address has two parts:

♦ The connector address. This is the value of the
ianywhere.connector.address property in the connector properties file.

☞ For more information, see“Configuring the JMS connector
properties file” on page 43.

♦ The JMS queue name. This is a queue that you create using your JMS
administration tools.

☞ For more information, see“Using JMS Connectors” on page 42.

The form of the destination address is:

connector-address \JMS-queue-name

☞ For more information about addressing messages in a JMS application,
see“Addressing QAnywhere messages meant for JMS” on page 46and
“Addressing JMS messages meant for QAnywhere” on page 48.

59

Initializing the QAnywhere client API
Before you can send or receive messages using QAnywhere, you must
complete the following initialization tasks.

Setting up C++
applications

❖ To initialize the QAnywhere client API (C++)

1. Include the QAnywhere header file.

#include <qa.hpp>

qa.hppdefines the QAnywhere classes.

2. Initialize QAnywhere.

To do this, initialize a factory for creating QAManager objects.

QAManagerFactory * factory;

factory = QAnywhereFactory_init();
if(factory == NULL) {

// fatal error
}

3. Create a QAManager object.

You can create a default QAManager object as follows:

QAManager * mgr;

// Create a manager
mgr = factory->createQAManager(NULL);
if(mgr == NULL) {

// fatal error
}

You can customize a QAManager object programmatically or using a
properties file.

♦ To customize QAManager programmatically, use the setProperties
method.
☞ For more information, see“Setting properties programmatically”
on page 65.

♦ To use a properties file, specify the properties file in the
createQAManager method:

mgr = factory->createQAManager("qa_mgr.props");

whereqa_mgr.propsis the name of the properties file on the remote
device.
☞ For more information, see“Setting properties in a file” on page 64.

60

Chapter 4. Writing QAnywhere Client Applications

4. Initialize the QAManager object.

qa_bool rc;
rc=mgr->open(

AcknowledgementMode::IMPLICIT_ACKNOWLEDGEMENT))

The argument to the open method is an acknowledgement mode, which
indicates how messages are to be acknowledged. It must be one of
IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT . With implicit
acknowledgement, messages are acknowledged as soon as they are
received by the client. With explicit acknowledgement, you must call the
acknowledgement method on the QAManager to acknowledge the
message.

☞ For more information, see“Class QAManager” on page 138.

Setting up .NET
applications

You must make two changes to your Visual Studio .NET project to be able to
use it:

♦ Add a reference to the QAnywhere .NET DLL. Adding a reference tells
Visual Studio.NET which DLL to include to find the code for the
QAnywherĕa.NET API.

♦ Add a line to your source code to reference the QAnywhere .NET API
classes. In order to use the QAnywhere .NET API, you must add a line to
your source code to reference the data provider. You must add a different
line for C# than for Visual Basic.NET.

In addition, you must initialize the QAnywhere client API.

❖ To add a reference to the QAnywhere .NET API in a Visual Studio
.NET project

1. Start Visual Studio .NET and open your project.

2. In the Solution Explorer window, right-click the References folder and
choose Add Reference from the popup menu.

The Add Reference dialog appears.

3. On the .NET tab, click Browse to locate
iAnywhere.QAnywhere.Client.dll. (The default location is
\Program̆aFiles\Sybase\SQLăAnywherĕa9\win32). Select the DLL and
click Open.

Note that there is a separate version of the DLL for each of Windows and
Windows̆aCE.

61

4. You can verify that the DLL is added to your project. Open the Add
Reference dialog and then click the .NET tab.
iAnywhere.QAnywhere.Client.dll appears in the Selected Components
list. Click OK to close the dialog.

The DLL is added to the References folder in the Solution Explorer
window of your project. Referencing the data provider classes in your
source code.

❖ To reference the QAnywhere .NET API classes in your code

1. Start Visual Studio .NET and open your project.

2. If you are using C#, add the following line to the list of using directives at
the beginning of your project:

using iAnywhere.QAnywhere.Client;

3. If you are using Visual Basic .NET, add the following line at the
beginning of your project before the line Public Class Form1:

Imports iAnywhere.QAnywhere.Client

This line is not strictly required. However, it allows you to use short
forms for the QAnywhere classes. Without it, you can still use

iAnywhere.QAnywhere.Client.QAManager
mgr =

new iAnywhere.QAnywhere.Client.QAManagerFactory.Instance.C
reateQAManager(

"qa_manager.props");

instead of

QAManager mgr = QAManagerFactory.Instance.CreateQAManager(
"qa_manager.props");

in your code.

❖ To initialize the QAnywhere client API (.NET)

1. Include the iAnywhere.QAnywhere.Client namespace.

using iAnywhere.QAnywhere.Client;

2. Create a QAManager object.

You can create a default QAManager object as follows:

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager(null);

62

Chapter 4. Writing QAnywhere Client Applications

You can alternatively create a QAManager object that is customized
using a properties file. The properties file is specified in the
CreateQAManager method:

mgr = QAManagerFactory.Instance.CreateQAManager(
"qa_mgr.props");

whereqa_manager.propsis the name of the properties file that resides on
the remote device.

3. Initialize the QAManager object.

mgr.Open(
AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which
indicates how messages are to be acknowledged. It must be one of
IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT . With implicit
acknowledgement, messages are acknowledged as soon as they are
received by the client. With explicit acknowledgement, you must call the
acknowledgement method on the QAManager to acknowledge the
message.

☞ For more information, see“QAManager class” on page 195.

You are now ready to send messages.

63

Setting QAManager properties
You have two options for setting QAManager properties:

♦ Create a properties text file to define the QAnywhere Manager properties
that will be used by one Manager instance.

♦ Programatically set QAnywhere Manager properties.

Setting properties in a file

The information in a QAManager properties file is specific to one instance of
a QAManager. An instance of QAManager can only be used by the thread
that creates it. Applications may use more than one QAManager, but each
QAManager cannot be shared by more than one thread.

When using a properties file, it must be configured for and installed on the
remote device with each deployed copy of your application.

You specify the name of this file in your application. If the properties file
does not reside in the same directory as your client executable, you must
also specify the absolute path. If you want to use the default settings for the
properties, use NULL instead of a filename.

Values set in the file permit you to enable or disable some of the QAnywhere
features, such as automatic message compression and logging.

☞ For more information, see“QAManager properties” on page 66.

Lines of this file that begin with the character # are treated as comments.

Example For example, suppose you have a QAnywhere Manager properties file called
mymanager.propswith the following content:

COMPRESSION_LEVEL=9
CONNECT_PARMS=DBF=mystore.db

When you create QAManager, you reference the file by name.

Following is an example using C++:

QAManagerFactory * qa_factory;
QAManager * mgr;

qa_factory = QAnywhereFactory_init();
qa_factory->createQAManager("mymanager.props");
mgr->open(AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT);

Following is an example using C#:

64

Chapter 4. Writing QAnywhere Client Applications

QAManager mgr;

mgr = QAManagerFactory.Instance.CreateQAManager(
"mymanager.props");

mgr.Open(AcknowledgeMode.EXPLICIT_ACKNOWLEDGEMENT);

Setting properties programmatically

You can use the QAManager setProperties method to set properties
programmatically. Setting QAManager properties programmatically must be
done before calling the Open() method of a QAManager instance.

Example The following C++ example sets properties programmatically. When you
create the QAManager, you specify the property settings.

QAManagerFactory * qa_factory;
QAManager * mgr;

qa_factory = QAnywhereFactory_init();
mgr->createQAManager(NULL);
mgr->setProperty("COMPRESSION_LEVEL", "9");
mgr->setProperty("CONNECT_PARAMS", "DBF=mystore.db");
mgr->open(AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT);

The following C# example sets properties programmatically. When you
create the QAManager, you specify the property settings.

QAManager mgr;

mgr = QAManagerFactory.Instance.CreateQAManager(null);
mgr.SetProperty("COMPRESSION_LEVEL", "9");
mgr.SetProperty("CONNECT_PARAMS", "DBF=mystore.db");
mgr.Open(AcknowledgeMode.EXPLICIT_ACKNOWLEDGEMENT);

See also ♦ For .NET:“iAnywhere.QAnywhere.Client namespace” on page 173
♦ For C++:“QAnywhere C++ API Reference” on page 121
♦ “QAManager properties” on page 66

65

QAManager properties

The following table lists all the available properties.

Property Notes

COMPRESSION_LEVEL= n Set the compression level.

n is the compression factor. It is an
integer between 0 and 9, 0 indicating
no compression and 9 indicating
maximum compression.

CONNECT_PARAMS=connect-
string

A connection string used by the
QAnywhere Manager to connect to
the message store database. The con-
nect options are written in the form
keyword=value. For a list of op-
tions, see“Connection parameters”
[ASA Database Administration Guide,
page 176].

LOG_FILE= ”filename” The name of a file to which logging
messages are to be written. Implicitly
enables logging.

MAX_IN_MEMORY_-
MESSAGE_SIZE=n

When reading a message,n is the
largest message, in bytes, for which
a buffer will be allocated. A message
larger thann bytes must be read using
streaming operations. The default is
1000000 on Windows and 64000 on
Windows CE.

66

Chapter 4. Writing QAnywhere Client Applications

Sending QAnywhere messages
The following procedures describe how to send messages from QAnywhere
applications. These procedures assume that you have created and opened a
QAManager object.

Sending a message from your application doesnot ensure it is delivered
from your device. It simply places the message on a queue to be delivered.
The QAnywhere Agent carries out the task of sending the message to the
MobiLink synchronization server, which in turn delivers it to its destination.

❖ To send a message (C++)

1. Create a new message.

You can create either a text message or a binary message. Use the method
for the type of message that you want to send.

QATextMessage * msg;
msg = mgr->createTextMessage();

2. Set message properties.

Use methods of the QATextMessage or QABinaryMessage class to set
properties.

3. Put the message on the queue, ready for sending.

if(msg != NULL) {
if(!mgr->putMessage(" store-id \\queue-name ", msg))

{
// display error using mgr->getLastErrorMsg()

}
mgr->deleteMessage(msg);

}

wherestore-idandqueue-nameare strings that combine to form the
destination address.

❖ To send a message (.NET)

1. Create a new message.

You can create either a text message or a binary message. Use the method
for the type of message that you want to send.

QATextMessage msg;
msg = mgr.CreateTextMessage();

2. Set message properties.

Use methods of the QATextMessage or QABinaryMessage class to set
properties.

67

3. Put the message on the queue, ready for sending.

mgr.PutMessage(" store-id \\queue-name ", msg);

wherestore-idandqueue-nameare strings that combine to form the
destination address.

68

Chapter 4. Writing QAnywhere Client Applications

Receiving messages synchronously
To receive messages synchronously, your application explicitly polls the
queue for messages. It may poll the queue periodically, or when a user
initiates a particular action such as clicking a Refresh button.

❖ To receive messages synchronously (C++)

1. Declare message objects to hold the incoming messages.

QAMessage * msg;
QATextMessage * text_msg;

2. Poll the message queue, receiving messages:

if(mgr->start()) {
for(;;) {

msg = mgr->getMessageNoWait("queue_name");
if(msg == NULL) break;
text_msg = msg->castToTextMessage();
if(text_msg != NULL) {

// display text message using
// text_msg->getText()

}
sleep(time-period);

}
mgr->stop();

}

❖ To receive messages synchronously (.NET)

1. Declare message objects to hold the incoming messages.

QAMessage msg;
QATextMessage text_msg;

2. Poll the message queue, collecting messages:

if(mgr.start()) {
for(;;) {

msg = mgr.GetMessageNoWait("queue_name");
if(msg == null) break;
addMessage(msg);

}
mgr.stop();

}

69

Receiving messages asynchronously
To receive messages asynchronously you must write and register a message
listener function that is called by QAnywhere when a message appears in the
queue. The message listener takes the incoming message as a parameter.
The task you perform in your message listener depends on your application.
For example, in the TestMessage sample application that is installed with
SQL Anywhere Studio, the message listener adds the message to the list of
messages in the main TestMessage window.

❖ To receive messages asynchronously (C++)

1. Create a class that implements the QAMessageListener interface.

class MyClass: public QAMessageListener
{

private:
void onMessage(QAMessage * Msg);

};

2. Implement the onMessage method.

The QAMessageListener interface contains one method, onMessage.
Each time a message arrives in the queue, the QAnywhere library calls
this method, passing the new message as the single argument.

void MyClass::onMessage(QAMessage * msg)
{

// process msg
}

Be particularly careful to handle errors. Failure to do so can cause you to
miss messages.

3. Register the message listener.

my_listener = new MyClass();
mgr->setMessageListener("queue-name", my_listener);

❖ To receive messages asynchronously (.NET)

1. Implement a message handler.

private void onMessage(QAMessage msg)
{

// process msg
}

2. Register the message handler.

70

Chapter 4. Writing QAnywhere Client Applications

To register a message handler, create a QAManager.MessageListener
object that has the message handler function as its argument. Then use
the QAManager.SetMessageListener function to register the
MessageListener with a specific queue.

QAManager.MessageListener listener;
listener=new QAManager.MessageListener(onMessage);
mgr.SetMessageListener("queue-name", listener);

wherequeue-nameis a string and is the name of the queue the
QAManager object listens to.

71

Reading very large messages
Sometimes messages are so large that they exceed the limit set with the
QAManager property MAX_IN_MEMORY_MESSAGE_SIZE or its
defaults of 1MB on Windows and 64KB on Windows CE. In this case the
message cannot be read from memory, so the usual read methods such as
readInt and readString cannot be used. However, you can read very large
messages directly from the message store in pieces. To do this, use
QATextMessage.readText or QABinaryMessage.readBinary in a loop. At the
end of the read, -1 is returned.

When you do this, you cannot use a QAManager that was opened with
IMPLICIT_ACKNOWLEDGEMENT. You must use a QAManager that was
opened with EXPLICIT_ACKNOWLEDGEMENT and you must do all
calls to readText or readBinary before acknowledging the message.

72

Chapter 4. Writing QAnywhere Client Applications

Handling push notifications and network status
changes

☞ For background information about using notifications, see“Scenario for
messaging with push notifications” on page 6.

Notifications and network status changes are both sent to QAnywhere
applications assystem messages. System messages are exactly the same as
other messages, but are received in a separate queue namedsystem.

For example, the following C# code deals with system and normal messages.
It assumes that you have defined the message handling functions onMessage
and onSystemMessage that implement the application logic for processing
the messages.

// Declare the message listener and system listener
private QAManager.MessageListener _receiveListener;
private QAManager.MessageListener _systemListener;
...

// Create a MessageListener that uses the appropriate message
handlers

_receiveListener = new QAManager.MessageListener(onMessage);
_systemListener = new QAManager.MessageListener(onSystemMessage

);
...

// Register the message handler
mgr.SetMessageListener(queue-name , _receiveListener);
mgr.SetMessageListener("system", _systemListener);

The system message handler may query the message properties to identify
what information it contains. The message type property indicates if the
message holds a network status notification. For example, for a message
msg:

if(msg.PropertyExists(MessageProperties.MSG_TYPE)) {
msg_type=(MessageType)msg.GetIntProperty(...);
...

} else {
// Process regular message

}

73

msg_type = (MessageType)msg.GetIntProperty(
MessageProperties.MSG_TYPE);

if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION) {
// Process a network status change

} else if (msg_type == MessageType.PUSH_NOTIFICATION) {
// Process a push notification

} else if (msg_type == MessageType.REGULAR) {
// This message type should not be received on the system

// queue. Take appropriate action here.
}

See also ♦ ias_Status in“Message headers” on page 110
♦ ias_Network in“Client store properties” on page 113

74

Chapter 4. Writing QAnywhere Client Applications

Implementing transactional messaging
Transactional messaging provides the ability to group messages in a way
that guarantees that either all messages in the group are delivered, or none
are. This is more commonly referred to as a singletransaction.

When implementing transactional messaging, you create a special
QAManager object called a transactional manager.

❖ To create a transactional manager (C++)

1. Initialize QAnywhere.

This step is exactly the same as in non-transactional messaging.

#include <qa.hpp>
QAManagerFactory * factory;

factory = QAnywhereFactory_init();
if(factory == NULL) {

// fatal error
}

2. Create a transactional manager.

QATransactionalManager * mgr;

mgr = factory->createQATransactionalManager(NULL);
if(mgr == NULL) {

// fatal error
}

As with non-transactional managers, you can specify a properties file to
customize QAnywhere behavior. In this example, no properties file is
used.

3. Initialize the manager.

if(!mgr->open()) {
// display message using mgr->getLastErrorMsg();

}

You are now ready to send messages. The following procedure sends two
messages in a single transaction.

❖ To send multiple messages in a single transaction (C++)

1. Initialize message objects.

QATextMessage * msg_1;
QATextMessage * msg_2;

75

2. Send the messages.

The following code sends two messages in a single transaction:

msg_1 = mgr->createTextMessage();
if(msg_1 != NULL)
{

msg_2 = mgr->createTextMessage();
if(msg_2 != NULL)
{

if(!mgr->putMessage("jms_1 \\queue_name", msg_1))
{

// display message using mgr->getLastErrorMsg();
} else {

if(!mgr->putMessage("jms_1 \\queue_name", msg_2))
{

// display message using mgr->getLastErrorMsg();
} else {

mgr->commit();
}

}
mgr->deleteMessage(msg_2);

}
mgr->deleteMessage(msg_1);

}

The commit() method actually sends the messages.

76

Chapter 4. Writing QAnywhere Client Applications

Shutting down QAnywhere
After you have completed sending and receiving messages, you can shut
down the QAnywhere messaging system by completing the following step.

❖ To shut down QAnywhere (C++)

1. Close the QAManager.

mgr->stop();
mgr->close();

2. Terminate the factory.

QAnywhereFactory_term();

This step shuts down the messaging part of your application.

❖ To shut down QAnywhere (.NET)

1. Stop and close the QAManager.

mgr.Stop();
mgr.Close();

77

Deploying QAnywhere applications
☞ For information about the files needed to deploy QAnywhere
applications, see“Deploying QAnywhere applications”[MobiLink
Administration Guide,page 561].

78

CHAPTER 5

QAnywhere Agent

About this chapter This chapter describes the syntax of the QAnywhere Agent, qaagent.

☞ For an overview of how to run the QAnywhere Agent, see“Running the
QAnywhere Agent” on page 37.

Contents Topic: page

QAnywhere Agent syntax 80

79

QAnywhere Agent syntax
Use the QAnywhere Agent to send and receive messages for all QAnywhere
applications on a single client device.

Usage The QAnywhere Agent controls other processes, which handle various
messaging tasks. When you start the QAnywhere Agent command it spawns
the following processes:

♦ dbmlsync The dbmlsync executable is the MobiLink synchronization
client. MobiLink synchronization is used to send and receive messages,
so the dbmlsync executable is required.

♦ dblsn The dblsn executable is the Listener utility. It receives push
notifications. If you are not using push notifications, you do not need to
supply the dblsn executable when you deploy your application, and you
must run qaagent with push_notifications disabled.

♦ database server The client message store is an Adaptive Server
Anywhere database. QAnywhere Agent requires the Adaptive Server
Anywhere database server to run the database. For Windows CE, the
database server isdbsrv9.exe. For Windows, the database server is the
personal database serverdbeng9.exe.

The QAnywhere Agent can spawn a database server or connect to a
running server, depending on the communication parameters that you
specify in the qaagent -c option.

Each of these processes is managed by the QAnywhere Agent, and does not
need to be managed separately.

☞ For deployment information, see“Deploying QAnywhere applications”
on page 78.

Syntax qaagent [option ...]

Option Description

@data Reads options from the specified environment
variable or configuration file. See“@data option”
on page 82.

-c connection-string Specify a connection string to the client message
store. See“-c option” on page 82.

-id id Specify the ID of the client message store that the
QAnywhere Agent is to connect to. See“-id option”
on page 84.

80

Chapter 5. QAnywhere Agent

Option Description

-iu upload-size Controls the size, in bytes, of incremental up-
loads. Use k or m to specify units of kilobytes
or megabytes, respectively. See“-iu option” on
page 85.

-la_port number Specify the port on which the Listener listens for
notifications from the MobiLink synchronization
server. The default is 5001. See“-la_port option”
on page 85.

-mp password Specify the MobiLink password for the ID being
synchronized. See“-mp option” on page 85.

-o logfile Log output messages to this file. See“-o option” on
page 86.

-on size Specify a maximum size for the QAnywhere Agent
message log file, after which the file is renamed
with the extension .old and a new file is started. See
“-on option” on page 86.

-ossize Specifies a maximum size for the QAnywhere Agent
message log file, after which a new log file with a
new name is created and used. See“-os option” on
page 87.

-ot logfile Truncate file and log output messages to file. See
“-ot option” on page 87.

-policy policy-type Specify the transmission policy used by the QAny-
where Agent. See“-policy option” on page 88.

-port number Specify the port on which to listen for messages
from the Listener. The default is 5002. See“-port
option” on page 90.

-push_notifications
value

Enable or disable push notifications. The default
is enabled. See“-push_notifications option” on
page 90.

-q Start the QAnywhere Agent in quiet mode with
the window minimized in the system tray. See“-q
option” on page 90.

-qi Start the QAnywhere Agent in quiet mode with the
window completely hidden. See“-qi option” on
page 91.

81

Option Description

-si Initialize the database for use as a client message
store. See“-si option” on page 91.

-su Upgrades a client message store from SQL Any-
where Studio version 9.0.1 to version 9.0.2. See
“-su option” on page 92.

-v [levels] Specify the level of verbosity. See“-v option” on
page 92.

-x { http |tcpip } [
(keyword=value;...)]

Specify protocol options for communication with
the MobiLink synchronization server. See“-x
option” on page 93.

@data option

Function Reads options from the specified environment variable or configuration file.

Syntax qaagent @{ filename| environment-variable} ...

Remarks With this option, you can put command line options in an environment
variable or configuration file. If both exist with the name you specify, the
environment variable is used.

☞ For more information about configuration files, see“Using configuration
files” [ASA Database Administration Guide,page 495].

If you want to protect passwords or other information in the configuration
file, you can use the File Hiding utility to obfuscate the contents of the
configuration file.

☞ See“Hiding the contents of files using the dbfhide command-line
utility” [ASA Database Administration Guide,page 524].

-c option

Function Specify a connection string to the client message store.

Syntax qaagent -cconnection-string...

Defaults ♦ uid - ml_qa_user
♦ pwd -qanywhere
♦ dbn - id (whereid is the client message store ID, and is specified with the

-id option or defaults to the device name)
♦ dbf - id.db (whereid is the client message store ID, and is specified with

the -id option or defaults to the device name)

82

Chapter 5. QAnywhere Agent

Remarks The connection string must specify connection parameters in the form
keyword=value, separated by semicolons, with no spaces between
parameters.

Connection parameters must be included in the ODBC data source
specification if not given in the command line. Check your RDBMS and
ODBC data source to determine required connection data.

☞ For a complete list of connection parameters, see“Connection
parameters”[ASA Database Administration Guide,page 176].

Following are some of the connection parameters you may need to use:

♦ dbf= filename If you want QAnywhere Agent to start the client
message store (rather than starting it from another application), you must
specify a database file name. The default value of the database file is the
name of the database. The default name for the database is the device
name followed by.db; or you can specify a name with the -dbn
connection parameter.

♦ dbn= database-name If the client message store is already running
when the QAnywhere Agent starts, you can connect to it by specifying a
database name rather than a database file. The QAnywhere Agent looks
on the default Adaptive Server Anywhere database server for a database
with this name.

The default database name of the client message store is the ID; for
example, agent1. You can specify a name for the ID using the qaagent -id
option, or use the default client message store ID, which is the device
name.

♦ eng=server-name If you want to use a database server that is already
running, use this option to specify the server name. The default value is
the name of the database.

♦ uid= user Specify a database user ID to connect to the client message
store. This is required if you change the defaults.

♦ pwd= password Specify the password for the database user ID. This is
required if you change the defaults.

♦ dbkey= key If the client message store is encrypted using strong
encryption, specify the encryption key required to access the database.

See also ♦ “Connection parameters”[ASA Database Administration Guide,page 176]
♦ “Connecting to a Database”[ASA Database Administration Guide,page 37]
♦ “Introduction to iAnywhere Solutions ODBC Drivers”[ODBC Drivers for

MobiLink and Remote Data Access,page 1]

83

Example qaagent -id Device1 -c "DBF=qanyclient.db" -x
tcpip(host=hostname) -policy automatic

-id option

Function Specify the ID of the client message store that the QAnywhere Agent is to
connect to.

Syntax qaagent -id id ...

Default The default value of the ID is the machine name on which the Agent is
running. In some cases, machine names may not be unique, in which case
you must use the -id option.

Remarks Each client message store is represented by a unique sequence of characters
called the message store ID. If you do not supply an ID when you first
connect to the message store, the default is the device name. On subsequent
connections, you must always specify the same message store ID with the
-id option.

The message store ID is a MobiLink user name, and it is required because in
all MobiLink applications, each remote database must have a unique
MobiLink user name. As with all MobiLink user names, this must be added
to a MobiLink system table on the consolidated database. You must do this
even if you use the default, unless you use custom authentication.

☞ For more information, see“Creating MobiLink users”[MobiLink Clients,
page 10].

You cannot use the following characters in an ID:

♦ double quotes

♦ control characters

♦ double backslashes

In addition,

♦ You can use a single backslash only if it is used as an escape character.

♦ If your client message store database has the QUOTED_IDENTIFIER
database option set to off (not the default), then your ID can only include
alphanumeric characters and underscores, at signs, pounds, and dollar
signs.

See also ♦ “About MobiLink users”[MobiLink Clients,page 10]
♦ “Setting up the client message store” on page 35

84

Chapter 5. QAnywhere Agent

-iu option

Function Synchronize messages using the MobiLink incremental uploads feature.

Syntax qaagent -iuupload-size[k | m] ...

Default Uploads are sent as a single unit.

Remarks Using -iu, QAnywhere can synchronize messages using the MobiLink
incremental uploads feature. This option specifies a minimum incremental
scan volume in units of bytes.

Use the suffix k or m to specify units of kilobytes or megabytes, respectively.

When this option is specified, uploads are sent to the MobiLink
synchronization server in one or more parts. This could be useful if a site has
difficulty maintaining a connection for long enough to complete the full
upload. When the option is not set, uploads are sent as a single unit.

Incremental uploads may be less efficient in that they send the schema with
each increment.

See also ♦ “Increment (inc) extended option”[MobiLink Clients,page 121]

-la_port option

Function Specify the Listener port.

Syntax qaagent -la_portnumber...

Default 5001

Remarks The port number on which the Listener listens for notifications from the
MobiLink synchronization server. Notifications are used to inform the
QAnywhere Agent that a message is waiting.

If no Listener is running on the device, qaagent starts the Listener on the
specified port. If a Listener is running, you must specify the port that it is
running on (or use the default port).

See also ♦ “Scenario for messaging with push notifications” on page 6
♦ “-push_notifications option” on page 90

-mp option

Function Specify the MobiLink password for the client message store ID.

Syntax qaagent -mppassword...

Default None

85

Remarks If the MobiLink synchronization server requires user authentication, use -mp
to supply the MobiLink password corresponding to the ID. The ID identifies
the client message store and is specified with the -id option.

See also ♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9]
♦ “-id option” on page 84

-o option

Function Sends output to a log file.

Syntax qaagent -ologfile ...

Default None

Remarks The QAnywhere Agent logs output to the file name that you specify. The
Adaptive Server Anywhere synchronization client (dbmlsync) logs output to
a file with the same name, but including the suffix_sync. The Listener utility
(dblsn) logs output to a file with the same name, but including the suffix_lsn.

For example, if you specify the log filec:\tmp\mylog.out, then qaagent will
log toc:\tmp\mylog.out, dbmlsync will log toc:\tmp\mylog_sync.outand
dblsn will log toc:\tmp\mylog_lsn.out.

See also ♦ “-ot option” on page 87
♦ “-on option” on page 86
♦ “-os option” on page 87
♦ “-v option” on page 92

-on option

Function Specifies a maximum size for the QAnywhere Agent message log file, after
which the file is renamed with the extension.old and a new file is started.

Syntax qaagent -on size [k | m]. . .

Default None

Description Thesize is the maximum file size for the output log, in bytes. Use the suffix
k or m to specify units of kilobytes or megabytes, respectively. The
minimum size limit is 10KB.

When the log file reaches the specified size, the QAnywhere Agent renames
the output file with the extension.old, and starts a new one with the original
name.

86

Chapter 5. QAnywhere Agent

Note
If the .old file already exists, it is overwritten. To avoid losing old log files,
use the -os option instead.

This option cannot be used with the -os option.

See also ♦ “-o option” on page 86
♦ “-ot option” on page 87
♦ “-os option” on page 87
♦ “-v option” on page 92

-os option

Function Specifies a maximum size for the QAnywhere Agent message log file, after
which a new log file with a new name is created and used.

Syntax dbmlsrv9 -os size [k | m]. . .

Default None

Description Thesize is the maximum file size for logging output messages. The default
units is bytes. Use the suffix k or m to specify units of kilobytes or
megabytes, respectively. The minimum size limit is 10KB.

Before the QAnywhere Agent logs output messages to a file, it checks the
current file size. If the log message will make the file size exceed the
specified size, the QAnywhere Agent renames the message log file to
yymmddxx.mls.In this instance,xx are sequential characters ranging from
00 to 99, andyymmdd represents the current year, month, and day.

You can use this option to prune old message log files to free up disk space.
The latest output is always appended to the file specified by -o or -ot.

You cannot use this option with the -on option.

See also ♦ “-o option” on page 86
♦ “-ot option” on page 87
♦ “-on option” on page 86
♦ “-v option” on page 92

-ot option

Function Truncates the log file and appends output messages to it.

Syntax qaagent -otlogfile ...

Default None

Remarks The QAnywhere Agent logs output to the file name that you specify. The

87

Adaptive Server Anywhere synchronization client (dbmlsync) logs output to
a file with the same name, but including the suffix _sync. The Listener utility
(dblsn) logs output to a file with the same name, but including the suffix_lsn.

For example, if you specify the log filec:\tmp\mylog.out, then qaagent will
log toc:\tmp\mylog.out, dbmlsync will log toc:\tmp\mylog_sync.outand
dblsn will log toc:\tmp\mylog_lsn.out.

See also ♦ “-o option” on page 86
♦ “-on option” on page 86
♦ “-os option” on page 87
♦ “-v option” on page 92

-policy option

Function Specify a policy to determine when to send and receive messages.

Syntax qaagent -policypolicy-type ...

policy-type: ondemand| scheduled[interval] | automatic | rules-file

Defaults ♦ Scheduled policy with transmissions every 10 seconds.
♦ If you do not specify persistence rules in a transmission rules file,

messages are deleted when the final status of the message is determined to
be received or expired.

Remarks QAnywhere uses a policy to determine when to send and receive messages.
Thepolicy-typecan be one of the following:

♦ ondemand Only send messages when the QAnywhere client
application makes the appropriate function call.

The QAManager.PutMessage() method causes messages to be queued
locally. These messages are not transmitted to the server until the
QAManager.TriggerSendReceive() method is called. Similarly, messages
waiting on the server are not sent to the client until the
TriggerSendReceive() method is called by the client.

You can an use ondemand policy to respond to notifications, but must do
so in your application. A notification causes a system message to be
delivered to the QAnywhere client. In your application, you may choose
to respond to this system message by calling TriggerSendReceive().

☞ For information about notifications, see“Scenario for messaging
with push notifications” on page 6.

♦ scheduled Send and receive messages at a specified interval. The
default is 10 seconds.

Transmission of messages between the client and the server takes place at
a specified time interval.

88

Chapter 5. QAnywhere Agent

The QAManager.PutMessage() method causes messages to be queued
locally. These messages are not transmitted until the time interval has
elapsed. Messages queued on the server for delivery to the client are also
transmitted when the time interval has elapsed.

If push notifications are enabled, messages queued on the server for
delivery to the client are transmitted when the next time interval elapses.

The TriggerSendReceive() method can be used to override the time
interval. It forces a message transmission to occur before the time
interval elapses.

The optionalinterval argument is the number of seconds between send
and receive operations. For example, the following command schedules
the QA Agent to synchronize messages every 15 minutes:

qaagent.exe -policy scheduled[900]

♦ automatic Receive messages when a push notification is received or
when one of the other events, described below, occurs.

The QAnywhere agent attempts to keep message queues as current as
possible. Any of the following events cause messages queued on the
client to be delivered to the server and messages queued on the server to
be delivered to the client:

• Invoking the PutMessage() method.

• Invoking the TriggerSendReceive() method.

• A notification.

☞ For information about notifications, see“Scenario for messaging
with push notifications” on page 6.

• A message status change on the client. For example, a status change
occurs when an application retrieves a message from a local queue
which causes the message status to change from pending to delivered.

♦ rules-file Specify a transmission rules file. The transmission rules file
can indicate a more complicated set of rules to determine when messages
are sent.

☞ For more information about transmission rules, see“Transmission
rules” on page 102.

See also ♦ “Determining when message transmission should occur on the client” on
page 37

♦ “QAnywhere C++ API Reference” on page 121
♦ “iAnywhere.QAnywhere.Client namespace” on page 173

89

-port option

Function Specify a port for the QAnywhere Agent.

Syntax qaagent -portnumber...

Default 5002

Remarks The port number on which QAnywhere Agent listens for communications
from the Listener.

The default value is5002. If you set a different port, the QAnywhere Agent
automatically configures the Listener to communicate on that port.

-push_notifications option

Function Specify whether server notifications are supported.

Syntax qaagent -push_notifications{ enabled| disabled} ...

Default Enabled.

Remarks If you do not want to use notifications, set this option to disabled. You then
do not have to deploy thedblsn.exeexecutable with your clients.

☞ For a description of this setup, see“Simple messaging scenario” on
page 5.

Thedblsn.exeexecutable (the Listener) is not supported on Windows 95 or
Windows NT.

If you are using UDP, you cannot use push notifications with ActiveSync
due to the limitations of the UDP implementation of ActiveSync.

☞ To use push notifications with SMS, see“Using push notifications with
SMS” on page 40.

-q option

Function Start the QAnywhere Agent in quiet mode with the window minimized in
the system tray.

Syntax qaagent -q...

Default None.

Remarks When you start the QAnywhere Agent in quiet mode with -q, the main
window is minimized to the system tray. In addition, the database server for
the message store is started with the -qi option.

90

Chapter 5. QAnywhere Agent

See also ♦ “-qi option” on page 91

-qi option

Start the QAnywhere Agent in quiet mode with the window completely
hidden.

Syntax qaagent -qi...

Default None.

Remarks When you start the QAnywhere Agent in quiet mode, on Windows desktop
the main window is minimized to the system tray, and on Windows CE the
main window is hidden. In addition, the database server for the message
store is started with the -qi option.

Quiet mode is useful for some Windows CE applications because it prevents
the situation where the application is closed when Windows CE reaches its
limit of 32 concurrent processes. Quiet mode allows the QAnywhere Agent
to run like a service.

When in -qi quiet mode, you can only stop the QAnywhere Agent by
runningqastop.

See also ♦ “-q option” on page 90

-si option

Function Initialize the database for use as a client message store.

Syntax qaagent -c “connection-string" -si ...

Default None. You only use this option once, to initialize the client message store.

Remarks Before using this option, you must create an Adaptive Server Anywhere
database. This database should not be used for any purpose other than as a
message store. When you use -si, the QAnywhere Agent initializes the
database with database objects such as MobiLink system tables; it then exits
immediately.

When you run -si, you must specify a connection string with the -c option
that indicates which database to initialize. The connection string specified in
the -c option should also specify a user ID with DBA privileges. If you do
not specify a user ID and password, the default user DBA with password
SQL is used.

The -si option creates a database user namedml_qa_userand password
qanywherefor the client message store. The user called ml_qa_user has
permissions suitable for QAnywhere applications only. If you do not change

91

this database user name and password, then you do not need to specify the
pwd or uid in the -c option when you start qaagent. If you change either of
them, then you must supply the uid and/or pwd in the -c option on the
qaagent command line.

☞ You should change the default passwords. To change them, use the
GRANT statement. For more information, see“Changing a password”[ASA
Database Administration Guide,page 434].

The -si option does not provide an ID for the client message store. You can
assign an ID using the -id option when you run -si or the next time you run
qaagent; or, if you do not do that, qaagent will by default assign the device
name as the ID.

When a message store is set up but does not have an ID, QAnywhere
applications local to the message store can send and receive messages, but
cannot exchange messages with remote QAnywhere applications. Once an
ID is assigned, remote messaging may also occur.

See also ♦ “Setting up the client message store” on page 35
♦ “Creating a secure client message store” on page 96

Examples The following command connects to a database calledqaclient.dband
initializes it as a QAnywhere client message store. The QAnywhere Agent
immediately exits when the initialization is complete.

qaagent -si -c "DBF=qaclient.db"

-su option

Function Upgrades a client message store from SQL Anywhere Studio version 9.0.1
to version 9.0.2.

Syntax qaagent -su -c“connection-string” ...

Remarks This option is useful when you have a client message store with messages in
it that was created with SQL Anywhere Studio 9.0.1.

Specify the database to upgrade in the connection string. Exits when done.
This operation cannot be undone.

-v option

Function Allows you to specify what information is logged to the message log file and
displayed in the synchronization window. A high level of verbosity may
affect performance and should normally be used in the development phase
only.

92

Chapter 5. QAnywhere Agent

Syntax qaagent -vlevels ...

Default Minimal verbosity.

Remarks The -v option affects the log files and synchronization window. You only
have a message log if you specify -o or -ot on the qaagent command line.

If you specify –v alone, a small amount of information is logged.

The values oflevelsare as follows. You can use one or more of these
options at once; for example, -vlm.

♦ + Turn on all logging options.

♦ l Show all MobiLink Listener logging. This causes the MobiLink
Listener (dblsn) to start with verbosity level -v3.

☞ For more information, see the -v option in the“The Listener utility”
[MobiLink Server-Initiated Synchronization User’s Guide,page 38].

♦ m Show all dbmlsync logging. This causes the Adaptive Server
Anywhere synchronization client (dbmlsync) to start with verbosity level
-v+.

☞ For more information, see the dbmlsync“-v option” [MobiLink
Clients,page 150].

♦ n Show all network status change notifications. the QAnywhere Agent
receives these notifications from the Listener utility.

♦ p Show all message push notifications. The QAnywhere Agent
receives these notifications from the Listener utility via the QAnywhere
server, which includes a MobiLink Notifier.

♦ q Show the SQL that is used to represent the transmission rules.

♦ s Show all the message synchronizations that are initialized by
QAnywhere Agent.

See also ♦ “-o option” on page 86
♦ “-ot option” on page 87
♦ “-on option” on page 86
♦ “-os option” on page 87

-x option

Function Specify the network protocol and protocol options for communication with
the MobiLink synchronization server.

Syntax qaagent -xprotocol [(protocol-options;...) ...

93

protocol: http , tcpip, https, or https_fips

protocol-options: keyword=value

Remarks The -x option is required when the MobiLink synchronization server is not
on the same device as the QAnywhere Agent.

You can specify -x multiple times. This allows you to set up failover to
multiple MobiLink synchronization servers. When you set up failover, the
QAnywhere Agent attempts the MobiLink synchronization servers in the
order in which you enter them on the command line.

The QAnywhere Agent also has a Listener that receives notifications from
the MobiLink synchronization server that messages are available at the
server for synchronization. This Listener only uses the first MobiLink
synchronization server that is specified, and does not fail over to others.

See also ♦ For a complete list of protocol options that you can set for
communication with the MobiLink synchronization server, see the
dbmlsrv9“-x option” [MobiLink Administration Guide,page 214].

♦ “Encrypting the communication stream” on page 98
♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,

page 165]
♦ “Setting up a failover mechanism” on page 53

94

CHAPTER 6

Writing Secure Messaging Applications

About this chapter This chapter describes techniques for implementing a secure messaging
solution.

Contents Topic: page

Creating a secure client message store 96

Encrypting the communication stream 98

Using password authentication with MobiLink 99

95

Creating a secure client message store
To create a secure client message store, you can:

♦ Change the default passwords.

☞ See“Manage client message store passwords” on page 96.

♦ Encrypt the contents of the message store.

☞ See“Encrypting the client message store” on page 97.

Example First, create an Adaptive Server Anywhere database with an encryption key:

dbinit mystore.db -ek key

Next, initialize the database as a client message store:

qaagent -id mystore -si -c "dbf=mystore.db;dbkey=some_phrase"

Next, create a new remote user with DBA authority, and a password for this
user. Revoke the default QAnywhere user and change the password of the
default DBA user. Log in as user DBA with password SQL and execute the
following SQL statements:

GRANT CONNECT TO secure_user IDENTIFIED BY secure_password
GRANT MEMBERSHIP IN GROUP ml_qa_user_group TO secure_user
GRANT REMOTE dba TO secure_user
REVOKE CONNECT FROM ml_qa_user
GRANT CONNECT TO dba IDENTIFIED BY new_dba_password
COMMIT

Next, start the QAnywhere Agent with the secure DBA user:

qaagent -id mystore -c "dbf=mystore.db;dbkey=some_
phrase;uid=secure_user;pwd=secure_password"

You also need to set the connection parameters for your remote applications.
For example, the QAManager properties file should contain this line:

CONNECT_PARAMS=dbn=mystore;dbkey=some_phrase;uid=secure_
user;pwd=secure_password

Manage client message store passwords

You should change the passwords for the default user IDs that were created
for the message store. The default user ID DBA with password SQL is
created for every Adaptive Server Anywhere database. In addition, the
qaagent -si option creates a default user ID of ml_qa_user, and creates a
default password of qanywhere. To change these passwords, use the
GRANT statement.

96

Chapter 6. Writing Secure Messaging Applications

☞ For more information, see“Changing a password”[ASA Database
Administration Guide,page 434].

Encrypting the client message store

The following command can be used to encrypt the client message store
when you create it.

dbinit -ek encryption-key database-file

When a message store has been initialized with an encryption key, the
encryption key is required to start the database server on the encrypted
message store.

Use the following command to specify the encryption key to start the
QAnywhere Agent with an encrypted message store. The QAnywhere Agent
will automatically start the database server on the encrypted message store
using the encryption key provided.

qaagent -c "DBF= database-file ;DBKEY=encryption-key "

Any application can now access the encrypted message store through the
QAnywhere client API. Note that, since the database server used to manage
the message store is already running, the application does not need to
provide the encryption key.

If the QAnywhere Agent is not running and an application needs to access
an encrypted message store, the QAnywhere client API will automatically
start the database server using the connection parameters specified in the
QAnywhere Manager initialization file. In order to start the database server
on an encrypted message store, the encryption key must be specified in the
database connection parameters as follows.

CONNECT_PARAMS=DBF=database-file ;DBKEY=encryption-key

97

Encrypting the communication stream
The qaagent -x option can be used to specify a secure communication stream
that the QAnywhere Agent can use to connect to a MobiLink
synchronization server. It allows you to implement server authentication
using server-side certificates, and it allows you to encrypt the
communication stream using strong encryption.

☞ For more information, see“-x option” on page 93.

☞ You must set up transport-layer security for the MobiLink
synchronization server as well. For more information, see“MobiLink
Transport-Layer Security”[MobiLink Administration Guide,page 165].

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Examples The following examples show how to establish a secure communication
stream between the QAnywhere Agent and the MobiLink synchronization
server. They use sample certificates that are installed when the SQL
Anywhere Studio security option is installed.

Secure TCP/IP using RSA:

dbmlsrv9 -x tcpip(security=rsa_
tls(certificate=rsaserver.crt;certificate_
password=test))

qaagent -x tcpip(security=rsa_tls(trusted_
certificates=rsaroot.crt))

Secure TCP/IP using ECC:

dbmlsrv9 -x tcpip(security=ecc_
tls(certificate=sample.crt;certificate_
password=tJ1#m6+W))

qaagent -x tcpip(security=ecc_tls(trusted_
certificates=eccroot.crt))

Secure HTTP using HTTPS (only RSA certificates are supported for
HTTPS):

dbmlsrv9 -x https(certificate=rsaserver.crt;certificate_
password=test)

qaagent -x https(trusted_certificates=rsaroot.crt)

98

Chapter 6. Writing Secure Messaging Applications

Using password authentication with MobiLink
Once you have established a secure communication stream between the
remote device and the server, you may also want to authenticate the user of
the device to ensure that they are allowed to communicate with the server.

☞ For more information, see:

♦ “-mp option” on page 85
♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9]

99

CHAPTER 7

QAnywhere Transmission Rules

About this chapter This chapter describes how to write transmission rules. You can create
transmission rules on the server to define which messages should be
downloaded to the client, and transmission rules on the client to define
which messages should be uploaded to the server.

Contents Topic: page

Transmission rules 102

Schedule syntax 105

Transmission rule variables 110

Delete rules 118

101

Transmission rules
Message transmission is the action of moving messages from a client
message store to a server message store, or vice versa.

Message transmission is handled by the QAnywhere Agent and the
MobiLink synchronization server:

♦ The QAnywhere Agent is connected to the client message store. It
transmits messages to and from the MobiLink synchronization server.

♦ The MobiLink synchronization server is connected to the server message
store. It receives message transmissions from QAnywhere Agents and
transmits them to other QAnywhere Agents.

Message transmission can only take place between a client message store
and a server message store. A message transmission can only occur when a
QAnywhere Agent is connected to a MobiLink synchronization server.

Transmission rules allow you to specify when message transmission is to
occur and which messages to transmit. You can also use them to specify
when messages should be deleted from the message stores, if you do not
want to use the default behavior.

You can specify transmission rules on the server and on the client. See:

♦ “Client transmission rules” on page 102
♦ “Server transmission rules” on page 103

The transmission rules file holds the following kinds of entry:

♦ Rules No more than one rule can be entered per line.

Each rule must be entered on a single line, but you can use\ as a line
continuation character.

♦ Comments Comments are indicated by a line beginning with either a#
or ; character. Any characters on that line are ignored.

☞ For more information, see“Schedule syntax” on page 105and
“Condition syntax” on page 106.

You can also use transmission rules files to determine when messages are to
be deleted from the message stores.

☞ For more information, see“Delete rules” on page 118.

Client transmission rules

Client transmission rules govern the behavior of messages going from the
client to the server. Client transmission rules are handled by the QAnywhere
Agent.

102

Chapter 7. QAnywhere Transmission Rules

By default, QAnywhere messages are transmitted every 10 seconds. You can
change and customize this behavior by specifying a transmission rules file as
the transmission policy for the QAnywhere Agent.

The following partial qaagent command line shows how to specify a rules
file for the QAnywhere Agent:

qaagent -policy myrules.txt ...

☞ For a complete description of how to write transmission rules, see
“Schedule syntax” on page 105.

☞ For more information about policies, see“Determining when message
transmission should occur on the client” on page 37.

Example For example, the following client transmission rules file specifies that during
business hours only small high priority messages should be sent, while
outside of business hours, any message can be sent. This rule is automatic,
which indicates that if the condition is satisfied, the message is transmitted
immediately. This example demonstrates that conditions can use information
derived from the message as well as other information such as the current
time.

automatic = (ias_ContentSize < 100000 and ias_Priority > 7) \
or ias_CurrentDayOfWeek in (’Saturday’, ’Sunday’) \
or ias_CurrentTime < ’8:00AM’ or ias_CurrentTime > ’6:00PM’

Server transmission rules

Server transmission rules govern the behavior of messages going from the
server to the client. Server transmission rules are handled by the MobiLink
synchronization server. They apply both when you are using push
notifications and when you are not using notifications.

You can create a server transmission rules file and specify it with the
ianywhere.qa.server.transmissionRulesFile property in your QAnywhere
messaging properties file.

Server transmission rules must be specified for each client by preceding a
section of rules with the client message store ID in square brackets.

☞ For more information about the message properties file, see“-m option”
[MobiLink Administration Guide,page 201].

Example Following is a sample server transmission rules file. In the following
example, the rules apply only to the client identified by the client message
store ID sample_store_id.

103

[sample_store_id]
; This rule governs when messages are transmitted to the client
; store with id sample_store_id.
;
; ias_Priority >= 7
;
; Messages with priority 7 or greater should always be
; transmitted.
;
; ias_ContentSize < 100
;
; Small messages, that is messages less than 100 characters or
; bytes in size, should always be transmitted.
;
; ias_CurrentTime < ’8:00am’ or ias_CurrentTime > ’6:00pm’
;
; Outside of business hours, messages should always be
; transmitted

auto = ias_Priority >= 7 or ias_ContentSize < 100 \
or ias_CurrentTime < ’8:00am’ or ias_CurrentTime > ’6:00pm’

[qanywhere]
; This rule governs when messages are transmitted to the client
; store with id qanywhere.
;
; tm_Subject not like ’%non-business%’
;
; Messages with the property tm_Subject set to a value that
; includes the phrase ’non-business should not be transmitted’
;
; ias_CurrentTime < ’8:00am’ or ias_CurrentTime > ’6:00pm’
;
; Outside of business hours, messages should always be
; transmitted

auto = tm_Subject not like ’%non-business%’ \
or ias_CurrentTime < ’8:00am’ or ias_CurrentTime > ’6:00pm’

104

Chapter 7. QAnywhere Transmission Rules

Schedule syntax
Schedules are used to specify times when conditions are to be evaluated. At
those times, the corresponding condition is evaluated for all messages ready
to be sent. Those messages satisfying the condition are sent at that time.

Syntax Each rule is of the following form:

schedules=condition

When the scheduled time occurs, the condition is applied to each message.
If the message satisfies the condition, then the message is transmitted.

schedules : { AUTOMATIC | schedule-spec [,. . .] }

schedule-spec :
{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week , . . .) | (day-of-month, . . .) }]
[START DATE start-date]

Parameters ♦ AUTOMATIC AUTOMATIC indicates that conditions are evaluated
whenever a message is available for transmitting. Messages that satisfy
the corresponding condition are transmitted.

♦ schedule-spec Schedule specifications other than AUTOMATIC
specify times when conditions are to be evaluated. At those scheduled
times, the corresponding condition is evaluated for all messages ready to
be transmitted. Those messages satisfying the condition are transmitted
at that time.

♦ START TIME The first scheduled time for each day on which the event
is scheduled. If a START DATE is specified, the START TIME refers to
that date. If no START DATE is specified, the START TIME is on the
current day (unless the time has passed) and each subsequent day (if the
schedule includes EVERY or ON).

♦ BETWEEN ... AND ... A range of times during the day outside of
which no scheduled times occur. If a START DATE is specified, the
scheduled times do not occur until that date.

♦ EVERY An interval between successive scheduled events. Scheduled
events occur only after the START TIME for the day, or in the range
specified by BETWEEN . . . AND.

♦ ON A list of days on which the scheduled events occur. The default is
every day if EVERY is specified. Days can be specified as days of the
week or days of the month.

105

Days of the week are Mon, Tues, and so on. You may also use the full
forms of the day, such as Monday. You must use the full forms of the day
names if the language you are using is not English, is not the language
requested by the client in the connection string, and is not the language
which appears in the server window.

Days of the month are integers from 0 to 31. A value of 0 represents the
last day of any month.

♦ START DATE The date on which scheduled events are to start
occurring. The default is the current date.

Usage You can create more than one schedule for a given condition. This permits
complex schedules to be implemented.

A schedule specification is recurring if its definition includes EVERY or
ON; if neither of these reserved words is used, the schedule specifies at most
a single time. An attempt to create a non-recurring schedule for which the
start time has passed generates an error.

Each time a scheduled time occurs, the associated condition is evaluated and
then the next scheduled time and date is calculated.

The next scheduled time is computed by inspecting the schedule or
schedules, and finding the next schedule time that is in the future. If a
schedule specifies every minute, and it takes 65 seconds to evaluate the
conditions, it runs every two minutes. If you want execution to overlap, you
must create more than one rule.

1. If the EVERY clause is used, find whether the next scheduled time falls
on the current day, and is before the end of the BETWEEN . . . AND
range. If so, that is the next scheduled time.

2. If the next scheduled time does not fall on the current day, find the next
date on which the event is to be executed.

3. Find the START TIME for that date, or the beginning of the BETWEEN
. . . AND range.

The QAnywhere schedule syntax is derived from the Adaptive Server
Anywhere CREATE EVENT schedule syntax.

Keywords are case insensitive.

See also ♦ “CREATE EVENT statement”[ASA SQL Reference,page 351].

Condition syntax

QAnywhere condition syntax uses a SQL-like syntax. An expression
evaluates to true, false, or unknown. Messages are sent only if the condition

106

Chapter 7. QAnywhere Transmission Rules

evaluates to true. If a condition is empty, all messages are judged to satisfy
the condition.

Keywords and string comparisons are case insensitive.

Syntax condition :
| expression operator expression
| arithmetic-expr [NOT] BETWEEN start-expr AND end-expr
| rule-variable [NOT] IN (string-literal , ...)
| rule-variable [NOT] LIKE pattern [ESCAPE escape-character]
| rule-variable IS [NOT] NULL

Parameters ♦ condition An expression that evaluates to true, false, or unknown.
Only messages for which the condition evaluates to true are judged to
satisfy the condition.

♦ expression An arithmetic or conditional expression. Standard
bracketing using parentheses indicates the order of evaluation within
expressions.
• Arithmetic expressions are composed of themselves, arithmetic

operators, numeric identifiers, and numeric literals.
Arithmetic operators, in order of precedence, are:
♦ +, - (unary sign indicators)
♦ * , / (multiplication and division)
♦ +, - (addition and subtraction)

• Conditional expressions are composed of themselves, comparison
operators, and logical operators.
Comparison operators, in order of precedence, are:
♦ = (equals)
♦ > (greater than)
♦ >= (greater than or equals)
♦ < (less than)
♦ <= (less than or equals)
♦ <> (not equal)
Logical operators, in order of precedence, are:
♦ NOT
♦ AND
♦ OR

♦ rule-variable A QAnywhere rule-variable is a message header, a
message property, or a client store property.

The type of a property value in a condition corresponds to the type used
to set the property. If a property that does not exist in a message is
referenced, its value is NULL.

☞ For more information, see“Transmission rule variables” on page 110.

107

♦ string-literal A string literal is a sequence of characters enclosed in
single quotes, using a string encoding as specified by the QAnywhere
Agent.

A single quote in a string literal is represented by doubled single quote,

For example, the following are valid string literals:

’literal’

’literal’’s’

♦ numeric-literal An exact numeric literal is a numeric value without a
decimal point, such as 57, -957, and +62. The value range is -263 to 263 -
1, or -9223372036854775808 to 9223372036854775807.

An approximate numeric literal is a numeric value in scientific notation,
such as 7E3 and -57.9E2, or a numeric value with a decimal, such as 7.,
-95.7, and +6.2. The value range is 2.22507385850721e-308 to
1.79769313486231e+308.

♦ boolean-literal The boolean literals are TRUE and FALSE.

♦ BETWEEN The BETWEEN condition can evaluate as true, false, or
unknown. Without the NOT keyword, the condition evaluates as TRUE if
arithmetic-expris greater than or equal tostart-exprand less than or
equal toend-expr.

The NOT keyword reverses the meaning of the condition but leaves
UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two
inequalities:

[NOT] (arithmetic-expr >= start-expr AND arithmetic-expr <= end-expr)

For example:

• age BETWEEN 15 AND 19is equivalent toage >=15 AND age

<= 19

• age NOT BETWEEN 15 AND 19is equivalent toage < 15 OR age

> 19.

♦ IN The IN condition evaluates according to the following rules:

• True if rule-variableis not null and equals at least one of the values.

• Unknown if rule-variableis null and the values list is not empty, or if
at least one of the values is null and expression does not equal any of
the other values.

• False if none of the values are null, andrule-variabledoes not equal
any of the values.

108

Chapter 7. QAnywhere Transmission Rules

The NOT keyword interchanges true and false.

For example:
• Country IN (’UK’, ’US’, ’France’) is true for’UK’ and

false for’Peru’ . It is equivalent to the following:

(Country = ’UK’) \
OR (Country = ’US’) \
OR (Country = ’France’)

• Country NOT IN (’UK’, ’US’, ’France’) is false for’UK’

and true for’Peru’ . It is equivalent to the following:

NOT ((Country = ’UK’) \
OR (Country = ’US’) \
OR (Country = ’France’))

• If the rule-variable of an IN operation is NULL

♦ LIKE The LIKE condition can evaluate as true, false, or unknown.

Without the NOT keyword, the condition evaluates as TRUE if
expressionmatches thepattern. If eitherexpressionor patternis NULL,
this condition is unknown.

The NOT keyword reverses the meaning of the condition, but leaves
UNKNOWN unchanged.

Thepatternmay contain any number of wildcards. The wildcards are:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

For example:
• phone LIKE 12%3 is true for’123’ or ’12993’ and false for

’1234’

• word LIKE ’s_d’ is true for’sad’ and false for’said’

• phone NOT LIKE ’12%3’ is false for’123’ or ’12993’ and true
for ’1234’

♦ ESCAPE CHARACTER A single character string literal whose
character is used to escape the special meaning of the wildcard characters
(_, %) in pattern. For example:
• underscored LIKE ’_%’ ESCAPE ’\’ is true for’_myvar’ and

false for’myvar’ .

♦ IS NULL The IS NULL condition evaluates to true if the rule-variable
is unknown; otherwise it evaluates to false. The NOT keyword reverses
the meaning of the condition. This condition cannot evaluate to unknown.

109

Transmission rule variables
QAnywhere transmission rule variables are used in condition syntax in
transmission rules files. They can be used to define transmission rules and
delete rules. There are three types of rule variable:

♦ Message headers

♦ Message properties

♦ Message store properties

Message headers

The following message headers are pre-defined.

♦ ias_Address The address of the message. For example,
myclient\myqueue.

♦ ias_Originator The client message store ID associated with the
message sender.

♦ ias_Status The status of the message. Values can be:

• ias_ExpireState The message expired before it could be received by
the intended recipient.

• ias_FinalState The message is received or expired. Therefore,>=
ias_FinalStatemeans that the message is received or expired, and>
ias_FinalStatemeans that the message is neither received nor expired.

• ias_PendingState The message has not yet been received by the
intended recipient.

• ias_Received The message was received by the intended recipient.

♦ ias_StatusTime The date and time when the message reached the
current status.

♦ ias_Expires The date and time when the message will expire if it is not
delivered.

♦ ias_Priority The priority of message: a number from 0 to 9.

♦ ias_ContentSize The size of the message content. If the message is a
text message, this is the number of characters. If the message is binary,
this is the number of bytes.

110

Chapter 7. QAnywhere Transmission Rules

Message properties

QAnywhere allows you to define message properties using the C++ or .NET
QAnywhere APIs. These properties are shared between applications
connected to the same message store. They are also synchronized to the
server message store so that they are available to the transmission rules used
by a QAnywhere Agent connected to the same client message store. You
define message properties in messages, and then reference them in
transmission rules.

Message property names are case insensitive. You can use a sequence of
letters and digits, but the first character must be a letter. The following
names are reserved and may not be used as message property names:

♦ NULL
♦ TRUE
♦ FALSE
♦ NOT
♦ AND
♦ OR
♦ BETWEEN
♦ LIKE
♦ IN
♦ IS
♦ ESCAPE
♦ Any name beginning withias_

The following QAManager methods can be used to manage message
properties.

C++ methods to manage
message properties

111

qa_bool getBooleanProperty(qa_const_string name, qa_bool *
value)

qa_bool setBooleanProperty(qa_const_string name, qa_bool value
)

qa_bool getByteProperty(qa_const_string name, qa_byte * value)
qa_bool setByteProperty(qa_const_string name, qa_byte value)
qa_bool getShortProperty(qa_const_string name, qa_short * value

)
qa_bool setShortProperty(qa_const_string name, qa_short value)
qa_bool getIntProperty(qa_const_string name, qa_int * value)
qa_bool setIntProperty(qa_const_string name, qa_int value)
qa_bool getLongProperty(qa_const_string name, qa_long * value)
qa_bool setLongProperty(qa_const_string name, qa_long value)
qa_bool getFloatProperty(qa_const_string name, qa_float * value

)
qa_bool setFloatProperty(qa_const_string name, qa_float value)
qa_bool getDoubleProperty(qa_const_string name, qa_double *

value)
qa_bool setDoubleProperty(qa_const_string name, qa_double value

)
qa_int getStringProperty(qa_const_string name, qa_string value,

qa_int len)
qa_bool setStringProperty(qa_const_string name, qa_const_string

value)

☞ For more information, see“QAnywhere C++ API Reference” on
page 121.

C# methods to manage
message properties

Object GetProperty(String name)
void SetProperty(String name, Object value)
boolean GetBooleanProperty(String name)
void SetBooleanProperty(String name, boolean value)
byte GetByteProperty(String name)
void SetByteProperty(String name, byte value)
short GetShortProperty(String name)
void SetShortProperty(String name, short value)
int GetIntProperty(String name)
void SetIntProperty(String name, int value)
long GetLongProperty(String name)
void SetLongProperty(String name, long value)
float GetFloatProperty(String name)
void SetFloatProperty(String name, float value)
double GetDoubleProperty(String name)
void SetDoubleProperty(String name, double value)
String GetStringProperty(String name)
void SetStringProperty(String name, String value)

☞ For more information, see“iAnywhere.QAnywhere.Client namespace”
on page 173.

Example

112

Chapter 7. QAnywhere Transmission Rules

c++
QAManager * mgr = ...; // Init QAManager
QAMessage * msg = mgr->createTextMessage();
msg->setStringProperty("tm_Subject", "Some message subject");
mgr->putMessage("myqueue", mgr);

c#
QAManager mgr = ...; // init QAManager
QAMessage msg = mgr.createTextMessage();
msg.setStringProperty("tm_Subject", "Some message subject");
mgr.putMessage("myqueue", msg);

Client store properties

There are two types of client store property:

♦ pre-defined

♦ user-defined

Pre-defined client store properties

The following client store properties are pre-defined.

♦ ias_Network Information about the current network in use.
ias_Network is a special property. It has a number of built-in attributes
that provide information regarding the current network that is being used
by the device. These attributes are automatically set by QAnywhere:
• ias_Network.Adapter The current name of the network card, if any.

(The name of the network card that is assigned to the Adapter attribute
is displayed in the Agent window when the network connection is
established.)

• ias_Network.RAS The current RAS dial-up name, if any.

• ias_Network.IP The current IP address assigned to the device, if any.

• ias_Network.MAC The current MAC address of the network card
being used, if any.

♦ ias_CurrentDayOfWeek The current day of the week.

♦ ias_CurrentDayOfMonth The current day of the month, from 1-31.

♦ ias_CurrentMonth The current month, from 1-12.

♦ ias_CurrentYear The current year.

♦ ias_CurrentDate The current date.

A string can be compared against ias_currentDate if it is supplied in one
of two ways:

113

• as a string of format yyyy/mm/dd or yyyy-mm-dd, which is interpreted
unambiguously.

• as a string according to the DATE_ORDER database option set for the
client message store database.

☞ For more information, see“Setting options”[ASA Database
Administration Guide,page 614]and“DATE_ORDER option
[compatibility]” [ASA Database Administration Guide,page 648].

♦ ias_CurrentTime The current time.

A string can be compared against ias_CurrentTime if the hours, minutes,
and seconds are separated by colons in the format hh:mm:ss:sss. A
24-hour clock is assumed unlessam or pm are specified.

Custom client store properties

QAnywhere allows you to define your own client store properties using the
C++ or .NET QAnywhere APIs. These properties are shared between
applications connected to the same message store. They are also
synchronized to the server message store so that they are available to the
transmission rules used by a QAnywhere Agent connected to the same client
message store.

Message store property names are case insensitive. You can use a sequence
of letters and digits, but the first character must be a letter. The following
names are reserved and may not be used as client store property names:

♦ NULL
♦ TRUE
♦ FALSE
♦ NOT
♦ AND
♦ OR
♦ BETWEEN
♦ LIKE
♦ IN
♦ IS
♦ ESCAPE
♦ Any name beginning withias_

The following QAManager methods can be used to manage client store
properties.

C++ methods to manage
client store properties

114

Chapter 7. QAnywhere Transmission Rules

qa_bool getBooleanStoreProperty(qa_const_string name, qa_bool *
value)

qa_bool setBooleanStoreProperty(qa_const_string name, qa_bool
value)

qa_bool getByteStoreProperty(qa_const_string name, qa_byte *
value)

qa_bool setByteStoreProperty(qa_const_string name, qa_byte
value)

qa_bool getShortStoreProperty(qa_const_string name, qa_short *
value)

qa_bool setShortStoreProperty(qa_const_string name, qa_short
value)

qa_bool getIntStoreProperty(qa_const_string name, qa_int *
value)

qa_bool setIntStoreProperty(qa_const_string name, qa_int value
)

qa_bool getLongStoreProperty(qa_const_string name, qa_long *
value)

qa_bool setLongStoreProperty(qa_const_string name, qa_long
value)

qa_bool getFloatStoreProperty(qa_const_string name, qa_float *
value)

qa_bool setFloatStoreProperty(qa_const_string name, qa_float
value)

qa_bool getDoubleStoreProperty(qa_const_string name, qa_double

* value)
qa_bool setDoubleStoreProperty(qa_const_string name, qa_double

value)
qa_int getStringStoreProperty(qa_const_string name, qa_string

value, qa_int len)
qa_bool setStringStoreProperty(qa_const_string name, qa_const_

string value)

☞ For more information, see“QAnywhere C++ API Reference” on
page 121.

C# methods to manage
client store properties

Object GetStoreProperty(String name)
void SetStoreProperty(String name, Object value)
boolean GetBooleanStoreProperty(String name)
void SetBooleanStoreProperty(String name, boolean value)
byte GetByteStoreProperty(String name)
void SetByteStoreProperty(String name, byte value)
short GetShortStoreProperty(String name)
void SetShortStoreProperty(String name, short value)
int GetIntStoreProperty(String name)
void SetIntStoreProperty(String name, int value)
long GetLongStoreProperty(String name)
void SetLongStoreProperty(String name, long value)
float GetFloatStoreProperty(String name)
void SetFloatStoreProperty(String name, float value)
double GetDoubleStoreProperty(String name)
void SetDoubleStoreProperty(String name, double value)
String GetStringStoreProperty(String name)
void SetStringStoreProperty(String name, String value)

115

☞ For more information, see“iAnywhere.QAnywhere.Client namespace”
on page 173.

Client store properties can also have attributes. An attribute is specified by
appending a dot after the property name followed by the attribute name. In
the following example, the Object property has two attributes: Shape and
Color. The value of the Shape attribute is Round and the value of the Color
attribute is Blue.

C++
setStoreStringProperty("Object.Shape", "Round");
setStoreStringProperty("Object.Colour", "Blue");

C#
SetStoreProperty("Object.Shape", "Round");
SetStoreProperty("Object.Color", "Blue");

All client store properties have a Type attribute that initially has no value.
The value of the Type attribute must be the name of another property. When
setting the Type attribute of a property, the property inherits the attributes of
the property being assigned to it. In the following example, the Object
property inherits the attributes of the Circle property. Hence the value of
Object.Shape is Round and the value of Object.Color is Blue.

C++
setStoreStringProperty("Circle.Shape", "Round");
setStoreStringProperty("Circle.Color", "Blue");
setStoreStringProperty("Object.Type", "Circle");

C#
SetStoreProperty("Circle.Shape", "Round");
SetStoreProperty("Circle.Color", "Blue");
SetStoreProperty("Object.Type", "Circle");

Example This section provides an example in C# of how you can use client store
properties in transmission rules.

Assume you have a Windows laptop that has the following network
connectivity options: LAN, Wireless LAN, and Wireless WAN. Access to
the network via LAN is provided by a network card named “My LAN Card”.
Access to the network via Wireless LAN is provided by a network card
named “My Wireless LAN Card”. Access to the network via Wireless WAN
is provided by a network card named “My Wireless WAN Card”.

Note: The names of network adapters are fixed when the card is plugged in
and the driver is installed. To find the name of a particular network card,
connect to the network through that adapter, and then run qaagent with the
-vn option. The QAnywhere Agent will display the network adapter name as
follows:

"Listener thread received message ’[netstat]

network-adapter-name !...’

116

Chapter 7. QAnywhere Transmission Rules

You want to develop a messaging application that sends all messages to the
server when connected using LAN or Wireless LAN and only high priority
messages when connected using Wireless WAN. You define high priority
messages as those whose priority is greater than or equal to 7.

First, define three client store properties for each of the network types: LAN,
WLAN, and WWAN. Each of these properties will be assigned a Cost
attribute. The Cost attribute is a value between 1 and 3 and represents the
cost incurred when using the network. A value of 1 represents the lowest
cost.

QAManager qa_manager;

qa_manager.SetStoreProperty("LAN.Cost", "1");
qa_manager.SetStoreProperty("WLAN.Cost", "2");
qa_manager.SetStoreProperty("WWAN.Cost", "3");

Next, define three cilent store properties, one for each network card that will
be used. The property name must match the network card name. Assign the
appropriate network classification to each property by assigning the network
type to the Type attribute. Each property will therefore inherit the attributes
of the network types assigned to them.

QAManager qa_manager;

qa_manager.SetStoreProperty("My LAN Card.Type", "LAN");
qa_manager.SetStoreProperty("My Wireless LAN Card.Type", "WLAN"

);
qa_manager.SetStoreProperty("My Wireless WAN Card.Type", "WWAN"

);

When network connectivity is established, QAnywhere will automatically
define the Adapter attribute of the ias_Network property to one of “My LAN
Card”, “My Wireless LAN Card” or “My Wireless WAN Card”, depending
on the network in use. Similarly, it will automatically set the Type attribute
of the ias_Network property to one of “My LAN Card”, “My Wireless LAN
Card” or “My Wireless WAN Card” so that the ias_Network property will
inherit the attributes of the network being used.

Finally, create a transmission rules file with the following transmission rule.

ias_Network.Cost < 3 or ias_Priority >= 7

117

Delete rules
Delete rules determine the persistence of messages in the client message
store and the server message store. They are specified in transmission rules
files.

Client delete rules By default, messages are deleted from the client message store when the
final status of the message is determined to be received or expired. You may
want messages to be deleted faster than that, or to hold on to messages after
acknowledgement. You do that by creating a delete section in your client
transmission rules file.

☞ For more information about client transmission rules, see“Client
transmission rules” on page 102.

Following is an example of the delete rules section in a client transmission
rules file:

[system:delete]

; This rule governs when messages are deleted from the client
; store
;
; start time ’1:00am’ on (’Sunday’)
;
; Messages are deleted every Sunday at 1:00AM.
;
; ias_Status >= ias_FinalState
;
; Typically, messages are deleted when they reach a final
; state: received, unreceivable, expired, or cancelled.

start time ’1:00am’ on (’Sunday’) = ias_Status >= ias_
FinalState

☞ For an explanation of ias_Status, see“Message headers” on page 110.

Server delete rules By default, messages are deleted from the server message store as soon as
the message has been delivered and delivery is confirmed. You may want to
keep messages longer for purposes such as auditing. You do that by creating
a delete section in your server transmission rules file.

Server-side delete rules apply to all QAnywhere clients.

☞ For more information about server transmission rules, see“Server
transmission rules” on page 103.

Following is an example of the delete rules section in a server transmission
rules file:

118

Chapter 7. QAnywhere Transmission Rules

[system:delete]

; This rule governs when messages are deleted from the server
; store
;
; start time ’1:00am’ on (’Sunday’)
;
; Messages are deleted every Sunday at 1:00AM.
;
; ias_Status >= ias_FinalState
;
; Typically messages are deleted when they reach a final
; status: received, unreceivable, expired or cancelled.

start time ’1:00am’ on (’Sunday’) = ias_Status >= ias_
FinalState

☞ For an explanation of ias_Status, see“Message headers” on page 110.

119

CHAPTER 8

QAnywhere C++ API Reference

About this chapter This chapter describes the QAnywhere C++ API.

Contents Topic: page

Class AcknowledgementMode 122

Class MessageProperties 123

Class MessageType 126

Class QABinaryMessage 127

Class QAError 135

Class QAManager 138

Class QAManagerBase 141

Class QAManagerFactory 153

Class QAMessage 155

Class QAMessageListener 167

Class QATextMessage 168

Class QATransactionalManager 171

121

Class AcknowledgementMode
Synopsis public AcknowledgementMode

Remarks The acknowledgement modes supported by QAnywhere are transactional,
implicit and explicit. The client application specifies the acknowledgement
mode when creating its instance of theClass QAManager.

Members All members of AcknowledgementMode, including all inherited members.

♦ “EXPLICIT_ACKNOWLEDGEMENT Variable” on page 122
♦ “IMPLICIT_ACKNOWLEDGEMENT Variable” on page 122
♦ “TRANSACTIONAL Variable” on page 122

EXPLICIT_ACKNOWLEDGEMENT Variable

Synopsis const qa_short AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT

Remarks With explicit acknowledgement, messages are acknowledged by a call to one
of the acknowledge methods ofQAManager .

IMPLICIT_ACKNOWLEDGEMENT Variable

Synopsis const qa_short AcknowledgementMode::IMPLICIT_ACKNOWLEDGEMENT

Remarks With implicit acknowledgement, messages are acknowledged as soon as
they are received by the client application.

TRANSACTIONAL Variable

Synopsis const qa_short AcknowledgementMode::TRANSACTIONAL

Remarks This mode indicates that messages are only acknowledged as part of the
ongoing transaction. Hence, only a call to the commit method of
QAManager acknowledges all outstanding messages.

122

Chapter 8. QAnywhere C++ API Reference

Class MessageProperties
Synopsis public MessageProperties

Remarks This class defines constant values for useful message property names for
sending messages to QAnywhere Server.

Members All members of MessageProperties, including all inherited members.

♦ “ABS_RETRY_TIMEOUT Variable” on page 123
♦ “ADAPTER Variable” on page 123
♦ “FROM_ADDR Variable” on page 123
♦ “MSG_TYPE Variable” on page 123
♦ “NETWORK Variable” on page 124
♦ “NETWORK_STATUS Variable” on page 124
♦ “RETRY_FAILED Variable” on page 124
♦ “RETRY_FAILED_ADDR Variable” on page 124
♦ “RETRY_FAILED_PRIORITY Variable” on page 124
♦ “RETRY_MAX Variable” on page 124
♦ “RETRY_TIMEOUT Variable” on page 125

ABS_RETRY_TIMEOUT Variable

Synopsis const qa_string MessageProperties::ABS_RETRY_TIMEOUT

Remarks Optional property for messages sent through a connector. The time at which
send retries through the connector will be stopped and the send is failed.

ADAPTER Variable

Synopsis const qa_string MessageProperties::ADAPTER

Remarks For “system” queue messages, a delimited list of network adapters that can
be used to connect to the QAnywhere server.

FROM_ADDR Variable

Synopsis const qa_string MessageProperties::FROM_ADDR

Remarks Optional property indicating the address of the sender.

MSG_TYPE Variable

Synopsis const qa_string MessageProperties::MSG_TYPE

Remarks Indicates the type of the message. If a message does not have this property
set, it is a regular data message (ie.REGULAR Variable).

123

See Also Class MessageType

NETWORK Variable

Synopsis const qa_string MessageProperties::NETWORK

Remarks For “system” queue messages, a delimited list of network names that can be
used to connect to the QAnywhere server.

NETWORK_STATUS Variable

Synopsis const qa_string MessageProperties::NETWORK_STATUS

Remarks For “system” queue messages, the state of the network connection. Value is
1 if connected, 0 otherwise.

RETRY_FAILED Variable

Synopsis const qa_string MessageProperties::RETRY_FAILED

Remarks Set by the connector when sending a message to the RetryFailedAddress.
The receiving client can use this property to identify messages for which
re-sending failed.

RETRY_FAILED_ADDR Variable

Synopsis const qa_string MessageProperties::RETRY_FAILED_ADDR

Remarks Optional property for messages sent through a connector. Once either the
RetryMax or RetryTimeout is exceeded, if this property is set, the message
will be sent to this address.

RETRY_FAILED_PRIORITY Variable

Synopsis const qa_string MessageProperties::RETRY_FAILED_PRIORITY

Remarks Optional property for messages sent through a connector. If a message is
sent to the RetryFailedAddress, the message priority will be set to this.

RETRY_MAX Variable

Synopsis const qa_string MessageProperties::RETRY_MAX

Remarks Optional property for messages sent through a connector. The maximum
number of send retries at the connector before failing the send.

124

Chapter 8. QAnywhere C++ API Reference

RETRY_TIMEOUT Variable

Synopsis const qa_string MessageProperties::RETRY_TIMEOUT

Remarks Optional property for messages sent through a connector. The duration after
which send retries through the connector will be stopped and the send is
failed.

125

Class MessageType
Synopsis public MessageType

Remarks This class defines constant values for the message property
“ias_MessageType”.

See Also MSG_TYPE Variable

Members All members of MessageType, including all inherited members.

♦ “NETWORK_STATUS_NOTIFICATION Variable” on page 126
♦ “PUSH_NOTIFICATION Variable” on page 126
♦ “REGULAR Variable” on page 126

NETWORK_STATUS_NOTIFICATION Variable

Synopsis const qa_int MessageType::NETWORK_STATUS_NOTIFICATION

Remarks Message is a network status notification. Indicates a change in the network
status.

PUSH_NOTIFICATION Variable

Synopsis const qa_int MessageType::PUSH_NOTIFICATION

Remarks Message is a push notification. Indicates that a message is waiting to be sent
from the QAnywhere server.

REGULAR Variable

Synopsis const qa_int MessageType::REGULAR

Remarks Regular data message.

126

Chapter 8. QAnywhere C++ API Reference

Class QABinaryMessage
Synopsis public QABinaryMessage

Base classes ♦ “Class QAMessage” on page 155

Remarks An QABinaryMessage object is used to send a message containing a stream
of uninterpreted bytes. It inherits from theClass QAMessageclass and adds
a bytes message body. The receiver of the message supplies the
interpretation of the bytes.

When the message is first created, the body of the message is in write-only
mode. After the first call to reset has been made, the message body is in
read-only mode. After a message has been sent, the client that sent it can
retain and modify it without affecting the message that has been sent. The
same message object can be sent multiple times. When a message has been
received, the provider has called reset so that the message body is in
read-only mode for the client.

If a client attempts to write a message in read-only mode, a
COMMON_MSG_NOT_WRITEABLE_ERROR is set.

Members All members of QABinaryMessage, including all inherited members.

♦ “castToBinaryMessage Function” on page 156
♦ “castToTextMessage Function” on page 156
♦ “clearProperties Function” on page 156
♦ “DEFAULT_PRIORITY Variable” on page 156
♦ “DEFAULT_TIME_TO_LIVE Variable” on page 156
♦ “getAddress Function” on page 157
♦ “getBodyLength Function” on page 129
♦ “getBooleanProperty Function” on page 157
♦ “getByteProperty Function” on page 157
♦ “getDoubleProperty Function” on page 157
♦ “getExpiration Function” on page 158
♦ “getFloatProperty Function” on page 158
♦ “getInReplyToID Function” on page 158
♦ “getIntProperty Function” on page 158
♦ “getLongProperty Function” on page 159
♦ “getMessageID Function” on page 159
♦ “getPriority Function” on page 159
♦ “getPropertyNames Function” on page 159
♦ “getPropertyType Function” on page 160
♦ “getRedelivered Function” on page 160
♦ “getReplyToAddress Function” on page 160
♦ “getShortProperty Function” on page 160

127

♦ “getStringProperty Function” on page 161
♦ “getStringProperty Function” on page 161
♦ “getTimestamp Function” on page 161
♦ “getTimestampAsString Function” on page 162
♦ “propertyExists Function” on page 162
♦ “readBinary Function” on page 129
♦ “readBoolean Function” on page 129
♦ “readByte Function” on page 129
♦ “readChar Function” on page 130
♦ “readDouble Function” on page 130
♦ “readFloat Function” on page 130
♦ “readInt Function” on page 130
♦ “readLong Function” on page 131
♦ “readShort Function” on page 131
♦ “readString Function” on page 131
♦ “reset Function” on page 131
♦ “setAddress Function” on page 162
♦ “setBooleanProperty Function” on page 163
♦ “setByteProperty Function” on page 163
♦ “setDoubleProperty Function” on page 163
♦ “setFloatProperty Function” on page 163
♦ “setInReplyToID Function” on page 164
♦ “setIntProperty Function” on page 164
♦ “setLongProperty Function” on page 164
♦ “setMessageID Function” on page 164
♦ “setPriority Function” on page 165
♦ “setRedelivered Function” on page 165
♦ “setReplyToAddress Function” on page 165
♦ “setShortProperty Function” on page 165
♦ “setStringProperty Function” on page 166
♦ “setTimestamp Function” on page 166
♦ “writeBinary Function” on page 132
♦ “writeBoolean Function” on page 132
♦ “writeByte Function” on page 132
♦ “writeChar Function” on page 132
♦ “writeDouble Function” on page 133
♦ “writeFloat Function” on page 133
♦ “writeInt Function” on page 133
♦ “writeLong Function” on page 133
♦ “writeShort Function” on page 133
♦ “writeString Function” on page 134
♦ “˜QABinaryMessage Function” on page 134
♦ “˜QAMessage Function” on page 166

128

Chapter 8. QAnywhere C++ API Reference

getBodyLength Function

Synopsis virtual qa_long QABinaryMessage::getBodyLength()

Remarks Returns the size in qa_bytes of the message body.

readBinary Function

Synopsis virtual qa_int QABinaryMessage::readBinary(
qa_bytes value
qa_int length

)

Parameters ♦ value the buffer into which the data is read

♦ length the maximum number of bytes to read

Remarks Reads a portion of the bytes message stream.

Returns the total number of bytes read into the buffer, or -1 if there is no more data
because the end of the stream has been reached

readBoolean Function

Synopsis virtual qa_bool QABinaryMessage::readBoolean(
qa_bool * value

)

Parameters ♦ value the destination of theqa_bool value read from the bytes
message stream

Remarks Reads aqa_bool from the bytes message stream.

Returns true if and only if the operation succeeded

readByte Function

Synopsis virtual qa_bool QABinaryMessage::readByte(
qa_byte * value

)

Parameters ♦ value the destination of theqa_byte value read from the bytes
message stream

Remarks Reads a signed 8-bit value from the bytes message stream.

Returns true if and only if the operation succeeded

129

readChar Function

Synopsis virtual qa_bool QABinaryMessage::readChar(
qa_char * value

)

Parameters ♦ value the destination of theqa_char value read from the bytes
message stream

Remarks Reads a character value from the bytes message stream.

Returns true if and only if the operation succeeded

readDouble Function

Synopsis virtual qa_bool QABinaryMessage::readDouble(
qa_double * value

)

Parameters ♦ value the destination of theqa_double value read from the bytes
message stream

Remarks Reads a double from the bytes message stream.

Returns true if and only if the operation succeeded

readFloat Function

Synopsis virtual qa_bool QABinaryMessage::readFloat(
qa_float * value

)

Parameters ♦ value the destination of theqa_float value read from the bytes
message stream

Remarks Reads a float from the bytes message stream.

Returns true if and only if the operation succeeded

readInt Function

Synopsis virtual qa_bool QABinaryMessage::readInt(
qa_int * value

)

Parameters ♦ value the destination of theqa_int value read from the bytes message
stream

Remarks Reads a signed 32-bit integer from the bytes message stream.

Returns true if and only if the operation succeeded

130

Chapter 8. QAnywhere C++ API Reference

readLong Function

Synopsis virtual qa_bool QABinaryMessage::readLong(
qa_long * value

)

Parameters ♦ value the destination of theqa_long value read from the bytes
message stream

Remarks Reads a signed 64-bit integer from the bytes message stream.

Returns true if and only if the operation succeeded

readShort Function

Synopsis virtual qa_bool QABinaryMessage::readShort(
qa_short * value

)

Parameters ♦ value the destination of theqa_short value read from the bytes
message stream

Remarks Reads a signed 16-bit number from the bytes message stream.

Returns true if and only if the operation succeeded

readString Function

Synopsis virtual qa_int QABinaryMessage::readString(
qa_string dest
qa_int maxLen

)

Parameters ♦ dest the destination of theqa_string value read from the bytes
message stream

♦ maxLen the maximum number of qa_chars to read, including the null
terminator qa_char

Remarks Reads a string from the bytes message stream.

Returns the total number of non-null qa_chars read into the buffer, or -1 if there is no
more data, or the buffer is too small

reset Function

Synopsis virtual void QABinaryMessage::reset()

Remarks Puts the message body in read-only mode and repositions the stream of bytes
to the beginning.

131

writeBinary Function

Synopsis virtual void QABinaryMessage::writeBinary(
qa_const_bytes value
qa_int offset
qa_int length

)

Parameters ♦ value the byte array value to be written

♦ offset the initial offset within the byte array

♦ length the number of bytes to write

Remarks Writes a portion of a byte array to the bytes message stream.

writeBoolean Function

Synopsis virtual void QABinaryMessage::writeBoolean(
qa_bool value

)

Parameters ♦ value theqa_bool value to be written

Remarks Writes aqa_bool to the bytes message stream as a 1-byte value. The value
true is written as the value(qa_byte)1 ; the valuefalse is written as the
value(qa_byte)0 .

writeByte Function

Synopsis virtual void QABinaryMessage::writeByte(
qa_byte value

)

Parameters ♦ value theqa_byte value to be written

Remarks Writes aqa_byte to the bytes message stream as a 1-byte value.

writeChar Function

Synopsis virtual void QABinaryMessage::writeChar(
qa_char value

)

Parameters ♦ value theqa_char value to be written

Remarks Writes aqa_char to the bytes message stream as a 2-byte value, high byte
first.

132

Chapter 8. QAnywhere C++ API Reference

writeDouble Function

Synopsis virtual void QABinaryMessage::writeDouble(
qa_double value

)

Parameters ♦ value theqa_double to be written

Remarks Converts theqa_double argument to aqa_long and then writes that
qa_long value to the bytes message stream as an 8-byte quantity, high byte
first.

writeFloat Function

Synopsis virtual void QABinaryMessage::writeFloat(
qa_float value

)

Parameters ♦ value theqa_float to be written

Remarks Converts theqa_float argument to aqa_int and then writes thatqa_int

value to the bytes message stream as a 4-byte quantity, high byte first.

writeInt Function

Synopsis virtual void QABinaryMessage::writeInt(
qa_int value

)

Parameters ♦ value theqa_int to be written

Remarks Writes aqa_int to the bytes message stream as four bytes, high byte first.

writeLong Function

Synopsis virtual void QABinaryMessage::writeLong(
qa_long value

)

Parameters ♦ value theqa_long to be written

Remarks Writes aqa_long to the bytes message stream as eight bytes, high byte first.

writeShort Function

Synopsis virtual void QABinaryMessage::writeShort(
qa_short value

)

Parameters ♦ value theqa_short to be written

133

Remarks Writes aqa_short to the bytes message stream as two bytes, high byte first.

writeString Function

Synopsis virtual void QABinaryMessage::writeString(
qa_const_string value

)

Parameters ♦ value the string to be written

Remarks Writes a string to the bytes message stream.

~QABinaryMessage Function

Synopsis virtual QABinaryMessage::~QABinaryMessage()

Remarks Virtual destructor.

134

Chapter 8. QAnywhere C++ API Reference

Class QAError
Synopsis public QAError

Remarks This class defines error constants associated with the QAnywhere client. A
QAError object is used internally by theClass QAManagerobject to keep
track of errors associated with messaging operations. The application
programmer should not need to create an instance of this class. The error
constants should be used by the application programmer when interpreting
error codes returned bygetLastError Function

See Also getLastErrorMsg Function

Members All members of QAError, including all inherited members.

♦ “COMMON_GET_INIT_FILE_ERROR Variable” on page 135
♦ “COMMON_INIT_ERROR Variable” on page 135
♦ “COMMON_INIT_THREAD_ERROR Variable” on page 136
♦ “COMMON_INVALID_PROPERTY Variable” on page 136
♦ “COMMON_MSG_NOT_WRITEABLE_ERROR Variable” on page 136
♦ “COMMON_MSG_RETRIEVE_ERROR Variable” on page 136
♦ “COMMON_MSG_STORE_ERROR Variable” on page 136
♦ “COMMON_MSG_STORE_NOT_INITIALIZED Variable” on page 136
♦ “COMMON_MSG_STORE_TOO_LARGE Variable” on page 136
♦ “COMMON_NO_DEST_ERROR Variable” on page 136
♦ “COMMON_NO_IMPLEMENTATION Variable” on page 137
♦ “COMMON_OPEN_ERROR Variable” on page 137
♦ “COMMON_OPEN_LOG_FILE_ERROR Variable” on page 137
♦ “COMMON_TERMINATE_ERROR Variable” on page 137
♦ “COMMON_UNEXPECTED_EOM_ERROR Variable” on page 137
♦ “QA_NO_ERROR Variable” on page 137
♦ “˜QAError Function” on page 137

COMMON_GET_INIT_FILE_ERROR Variable

Synopsis const qa_int QAError::COMMON_GET_INIT_FILE_ERROR

Remarks Unable to access client properties file.

COMMON_INIT_ERROR Variable

Synopsis const qa_int QAError::COMMON_INIT_ERROR

Remarks Initialization error.

135

COMMON_INIT_THREAD_ERROR Variable

Synopsis const qa_int QAError::COMMON_INIT_THREAD_ERROR

Remarks Error initializing background thread.

COMMON_INVALID_PROPERTY Variable

Synopsis const qa_int QAError::COMMON_INVALID_PROPERTY

Remarks There is an invalid property in the client properties file.

COMMON_MSG_NOT_WRITEABLE_ERROR Variable

Synopsis const qa_int QAError::COMMON_MSG_NOT_WRITEABLE_ERROR

Remarks Message is not writeable.

COMMON_MSG_RETRIEVE_ERROR Variable

Synopsis const qa_int QAError::COMMON_MSG_RETRIEVE_ERROR

Remarks Error retrieving message from message store.

COMMON_MSG_STORE_ERROR Variable

Synopsis const qa_int QAError::COMMON_MSG_STORE_ERROR

Remarks Error storing message to message store.

COMMON_MSG_STORE_NOT_INITIALIZED Variable

Synopsis const qa_int QAError::COMMON_MSG_STORE_NOT_INITIALIZED

Remarks The message store has not been initialized for messaging.

COMMON_MSG_STORE_TOO_LARGE Variable

Synopsis const qa_int QAError::COMMON_MSG_STORE_TOO_LARGE

Remarks The message store is too large relative to the disk free space on the device.

COMMON_NO_DEST_ERROR Variable

Synopsis const qa_int QAError::COMMON_NO_DEST_ERROR

136

Chapter 8. QAnywhere C++ API Reference

Remarks No destination.

COMMON_NO_IMPLEMENTATION Variable

Synopsis const qa_int QAError::COMMON_NO_IMPLEMENTATION

Remarks The function is not implemented.

COMMON_OPEN_ERROR Variable

Synopsis const qa_int QAError::COMMON_OPEN_ERROR

Remarks Error opening connection to message store.

COMMON_OPEN_LOG_FILE_ERROR Variable

Synopsis const qa_int QAError::COMMON_OPEN_LOG_FILE_ERROR

Remarks Error opening the log file.

COMMON_TERMINATE_ERROR Variable

Synopsis const qa_int QAError::COMMON_TERMINATE_ERROR

Remarks Termination error.

COMMON_UNEXPECTED_EOM_ERROR Variable

Synopsis const qa_int QAError::COMMON_UNEXPECTED_EOM_ERROR

Remarks Unexpected end of message reached.

QA_NO_ERROR Variable

Synopsis const qa_int QAError::QA_NO_ERROR

Remarks No error.

~QAError Function

Synopsis virtual QAError::~QAError()

Remarks Virtual destructor.

137

Class QAManager
Synopsis public QAManager

Base classes ♦ “Class QAManagerBase” on page 141

Remarks This class is the manager for non-transactional messaging.

Members All members of QAManager, including all inherited members.

♦ “acknowledge Function” on page 139
♦ “acknowledgeAll Function” on page 139
♦ “acknowledgeUntil Function” on page 139
♦ “close Function” on page 142
♦ “createBinaryMessage Function” on page 142
♦ “createTextMessage Function” on page 142
♦ “deleteMessage Function” on page 142
♦ “getBooleanStoreProperty Function” on page 143
♦ “getByteStoreProperty Function” on page 143
♦ “getDoubleStoreProperty Function” on page 143
♦ “getFloatStoreProperty Function” on page 144
♦ “getIntStoreProperty Function” on page 144
♦ “getLastError Function” on page 144
♦ “getLastErrorMsg Function” on page 144
♦ “getLongStoreProperty Function” on page 145
♦ “getMessage Function” on page 145
♦ “getMessageNoWait Function” on page 145
♦ “getMessageTimeout Function” on page 145
♦ “getMode Function” on page 146
♦ “getShortStoreProperty Function” on page 146
♦ “getStringStoreProperty Function” on page 146
♦ “open Function” on page 139
♦ “peekFirstMessage Function” on page 147
♦ “peekNextMessage Function” on page 147
♦ “publishMessage Function” on page 147
♦ “putMessage Function” on page 147
♦ “putMessageTimeToLive Function” on page 148
♦ “recover Function” on page 140
♦ “setBooleanStoreProperty Function” on page 148
♦ “setByteStoreProperty Function” on page 148
♦ “setDoubleStoreProperty Function” on page 149
♦ “setFloatStoreProperty Function” on page 149
♦ “setIntStoreProperty Function” on page 149
♦ “setLongStoreProperty Function” on page 150
♦ “setMessageListener Function” on page 150

138

Chapter 8. QAnywhere C++ API Reference

♦ “setProperty Function” on page 150
♦ “setShortStoreProperty Function” on page 151
♦ “setStringStoreProperty Function” on page 151
♦ “start Function” on page 151
♦ “stop Function” on page 151
♦ “triggerSendReceive Function” on page 151
♦ “˜QAManager Function” on page 140
♦ “˜QAManagerBase Function” on page 152

acknowledge Function

Synopsis virtual qa_bool QAManager::acknowledge(
QAMessage * msg

)

Parameters ♦ msg the message

Remarks Acknowledges the given message.

Returns true if and only if the operation succeeded

acknowledgeAll Function

Synopsis virtual qa_bool QAManager::acknowledgeAll()

Remarks Acknowledges all messages.

Returns true if and only if the operation succeeded

acknowledgeUntil Function

Synopsis virtual qa_bool QAManager::acknowledgeUntil(
QAMessage * msg

)

Parameters ♦ msg the message

Remarks Acknowledges the given message and all previous messages.

Returns true if and only if the operation succeeded

open Function

Synopsis virtual qa_bool QAManager::open(
qa_short mode

)

Parameters ♦ mode the acknowledge mode

139

Remarks Opens the QAManager with the given acknowledge mode.

Returns true if and only if the operation succeeded

See Also Class AcknowledgementMode

recover Function

Synopsis virtual qa_bool QAManager::recover()

Remarks Recovers all unacknowledged messages.

Returns true if and only if the operation succeeded

~QAManager Function

Synopsis virtual QAManager::~QAManager()

Remarks Virtual destructor.

140

Chapter 8. QAnywhere C++ API Reference

Class QAManagerBase
Synopsis public QAManagerBase

Derived classes ♦ “Class QAManager” on page 138
♦ “Class QATransactionalManager” on page 171

Remarks This class acts as a base class forClass QATransactionalManagerandClass
QAManager, which manage transactional and non-transactional messaging
respectively. There must be a single instance of QAManagerBase per thread
in the application. This class is also a factory for creating messages. Since
thegetMessage Functionmethods also create messages, this class manages
all messages, so that they can be released from memory either at a user
method call, or when the QAManagerBase is closed. ThepublishMessage
Functionmethods will always return false, since the publish/subscribe model
is not supported.

Members All members of QAManagerBase, including all inherited members.

♦ “close Function” on page 142
♦ “createBinaryMessage Function” on page 142
♦ “createTextMessage Function” on page 142
♦ “deleteMessage Function” on page 142
♦ “getBooleanStoreProperty Function” on page 143
♦ “getByteStoreProperty Function” on page 143
♦ “getDoubleStoreProperty Function” on page 143
♦ “getFloatStoreProperty Function” on page 144
♦ “getIntStoreProperty Function” on page 144
♦ “getLastError Function” on page 144
♦ “getLastErrorMsg Function” on page 144
♦ “getLongStoreProperty Function” on page 145
♦ “getMessage Function” on page 145
♦ “getMessageNoWait Function” on page 145
♦ “getMessageTimeout Function” on page 145
♦ “getMode Function” on page 146
♦ “getShortStoreProperty Function” on page 146
♦ “getStringStoreProperty Function” on page 146
♦ “peekFirstMessage Function” on page 147
♦ “peekNextMessage Function” on page 147
♦ “publishMessage Function” on page 147
♦ “putMessage Function” on page 147
♦ “putMessageTimeToLive Function” on page 148
♦ “setBooleanStoreProperty Function” on page 148
♦ “setByteStoreProperty Function” on page 148
♦ “setDoubleStoreProperty Function” on page 149

141

♦ “setFloatStoreProperty Function” on page 149
♦ “setIntStoreProperty Function” on page 149
♦ “setLongStoreProperty Function” on page 150
♦ “setMessageListener Function” on page 150
♦ “setProperty Function” on page 150
♦ “setShortStoreProperty Function” on page 151
♦ “setStringStoreProperty Function” on page 151
♦ “start Function” on page 151
♦ “stop Function” on page 151
♦ “triggerSendReceive Function” on page 151
♦ “˜QAManagerBase Function” on page 152

close Function

Synopsis virtual qa_bool QAManagerBase::close()

Remarks Closes the QAManagerBase. This releases all resources associated with the
instance. When an instance of QAManagerBase is closed, it cannot be
re-opened; a new instance must be created and opened in this case.

Returns true if and only if the operation succeeded

createBinaryMessage Function

Synopsis virtual QABinaryMessage * QAManagerBase::createBinaryMessage()

Remarks Creates aQABinaryMessage object. AQABinaryMessage object is used
to send a message containing a stream of uninterpreted bytes.

Returns the message that was created

createTextMessage Function

Synopsis virtual QATextMessage * QAManagerBase::createTextMessage()

Remarks Creates aQATextMessage object. AQATextMessage object is used to
send a message containing a qa_string value.

Returns the message that was created

deleteMessage Function

Synopsis virtual void QAManagerBase::deleteMessage(
QAMessage * msg

)

Parameters ♦ msg the message to be deleted

142

Chapter 8. QAnywhere C++ API Reference

Remarks Deletes aQAMessage object. By default, messages created by the above
methods are deleted automatically when the QAManagerBase is closed.
This method allows more control over when messages are deleted.

getBooleanStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::getBooleanStoreProperty(
qa_const_string name
qa_bool * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_bool value

Remarks Gets the value of theqa_bool message store property with the specified
name.

Returns true if and only if the operation succeeded

getByteStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::getByteStoreProperty(
qa_const_string name
qa_byte * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_byte value

Remarks Gets the value of theqa_byte message store property with the specified
name.

Returns true if and only if the operation succeeded

getDoubleStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::getDoubleStoreProperty(
qa_const_string name
qa_double * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_double value

Remarks Gets the value of theqa_double message store property with the specified
name.

Returns true if and only if the operation succeeded

143

getFloatStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::getFloatStoreProperty(
qa_const_string name
qa_float * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_float value

Remarks Gets the value of theqa_float message store property with the specified
name.

Returns true if and only if the operation succeeded

getIntStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::getIntStoreProperty(
qa_const_string name
qa_int * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_int value

Remarks Gets the value of theqa_int message store property with the specified
name.

Returns true if and only if the operation succeeded

getLastError Function

Synopsis virtual qa_int QAManagerBase::getLastError()

Remarks Gets the error code of the last method call that failed.

Returns the error code

getLastErrorMsg Function

Synopsis virtual qa_string QAManagerBase::getLastErrorMsg()

Remarks Gets an error message corresponding to the error code.

Returns the error message

144

Chapter 8. QAnywhere C++ API Reference

getLongStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::getLongStoreProperty(
qa_const_string name
qa_long * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_long value

Remarks Gets the value of theqa_long message store property with the specified
name.

Returns true if and only if the operation succeeded

getMessage Function

Synopsis virtual QAMessage * QAManagerBase::getMessage(
qa_const_string dest

)

Parameters ♦ dest the destination

Remarks Gets the next message that is queued for the given destination, waiting
indefinitely if there are currently no messages queued.

Returns the next message, or qa_null if no message is available

getMessageNoWait Function

Synopsis virtual QAMessage * QAManagerBase::getMessageNoWait(
qa_const_string dest

)

Parameters ♦ dest the destination

Remarks Gets the next message that is queued for the given destination, returning
qa_null if there are currently no messages queued.

Returns the next message, or qa_null if no message is available

getMessageTimeout Function

Synopsis virtual QAMessage * QAManagerBase::getMessageTimeout(
qa_const_string dest
qa_long timeout

)

Parameters ♦ dest the destination

145

♦ timeout the maximum time, in milliseconds, to wait

Remarks Gets the next message that is queued for the given destination, waiting at
most timeout milliseconds if there are currently no messages queued.

Returns the next message, or qa_null if no message is available

getMode Function

Synopsis virtual qa_short QAManagerBase::getMode()

Remarks Gets the acknowledge mode of this instance of QAManagerBase. Mode is
IMPLICIT_ACKNOWLEDGE or EXPLICIT_ACKNOWLEDGE or
TRANSACTIONAL.

Returns the acknowledge mode

See Also Class AcknowledgementMode

getShortStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::getShortStoreProperty(
qa_const_string name
qa_short * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_short value

Remarks Gets the value of theqa_short message store property with the specified
name.

Returns true if and only if the operation succeeded

getStringStoreProperty Function

Synopsis virtual qa_int QAManagerBase::getStringStoreProperty(
qa_const_string name
qa_string dest
qa_int maxlen

)

Parameters ♦ name the name of the property to get

♦ dest the destination for the qa_string value

♦ maxlen the maximum number of qa_chars of the value to copy,
including the null terminator qa_char

146

Chapter 8. QAnywhere C++ API Reference

Remarks Gets the value of the message store property with the specified name.

Returns the number of non-null qa_chars actually copied, or -1 if the operation failed

peekFirstMessage Function

Synopsis virtual QAMessage * QAManagerBase::peekFirstMessage(
qa_const_string dest

)

Parameters ♦ dest the destination

Remarks Looks at the first message that is queued for the given destination, returning
qa_null if there are currently no messages queued. This method is used
before peekNextMessage, which can be used to enumerate the messages
queued for the given destination at the time this method was called.

Returns the next message, or qa_null if no message is available

peekNextMessage Function

Synopsis virtual QAMessage * QAManagerBase::peekNextMessage()

Remarks Looks at the next message that is queued for the given destination, returning
qa_null if there are currently no more messages queued. This method is used
after peekFirstMessage, and can be used to enumerate the messages queued
for the given destination at the time peekFirstMessage was called.

Returns the next message, or qa_null if no message is available

publishMessage Function

Synopsis virtual qa_bool QAManagerBase::publishMessage(
qa_const_string dest
QAMessage * msg

)

Parameters ♦ dest the destination

♦ msg the message

Remarks Not implemented.

putMessage Function

Synopsis virtual qa_bool QAManagerBase::putMessage(
qa_const_string dest
QAMessage * msg

)

147

Parameters ♦ dest the destination

♦ msg the message

Remarks Puts a message into the queue for the given destination.

Returns true if and only if the operation succeeded

putMessageTimeToLive Function

Synopsis virtual qa_bool QAManagerBase::putMessageTimeToLive(
qa_const_string dest
QAMessage * msg
qa_long ttl

)

Parameters ♦ dest the destination

♦ msg the message

♦ ttl the time-to-live, in milliseconds

Remarks Puts a message into the queue for the given destination and a given
time-to-live in milliseconds.

Returns true if and only if the operation succeeded

setBooleanStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::setBooleanStoreProperty(
qa_const_string name
qa_bool value

)

Parameters ♦ name the name of the property to set

♦ value the qa_bool value of the property

Remarks Sets aqa_bool message store property value with the specified name.

Returns true if and only if the operation succeeded

setByteStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::setByteStoreProperty(
qa_const_string name
qa_byte value

)

Parameters ♦ name the name of the property to set

♦ value the qa_byte value of the property

148

Chapter 8. QAnywhere C++ API Reference

Remarks Sets aqa_byte message store property value with the specified name.

Returns true if and only if the operation succeeded

setDoubleStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::setDoubleStoreProperty(
qa_const_string name
qa_double value

)

Parameters ♦ name the name of the property to set

♦ value the qa_double value of the property

Remarks Sets aqa_double message store property value with the specified name.

Returns true if and only if the operation succeeded

setFloatStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::setFloatStoreProperty(
qa_const_string name
qa_float value

)

Parameters ♦ name the name of the property to set

♦ value the qa_float value of the property

Remarks Sets aqa_float message store property value with the specified name.

Returns true if and only if the operation succeeded

setIntStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::setIntStoreProperty(
qa_const_string name
qa_int value

)

Parameters ♦ name the name of the property to set

♦ value the qa_int value of the property

Remarks Sets aqa_int message store property value with the specified name.

Returns true if and only if the operation succeeded

149

setLongStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::setLongStoreProperty(
qa_const_string name
qa_long value

)

Parameters ♦ name the name of the property to set

♦ value the qa_long value of the property

Remarks Sets aqa_long message store property value with the specified name.

Returns true if and only if the operation succeeded

setMessageListener Function

Synopsis virtual void QAManagerBase::setMessageListener(
qa_const_string dest
QAMessageListener * listener

)

Parameters ♦ dest the destination address that the listener applies to.

♦ listener the message listener to associate with destination dest.

Remarks Sets the message listener associated with a destination.

setProperty Function

Synopsis virtual qa_bool QAManagerBase::setProperty(
qa_const_string name
qa_const_string value

)

Parameters ♦ name the name of the property to set

♦ value the value of the property

Remarks Sets the named property to the given value. Properties for this
QAManagerBase may be set with this method as an alternative to the
properties file at creation. Properties must be set before calling the open()
methods of the derived classes.

Returns true if and only if the operation succeeded

150

Chapter 8. QAnywhere C++ API Reference

setShortStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::setShortStoreProperty(
qa_const_string name
qa_short value

)

Parameters ♦ name the name of the property to set

♦ value the qa_short value of the property

Remarks Sets aqa_short message store property value with the specified name.

Returns true if and only if the operation succeeded

setStringStoreProperty Function

Synopsis virtual qa_bool QAManagerBase::setStringStoreProperty(
qa_const_string name
qa_const_string value

)

Parameters ♦ name the name of the property to set

♦ value the qa_string value of the property

Remarks Sets the named message store property to the given value.

Returns true if and only if the operation succeeded

start Function

Synopsis virtual qa_bool QAManagerBase::start()

Remarks Starts the QAManagerBase for receiving incoming messages.

Returns true if and only if the operation succeeded

stop Function

Synopsis virtual qa_bool QAManagerBase::stop()

Remarks Stops the QAManagerBase’s reception of incoming messages.

Returns true if and only if the operation succeeded

triggerSendReceive Function

Synopsis virtual qa_bool QAManagerBase::triggerSendReceive()

151

Remarks Causes any pending messages to be sent and received. This includes both
messages queued locally, and messages queued on the server for local
destinations.

Returns true if and only if the operation succeeded

~QAManagerBase Function

Synopsis virtual QAManagerBase::~QAManagerBase()

Remarks Virtual destructor

152

Chapter 8. QAnywhere C++ API Reference

Class QAManagerFactory
Synopsis public QAManagerFactory

Remarks This class acts as a factory class for creatingClass QATransactionalManager
andClass QAManagerobjects.

Members All members of QAManagerFactory, including all inherited members.

♦ “createQAManager Function” on page 153
♦ “createQATransactionalManager Function” on page 153
♦ “deleteQAManager Function” on page 153
♦ “deleteQATransactionalManager Function” on page 154
♦ “getLastError Function” on page 154
♦ “getLastErrorMsg Function” on page 154
♦ “˜QAManagerFactory Function” on page 154

createQAManager Function

Synopsis virtual QAManager * QAManagerFactory::createQAManager(
qa_const_string iniFile

)

Parameters ♦ iniFile the path of the properties file

Remarks Returns a new instance of aClass QAManagerwith specified properties.

Returns theClass QAManagerinstance

createQATransactionalManager Function

Synopsis virtual QATransactionalManager *
QAManagerFactory::createQATransactionalManager(

qa_const_string iniFile
)

Parameters ♦ iniFile the path of the properties file

Remarks Returns a new instance of aClass QATransactionalManagerwith specified
properties.

Returns theClass QATransactionalManagerinstance

deleteQAManager Function

Synopsis virtual void QAManagerFactory::deleteQAManager(
QAManager * mgr

)

Parameters ♦ mgr the“Class QAManager” on page 138to be destroyed

153

Remarks Destroys aClass QAManager, freeing its resources. It is not necessary to use
this method, since all created QAManager’s will be destroyed when
QAnywhereFactory_term() is called. It is provided as a convenience for
when it is desirable to free resources in a timely manner.

deleteQATransactionalManager Function

Synopsis virtual void QAManagerFactory::deleteQATransactionalManager(
QATransactionalManager * mgr

)

Parameters ♦ mgr the“Class QATransactionalManager” on page 171to be destroyed

Remarks Destroys aClass QATransactionalManager, freeing its resources. It is not
necessary to use this method, since all created QATransactionalManager’s
will be destroyed when QAnywhereFactory_term() is called. It is provided
as a convenience for when it is desirable to free resources in a timely manner.

getLastError Function

Synopsis virtual qa_int QAManagerFactory::getLastError()

Remarks Gets the error code of the last method call that failed.

Returns the error code

getLastErrorMsg Function

Synopsis virtual qa_string QAManagerFactory::getLastErrorMsg()

Remarks Gets an error message corresponding to the error code.

Returns the error message

~QAManagerFactory Function

Synopsis virtual QAManagerFactory::~QAManagerFactory()

Remarks Virtual destructor

154

Chapter 8. QAnywhere C++ API Reference

Class QAMessage
Synopsis public QAMessage

Derived classes ♦ “Class QABinaryMessage” on page 127
♦ “Class QATextMessage” on page 168

Remarks The QAMessage interface is the root interface of all QAnywhere client
messages.

Members All members of QAMessage, including all inherited members.

♦ “castToBinaryMessage Function” on page 156
♦ “castToTextMessage Function” on page 156
♦ “clearProperties Function” on page 156
♦ “DEFAULT_PRIORITY Variable” on page 156
♦ “DEFAULT_TIME_TO_LIVE Variable” on page 156
♦ “getAddress Function” on page 157
♦ “getBooleanProperty Function” on page 157
♦ “getByteProperty Function” on page 157
♦ “getDoubleProperty Function” on page 157
♦ “getExpiration Function” on page 158
♦ “getFloatProperty Function” on page 158
♦ “getInReplyToID Function” on page 158
♦ “getIntProperty Function” on page 158
♦ “getLongProperty Function” on page 159
♦ “getMessageID Function” on page 159
♦ “getPriority Function” on page 159
♦ “getPropertyNames Function” on page 159
♦ “getPropertyType Function” on page 160
♦ “getRedelivered Function” on page 160
♦ “getReplyToAddress Function” on page 160
♦ “getShortProperty Function” on page 160
♦ “getStringProperty Function” on page 161
♦ “getStringProperty Function” on page 161
♦ “getTimestamp Function” on page 161
♦ “getTimestampAsString Function” on page 162
♦ “propertyExists Function” on page 162
♦ “setAddress Function” on page 162
♦ “setBooleanProperty Function” on page 163
♦ “setByteProperty Function” on page 163
♦ “setDoubleProperty Function” on page 163
♦ “setFloatProperty Function” on page 163
♦ “setInReplyToID Function” on page 164
♦ “setIntProperty Function” on page 164

155

♦ “setLongProperty Function” on page 164
♦ “setMessageID Function” on page 164
♦ “setPriority Function” on page 165
♦ “setRedelivered Function” on page 165
♦ “setReplyToAddress Function” on page 165
♦ “setShortProperty Function” on page 165
♦ “setStringProperty Function” on page 166
♦ “setTimestamp Function” on page 166
♦ “˜QAMessage Function” on page 166

DEFAULT_PRIORITY Variable

Synopsis const qa_int QAMessage::DEFAULT_PRIORITY

Remarks The default message priority.

DEFAULT_TIME_TO_LIVE Variable

Synopsis const qa_long QAMessage::DEFAULT_TIME_TO_LIVE

Remarks The default message time-to-live value.

castToBinaryMessage Function

Synopsis virtual QABinaryMessage * QAMessage::castToBinaryMessage()

Remarks Casts this QAMessage to aClass QABinaryMessage.

Returns a pointer to theClass QABinaryMessage, or NULL if this message is not an
instance ofClass QABinaryMessage.

castToTextMessage Function

Synopsis virtual QATextMessage * QAMessage::castToTextMessage()

Remarks Casts this QAMessage to aClass QATextMessage.

Returns a pointer to theClass QATextMessage, or NULL if this message is not an
instance ofClass QATextMessage.

clearProperties Function

Synopsis virtual void QAMessage::clearProperties()

Remarks Clears a message’s properties. The message’s header fields and body are not
cleared.

156

Chapter 8. QAnywhere C++ API Reference

getAddress Function

Synopsis virtual qa_const_string QAMessage::getAddress()

Remarks Gets the destination address for this message. When a message is sent, this
field is ignored. After completion of the send or publish method, the field
holds the destination specified by the method.

Returns the destination address

getBooleanProperty Function

Synopsis virtual qa_bool QAMessage::getBooleanProperty(
qa_const_string name
qa_bool * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_bool value

Remarks Gets the value of theqa_bool property with the specified name.

Returns true if and only if the operation succeeded

getByteProperty Function

Synopsis virtual qa_bool QAMessage::getByteProperty(
qa_const_string name
qa_byte * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_byte value

Remarks Gets the value of theqa_byte property with the specified name.

Returns true if and only if the operation succeeded

getDoubleProperty Function

Synopsis virtual qa_bool QAMessage::getDoubleProperty(
qa_const_string name
qa_double * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_double value

157

Remarks Gets the value of theqa_double property with the specified name.

Returns true if and only if the operation succeeded

getExpiration Function

Synopsis virtual qa_long QAMessage::getExpiration()

Remarks Gets the message’s expiration value. When a message is sent, the Expiration
header field is left unassigned. After completion of the send or publish
method, it holds the expiration time of the message. This is the sum of the
time-to-live value specified by the client and the GMT at the time of the send
or publish. If the time-to-live is specified as zero, Expiration is set to zero to
indicate that the message does not expire.

Returns the expiration

getFloatProperty Function

Synopsis virtual qa_bool QAMessage::getFloatProperty(
qa_const_string name
qa_float * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_float value

Remarks Gets the value of theqa_float property with the specified name.

Returns true if and only if the operation succeeded

getInReplyToID Function

Synopsis virtual qa_const_string QAMessage::getInReplyToID()

Remarks Gets the In-Reply-To ID for the message.

Returns the In-Reply-To ID

getIntProperty Function

Synopsis virtual qa_bool QAMessage::getIntProperty(
qa_const_string name
qa_int * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_int value

158

Chapter 8. QAnywhere C++ API Reference

Remarks Gets the value of theqa_int property with the specified name.

Returns true if and only if the operation succeeded

getLongProperty Function

Synopsis virtual qa_bool QAMessage::getLongProperty(
qa_const_string name
qa_long * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_long value

Remarks Gets the value of theqa_long property with the specified name.

Returns true if and only if the operation succeeded

getMessageID Function

Synopsis virtual qa_const_string QAMessage::getMessageID()

Remarks Gets the message ID. The MessageID header field contains a value that
uniquely identifies each message sent by the QAnywhere client. When a
message is sent, MessageID can be ignored. When the send method returns,
it contains an assigned value. A MessageID is a qa_string value that should
function as a unique key for identifying messages in a historical repository.

Returns the message ID

getPriority Function

Synopsis virtual qa_int QAMessage::getPriority()

Remarks Gets the message priority level. The QAnywhere client API defines ten
levels of priority value, with 0 as the lowest priority and 9 as the highest. In
addition, clients should consider priorities 0-4 as gradations of normal
priority and priorities 5-9 as gradations of expedited priority.

Returns the priority

getPropertyNames Function

Synopsis virtual qa_const_string * QAMessage::getPropertyNames()

Remarks Returns a list of property names currently set in the QAMessage.

Returns a NULL-terminated array of property names

159

getPropertyType Function

Synopsis virtual qa_short QAMessage::getPropertyType(
qa_const_string name

)

Parameters ♦ name the name of the property

Remarks Returns the type of a property with the given name. One of
PROPERTY_TYPE_BOOLEAN, PROPERTY_TYPE_BYTE,
PROPERTY_TYPE_SHORT, PROPERTY_TYPE_INT,
PROPERTY_TYPE_LONG, PROPERTY_TYPE_FLOAT,
PROPERTY_TYPE_DOUBLE, PROPERTY_TYPE_STRING,
PROPERTY_TYPE_UNKNOWN.

Returns the type of the property

getRedelivered Function

Synopsis virtual qa_bool QAMessage::getRedelivered()

Remarks Gets an indication of whether this message is being redelivered.

Returns whether the message was redelivered

getReplyToAddress Function

Synopsis virtual qa_const_string QAMessage::getReplyToAddress()

Remarks Gets the address to which a reply to this message should be sent.

Returns the Reply-To address

getShortProperty Function

Synopsis virtual qa_bool QAMessage::getShortProperty(
qa_const_string name
qa_short * value

)

Parameters ♦ name the name of the property to get

♦ value the destination for the qa_short value

Remarks Gets the value of theqa_short property with the specified name.

Returns true if and only if the operation succeeded

160

Chapter 8. QAnywhere C++ API Reference

getStringProperty Function

Synopsis virtual qa_int QAMessage::getStringProperty(
qa_const_string name
qa_string dest
qa_int maxlen

)

Parameters ♦ name the name of the property to get

♦ dest the destination for the qa_string value

♦ maxlen the maximum number of qa_chars of the value to copy,
including the null terminator qa_char

Remarks Gets the value of theqa_string property with the specified name.

Returns the number of non-null qa_chars actually copied, or -1 if the operation failed

getStringProperty Function

Synopsis virtual qa_int QAMessage::getStringProperty(
qa_const_string name
qa_int offset
qa_string dest
qa_int maxlen

)

Parameters ♦ name the name of the property to get

♦ offset the starting offset into the property value from which to copy

♦ dest the destination for the qa_string value

♦ maxlen the maximum number of qa_chars of the value to copy,
including the null terminator qa_char

Remarks Gets the value of theqa_string property (starting at offset) with the
specified name.

Returns the number of non-null qa_chars actually copied, or -1 if the operation failed
Returns the value of the qa_string property (starting at offset) with the
specified name.

getTimestamp Function

Synopsis virtual qa_long QAMessage::getTimestamp()

161

Remarks Gets the message timestamp. The Timestamp header field contains the time
a message was created. It is not the time the message was actually
transmitted, because the actual send may occur later due to transactions or
other client-side queuing of messages. It is in units that are natural for the
platform. For Windows/PocketPC platforms, the timestamp is the
SYSTEMTIME, converted to a FILETIME, which is copied to an qa_long
value.

Returns the message timestamp

getTimestampAsString Function

Synopsis virtual qa_int QAMessage::getTimestampAsString(
qa_string buffer
qa_int bufferLen

)

Parameters ♦ buffer the buffer for the formatted timestamp

♦ bufferLen the size of the buffer

Remarks Gets the message timestamp as a formatted string. The format is: “dow,
MMM dd, yyyy hh:mm:ss.nnn GMT”.

Returns the number of non-null qa_char’s written to the buffer

propertyExists Function

Synopsis virtual qa_bool QAMessage::propertyExists(
qa_const_string name

)

Parameters ♦ name the name of the property

Remarks Indicates whether a property value exists.

Returns true if and only if the property exists

setAddress Function

Synopsis virtual void QAMessage::setAddress(
qa_const_string destination

)

Parameters ♦ destination the destination address

Remarks Sets the destination address for this message. This method can be used to
change the value for a message that has been received.

162

Chapter 8. QAnywhere C++ API Reference

setBooleanProperty Function

Synopsis virtual void QAMessage::setBooleanProperty(
qa_const_string name
qa_bool value

)

Parameters ♦ name the name of the property to set

♦ value the qa_bool value of the property

Remarks Sets aqa_bool property value with the specified name into the message.

setByteProperty Function

Synopsis virtual void QAMessage::setByteProperty(
qa_const_string name
qa_byte value

)

Parameters ♦ name the name of the property to set

♦ value the qa_byte value of the property

Remarks Sets aqa_byte property value with the specified name into the message.

setDoubleProperty Function

Synopsis virtual void QAMessage::setDoubleProperty(
qa_const_string name
qa_double value

)

Parameters ♦ name the name of the property to set

♦ value the qa_double value of the property

Remarks Sets aqa_double property value with the specified name into the message.

setFloatProperty Function

Synopsis virtual void QAMessage::setFloatProperty(
qa_const_string name
qa_float value

)

Parameters ♦ name the name of the property to set

♦ value the qa_float value of the property

163

Remarks Sets aqa_float property value with the specified name into the message.

setInReplyToID Function

Synopsis virtual void QAMessage::setInReplyToID(
qa_const_string id

)

Parameters ♦ id the In-Reply-To ID

Remarks Sets the In-Reply-To ID for the message. A client can use the InReplyToID
header field to link one message with another. A typical use is to link a
response message with its request message.

setIntProperty Function

Synopsis virtual void QAMessage::setIntProperty(
qa_const_string name
qa_int value

)

Parameters ♦ name the name of the property to set

♦ value the qa_int value of the property

Remarks Sets aqa_int property value with the specified name into the message.

setLongProperty Function

Synopsis virtual void QAMessage::setLongProperty(
qa_const_string name
qa_long value

)

Parameters ♦ name the name of the property to set

♦ value the qa_long value of the property

Remarks Sets aqa_long property value with the specified name into the message.

setMessageID Function

Synopsis virtual void QAMessage::setMessageID(
qa_const_string id

)

Parameters ♦ id the message ID

Remarks Sets the message ID. This method can be used to change the value for a
message that has been received.

164

Chapter 8. QAnywhere C++ API Reference

setPriority Function

Synopsis virtual void QAMessage::setPriority(
qa_int priority

)

Parameters ♦ priority the priority

Remarks Sets the priority level for this message. This method can be used to change
the value for a message that has been received.

setRedelivered Function

Synopsis virtual void QAMessage::setRedelivered(
qa_bool redelivered

)

Parameters ♦ redelivered the redelivered indication

Remarks Sets an indication of whether this message was redelivered. This method can
be used to change the value for a message that has been received.

setReplyToAddress Function

Synopsis virtual void QAMessage::setReplyToAddress(
qa_const_string replyTo

)

Parameters ♦ replyTo the Reply-To address

Remarks Sets the address to which a reply to this message should be sent.

setShortProperty Function

Synopsis virtual void QAMessage::setShortProperty(
qa_const_string name
qa_short value

)

Parameters ♦ name the name of the property to set

♦ value the qa_short value of the property

Remarks Sets aqa_short property value with the specified name into the message.

165

setStringProperty Function

Synopsis virtual void QAMessage::setStringProperty(
qa_const_string name
qa_const_string value

)

Parameters ♦ name the name of the property to set

♦ value the qa_string value of the property

Remarks Sets aqa_string property value with the specified name into the message.

setTimestamp Function

Synopsis virtual void QAMessage::setTimestamp(
qa_long timestamp

)

Parameters ♦ timestamp the message timestamp

Remarks Sets the message timestamp. This method can be used to change the value
for a message that has been received.

~QAMessage Function

Synopsis virtual QAMessage::~QAMessage()

Remarks Virtual destructor

166

Chapter 8. QAnywhere C++ API Reference

Class QAMessageListener
Synopsis public QAMessageListener

Remarks A QAMessageListener object is used to receive asynchronously delivered
messages.

Members All members of QAMessageListener, including all inherited members.

♦ “onMessage Function” on page 167
♦ “˜QAMessageListener Function” on page 167

onMessage Function

Synopsis virtual void QAMessageListener::onMessage(
QAMessage * message

)

Parameters ♦ message the message passed to the listener

Remarks Passes a message to the listener.

~QAMessageListener Function

Synopsis virtual QAMessageListener::~QAMessageListener()

Remarks Virtual destructor

167

Class QATextMessage
Synopsis public QATextMessage

Base classes ♦ “Class QAMessage” on page 155

Remarks A QATextMessage object is used to send a message containing an qa_string.
It inherits from theClass QAMessageclass and adds a text message body.

When a client receives an QATextMessage, it is in read-only mode. If a
client attempts to write to the message at this point, a
COMMON_MSG_NOT_WRITEABLE_ERROR is set.

Members All members of QATextMessage, including all inherited members.

♦ “castToBinaryMessage Function” on page 156
♦ “castToTextMessage Function” on page 156
♦ “clearProperties Function” on page 156
♦ “DEFAULT_PRIORITY Variable” on page 156
♦ “DEFAULT_TIME_TO_LIVE Variable” on page 156
♦ “getAddress Function” on page 157
♦ “getBooleanProperty Function” on page 157
♦ “getByteProperty Function” on page 157
♦ “getDoubleProperty Function” on page 157
♦ “getExpiration Function” on page 158
♦ “getFloatProperty Function” on page 158
♦ “getInReplyToID Function” on page 158
♦ “getIntProperty Function” on page 158
♦ “getLongProperty Function” on page 159
♦ “getMessageID Function” on page 159
♦ “getPriority Function” on page 159
♦ “getPropertyNames Function” on page 159
♦ “getPropertyType Function” on page 160
♦ “getRedelivered Function” on page 160
♦ “getReplyToAddress Function” on page 160
♦ “getShortProperty Function” on page 160
♦ “getStringProperty Function” on page 161
♦ “getStringProperty Function” on page 161
♦ “getText Function” on page 169
♦ “getTextLength Function” on page 169
♦ “getTimestamp Function” on page 161
♦ “getTimestampAsString Function” on page 162
♦ “propertyExists Function” on page 162
♦ “readText Function” on page 169
♦ “setAddress Function” on page 162

168

Chapter 8. QAnywhere C++ API Reference

♦ “setBooleanProperty Function” on page 163
♦ “setByteProperty Function” on page 163
♦ “setDoubleProperty Function” on page 163
♦ “setFloatProperty Function” on page 163
♦ “setInReplyToID Function” on page 164
♦ “setIntProperty Function” on page 164
♦ “setLongProperty Function” on page 164
♦ “setMessageID Function” on page 164
♦ “setPriority Function” on page 165
♦ “setRedelivered Function” on page 165
♦ “setReplyToAddress Function” on page 165
♦ “setShortProperty Function” on page 165
♦ “setStringProperty Function” on page 166
♦ “setText Function” on page 170
♦ “setTimestamp Function” on page 166
♦ “writeText Function” on page 170
♦ “˜QAMessage Function” on page 166
♦ “˜QATextMessage Function” on page 170

getText Function

Synopsis virtual qa_string QATextMessage::getText()

Remarks Gets the string containing this message’s data. The default value is null.

Returns theqa_string containing the message’s data

getTextLength Function

Synopsis virtual qa_long QATextMessage::getTextLength()

Remarks Returns the text length. NOTE: If the text length is non-zero andgetText
Functionreturns qa_null then the text does not fit in memory, and must be
read in pieces usingreadText Function.

readText Function

Synopsis virtual qa_int QATextMessage::readText(
qa_string string
qa_int length

)

Parameters ♦ string the destination for the text

♦ length the maximum number of qa_chars to read into the destination
buffer, including the null termination qa_char

169

Remarks Reads the requested length of text from the current text position into a buffer.

Returns the actual number of non-null qa_chars read, or -1 if the current text position
is after the end of the text

setText Function

Synopsis virtual void QATextMessage::setText(
qa_const_string string

)

Parameters ♦ string theqa_string containing the message’s data

Remarks Sets the string containing this message’s data.

writeText Function

Synopsis virtual void QATextMessage::writeText(
qa_const_string string
qa_int offset
qa_int length

)

Parameters ♦ string the source text to concatenate

♦ offset the offset into the source text at which to start reading

♦ length the number of qa_chars of the source text to read

Remarks Concatenates text to the current text.

~QATextMessage Function

Synopsis virtual QATextMessage::~QATextMessage()

Remarks Virtual destructor

170

Chapter 8. QAnywhere C++ API Reference

Class QATransactionalManager
Synopsis public QATransactionalManager

Base classes ♦ “Class QAManagerBase” on page 141

Remarks This class is the manager for transactional messaging.

Members All members of QATransactionalManager, including all inherited members.

♦ “close Function” on page 142
♦ “commit Function” on page 172
♦ “createBinaryMessage Function” on page 142
♦ “createTextMessage Function” on page 142
♦ “deleteMessage Function” on page 142
♦ “getBooleanStoreProperty Function” on page 143
♦ “getByteStoreProperty Function” on page 143
♦ “getDoubleStoreProperty Function” on page 143
♦ “getFloatStoreProperty Function” on page 144
♦ “getIntStoreProperty Function” on page 144
♦ “getLastError Function” on page 144
♦ “getLastErrorMsg Function” on page 144
♦ “getLongStoreProperty Function” on page 145
♦ “getMessage Function” on page 145
♦ “getMessageNoWait Function” on page 145
♦ “getMessageTimeout Function” on page 145
♦ “getMode Function” on page 146
♦ “getShortStoreProperty Function” on page 146
♦ “getStringStoreProperty Function” on page 146
♦ “open Function” on page 172
♦ “peekFirstMessage Function” on page 147
♦ “peekNextMessage Function” on page 147
♦ “publishMessage Function” on page 147
♦ “putMessage Function” on page 147
♦ “putMessageTimeToLive Function” on page 148
♦ “rollback Function” on page 172
♦ “setBooleanStoreProperty Function” on page 148
♦ “setByteStoreProperty Function” on page 148
♦ “setDoubleStoreProperty Function” on page 149
♦ “setFloatStoreProperty Function” on page 149
♦ “setIntStoreProperty Function” on page 149
♦ “setLongStoreProperty Function” on page 150
♦ “setMessageListener Function” on page 150
♦ “setProperty Function” on page 150
♦ “setShortStoreProperty Function” on page 151

171

♦ “setStringStoreProperty Function” on page 151
♦ “start Function” on page 151
♦ “stop Function” on page 151
♦ “triggerSendReceive Function” on page 151
♦ “˜QAManagerBase Function” on page 152
♦ “˜QATransactionalManager Function” on page 172

commit Function

Synopsis virtual qa_bool QATransactionalManager::commit()

Remarks Commits the current transaction and begins a new transaction. The first
transaction begins with the call toopen Function.

Returns true if and only if the operation was successful

open Function

Synopsis virtual qa_bool QATransactionalManager::open()

Remarks Opens the QATransactionalManager.

Returns true if and only if the operation was successful

rollback Function

Synopsis virtual qa_bool QATransactionalManager::rollback()

Remarks Rolls back the current transaction and begins a new transaction.

Returns true if and only if the operation was successful

~QATransactionalManager Function

Synopsis virtual QATransactionalManager::~QATransactionalManager()

Remarks Virtual destructor

172

CHAPTER 9

iAnywhere.QAnywhere.Client namespace

About this chapter The iAnywhere.QAnywhere.Client namespace contains classes and
enumerations for building applications that handle QAnywhere messages.

Contents Topic: page

AcknowledgementMode enumeration 174

MessageProperties class 175

MessageType enumeration 180

QABinaryMessage class 181

QAException class 192

QAManager class 195

QAManagerBase class 201

QAManagerBase.MessageListener delegate 219

QAManagerFactory class 220

QAMessage class 224

QAPropertyType enumeration 237

QATextMessage class 238

QATransactionalManager class 242

173

AcknowledgementMode enumeration
The acknowledgement modes for QAManager instances

Prototypes ’ Visual Basic
Public Enum AcknowledgementMode

// C#
public enum AcknowledgementMode

Members

Member Description

EXPLICIT_-
ACKNOWLEDGEMENT

Indicates that messages are not acknowledged as received until a call
to one of the manager acknowledge methods is made.

IMPLICIT_-
ACKNOWLEDGEMENT

Indicates that all messages are acknowledged as received as soon as
the getMessage returns to the caller. Similarly, for message listeners,
the message is acknowledged as soon as the call to the message
listener delegate returns.

TRANSACTIONAL All message puts and gets done via this mode are done transactionally.
That is, all puts and gets occur within a transaction and are all
committed or rolled back together. There is always a transaction.
Committing or rolling back a transaction implicitly begins a new
transaction.

174

Chapter 9. iAnywhere.QAnywhere.Client namespace

MessageProperties class
Standard message property names

Prototypes ’ Visual Basic
Public Class MessageProperties

// C#
public class MessageProperties

MessageProperties members

Public static fields
(Shared)

Member Description

ABS_RETRY_TIMEOUT field Optional property for messages sent through a connector. The time at
which send retries through the connector will be stopped and the send
is failed

ADAPTER field For “system” queue messages, a delimited list of network adapters
that can be used to connect to the QAnywhere server.

COMPRESSED field Indicates whether the message content is compressed.

FROM_ADDR field Optional property indicating the address of the sender

MSG_TYPE field Optional property indicating the type of the message.

NETWORK field For “system” queue messages, a delimited list of network names that
can be used to connect to the QAnywhere server.

NETWORK_STATUS field For “system” queue messages, the state of the network connection.
Value is 1 if connected, 0 otherwise.

RETRY_FAILED field Set by the connector when sending a message to the RetryFailedAd-
dress. The receiving client can use this property to identify messages
for which re-sending failed.

RETRY_FAILED_ADDR field Optional property for messages sent through a connector. Once either
the RetryMax or RetryTimeout is exceeded, if this property is set, the
message will be sent to this address

RETRY_FAILED_PRIORITY
field

Optional property for messages sent through a connector. If a message
is sent to the RetryFailedAddress, the message priority will be set to
this

RETRY_MAX field Optional property for messages sent through a connector. The
maximum number of send retries at the connector before failing the
send

175

Member Description

RETRY_TIMEOUT field Optional property for messages sent through a connector. The duration
after which send retries through the connector will be stopped and the
send is failed

Public instance
constructors

Member Description

MessageProperties constructor Initializes a new instance of the MessageProperties class.

MessageProperties constructor

Initializes a new instance of the MessageProperties class.

Prototypes ’ Visual Basic
Public Sub New()

// C#
public MessageProperties();

ABS_RETRY_TIMEOUT field

Optional property for messages sent through a connector. The time at which
send retries through the connector will be stopped and the send is failed

Prototypes ’ Visual Basic
Public Shared ABS_RETRY_TIMEOUT As String

// C#
public const string ABS_RETRY_TIMEOUT ;

ADAPTER field

For “system” queue messages, a delimited list of network adapters that can
be used to connect to the QAnywhere server.

Prototypes ’ Visual Basic
Public Shared ADAPTER As String

// C#
public const string ADAPTER ;

176

Chapter 9. iAnywhere.QAnywhere.Client namespace

COMPRESSED field

Indicates whether the message content is compressed.

Prototypes ’ Visual Basic
Public Shared COMPRESSED As String

// C#
public const string COMPRESSED;

FROM_ADDR field

Optional property indicating the address of the sender

Prototypes ’ Visual Basic
Public Shared FROM_ADDR As String

// C#
public const string FROM_ADDR;

MSG_TYPE field

Optional property indicating the type of the message.

Prototypes ’ Visual Basic
Public Shared MSG_TYPE As String

// C#
public const string MSG_TYPE;

NETWORK field

For “system” queue messages, a delimited list of network names that can be
used to connect to the QAnywhere server.

Prototypes ’ Visual Basic
Public Shared NETWORK As String

// C#
public const string NETWORK;

NETWORK_STATUS field

For “system” queue messages, the state of the network connection. Value is
1 if connected, 0 otherwise.

Prototypes ’ Visual Basic
Public Shared NETWORK_STATUS As String

177

// C#
public const string NETWORK_STATUS ;

RETRY_FAILED field

Set by the connector when sending a message to the RetryFailedAddress.
The receiving client can use this property to identify messages for which
re-sending failed.

Prototypes ’ Visual Basic
Public Shared RETRY_FAILED As String

// C#
public const string RETRY_FAILED ;

RETRY_FAILED_ADDR field

Optional property for messages sent through a connector. Once either the
RetryMax or RetryTimeout is exceeded, if this property is set, the message
will be sent to this address

Prototypes ’ Visual Basic
Public Shared RETRY_FAILED_ADDR As String

// C#
public const string RETRY_FAILED_ADDR ;

RETRY_FAILED_PRIORITY field

Optional property for messages sent through a connector. If a message is
sent to the RetryFailedAddress, the message priority will be set to this

Prototypes ’ Visual Basic
Public Shared RETRY_FAILED_PRIORITY As String

// C#
public const string RETRY_FAILED_PRIORITY ;

RETRY_MAX field

Optional property for messages sent through a connector. The maximum
number of send retries at the connector before failing the send

Prototypes ’ Visual Basic
Public Shared RETRY_MAX As String

// C#
public const string RETRY_MAX;

178

Chapter 9. iAnywhere.QAnywhere.Client namespace

RETRY_TIMEOUT field

Optional property for messages sent through a connector. The duration after
which send retries through the connector will be stopped and the send is
failed

Prototypes ’ Visual Basic
Public Shared RETRY_TIMEOUT As String

// C#
public const string RETRY_TIMEOUT;

179

MessageType enumeration
Valid values for the message type property of a message

Prototypes ’ Visual Basic
Public Enum MessageType

// C#
public enum MessageType

Members

Member Description

NETWORK_STATUS_-
NOTIFICATION

A message type indicating a message that notifies the receiver of a
change to the network status of the current device.

PUSH_NOTIFICATION A message type indicating a message that notifies the receiver of one
or more messages ready for synchronizing from the message server.

REGULAR If no message type property exists then the message type is assumed
to be REGULAR. This type of message is not treated specially by the
message system.

180

Chapter 9. iAnywhere.QAnywhere.Client namespace

QABinaryMessage class
Encapsulation of a binary message

Prototypes ’ Visual Basic
Public Class QABinaryMessage

Inherits QAMessage

// C#
public class QABinaryMessage :

QAMessage

QABinaryMessage members

Public instance
properties

Member Description

Address property(inherited from
QAMessage)

The address of this message. May be null, but is null never null in a
message received via getMessage or a message listener.

BodyLength property The length in bytes of the message content

Expiration property(inherited
from QAMessage)

Indicates the time after which the message may expire and be removed
from the message system if it has not been received.

InReplyToID property(inherited
from QAMessage)

The message id of the message for which this message is a reply. May
be null.

MessageID property(inherited
from QAMessage)

The globally unique message id of the message. This property is null
until a message is put.

Priority property(inherited from
QAMessage)

The priority of the message (ranging from 0 to 9)

Redelivered property(inherited
from QAMessage)

Indicates whether the message has been previously received but not
acknowledged.

ReplyToAddress property(inher-
ited from QAMessage)

The replyTo address of this message. May be null.

Timestamp property(inherited
from QAMessage)

The message timestamp.

Public instance methods

181

Member Description

ClearProperties method(inherited
from QAMessage)

Clear all the properties of the message

GetBooleanProperty method(in-
herited from QAMessage)

Gets a boolean message property

GetDoubleProperty method(in-
herited from QAMessage)

Gets a double message property

GetFloatProperty method(inher-
ited from QAMessage)

Gets a float message property

GetIntProperty method(inherited
from QAMessage)

Gets an int message property

GetLongProperty method(inher-
ited from QAMessage)

Gets a long message property

GetProperty method(inherited
from QAMessage)

Gets a message property

GetPropertyNames method(in-
herited from QAMessage)

Gets an enumerator over the property names of the message

GetPropertyType method(inher-
ited from QAMessage)

Returns the property type of the given property

GetSbyteProperty method(inher-
ited from QAMessage)

Gets a signed byte message property

GetShortProperty method(inher-
ited from QAMessage)

Gets a short message property

GetStringProperty method(inher-
ited from QAMessage)

Gets a string message property

PropertyExists method(inherited
from QAMessage)

Indicates whether the given property has been set for this message

ReadBinary method Read from the beginning of the unread part of the binary value the
given number of bytes into a byte array.

ReadBoolean method Read from the beginning of the unread part of the binary value as a
boolean.

ReadChar method Read from the beginning of the unread part of the binary value as a
char.

ReadDouble method Read from the beginning of the unread part of the binary value as a
double.

182

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

ReadFloat method Read from the beginning of the unread part of the binary value as a
float.

ReadInt method Read from the beginning of the unread part of the binary value as an
int.

ReadLong method Read from the beginning of the unread part of the binary value as a
long.

ReadSbyte method Read from the beginning of the unread part of the binary value as a
signed byte.

ReadShort method Read from the beginning of the unread part of the binary value as a
short.

ReadString method Read from the beginning of the unread part of the binary value as a
string.

Reset method Reset the message so that reading of values starts from the beginning
of the message bytes

SetBooleanProperty method(in-
herited from QAMessage)

Sets a boolean property

SetDoubleProperty method(in-
herited from QAMessage)

Sets a double property

SetFloatProperty method(inher-
ited from QAMessage)

Sets a float property

SetIntProperty method(inherited
from QAMessage)

Sets an int property

SetLongProperty method(inher-
ited from QAMessage)

Sets a long property

SetProperty method(inherited
from QAMessage)

Sets a property. The property type must be one of the acceptable
primitive types, or String.

SetSbyteProperty method(inher-
ited from QAMessage)

Sets a byte property

SetShortProperty method(inher-
ited from QAMessage)

Sets a short property

SetStringProperty method(inher-
ited from QAMessage)

Sets a string property

WriteBinary method Append the byte array value to the bytes of this message.

183

Member Description

WriteBoolean method Binary code, and append the boolean value to the bytes of this
message.

WriteChar method Binary code, and append the char value to the bytes of this message.

WriteDouble method Binary code, and append the double value to the bytes of this message.

WriteFloat method Binary code, and append the float value to the bytes of this message.

WriteInt method Binary code, and append the int value to the bytes of this message.

WriteLong method Binary code, and append the long value to the bytes of this message.

WriteSbyte method Binary code, and append the signed byte value to the bytes of this
message.

WriteShort method Binary code, and append the short value to the bytes of this message.

WriteString method Binary code, and append the string value to the bytes of this message.

Protected instance
methods

Member Description

Dispose method(inherited from
QAMessage)

Clean up any resources being used.

BodyLength property

The length in bytes of the message content

Prototypes ’ Visual Basic
Public Readonly Property BodyLength As Long

// C#
public long BodyLength {get;}

ReadBinary method

Read from the beginning of the unread part of the binary value the given
number of bytes into a byte array.

184

Chapter 9. iAnywhere.QAnywhere.Client namespace

Prototypes ’ Visual Basic
Public Function ReadBinary(_

ByVal bytes As Byte(), _
ByVal len As Integer _

) As Integer

// C#
public int ReadBinary(

byte[] bytes,
int len

);

Parameters ♦ bytes the byte array that will contain the read bytes

♦ len the maximum number of bytes to read

Return value the number of bytes read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

ReadBoolean method

Read from the beginning of the unread part of the binary value as a boolean.

Prototypes ’ Visual Basic
Public Function ReadBoolean() As Boolean

// C#
public bool ReadBoolean();

Return value the boolean value read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

ReadChar method

Read from the beginning of the unread part of the binary value as a char.

Prototypes ’ Visual Basic
Public Function ReadChar() As Char

// C#
public char ReadChar();

Return value the character value read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

185

ReadDouble method

Read from the beginning of the unread part of the binary value as a double.

Prototypes ’ Visual Basic
Public Function ReadDouble() As Double

// C#
public double ReadDouble();

Return value the double value read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

ReadFloat method

Read from the beginning of the unread part of the binary value as a float.

Prototypes ’ Visual Basic
Public Function ReadFloat() As Single

// C#
public float ReadFloat();

Return value the float value read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

ReadInt method

Read from the beginning of the unread part of the binary value as an int.

Prototypes ’ Visual Basic
Public Function ReadInt() As Integer

// C#
public int ReadInt();

Return value the int value read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

ReadLong method

Read from the beginning of the unread part of the binary value as a long.

Prototypes ’ Visual Basic
Public Function ReadLong() As Long

186

Chapter 9. iAnywhere.QAnywhere.Client namespace

// C#
public long ReadLong();

Return value the long value read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

ReadSbyte method

Read from the beginning of the unread part of the binary value as a signed
byte.

Prototypes ’ Visual Basic
Public Function ReadSbyte() As System.SByte

// C#
public System.Sbyte ReadSbyte();

Return value the signed byte value read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

ReadShort method

Read from the beginning of the unread part of the binary value as a short.

Prototypes ’ Visual Basic
Public Function ReadShort() As Short

// C#
public short ReadShort();

Return value the short value read

Exceptions ♦ QAException class- if there was a conversion error reading the value or
if there is no more input

ReadString method

Read from the beginning of the unread part of the binary value as a string.

Prototypes ’ Visual Basic
Public Function ReadString() As String

// C#
public string ReadString();

Return value the string value read

Exceptions

187

♦ QAException class- if there was a conversion error reading the value or
if there is no more input

Reset method

Reset the message so that reading of values starts from the beginning of the
message bytes

Prototypes ’ Visual Basic
Public Sub Reset()

// C#
public void Reset();

WriteBinary method

Append the byte array value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteBinary(_

ByVal val As Byte(), _
ByVal offset As Integer, _
ByVal len As Integer _

)

// C#
public void WriteBinary(

byte[] val ,
int offset ,
int len

);

Parameters ♦ val the byte array value

♦ len the number of bytes to write

♦ offset the byte array offset to begin writing

WriteBoolean method

Binary code, and append the boolean value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteBoolean(_

ByVal val As Boolean _
)

// C#
public void WriteBoolean(

bool val
);

188

Chapter 9. iAnywhere.QAnywhere.Client namespace

Parameters ♦ val the boolean value

WriteChar method

Binary code, and append the char value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteChar(_

ByVal val As Char _
)

// C#
public void WriteChar(

char val
);

Parameters ♦ val the char value

WriteDouble method

Binary code, and append the double value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteDouble(_

ByVal val As Double _
)

// C#
public void WriteDouble(

double val
);

Parameters ♦ val the double value

WriteFloat method

Binary code, and append the float value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteFloat(_

ByVal val As Single _
)

// C#
public void WriteFloat(

float val
);

Parameters ♦ val the float value

189

WriteInt method

Binary code, and append the int value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteInt(_

ByVal val As Integer _
)

// C#
public void WriteInt(

int val
);

Parameters ♦ val the int value

WriteLong method

Binary code, and append the long value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteLong(_

ByVal val As Long _
)

// C#
public void WriteLong(

long val
);

Parameters ♦ val the long value

WriteSbyte method

Binary code, and append the signed byte value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteSbyte(_

ByVal val As System.SByte _
)

// C#
public void WriteSbyte(

System.Sbyte val
);

Parameters ♦ val the signed byte value

190

Chapter 9. iAnywhere.QAnywhere.Client namespace

WriteShort method

Binary code, and append the short value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteShort(_

ByVal val As Short _
)

// C#
public void WriteShort(

short val
);

Parameters ♦ val the short value

WriteString method

Binary code, and append the string value to the bytes of this message.

Prototypes ’ Visual Basic
Public Sub WriteString(_

ByVal val As String _
)

// C#
public void WriteString(

string val
);

Parameters ♦ val the string value

191

QAException class
Exception thrown by QAnywhere

Prototypes ’ Visual Basic
Public Class QAException

Inherits ApplicationException

// C#
public class QAException :

ApplicationException

QAException members

Public instance
constructors

Member Description

QAException constructor Create a QAException

QAException constructor Create a QAException

Public instance
properties

Member Description

ErrorCode property The error code of the exception

HelpLink (inherited from Excep-
tion)

Gets or sets a link to the help file associated with this exception.

InnerException(inherited from
Exception)

Gets theSystem.Exceptioninstance that caused the current exception.

Message(inherited from Excep-
tion)

Gets a message that describes the current exception.

Source(inherited from Excep-
tion)

Gets or sets the name of the application or the object that causes the
error.

StackTrace(inherited from Ex-
ception)

Gets a string representation of the frames on the call stack at the time
the current exception was thrown.

TargetSite(inherited from Excep-
tion)

Gets the method that throws the current exception.

Public instance methods

192

ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassHelpLinkTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassInnerExceptionTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassMessageTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassSourceTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassStackTraceTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassTargetSiteTopic.htm

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

GetBaseException(inherited
from Exception)

When overridden in a derived class, returns theSystem.Exceptionthat
is the root cause of one or more subsequent exceptions.

GetObjectData(inherited from
Exception)

When overridden in a derived class, sets theSystem.Runtime.-
Serialization.SerializationInfowith information about the exception.

ToString(inherited from Excep-
tion)

Creates and returns a string representation of the current exception.

Protected instance
properties

Member Description

HResult(inherited from Excep-
tion)

Gets or sets HRESULT, a coded numerical value that is assigned to a
specific exception.

QAException constructor

Create a QAException

Prototypes ’ Visual Basic
Overloads Public Sub New(_

ByVal msg As String _
)

// C#
public QAException(

string msg
);

Parameters ♦ msg the exception description

QAException constructor

Create a QAException

Prototypes ’ Visual Basic
Overloads Public Sub New(_

ByVal msg As String, _
ByVal errCode As Integer _

)

193

ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassGetBaseExceptionTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassGetObjectDataTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemRuntimeSerializationSerializationInfoClassTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemRuntimeSerializationSerializationInfoClassTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassToStringTopic.htm
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemExceptionClassHResultTopic.htm

// C#
public QAException(

string msg,
int errCode

);

Parameters ♦ msg the exception description

♦ errCode the error code

ErrorCode property

The error code of the exception

Prototypes ’ Visual Basic
Public Readonly Property ErrorCode As Integer

// C#
public int ErrorCode {get;}

194

Chapter 9. iAnywhere.QAnywhere.Client namespace

QAManager class
A manager for QA messaging operations. Unlike the transactional manager,
message puts occur immediately and no other action is necessary to allow
another client to get the message. Message gets are acknowledged via one of
two modes. The implicit acknowledgement mode indicates that all messages
are acknowledged as received as soon as the getMessage returns to the
caller. Similarly, for message listeners, the message is acknowledged as soon
as the call to the message listener delegate returns. The explicit
acknowledgement mode indicates that messages are not acknowledged as
received until a call to one of the acknowledge methods is made.

Prototypes ’ Visual Basic
Public Class QAManager

Inherits QAManagerBase

// C#
public class QAManager :

QAManagerBase

QAManager members

Public instance
properties

Member Description

LastError property(inherited
from QAManagerBase)

The error code of the last executed method, with 0 indicating success.

LastErrorMessage property(in-
herited from QAManagerBase)

The text of the error associated with the last executed method. Will be
null if the last executed method result in a LastError of 0.

Mode property(inherited from
QAManagerBase)

The acknowledgement mode for receiving all messages through this
manager

Public instance methods

Member Description

Acknowledge method Acknowledges the given message as received.

AcknowledgeAll method Acknowledges all the unacknowledged messages as received.

AcknowledgeUntil method Acknowledges all the unacknowledged messages received before and
up to the given message as received.

195

Member Description

BrowseMessages method(inher-
ited from QAManagerBase)

Browse the next available messages waiting that have been sent to the
given address. The messages are just being browsed, so they cannot
be acknowledged. Enumerators returned from the same manager
cannot have their method calls interlaced. Interlacing calls may result
in messages meant for one iterator to be browsed in another iterator.

Close method(inherited from
QAManagerBase)

Closes the connection to the QA message system and releases any
resources. Any calls to close beyond the first are ignored. Any
subsequent calls to a method, other than close, will result in an
exception being thrown.

CreateBinaryMessage method
(inherited from QAManagerBase)

Create a BinaryMessage instance appropriate for sending.

CreateTextMessage method(in-
herited from QAManagerBase)

Create a TextMessage instance appropriate for sending.

GetBooleanStoreProperty method
(inherited from QAManagerBase)

Gets a boolean message store property

GetDoubleStoreProperty method
(inherited from QAManagerBase)

Gets a double message store property

GetFloatStoreProperty method
(inherited from QAManagerBase)

Gets a float message store property

GetIntStoreProperty method(in-
herited from QAManagerBase)

Gets an int message store property

GetLongStoreProperty method
(inherited from QAManagerBase)

Gets a long message store property

GetMessage method(inherited
from QAManagerBase)

Get the next available message waiting that has been sent to the
given address. If there is no message available, then this call blocks
indefinitely until a message is available.

GetMessageNoWait method(in-
herited from QAManagerBase)

Get the next available message waiting that has been sent to the
given address. If there is no message available, then it returns null
immediately, without blocking.

GetMessageTimeout method(in-
herited from QAManagerBase)

Get the next available message waiting that has been sent to the given
address. If there is no message available, then this call will wait up to
the timeout time until a message is available.

GetSbyteStoreProperty method
(inherited from QAManagerBase)

Gets a signed byte message store property

196

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

GetShortStoreProperty method
(inherited from QAManagerBase)

Gets a short message store property

GetStoreProperty method(inher-
ited from QAManagerBase)

Gets a message store property

GetStringStoreProperty method
(inherited from QAManagerBase)

Gets a string message store property

Open method Open the manager with the give acknowledgement mode. The open
method must be the first method called after creating a manager.

PutMessage method(inherited
from QAManagerBase)

Puts the message into the message system addressed to the given
address.

PutMessageTimeToLive method
(inherited from QAManagerBase)

Puts the message into the message system addressed to the given
address, with the given time-to-live.

Recover method Force all unacknowledged messages into a state of unreceived. That
is, these messages must be received again via getMessage.

SetBooleanStoreProperty method
(inherited from QAManagerBase)

Sets a boolean message store property

SetDoubleStoreProperty method
(inherited from QAManagerBase)

Sets a double message store property

SetFloatStoreProperty method
(inherited from QAManagerBase)

Sets a float message store property

SetIntStoreProperty method(in-
herited from QAManagerBase)

Sets an int message store property

SetLongStoreProperty method
(inherited from QAManagerBase)

Sets a long message store property

SetMessageListener method(in-
herited from QAManagerBase)

Sets a listener for messages available for the given address. Only one
listener can be set for a given address. Setting with a null listener
clears out any listener for that address.

SetProperty method(inherited
from QAManagerBase)

Sets the named property to the given value. Properties for this
QAManagerBase may be set with this method as an alternative to the
properties file at creation. Properties must be set before calling the
open() methods of the derived classes.

SetSbyteStoreProperty method
(inherited from QAManagerBase)

Sets a byte message store property

197

Member Description

SetShortStoreProperty method
(inherited from QAManagerBase)

Sets a short message store property

SetStoreProperty method(inher-
ited from QAManagerBase)

Sets a message store property. The property type must be one of the
acceptable primitive types, or String.

SetStringStoreProperty method
(inherited from QAManagerBase)

Sets a string message store property

Start method(inherited from
QAManagerBase)

Once started the manager will receive any incoming messages. Any
calls to start beyond the first without an intervening stop are ignored.

Stop method(inherited from QA-
ManagerBase)

Once stopped the manager will not receive any incoming messages.
The messages are not lost. They just won’t be received until the
manager is started. Any calls to stop beyond the first without an
intervening start are ignored.

TriggerSendReceive method(in-
herited from QAManagerBase)

Causes a synchronization with the QA message server, uploading any
messages not meant for this client, and downloading any messages
meant for this client.

Protected static fields
(Shared)

Member Description

isOpen field(inherited from QA-
ManagerBase)

Indicates whether instance is in an open state

mgrBase field(inherited from
QAManagerBase)

Handle to the underlying c++ qa manager

Protected instance fields

Member Description

isOpen field(inherited from QA-
ManagerBase)

Indicates whether instance is in an open state

mgrBase field(inherited from
QAManagerBase)

Handle to the underlying c++ qa manager

Protected instance
methods

198

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

Dispose method Clean up any resources being used.

Acknowledge method

Acknowledges the given message as received.

Prototypes ’ Visual Basic
Public Sub Acknowledge(_

ByVal msg As QAMessage _
)

// C#
public void Acknowledge(

QAMessage msg
);

Parameters ♦ msg the message to acknowledge

Exceptions ♦ QAException class- if there is a problem acknowledging the message

AcknowledgeAll method

Acknowledges all the unacknowledged messages as received.

Prototypes ’ Visual Basic
Public Sub AcknowledgeAll()

// C#
public void AcknowledgeAll();

Exceptions ♦ QAException class- if there is a problem acknowledging the messages

AcknowledgeUntil method

Acknowledges all the unacknowledged messages received before and up to
the given message as received.

Prototypes ’ Visual Basic
Public Sub AcknowledgeUntil(_

ByVal msg As QAMessage _
)

// C#
public void AcknowledgeUntil(

QAMessage msg
);

Parameters ♦ msg the last message to acknowledge

199

Exceptions ♦ QAException class- if there is a problem acknowledging the messages

Dispose method

Clean up any resources being used.

Prototypes ’ Visual Basic
Overloads Overrides Protected Sub Dispose(_

ByVal disposing As Boolean _
)

// C#
protected override void Dispose(

bool disposing
);

Parameters ♦ disposing true to release both managed and unmanaged resources;
false to release only unmanaged resources.

Open method

Open the manager with the give acknowledgement mode. The open method
must be the first method called after creating a manager.

Prototypes ’ Visual Basic
Public Sub Open(_

ByVal mode As AcknowledgementMode _
)

// C#
public void Open(

AcknowledgementMode mode
);

Parameters ♦ mode must be one of
AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT or
AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT

Exceptions ♦ QAException class- if there is a problem opening the manager

Recover method

Force all unacknowledged messages into a state of unreceived. That is, these
messages must be received again via getMessage.

Prototypes ’ Visual Basic
Public Sub Recover()

// C#
public void Recover();

Exceptions ♦ QAException class- if there is a problem recovering

200

Chapter 9. iAnywhere.QAnywhere.Client namespace

QAManagerBase class
This class is an abstract base class for QA managers. It provides service for
creating, sending, browsing and receiving messages. It is single threaded.
That is, the thread that creates the manager is the only thread allowed to
make calls into the manager.

Prototypes ’ Visual Basic
Public Class QAManagerBase

Inherits Component

// C#
public class QAManagerBase :

Component

QAManagerBase members

Public instance
properties

Member Description

LastError property The error code of the last executed method, with 0 indicating success.

LastErrorMessage property The text of the error associated with the last executed method. Will be
null if the last executed method result in a LastError of 0.

Mode property The acknowledgement mode for receiving all messages through this
manager

Public instance methods

Member Description

BrowseMessages method Browse the next available messages waiting that have been sent to the
given address. The messages are just being browsed, so they cannot
be acknowledged. Enumerators returned from the same manager
cannot have their method calls interlaced. Interlacing calls may result
in messages meant for one iterator to be browsed in another iterator.

Close method Closes the connection to the QA message system and releases any
resources. Any calls to close beyond the first are ignored. Any
subsequent calls to a method, other than close, will result in an
exception being thrown.

CreateBinaryMessage method Create a BinaryMessage instance appropriate for sending.

CreateTextMessage method Create a TextMessage instance appropriate for sending.

201

Member Description

GetBooleanStoreProperty methodGets a boolean message store property

GetDoubleStoreProperty method Gets a double message store property

GetFloatStoreProperty method Gets a float message store property

GetIntStoreProperty method Gets an int message store property

GetLongStoreProperty method Gets a long message store property

GetMessage method Get the next available message waiting that has been sent to the
given address. If there is no message available, then this call blocks
indefinitely until a message is available.

GetMessageNoWait method Get the next available message waiting that has been sent to the
given address. If there is no message available, then it returns null
immediately, without blocking.

GetMessageTimeout method Get the next available message waiting that has been sent to the given
address. If there is no message available, then this call will wait up to
the timeout time until a message is available.

GetSbyteStoreProperty method Gets a signed byte message store property

GetShortStoreProperty method Gets a short message store property

GetStoreProperty method Gets a message store property

GetStringStoreProperty method Gets a string message store property

PutMessage method Puts the message into the message system addressed to the given
address.

PutMessageTimeToLive method Puts the message into the message system addressed to the given
address, with the given time-to-live.

SetBooleanStoreProperty methodSets a boolean message store property

SetDoubleStoreProperty method Sets a double message store property

SetFloatStoreProperty method Sets a float message store property

SetIntStoreProperty method Sets an int message store property

SetLongStoreProperty method Sets a long message store property

SetMessageListener method Sets a listener for messages available for the given address. Only one
listener can be set for a given address. Setting with a null listener
clears out any listener for that address.

202

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

SetProperty method Sets the named property to the given value. Properties for this
QAManagerBase may be set with this method as an alternative to the
properties file at creation. Properties must be set before calling the
open() methods of the derived classes.

SetSbyteStoreProperty method Sets a byte message store property

SetShortStoreProperty method Sets a short message store property

SetStoreProperty method Sets a message store property. The property type must be one of the
acceptable primitive types, or String.

SetStringStoreProperty method Sets a string message store property

Start method Once started the manager will receive any incoming messages. Any
calls to start beyond the first without an intervening stop are ignored.

Stop method Once stopped the manager will not receive any incoming messages.
The messages are not lost. They just won’t be received until the
manager is started. Any calls to stop beyond the first without an
intervening start are ignored.

TriggerSendReceive method Causes a synchronization with the QA message server, uploading any
messages not meant for this client, and downloading any messages
meant for this client.

Protected static fields
(Shared)

Member Description

isOpen field Indicates whether instance is in an open state

mgrBase field Handle to the underlying c++ qa manager

Protected instance fields

Member Description

isOpen field Indicates whether instance is in an open state

mgrBase field Handle to the underlying c++ qa manager

Protected instance
methods

203

Member Description

Dispose method Clean up any resources being used.

isOpen field

Indicates whether instance is in an open state

Prototypes ’ Visual Basic
FamilyisOpen As Boolean

// C#
family bool isOpen ;

mgrBase field

Handle to the underlying c++ qa manager

Prototypes ’ Visual Basic
FamilymgrBase As IntPtr

// C#
family IntPtr mgrBase ;

LastError property

The error code of the last executed method, with 0 indicating success.

Prototypes ’ Visual Basic
Public Readonly Property LastError As Integer

// C#
public int LastError {get;}

LastErrorMessage property

The text of the error associated with the last executed method. Will be null if
the last executed method result in a LastError of 0.

Prototypes ’ Visual Basic
Public Readonly Property LastErrorMessage As String

// C#
public string LastErrorMessage {get;}

204

Chapter 9. iAnywhere.QAnywhere.Client namespace

Mode property

The acknowledgement mode for receiving all messages through this
manager

Prototypes ’ Visual Basic
Public Readonly Property Mode As AcknowledgementMode

// C#
public AcknowledgementMode Mode {get;}

BrowseMessages method

Browse the next available messages waiting that have been sent to the given
address. The messages are just being browsed, so they cannot be
acknowledged. Enumerators returned from the same manager cannot have
their method calls interlaced. Interlacing calls may result in messages meant
for one iterator to be browsed in another iterator.

Prototypes ’ Visual Basic
Public Function BrowseMessages(_

ByVal address As String _
) As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator BrowseMessages(

string address
);

Parameters ♦ address the address of the messages

Return value an enumerator over the available messages

Close method

Closes the connection to the QA message system and releases any resources.
Any calls to close beyond the first are ignored. Any subsequent calls to a
method, other than close, will result in an exception being thrown.

Prototypes ’ Visual Basic
Public Sub Close()

// C#
public void Close();

Exceptions ♦ QAException class- if there is a problem closing the manager.

205

CreateBinaryMessage method

Create a BinaryMessage instance appropriate for sending.

Prototypes ’ Visual Basic
Public Function CreateBinaryMessage() As QABinaryMessage

// C#
public QABinaryMessage CreateBinaryMessage();

Return value a new BinaryMessage

Exceptions ♦ QAException class- if there is a problem creating the message.

CreateTextMessage method

Create a TextMessage instance appropriate for sending.

Prototypes ’ Visual Basic
Public Function CreateTextMessage() As QATextMessage

// C#
public QATextMessage CreateTextMessage();

Return value a new TextMessage

Exceptions ♦ QAException class- if there is a problem creating the message.

Dispose method

Clean up any resources being used.

Prototypes ’ Visual Basic
Overloads Overrides Protected Sub Dispose(_

ByVal disposing As Boolean _
)

// C#
protected override void Dispose(

bool disposing
);

Parameters ♦ disposing true to release both managed and unmanaged resources;
false to release only unmanaged resources.

GetBooleanStoreProperty method

Gets a boolean message store property

206

Chapter 9. iAnywhere.QAnywhere.Client namespace

Prototypes ’ Visual Basic
Public Function GetBooleanStoreProperty(_

ByVal propName As String _
) As Boolean

// C#
public bool GetBooleanStoreProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetDoubleStoreProperty method

Gets a double message store property

Prototypes ’ Visual Basic
Public Function GetDoubleStoreProperty(_

ByVal propName As String _
) As Double

// C#
public double GetDoubleStoreProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetFloatStoreProperty method

Gets a float message store property

Prototypes ’ Visual Basic
Public Function GetFloatStoreProperty(_

ByVal propName As String _
) As Single

// C#
public float GetFloatStoreProperty(

string propName
);

207

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetIntStoreProperty method

Gets an int message store property

Prototypes ’ Visual Basic
Public Function GetIntStoreProperty(_

ByVal propName As String _
) As Integer

// C#
public int GetIntStoreProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetLongStoreProperty method

Gets a long message store property

Prototypes ’ Visual Basic
Public Function GetLongStoreProperty(_

ByVal propName As String _
) As Long

// C#
public long GetLongStoreProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

208

Chapter 9. iAnywhere.QAnywhere.Client namespace

GetMessage method

Get the next available message waiting that has been sent to the given
address. If there is no message available, then this call blocks indefinitely
until a message is available.

Prototypes ’ Visual Basic
Public Function GetMessage(_

ByVal address As String _
) As QAMessage

// C#
public QAMessage GetMessage(

string address
);

Parameters ♦ address the address of the message

Return value the next available message

Exceptions ♦ QAException class- if there is a problem getting the message.

GetMessageNoWait method

Get the next available message waiting that has been sent to the given
address. If there is no message available, then it returns null immediately,
without blocking.

Prototypes ’ Visual Basic
Public Function GetMessageNoWait(_

ByVal address As String _
) As QAMessage

// C#
public QAMessage GetMessageNoWait(

string address
);

Parameters ♦ address the address of the message

Return value the next available message or null there is no available message

Exceptions ♦ QAException class- if there is a problem getting the message.

GetMessageTimeout method

Get the next available message waiting that has been sent to the given
address. If there is no message available, then this call will wait up to the
timeout time until a message is available.

209

Prototypes ’ Visual Basic
Public Function GetMessageTimeout(_

ByVal address As String, _
ByVal timeout As Long _

) As QAMessage

// C#
public QAMessage GetMessageTimeout(

string address,
long timeout

);

Parameters ♦ address the address of the message

♦ timeout the time to wait, in milliseconds, for a message to become
available

Return value the next available message or null there is no available message

Exceptions ♦ QAException class- if there is a problem getting the message.

GetSbyteStoreProperty method

Gets a signed byte message store property

Prototypes ’ Visual Basic
Public Function GetSbyteStoreProperty(_

ByVal propName As String _
) As System.SByte

// C#
public System.Sbyte GetSbyteStoreProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetShortStoreProperty method

Gets a short message store property

Prototypes ’ Visual Basic
Public Function GetShortStoreProperty(_

ByVal propName As String _
) As Short

210

Chapter 9. iAnywhere.QAnywhere.Client namespace

// C#
public short GetShortStoreProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetStoreProperty method

Gets a message store property

Prototypes ’ Visual Basic
Public Function GetStoreProperty(_

ByVal propName As String _
) As Object

// C#
public object GetStoreProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if the property does not exist

GetStringStoreProperty method

Gets a string message store property

Prototypes ’ Visual Basic
Public Function GetStringStoreProperty(_

ByVal propName As String _
) As String

// C#
public string GetStringStoreProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value or null if the property does not exist

211

PutMessage method

Puts the message into the message system addressed to the given address.

Prototypes ’ Visual Basic
Public Sub PutMessage(_

ByVal address As String, _
ByVal msg As QAMessage _

)

// C#
public void PutMessage(

string address,
QAMessage msg

);

Parameters ♦ address the address of the message

♦ msg the message to put

Exceptions ♦ QAException class- if there is a problem putting the message.

PutMessageTimeToLive method

Puts the message into the message system addressed to the given address,
with the given time-to-live.

Prototypes ’ Visual Basic
Public Sub PutMessageTimeToLive(_

ByVal address As String, _
ByVal msg As QAMessage, _
ByVal ttl As Long _

)

// C#
public void PutMessageTimeToLive(

string address,
QAMessage msg,
long ttl

);

Parameters ♦ address the address of the message

♦ msg the message to put

♦ ttl the delay, in milliseconds, before the message will expire if it has
not been delivered. A value of 0 indicates the message will not expire.

Exceptions ♦ QAException class- if there is a problem putting the message.

212

Chapter 9. iAnywhere.QAnywhere.Client namespace

SetBooleanStoreProperty method

Sets a boolean message store property

Prototypes ’ Visual Basic
Public Sub SetBooleanStoreProperty(_

ByVal propName As String, _
ByVal val As Boolean _

)

// C#
public void SetBooleanStoreProperty(

string propName,
bool val

);

Parameters ♦ propName the property name

♦ val the property value

SetDoubleStoreProperty method

Sets a double message store property

Prototypes ’ Visual Basic
Public Sub SetDoubleStoreProperty(_

ByVal propName As String, _
ByVal val As Double _

)

// C#
public void SetDoubleStoreProperty(

string propName,
double val

);

Parameters ♦ propName the property name

♦ val the property value

SetFloatStoreProperty method

Sets a float message store property

Prototypes ’ Visual Basic
Public Sub SetFloatStoreProperty(_

ByVal propName As String, _
ByVal val As Single _

)

213

// C#
public void SetFloatStoreProperty(

string propName,
float val

);

Parameters ♦ propName the property name

♦ val the property value

SetIntStoreProperty method

Sets an int message store property

Prototypes ’ Visual Basic
Public Sub SetIntStoreProperty(_

ByVal propName As String, _
ByVal val As Integer _

)

// C#
public void SetIntStoreProperty(

string propName,
int val

);

Parameters ♦ propName the property name

♦ val the property value

SetLongStoreProperty method

Sets a long message store property

Prototypes ’ Visual Basic
Public Sub SetLongStoreProperty(_

ByVal propName As String, _
ByVal val As Long _

)

// C#
public void SetLongStoreProperty(

string propName,
long val

);

Parameters ♦ propName the property name

♦ val the property value

214

Chapter 9. iAnywhere.QAnywhere.Client namespace

SetMessageListener method

Sets a listener for messages available for the given address. Only one listener
can be set for a given address. Setting with a null listener clears out any
listener for that address.

Prototypes ’ Visual Basic
Public Sub SetMessageListener(_

ByVal address As String, _
ByVal listener As QAManagerBase.MessageListener _

)

// C#
public void SetMessageListener(

string address,
QAManagerBase.MessageListener listener

);

Parameters ♦ address the address of messages

♦ listener the listener

SetProperty method

Sets the named property to the given value. Properties for this
QAManagerBase may be set with this method as an alternative to the
properties file at creation. Properties must be set before calling the open()
methods of the derived classes.

Prototypes ’ Visual Basic
Public Sub SetProperty(_

ByVal name As String, _
ByVal val As String _

)

// C#
public void SetProperty(

string name,
string val

);

Parameters ♦ name the property name

♦ val the property value

Exceptions ♦ QAException class- if there is a problem setting the property.

SetSbyteStoreProperty method

Sets a byte message store property

215

Prototypes ’ Visual Basic
Public Sub SetSbyteStoreProperty(_

ByVal propName As String, _
ByVal val As System.SByte _

)

// C#
public void SetSbyteStoreProperty(

string propName,
System.Sbyte val

);

Parameters ♦ propName the property name

♦ val the property value

SetShortStoreProperty method

Sets a short message store property

Prototypes ’ Visual Basic
Public Sub SetShortStoreProperty(_

ByVal propName As String, _
ByVal val As Short _

)

// C#
public void SetShortStoreProperty(

string propName,
short val

);

Parameters ♦ propName the property name

♦ val the property value

SetStoreProperty method

Sets a message store property. The property type must be one of the
acceptable primitive types, or String.

Prototypes ’ Visual Basic
Public Sub SetStoreProperty(_

ByVal propName As String, _
ByVal val As Object _

)

216

Chapter 9. iAnywhere.QAnywhere.Client namespace

// C#
public void SetStoreProperty(

string propName,
object val

);

Parameters ♦ propName the property name

♦ val the property value

SetStringStoreProperty method

Sets a string message store property

Prototypes ’ Visual Basic
Public Sub SetStringStoreProperty(_

ByVal propName As String, _
ByVal val As String _

)

// C#
public void SetStringStoreProperty(

string propName,
string val

);

Parameters ♦ propName the property name

♦ val the property value

Start method

Once started the manager will receive any incoming messages. Any calls to
start beyond the first without an intervening stop are ignored.

Prototypes ’ Visual Basic
Public Sub Start()

// C#
public void Start();

Exceptions ♦ QAException class- if there is a problem starting the manager.

Stop method

Once stopped the manager will not receive any incoming messages. The
messages are not lost. They just won’t be received until the manager is
started. Any calls to stop beyond the first without an intervening start are
ignored.

217

Prototypes ’ Visual Basic
Public Sub Stop()

// C#
public void Stop();

Exceptions ♦ QAException class- if there is a problem stopping the manager.

TriggerSendReceive method

Causes a synchronization with the QA message server, uploading any
messages not meant for this client, and downloading any messages meant for
this client.

Prototypes ’ Visual Basic
Public Sub TriggerSendReceive()

// C#
public void TriggerSendReceive();

Exceptions ♦ QAException class- if there is a problem triggering the send/receive.

218

Chapter 9. iAnywhere.QAnywhere.Client namespace

QAManagerBase.MessageListener delegate
MessageListener delegate definition

Prototypes ’ Visual Basic
Delegate Sub QAManagerBase.MessageListener(_

ByVal msg As QAMessage _
)

// C#
delegate void QAManagerBase.MessageListener(

QAMessage msg
);

Parameters ♦ msg the message that was received

219

QAManagerFactory class
Factory for creating QAManager and QATransactionalManager objects.
There is only ever one instance of QAManagerFactory,

Prototypes ’ Visual Basic
Public Class QAManagerFactory

Inherits Component

// C#
public class QAManagerFactory :

Component

QAManagerFactory members

Public static fields
(Shared)

Member Description

InstanceID field Factory id

Public static properties
(Shared)

Member Description

Instance property A singleton QAManagerFactory instance.

InstanceCount property Indicates the number of factory instances

Public instance fields

Member Description

InstanceID field Factory id

Public instance
properties

Member Description

LastError property The error code of the last executed method, with 0 indicating success.

LastErrorMessage property The text of the error associated with the last executed method. Will be
null if the last executed method result in a LastError of 0.

220

Chapter 9. iAnywhere.QAnywhere.Client namespace

Public instance methods

Member Description

CreateQAManager method Create a QA Manager configured from the INI file.

CreateQATransactionalManager
method

Create a transactional QA Manager configured from the INI file.

Protected instance
methods

Member Description

Dispose method Clean up any resources being used.

Finalize method Cleanup the instance

InstanceID field

Factory id

Prototypes ’ Visual Basic
PublicInstanceID As Integer

// C#
public int InstanceID ;

Instance property

A singleton QAManagerFactory instance.

Prototypes ’ Visual Basic
Public Shared Readonly Property Instance As QAManagerFactory

// C#
public const QAManagerFactory Instance {get;}

Exceptions ♦ QAException class- when there is a problem creating the manager
factory

InstanceCount property

Indicates the number of factory instances

Prototypes ’ Visual Basic
Public Shared Readonly Property InstanceCount As Long

221

// C#
public const long InstanceCount {get;}

LastError property

The error code of the last executed method, with 0 indicating success.

Prototypes ’ Visual Basic
Public Readonly Property LastError As Integer

// C#
public int LastError {get;}

LastErrorMessage property

The text of the error associated with the last executed method. Will be null if
the last executed method result in a LastError of 0.

Prototypes ’ Visual Basic
Public Readonly Property LastErrorMessage As String

// C#
public string LastErrorMessage {get;}

CreateQAManager method

Create a QA Manager configured from the INI file.

Prototypes ’ Visual Basic
Public Function CreateQAManager(_

ByVal iniFile As String _
) As QAManager

// C#
public QAManager CreateQAManager(

string iniFile
);

Parameters ♦ iniFile properties file configuring the QAManager instance

Return value the configured QAManager

Exceptions ♦ QAException class- when there is a problem creating the manager

CreateQATransactionalManager method

Create a transactional QA Manager configured from the INI file.

222

Chapter 9. iAnywhere.QAnywhere.Client namespace

Prototypes ’ Visual Basic
Public Function CreateQATransactionalManager(_

ByVal iniFile As String _
) As QATransactionalManager

// C#
public QATransactionalManager CreateQATransactionalManager(

string iniFile
);

Parameters ♦ iniFile properties file configuring the QATransactionalManager
instance

Return value the configured QATransactionalManager

Exceptions ♦ QAException class- when there is a problem creating the manager

Dispose method

Clean up any resources being used.

Prototypes ’ Visual Basic
Overloads Overrides Protected Sub Dispose(_

ByVal disposing As Boolean _
)

// C#
protected override void Dispose(

bool disposing
);

Parameters ♦ disposing true to release both managed and unmanaged resources;
false to release only unmanaged resources.

Finalize method

Cleanup the instance

Prototypes ’ Visual Basic
Overrides Protected Sub Finalize()

// C#
protected override void Finalize();

223

QAMessage class
Encapsulates a QA message

Prototypes ’ Visual Basic
Public Class QAMessage

Inherits Component

// C#
public class QAMessage :

Component

QAMessage members

Public instance
properties

Member Description

Address property The address of this message. May be null, but is null never null in a
message received via getMessage or a message listener.

Expiration property Indicates the time after which the message may expire and be removed
from the message system if it has not been received.

InReplyToID property The message id of the message for which this message is a reply. May
be null.

MessageID property The globally unique message id of the message. This property is null
until a message is put.

Priority property The priority of the message (ranging from 0 to 9)

Redelivered property Indicates whether the message has been previously received but not
acknowledged.

ReplyToAddress property The replyTo address of this message. May be null.

Timestamp property The message timestamp.

Public instance methods

Member Description

ClearProperties method Clear all the properties of the message

GetBooleanProperty method Gets a boolean message property

GetDoubleProperty method Gets a double message property

GetFloatProperty method Gets a float message property

224

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

GetIntProperty method Gets an int message property

GetLongProperty method Gets a long message property

GetProperty method Gets a message property

GetPropertyNames method Gets an enumerator over the property names of the message

GetPropertyType method Returns the property type of the given property

GetSbyteProperty method Gets a signed byte message property

GetShortProperty method Gets a short message property

GetStringProperty method Gets a string message property

PropertyExists method Indicates whether the given property has been set for this message

SetBooleanProperty method Sets a boolean property

SetDoubleProperty method Sets a double property

SetFloatProperty method Sets a float property

SetIntProperty method Sets an int property

SetLongProperty method Sets a long property

SetProperty method Sets a property. The property type must be one of the acceptable
primitive types, or String.

SetSbyteProperty method Sets a byte property

SetShortProperty method Sets a short property

SetStringProperty method Sets a string property

Protected instance
methods

Member Description

Dispose method Clean up any resources being used.

Address property

The address of this message. May be null, but is null never null in a message
received via getMessage or a message listener.

Prototypes ’ Visual Basic
Public Property Address As String

225

// C#
public string Address {get;set;}

Expiration property

Indicates the time after which the message may expire and be removed from
the message system if it has not been received.

Prototypes ’ Visual Basic
Public Readonly Property Expiration As Long

// C#
public long Expiration {get;}

InReplyToID property

The message id of the message for which this message is a reply. May be
null.

Prototypes ’ Visual Basic
Public Property InReplyToID As String

// C#
public string InReplyToID {get;set;}

MessageID property

The globally unique message id of the message. This property is null until a
message is put.

Prototypes ’ Visual Basic
Public Readonly Property MessageID As String

// C#
public string MessageID {get;}

Priority property

The priority of the message (ranging from 0 to 9)

Prototypes ’ Visual Basic
Public Property Priority As Integer

// C#
public int Priority {get;set;}

226

Chapter 9. iAnywhere.QAnywhere.Client namespace

Redelivered property

Indicates whether the message has been previously received but not
acknowledged.

Prototypes ’ Visual Basic
Public Readonly Property Redelivered As Boolean

// C#
public bool Redelivered {get;}

ReplyToAddress property

The replyTo address of this message. May be null.

Prototypes ’ Visual Basic
Public Property ReplyToAddress As String

// C#
public string ReplyToAddress {get;set;}

Timestamp property

The message timestamp.

Prototypes ’ Visual Basic
Public Readonly Property Timestamp As Date

// C#
public DateTime Timestamp {get;}

ClearProperties method

Clear all the properties of the message

Prototypes ’ Visual Basic
Public Sub ClearProperties()

// C#
public void ClearProperties();

Dispose method

Clean up any resources being used.

227

Prototypes ’ Visual Basic
Overloads Overrides Protected Sub Dispose(_

ByVal disposing As Boolean _
)

// C#
protected override void Dispose(

bool disposing
);

Parameters ♦ disposing true to release both managed and unmanaged resources;
false to release only unmanaged resources.

GetBooleanProperty method

Gets a boolean message property

Prototypes ’ Visual Basic
Public Function GetBooleanProperty(_

ByVal propName As String _
) As Boolean

// C#
public bool GetBooleanProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetDoubleProperty method

Gets a double message property

Prototypes ’ Visual Basic
Public Function GetDoubleProperty(_

ByVal propName As String _
) As Double

// C#
public double GetDoubleProperty(

string propName
);

Parameters ♦ propName the property name

228

Chapter 9. iAnywhere.QAnywhere.Client namespace

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetFloatProperty method

Gets a float message property

Prototypes ’ Visual Basic
Public Function GetFloatProperty(_

ByVal propName As String _
) As Single

// C#
public float GetFloatProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetIntProperty method

Gets an int message property

Prototypes ’ Visual Basic
Public Function GetIntProperty(_

ByVal propName As String _
) As Integer

// C#
public int GetIntProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetLongProperty method

Gets a long message property

229

Prototypes ’ Visual Basic
Public Function GetLongProperty(_

ByVal propName As String _
) As Long

// C#
public long GetLongProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetProperty method

Gets a message property

Prototypes ’ Visual Basic
Public Function GetProperty(_

ByVal propName As String _
) As Object

// C#
public object GetProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if the property does not exist

GetPropertyNames method

Gets an enumerator over the property names of the message

Prototypes ’ Visual Basic
Public Function GetPropertyNames() As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator GetPropertyNames();

Return value an enumerator over the message property names

GetPropertyType method

Returns the property type of the given property

230

Chapter 9. iAnywhere.QAnywhere.Client namespace

Prototypes ’ Visual Basic
Public Function GetPropertyType(_

ByVal propName As String _
) As QAPropertyType

// C#
public QAPropertyType GetPropertyType(

string propName
);

Parameters ♦ propName the property name

Return value the property type

GetSbyteProperty method

Gets a signed byte message property

Prototypes ’ Visual Basic
Public Function GetSbyteProperty(_

ByVal propName As String _
) As System.SByte

// C#
public System.Sbyte GetSbyteProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetShortProperty method

Gets a short message property

Prototypes ’ Visual Basic
Public Function GetShortProperty(_

ByVal propName As String _
) As Short

// C#
public short GetShortProperty(

string propName
);

Parameters ♦ propName the property name

231

Return value the property value

Exceptions ♦ QAException class- if there is a conversion error getting the property
value or if the property does not exist

GetStringProperty method

Gets a string message property

Prototypes ’ Visual Basic
Public Function GetStringProperty(_

ByVal propName As String _
) As String

// C#
public string GetStringProperty(

string propName
);

Parameters ♦ propName the property name

Return value the property value or null if the property does not exist

PropertyExists method

Indicates whether the given property has been set for this message

Prototypes ’ Visual Basic
Public Function PropertyExists(_

ByVal propName As String _
) As Boolean

// C#
public bool PropertyExists(

string propName
);

Parameters ♦ propName the property name

Return value whether the property exists

SetBooleanProperty method

Sets a boolean property

Prototypes ’ Visual Basic
Public Sub SetBooleanProperty(_

ByVal propName As String, _
ByVal val As Boolean _

)

232

Chapter 9. iAnywhere.QAnywhere.Client namespace

// C#
public void SetBooleanProperty(

string propName,
bool val

);

Parameters ♦ propName the property name

♦ val the property value

SetDoubleProperty method

Sets a double property

Prototypes ’ Visual Basic
Public Sub SetDoubleProperty(_

ByVal propName As String, _
ByVal val As Double _

)

// C#
public void SetDoubleProperty(

string propName,
double val

);

Parameters ♦ propName the property name

♦ val the property value

SetFloatProperty method

Sets a float property

Prototypes ’ Visual Basic
Public Sub SetFloatProperty(_

ByVal propName As String, _
ByVal val As Single _

)

// C#
public void SetFloatProperty(

string propName,
float val

);

Parameters ♦ propName the property name

♦ val the property value

233

SetIntProperty method

Sets an int property

Prototypes ’ Visual Basic
Public Sub SetIntProperty(_

ByVal propName As String, _
ByVal val As Integer _

)

// C#
public void SetIntProperty(

string propName,
int val

);

Parameters ♦ propName the property name

♦ val the property value

SetLongProperty method

Sets a long property

Prototypes ’ Visual Basic
Public Sub SetLongProperty(_

ByVal propName As String, _
ByVal val As Long _

)

// C#
public void SetLongProperty(

string propName,
long val

);

Parameters ♦ propName the property name

♦ val the property value

SetProperty method

Sets a property. The property type must be one of the acceptable primitive
types, or String.

Prototypes ’ Visual Basic
Public Sub SetProperty(_

ByVal propName As String, _
ByVal val As Object _

)

234

Chapter 9. iAnywhere.QAnywhere.Client namespace

// C#
public void SetProperty(

string propName,
object val

);

Parameters ♦ propName the property name

♦ val the property value

SetSbyteProperty method

Sets a byte property

Prototypes ’ Visual Basic
Public Sub SetSbyteProperty(_

ByVal propName As String, _
ByVal val As System.SByte _

)

// C#
public void SetSbyteProperty(

string propName,
System.Sbyte val

);

Parameters ♦ propName the property name

♦ val the property value

SetShortProperty method

Sets a short property

Prototypes ’ Visual Basic
Public Sub SetShortProperty(_

ByVal propName As String, _
ByVal val As Short _

)

// C#
public void SetShortProperty(

string propName,
short val

);

Parameters ♦ propName the property name

♦ val the property value

235

SetStringProperty method

Sets a string property

Prototypes ’ Visual Basic
Public Sub SetStringProperty(_

ByVal propName As String, _
ByVal val As String _

)

// C#
public void SetStringProperty(

string propName,
string val

);

Parameters ♦ propName the property name

♦ val the property value

236

Chapter 9. iAnywhere.QAnywhere.Client namespace

QAPropertyType enumeration
QAMessage property type enumeration, corresponding naturally to the C#
types

Prototypes ’ Visual Basic
Public Enum QAPropertyType

// C#
public enum QAPropertyType

Members

Member Description

BOOLEAN Indicates a boolean property

BYTE Indicates a signed byte property

DOUBLE Indicates a double property

FLOAT Indicates a float property

INT Indicates an int property

LONG Indicates an long property

SHORT Indicates a short property

STRING Indicates a string property

UNKNOWN Indicates an unknown property type, usually because the property is
unknown

237

QATextMessage class
Encapsulation of a text message.

Prototypes ’ Visual Basic
Public Class QATextMessage

Inherits QAMessage

// C#
public class QATextMessage :

QAMessage

QATextMessage members

Public instance
properties

Member Description

Address property(inherited from
QAMessage)

The address of this message. May be null, but is null never null in a
message received via getMessage or a message listener.

Expiration property(inherited
from QAMessage)

Indicates the time after which the message may expire and be removed
from the message system if it has not been received.

InReplyToID property(inherited
from QAMessage)

The message id of the message for which this message is a reply. May
be null.

MessageID property(inherited
from QAMessage)

The globally unique message id of the message. This property is null
until a message is put.

Priority property(inherited from
QAMessage)

The priority of the message (ranging from 0 to 9)

Redelivered property(inherited
from QAMessage)

Indicates whether the message has been previously received but not
acknowledged.

ReplyToAddress property(inher-
ited from QAMessage)

The replyTo address of this message. May be null.

Text property The message text. If the message exceeds the maximum message
chunk size, then the Text value will be null. In the latter case, you
should use the readText method to receive the text.

TextLength property The length, in characters, of the message

Timestamp property(inherited
from QAMessage)

The message timestamp.

Public instance methods

238

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

ClearProperties method(inherited
from QAMessage)

Clear all the properties of the message

GetBooleanProperty method(in-
herited from QAMessage)

Gets a boolean message property

GetDoubleProperty method(in-
herited from QAMessage)

Gets a double message property

GetFloatProperty method(inher-
ited from QAMessage)

Gets a float message property

GetIntProperty method(inherited
from QAMessage)

Gets an int message property

GetLongProperty method(inher-
ited from QAMessage)

Gets a long message property

GetProperty method(inherited
from QAMessage)

Gets a message property

GetPropertyNames method(in-
herited from QAMessage)

Gets an enumerator over the property names of the message

GetPropertyType method(inher-
ited from QAMessage)

Returns the property type of the given property

GetSbyteProperty method(inher-
ited from QAMessage)

Gets a signed byte message property

GetShortProperty method(inher-
ited from QAMessage)

Gets a short message property

GetStringProperty method(inher-
ited from QAMessage)

Gets a string message property

PropertyExists method(inherited
from QAMessage)

Indicates whether the given property has been set for this message

ReadText method Read unread text into the given buffer. Any additional unread text
must be read by subsequent calls to this method. Text is read from the
beginning of any unread text.

SetBooleanProperty method(in-
herited from QAMessage)

Sets a boolean property

SetDoubleProperty method(in-
herited from QAMessage)

Sets a double property

239

Member Description

SetFloatProperty method(inher-
ited from QAMessage)

Sets a float property

SetIntProperty method(inherited
from QAMessage)

Sets an int property

SetLongProperty method(inher-
ited from QAMessage)

Sets a long property

SetProperty method(inherited
from QAMessage)

Sets a property. The property type must be one of the acceptable
primitive types, or String.

SetSbyteProperty method(inher-
ited from QAMessage)

Sets a byte property

SetShortProperty method(inher-
ited from QAMessage)

Sets a short property

SetStringProperty method(inher-
ited from QAMessage)

Sets a string property

WriteText method Append text to the text of the message.

Protected instance
methods

Member Description

Dispose method(inherited from
QAMessage)

Clean up any resources being used.

Text property

The message text. If the message exceeds the maximum message chunk
size, then the Text value will be null. In the latter case, you should use the
readText method to receive the text.

Prototypes ’ Visual Basic
Public Property Text As String

// C#
public string Text {get;set;}

TextLength property

The length, in characters, of the message

240

Chapter 9. iAnywhere.QAnywhere.Client namespace

Prototypes ’ Visual Basic
Public Readonly Property TextLength As Long

// C#
public long TextLength {get;}

ReadText method

Read unread text into the given buffer. Any additional unread text must be
read by subsequent calls to this method. Text is read from the beginning of
any unread text.

Prototypes ’ Visual Basic
Public Function ReadText(_

ByVal buf As System.Text.StringBuilder _
) As Integer

// C#
public int ReadText(

System.Text.string Builder buf
);

Parameters ♦ buf Target buffer for any read text

Return value the number of characters read or -1 if there are no more characters to read

WriteText method

Append text to the text of the message.

Prototypes ’ Visual Basic
Public Sub WriteText(_

ByVal val As String _
)

// C#
public void WriteText(

string val
);

Parameters ♦ val the text to append

241

QATransactionalManager class
The transactional QA manager. All message puts and gets done via this
manager are done transactionally. That is, all puts and gets occur within a
transaction and are all committed or rolled back together. There is always a
transaction. Committing or rolling back a transaction implicitly begins a
new transaction.

Prototypes ’ Visual Basic
Public Class QATransactionalManager

Inherits QAManagerBase

// C#
public class QATransactionalManager :

QAManagerBase

QATransactionalManager members

Public instance
properties

Member Description

LastError property(inherited
from QAManagerBase)

The error code of the last executed method, with 0 indicating success.

LastErrorMessage property(in-
herited from QAManagerBase)

The text of the error associated with the last executed method. Will be
null if the last executed method result in a LastError of 0.

Mode property(inherited from
QAManagerBase)

The acknowledgement mode for receiving all messages through this
manager

Public instance methods

Member Description

BrowseMessages method(inher-
ited from QAManagerBase)

Browse the next available messages waiting that have been sent to the
given address. The messages are just being browsed, so they cannot
be acknowledged. Enumerators returned from the same manager
cannot have their method calls interlaced. Interlacing calls may result
in messages meant for one iterator to be browsed in another iterator.

Close method(inherited from
QAManagerBase)

Closes the connection to the QA message system and releases any
resources. Any calls to close beyond the first are ignored. Any
subsequent calls to a method, other than close, will result in an
exception being thrown.

242

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

Commit method Commits the putting and getting of all uncommitted puts and gets of
messages. A message put using a transactional manager will not be
received until commit occurs. Similarly, the get of a message via a
transactional manager will not appear gotten until a commit occurs.

CreateBinaryMessage method
(inherited from QAManagerBase)

Create a BinaryMessage instance appropriate for sending.

CreateTextMessage method(in-
herited from QAManagerBase)

Create a TextMessage instance appropriate for sending.

GetBooleanStoreProperty method
(inherited from QAManagerBase)

Gets a boolean message store property

GetDoubleStoreProperty method
(inherited from QAManagerBase)

Gets a double message store property

GetFloatStoreProperty method
(inherited from QAManagerBase)

Gets a float message store property

GetIntStoreProperty method(in-
herited from QAManagerBase)

Gets an int message store property

GetLongStoreProperty method
(inherited from QAManagerBase)

Gets a long message store property

GetMessage method(inherited
from QAManagerBase)

Get the next available message waiting that has been sent to the
given address. If there is no message available, then this call blocks
indefinitely until a message is available.

GetMessageNoWait method(in-
herited from QAManagerBase)

Get the next available message waiting that has been sent to the
given address. If there is no message available, then it returns null
immediately, without blocking.

GetMessageTimeout method(in-
herited from QAManagerBase)

Get the next available message waiting that has been sent to the given
address. If there is no message available, then this call will wait up to
the timeout time until a message is available.

GetSbyteStoreProperty method
(inherited from QAManagerBase)

Gets a signed byte message store property

GetShortStoreProperty method
(inherited from QAManagerBase)

Gets a short message store property

GetStoreProperty method(inher-
ited from QAManagerBase)

Gets a message store property

GetStringStoreProperty method
(inherited from QAManagerBase)

Gets a string message store property

243

Member Description

Open method Open the transactional manager. The open method must be the first
method called after creating a manager.

PutMessage method(inherited
from QAManagerBase)

Puts the message into the message system addressed to the given
address.

PutMessageTimeToLive method
(inherited from QAManagerBase)

Puts the message into the message system addressed to the given
address, with the given time-to-live.

Rollback method Rolls back the putting and getting of all uncommitted puts and gets of
messages. A message put using a transactional manager will not be
sent. Similarly, the get of a message via a transactional manager will
not appear to have not been gotten.

SetBooleanStoreProperty method
(inherited from QAManagerBase)

Sets a boolean message store property

SetDoubleStoreProperty method
(inherited from QAManagerBase)

Sets a double message store property

SetFloatStoreProperty method
(inherited from QAManagerBase)

Sets a float message store property

SetIntStoreProperty method(in-
herited from QAManagerBase)

Sets an int message store property

SetLongStoreProperty method
(inherited from QAManagerBase)

Sets a long message store property

SetMessageListener method(in-
herited from QAManagerBase)

Sets a listener for messages available for the given address. Only one
listener can be set for a given address. Setting with a null listener
clears out any listener for that address.

SetProperty method(inherited
from QAManagerBase)

Sets the named property to the given value. Properties for this
QAManagerBase may be set with this method as an alternative to the
properties file at creation. Properties must be set before calling the
open() methods of the derived classes.

SetSbyteStoreProperty method
(inherited from QAManagerBase)

Sets a byte message store property

SetShortStoreProperty method
(inherited from QAManagerBase)

Sets a short message store property

SetStoreProperty method(inher-
ited from QAManagerBase)

Sets a message store property. The property type must be one of the
acceptable primitive types, or String.

SetStringStoreProperty method
(inherited from QAManagerBase)

Sets a string message store property

244

Chapter 9. iAnywhere.QAnywhere.Client namespace

Member Description

Start method(inherited from
QAManagerBase)

Once started the manager will receive any incoming messages. Any
calls to start beyond the first without an intervening stop are ignored.

Stop method(inherited from QA-
ManagerBase)

Once stopped the manager will not receive any incoming messages.
The messages are not lost. They just won’t be received until the
manager is started. Any calls to stop beyond the first without an
intervening start are ignored.

TriggerSendReceive method(in-
herited from QAManagerBase)

Causes a synchronization with the QA message server, uploading any
messages not meant for this client, and downloading any messages
meant for this client.

Protected static fields
(Shared)

Member Description

isOpen field(inherited from QA-
ManagerBase)

Indicates whether instance is in an open state

mgrBase field(inherited from
QAManagerBase)

Handle to the underlying c++ qa manager

Protected instance fields

Member Description

isOpen field(inherited from QA-
ManagerBase)

Indicates whether instance is in an open state

mgrBase field(inherited from
QAManagerBase)

Handle to the underlying c++ qa manager

Protected instance
methods

Member Description

Dispose method Clean up any resources being used.

Commit method

Commits the putting and getting of all uncommitted puts and gets of

245

messages. A message put using a transactional manager will not be received
until commit occurs. Similarly, the get of a message via a transactional
manager will not appear gotten until a commit occurs.

Prototypes ’ Visual Basic
Public Sub Commit()

// C#
public void Commit();

Exceptions ♦ QAException class- if there is a problem committing

Dispose method

Clean up any resources being used.

Prototypes ’ Visual Basic
Overloads Overrides Protected Sub Dispose(_

ByVal disposing As Boolean _
)

// C#
protected override void Dispose(

bool disposing
);

Parameters ♦ disposing true to release both managed and unmanaged resources;
false to release only unmanaged resources.

Open method

Open the transactional manager. The open method must be the first method
called after creating a manager.

Prototypes ’ Visual Basic
Public Sub Open()

// C#
public void Open();

Exceptions ♦ QAException class- if there is a problem opening the manager

Rollback method

Rolls back the putting and getting of all uncommitted puts and gets of
messages. A message put using a transactional manager will not be sent.
Similarly, the get of a message via a transactional manager will not appear to
have not been gotten.

Prototypes ’ Visual Basic
Public Sub Rollback()

246

Chapter 9. iAnywhere.QAnywhere.Client namespace

// C#
public void Rollback();

Exceptions ♦ QAException class- if there is a problem rolling back

247

248

Index

Symbols
~QABinaryMessage function

QAnywhere C++ API 134
~QAError function

QAnywhere C++ API 137
~QAManager function

QAnywhere C++ API 140
~QAManagerBase function

QAnywhere C++ API 152
~QAManagerFactory function

QAnywhere C++ API 154
~QAMessage function

QAnywhere C++ API 166
~QAMessageListener function

QAnywhere C++ API 167
~QATextMessage function

QAnywhere C++ API 170
~QATransactionalManager function

QAnywhere C++ API 172

A
ABS_RETRY_TIMEOUT field

iAnywhere.QAnywhere.Client namespace 176
ABS_RETRY_TIMEOUT variable

QAnywhere C++ API 123
acknowledge function

QAnywhere C++ API 139
Acknowledge method

iAnywhere.QAnywhere.Client namespace 199
acknowledgeAll function

QAnywhere C++ API 139
AcknowledgeAll method

iAnywhere.QAnywhere.Client namespace 199
acknowledgement modes

QAManager class (C++) 61
QAManager class (.NET) 63

AcknowledgementMode class
QAnywhere C++ API 122

AcknowledgementMode enumeration
iAnywhere.QAnywhere.Client namespace 174

acknowledgeUntil function

QAnywhere C++ API 139
AcknowledgeUntil method

iAnywhere.QAnywhere.Client namespace 199
ADAPTER field

iAnywhere.QAnywhere.Client namespace 176
ADAPTER variable

QAnywhere C++ API 123
adding client messages store IDs

QAnywhere 34
Address property

iAnywhere.QAnywhere.Client namespace 225
addresses

QAnywhere 59
QAnywhere JMS Connector 59
setting in QAnywhere messages (C++) 67
setting in QAnywhere messages (.NET) 68

addressing JMS messages meant for QAnywhere
about 48

addressing QAnywhere messages meant for JMS
about 46

application-to-application messaging see also
messaging

QAnywhere 2
architecture

integrating messaging into a data synchronization
application 51

QAnywhere 5
asynchronous message receipt

QAnywhere 70
authentication

QAnywhere 99
automatic policy

QAnywhere Agent 89

B
BodyLength property

iAnywhere.QAnywhere.Client namespace 184
BrowseMessages method

iAnywhere.QAnywhere.Client namespace 205

C
-c option

249

Index

QAnywhere Agent [qaagent] 82
castToBinaryMessage function

QAnywhere C++ API 156
castToTextMessage function

QAnywhere C++ API 156
clearProperties function

QAnywhere C++ API 156
ClearProperties method

iAnywhere.QAnywhere.Client namespace 227
client message store IDs

adding QAnywhere to the server message store 34
client message stores

client store properties 113
creating the IDs 35
custom client store properties 114
encrypting QAnywhere 97
initializing with -si option 91
pre-defined client store properties 113
QAnywhere architecture 6
QAnywhere security 96
QAnywhere tutorial 16
setting up in QAnywhere 35

client store properties
QAnywhere 113
QAnywhere custom 114
QAnywhere pre-defined 113

close function
QAnywhere C++ API 142

Close method
iAnywhere.QAnywhere.Client namespace 205

commit function
QAnywhere C++ API 172

Commit method
iAnywhere.QAnywhere.Client namespace 245

COMMON_GET_INIT_FILE_ERROR variable
QAnywhere C++ API 135

COMMON_INIT_ERROR variable
QAnywhere C++ API 135

COMMON_INIT_THREAD_ERROR variable
QAnywhere C++ API 136

COMMON_INVALID_PROPERTY variable
QAnywhere C++ API 136

COMMON_MSG_NOT_WRITEABLE_ERROR
variable

QAnywhere C++ API 136
COMMON_MSG_RETRIEVE_ERROR variable

QAnywhere C++ API 136

COMMON_MSG_STORE_ERROR variable
QAnywhere C++ API 136

COMMON_MSG_STORE_NOT_INITIALIZED
variable

QAnywhere C++ API 136
COMMON_MSG_STORE_TOO_LARGE variable

QAnywhere C++ API 136
COMMON_NO_DEST_ERROR variable

QAnywhere C++ API 136
COMMON_NO_IMPLEMENTATION variable

QAnywhere C++ API 137
COMMON_OPEN_ERROR variable

QAnywhere C++ API 137
COMMON_OPEN_LOG_FILE_ERROR variable

QAnywhere C++ API 137
COMMON_TERMINATE_ERROR variable

QAnywhere C++ API 137
COMMON_UNEXPECTED_EOM_ERROR

variable
QAnywhere C++ API 137

communication streams
encrypting QAnywhere 98

COMPRESSED field
iAnywhere.QAnywhere.Client namespace 177

compression
QAnywhere JMS connectors 44

COMPRESSION_LEVEL property
QAManager properties 66

condition syntax
QAnywhere 106

conditions
QAnywhere schedule syntax 106

configuring multiple connectors
QAnywhere 45

configuring the JMS connector properties file
QAnywhere 43

connectors
configuring multiple QAnywhere 45
QAnywhere JMS connector properties files 43

conventions
documentation x

createBinaryMessage function
QAnywhere C++ API 142

CreateBinaryMessage method
iAnywhere.QAnywhere.Client namespace 206

createQAManager function
QAnywhere C++ API 153

250

Index

CreateQAManager method
iAnywhere.QAnywhere.Client namespace 222

createQATransactionalManager function
QAnywhere C++ API 153

CreateQATransactionalManager method
iAnywhere.QAnywhere.Client namespace 222

createTextMessage function
QAnywhere C++ API 142

CreateTextMessage method
iAnywhere.QAnywhere.Client namespace 206
QAManager class 67

createTextMessage method
QAManager class 67

creating
QAnywhere server message store 32

creating a secure client message store
QAnywhere 96

creating client message store IDs
QAnywhere 35

custom client store properties
QAnywhere 114

D
dbeng9

QAnywhere Agent and 80
dblsn

QAnywhere Agent and 80
dbmlsync utility

QAnywhere Agent and 80
DEFAULT_PRIORITY variable

QAnywhere C++ API 156
DEFAULT_TIME_TO_LIVE variable

QAnywhere C++ API 156
delete rules

QAnywhere 118
deleteMessage function

QAnywhere C++ API 142
deleteQAManager function

QAnywhere C++ API 153
deleteQATransactionalManager function

QAnywhere C++ API 154
deploying QAnywhere

about 78
Dispose method

iAnywhere.QAnywhere.Client namespace 200,
206, 223, 227, 246

documentation

conventions x
SQL Anywhere Studio viii

E
EAServer

QAnywhere and 8
encrypting

QAnywhere client message stores 97
QAnywhere communication stream 98

encrypting the client message store
QAnywhere 97

encrypting the communication stream
QAnywhere 98

ErrorCode property
iAnywhere.QAnywhere.Client namespace 194

Expiration property
iAnywhere.QAnywhere.Client namespace 226

EXPLICIT_ACKNOWLEDGEMENT variable
QAnywhere C++ API 122

F
failover

QAnywhere 53
feedback

documentation xiii
providing xiii

Finalize method
iAnywhere.QAnywhere.Client namespace 223

FROM_ADDR field
iAnywhere.QAnywhere.Client namespace 177

FROM_ADDR variable
QAnywhere C++ API 123

G
getAddress function

QAnywhere C++ API 157
getBodyLength function

QAnywhere C++ API 129
getBooleanProperty function

QAnywhere C++ API 157
GetBooleanProperty method

iAnywhere.QAnywhere.Client namespace 228
getBooleanStoreProperty function

QAnywhere C++ API 143
GetBooleanStoreProperty method

iAnywhere.QAnywhere.Client namespace 206

251

Index

getByteProperty function
QAnywhere C++ API 157

getByteStoreProperty function
QAnywhere C++ API 143

getDoubleProperty function
QAnywhere C++ API 157

GetDoubleProperty method
iAnywhere.QAnywhere.Client namespace 228

getDoubleStoreProperty function
QAnywhere C++ API 143

GetDoubleStoreProperty method
iAnywhere.QAnywhere.Client namespace 207

getExpiration function
QAnywhere C++ API 158

getFloatProperty function
QAnywhere C++ API 158

GetFloatProperty method
iAnywhere.QAnywhere.Client namespace 229

getFloatStoreProperty function
QAnywhere C++ API 144

GetFloatStoreProperty method
iAnywhere.QAnywhere.Client namespace 207

getInReplyToID function
QAnywhere C++ API 158

getIntProperty function
QAnywhere C++ API 158

GetIntProperty method
iAnywhere.QAnywhere.Client namespace 229

getIntStoreProperty function
QAnywhere C++ API 144

GetIntStoreProperty method
iAnywhere.QAnywhere.Client namespace 208

getLastError function
QAnywhere C++ API 144, 154

getLastErrorMsg function
QAnywhere C++ API 144, 154

getLongProperty function
QAnywhere C++ API 159

GetLongProperty method
iAnywhere.QAnywhere.Client namespace 229

getLongStoreProperty function
QAnywhere C++ API 145

GetLongStoreProperty method
iAnywhere.QAnywhere.Client namespace 208

getMessage function
QAnywhere C++ API 145

GetMessage method

iAnywhere.QAnywhere.Client namespace 209
getMessageID function

QAnywhere C++ API 159
getMessageNoWait function

QAnywhere C++ API 145
GetMessageNoWait method

iAnywhere.QAnywhere.Client namespace 209
getMessageTimeout function

QAnywhere C++ API 145
GetMessageTimeout method

iAnywhere.QAnywhere.Client namespace 209
getMode function

QAnywhere C++ API 146
getPriority function

QAnywhere C++ API 159
GetProperty method

iAnywhere.QAnywhere.Client namespace 230
getPropertyNames function

QAnywhere C++ API 159
GetPropertyNames method

iAnywhere.QAnywhere.Client namespace 230
getPropertyType function

QAnywhere C++ API 160
GetPropertyType method

iAnywhere.QAnywhere.Client namespace 230
getRedelivered function

QAnywhere C++ API 160
getReplyToAddress function

QAnywhere C++ API 160
GetSbyteProperty method

iAnywhere.QAnywhere.Client namespace 231
GetSbyteStoreProperty method

iAnywhere.QAnywhere.Client namespace 210
getShortProperty function

QAnywhere C++ API 160
GetShortProperty method

iAnywhere.QAnywhere.Client namespace 231
getShortStoreProperty function

QAnywhere C++ API 146
GetShortStoreProperty method

iAnywhere.QAnywhere.Client namespace 210
GetStoreProperty method

iAnywhere.QAnywhere.Client namespace 211
getStringProperty function

QAnywhere C++ API 161
GetStringProperty method

iAnywhere.QAnywhere.Client namespace 232

252

Index

getStringStoreProperty function
QAnywhere C++ API 146

GetStringStoreProperty method
iAnywhere.QAnywhere.Client namespace 211

getText function
QAnywhere C++ API 169

getTextLength function
QAnywhere C++ API 169

getTimestamp function
QAnywhere C++ API 161

getTimestampAsString function
QAnywhere C++ API 162

getting started
QAnywhere 10

H
handling push notifications and network status

changes
QAnywhere 73

I
ianywhere.connector.address property

QAnywhere 44
ianywhere.connector.compressionLevel property

QAnywhere 44
ianywhere.connector.id property

QAnywhere 44
ianywhere.connector.logLevel property

QAnywhere 44
ianywhere.connector.NativeConnection property

QAnywhere 44
ianywhere.connector.outgoing.deadMessageAddress

property
QAnywhere 44

iAnywhere.QAnywhere.Client namespace
iAnywhere.QAnywhere.Client namespace 173

icons
used in manuals xii

-id option
QAnywhere Agent [qaagent] 84

IDs
adding QAnywhere to the server message store 34
understanding QAnywhere addresses 59

implementing transactional messaging
about 75

IMPLICIT_ACKNOWLEDGEMENT variable
QAnywhere C++ API 122

initializing the QAnywhere client API
about 60

InReplyToID property
iAnywhere.QAnywhere.Client namespace 226

Instance property
iAnywhere.QAnywhere.Client namespace 221

InstanceCount property
iAnywhere.QAnywhere.Client namespace 221

InstanceID field
iAnywhere.QAnywhere.Client namespace 221

introduction to QAnywhere 1
isOpen field

iAnywhere.QAnywhere.Client namespace 204
-iu option

QAnywhere Agent [qaagent] 85

J
JMS

running MobiLink with messaging and a JMS
Connector 42

JMS Connector
properties file 43
QAnywhere addresses 59
QAnywhere architecture 9

JMS properties
mapping JMS messages on to QAnywhere

messages 50
JMS providers

QAnywhere architecture 8

L
-la option

QAnywhere Agent [qaagent] 85
LastError property

iAnywhere.QAnywhere.Client namespace 204,
222

LastErrorMessage property
iAnywhere.QAnywhere.Client namespace 204,

222
Listener utility

QAnywhere Agent and 8, 80
LOG_FILE property

QAManager properties 66

M
manage client message store passwords

253

Index

QAnywhere 96
mapping JMS messages on to QAnywhere messages

about 49
mapping QAnywhere messages on to JMS messages

about 47
MAX_IN_MEMORY_MESSAGE_SIZE property

QAManager properties 66
message addresses

QAnywhere 59
message headers

QAnywhere transmission rules 110
message listeners

QAnywhere 70
message properties

QAnywhere 111
message properties file

QAnywhere 43
message store IDs

adding QAnywhere to the server message store 34
message stores

encrypting QAnywhere client message stores 97
QAnywhere client architecture 6
QAnywhere server architecture 5

message transmission
QAnywhere 101

MessageID property
iAnywhere.QAnywhere.Client namespace 226

MessageListener class
QAnywhere (C++) 71
QAnywhere system messages 73

MessageProperties class
iAnywhere.QAnywhere.Client namespace 175
QAnywhere C++ API 123

MessageProperties constructor
iAnywhere.QAnywhere.Client namespace 176

messages stores
creating QAnywhere client message stores 35
creating the QAnywhere server message store 32

MessageType class
QAnywhere C++ API 126

MessageType enumeration
iAnywhere.QAnywhere.Client namespace 180

messaging see alsoQAnywhere
application-to-application 2
QAnywhere addresses 59
QAnywhere features 3
QAnywhere quick start 10

messaging systems
JMS integration with QAnywhere 42

messaging with external messaging systems
QAnywhere architecture 8

messaging with push notifications
QAnywhere architecture 6

mgrBase field
iAnywhere.QAnywhere.Client namespace 204

MobiLink
integrating messaging into a data synchronization

application 51
MobiLink synchronization server

QAnywhere 33
MobiLink with messaging

QAnywhere setup 31
QAnywhere tutorial 13
simple messaging architecture 6
starting 33

Mode property
iAnywhere.QAnywhere.Client namespace 205

-mp option
QAnywhere Agent [qaagent] 85

MSG_TYPE field
iAnywhere.QAnywhere.Client namespace 177

MSG_TYPE variable
QAnywhere C++ API 123

N
NETWORK field

iAnywhere.QAnywhere.Client namespace 177
network status

handling changes in QAnywhere 73
NETWORK variable

QAnywhere C++ API 124
NETWORK_STATUS field

iAnywhere.QAnywhere.Client namespace 177
NETWORK_STATUS variable

QAnywhere C++ API 124
NETWORK_STATUS_NOTIFICATION variable

QAnywhere C++ API 126
newsgroups

technical support xiii
notifications

disabling QAnywhere 90
handling in QAnywhere 73
QAnywhere introduction to 40
QAnywhere with SMS 40

254

Index

O
-o option

QAnywhere Agent [qaagent] 86
-on option

QAnywhere Agent [qaagent] 86
ondemand policy

QAnywhere Agent 88
onMessage function

QAnywhere C++ API 167
onMessage method

QAManager class (C++) 70
open function

QAnywhere C++ API 139, 172
Open method

iAnywhere.QAnywhere.Client namespace 200,
246

-os option
QAnywhere Agent [qaagent] 87

-ot option
QAnywhere Agent [qaagent] 87

P
password authentication with MobiLink

QAnywhere applications 99
peekFirstMessage function

QAnywhere C++ API 147
peekNextMessage function

QAnywhere C++ API 147
persistence

QAnywhere messages 118
policies

QAnywhere 37
QAnywhere architecture 6
QAnywhere tutorial 19

-policy option
QAnywhere Agent [qaagent] 88

-port option
QAnywhere Agent [qaagent] 90

pre-defined client store properties
QAnywhere 113

Priority property
iAnywhere.QAnywhere.Client namespace 226

properties
QAManager 66

propertyExists function
QAnywhere C++ API 162

PropertyExists method
iAnywhere.QAnywhere.Client namespace 232

publishMessage function
QAnywhere C++ API 147

push notifications
QAnywhere introduction to 40

-push option
QAnywhere Agent [qaagent] 90

PUSH_NOTIFICATION variable
QAnywhere C++ API 126

putMessage function
QAnywhere C++ API 147

PutMessage method
iAnywhere.QAnywhere.Client namespace 212

putMessageTimeToLive function
QAnywhere C++ API 148

PutMessageTimeToLive method
iAnywhere.QAnywhere.Client namespace 212

Q
-q option

QAnywhere Agent [qaagent] 90
QA_NO_ERROR variable

QAnywhere C++ API 137
qaagent utility

about 37
syntax 80

QABinaryMessage class
iAnywhere.QAnywhere.Client namespace 181
instantiating (C++) 67
instantiating (.NET) 67
QAnywhere C++ API 127

QAError class
QAnywhere C++ API 135

QAException class
iAnywhere.QAnywhere.Client namespace 192

QAException constructor
iAnywhere.QAnywhere.Client namespace 193

qa.hpp
QAnywhere header file 60

QAManager class
acknowledgement modes (C++) 61
acknowledgement modes (.NET) 63
iAnywhere.QAnywhere.Client namespace 195
initializing (C++) 61
initializing (.NET) 63
instantiating (C++) 60

255

Index

instantiating (.NET) 62
QAnywhere C++ API 138

QAManager properties
COMPRESSION_LEVEL 66
listed 66
LOG_FILE 66
MAX_IN_MEMORY_MESSAGE_SIZE 66
properties file 60, 62
RECEIVER_INTERVAL 66
setting 64

QAManagerBase class
iAnywhere.QAnywhere.Client namespace 201
QAnywhere C++ API 141

QAManagerBase.MessageListener delegate
iAnywhere.QAnywhere.Client namespace 219

QAManagerFactory class
iAnywhere.QAnywhere.Client namespace 220
initializing (C++) 60
initializing (.NET) 62
QAnywhere C++ API 153

QAMessage class
iAnywhere.QAnywhere.Client namespace 224
QAnywhere C++ API 155

QAMessageListener class
QAnywhere C++ API 167

QAnywhere
about 1
addresses 59
architecture 5
connecting to the client message store 82
delete rules 118
deploying applications 78
failover 53
features 3
integrating messaging into a data synchronization

application 51
programming interfaces 56
quick start 10
receiving notifications 70
security 95
setting up client-side components 35
setting up server-side components 32
transmission rules 101
transmission rules variables 110
tutorial 11
using JMS connectors 42

QAnywhere Agent

about 37
simple messaging architecture 6
syntax 80

QAnywhere architecture
about 5

QAnywhere C++ API
introduction 56

QAnywhere client
shutting down 77

QAnywhere client API
initializing 60

QAnywhere client applications
writing 55

QAnywhere clients
introduction 6

QAnywhere header file
qa.hpp 60

QAnywhere Manager properties seeQAManager
properties

QAnywhere namespace
including 62

QAnywhere .NET API
introduction 56

QAnywhere Notifier
architecture 7

QAnywhere properties seeQAManager properties
mapping QAnywhere messages on to JMS

messages 48
QAnywhere transmission rules

about 101
QAPropertyType enumeration

iAnywhere.QAnywhere.Client namespace 237
qastop utility

use with qaagent -q (quiet mode) 90
use with qaagent -qi (quiet mode) 91

QATextMessage class
iAnywhere.QAnywhere.Client namespace 238
instantiating (C++) 67
instantiating (.NET) 67
QAnywhere C++ API 168

QATransactionalManager class
iAnywhere.QAnywhere.Client namespace 242
QAnywhere (C++) 75
QAnywhere C++ API 171

-qi option
QAnywhere Agent [qaagent] 91

queues

256

Index

understanding QAnywhere addresses 59
quick start

QAnywhere 10
quiet mode

QAnywhere Agent [qaagent] -q 90
QAnywhere Agent [qaagent] -qi 91

R
readBinary function

QAnywhere C++ API 129
ReadBinary method

iAnywhere.QAnywhere.Client namespace 184
readBoolean function

QAnywhere C++ API 129
ReadBoolean method

iAnywhere.QAnywhere.Client namespace 185
readByte function

QAnywhere C++ API 129
readChar function

QAnywhere C++ API 130
ReadChar method

iAnywhere.QAnywhere.Client namespace 185
readDouble function

QAnywhere C++ API 130
ReadDouble method

iAnywhere.QAnywhere.Client namespace 186
readFloat function

QAnywhere C++ API 130
ReadFloat method

iAnywhere.QAnywhere.Client namespace 186
reading

QAnywhere large messages 72
reading very large messages

about 72
readInt function

QAnywhere C++ API 130
ReadInt method

iAnywhere.QAnywhere.Client namespace 186
readLong function

QAnywhere C++ API 131
ReadLong method

iAnywhere.QAnywhere.Client namespace 186
ReadSbyte method

iAnywhere.QAnywhere.Client namespace 187
readShort function

QAnywhere C++ API 131
ReadShort method

iAnywhere.QAnywhere.Client namespace 187
readString function

QAnywhere C++ API 131
ReadString method

iAnywhere.QAnywhere.Client namespace 187
readText function

QAnywhere C++ API 169
ReadText method

iAnywhere.QAnywhere.Client namespace 241
receiving messages

QAnywhere (C++) 69
QAnywhere (.NET) 69

receiving messages asynchronously
QAnywhere 70

receiving messages synchronously
QAnywhere 69

recover function
QAnywhere C++ API 140

Recover method
iAnywhere.QAnywhere.Client namespace 200

Redelivered property
iAnywhere.QAnywhere.Client namespace 227

REGULAR variable
QAnywhere C++ API 126

ReplyToAddress property
iAnywhere.QAnywhere.Client namespace 227

reset function
QAnywhere C++ API 131

Reset method
iAnywhere.QAnywhere.Client namespace 188

RETRY_FAILED field
iAnywhere.QAnywhere.Client namespace 178

RETRY_FAILED variable
QAnywhere C++ API 124

RETRY_FAILED_ADDR field
iAnywhere.QAnywhere.Client namespace 178

RETRY_FAILED_ADDR variable
QAnywhere C++ API 124

RETRY_FAILED_PRIORITY field
iAnywhere.QAnywhere.Client namespace 178

RETRY_FAILED_PRIORITY variable
QAnywhere C++ API 124

RETRY_MAX field
iAnywhere.QAnywhere.Client namespace 178

RETRY_MAX variable
QAnywhere C++ API 124

RETRY_TIMEOUT field

257

Index

iAnywhere.QAnywhere.Client namespace 179
RETRY_TIMEOUT variable

QAnywhere C++ API 125
rollback function

QAnywhere C++ API 172
Rollback method

iAnywhere.QAnywhere.Client namespace 246
rule variables

QAnywhere transmission rules 110
rules seetransmission rules
rules file

about QAnywhere 102
QAnywhere Agent -policy option 89

running MobiLink with messaging and a JMS
Connector

QAnywhere 43
running MobiLink with simple messaging

QAnywhere 33
running the QAnywhere Agent

about 37

S
scenario for messaging with external messaging

systems
QAnywhere 8

scenario for messaging with push notifications
QAnywhere 6

schedule syntax
QAnywhere transmission rules 105

scheduled policy
QAnywhere agent 88

schedules
QAnywhere transmission rules 105

security
QAnywhere 95

sending messages
QAnywhere 67
transactions in QAnywhere 76

sending QAnywhere messages
about 67

server message stores
QAnywhere architecture 5
setting up in QAnywhere 32

setAddress function
QAnywhere C++ API 162

setBooleanProperty function
QAnywhere C++ API 163

SetBooleanProperty method
iAnywhere.QAnywhere.Client namespace 232

setBooleanStoreProperty function
QAnywhere C++ API 148

SetBooleanStoreProperty method
iAnywhere.QAnywhere.Client namespace 213

setByteProperty function
QAnywhere C++ API 163

setByteStoreProperty function
QAnywhere C++ API 148

setDoubleProperty function
QAnywhere C++ API 163

SetDoubleProperty method
iAnywhere.QAnywhere.Client namespace 233

setDoubleStoreProperty function
QAnywhere C++ API 149

SetDoubleStoreProperty method
iAnywhere.QAnywhere.Client namespace 213

setFloatProperty function
QAnywhere C++ API 163

SetFloatProperty method
iAnywhere.QAnywhere.Client namespace 233

setFloatStoreProperty function
QAnywhere C++ API 149

SetFloatStoreProperty method
iAnywhere.QAnywhere.Client namespace 213

setInReplyToID function
QAnywhere C++ API 164

setIntProperty function
QAnywhere C++ API 164

SetIntProperty method
iAnywhere.QAnywhere.Client namespace 234

setIntStoreProperty function
QAnywhere C++ API 149

SetIntStoreProperty method
iAnywhere.QAnywhere.Client namespace 214

setLongProperty function
QAnywhere C++ API 164

SetLongProperty method
iAnywhere.QAnywhere.Client namespace 234

setLongStoreProperty function
QAnywhere C++ API 150

SetLongStoreProperty method
iAnywhere.QAnywhere.Client namespace 214

setMessageID function
QAnywhere C++ API 164

setMessageListener function

258

Index

QAnywhere C++ API 150
SetMessageListener method

iAnywhere.QAnywhere.Client namespace 215
setPriority function

QAnywhere C++ API 165
setProperty function

QAnywhere C++ API 150
SetProperty method

iAnywhere.QAnywhere.Client namespace 215,
234

setRedelivered function
QAnywhere C++ API 165

setReplyToAddress function
QAnywhere C++ API 165

SetSbyteProperty method
iAnywhere.QAnywhere.Client namespace 235

SetSbyteStoreProperty method
iAnywhere.QAnywhere.Client namespace 215

setShortProperty function
QAnywhere C++ API 165

SetShortProperty method
iAnywhere.QAnywhere.Client namespace 235

setShortStoreProperty function
QAnywhere C++ API 151

SetShortStoreProperty method
iAnywhere.QAnywhere.Client namespace 216

SetStoreProperty method
iAnywhere.QAnywhere.Client namespace 216

setStringProperty function
QAnywhere C++ API 166

SetStringProperty method
iAnywhere.QAnywhere.Client namespace 236

setStringStoreProperty function
QAnywhere C++ API 151

SetStringStoreProperty method
iAnywhere.QAnywhere.Client namespace 217

setText function
QAnywhere C++ API 170

setTimestamp function
QAnywhere C++ API 166

setting properties in a file
QAManager 64

setting properties programmatically
QAManager 65

setting QAManager properties
about 64

setting up

QAnywhere 10
setting up client-side components

QAnywhere 35
setting up failover

QAnywhere 53
setting up QAnywhere messaging

about 31
setting up server-side components

QAnywhere 32
setting up the client message store

QAnywhere 35
setting up the server message store

QAnywhere 32
shutting down QAnywhere

about 77
-si option

QAnywhere Agent [qaagent] 91
simple messaging

QAnywhere architecture 5
simple messaging scenario

QAnywhere 5
SMS

using QAnywhere notifications with 40
SQL Anywhere Studio

documentation viii
start function

QAnywhere C++ API 151
Start method

iAnywhere.QAnywhere.Client namespace 217
starting the MobiLink synchronization server for

QAnywhere messaging
about 33

stop function
QAnywhere C++ API 151

Stop method
iAnywhere.QAnywhere.Client namespace 217

-su option
QAnywhere Agent [qaagent] 92

support
newsgroups xiii

synchronous message receipt
QAnywhere 69

system messages
QAnywhere 73

T
technical support

259

Index

newsgroups xiii
TestMessage application

QAnywhere tutorial 11, 18
source code 22

Text property
iAnywhere.QAnywhere.Client namespace 240

TextLength property
iAnywhere.QAnywhere.Client namespace 240

Timestamp property
iAnywhere.QAnywhere.Client namespace 227

transactional messaging
QAnywhere 75

TRANSACTIONAL variable
QAnywhere C++ API 122

transactions
QAnywhere messages 75

transmission rule variables
QAnywhere 110

transmission rules
about 102
delete rules 118
QAnywhere 101
QAnywhere examples 103
QAnywhere syntax 105
variables 110

triggerSendReceive function
QAnywhere C++ API 151

TriggerSendReceive method
iAnywhere.QAnywhere.Client namespace 218

tutorials
QAnywhere 11

U
understanding QAnywhere addresses

about 59
using JMS connectors

QAnywhere 42
using notifications with SMS

QAnywhere 40
using push notifications

QAnywhere 40
using QAnywhere messaging and MobiLink data

synchronization together
about 51

V
-v option

QAnywhere Agent [qaagent] 92
variables

QAnywhere transmission rules 110

W
WebLogic

QAnywhere and 8
what QAnywhere does 3
writeBinary function

QAnywhere C++ API 132
WriteBinary method

iAnywhere.QAnywhere.Client namespace 188
writeBoolean function

QAnywhere C++ API 132
WriteBoolean method

iAnywhere.QAnywhere.Client namespace 188
writeByte function

QAnywhere C++ API 132
writeChar function

QAnywhere C++ API 132
WriteChar method

iAnywhere.QAnywhere.Client namespace 189
writeDouble function

QAnywhere C++ API 133
WriteDouble method

iAnywhere.QAnywhere.Client namespace 189
writeFloat function

QAnywhere C++ API 133
WriteFloat method

iAnywhere.QAnywhere.Client namespace 189
writeInt function

QAnywhere C++ API 133
WriteInt method

iAnywhere.QAnywhere.Client namespace 190
writeLong function

QAnywhere C++ API 133
WriteLong method

iAnywhere.QAnywhere.Client namespace 190
WriteSbyte method

iAnywhere.QAnywhere.Client namespace 190
writeShort function

QAnywhere C++ API 133
WriteShort method

iAnywhere.QAnywhere.Client namespace 191
writeString function

QAnywhere C++ API 134
WriteString method

260

Index

iAnywhere.QAnywhere.Client namespace 191
writeText function

QAnywhere C++ API 170
WriteText method

iAnywhere.QAnywhere.Client namespace 241
writing QAnywhere client applications

about 55
writing secure messaging applications

QAnywhere 95

X
-x option

QAnywhere Agent [qaagent] 93
xjms.jndi.authName property

QAnywhere 44
xjms.jndi.factory property

QAnywhere 44
xjms.jndi.password.e property

QAnywhere 45
xjms.jndi.url property

QAnywhere 45
xjms.password.e property

QAnywhere 45
xjms.queueConnectionAuthName property

QAnywhere 45
xjms.queueConnectionPassword.e property

QAnywhere 45
xjms.queueFactory property

QAnywhere 45
xjms.receiveDestination property

QAnywhere 45
xjms.topicConnectionAuthName property

QAnywhere 45
xjms.topicConnectionPassword.e property

QAnywhere 45
xjms.topicFactory property

QAnywhere 45

261

	QAnywhere User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	Finding out more and providing feedback

	Introduction to QAnywhere
	Application-to-application messaging
	What QAnywhere does
	QAnywhere architecture
	Simple messaging scenario
	Scenario for messaging with push notifications
	Scenario for messaging with external messaging systems

	Quick start

	Tutorial: A Sample QAnywhere Application
	About the tutorial
	Lesson 1: Start MobiLink with messaging
	Lesson 2: Create a client message store
	Lesson 3: Run the TestMessage application
	Lesson 4: Send a message
	Lesson 5: Explore the TestMessage client source code
	Lesson 6: Start a JMS connector
	Tutorial cleanup

	Setting Up QAnywhere Messaging
	Setting up server-side components
	Setting up the server message store
	Starting the MobiLink synchronization server for QAnywhere messaging
	Adding client message store IDs

	Setting up client-side components
	Setting up the client message store
	Running the QAnywhere Agent
	Determining when message transmission should occur on the client

	Using push notifications
	Using push notifications with SMS

	Using JMS Connectors
	Starting the MobiLink server for JMS integration
	Configuring the JMS connector properties file
	Configuring multiple connectors

	Addressing QAnywhere messages meant for JMS
	Mapping QAnywhere messages on to JMS messages
	QAnywhere properties

	Addressing JMS messages meant for QAnywhere
	Mapping JMS messages on to QAnywhere messages
	JMS properties

	Using QAnywhere messaging and MobiLink data synchronization together
	Setting up a failover mechanism

	Writing QAnywhere Client Applications
	Introduction
	Overview of writing a client application
	Understanding QAnywhere message addresses
	Initializing the QAnywhere client API
	Setting QAManager properties
	Setting properties in a file
	Setting properties programmatically
	QAManager properties

	Sending QAnywhere messages
	Receiving messages synchronously
	Receiving messages asynchronously
	Reading very large messages
	Handling push notifications and network status changes
	Implementing transactional messaging
	Shutting down QAnywhere
	Deploying QAnywhere applications

	QAnywhere Agent
	QAnywhere Agent syntax
	@data option
	-c option
	-id option
	-iu option
	-la_port option
	-mp option
	-o option
	-on option
	-os option
	-ot option
	-policy option
	-port option
	-push_notifications option
	-q option
	-qi option
	-si option
	-su option
	-v option
	-x option

	Writing Secure Messaging Applications
	Creating a secure client message store
	Manage client message store passwords
	Encrypting the client message store

	Encrypting the communication stream
	Using password authentication with MobiLink

	QAnywhere Transmission Rules
	Transmission rules
	Client transmission rules
	Server transmission rules

	Schedule syntax
	Condition syntax

	Transmission rule variables
	Message headers
	Message properties
	Client store properties
	Pre-defined client store properties
	Custom client store properties

	Delete rules

	QAnywhere C++ API Reference
	Class AcknowledgementMode
	EXPLICIT_ACKNOWLEDGEMENT Variable
	IMPLICIT_ACKNOWLEDGEMENT Variable
	TRANSACTIONAL Variable

	Class MessageProperties
	ABS_RETRY_TIMEOUT Variable
	ADAPTER Variable
	FROM_ADDR Variable
	MSG_TYPE Variable
	NETWORK Variable
	NETWORK_STATUS Variable
	RETRY_FAILED Variable
	RETRY_FAILED_ADDR Variable
	RETRY_FAILED_PRIORITY Variable
	RETRY_MAX Variable
	RETRY_TIMEOUT Variable

	Class MessageType
	NETWORK_STATUS_NOTIFICATION Variable
	PUSH_NOTIFICATION Variable
	REGULAR Variable

	Class QABinaryMessage
	getBodyLength Function
	readBinary Function
	readBoolean Function
	readByte Function
	readChar Function
	readDouble Function
	readFloat Function
	readInt Function
	readLong Function
	readShort Function
	readString Function
	reset Function
	writeBinary Function
	writeBoolean Function
	writeByte Function
	writeChar Function
	writeDouble Function
	writeFloat Function
	writeInt Function
	writeLong Function
	writeShort Function
	writeString Function
	-QABinaryMessage Function

	Class QAError
	COMMON_GET_INIT_FILE_ERROR Variable
	COMMON_INIT_ERROR Variable
	COMMON_INIT_THREAD_ERROR Variable
	COMMON_INVALID_PROPERTY Variable
	COMMON_MSG_NOT_WRITEABLE_ERROR Variable
	COMMON_MSG_RETRIEVE_ERROR Variable
	COMMON_MSG_STORE_ERROR Variable
	COMMON_MSG_STORE_NOT_INITIALIZED Variable
	COMMON_MSG_STORE_TOO_LARGE Variable
	COMMON_NO_DEST_ERROR Variable
	COMMON_NO_IMPLEMENTATION Variable
	COMMON_OPEN_ERROR Variable
	COMMON_OPEN_LOG_FILE_ERROR Variable
	COMMON_TERMINATE_ERROR Variable
	COMMON_UNEXPECTED_EOM_ERROR Variable
	QA_NO_ERROR Variable
	-QAError Function

	Class QAManager
	acknowledge Function
	acknowledgeAll Function
	acknowledgeUntil Function
	open Function
	recover Function
	-QAManager Function

	Class QAManagerBase
	close Function
	createBinaryMessage Function
	createTextMessage Function
	deleteMessage Function
	getBooleanStoreProperty Function
	getByteStoreProperty Function
	getDoubleStoreProperty Function
	getFloatStoreProperty Function
	getIntStoreProperty Function
	getLastError Function
	getLastErrorMsg Function
	getLongStoreProperty Function
	getMessage Function
	getMessageNoWait Function
	getMessageTimeout Function
	getMode Function
	getShortStoreProperty Function
	getStringStoreProperty Function
	peekFirstMessage Function
	peekNextMessage Function
	publishMessage Function
	putMessage Function
	putMessageTimeToLive Function
	setBooleanStoreProperty Function
	setByteStoreProperty Function
	setDoubleStoreProperty Function
	setFloatStoreProperty Function
	setIntStoreProperty Function
	setLongStoreProperty Function
	setMessageListener Function
	setProperty Function
	setShortStoreProperty Function
	setStringStoreProperty Function
	start Function
	stop Function
	triggerSendReceive Function
	-QAManagerBase Function

	Class QAManagerFactory
	createQAManager Function
	createQATransactionalManager Function
	deleteQAManager Function
	deleteQATransactionalManager Function
	getLastError Function
	getLastErrorMsg Function
	-QAManagerFactory Function

	Class QAMessage
	DEFAULT_PRIORITY Variable
	DEFAULT_TIME_TO_LIVE Variable
	castToBinaryMessage Function
	castToTextMessage Function
	clearProperties Function
	getAddress Function
	getBooleanProperty Function
	getByteProperty Function
	getDoubleProperty Function
	getExpiration Function
	getFloatProperty Function
	getInReplyToID Function
	getIntProperty Function
	getLongProperty Function
	getMessageID Function
	getPriority Function
	getPropertyNames Function
	getPropertyType Function
	getRedelivered Function
	getReplyToAddress Function
	getShortProperty Function
	getStringProperty Function
	getStringProperty Function
	getTimestamp Function
	getTimestampAsString Function
	propertyExists Function
	setAddress Function
	setBooleanProperty Function
	setByteProperty Function
	setDoubleProperty Function
	setFloatProperty Function
	setInReplyToID Function
	setIntProperty Function
	setLongProperty Function
	setMessageID Function
	setPriority Function
	setRedelivered Function
	setReplyToAddress Function
	setShortProperty Function
	setStringProperty Function
	setTimestamp Function
	-QAMessage Function

	Class QAMessageListener
	onMessage Function
	-QAMessageListener Function

	Class QATextMessage
	getText Function
	getTextLength Function
	readText Function
	setText Function
	writeText Function
	-QATextMessage Function

	Class QATransactionalManager
	commit Function
	open Function
	rollback Function
	-QATransactionalManager Function

	iAnywhere.QAnywhere.Client namespace
	AcknowledgementMode enumeration
	MessageProperties class
	MessageProperties members
	MessageProperties constructor
	ABS_RETRY_TIMEOUT field
	ADAPTER field
	COMPRESSED field
	FROM_ADDR field
	MSG_TYPE field
	NETWORK field
	NETWORK_STATUS field
	RETRY_FAILED field
	RETRY_FAILED_ADDR field
	RETRY_FAILED_PRIORITY field
	RETRY_MAX field
	RETRY_TIMEOUT field

	MessageType enumeration
	QABinaryMessage class
	QABinaryMessage members
	BodyLength property
	ReadBinary method
	ReadBoolean method
	ReadChar method
	ReadDouble method
	ReadFloat method
	ReadInt method
	ReadLong method
	ReadSbyte method
	ReadShort method
	ReadString method
	Reset method
	WriteBinary method
	WriteBoolean method
	WriteChar method
	WriteDouble method
	WriteFloat method
	WriteInt method
	WriteLong method
	WriteSbyte method
	WriteShort method
	WriteString method

	QAException class
	QAException members
	QAException constructor
	QAException constructor
	ErrorCode property

	QAManager class
	QAManager members
	Acknowledge method
	AcknowledgeAll method
	AcknowledgeUntil method
	Dispose method
	Open method
	Recover method

	QAManagerBase class
	QAManagerBase members
	isOpen field
	mgrBase field
	LastError property
	LastErrorMessage property
	Mode property
	BrowseMessages method
	Close method
	CreateBinaryMessage method
	CreateTextMessage method
	Dispose method
	GetBooleanStoreProperty method
	GetDoubleStoreProperty method
	GetFloatStoreProperty method
	GetIntStoreProperty method
	GetLongStoreProperty method
	GetMessage method
	GetMessageNoWait method
	GetMessageTimeout method
	GetSbyteStoreProperty method
	GetShortStoreProperty method
	GetStoreProperty method
	GetStringStoreProperty method
	PutMessage method
	PutMessageTimeToLive method
	SetBooleanStoreProperty method
	SetDoubleStoreProperty method
	SetFloatStoreProperty method
	SetIntStoreProperty method
	SetLongStoreProperty method
	SetMessageListener method
	SetProperty method
	SetSbyteStoreProperty method
	SetShortStoreProperty method
	SetStoreProperty method
	SetStringStoreProperty method
	Start method
	Stop method
	TriggerSendReceive method

	QAManagerBase.MessageListener delegate
	QAManagerFactory class
	QAManagerFactory members
	InstanceID field
	Instance property
	InstanceCount property
	LastError property
	LastErrorMessage property
	CreateQAManager method
	CreateQATransactionalManager method
	Dispose method
	Finalize method

	QAMessage class
	QAMessage members
	Address property
	Expiration property
	InReplyToID property
	MessageID property
	Priority property
	Redelivered property
	ReplyToAddress property
	Timestamp property
	ClearProperties method
	Dispose method
	GetBooleanProperty method
	GetDoubleProperty method
	GetFloatProperty method
	GetIntProperty method
	GetLongProperty method
	GetProperty method
	GetPropertyNames method
	GetPropertyType method
	GetSbyteProperty method
	GetShortProperty method
	GetStringProperty method
	PropertyExists method
	SetBooleanProperty method
	SetDoubleProperty method
	SetFloatProperty method
	SetIntProperty method
	SetLongProperty method
	SetProperty method
	SetSbyteProperty method
	SetShortProperty method
	SetStringProperty method

	QAPropertyType enumeration
	QATextMessage class
	QATextMessage members
	Text property
	TextLength property
	ReadText method
	WriteText method

	QATransactionalManager class
	QATransactionalManager members
	Commit method
	Dispose method
	Open method
	Rollback method

	Index

