
MobiLink Tutorials

Part number: DC00194-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001
Certicom Corp. Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All
rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028;
4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual v
SQL Anywhere Studio documentation vi
Documentation conventions ix
Finding out more and providing feedback xi

1 Tutorial: Introduction to MobiLink 1
Introduction . 2
Lesson 1: Creating and populating your databases 3
Lesson 2: Running the MobiLink synchronization server . . . 6
Lesson 3: Running the MobiLink synchronization client . . . 8
Cleanup . 10
Summary . 11
Further reading . 12

2 Tutorial: Writing MobiLink Scripts and Monitoring Syn-
chronizations 13
Introduction . 14
Lesson 1: Set up the Adaptive Server Anywhere consoli-

dated database . 15
Lesson 2: Set up the remote Adaptive Server Anywhere

databases . 18
Lesson 3: Creating scripts for your synchronization 22
Lesson 4: Run MobiLink synchronization 25
Lesson 5: Monitoring your MobiLink synchronization using

log files . 26
Lesson 6: Creating scripts for conflict detection and resolution 28
Lesson 7: Use the MobiLink Monitor to detect update conflicts 31
Tutorial cleanup . 37
Further reading . 38

3 Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database 39
Introduction . 40
Lesson 1: Create your databases 41
Lesson 2: Running the MobiLink synchronization server . . . 47
Lesson 3: Running the MobiLink synchronization client . . . 48
Summary . 49
Further reading . 50

iii

4 Tutorial: Java Synchronization Logic With Adaptive Server
Anywhere 51
Introduction . 52
Lesson 1: Compiling the CustdbScripts Java class 53
Lesson 2: Specifying class methods for events 55
Lesson 3: Run the MobiLink server with -sl java 60
Lesson 4: Test synchronization 61
Cleanup . 63
Further reading . 64

5 Tutorial: .NET Synchronization Logic With Adaptive Server
Anywhere 65
Introduction . 66
Lesson 1: Compile the CustdbScripts.dll assembly with Mo-

biLink references . 67
Lesson 2: Specify class methods for events 72
Lesson 3: Run MobiLink with -sl dnet 77
Lesson 4: Test synchronization 78
Cleanup . 80
Further reading . 81

6 The Contact Sample Application 83
Introduction . 84
Setup . 85
Tables in the Contact databases 87
Users in the Contact sample 90
Synchronization . 91
Monitoring statistics and errors in the Contact sample 98

7 The CustDB Sample Application 99
Introduction . 100
Setup . 102
Tables in the CustDB databases 109
Users in the CustDB sample 112
Synchronization . 113
Maintaining the customer and order primary key pools 117
Further reading . 119

Index 121

iv

About This Manual

Subject This manual contains tutorials that help you learn how to use MobiLink
synchronization technology.

Before you begin ☞ For more information about MobiLink, see“Introducing MobiLink
Synchronization”[MobiLink Administration Guide,page 3].

v

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC

vi

(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Server-Initiated Synchronization User’s Guide This book
describes MobiLink server-initiated synchronization, a feature of
MobiLink that allows you to initiate synchronization from the
consolidated database.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

vii

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store at
http://eshop.sybase.com/eshop/documentation.

viii

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

ix

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

x

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ ianywhere.public.sqlanywhere.ultralite

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xi

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
mailto:iasdoc@ianywhere.com

xii

CHAPTER 1

Tutorial: Introduction to MobiLink

About this chapter This chapter provides a very introductory tutorial to guide you through the
process of setting up a synchronization system that uses Adaptive Server
Anywhere databases.

Contents Topic: page

Introduction 2

Lesson 1: Creating and populating your databases 3

Lesson 2: Running the MobiLink synchronization server 6

Lesson 3: Running the MobiLink synchronization client 8

Cleanup 10

Summary 11

Further reading 12

1

Introduction
In this tutorial, you use Adaptive Server Anywhere to create a consolidated
database and a remote database. You then synchronize these databases using
MobiLink synchronization technology.

Timing The tutorial takes about 30 minutes.

Goals You will gain competence and familiarity with:

♦ The MobiLink synchronization server and client as an integrated system.

♦ The MobiLink synchronization server and client command lines and
options.

♦ How to create an ODBC connection and set the properties of an ODBC
connection for Adaptive Server Anywhere.

♦ How to initialize a database.

Key concepts The MobiLink synchronization server connects to the consolidated database
using ODBC. The MobiLink synchronization client connects to your remote
database. The MobiLink synchronization server and client function as a
group, managing the upload and download of data from one database to
another.

Suggested background
reading

For more information about the architecture of MobiLink, see
“Synchronization Basics”[MobiLink Administration Guide,page 7].

☞ For more information about the Adaptive Server Anywhere utility for
running SQL commands, see“Using Interactive SQL”[Introducing SQL
Anywhere Studio,page 217].

2

Chapter 1. Tutorial: Introduction to MobiLink

Lesson 1: Creating and populating your databases
MobiLink synchronization requires that you have a consolidated database, at
least one remote database, and an ODBC data source for each database.

Create your database
files

The first step is to create each of the databases. In this procedure, you build a
consolidated database and a remote database using the dbinit utility from a
command line.

The dbinit utility creates a database file with no user tables or procedures.
You create your database schema when you define, within the
newly-initialized file, user-defined tables and procedures.

❖ To create your database files

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Create a consolidated database for this tutorial. Run the following
command line:

dbinit consol.db

If this tutorial has been previously run on your computer,consol.dband
consol.logmay already exist. This will causedbinit to fail. Delete these
files before runningdbinit.

3. Create the remote database for this tutorial. Run the following command
line:

dbinit remote.db

If this tutorial has been previously run on your computer,remote.dband
remote.logmay already exist. This will causedbinit to fail. Delete these
files before runningdbinit.

4. Verify the successful creation of these database files by listing the
contents of the directory. You should seeconsol.dbandremote.dbin the
listing.

Create ODBC data
sources

You are now ready to build ODBC data sources through which you can
connect to your Adaptive Server Anywhere databases.

❖ To create ODBC data sources

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

3

2. Create an ODBC data source for your consolidated database by running
the following command line:

dbdsn -w test_consol -y -c
"uid=DBA;pwd=SQL;dbf=consol.db;eng=Consol"

This command line specifies the following dbdsn options:
♦ -w Creates a data source definition.

♦ -y Delete or overwrite data source without confirmation.

♦ -c Specifies the connection parameters as a connection string.
☞ For more information, see“Data Source utility options”[ASA
Database Administration Guide,page 512].

3. Create an ODBC data source for a remote database by running the
following command line:

dbdsn -w test_remote -y -c
"uid=DBA;pwd=SQL;dbf=remote.db;eng=Remote"

Create your schema The following procedure executes SQL statements using the Interactive SQL
utility to create and populate tables in the consolidated database. It also
creates tables and inserts synchronization subscriptions and publications into
the remote database.

It does this using two predefined SQL files,build_consol.sqland
build_remote.sql. You may want to open these files in a text editor to
examine them in detail.

❖ To create your schema

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Run the following command line:

dbisql -c "dsn=test_consol;astop=no" build_consol.sql

The SQL statements inbuild_consol.sqlcreate and populate the emp and
cust tables in the consolidated database.

This step includesastop=no to instruct the server not to shut down when
thedbisql utility shuts down.

3. Run the following command line:

dbisql -c "dsn=test_remote;astop=no" build_remote.sql

The SQL statements inbuild_remote.sqlcreate the remote tables emp
and cust, and insert synchronization subscriptions and publications.

4

Chapter 1. Tutorial: Introduction to MobiLink

4. Verify the creation of the emp and cust tables in the remote and
consolidated databases using Interactive SQL:

♦ Open Interactive SQL by typingdbisql at a command prompt. Connect
using the test_consol DSN as DBA, using SQL as the password.

♦ Execute the following SQL statement by typing it into the SQL
Statements pane and pressing F9.

SELECT * FROM emp, cust

The tables in the consolidated database are populated with data.

♦ Connect using the test_remote DSN and execute the following SQL
statement:

SELECT * FROM emp, cust

The tables in the remote database are empty.

5. Leave the consolidated and remote databases running for the next lesson.

Further reading ☞ For more information about creating databases, see“The Initialization
utility” [ASA Database Administration Guide,page 530]and“Creating a
database using the dbinit command-line utility”[ASA Database Administration
Guide,page 531].

☞ For more information about running Interactive SQL, see“The
Interactive SQL utility”[ASA Database Administration Guide,page 538]and
“Using Interactive SQL”[Introducing SQL Anywhere Studio,page 217].

☞ For more information about SELECT statements, see“SELECT
statement”[ASA SQL Reference,page 597].

☞ For more information about creating ODBC data sources, see“The Data
Source utility” [ASA Database Administration Guide,page 510].

☞ For more information about creating remote databases, see“Creating a
remote database”[MobiLink Clients,page 60].

☞ For more information about creating subscriptions and publications, see
“Publishing data”[MobiLink Clients,page 64].

5

Lesson 2: Running the MobiLink synchronization
server

Your consolidated database must be running prior to starting the MobiLink
synchronization server. If you shut down your consolidated database
following Lesson 1, you should restart the database.

❖ To start the MobiLink synchronization server

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Run the following command line:

dbmlsrv9 -c "dsn=test_consol" -o mlserver.mls -v+ -dl -za -
zu+

This command line specifies the following dbmlsrv9 options:

♦ -c The connection string for the MobiLink synchronization server uses
the DSN for the consolidated database. For more information, see“-c
option” [MobiLink Administration Guide,page 196].

♦ -o The -o option is used to specify the message log file. For more
information, see“-o option” [MobiLink Administration Guide,page 203].

♦ -v+ The -v+ option sets verbose logging on. For more information, see
“-v option” [MobiLink Administration Guide,page 211].

♦ -dl The -dl option sets the display log feature ON. For more
information, see“-dl option” [MobiLink Administration Guide,page 199].

♦ -za The -za option turns automated scripting ON. For more information,
see“-za option” [MobiLink Administration Guide,page 219].

♦ -zu+ The -zu+ option automates the user authentication process. For
more information, see“-zu option” [MobiLink Administration Guide,
page 222].

The options -o, -v, and -dl are chosen to provide debugging and
troubleshooting information. These options are typically not used in a
production environment.

Once you have executed the MobiLink synchronization server command, the
output below appears.

6

Chapter 1. Tutorial: Introduction to MobiLink

If the MobiLink synchronization server is already running when you attempt
to run dbmlsrv9, you will receive an error message. Shut down the current
instance of MobiLink and run the command again.

Further reading ☞ For more information about the MobiLink synchronization server, see
“The MobiLink synchronization server”[MobiLink Administration Guide,
page 11].

☞ For a complete list of dbmlsrv9 options, see“MobiLink Synchronization
Server Options”[MobiLink Administration Guide,page 189].

7

Lesson 3: Running the MobiLink synchronization
client

Adaptive Server Anywhere clients initiate MobiLink synchronization by
using the dbmlsync utility.

❖ To start the MobiLink synchronization client

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Run the following command line:

dbmlsync -c "dsn=test_remote" -o dbmlsync.out -v -e
"SendColumnNames=ON"

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information, see
“-c option” [MobiLink Clients,page 102].

♦ -o Specify the message log file. For more information, see“-o
option” [MobiLink Clients,page 142].

♦ -v Verbose operation. For more information, see“-v option”
[MobiLink Clients,page 150].

♦ -e Extended options. Specifying “SendColumnNames=ON” sends
column names to MobiLink. This is required when you use -za in the
dbmlsrv9 command line. For more information, see
“SendColumnNames (scn) extended option”[MobiLink Clients,
page 130].

Once you have executed the MobiLink synchronization client command, the
output below appears to indicate that synchronization has succeeded. After
synchronization, the remote database is populated with the data from the
consolidated database.

8

Chapter 1. Tutorial: Introduction to MobiLink

Further reading ☞ For more information about dbmlsync options, see“MobiLink
synchronization client”[MobiLink Clients,page 96].

☞ For more information about remote clients, see“MobiLink clients”
[MobiLink Administration Guide,page 14].

☞ For more information about dbmlsync, see“Initiating synchronization”
[MobiLink Clients,page 78].

9

Cleanup
You should delete the databases and ODBC data sources that you created in
this tutorial.

❖ To remove tutorial materials from your computer

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Run the fileclean.bat.

10

Chapter 1. Tutorial: Introduction to MobiLink

Summary
During this tutorial, you:

♦ Created and populated Adaptive Server Anywhere consolidated and
remote databases.

♦ Started a MobiLink synchronization server.

♦ Started the MobiLink synchronization client and synchronized the remote
database with the consolidated database.

Learning
accomplishments

During this tutorial, you gained:

♦ Familiarity with the MobiLink synchronization server and client as an
integrated system.

♦ Competence in executing MobiLink synchronization server and client
commands.

♦ Familiarity with the MobiLink synchronization server and client
command lines and options.

11

Further reading
The following documentation sections are good starting points for further
reading.

☞ For more information about Adaptive Server Anywhere remote
databases, see“Adaptive Server Anywhere Clients”[MobiLink Clients,
page 59].

☞ For more information about running the MobiLink synchronization
server, see“Synchronization Basics”[MobiLink Administration Guide,page 7].

☞ For more information about synchronization scripting, see“Writing
Synchronization Scripts”[MobiLink Administration Guide,page 227].

☞ For a more advanced tutorial that describes how to write and add scripts,
see“Tutorial: Writing MobiLink Scripts and Monitoring Synchronizations”
on page 13.

12

CHAPTER 2

Tutorial: Writing MobiLink Scripts and
Monitoring Synchronizations

About this chapter This chapter provides a tutorial to guide you through the process of writing
synchronization scripts, including conflict detection and resolution scripts. It
also shows you how to monitor synchronizations.

Contents Topic: page

Introduction 14

Lesson 1: Set up the Adaptive Server Anywhere consolidated
database

15

Lesson 2: Set up the remote Adaptive Server Anywhere databases18

Lesson 3: Creating scripts for your synchronization 22

Lesson 4: Run MobiLink synchronization 25

Lesson 5: Monitoring your MobiLink synchronization using log
files

26

Lesson 6: Creating scripts for conflict detection and resolution 28

Lesson 7: Use the MobiLink Monitor to detect update conflicts 31

Tutorial cleanup 37

Further reading 38

13

Introduction
Timing The tutorial takes about 120 minutes.

Goals The goals for the tutorial are to gain competence and familiarity with the
following tasks:

♦ Migrating the consolidated database schema to remote databases.

♦ Writing the basic scripts needed for synchronization and storing them in
the consolidated database using Sybase Central or Interactive SQL.

♦ Writing scripts for conflict detection and resolution.

♦ Monitoring synchronization using log files and the MobiLink Monitor.

Suggested background
reading

☞ For more information about the architecture of MobiLink, see
“Synchronization Basics”[MobiLink Administration Guide,page 7].

☞ For more information about synchronization scripts, see“Introduction to
synchronization scripts”[MobiLink Administration Guide,page 228].

☞ For more information about Interactive SQL, see“Using Interactive
SQL” [Introducing SQL Anywhere Studio,page 217].

☞ For more information about Sybase Central, see“ Managing Databases
with Sybase Central”[Introducing SQL Anywhere Studio,page 241].

☞ For an introduction to synchronization, see“Tutorial: Introduction to
MobiLink” on page 1.

☞ For more information about MobiLink Conflict resolution, see
“Handling conflicts”[MobiLink Administration Guide,page 64].

☞ For more information about the MobiLink Monitor, see“MobiLink
Monitor” [MobiLink Administration Guide,page 117].

14

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

Lesson 1: Set up the Adaptive Server Anywhere
consolidated database

This lesson guides you through the following steps to set up your Adaptive
Server Anywhere consolidated database:

1. Create the consolidated database and schema.

2. Define an ODBC data source for the consolidated database.

Create the consolidated
database

In this procedure, you create the consolidated database using the Sybase
Central Create a Database wizard.

❖ To create your Adaptive Server Anywhere RDBMS

1. Start Sybase Central.

Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤ Sybase Central.

Sybase Central appears.

2. In Sybase Central, choose Tools➤ Adaptive Server Anywhere 9➤ Create
Database.

The Create a Database wizard appears. Click Next.

3. Leave the default of Create a Database on this Computer. Click Next.

4. Enter the filename and path for the database. For example, enter:

C:\temp\cons.db

5. Follow the remaining instructions in the wizard, accepting the default
values, except as follows.

♦ Choose a 4096 byte page size.

A 4K page size increases performance for many environments.

6. Click Finish to connect to the new database in Sybase Central.

Generate the
consolidated database
schema

The consolidated database schema includes the Product table, storing the
name and quantity of hardware products.

❖ To add the Product table to the consolidated schema

1. Start Interactive SQL.

♦ In the left pane of Sybase Central, select thecons - DBAdatabase.
From the File menu choose Open Interactive SQL.

Interactive SQL appears.

15

2. Install the Product table.

♦ Execute the following commands in Interactive SQL.

/ * the Product table * /
create table Product (

name varchar(128) not null primary key,
quantity integer,
last_modified timestamp default timestamp

)
go

insert into Product(name, quantity)
values (’Screwmaster Drill’, 10);

insert into Product(name, quantity)
values (’Drywall Screws 10lb’, 30);

insert into Product(name, quantity)
values (’Putty Knife x25’, 12);

go

3. Install temporary tables used for conflict resolution.

In “Lesson 6: Creating scripts for conflict detection and resolution” on
page 28you write scripts inserting values into these tables when a
conflict occurs.

/ * the Product_old table * /
create table Product_old (

name varchar(128) not null primary key,
quantity integer,
last_modified timestamp default timestamp

)
go

/ * the Product_new table * /
create table Product_new (

name varchar(128) not null primary key,
quantity integer,
last_modified timestamp default timestamp

)
go

4. Verify the successful creation of each table.

♦ For example, execute the following command in Interactive SQL to
verify the contents of the Product table.

select * from Product

Define an ODBC data
source for the
consolidated database.

Use the Adaptive Server Anywhere 9.0 driver to define an ODBC data
source for the cons database.

16

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

❖ To define an ODBC data source for the consolidated database

1. Start the ODBC Administrator:

From the Start menu, choose Programs➤ SQL Anywhere 9➤ Adaptive
Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator appears.

2. On the User DSN tab, click Add.

The Create New Data Source dialog appears.

3. Select Adaptive Server Anywhere 9.0 and click Finish.

The ODBC Configuration for Adaptive Server Anywhere 9 dialog
appears.

4. On the ODBC tab, type the Data source nameasa_cons. On the Login
tab, typeDBA for the User ID andSQL for the Password. On the
Database tab, typeconsfor the Server Name.

5. Click OK to add the data source.

6. Click OK to close the ODBC Administrator.

Further reading ☞ You can also use the dbinit command line utility to create your
consolidated database. For more information, see“Creating a database using
the dbinit command-line utility”[ASA Database Administration Guide,page 531]
or “Lesson 2: Set up the remote Adaptive Server Anywhere databases” on
page 18.

☞ For more information about consolidated databases, including non-ASA
RDBMSs, see“Consolidated database”[MobiLink Administration Guide,
page 10].

☞ For more information about Interactive SQL, see“The Interactive SQL
utility” [ASA Database Administration Guide,page 538].

☞ For more information about creating ODBC data sources, see“The Data
Source utility” [ASA Database Administration Guide,page 510].

17

Lesson 2: Set up the remote Adaptive Server
Anywhere databases

MobiLink is designed for synchronization involving a consolidated database
server and a large number of mobile databases. In this section, you create
two remote databases. For each database you:

♦ Migrate a selected portion of the consolidated schema.

♦ Create a synchronization publication, user, and subscription.

Create Adaptive Server
Anywhere databases

In Lesson 1, you used Sybase Central to create databases. In this tutorial,
you use a command line utility. The two tools produce identical results.

❖ To create and start Adaptive Server Anywhere remote databases

1. At a command prompt, navigate to the directory where you would like to
create the remote databases.

2. Type the following commands to create the database:

dbinit -p 4096 remote1.db

For remote2, type:

dbinit -p 4096 remote2.db

The -p option defines a 4K page size shown to increase performance for
many environments.

☞ For more information about dbinit options, see“Creating a database
using the dbinit command-line utility”[ASA Database Administration Guide,
page 531].

3. Now, to start the databases, type:

dbeng9 remote1.db

For remote2, type:

dbeng9 remote2.db

Migrating a subset of the
consolidated database
schema

Migrating a subset of the consolidated database schema involves:

♦ Connecting to the remote database.

♦ Creating a remote server and external login.

♦ Using the Sybase Central Data Migration wizard.

18

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

❖ To migrate a subset of your consolidated database schema to
remote1

1. Start Sybase Central.

From the Start menu, choose Programs➤ SQL Anywhere 9➤ Sybase
Central.

2. Connect to the remote database:

♦ Select Adaptive Server Anywhere 9 in the left pane of Sybase Central.

♦ From the File menu choose Connect.

The Connect dialog appears.

♦ On the Identification tab, enterDBA as the User ID andSQL as the
password. On the Database tab, enterremote1as the server name.

♦ Click OK to connect.

3. Create a remote server:

♦ Start the Remote Server Creation wizard.

In the left pane, select the Remote Servers folder. From the File menu
choose New➤ Remote Server.

The Remote Server Creation wizard starts.

♦ Name the remote servermy_asa. Click Next to continue.

♦ Choose Sybase Adaptive Server Anywhere as the type of server, and
click Next.

♦ On the next page of the wizard, type the datasource nameasa_consin
the connection information section, and click Next.

♦ On the final page of the wizard, called “Make this a readonly data
source”, choose Create an External Login. UseDBA for the Login
name andSQL for the Password.

♦ Click Finish to exit the Remote Server Creation wizard.

4. Migrate the consolidated database schema:

♦ In the left pane, select the Adaptive Server Anywhere 9 plug-in. In the
right pane, select the Utilities tab and double-click Migrate Database:

19

The Data Migration wizard starts.

♦ Selectremote1as the destination database.

♦ On the next page, selectmy_asaas the remote server. Click Next to
continue.

♦ ChooseProduct as the only table to migrate, and click Next.

♦ Choose user DBA, and click Next.

♦ On the final page of the wizard, clear the Migrate the Data option.

♦ Click Finish.

5. Repeat the migration (steps 1 to 4 above) for the remote2 database.

Synchronization
subscriptions and
publications

Publications identify the tables and columns on your remote database that
you want synchronized. These tables and columns are calledarticles. A
synchronization subscription subscribes a MobiLink user to a publication.

Synchronization subscriptions and publications are stored in the remote
database.

☞ For more information about defining publications and subscriptions, see
“Publishing data”[MobiLink Clients,page 64].

❖ To create a remote synchronization publication, synchronization
user, and synchronization subscription

1. Start Interactive SQL:

♦ In the left pane of Sybase Central, select theremote1 - DBAdatabase.
From the File menu choose Open Interactive SQL.

20

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

2. Enter synchronization information for remote1:

♦ Execute the following in Interactive SQL:

CREATE PUBLICATION pub_1 (TABLE Product);
CREATE SYNCHRONIZATION USER user_1;
CREATE SYNCHRONIZATION SUBSCRIPTION TO pub_1

FOR user_1 TYPE TCPIP ADDRESS ’host=localhost’
OPTION scriptversion=’ver1’;

3. Start Interactive SQL and connect to remote2.

4. Enter synchronization information for remote2:

♦ Execute the following in Interactive SQL:

CREATE PUBLICATION pub_2 (TABLE Product);
CREATE SYNCHRONIZATION USER user_2;
CREATE SYNCHRONIZATION SUBSCRIPTION TO pub_2

FOR user_2 TYPE TCPIP ADDRESS ’host=localhost’
OPTION scriptversion=’ver1’;

Now you have prepared the remote and consolidated databases. In the next
lesson you write synchronization scripts. In Lesson 4 you run the
synchronization.

21

Lesson 3: Creating scripts for your
synchronization

You can view, write, and modify synchronization scripts using Sybase
Central. In this section you write the following synchronization scripts:

♦ upload_insert To define how data inserted into the remote database is
to be applied to the consolidated database.

♦ download_cursor To define what data should be downloaded from
the consolidated database.

Each script belongs to a designatedscript version. You must add a script
version to the consolidated database before you add scripts.

❖ To add a script version

1. Connect to the cons database using the MobiLink plug-in in Sybase
Central.

♦ Select the MobiLink Synchronization 9 plug-in in the left pane of
Sybase Central.

♦ Choose Tools➤ Connect.
The New Connection dialog appears.

♦ On the Identification tab, select the ODBC Data Source name option.
Typeasa_consfor the data source name.

♦ Click OK to connect.
Theasa_consdatasource appears in the MobiLink plug-in.
☞ For more information about the MobiLink plug-in, see“MobiLink
Help” [SQL Anywhere Studio Help,page 173].

2. Add the script version ver1.

In the left pane select the Versions folder. In the right pane double-click
Add Version.

The Add a New Script Version dialog appears.

3. Name the new versionver1 and click Finish.

❖ To add synchronized tables to your consolidated database

1. In the MobiLink Synchronization plug-in of Sybase Central, open the
Tables folder and double-click DBA.

2. Right-click the Product table and choose Add to Synchronized Tables.

The Product table now appears in the Synchronized Tables folder.

22

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

Now that you have designated a synchronized table, you can add a new table
script for each upload and download to the consolidated database.

❖ To add table scripts for the Product table

1. In the MobiLink Synchronization plug-in of Sybase Central, open the
Synchronized Tables folder and select the Product table.

2. In the right pane double-click Add Table Script. The following dialog
appears. Ensure that ver1 appears as the script version.

3. Select theupload_insertevent from the dropdown list and click Finish.

The Product upload_insert dialog appears.

4. Type the following SQL statement into the edit screen:

INSERT INTO Product(name, quantity, last_modified)
VALUES(?, ?, ?)

The upload_insert event determines how data inserted into the remote
database should be applied to the consolidated database.

☞ For more information about upload_insert, see“upload_insert table
event” [MobiLink Administration Guide,page 463]

5. Save the script.

From the File menu, choose Save.

6. Repeat steps 1 to 5 for thedownload_cursorevent using the following
SQL statement:

23

SELECT name, quantity, last_modified
FROM Product where last_modified >= ?

The download_cursor script defines a cursor to select consolidated
database rows that are downloaded and inserted or updated in the remote
database.

☞ For more information about download_cursor, see“download_cursor
table event”[MobiLink Administration Guide,page 371]

Further reading ☞ For more information about the scripts you just created, see
“upload_insert table event”[MobiLink Administration Guide,page 463]and
“download_cursor table event”[MobiLink Administration Guide,page 371].

☞ For more information about script versions, see“Script versions”
[MobiLink Administration Guide,page 239].

☞ For more information about adding scripts, see“Adding and deleting
scripts in your consolidated database”[MobiLink Administration Guide,
page 241].

☞ For more information about writing table scripts, see“Table scripts”
[MobiLink Administration Guide,page 236].

☞ For more information about writing synchronization scripts, see
“Writing Synchronization Scripts”[MobiLink Administration Guide,page 227].

☞ For a complete list of the events that you can program to customize your
synchronization, see“Synchronization Events”[MobiLink Administration
Guide,page 319].

24

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

Lesson 4: Run MobiLink synchronization

❖ To run the synchronizations for remote1 and remote2

1. Start the MobiLink synchronization server.

At a command prompt, type the following on a single line:

dbmlsrv9 -c "dsn=asa_cons" -o mlserver.mls -v+ -dl -zu+ -x
tcpip

☞ For a complete list of dbmlsrv9 options, see“MobiLink
Synchronization Server Options”[MobiLink Administration Guide,
page 189].

The MobiLink server window appears to indicate the MobiLink
synchronization server is ready to handle requests.

2. Run the MobiLink synchronization client utility (dbmlsync) to initiate
synchronizations.

At the command prompt, type the following on a single line:

dbmlsync -c "eng=remote1;uid=dba;pwd=sql" -o rem1.txt -v+

For remote2:

dbmlsync -c "eng=remote2;uid=dba;pwd=sql" -o rem2.txt -v+

☞ For a complete list of dbmlsync options, see“Adaptive Server
Anywhere Client Synchronization Parameters”[MobiLink Clients,page 95].

Once you have started the MobiLink synchronization client, the
DBMLSync window appears indicating that the MobiLink
synchronization succeeded.

Further reading ☞ For more information about the MobiLink synchronization server, see
“The MobiLink synchronization server”[MobiLink Administration Guide,
page 11].

☞ For a complete list of dbmlsrv9 options, see“MobiLink Synchronization
Server Options”[MobiLink Administration Guide,page 189].

☞ For more information about the dbmlsync, see“Adaptive Server
Anywhere Clients”[MobiLink Clients,page 59].

☞ For a complete list of dbmlsync options, see“Adaptive Server
Anywhere Client Synchronization Parameters”[MobiLink Clients,page 95].

25

Lesson 5: Monitoring your MobiLink
synchronization using log files

Once the tables have synchronized, you can view the progress of the
synchronization using the two message log files you created with each
command line, namely,mlserver.mls, rem1.txt, andrem2.txt. The default
location of these files is the directory where the command was run.

❖ To find errors in a MobiLink synchronization log file

1. Open your log file in a text editor. For this tutorial, the log file is
mlserver.mls.

2. Search the file for the stringMobiLink Server started.

3. Scan down the left side of the file. A line beginning withI. contains an
informational message, and a line beginning withE. contains an error
message. For example:

4. Note that beside theE. in this example, there is the following text:

04/27 16:01:01. <Main>: Error: Unable to initialize
communications stream 1: tcpip.

This message indicates an error prior to the upload and download. There
may be errors in the synchronization subscription or publication
definitions.

5. Look for the clause that begins as follows:

ASA Synchronization request from:

This clause indicates that a synchronization request has been established.

6. Look for the clause that beginsWorking on a request . This indicates
that the client and server are communicating. You may get this message if
you have specified a high level of verbosity.

26

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

❖ To detect errors in your MobiLink synchronization client log file

1. Open the client log filerem1.txt in a text editor.

2. Search the file for the stringCOMMIT. If it appears, your synchronization
was successful.

3. Search the file for the stringROLLBACK. If the transaction was rolled
back, there were errors that prevented it from completing.

4. Scan down the left side of the file. If you see anE. , you have an error. If
you do1n’t have any errors, your synchronization has completed
successfully.

Further reading ☞ For more information about MobiLink synchronization server log files,
see“Logging MobiLink synchronization server actions”[MobiLink
Administration Guide,page 12].

27

Lesson 6: Creating scripts for conflict detection
and resolution

Conflicts arise during the upload of rows to the consolidated database. If two
users modify the same row on different remote databases, a conflict is
detected when the second row arrives at the MobiLink synchronization
server. Using synchronization scripts you can detect and resolve conflicts.

☞ For more information about MobiLink Conflict resolution, see
“Handling conflicts”[MobiLink Administration Guide,page 64].

Inventory example Consider the scenario of two salesmen in the field. Salesman1 starts with an
inventory of ten items, and then sells three. He updates the inventory on his
remote database, remote1, to seven items. Salesman2 sells four items and
updates her inventory (on remote2) to six.

When remote1 synchronizes using the MobiLink synchronization client
utility the consolidated database is updated to seven. When remote2
synchronizes, a conflict is detected because the inventory value in the
consolidated database has changed.

To resolve this conflict programmatically, you need three row values:

1. The current value in the consolidated database.

After remote1 synchronizes, the value in the consolidated database is 7.

2. The new row value that Remote2 uploaded.

3. The old row value that Remote2 obtained during the previous
synchronization.

In this case, you can use the following business logic to calculate the new
inventory value and resolve the conflict:

current consolidated - (old remote - new remote)
that is, 7 - (10-6) = 3

The expression (old remote - new remote) provides the number of items sold
by Salesman2 rather than the absolute inventory value.

Synchronization scripts
for conflict detection and
resolution

For conflict detection and resolution, you add the following scripts:

♦ upload_update The upload_update event determines how data inserted
into the remote database should be applied to the consolidated database.
You can also use an extended prototype of upload_update to detect
update conflicts.

For more information about using upload_update to detect conflicts, see
“Detecting conflicts”[MobiLink Administration Guide,page 64].

28

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

☞ For more information about upload_update, see“upload_update table
event” [MobiLink Administration Guide,page 475].

♦ upload_old_row_insert You use this script to handle old row values
obtained by the remote database during its previous synchronization.

☞ For more information about upload_old_row_insert, see
“upload_old_row_insert table event”[MobiLink Administration Guide,
page 467].

♦ upload_new_row_insert You use this script to handle new row values
(the updated values on the remote database).

☞ For more information about upload_new_row_insert, see
“upload_new_row_insert table event”[MobiLink Administration Guide,
page 465].

♦ resolve_conflict The resolve conflict script applies business logic to
resolve the conflict.

☞ For more information about resolve_conflict, see“resolve_conflict
table event”[MobiLink Administration Guide,page 442].

❖ To install scripts for conflict detection and resolution

1. Start Interactive SQL.
♦ At a command prompt enter:

dbisql

The Connect dialog appears.

♦ On the identification tab, enterDBA as the User ID andSQL as the
Password. On the Database tab, enterconsas the Server name.

2. Install the conflict detection and resolution scripts.

Execute the following in Interactive SQL:

/ * upload_update * /
call ml_add_table_script(’ver1’, ’Product’,

’upload_update’,
’UPDATE Product

SET quantity = ?, last_modified = ?
WHERE name = ?
AND quantity=? AND last_modified=?’)

go

/ * upload_old_row_insert * /
call ml_add_table_script(’ver1’, ’Product’,

’upload_old_row_insert’,
’INSERT INTO Product_old (name,quantity,last_modified)

values (?,?,?)’)
go

29

/ * upload_new_row_insert * /
call ml_add_table_script(’ver1’, ’Product’,

’upload_new_row_insert’,
’INSERT INTO Product_new (name,quantity,last_modified)

values (?,?,?)’)
go

/ * resolve_conflict * /
call ml_add_table_script(’ver1’, ’Product’,

’resolve_conflict’,
’declare @product_name varchar(128);

declare @old_rem_val integer;
declare @new_rem_val integer;
declare @curr_cons_val integer;
declare @resolved_value integer;

// obtain the product name
SELECT name INTO @product_name

FROM Product_old;

// obtain the old remote value
SELECT quantity INTO @old_rem_val

FROM Product_old;

//obtain the new remote value
SELECT quantity INTO @new_rem_val

FROM Product_new;

// obtain the current value in cons
SELECT quantity INTO @curr_cons_val

FROM Product WHERE name = @product_name;

// determine the resolved value
SET @resolved_value =

@curr_cons_val- (@old_rem_val - @new_rem_val);

// update cons with the resolved value
UPDATE Product

SET quantity = @resolved_value
WHERE name = @product_name;

// clear the old and new row tables
delete from Product_new;
delete from Product_old

’)

Setup for the Adaptive Server Anywhere consolidated database is complete.

Further reading ☞ For more information about MobiLink conflict detection and resolution,
see“Handling conflicts”[MobiLink Administration Guide,page 64].

☞ For more information about MobiLink consolidated databases, see
“MobiLink Consolidated Databases”[MobiLink Administration Guide,page 31].

30

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

Lesson 7: Use the MobiLink Monitor to detect
update conflicts

You can use the MobiLink Monitor to collect statistical information about
synchronizations as they occur. The Monitor’s graphical chart shows tasks
on the vertical axis against the progression of time on the horizontal axis.

Using the Monitor, you can quickly identify synchronizations that result in
errors or satisfy certain conditions. Since the Monitor does not significantly
degrade performance, it is recommended for both development and
production.

In this section you:

♦ Start and configure the MobiLink Monitor to visibly distinguish
synchronizations that involve update conflicts.

♦ Generate a conflict by updating the same row on remote1 and remote2.

♦ Use the MobiLink Monitor to detect the conflict.

❖ To configure the MobiLink Monitor to detect update conflicts.

1. Start the MobiLink Monitor.

♦ From the Start menu, choose Programs➤ SQL Anywhere 9➤

MobiLink ➤ MobiLink Monitor, or type the following at a command
prompt:

dbmlmon

The Connect to MobiLink server dialog appears.

♦ Entermonitor_user for the User ID. Since you started the MobiLink
synchronization server with the -zu+ option, this user will be added
automatically. Leave the password field blank if you do not want to
require a password for this user.

31

♦ Click OK to connect.

The MobiLink Monitor connects to the MobiLink synchronization server
(dbmlsrv9).

2. Start the MobiLink Monitor Watch Manager.

From the MobiLink Monitor file menu choose Tools➤ Watch Manager...

The Watch Manager dialog appears.

3. Add a new watch for update conflicts.

♦ Click New.

The New Watch dialog appears.

♦ Name the watch conflict_detected.

♦ Chooseconflicted_updatesfor the Property field.

The conflicted_updates statistical property indicates the number of
uploaded updates for which conflicts were detected.

☞ For more information about MobiLink Monitor statistical
properties, see“MobiLink statistical properties”[MobiLink
Administration Guide,page 130].

♦ Set the watch to detect cases where one or more update conflicts
occurred.

Set the Operator field tois greater than. Set the Value field to0.

32

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

♦ Click Add to save the settings.

♦ Select a pattern for the watch in the Chart pane. (The Chart pane is the
middle pane in MobiLink Monitor.)

♦ Select a color for the watch in the Overview pane. (The Overview pane
is the bottom pane in the MobiLink Monitor.)

4. Click OK to add the watch.

❖ To generate an update conflict

1. Update the remote1 inventory value.

Salesman1 starts with a Screwmaster Drill inventory of ten items, and
then sells three. He updates the inventory on his remote database,
remote1, to seven items. To perform the update:

♦ Start Interactive SQL and connect to remote1 (if not already
connected).
At a command prompt, type:

dbisql

The Connect dialog appears.
On the Identification tab, enterDBA as the User ID andSQL as the
password. On the Database tab, enterremote1as the server name.

33

♦ Update the Screwmaster Drill inventory to 7 items.

Execute the following in Interactive SQL.

UPDATE Product SET quantity = 7
WHERE name =’Screwmaster Drill’

COMMIT

2. Synchronize remote1.

At a command prompt, type the following to start the MobiLink
synchronization client:

dbmlsync -c "eng=remote1;uid=dba;pwd=sql" -v+

Following synchronization, the consolidated database Screwmaster Drill
inventory is 7 items.

3. Update the remote2 inventory value.

Salesman2 sells four items and updates her inventory (on remote2) to six.
When remote2 synchronizes, a conflict is detected because the inventory
value in the consolidated database has changed. To perform the update:

♦ Start Interactive SQL and connect to remote2.

At a command prompt, type:

dbisql

The Connect dialog appears.

On the Identification tab, enterDBA as the User ID andSQL as the
password. On the Database tab, enterremote2as the server name.

♦ Update the Screwmaster Drill inventory to 6 items.

Execute the following in Interactive SQL.

UPDATE Product SET quantity = 6
WHERE name =’Screwmaster Drill’

COMMIT

4. Synchronize remote2.

At a command prompt, type the following to start the MobiLink
synchronization client:

dbmlsync -c "eng=remote2;uid=dba;pwd=sql" -v+

Now you can switch to the MobiLink Monitor and view the results of the
synchronization.

34

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

❖ To detect the update conflict using the MobiLink Monitor

1. Pause Chart Scrolling.

From the File menu, choose Monitor➤ Pause Chart Scrolling.

2. View statistical information about the synchronization using the
MobiLink Monitor’s Overview pane, Chart pane, and Details table.

♦ Locate the synchronizations in the Monitor’s Overview pane (the
bottom pane in the MobiLink Monitor). The remote2 synchronization
which generated an update conflict, appears in red:

♦ To view the remote2 synchronization in the Chart pane, click and drag
over the synchronization object in the Overview pane:

The synchronization object is displayed with the pattern you chose for
the conflict_detected watch.

♦ Use the zoom tool to view synchronization detail.

From the File menu choose View➤ Zoom In.

35

♦ To view synchronization properties, double-click the synchronization
object or the corresponding row in the details table. Choose the Upload
tab to see the number of conflicted updates.

Further reading ☞ For more information about MobiLink Conflict resolution, see
“Handling conflicts”[MobiLink Administration Guide,page 64].

☞ For more information about the MobiLink Monitor, see“MobiLink
Monitor” [MobiLink Administration Guide,page 117].

☞ For more information about MobiLink Monitor statistical properties, see
“MobiLink statistical properties”[MobiLink Administration Guide,page 130].

36

Chapter 2. Tutorial: Writing MobiLink Scripts and Monitoring
Synchronizations

Tutorial cleanup
You should remove tutorial materials from your computer.

❖ To remove tutorial materials from your computer

1. Close all instances of the following applications:

♦ The MobiLink Monitor

♦ Sybase Central

♦ Interactive SQL

2. Close the Adaptive Server Anywhere, MobiLink, and synchronization
client windows by right-clicking each taskbar item and choosing Exit.

3. Delete all tutorial-related data sources.

♦ Start ODBC Administrator.

From the Start menu, choose Programs➤ SQL Anywhere 9➤

Adaptive Server Anywhere➤ ODBC Administrator.

Select asa_cons from the list of User Data Sources. Click Remove.

4. Delete the consolidated and remote databases.

♦ Navigate to the directory containing your consolidated and remote
databases.

♦ Deletecons.db, cons.log, remote1.db, remote1.log, remote2.db,
remote2.log.

37

Further reading
The following documentation sections are a good starting point for further
reading:

☞ For more information about running the MobiLink synchronization
server, see“The MobiLink synchronization server”[MobiLink Administration
Guide,page 11].

☞ For more information about synchronization scripting, see“Writing
Synchronization Scripts”[MobiLink Administration Guide,page 227]and
“Synchronization Events”[MobiLink Administration Guide,page 319].

☞ For an introduction to other methods of synchronization such as
timestamp-based synchronization, see“Synchronization Techniques”
[MobiLink Administration Guide,page 45].

☞ For information about testing your scripts in Sybase Central, see
“Testing script syntax”[MobiLink Administration Guide,page 254].

☞ For more information about the MobiLink Monitor, see“MobiLink
Monitor” [MobiLink Administration Guide,page 117].

☞ For more information about MobiLink conflict detection and resolution,
see“Handling conflicts”[MobiLink Administration Guide,page 64].

38

CHAPTER 3

Tutorial: Using MobiLink with an Oracle 8i
Consolidated Database

About this chapter This chapter provides a tutorial to guide you through the process of setting
up a synchronization system when the consolidated database is an Oracle
database and the remote database is an Adaptive Server Anywhere database.

This tutorial will show you how to set up and synchronize the two databases.

Contents Topic: page

Introduction 40

Lesson 1: Create your databases 41

Lesson 2: Running the MobiLink synchronization server 47

Lesson 3: Running the MobiLink synchronization client 48

Summary 49

Further reading 50

39

Introduction
In this tutorial, you prepare an Oracle consolidated database and an Adaptive
Server Anywhere remote database. You then synchronize the two databases
using MobiLink.

Required software ♦ A full SQL Anywhere Studio installation.

♦ A full installation of Oracle Enterprise Edition 8i.

Competencies and
experience

You should have the following competencies and experience before
beginning the tutorial:

♦ Familiar with Sybase Central interface and functionality.

♦ Competent with Interactive SQL and Oracle SQL Plus.

♦ Competent programming Oracle.

Goals The goals for the tutorial are:

♦ To acquire familiarity with the MobiLink synchronization server and
related components as they can be used with Oracle.

♦ To gain competence in executing MobiLink server and client commands
as they pertain to an Oracle consolidated database.

Suggested background
reading

☞ For more information about writing SQL scripts, see“Tutorial: Writing
MobiLink Scripts and Monitoring Synchronizations” on page 13.

☞ For more information about running the MobiLink synchronization
server, see“Synchronization Basics”[MobiLink Administration Guide,page 7].

40

Chapter 3. Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database

Lesson 1: Create your databases
MobiLink synchronization requires that you have data a relational database,
an ODBC data source for each database and two compatible databases.

SQL files

You can enter data into an Oracle database using a number of different
methods. This tutorial uses Oracle SQL Plus.

❖ To create your databases

1. Start SQL Plus and connect to the Oracle consolidated database. Copy
the following code into SQL Plus and execute it. These SQL statements
drop, create and populate tables in the consolidated database. If there are
no tables to drop, an error will appear in the SQL Plus output. This will
not affect processing.

CREATE SEQUENCE emp_sequence;
CREATE SEQUENCE cust_sequence;
DROP TABLE emp;
CREATE TABLE emp (emp_id int primary key, emp_name varchar(

128));
DROP TABLE cust;
CREATE TABLE cust (cust_id int primary key, emp_id int

references emp(emp_id), cust_name varchar(128));
INSERT INTO emp (emp_id, emp_name) VALUES (emp_

sequence.nextval, ’emp1’);
INSERT INTO emp (emp_id, emp_name) VALUES (emp_

sequence.nextval, ’emp2’);
INSERT INTO emp (emp_id, emp_name) VALUES (emp_

sequence.nextval, ’emp3’);
COMMIT;
INSERT INTO cust (cust_id, emp_id, cust_name) VALUES (

cust_sequence.nextval, 1, ’cust1’);
INSERT INTO cust (cust_id, emp_id, cust_name) VALUES (

cust_sequence.nextval, 1, ’cust2’);
INSERT INTO cust (cust_id, emp_id, cust_name) VALUES (

cust_sequence.nextval, 2, ’cust3’);
COMMIT;

2. Start Interactive SQL.

Choose Start➤ Programs➤ SQL Anywhere 9➤ Adaptive Server
Anywhere➤ Interactive SQL.

3. Connect to the remote database.

4. Copy the following code into Interactive SQL and execute it. These SQL
statements drop and create tables in the remote databases. If there are no
tables to drop, an error will appear in the Interactive SQL output. This

41

will not affect processing. Synchronization subscriptions and
publications are also inserted to define the synchronization parameters for
the MobiLink synchronization server.

CREATE TABLE emp (emp_id int primary key ,emp_name varchar(
128));

CREATE TABLE cust (cust_id int primary key, emp_id int
references emp (emp_id), cust_name varchar(128)
);

CREATE PUBLICATION emp_cust (TABLE cust, TABLE emp);
CREATE SYNCHRONIZATION USER ml_user;
CREATE SYNCHRONIZATION SUBSCRIPTION

TO emp_cust FOR ml_user TYPE TCPIP ADDRESS
’host=localhost’;

ODBC data sources

You can now create ODBC data sources through which you connect to the
Oracle consolidated database and the Adaptive Server Anywhere remote
database. MobiLink requires an ODBC data source to perform data
synchronization.

The consolidated data
source

Ensure that you know your Instance, Service, and Database names, as these
values are required for the ODBC portion of the installation. These values
are established at the time of your Oracle installation.

The following steps set up an ODBC configuration for the Oracle
consolidated database. You will set up the ODBC connections for the
Adaptive Server Anywhere remote database later.

❖ To set up an ODBC data source for Oracle

1. Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤
Adaptive Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator opens.

2. Click Add on the User DSN tab. The Create New Data Source window
appears.

3. Select iAnywhere Solutions - Oracle 8, 8i and 9i Driver, and click Finish.

The ODBC Oracle Driver Setup window appears.

4. Click the General tab and type the data source nameora_consol. This is
the DSN used for connecting to your Oracle database. You will need it
later.

5. Enter the server name. This value depends on your Oracle installation. If
the server is on your computer, you may be able to leave this field blank.

42

Chapter 3. Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database

6. Click the Advanced tab. Enter a Default User Name. For this tutorial you
can usesystem, or any User Name with sufficient rights to create objects.
Click OK.

7. Click OK to close the ODBC Data Source Administrator.

MobiLink system tables

MobiLink comes with a script calledsyncora.sql, located in the
MobiLink\setupsubdirectory of your SQL Anywhere installation. You run
this script to set up your Oracle database to work with MobiLink.

Syncora.sqlcontains SQL statements, written in Oracle SQL, to prepare
Oracle databases for use as consolidated databases. It creates a series of
system tables, triggers, and procedures for use by MobiLink. The system
tables are prefaced with ML_. MobiLink works with these tables during the
synchronization process.

❖ Create MobiLink system tables within Oracle

1. Start SQL Plus. Choose Start➤ Programs➤ Oracle - OraHome81➤
Application Development➤ SQL Plus.

Connect to your Oracle database using Oracle SQL Plus. Log on using
thesystemschema with passwordmanager.

2. Runsyncora.sqlby typing the following command:

@path \syncora.sql;

wherepath is theMobiLink\setupsubdirectory of your SQL Anywhere 9
installation. If there are spaces in your path, you should enclose the path
and filename in quotation marks.

❖ To verify that the system tables are installed

1. Start SQL Plus. Choose Start➤ Programs➤ Oracle - OraHome81➤
Application Development➤ SQL Plus.

2. Run the following SQL statement to yield a listing of the MobiLink
system tables, procedures, and triggers:

SELECT object_name
FROM all_objects
WHERE object_name
LIKE ’ML_%’;

If all of the objects shown in the following table are included, you can
proceed to the next step.

43

OBJECT_NAME

ML_ADD_CONNECTION_SCRIPT

ML_ADD_DNET_CONNECTION_SCRIPT

ML_ADD_DNET_TABLE_SCRIPT

ML_ADD_JAVA_CONNECTION_SCRIPT

ML_ADD_JAVA_TABLE_SCRIPT

ML_ADD_LANG_CONNECTION_SCRIPT

ML_ADD_LANG_TABLE_SCRIPT

ML_ADD_TABLE_SCRIPT

ML_ADD_USER

ML_CONNECTION_SCRIPT

ML_CONNECTION_SCRIPT_TRIGGER

ML_SCRIPT

ML_SCRIPTS_MODIFIED

ML_SCRIPT_TRIGGER

ML_SCRIPT_VERSION

ML_SUBSCRIPTION

ML_TABLE

ML_TABLE_SCRIPT

ML_TABLE_SCRIPT_TRIGGER

ML_USER

Note
If any of the objects are missing, the procedure you just completed was not
successful. In this case, you need to review the MobiLink error messages
to see what went wrong; correct the problem; and then drop the MobiLink
system tables as follows. However, do not drop system tables if there are
any tables starting with ML_ other than the ones listed above.

❖ To drop the MobiLink system tables

1. Run the following SQL statement in SQL Plus:

select ’drop ’ || object_type || ’ ’ || object_name || ’;’
from all_objects
where object_name like ’ML_%’;

This generates a list of tables, procedures and triggers to be dropped.

2. Copy this list to a text file and save it asdrop.sqlin yourOracleTut
directory. Remove any lines that do not contain drop statements.

44

Chapter 3. Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database

3. Execute the SQL statements indrop.sqlby running the following
command:

@path\OracleTut \drop.sql;

Replacepath with the location of yourOracleTutdirectory. Rundrop.sql
a second time to delete tables that were not removed the first time
because of dependencies.

4. You can now repeat the instructions in Creating MobiLink system tables
in Oracle, above.

The remote data source

❖ To initialize your remote database

1. Open a command prompt and navigate to yourOracleTutdirectory; for
examplec:\OracleTut. Run the following command line:

dbinit remote.db

2. Verify the successful creation of the database by getting a listing of the
contents of this directory. The fileremote.dbshould appear in the
directory listing.

❖ To create an ODBC data source for the remote database

1. Open a command prompt and navigate to yourOracleTutdirectory. Run
the following command line:

dbdsn -w test_remote -y -c "uid=DBA;pwd=SQL;
dbf=path \OracleTut \remote.db;eng=remote"

Replacepath with the location of yourOracleTutdirectory.

Databases

In this procedure, you build a consolidated database using the Interactive
SQL command line utility. The Interactive SQL utility helps you to execute
SQL commands within your database. This procedure executes SQL
statements within each database.

☞ For more information about Interactive SQL, see“The Interactive SQL
utility” [ASA Database Administration Guide,page 538].

45

❖ To create and populate tables in the consolidated database

1. Start SQL Plus and connect to your consolidated database. Choose Start
➤ Programs➤ Oracle - OraHome81➤ Application Development➤
SQL Plus.

2. Execute the SQL statements inbuild_consol.sqlby running the following
command:

@path\OracleTut \build_consol.sql;

Replacepath with the location of yourOracleTutdirectory. If the path
contains spaces, enclose the path and filename in double quotes.

3. Verify the successful creation of each of the tables through SQL Plus
directly from within the application. Run the following SQL statements:

SELECT * FROM emp;
SELECT * FROM cust;

4. Leave the consolidated database running.

❖ To create tables and synchronization information in the remote
database

1. Open a command prompt and navigate to yourOracleTutdirectory. Run
the following command line:

dbisql -c "dsn=test_remote" build_remote.sql

The Interactive SQL plug-in starts the remote database and executes the
SQL statements inbuild_remote.sql.

2. Verify the successful creation of the emp and cust tables using
Interactive SQL or Sybase Central.

3. Leave the consolidated and remote databases running.

46

Chapter 3. Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database

Lesson 2: Running the MobiLink synchronization
server

☞ The MobiLink synchronization server can now be started from a
command prompt. Since MobiLink synchronization server is a client to the
consolidated database, your consolidated database must be started prior to
starting MobiLink. If you shut down your consolidated database following
Lesson 1, you should restart the database.

❖ To start the MobiLink synchronization server

1. Ensure that your consolidated database is running.

2. Open a command prompt and navigate to yourOracleTutdirectory. Run
the following command line:

dbmlsrv9 -c "dsn=ora_consol;pwd=manager" -o mlserver.mls -v+
-za -zu+

This command line specifies the following dbmlsrv9 options:

♦ -c Specifies connection parameters. Note that we only use the password
as the User ID is contained in the DSN. For more information, see“-c
option” [MobiLink Administration Guide,page 196].

♦ -o Specifies the message log file. For more information, see“-o option”
[MobiLink Administration Guide,page 203].

♦ -v+ Sets verbose logging on. For more information, see“-v option”
[MobiLink Administration Guide,page 211].

♦ -dl Sets the display log feature ON.

♦ -za Turns automated scripting ON. For more information, see“-za
option” [MobiLink Administration Guide,page 219].

♦ -zu+ Automates the user authentication process. For more information,
see“-zu option” [MobiLink Administration Guide,page 222].

Further reading ☞ For more information about dbmlsrv9, see“The MobiLink
synchronization server”[MobiLink Administration Guide,page 11]and
“MobiLink synchronization server”[MobiLink Administration Guide,page 190].

47

Lesson 3: Running the MobiLink synchronization
client

The MobiLink client may now be started from a command prompt. The
MobiLink client initiates synchronization.

You can specify connection parameters on thedbmlsynccommand line
using the-c option. These parameters are for theremotedatabase.

❖ To start the MobiLink client

1. Ensure that the MobiLink synchronization server is started.

2. Open a command prompt and navigate to yourOracleTutdirectory. Run
the following command line:

dbmlsync -c "dsn=test_remote" -o dbmlsync.out -v+ -e
"SendColumnNames=ON"

This command line specifies the following dbmlsync options:

♦ -c Supply database connection parameters. For more information, see
“-c option” [MobiLink Clients,page 102].

♦ -o Specify the message log file. For more information, see“-o
option” [MobiLink Clients,page 142].

♦ -v+ Verbose operation. For more information, see“-v option”
[MobiLink Clients,page 150].

♦ -e Extended options. Specifying “SendColumnNames=ON” sends
column names to MobiLink. For more information, see“dbmlsync
extended options”[MobiLink Clients,page 105].

Further reading ☞ For more information about dbmlsync, see“MobiLink synchronization
client” [MobiLink Clients,page 96].

48

Chapter 3. Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database

Summary
During this tutorial, you accomplished the following tasks.

♦ Created a new Adaptive Server Anywhere database to serve as a remote
database.

♦ Started a MobiLink synchronization server to work with your
consolidated Oracle database.

♦ Started the MobiLink synchronization client and synchronized the remote
database with the consolidated Oracle database.

Learning
accomplishments

In this tutorial, you gained:

♦ Familiarity with the MobiLink synchronization server and client and how
they work with an Oracle database.

♦ Competence in executing MobiLink server and client commands.

49

Further reading
The following documentation areas are good starting points for further
reading:

☞ For more information about running the MobiLink synchronization
server, see“Running the MobiLink synchronization server”[MobiLink
Administration Guide,page 11].

☞ For more information about synchronization scripting, see“Writing
Synchronization Scripts”[MobiLink Administration Guide,page 227], and
“Synchronization Events”[MobiLink Administration Guide,page 319].

☞ For an introduction to other methods of synchronization such as
timestamp, see“Synchronization Techniques”[MobiLink Administration Guide,
page 45].

50

CHAPTER 4

Tutorial: Java Synchronization Logic With
Adaptive Server Anywhere

About this chapter This tutorial guides you through the basic steps for using Java
synchronization logic. Using the CustDB sample as a consolidated database,
you specify simple class methods for MobiLink table-level events. The
process also involves running the MobiLink synchronization server
(dbmlsrv9) with an option to set the path of compiled Java classes.

Contents Topic: page

Introduction 52

Lesson 1: Compiling the CustdbScripts Java class 53

Lesson 2: Specifying class methods for events 55

Lesson 3: Run the MobiLink server with -sl java 60

Lesson 4: Test synchronization 61

Cleanup 63

Further reading 64

51

Introduction
MobiLink connection-level and table-level event scripts can be written in
SQL, Java or .NET. Java and .NET encapsulate event logic in class methods.
In this tutorial you write Java class methods for MobiLink table-level events.

Required software ♦ SQL Anywhere Studio 9.0.

♦ Java Software Development Kit.

Competencies and
experience

You will require:

♦ Familiarity with Java.

♦ Basic knowledge of MobiLink event scripts.

Goals You will gain competence and familiarity with:

♦ Utilizing simple Java class methods for MobiLink table-level events.

Key concepts This section uses the following steps to implement basic Java-based
synchronization using the MobiLink CustDB sample database:

♦ Compiling theCustdbScripts.classfile with MobiLink API references.

♦ Specifying class methods for particular table-level events.

♦ Running the MobiLink server (dbmlsrv9) with the -sl java option.

♦ Testing synchronization with a sample Windows client application.

Suggested background
reading

☞ For more information about synchronization scripts, see“Introduction to
synchronization scripts”[MobiLink Administration Guide,page 228].

☞ For more information about Sybase Central, see“ Managing Databases
with Sybase Central”[Introducing SQL Anywhere Studio,page 241].

52

Chapter 4. Tutorial: Java Synchronization Logic With Adaptive
Server Anywhere

Lesson 1: Compiling the CustdbScripts Java class
Java classes encapsulate synchronization logic in methods.

In this lesson, you will compile a class associated with the CustDB sample
database.

MobiLink Database
Sample

SQL Anywhere Studio ships with an Adaptive Server Anywhere sample
database (CustDB) that is already set up for synchronization, including the
SQL scripts required to drive synchronization. The CustDB ULCustomer
table, for example, is a synchronized table supporting a variety of table-level
events.

CustDB is designed to be a consolidated database server for both UltraLite
and Adaptive Server Anywhere clients. The CustDB database has a DSN
called UltraLite 9.0 Sample.

The CustdbScripts class

In this section, you create a Java class called CustdbScripts with logic to
handle the ULCustomer upload_insert and upload_update events. You enter
the CustdbScripts code in a text editor and save the file as
CustdbScripts.java.

❖ To create CustdbScripts.java

1. Create a directory for the Java class and assembly.

This tutorial assumes the pathc:\mljava.

2. Using a text editor, enter the CustdbScripts code:

public class CustdbScripts
{

public static String UploadInsert()
{

return("INSERT INTO ULCustomer(cust_id,cust_name) values
(?,?)");

}
public String DownloadCursor(java.sql.Timestamp ts,String

user)
{

return("SELECT cust_id, cust_name FROM ULCustomer where
last_modified >= ’ " + ts + " ’ ");

}
}

Note:
The class and associated methods must be set as public.

53

3. Save the file asCustdbScripts.javain c:\mljava.

Compiling the Java class

The MobiLink API To execute Java synchronization logic, the MobiLink synchronization server
must have access to the classes inmlscript.jar. This jar file contains a
repository of MobiLink API classes to utilize in your Java methods.

☞ For more information about the MobiLink Java API, see“MobiLink
Java API Reference”[MobiLink Administration Guide,page 273].

When compiling a Java class for MobiLink, you must include this JAR file
to make use of the API. In this section, you use the javac utility -classpath
option to specifymlscript.jarfor the CustdbScripts class.

❖ To compile the Java class (Windows)

1. On the command line, navigate to the folder containing
CustdbScripts.java(c:\mljava).

2. Enter the following:

javac custdbscripts.java -classpath "%asany9% \java \
mlscript.jar"

TheCustdbScripts.classfile is generated.

Further reading ☞ For more information about the MobiLink API, see“MobiLink Java
API Reference”[MobiLink Administration Guide,page 273].

☞ For more information about Java methods, see“Methods” [MobiLink
Administration Guide,page 261].

☞ For more information about the CustDB sample database, and using
alternate RDBMS servers, see“Setting up the CustDB consolidated
database” on page 102.

54

Chapter 4. Tutorial: Java Synchronization Logic With Adaptive
Server Anywhere

Lesson 2: Specifying class methods for events
CustdbScripts.class, created in the previous lesson, encapsulates the methods
UploadInsert() and DownloadCursor(). These methods contain
implementation for the ULCustomer upload_insert and upload_update
events, respectively.

In this section, you will specify class methods for table-level events using
two approaches:

1. Using the MobiLink Synchronization plug-in.

You connect to the CustDB database with Sybase Central, change the
language for the upload_insert script to Java, and specify
CustdbScripts.UploadInsert to handle the event.

2. Using the ml_add_java_table_script stored procedure.

You will connect to the CustDB database with Interactive SQL and
execute ml_add_java_table_script, specifying
CustdbScripts.DownloadCursor for the download_cursor event.

❖ To specify CustdbScripts.UploadInsert for the ULCustomer
upload_insert event

1. Connect to the sample database using the MobiLink Synchronization
plug-in:

♦ Start Sybase Central.

♦ In the left pane, right-click the MobiLink Synchronization 9 plug-in
and choose Connect.

♦ On the Identification tab, choose UltraLite 9.0 Sample for the ODBC
Data Source name.

On the Database tab, ensure the option to search for network database
servers is not selected.

♦ Click OK to Connect.

♦ Sybase Central should now display the CustDB data source under the
MobiLink Synchronization 9 plug-in.

55

2. Change the language for the ULCustomer table upload_insert event to
Java:

♦ In the left pane, open the Synchronized Tables folder and select the
ULCustomer table. A list of table-level scripts appears in the right
pane.

♦ Click on the table script associated with the custdb 9.0 upload_insert
event. From the File menu, choose Set Script Language to Java.

3. Enter the fully-qualified Java method name as the upload_insert script.

♦ Double-click the table script associated with the upload_insert event.

A window revealing the script contents appears:

♦ Change the script contents to the fully-qualified method name,
CustdbScripts.UploadInsert:

56

Chapter 4. Tutorial: Java Synchronization Logic With Adaptive
Server Anywhere

Note:
The fully qualified method name is case sensitive.

♦ To save the script, select Save from the File menu.

4. Exit Sybase Central.

This step used Sybase Central to specify a Java method as the script for the
ULCustomer upload_insert event.

Alternatively, you can use the ml_add_java_connection_script and
ml_add_java_table_script stored procedures. Using these stored procedures
is more efficient, especially if you have a large number of Java methods to
handle synchronization events.

☞ For more information, see“ml_add_java_connection_script”[MobiLink
Administration Guide,page 483]and“ml_add_java_table_script”[MobiLink
Administration Guide,page 484].

In the next section you will learn how to add a Java method as the script for a
MobiLink event using the ml_add_java_connection_script stored procedure
or the ml_add_java_table_script stored procedure.

To do this, you will connect to CustDB with Interactive SQL and execute
ml_add_java_table_script, assigning CustdbScripts.DownloadCursor to the
download_cursor event.

❖ To specify CustdbScripts.DownloadCursor for the ULCustomer
download_cursor event

1. Connect to the sample database with Interactive SQL.

♦ Open Interactive SQL.

The Connect dialog appears.

♦ On the Identification tab, choose UltraLite 9.0 Sample for the ODBC
Data Source:

57

On the Database tab, ensure the option to search for network database
servers is not selected.

2. Execute the following command in Interactive SQL:

call ml_add_java_table_script(
’custdb 9.0’,
’ULCustomer’,
’download_cursor’,
’CustdbScripts.DownloadCursor’);
commit;

Following is a description of each parameter:

Parameter Description

custdb 9.0 The script version.

ULCustomer The synchronized table.

download_cursor The event name.

CustdbScripts.DownloadCursor The fully qualified Java method.

3. Exit Interactive SQL.

In this lesson, you specified your Java methods to handle ULCustomer
table-level events. The next lesson ensures that the MobiLink server loads
the appropriate class files and the MobiLink API.

Further reading ☞ For more information about adding scripts with stored procedures, see
“ml_add_java_connection_script”[MobiLink Administration Guide,page 483]

58

Chapter 4. Tutorial: Java Synchronization Logic With Adaptive
Server Anywhere

and“ml_add_java_table_script”[MobiLink Administration Guide,page 484].

☞ For general information about adding and deleting synchronization
scripts, see“Adding and deleting scripts in your consolidated database”
[MobiLink Administration Guide,page 241].

59

Lesson 3: Run the MobiLink server with -sl java
Running the MobiLink server with the -sl java -cp option specifies a set of
directories to search for class files, and forces the Java Virtual Machine to
load on server startup.

❖ To start the MobiLink server (dbmlsrv9) and load Java assemblies

1. On a command line, enter the following on a single line:

dbmlsrv9 -c "dsn=ultralite 9.0 sample" -sl java (-cp c: \
mljava)

A message dialog appears indicating that the server is ready to handle
requests. Now the Java method is executed when the ULCustomer table
upload_insert event triggers during synchronization.

Further reading ☞ For more information, see“-sl dnet option”[MobiLink Administration
Guide,page 207].

60

Chapter 4. Tutorial: Java Synchronization Logic With Adaptive
Server Anywhere

Lesson 4: Test synchronization
UltraLite comes with a sample Windows client that automatically invokes
the dbmlsync utility when the user issues a synchronization. It is a simple
sales-status application that you can run against the CustDB consolidated
database you started in the previous lesson.

Start the application (Windows)

❖ To start and synchronize the sample application

1. Launch the sample application.

From the Start menu, choose Programs➤ Sybase SQL Anywhere 9➤
UltraLite ➤ Windows Sample Application.

2. Enter an employee ID.

Input a value of50and press Enter.

The application automatically synchronizes, and a set of customers,
products, and orders are downloaded to the application from the CustDB
consolidated database.

In the next section you will enter a new customer name and order details.
During a subsequent synchronization, this information will be uploaded to
the CustDB consolidated database and the upload_insert and
download_cursor events for the ULCustomer table will trigger.

Add an order (Windows)

❖ To add an order

1. From the Order menu, choose New.

The Add New Order screen is displayed.

2. Enter a new Customer Name.

For example, enterFrank Javac.

3. Choose a product, and enter the quantity and discount:

61

4. Press Enter to add the new order.

You have now modified the data in your local UltraLite database. This data
is not shared with the consolidated database until you synchronize.

❖ To synchronize with the consolidated database and trigger the
upload_insert event

1. From the file menu, choose Synchronize.

A window appears indicating one Insert successfully uploaded to the
consolidated database.

Further reading ☞ For more information about the CustDB Windows Application, see“The
CustDB Sample Application” on page 99.

62

Chapter 4. Tutorial: Java Synchronization Logic With Adaptive
Server Anywhere

Cleanup
You should remove tutorial materials from your computer.

❖ To remove tutorial materials from your computer

1. Return the ULCustomer table upload_insert and download_cursor scripts
to their original SQL logic.

♦ Open Interactive SQL.

The Connect dialog appears.

♦ On the Identification tab, choose UltraLite 9.0 Sample for the ODBC
Data Source.

♦ Click OK to Connect.

♦ Execute the following commands in Interactive SQL:

call ml_add_table_script(’custdb 9.0’,
’ULCustomer’,
’upload_insert’,
’INSERT INTO ULCustomer(cust_id, cust_name) VALUES(

?, ?)’);

call ml_add_table_script(’custdb 9.0’,
’ULCustomer’,
’download_cursor’,
’SELECT "cust_id", "cust_name" FROM "ULCustomer"

WHERE "last_modified" >= ?’);

2. Close the Adaptive Server Anywhere, MobiLink, and synchronization
client windows by right-clicking on each taskbar item and choosing
Close.

3. Delete all tutorial-related Java sources.

Delete the folder containing yourCustdbScripts.javaand
CustdbScripts.classfiles (c:\mljava).

Note:
Ensure that you do not have other important files inc:\mljava.

63

Further reading
The following documentation sections are a good starting point for further
reading:

☞ For more information about writing MobiLink synchronization scripts in
Java, see“Setting up Java synchronization logic”[MobiLink Administration
Guide,page 257].

☞ For an example illustrating the use of Java synchronization scripts for
custom authentication, see“Java synchronization example”[MobiLink
Administration Guide,page 267].

☞ For more information about synchronization scripting, see“Writing
Synchronization Scripts”[MobiLink Administration Guide,page 227]and
“Synchronization Events”[MobiLink Administration Guide,page 319].

☞ For an introduction to other methods of synchronization such as
timestamp, see“Synchronization Techniques”[MobiLink Administration Guide,
page 45].

64

CHAPTER 5

Tutorial: .NET Synchronization Logic With
Adaptive Server Anywhere

About this chapter This tutorial guides you through the basic steps for using .NET
synchronization logic. Using the CustDB sample as a consolidated database,
you specify simple class methods for MobiLink table-level events. The
process also involves running the MobiLink synchronization server
(dbmlsrv9) with an option that sets the path of .NET assemblies.

Contents Topic: page

Introduction 66

Lesson 1: Compile the CustdbScripts.dll assembly with MobiLink
references

67

Lesson 2: Specify class methods for events 72

Lesson 3: Run MobiLink with -sl dnet 77

Lesson 4: Test synchronization 78

Cleanup 80

Further reading 81

65

Introduction
MobiLink connection-level and table-level event scripts can be written in
SQL, Java, or .NET. Both Java and .NET encapsulate event logic in class
methods. In this tutorial you will subscribe .NET class methods to MobiLink
table-level events.

Required software ♦ SQL Anywhere Studio 9.0.

♦ Microsoft .NET Framework SDK.

Competencies and
experience

You will require:

♦ Familiarity with .NET.

♦ Basic knowledge of MobiLink event scripts.

Goals You will gain competence and familiarity with:

♦ Utilizing .NET class methods for MobiLink table-level event scripts.

Key concepts This section uses the following steps to implement basic .NET
synchronization using the MobiLink CustDB sample database:

♦ Compiling theCustdbScripts.dllprivate assembly with MobiLink
references.

♦ Specifying class methods for table-level events.

♦ Running the MobiLink server (dbmlsrv9) with the -sl dnet option.

♦ Testing synchronization with a sample Windows client application.

Suggested background
reading

☞ For more information about synchronization scripts, see“Introduction to
synchronization scripts”[MobiLink Administration Guide,page 228].

☞ For more information about Sybase Central, see“ Managing Databases
with Sybase Central”[Introducing SQL Anywhere Studio,page 241].

66

Chapter 5. Tutorial: .NET Synchronization Logic With Adaptive
Server Anywhere

Lesson 1: Compile the CustdbScripts.dll
assembly with MobiLink references

.NET classes encapsulate synchronization logic in methods.

In this lesson, you will compile a class associated with the CustDB sample
database.

MobiLink Database
Sample

SQL Anywhere Studio ships with an Adaptive Server Anywhere sample
database (CustDB) that is already set up for synchronization, including the
SQL scripts required to drive synchronization. The CustDB ULCustomer
table, for example, is a synchronized table supporting a variety of table-level
events.

CustDB is designed to be a consolidated database server for both UltraLite
and Adaptive Server Anywhere clients. The CustDB database has a DSN
called UltraLite 9.0 Sample.

In this section, you create a .NET class called CustdbScripts with logic to
handle the ULCustomer upload_insert and upload_update events.

The CustdbScripts assembly

The MobiLink API To execute .NET synchronization logic, the MobiLink synchronization
server must have access to the classes iniAnywhere.MobiLink.Script.dll.
iAnywhere.MobiLink.Script.dllcontains a repository of MobiLink .NET
API classes to utilize in your .NET methods.

☞ For more information about the MobiLink .NET API, see“MobiLink
.NET API Reference”[MobiLink Administration Guide,page 303].

When compiling the CustdbScripts class, you must include this assembly to
make use of the API. You can compile your class using Visual Studio .NET
or from the command line.

♦ In Visual Studio .NET, create a new Class Library and enter the
CustdbScripts code. LinkiAnywhere.MobiLink.Script.dll, and build the
assembly for your class.

♦ On the command line, enter the CustdbScripts code in a text editor and
save the file asCustdbScripts.cs(CustdbScripts.vbfor Visual Basic
.NET). Using a command line compiler, reference
iAnywhere.MobiLink.Script.dlland build the assembly for your class.

67

❖ To create the CustdbScripts assembly using Visual Studio .NET

1. Start a new Visual C# or Visual Basic .NET Class Library project.

Use CustdbScripts for the project Name and enter an appropriate path.
This tutorial assumes the pathc:\mldnet.

2. Enter the CustdbScripts code.

For C#, type:

namespace MLExample
{
class CustdbScripts
{

public static string UploadInsert()
{

return("INSERT INTO ULCustomer(cust_id,cust_name) values
(?,?)");

}
public static string DownloadCursor(System.DateTime ts,

string user)
{

return("SELECT cust_id, cust_name FROM ULCustomer WHERE
last_modified >= ’" + ts.ToString("yyyy-MM-dd
hh:mm:ss.fff") +"’");

}
}
}

For Visual Basic .NET, type:

68

Chapter 5. Tutorial: .NET Synchronization Logic With Adaptive
Server Anywhere

Namespace MLExample

Class CustdbScripts

Public Shared Function UploadInsert() As String
Return("INSERT INTO ULCustomer(cust_id,cust_name) values

(?,?)")
End Function

Public Shared Function DownloadCursor(ByVal ts As
System.DateTime, ByVal user As String) As String

Return("SELECT cust_id, cust_name FROM ULCustomer " + _
"WHERE last_modified >= ’" + ts.ToString("yyyy-MM-dd

hh:mm:ss.fff") +"’")
End Function

End Class

End Namespace

3. Add a reference to the MobiLink API.

♦ From the Visual Studio .NET Project menu, choose Add Existing
Item...

♦ SelectiAnywhere.MobiLink.Script.dllin thewin32 directory of your
SQL Anywhere Studio installation. From the Open drop down menu
choose Link File.

4. Build CustdbScripts.dll.

From the Build menu choose Build CustdbScripts.

This createsCustdbScripts.dllin
C:\mldnet\CustdbScripts\CustdbScripts\bin\Debug.

69

❖ To create the CustdbScripts assembly using the command line

1. Create a directory for the .NET class and assembly.

This tutorial assumes the pathc:\mldnet.

2. Using a text editor, enter the CustdbScripts code.

For C#, type:

namespace MLExample
{
class CustdbScripts
{

public static string UploadInsert()
{

return("INSERT INTO ulcustomer(cust_id,cust_name) values
(?,?)");

}
public static string DownloadCursor(System.DateTime ts,

string user)
{

return("SELECT cust_id, cust_name FROM ULCustomer where
last_modified >= ’" + ts.ToString("yyyy-MM-dd
hh:mm:ss.fff") +"’");

}
}
}

For Visual Basic .NET, type:

Namespace MLExample

Class CustdbScripts

Public Shared Function UploadInsert() As String
Return("INSERT INTO ULCustomer(cust_id,cust_name) values

(?,?)")
End Function

Public Shared Function DownloadCursor(ByVal ts As
System.DateTime, ByVal user As String) As String

Return("SELECT cust_id, cust_name FROM ULCustomer " + _
"WHERE last_modified >= ’" + ts.ToString("yyyy-MM-dd

hh:mm:ss.fff") +"’")
End Function

End Class

End Namespace

3. Save the file asCustdbScripts.cs(CustdbScripts.vbfor Visual Basic
.NET) in c:\mldnet.

4. Compile the file using the following command.

70

Chapter 5. Tutorial: .NET Synchronization Logic With Adaptive
Server Anywhere

For C#, type:

csc /out:c: \mldnet \custdbscripts.dll /target:library
/reference:"%asany9% \win32 \
iAnywhere.MobiLink.Script.dll" c: \mldnet \
CustdbScripts.cs

For Visual Basic .NET, type:

vbc /out:c: \mldnet \custdbscripts.dll /target:library
/reference:"%asany9% \win32 \
iAnywhere.MobiLink.Script.dll" c: \mldnet \
CustdbScripts.vb

TheCustdbScripts.dllassembly is generated.

Further reading ☞ For more information about the MobiLink API, see“MobiLink .NET
API Reference”[MobiLink Administration Guide,page 303].

☞ For more information about .NET methods, see“Methods” [MobiLink
Administration Guide,page 288].

71

Lesson 2: Specify class methods for events
☞ For more information about the CustDB sample database, and using
alternate RDBMS servers, see“Setting up the CustDB consolidated
database” on page 102.

CustdbScripts.dll, created in the previous lesson, encapsulates the methods
UploadInsert() and DownloadCursor(). These methods contain
implementation for the ULCustomer upload_insert and upload_update
events, respectively.

In this section, you specify class methods for table-level events using two
approaches:

1. Using the MobiLink Synchronization plug-in.

You connect to the CustDB database with Sybase Central, change the
language for the upload_insert script to .NET, and specify
MLExample.CustdbScripts.UploadInsert to handle the event.

2. Using the ml_add_dnet_table_script stored procedure.

You will connect to the CustDB database with Interactive SQL and
execute ml_add_dnet_table_script, specifying
MLExample.CustdbScripts.DownloadCursor for the download_cursor
event.

❖ To subscribe CustdbScripts.uploadInsert() to the upload_insert
event for the ULCustomer table

1. Connect to the sample database using the MobiLink Synchronization
plug-in:

♦ Start Sybase Central.

Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤
Sybase Central.

♦ In the left pane, right-click the MobiLink Synchronization 9 plug-in
and choose Connect.

♦ Choose the UltraLite 9.0 Sample as the ODBC Data Source.

On the Identification tab, select the ODBC Data Source name option.
TypeUltraLite 9.0 Sample for the data source name.

On the Database tab, ensure the option to search for network database
servers is not selected.

♦ Click OK to Connect.

♦ Sybase Central should now display the CustDB data source under the
MobiLink Synchronization 9 plug-in.

72

Chapter 5. Tutorial: .NET Synchronization Logic With Adaptive
Server Anywhere

2. Change the language for the ULCustomer table upload_insert event to
.NET:

♦ In the left pane, open the Synchronized Tables folder and select the
ULCustomer table. A list of table-level scripts appears in the right
pane.

♦ Click on the table script associated with the custdb 9.0 upload_insert
event. From the File menu, choose Set Script Language to .NET.

3. Enter the fully-qualified .NET method name for the upload_insert script.

♦ Double-click the table script associated with the upload_insert event.

A window revealing the script contents appears.

♦ Change the script contents to the fully-qualified method name,
MLExample.CustdbScripts.UploadInsert.

Note:
The fully qualified method name is case sensitive.

♦ To save the script, choose Save from the File menu.

4. Exit Sybase Central.

73

This step used Sybase Central to specify a .NET method as the script for the
ULCustomer upload_insert event.

Alternatively, you can use the ml_add_dnet_connection_script and
ml_add_dnet_table_script stored procedures. Using these stored procedures
is more efficient, especially if you have a large number of .NET methods to
handle synchronization events.

☞ For more information, see“ml_add_dnet_connection_script”[MobiLink
Administration Guide,page 482]and“ml_add_dnet_table_script”[MobiLink
Administration Guide,page 483].

In the next section you connect to CustDB with Interactive SQL and execute
ml_add_dnet_table_script, assigning
MLExample.CustdbScripts.DownloadCursor to the download_cursor event.

❖ To specify MLExample.CustdbScripts.DownloadCursor for the
ULCustomer download_cursor event

1. Connect to the sample database with Interactive SQL.

♦ Start Interactive SQL.

Choose Start➤ Programs➤ SQL Anywhere 9➤ Adaptive Server
Anywhere➤ Interactive SQL, or enter the following at a command
prompt:

dbisql

The Connect dialog appears.

♦ On the Identification tab, choose UltraLite 9.0 Sample for the ODBC
Data Source:

74

Chapter 5. Tutorial: .NET Synchronization Logic With Adaptive
Server Anywhere

On the Database tab, ensure the option to search for network database
servers is not selected.

2. Execute the following command in Interactive SQL:

call ml_add_dnet_table_script(
’custdb 9.0’,
’ULCustomer’,
’download_cursor’,
’MLExample.CustdbScripts.DownloadCursor’);
commit;

Following is a description of each parameter:

Parameter Description

custdb 9.0 The script version.

ULCustomer The synchronized table.

download_cursor The event name.

MLExample,CustdbScripts.-
DownloadCursor

The fully qualified .NET
method.

3. Exit Interactive SQL.

In this lesson, you specified .NET methods to handle ULCustomer
table-level events. The next lesson ensures that the MobiLink server loads
the appropriate class files and the MobiLink API.

75

Further reading ☞ For more information about adding and deleting synchronization scripts,
see“Adding and deleting scripts in your consolidated database”[MobiLink
Administration Guide,page 241].

☞ For more information about the scripts used in this lesson, see
“ml_add_dnet_connection_script”[MobiLink Administration Guide,page 482]
and“ml_add_dnet_table_script”[MobiLink Administration Guide,page 483].

76

Chapter 5. Tutorial: .NET Synchronization Logic With Adaptive
Server Anywhere

Lesson 3: Run MobiLink with -sl dnet
Running the MobiLink server with the -sl dnet option specifies the location
of .NET assemblies and forces the CLR to load on server startup.

If you used Visual Studio .NET to compile, the location ofCustdbScripts.dll
is c:\mldnet\CustdbScripts\CustdbScripts\bin\Debug. If you used the
command line, the location ofCustdbScripts.dllis c:\mldnet.

❖ To start the MobiLink server (dbmlsrv9) and load .NET assem-
blies
1. Start the MobiLink server with the -sl dnet option.

If you used Visual Studio .NET to compile your assembly:

On a command line, enter the following on a single line:

dbmlsrv9 -c "dsn=ultralite 9.0 sample" -dl -o cons1.txt -v+
-sl dnet(-MLAutoLoadPath=c: \mldnet \CustdbScripts \
CustdbScripts \bin \Debug)

If you used the command line to compile your assembly:

On a command line, enter the following on a single line:

dbmlsrv9 -c "dsn=ultralite 9.0 sample" -dl -o cons1.txt -v+
-sl dnet(-MLAutoLoadPath=c: \mldnet)

A message dialog appears indicating that the server is ready to handle
requests. Now the .NET method is executed when the upload_insert
events triggers during synchronization.

Further reading For more information see,“-sl dnet option”[MobiLink Administration Guide,
page 207].

77

Lesson 4: Test synchronization
UltraLite comes with a sample Windows client that automatically invokes
the dbmlsync utility when the user issues a synchronization. It is a simple
sales-status application that you can run against the CustDB consolidated
database you started in the previous lesson.

Start the application (Windows)

❖ To start and synchronize the sample application

1. Launch the sample application.

From the Start menu, choose Programs➤ SQL Anywhere 9➤ UltraLite
➤ Windows Sample Application.

2. Enter an employee ID.

Input a value of50and pressENTER.

The application automatically synchronizes, and a set of customers,
products, and orders are downloaded to the application from the CustDB
consolidated database.

In the next section you will enter a new customer name and order details.
During a subsequent synchronization, this information will be uploaded to
the CustDB consolidated database and the upload_insert and
download_cursor events for the ULCustomer table will trigger.

Add an order (Windows)

❖ To add an order

1. From the Order menu, choose New.

The Add New Order screen appears.

2. Enter a new Customer Name.

For example, enter Frank DotNET.

3. Choose a product, and enter the quantity and discount:

78

Chapter 5. Tutorial: .NET Synchronization Logic With Adaptive
Server Anywhere

4. Press Enter to add the new order.

You have now modified the data in your local UltraLite database. This data
is not shared with the consolidated database until you synchronize.

❖ To synchronize with the consolidated database and trigger the
upload_insert event

1. From the file menu, choose Synchronize.

A window appears indicating one Insert successfully uploaded to the
consolidated database.

Further reading ☞ For more information about the CustDB Windows Application, see“The
CustDB Sample Application” on page 99.

79

Cleanup
You should remove tutorial materials from your computer.

❖ To remove tutorial materials from your computer

1. Return the ULCustomer table upload_insert and download_cursor scripts
to their original SQL logic.

♦ Open Interactive SQL.

Choose Start➤ Programs➤ SQL Anywhere 9➤ Adaptive Server
Anywhere➤ Interactive SQL, or enter the following at a command
prompt:

dbisql

The Connect dialog appears.

♦ On the Identification tab, choose UltraLite 9.0 Sample for the ODBC
Data Source.

♦ Click OK to Connect.

♦ Execute the following commands in Interactive SQL:

call ml_add_table_script(’custdb 9.0’,
’ULCustomer’,
’upload_insert’,
’INSERT INTO ULCustomer(cust_id, cust_name) VALUES(

?, ?)’);

call ml_add_table_script(’custdb 9.0’,
’ULCustomer’,
’download_cursor’,
’SELECT "cust_id", "cust_name" FROM "ULCustomer"

WHERE "last_modified" >= ?’);

2. Close the Adaptive Server Anywhere, MobiLink, and synchronization
client windows by right-clicking on each taskbar item and choosing
Close.

3. Delete all tutorial-related .NET sources.

Delete the folder containing yourCustdbScripts.csandCustdbScripts.dll
files (c:\mldnet).

Note:
Ensure that you do not have other important files inc:\mldnet.

80

Chapter 5. Tutorial: .NET Synchronization Logic With Adaptive
Server Anywhere

Further reading
The following documentation sections are a good starting point for further
reading:

☞ For more information about writing MobiLink synchronization scripts in
.NET, see“Setting up .NET synchronization logic”[MobiLink Administration
Guide,page 283].

☞ For information about debugging .NET synchronization logic, see
“Debugging .NET synchronization logic”[MobiLink Administration Guide,
page 292].

☞ For a detailed example illustrating the use of .NET synchronization
scripts for custom authentication, see“.NET synchronization example”
[MobiLink Administration Guide,page 300].

☞ For more information about synchronization scripting, see“Writing
Synchronization Scripts”[MobiLink Administration Guide,page 227]and
“Synchronization Events”[MobiLink Administration Guide,page 319].

☞ For an introduction to other methods of synchronization such as
timestamp, see“Synchronization Techniques”[MobiLink Administration Guide,
page 45].

81

CHAPTER 6

The Contact Sample Application

About this chapter This chapter uses the sample application called Contact to illustrate a variety
of techniques that you can use for common synchronization tasks.

The techniques are illustrated using SQL scripts. Many of the same
techniques can be implemented using Java or .NET synchronization logic.

Contents Topic: page

Introduction 84

Setup 85

Tables in the Contact databases 87

Users in the Contact sample 90

Synchronization 91

Monitoring statistics and errors in the Contact sample 98

83

Introduction
This chapter introduces you to the Contact sample application. This sample
is a valuable resource for the MobiLink developer. It provides you with an
example of how to implement many of the techniques you will need to
develop MobiLink applications.

The Contact sample application includes an Adaptive Server Anywhere
consolidated database and two Adaptive Server Anywhere remote databases.
It illustrates several common synchronization techniques. To get the most
out of this chapter, you should study the sample application as you read.

Although the consolidated database is an Adaptive Server Anywhere
database, the synchronization scripts consist of SQL statements that should
work with minimal changes on other database management systems.

The Contact sample is in theSamples\MobiLink\Contactsubdirectory of
your SQL Anywhere installation. For an overview, see
Samples\MobiLink\Contact\readme.txt.

Synchronization design The synchronization design in the Contact sample application uses the
following features:

♦ Column subsets A subset of the columns of the Customer, Product,
SalesRep, and Contact tables on the consolidated database are shared
with the remote databases.

♦ Row subsets All of the columns but only one of the rows of the
SalesRep table on the consolidated database are shared with each remote
database.

☞ For more information, see“Partitioning rows among remote
databases”[MobiLink Administration Guide,page 52].

♦ Timestamp-based synchronization This is a way of identifying
changes that were made to the consolidated database since the last time a
device synchronized. The Customer, Contact, and Product tables are
synchronized using a method based on timestamps.

☞ For more information, see“Timestamp-based synchronization”
[MobiLink Administration Guide,page 48].

84

Chapter 6. The Contact Sample Application

Setup
A Windows batch file calledbuild.bat is provided to build the Contact
sample databases. On UNIX systems, the file isbuild.sh. You may want to
examine the contents of the batch file. It carries out the following actions:

♦ Creates ODBC data source definitions for a consolidated database and
each of two remote databases.

♦ Creates a consolidated database namedconsol.dband loads the
MobiLink system tables, database schema, some data, synchronization
scripts, and MobiLink user names into the database.

♦ Creates two remote databases, each namedremote.db, in subdirectories
namedremote_1andremote_2. Loads information common to both
databases and applies customizations. These customizations include a
global database identifier, a MobiLink user name, and subscriptions to
two publications.

❖ To build the Contact sample

1. Open a command prompt and navigate to theSamples\MobiLink\Contact
subdirectory of your SQL Anywhere installation.

2. Runbuild.bat(Windows) orbuild.sh(Unix).

Running the Contact sample

The Contact sample includes batch files that carry out initial
synchronizations and illustrate MobiLink synchronization server and
dbmlsync command lines. You can examine the contents of the following
batch files, located in theSamples\MobiLink\Contactsubdirectory of your
SQL Anywhere 9 installation, in a text editor:

♦ step1.bat

♦ step2.bat

♦ step3.bat

❖ To run the Contact sample

1. Start the MobiLink synchronization server.

♦ Open a command prompt and navigate to the
Samples\MobiLink\Contactsubdirectory of your SQL Anywhere 9
installation and execute the following command:

85

step1

This command runs a batch file that starts the MobiLink
synchronization server in a verbose mode. This mode is useful during
development or troubleshooting, but has a significant performance
impact and so would not be used in a routine production environment.

2. Synchronize both remote databases.

♦ Open a command prompt and navigate to the
Samples\MobiLink\Contactsubdirectory of your SQL Anywhere 9
installation and execute the following command:

step2

This is a batch file that synchronizes both remote databases.

3. Shut down the MobiLink synchronization server.

♦ Open a command prompt and navigate to the
Samples\MobiLink\Contactsubdirectory of your SQL Anywhere 9
installation and execute the following command:

step3

This is a batch file that shuts down the MobiLink synchronization
server.

To explore how synchronization works in the Contact sample, you can use
Interactive SQL to modify the data in the remote and consolidated databases,
and use the batch files to synchronize.

86

Chapter 6. The Contact Sample Application

Tables in the Contact databases
The table definitions for the Contact database are located in the following
files:

♦ Samples\MobiLink\Contact\build_consol.sql

♦ Samples\MobiLink\Contact\build_remote.sql

Both the consolidated and the remote databases contain the following three
tables, although their definition is slightly different in each place.

SalesRep Each sales representative occupies one row in the SalesRep table. Each
remote database belongs to a single sales representative.

In each remote database, SalesRep has the following columns:

♦ rep_id A primary key column that contains an identifying number for
the sales representative.

♦ name The name of the representative.

In the consolidated database only, there is also an ml_username column
holding the MobiLink user name for the representative.

Customer This table holds one row for each customer. Each customer is a company
with which a single sales representative does business. There is a
one-to-many relationship between the SalesRep and Customer tables.

In each remote database, Customer has the following columns:

♦ cust_id A primary key column holding an identifying number for the
customer.

♦ name The customer name. This is a company name.

♦ rep_id A foreign key column referencing the SalesRep table. Identifies
the sales representative assigned to the customer.

In the consolidated database, there are two additional columns,
last_modified and active:

♦ last_modified The last time the row was modified. This column is used
for timestamp-based synchronization.

♦ active A BIT column that indicates if the customer is currently active
(1) or if the company no longer deals with this customer (0). If the
column is marked inactive (0) all rows corresponding to this customer are
deleted from remote databases.

87

Contact This table holds one row for each contact. A contact is a person who works
at a customer company. There is a one-to-many relationship between the
Customer and Contact tables.

In each remote database, Contact has the following columns:

♦ contact_id A primary key column holding an identifying number for
the customer.

♦ name The name of the individual contact.

♦ cust_id The identifier of the customer for whom the contact works.

In the consolidated database, the table also has the following columns:

♦ last_modified The last time the row was modified. This column is used
for timestamp-based synchronization.

♦ active A BIT column that indicates if the contact is currently active (1)
or if the company no longer deals with this contact (0). If the column is
marked inactive (0) the row corresponding to this contact is deleted from
remote databases.

Product Each product sold by the company occupies one row in the Product table.
The Product table is held in a separate publication so that remote databases
can synchronize the table separately.

In each remote database, Product has the following columns:

♦ id A primary key column holding an identifying number for the product.

♦ name The name of the individual item.

♦ size The size of the item.

♦ quantity The number of items in stock. When a sales representative
takes an order, this column is updated.

♦ unit_price The price per unit of the product.

In the consolidated database, the Product table has the following additional
columns:

♦ supplier The company that manufactures the product.

♦ last_modified The last time the row was modified. This column is used
for timestamp-based synchronization.

♦ active A BIT column that indicates if the contact is currently active (1)
or if the company no longer deals with this contact (0). If the column is
marked inactive (0), the row corresponding to this contact is deleted from
remote databases.

88

Chapter 6. The Contact Sample Application

In addition to these tables, a set of tables is created at the consolidated
database only. These include the product_conflict table, which is a
temporary table used during conflict resolution, and a set of tables for
monitoring MobiLink activities owned by a user named mlmaint. Scripts to
create the MobiLink monitoring tables are in the file
Samples\MobiLink\Contact\mlmaint.sql.

89

Users in the Contact sample
Several different database user IDs and MobiLink user names are included
in the Contact sample.

Database user IDs The two remote databases belong to sales representatives Samuel Singer
(rep_id 856) and Pamela Savarino (rep_id 949).

When connecting to their remote database, these users both use the default
Adaptive Server Anywhere user IDdba and passwordSQL.

Each remote database also has a user IDsync_userwith password
sync_user. This user ID is employed only on the dbmlsync command line.
It is a user with REMOTE DBA authority, and so can carry out any
operation when connected from dbmlsync, but has no authority when
connected from any other application. The widespread availability of the
user ID and password is thus not a problem.

At the consolidated database, there is a user namedmlmaint , who owns the
tables used for monitoring MobiLink synchronization statistics and errors.
This user has no right to connect. The assignment of the tables to a separate
user ID is done simply to separate the objects from the others in the schema
for easier administration in Sybase Central and other utilities.

MobiLink user names MobiLink user names are distinct from database user IDs. Each remote
device has a MobiLink user name in addition to the user ID they use when
connecting to a database. The MobiLink user name for Samuel Singer is
SSinger. The MobiLink user name for Pamela Savarino is PSavarino. The
MobiLink user name is stored or used in the following locations:

♦ At the remote database, the MobiLink user name is added using a
CREATE SYNCHRONIZATION USER statement.

♦ At the consolidated database, the MobiLink user name and password are
added using the dbmluser utility.

♦ During synchronization, the MobiLink password for the connecting user
is supplied on the dbmlsync command line listed in
Samples\MobiLInk\Contact\step2.bat.

♦ The MobiLink synchronization server supplies the MobiLink user name
as a parameter to many of the scripts during synchronization.

♦ The SalesRep table at the consolidated database has an ml_username
column. The synchronization scripts match the MobiLink user name
parameter against the value in this column.

90

Chapter 6. The Contact Sample Application

Synchronization
The following sections describe the Contact sample’s synchronization logic.

Synchronizing sales representatives in the Contact sample

The synchronization scripts for the SalesRep table illustratessnapshot
synchronization. Regardless of whether a sales representative’s information
has changed, it is downloaded.

☞ For more information, see“Snapshot synchronization”[MobiLink
Administration Guide,page 50].

Business rules The business rules for the SalesRep table are as follows:

♦ The table must not be modified at the remote database.

♦ A sales representative’s MobiLink user name and rep_id value must not
change.

♦ Each remote database contains a single row from the SalesRep table,
corresponding to the remote database owner’s MobiLink user name.

Downloads ♦ download_cursor At each remote database, the SalesRep table
contains a single row. There is very little overhead for the download of a
single row, so a simple snapshotdownload_cursorscript is used:

SELECT rep_id, name
FROM SalesRep
WHERE ? IS NOT NULL
AND ml_username = ?

The first parameter in the script is the last download timestamp, which is
not used. The IS NOT NULL expression is a dummy expression supplied
to use the parameter. The second parameter is the MobiLink user name.

Uploads This table should not be updated at the remote database, so there are no
upload scripts for the table.

Synchronizing customers in the Contact sample

The synchronization scripts for the Customer table illustrate
timestamp-based synchronizationand partitioning rows. Both of these
techniques minimize the amount of data that is transferred during
synchronization while maintaining consistent table data.

☞ For more information, see“Timestamp-based synchronization”
[MobiLink Administration Guide,page 48].

91

☞ For more information, see“Partitioning rows among remote databases”
[MobiLink Administration Guide,page 52].

Business rules The business rules governing customers are as follows:

♦ Customer information can be modified at both the consolidated and
remote databases.

♦ Periodically, customers may be reassigned among sales representatives.
This process is commonly called territory realignment.

♦ Each remote database contains only the customers they are assigned to.

Downloads ♦ download_cursor The followingdownload_cursorscript downloads
only active customers for whom information has changed since the last
successful download. It also downloads only customers assigned to a
particular sales representative.

SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer key join SalesRep
WHERE Customer.last_modified >= ?
AND SalesRep.ml_username = ?
AND Customer.active = 1

♦ download_delete_cursor The followingdownload_delete_cursor
script downloads only customers for whom information has changed
since the last successful download. It deletes all customers marked as
inactive or who are not assigned to the sales representative.

SELECT cust_id
FROM Customer key join SalesRep
WHERE Customer.last_modified >= ?
AND (SalesRep.ml_username != ? OR Customer.active = 0)

If rows are deleted from the Customer table at the consolidated database,
they do not appear in this result set and so are not deleted from remote
databases. Instead, customers are marked as inactive.

When territories are realigned, this script deletes those customers no
longer assigned to the sales representative. It also deletes customers who
are transferred to other sales representatives. Such additional deletes are
flagged with a SQLCODE of 100 but do not interfere with
synchronization. A more complex script could be developed to identify
only those customers transferred away from the current sales
representative.

The MobiLink client carries out cascading deletes at the remote database,
so this script also deletes all contacts who work for customers assigned to
some other sales representative.

92

Chapter 6. The Contact Sample Application

Uploads Customer information can be inserted, updated, or deleted at the remote
database. The scripts corresponding to these operations are as follows:

♦ upload_insert The followingupload_insertscript adds a row to the
Customer table, marking the customer as active:

INSERT INTO Customer(
cust_id, name, rep_id, active)

VALUES (?, ?, ?, 1)

♦ upload_update The followingupload_updatescript modifies the
customer information at the consolidated database:

UPDATE Customer
SET name = ?, rep_id = ?
WHERE cust_id = ?

Conflict detection is not carried out on this table.

♦ upload_delete The followingupload_deletescript marks the customer
as inactive at the consolidated database. It does not delete a row.

UPDATE Customer
SET active = 0
WHERE cust_id = ?

Synchronizing contacts in the Contact sample

The Contact table contains the name of a person working at a customer
company, a foreign key to the customer and a unique integer identifying the
contact. It also contains a last_modified timestamp and a marker to indicate
whether the contact is active.

Business rules The business rules for this table are as follows:

♦ Contact information can be modified at both the consolidated and remote
databases.

♦ Each remote database contains only those contacts who work for
customers they are assigned to.

♦ When customers are reassigned among sales representatives, contacts
must also be reassigned

Trigger A trigger on the Customer table is used to ensure that the contacts get picked
up when information about a customer is changed. The trigger explicitly
alters the last_modified column of each contact whenever the corresponding
customer is altered:

93

CREATE TRIGGER UpdateCustomerForContact
AFTER UPDATE OF rep_id ORDER 1
ON DBA.Customer
REFERENCING OLD AS old_cust NEW as new_cust
FOR EACH ROW
BEGIN

UPDATE Contact
SET Contact.last_modified = new_cust.last_modified
FROM Contact
WHERE Contact.cust_id = new_cust.cust_id

END

By updating all contact records whenever a customer is modified, the trigger
ties the customer and their associated contacts together so that whenever a
customer is modified, all associated contacts are modified too, and will be
downloaded together on the next synchronization.

Downloads ♦ download_cursor Thedownload_cursorscript for Contact is as
follows:

SELECT contact_id, contact.name, contact.cust_id
FROM (contact JOIN customer) JOIN salesrep
ON contact.cust_id = customer.cust_id

AND customer.rep_id = salesrep.rep_id
WHERE Contact.last_modified >= ?

AND salesrep.ml_username = ?
AND Contact.active = 1

This script retrieves all contacts that are active, that have been changed
since the last time the sales representative downloaded (either explicitly
or by modification of the corresponding customer), and that are assigned
to the representative. A join with the Customer and SalesRep table is
needed to identify the contacts associated with this representative.

♦ download_delete_cursor Thedownload_delete_cursorfor Contact is
as follows:

SELECT contact_id
FROM (Contact JOIN Customer) JOIN SalesRep
ON Contact.cust_id = Customer.cust_id

AND Customer.rep_id = SalesRep.rep_id
WHERE Contact.last_modified >= ?

AND Contact.active = 0

The automatic use of cascading referential integrity by the MobiLink
client deletes contacts when the corresponding customer is deleted from
the remote database. Thedownload_delete_cursorscript therefore has
to delete only those contact explicitly marked as inactive.

Uploads Contact information can be inserted, updated, or deleted at the remote
database. The scripts corresponding to these operations are as follows:

94

Chapter 6. The Contact Sample Application

♦ upload_insert The followingupload_insertscript adds a row to the
Contact table, marking the contact as active:

INSERT INTO Contact (
contact_id, name, cust_id, active)

VALUES (?, ?, ?, 1)

♦ upload_update The followingupload_updatescript modifies the
contact information at the consolidated database:

UPDATE Contact
SET name = ?, cust_id = ?
WHERE contact_id = ?

Conflict detection is not carried out on this table.

♦ upload_delete The followingupload_deletescript marks the contact
as inactive at the consolidated database. It does not delete a row.

UPDATE Contact
SET active = 0
WHERE contact_id = ?

Synchronizing products in the Contact sample

The scripts for the Product table illustrate conflict detection and resolution.

The Product table is kept in a separate publication from the other tables so
that it can be downloaded separately. For example, if the price changes and
the sales representative is synchronizing over a slow link, they can download
the product changes without uploading their own customer and contact
changes.

Business rules The only change that can be made at the remote database is to change the
quantity column, when an order is taken.

Downloads ♦ download_cursor The followingdownload_cursorscript downloads
all rows changed since the last time the remote database synchronized:

SELECT id, name, size, quantity, unit_price
FROM product
WHERE last_modified >= ?
AND active = 1

♦ download_delete_cursor The followingdownload_delete_cursor
script removes all products no longer sold by the company. These
products are marked as inactive in the consolidated database.

SELECT id, name, size, quantity, unit_price
FROM product
WHERE last_modified >= ?
AND active = 0

95

Uploads Only UPDATE operations are uploaded from the remote database. The
major feature of these upload scripts is a conflict detection and resolution
procedure.

If two sales representatives take orders and then synchronize, each order is
subtracted from the quantity column of the Product table. For example, if
Sam Singer takes an order for 20 baseball hats (product ID 400), he will
change the quantity from 90 to 70. If Pam Savarino takes an order for 10
baseball hats before receiving this change, she will change the column in her
database from 90 to 80.

When Sam Singer synchronizes his changes, the quantity column in the
consolidated database is changed from 90 to 70. When Pam Savarino
synchronizes her changes, the correct action is to set the value to 60. This
setting is accomplished by detecting the conflict.

The conflict detection scheme includes the following scripts:

♦ upload_update The followingupload_updatescript is a
straightforward UPDATE at the consolidated database:

UPDATE product
SET name = ?, size = ?, quantity = ?, unit_price = ?
WHERE product.id = ?

♦ upload_fetch The followingupload_fetchscript fetches a single row
from the Product table for comparison with the old values of the uploaded
row. If the two rows differ, a conflict is detected.

SELECT id, name, size, quantity, unit_price
FROM Product
WHERE id = ?

♦ upload_old_row_insert If a conflict is detected, the old values are
placed into the product_conflict table for use by theresolve_conflict
script. The row is added with a value of O (for Old) in the row_type
column.

INSERT INTO DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)

VALUES(?, ?, ?, ?, ?, ’O’)’)

♦ upload_new_row_insert The following script adds the new values of
the uploaded row into the product_conflict table for use by the
resolve_conflictscript:

INSERT INTO DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)

VALUES(?, ?, ?, ?, ?, ’N’)

96

Chapter 6. The Contact Sample Application

Conflict resolution ♦ resolve_conflict The following script resolves the conflict by adding
the difference between new and old rows to the quantity value in the
consolidated database:

UPDATE Product
SET p.quantity = p.quantity

- old_row.quantity
+ new_row.quantity

FROM Product p,
DBA.product_conflict old_row,
DBA.product_conflict new_row

WHERE p.id = old_row.id
AND p.id = new_row.id
AND old_row.row_type = ’O’
AND new_row.row_type = ’N’

97

Monitoring statistics and errors in the Contact
sample

The Contact sample contains some simple error reporting and monitoring
scripts. The SQL statements to create these scripts are in the file
Samples\MobiLink\Contact\mlmaint.sql.

The scripts insert rows into tables created to hold the values. For
convenience, the tables are owned by a distinct user, mlmaint.

98

CHAPTER 7

The CustDB Sample Application

About this chapter This chapter uses the CustDB sample application to illustrate a variety of
techniques that you can use for common synchronization tasks.

The techniques are illustrated using SQL scripts and Java synchronization
logic. Many of the same techniques can be implemented using .NET
synchronization logic.

Contents Topic: page

Introduction 100

Setup 102

Tables in the CustDB databases 109

Users in the CustDB sample 112

Synchronization 113

Maintaining the customer and order primary key pools 117

Further reading 119

99

Introduction
This chapter introduces you to the CustDB (Customer Database) MobiLink
sample application. CustDB is a sales-status application.

The CustDB sample is a valuable resource for the MobiLink developer. It
provides you with examples of how to implement many of the techniques
you will need to develop MobiLink applications.

The application has been designed to illustrate several common
synchronization techniques. To get the most out of this chapter, you should
study the sample application as you read.

A version of CustDB is supplied for each supported operating system and
for each supported database type.

☞ For the locations of CustDB and setup instructions, see“Setting up the
CustDB consolidated database” on page 102.

Following is the schema of CustDB:

ULOrderIDPool

pool_order_id
 integer

pool_emp_id
 integer

last_modified
 timestamp

ULCustomer

cust_id

integer

cust_name varchar(30)

last_modified

 timestamp

ULProduct

prod_id

integer

price
 integer

prod_name varchar(30)

ULOrder

order_id

integer

cust_id
 integer

prod_id
 integer

emp_id
 integer

disc
 integer

quant
 integer

notes
 varchar(50)

status
 varchar(20)

last_modified timestamp

ULEmployee

emp_id

integer

emp_name varchar(30)

last_download timestamp

ULEmpCust

emp_id

integer

cust_id

integer

action
 char(1)

last_modified timestamp

ULCustomerIDPool

pool_cust_id

integer

pool_emp_id
 integer

last_modified
 timestamp

ULIdentifyEmployee

emp_id
 integer
cust_id = cust_id

emp_id = emp_id

emp_id = emp_id

emp_id = pool_emp_id

prod_id = prod_id

cust_id = cust_id

emp_id = pool_emp_id

Scenario The CustDB scenario is as follows.

A consolidated database is located at the head office. The following data is
stored in the consolidated database:

♦ The MobiLink system tables that hold the synchronization metadata.

♦ The synchronization scripts that implement synchronization logic.

♦ The CustDB data, including all customer, product, and order information,
stored in the rows of base tables.

100

Chapter 7. The CustDB Sample Application

There are two types of remote databases, mobile managers and sales
representatives.

Each mobile sales representative’s database contains all products but only
those orders assigned to that sales representative, while a mobile manager’s
database contains all products and orders.

Synchronization design The synchronization design in the CustDB sample application uses the
following features:

♦ Complete table downloads All rows and columns of the ULProduct
table are shared in their entirety with the remote databases.

♦ Column subsets All rows, but not all columns, of the ULCustomer
table are shared with the remote databases.

♦ Row subsets Different remote users get different sets of rows from the
ULOrder table.

☞ For more information about row subsets, see“Partitioning rows
among remote databases”[MobiLink Administration Guide,page 52].

♦ Timestamp-based synchronization This is a way of identifying
changes that were made to the consolidated database since the last time a
device synchronized. The ULCustomer and ULOrder tables are
synchronized using a method based on timestamps.

☞ For more information, see“Timestamp-based synchronization”
[MobiLink Administration Guide,page 48].

♦ Snapshot synchronization This is a simple method of synchronization
that downloads all rows in every synchronization. The ULProduct table is
synchronized in this way.

☞ For more information, see“Snapshot synchronization”[MobiLink
Administration Guide,page 50].

♦ Primary key pools to maintain unique primary keys It is essential to
ensure that primary key values are unique across a complete MobiLink
installation. The primary key pool method used in this application is one
way of ensuring unique primary keys.

☞ For more information, see“Maintaining unique primary keys using
key pools”[MobiLink Administration Guide,page 60].

☞ For other ways to ensure that primary keys are unique, see
“Maintaining unique primary keys”[MobiLink Administration Guide,
page 56].

101

Setup
This section describes the pieces that make up the code for the CustDB
sample application and database. These include:

♦ The sample SQL scripts, located in theSamples\MobiLink\CustDB
subdirectory of your SQL Anywhere installation.

♦ The application code, located inSamples\UltraLite\CustDB.

♦ Platform-specific user interface code, located in subdirectories of
Samples\UltraLite\CustDBnamed for each operating system.

Setting up the CustDB consolidated database

The consolidated database may be Adaptive Server Anywhere, Sybase
Adaptive Server Enterprise, Microsoft SQL Server, Oracle, or IBM DB2.

The following SQL scripts are provided in theSamples\MobiLink\CustDB
subdirectory of your SQL Anywhere 9 installation to build the consolidated
database on any of these platforms:

♦ For an Adaptive Server Anywhere database, the file iscustdb.sql.

♦ For an IBM DB2 database, the file iscustdb2.sql.

♦ For an Adaptive Server Enterprise database, the file iscustase.sql.

♦ For a Microsoft SQL Server database, the file iscustmss.sql.

♦ For an Oracle database, the file iscustora.sql.

Creating a consolidated database

The following procedures create a consolidated database for CustDB for
each of the supported types of consolidated database.

For databases other than Adaptive Server Anywhere databases, you will first
need to run a script to add the MobiLink system tables. This
platform-specific script is located in theMobiLink\setupsubdirectory of
your SQL Anywhere 9 installation.

☞ For more information about preparing a database for use as a
consolidated database, see“Setting up a consolidated database”[MobiLink
Administration Guide,page 33].

102

Chapter 7. The CustDB Sample Application

❖ To set up a consolidated database (Adaptive Server Enterprise,
Oracle or SQL Server)

1. Create the consolidated database.

2. Add the MobiLink system tables by running one of the following SQL
scripts, located in theMobiLink\setupsubdirectory of your
SQL Anywhere 9 installation:

♦ For an Adaptive Server Enterprise consolidated database prior to
version 12.5, runsyncase.sql. Otherwise, runsyncase125.sql.

♦ For an Oracle consolidated database, runsyncora.sql.

♦ For a SQL Server consolidated database, runsyncmss.sql.

3. Add tables to the CustDB database by running one of the following SQL
scripts, located in theSamples\MobiLink\CustDBsubdirectory of your
SQL Anywhere 9 installation:

♦ For an Adaptive Server Enterprise consolidated database, run
custase.sql.

♦ For an Oracle consolidated database, runcustora.sql.

♦ For a SQL Server consolidated database, runcustmss.sql.

4. Create an ODBC data source called CustDB that references your
database on the client machine.

♦ Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤
Adaptive Server Anywhere➤ ODBC Administrator.

♦ Click Add.

♦ Select the appropriate driver from the list.

Click Finish.

♦ Name the ODBC data source CustDB.

♦ Click the Login tab. Enter the user ID and password for your database.

❖ To set up a consolidated database (Adaptive Server Anywhere)

1. Create the consolidated database:

Navigate to theSamples\MobiLink\CustDBsubdirectory of your
SQL Anywhere 9 installation and run the following command line:

dbinit consol.db

2. Add tables to the CustDB database by runningcustdb.sql, located in the
Samples\MobiLink\CustDBsubdirectory of your SQL Anywhere 9
installation.

103

♦ Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤ Sybase
Central.

♦ In the right pane of Sybase Central, right-click
Adaptive Server Anywhere 9 and connect to the consolidated database
you have created. The default user ID and password are DBA and SQL.

♦ In the right pane, right-click the consolidated database and select Open
Interactive SQL from the popup menu.

♦ In Interactive SQL, select File➤ Run Script. Browse tocustdb.sql.
Click Open.

♦ Close Interactive SQL.

3. Create an ODBC data source called CustDB that references your
database on the client machine.

♦ In Sybase Central, select Tools➤ Adaptive Server Anywhere 9➤
Open ODBC Administrator.

♦ Click Add.

♦ Select Adaptive Server Anywhere 9.0 Driver. Click Finish.

♦ Name the ODBC data source CustDB.

♦ Click the Login tab. Enter the user ID and password for your database.
The default values are DBA and SQL.

♦ Click the Database tab. Browse to the location of your database file.

❖ To set up a consolidated database (IBM DB2)

1. Create a DB2 database on the DB2 server. Ensure that the default table
space (usually called USERSPACE1) uses 8 Kb pages.

If the default table space does not use 8 Kb pages, complete the following
steps:

♦ Verify that at least one of your buffer pools has 8 Kb pages. If not,
create a buffer pool with 8 Kb pages.

♦ Create a new table space and temporary table space with 8 Kb pages.
For more information, consult your DB2 documentation.

2. Add the MobiLink system tables using the file
MobiLink\setup\syncdb2long.sql.

♦ Change the connect command insyncdb2long.sql. Replace
DB2Databasewith the name of your ODBC data source. In this
example, the ODBC data source is CustDB. You could also add the
user name and password as follows. Replaceuseridandpasswordwith
your user name and password.

connect to DB2Database user userid using password ~

104

Chapter 7. The CustDB Sample Application

♦ Open a DB2 Command Window on either the server or client
computer. Runsyncdb2long.sqlby typing the following command:

db2 -c -ec -td~ +s -v -f syncdb2long.sql

3. In order for DB2 to use the stored procedures defined insyncdb2long.sql,
you must copy thesyncdb2long_versionJava and class files located in
theMobiLink\setupsubdirectory of your SQL Anywhere installation to
theFUNCTION subdirectory of your DB2 installation.

4. Copycustdb2.classlocated in theSamples\MobiLink\CustDB
subdirectory of your SQL Anywhere installation to the
SQLLIB\FUNCTION directory on your DB2 server machine. This class
contains procedures used for the CustDB sample.

5. Add tables to the CustDB database:

♦ If necessary, change the connect command incustdb2.sql. For
example, you could add the user name and password as follows.
Replaceuseridandpasswordwith your user name and password.

connect to CustDB user userid using password

♦ Open a DB2 Command Window on either the server or client
computer. Runcustdb2.sqlby typing the following command:

db2 -c -ec -td~ +s -v -f custdb2.sql

♦ When processing is complete, enter the following command to close
the command window:

exit

6. Create an ODBC data source called CustDB that references the DB2
database on the DB2 client machine.

♦ Start the ODBC Administrator:

From the Start menu, choose Programs➤ SQL Anywhere 9➤

Adaptive Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator appears.

♦ On the User DSN tab, click Add.

The Create New Data Source dialog appears.

♦ Select iAnywhere Solutions 9 - DB2 Wire Protocol and click Finish.

The ODBC DB2 Wire Protocol Driver Setup dialog appears.

♦ On the General tab, type the Data Source Namedb2_consolidatedand
enter the appropriate Ip Address, and Tcp port. For the IBM DB2
sample database use SAMPLE for the database name.

105

♦ On the Bind tab, click Create Package. Enter the Username and
Password for your IBM DB2 instance.

♦ Click OK.

7. Run thecustdb2setuplongJava application on the DB2 client machine as
follows. This application resets the CustDB example in the DB2
database. After the initial setup, you can run this application at any time
to reset the DB2 CustDB database by typing the same command line.

♦ If you use a name other than CustDB for the data source, you must
modify the connection code incustdb2setuplong.javaand recompile it
as follows. If the path specified by the system variable%db2tempdir%
contains spaces, you must enclose the path in quotation marks.

javac -g -classpath %db2tempdir% \java \jdk \lib \
classes.zip;

%db2tempdir% \java \db2java.zip;
%db2tempdir% \java \runtime.zip custdb2setuplong.java

♦ Type the following, whereuseridandpasswordare the user name and
password for connecting to the CustDB ODBC data source.

java custdb2setuplong userid password

Setting up an UltraLite remote database

The following procedure creates a remote database for CustDB. The CustDB
remote database must be an UltraLite database.

The application logic for the remote database is located in the
Samples\UltraLite\CustDBsubdirectory of your SQL Anywhere 9
installation. It includes the following files:

♦ Embedded SQL logic The filecustdb.sqccontains the SQL statements
needed to query and modify information from the UltraLite database and
the calls required to start synchronization with the consolidated database.

♦ C++ API logic The filecustdbapi.cppcontains the C++ API logic.

♦ User-interface features These features are stored separately, in
platform-specific subdirectories ofSamples\UltraLite\CustDB.

You will complete the following steps in order to install the sample
application to a remote device that is running UltraLite:

106

Chapter 7. The CustDB Sample Application

❖ To install the sample application to a remote device

1. Start the consolidated database.

2. Start the MobiLink synchronization server.

3. Install the sample application to your remote device.

4. Start the sample application on the remote device.

5. Synchronize the sample application.

Example The following example installs the CustDB sample on a Palm device
running against a DB2 consolidated database.

1. Ensure that the consolidated database is running:

♦ For a DB2 database, open a DB2 Command Window and run the
following command line, whereuseridandpasswordare the user ID
and password for connecting to the DB2 database:

db2 connect to CustDB user userid using password

2. Start the MobiLink synchronization server:

♦ For a DB2 database, run the following command at a command
prompt:

dbmlsrv9 -c "DSN=CustDB" -zp

3. Install the sample application to your Palm device:

♦ On your PC, start Palm Desktop.

♦ Click Quick Install on the Palm Desktop toolbar.

♦ Click Add. Browse tocustdb.prcin theUltraLite\palm\68k
subdirectory of your SQL Anywhere 9 installation.

♦ Click Open.

♦ HotSync your Palm device.

4. Start the CustDB sample application on your Palm device:

♦ Place your Palm device in its cradle.

When you start the sample application for the first time, you are
prompted to synchronize to download an initial copy of the data. This
step is required only the first time you start the application. After that,
the downloaded data is stored in the UltraLite database.

♦ Launch the sample application.

From the Applications view, tap CustDB.

An initial dialog appears, prompting you for an employee ID.

107

♦ Enter an employee ID.

For the purpose of this tutorial, enter a value of 50. The sample
application also allows values of 51, 52, or 53, but behaves slightly
differently in these cases.

☞ For more information about the behavior of each user ID, see
“Users in the CustDB sample” on page 112.

A message box tells you that you must synchronize before proceeding.

♦ Synchronize your application.

Use HotSync to obtain an initial copy of the data.

♦ Confirm that the data has been synchronized into the application.

From the Applications view, tap the CustDB application. The display
shows an entry sheet for a customer, with entries.

5. Synchronize the remote application with the consolidated database. You
will only need to complete this step when you have made changes to the
database.

♦ Ensure that the consolidated database and the MobiLink
synchronization server are running.

♦ Place the Palm device in its cradle.

♦ Press the HotSync button to synchronize.

Clean up You may want to reset the data in the CustDB database in order to restart the
sample. To revert the data in the CustDB UltraLite database to its original
state, complete the following steps.

❖ To reset the data in the sample application

1. Install the ULUtil on your device:

♦ For a Palm device, start Palm Desktop on your PC.

♦ Click Install on the Palm Desktop toolbar.

♦ Click Add. Browse toulutil.prc in theUltraLite\palm\68k
subdirectory of your SQL Anywhere 9 installation.

♦ Click Done.

♦ HotSync your Palm device.

2. Delete the data using ULUtil:

♦ For a Palm device, tap the ULUtil icon.

♦ Select CustDB and tap Delete Data.

♦ HotSync your Palm device.

108

Chapter 7. The CustDB Sample Application

Tables in the CustDB databases
The table definitions for the CustDB database are in platform-specific files in
theSamples\MobiLink\CustDBsubdirectory of your SQL Anywhere 9
installation.

Both the consolidated and the remote databases contain the following five
tables, although their definitions are slightly different in each location.

ULCustomer The ULCustomer table contains a list of customers.

In the remote database, ULCustomer has the following columns:

♦ cust_id A primary key column that holds a unique integer identifying
the customer.

♦ cust_name A 30-character string containing the name of the customer.

In the consolidated database, ULCustomer has the following additional
column:

♦ last_modified A timestamp containing the last time the row was
modified. This column is used for timestamp-based synchronization.

ULProduct The ULProduct table contains a list of products.

In the both the remote and consolidated databases, ULProduct has the
following columns:

♦ prod_id A primary key column that holds a unique integer identifying
the product.

♦ price An integer identifying the unit price.

♦ prod_name A 30-character string containing the name of the product.

ULOrder The ULOrder table contains a list of orders, including details of the
customer who placed the order, the employee who took the order, and the
product being ordered.

In the remote database, ULOrder has the following columns:

♦ order_id A primary key column that holds a unique integer identifying
the order.

♦ cust_id A foreign key column referencing ULCustomer.

♦ prod_id A foreign key column referencing ULProduct.

♦ emp_id A foreign key column referencing ULEmployee.

♦ disc An integer containing the discount applied to the order.

109

♦ quant An integer containing the number of products ordered.

♦ notes A 50-character string containing notes about the order.

♦ status A 20-character string describing the status of the order.

In the consolidated database, ULOrder has the following additional column:

♦ last_modified A timestamp containing the last time the row was
modified. This column is used for timestamp-based synchronization.

ULOrderIDPool The ULOrderIDPool table is a primary key pool for ULOrder.

In the remote database, ULOrderIDPool has the following column:

♦ pool_order_id A primary key column that holds a unique integer
identifying the order ID.

In the consolidated database, ULOrderIDPool has the following additional
columns:

♦ pool_emp_id An integer column containing the employee ID of the
owner of the remote database to which the order ID has been assigned.

♦ last_modified A timestamp containing the last time the row was
modified.

ULCustomerIDPool The ULCustomerIDPool table is a primary key pool for ULCustomer.

In the remote database, ULCustomerIDPool has the following column:

♦ pool_cust_id A primary key column that holds a unique integer
identifying the customer ID.

In the consolidated database, ULCustomerIDPool has the following
additional columns:

♦ pool_emp_id An integer column containing the employee ID that will
be used for a new employee generated at a remote database.

♦ last_modified A timestamp containing the last time the row was
modified.

The following tables are contained in the consolidated database only:

ULIdentifyEmployee_-
nosync

The ULIdentifyEmployee_nosync table exists only in the consolidated
database. It has a single column as follows:

♦ emp_id This primary key column contains an integer representing an
employee ID.

110

Chapter 7. The CustDB Sample Application

ULEmployee The ULEmployee table exists only in the consolidated database. It contains
a list of sales employees.

ULEmployee has the following columns:

♦ emp_id A primary key column that holds a unique integer identifying
the employee.

♦ emp_name A 30-character string containing the name of the employee.

ULEmpCust The ULEmpCust table controls which customers’ orders will be
downloaded. If the employee needs a new customer’s orders, inserting the
employee ID and customer ID will force the orders for that customer to be
downloaded.

♦ emp_id A foreign key to ULEmployee.emp_id.

♦ cust_id A foreign key to ULCustomer.cust_id. The primary key
consists of emp_id and cust_id.

♦ action A character used to determine if an employee record should be
deleted from the remote database. If the employee no longer requires a
customer’s orders, set to D (delete). If the orders are still required, the
action should be set to NULL.

A logical delete must be used in this case so that the consolidated
database can identify which rows to remove from the ULOrder table.
Once the deletes have been downloaded, all records for that employee
with an action of D can also be removed from the consolidated database.

♦ last_modified A timestamp containing the last time the row was
modified. This column is used for timestamp-based synchronization.

ULOldOrder and
ULNewOrder

These tables exists only in the consolidated database. They are for conflict
resolution and contain the same columns as ULOrder. In Adaptive Server
Anywhere and Microsoft SQL Server these are temporary tables. In
Adaptive Server Enterprise, these are normal tables and @@spid. DB2 and
Oracle do not have temporary tables, so MobiLink needs to be able to
identify which rows belong to the synchronizing user. Since these are base
tables, if five users are synchronizing, they might each have a row in these
tables at the same time.

☞ For more information about @@spid, see“Variables” [ASA SQL
Reference,page 38].

111

Users in the CustDB sample
There are two types of users in the CustDB sample, sales people and mobile
managers. The differences are as follows:

♦ Sales people User IDs 51, 52, and 53 identify remote databases that
are associated with sales people. Sales people can carry out the following
tasks:

• View lists of customers and products.

• Add new customers.

• Add or delete orders.

• Scroll through the list of outstanding orders.

• Accept or deny orders.

• Synchronize changes with the consolidated database.

♦ Mobile managers User ID 50 identifies the remote database associated
with the mobile manager. The mobile manager can perform the same
tasks as a sales person. In addition, the mobile manager can do the
following:

• Accept or deny orders.

112

Chapter 7. The CustDB Sample Application

Synchronization
The following sections describe the CustDB sample’s synchronization logic.

Synchronization logic source code

You can use Sybase Central to inspect the synchronization scripts in the
consolidated database.

Script types and events Thecustdb.sqlfile adds each synchronization script to the consolidated
database by calling ml_add_connection_script or ml_add_table_script.

Example The following lines incustdb.sqladd a table-level script for the ULProduct
table, which is executed during the download_cursor event. The script
consists of a single SELECT statement.

call ml_add_table_script(
’CustDB’,
’ULProduct’, ’download_cursor’,
’SELECT prod_id, price, prod_name FROM ULProduct’)
go

Synchronizing orders in the CustDB sample

Business rules The business rules for the ULOrder table are as follows:

♦ Orders are downloaded only if they they are not approved or the status is
null.

♦ Orders can modified at both the consolidated and remote databases.

♦ Each remote database contains only the orders assigned to an employee.

Downloads Orders can be inserted, deleted or updated at the consolidated database. The
scripts corresponding to these operations are as follows:

♦ download_cursor The first parameter in thedownload_cursorscript
is the last download timestamp. It is used to ensure that only rows that
have been modified on either the remote or the consolidated database
since the last synchronization are downloaded. The second parameter is
the employee ID. It is used to determine which rows to download.

Thedownload_cursorscript for CustDB is as follows:

CALL ULOrderDownload(?, ?)

TheULOrderDownload procedure for CustDB is as follows:

113

ALTER PROCEDURE ULOrderDownload (IN LastDownload timestamp,
IN EmployeeID integer)

BEGIN
SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc,

o.quant, o.notes, o.status
FROM ULOrder o, ULEmpCust ec
WHERE o.cust_id = ec.cust_id
AND ec.emp_id = EmployeeID
AND (o.last_modified >= LastDownload
OR ec.last_modified >= LastDownload)
AND (o.status IS NULL OR o.status != ’Approved’)
AND (ec.action IS NULL)

END

♦ download_delete_cursor Thedownload_delete_cursorscript for
CustDB is as follows:

SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc,
o.quant, o.notes, o.status

FROM ULOrder o, ULEmpCust ec
WHERE o.cust_id = ec.cust_id
AND ((o.status = ’Approved’ AND o.last_modified >= ?)
OR (ec.action = ’D’))
AND ec.emp_id = ?

Uploads Orders can be inserted, deleted or updated at the remote database. The
scripts corresponding to these operations are as follows:

♦ upload_insert Theupload_insertscript for CustDB is as follows:

INSERT INTO "ULOrder" ("order_id", "cust_id", "prod_id",
"disc", "quant", "notes", "status")

VALUES (?, ?, ?, ?, ?, ?, ?)

♦ upload_update Theupload_updatescript for CustDB is as follows:

UPDATE ULOrder SET cust_id=?, prod_id=?, emp_id=?, disc=?,
quant=?, notes=?, status=?

WHERE order_id = ?

♦ upload_delete Theupload_deletescript for CustDB is as follows:

DELETE FROM "ULOrder" WHERE "order_id" = ?

♦ upload_fetch Theupload_fetchscript for CustDB is as follows:

SELECT order_id, cust_id, prod_id, emp_id, disc, quant, notes,
status

FROM ULOrder WHERE order_id = ?

♦ upload_old_row_insert Theupload_old_row_insertscript for
CustDB is as follows:

114

Chapter 7. The CustDB Sample Application

INSERT INTO ULOldOrder (order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status)

VALUES(?, ?, ?, ?, ?, ?, ?, ?)

♦ upload_new_row_insert Theupload_new_row_insertscript for
CustDB is as follows:

INSERT INTO ULNewOrder (order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status)

VALUES(?, ?, ?, ?, ?, ?, ?, ?)

Conflict resolution ♦ resolve_conflict Theresolve_conflictscript for CustDB is as follows:

CALL ULResolveOrderConflict

TheULResolveOrderConflict procedure for CustDB is as follows:

ALTER PROCEDURE ULResolveOrderConflict()
BEGIN

-- approval overrides denial
IF ’Approved’ = (SELECT status FROM ULNewOrder) THEN

UPDATE ULOrder o
SET o.status = n.status, o.notes = n.notes
FROM ULNewOrder n
WHERE o.order_id = n.order_id;

END IF;
DELETE FROM ULOldOrder;
DELETE FROM ULNewOrder;

END

Synchronizing customers in the CustDB sample

Business rules The business rules governing customers are as follows:

♦ Customer information can be modified at both the consolidated and
remote databases.

♦ Both the remote and consolidated databases contain a complete listing of
customers.

Downloads Customer information can be inserted or updated at the consolidated
database. The script corresponding to these operations is as follows:

♦ download_cursor The followingdownload_cursorscript downloads
all customers for whom information has changed since the last time the
user downloaded information.

SELECT cust_id, cust_name FROM ULCustomer WHERE last_modified >=
?

Uploads Customer information can be inserted, updated, or deleted at the remote
database. The scripts corresponding to these operations are as follows:

115

♦ upload_insert Theupload_insertscript for CustDB is as follows:

INSERT INTO ULCustomer (cust_id, cust_name) VALUES (?, ?
)

♦ upload_update Theupload_updatescript for CustDB is as follows:

UPDATE ULCustomer SET cust_name = ?
WHERE "cust_id" = ?

Conflict detection is not carried out on this table.

♦ upload_delete Theupload_deletescript for CustDB is as follows:

DELETE FROM ULCustomer WHERE cust_id = ?

Synchronizing products in the CustDB sample

Business rules The business rules for the ULProduct table are as follows:

♦ Products can only be modified at the consolidated database.

♦ Each remote database contains all of the products.

Downloads Product information can be inserted, deleted, or updated at the consolidated
database. The script corresponding to these operations is as follows:

♦ download_cursor The followingdownload_cursorscript downloads
all of the rows and columns of the ULProduct table at each
synchronization:

SELECT prod_id, price, prod_name FROM ULProduct

116

Chapter 7. The CustDB Sample Application

Maintaining the customer and order primary key
pools

The CustDB sample database uses primary key pools in order to maintain
unique primary keys in the ULCustomer and ULOrder tables. The primary
key pools are the ULCustomerIDPool and ULOrderIDPool tables.

ULCustomerIDPool

The following scripts are defined in the ULCustomerIDPool table:

Downloads ♦ download_cursor Thedownload_cursorscript for CustDB is as
follows:

SELECT pool_cust_id FROM ULCustomerIDPool
WHERE last_modified >= ?

AND pool_emp_id = ?

Uploads ♦ upload_insert Theupload_insertscript for CustDB is as follows:

INSERT INTO ULCustomerIDPool (pool_cust_id) VALUES(?)

♦ upload_delete Theupload_deletescript for CustDB is as follows:

DELETE FROM ULCustomerIDPool WHERE pool_cust_id = ?

♦ end_upload This end_uploadscript ensures that after each upload 20
customer IDs remain in the customer ID pool:

CALL ULCustomerIDPool_maintain(?)

TheUL_CustomerIDPool_maintain procedure for CustDB is as
follows:

ALTER PROCEDURE ULCustomerIDPool_maintain (IN syncuser_id
INTEGER)

BEGIN
DECLARE pool_count INTEGER;
-- Determine how many ids to add to the pool
SELECT COUNT(*) INTO pool_count

FROM ULCustomerIDPool
WHERE pool_emp_id = syncuser_id;

-- Top up the pool with new ids
WHILE pool_count < 20 LOOP

INSERT INTO ULCustomerIDPool (pool_emp_id)
VALUES (syncuser_id);

SET pool_count = pool_count + 1;
END LOOP;

END

117

ULOrderIDPool

The following scripts are defined in the ULOrderIDPool table:

Downloads ♦ download_cursor Thedownload_cursorscript for CustDB is as
follows:

SELECT pool_order_id FROM ULOrderIDPool
WHERE last_modified >= ?

AND pool_emp_id = ?

Uploads ♦ end_upload This end_uploadscript ensures that after each upload 20
order IDs remain in the order ID pool.

CALL ULOrderIDPool_maintain(?)

TheUL_OrderIDPool_maintain procedure for CustDB is as follows:

ALTER PROCEDURE ULOrderIDPool_maintain (IN syncuser_id
INTEGER)

BEGIN
DECLARE pool_count INTEGER;
-- Determine how many ids to add to the pool
SELECT COUNT(*) INTO pool_count

FROM ULOrderIDPool
WHERE pool_emp_id = syncuser_id;

-- Top up the pool with new ids
WHILE pool_count < 20 LOOP

INSERT INTO ULOrderIDPool (pool_emp_id)
VALUES (syncuser_id);

SET pool_count = pool_count + 1;
END LOOP;

END

♦ upload_insert Theupload_insertscript for CustDB is as follows:

INSERT INTO ULOrderIDPool (pool_order_id) VALUES(?)

♦ upload_delete Theupload_deletescript for CustDB is as follows:

DELETE FROM ULOrderIDPool WHERE pool_order_id = ?

118

Chapter 7. The CustDB Sample Application

Further reading
The following documentation sections are good starting points for further
reading:

☞ For more information about script types, see“Script types”[MobiLink
Administration Guide,page 236].

☞ For reference material, including detailed information about each script
and its parameters, see“Synchronization Events”[MobiLink Administration
Guide,page 319].

119

120

Index

A
add version wizard

using 22

C
client event-hook procedures see alsoevent hooks
conflict resolution

Contact sample 95
CustDB sample 116

Contact MobiLink sample
about 84
building 85
Contact table 93
Customer table 91
monitoring statistics 98
Product table 95
running 85
SalesRep table 91
tables 87
users 90

conventions
documentation viii

create database wizard
using 15

custase.sql
location 102

CustDB application
DB2 102
MobiLink sample application 99
synchronization scripts 102

CustDB MobiLink sample
tables 109
ULCustomer table 115
ULOrder table 113
ULProduct table 116
users 112

custdb.sqc
location 106

custdb.sql
location 102

custmss.sql

location 102
custora.sql

location 102

D
DB2

CustDB tutorial 102
documentation

conventions viii
SQL Anywhere Studio vi

F
feedback

documentation xi
providing xi

H
hooks see alsoevent hooks

I
IBM DB2

CustDB tutorial 102
icons

used in manuals x

J
Java

synchronization scripts tutorial 51

L
log files

MobiLink 26

M
MobiLink

Java tutorial 51
MobiLink Custdb tutorial 99
.NET tutorial 65
Oracle tutorial 39

121

Index

Sybase Central tutorial 13
Tutorial - MobiLink sample applications 83
Using ASA tutorial 1

MobiLink synchronization
custdb sample database 99
Java tutorial 51
.NET tutorial 65

MobiLink synchronization client
tutorial 8

MobiLink synchronization logic
Java tutorial 51
.NET tutorial 65

MobiLink synchronization server
tutorial 6

N
.NET

MobiLink tutorial 65
newsgroups

technical support xi

O
Oracle

MobiLink tutorial 39

S
sample application

MobiLink CustDB application 99
sample database

MobiLink CustDB application 99
samples

Contact MobiLink sample 84
MobiLink CustDB application 99

schemas
CustDB sample database 100

SQL Anywhere Studio
documentation vi

support
newsgroups xi

synchronization
Java tutorial 51
MobiLink Oracle tutorial 39
MobiLink Sybase Central tutorial 13
MobiLink tutorial 1

synchronization scripts
Java tutorial 51

.NET tutorial 65
synchronization subscriptionssee alsosubscriptions
synchronization techniques

custdb sample application 99
MobiLink Contact sample tutorial 83

syncora.sql
using 43

T
technical support

newsgroups xi
tutorials

MobiLink Contact sample 83
MobiLink custdb sample 99
MobiLink Java logic 51
MobiLink .NET logic 65
MobiLink with ASA clients 1
MobiLink with Oracle 39
Monitoring MobiLink scripts and conflict

resolution 13

U
upload_delete

Contact sample 95
CustDB sample 116

W
wizards

add version 22
writing synchronization scripts in Java

tutorial 51
writing synchronization scripts in .NET

tutorial 65

122

	MobiLink Tutorials
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	Finding out more and providing feedback

	Tutorial: Introduction to MobiLink
	Introduction
	Lesson 1: Creating and populating your databases
	Lesson 2: Running the MobiLink synchronization server
	Lesson 3: Running the MobiLink synchronization client
	Cleanup
	Summary
	Further reading

	Tutorial: Writing MobiLink Scripts and Monitoring Synchronizations
	Introduction
	Lesson 1: Set up the Adaptive Server Anywhere consolidated database
	Lesson 2: Set up the remote Adaptive Server Anywhere databases
	Lesson 3: Creating scripts for your synchronization
	Lesson 4: Run MobiLink synchronization
	Lesson 5: Monitoring your MobiLink synchronization using log files
	Lesson 6: Creating scripts for conflict detection and resolution
	Lesson 7: Use the MobiLink Monitor to detect update conflicts
	Tutorial cleanup
	Further reading

	Tutorial: Using MobiLink with an Oracle 8i Consolidated Database
	Introduction
	Lesson 1: Create your databases
	SQL files
	ODBC data sources
	MobiLink system tables
	Databases

	Lesson 2: Running the MobiLink synchronization server
	Lesson 3: Running the MobiLink synchronization client
	Summary
	Further reading

	Tutorial: Java Synchronization Logic With Adaptive Server Anywhere
	Introduction
	Lesson 1: Compiling the CustdbScripts Java class
	The CustdbScripts class
	Compiling the Java class

	Lesson 2: Specifying class methods for events
	Lesson 3: Run the MobiLink server with -sl java
	Lesson 4: Test synchronization
	Start the application (Windows)
	Add an order (Windows)

	Cleanup
	Further reading

	Tutorial: .NET Synchronization Logic With Adaptive Server Anywhere
	Introduction
	Lesson 1: Compile the CustdbScripts.dll assembly with MobiLink references
	The CustdbScripts assembly

	Lesson 2: Specify class methods for events
	Lesson 3: Run MobiLink with -sl dnet
	Lesson 4: Test synchronization
	Start the application (Windows)
	Add an order (Windows)

	Cleanup
	Further reading

	The Contact Sample Application
	Introduction
	Setup
	Running the Contact sample

	Tables in the Contact databases
	Users in the Contact sample
	Synchronization
	Synchronizing sales representatives in the Contact sample
	Synchronizing customers in the Contact sample
	Synchronizing contacts in the Contact sample
	Synchronizing products in the Contact sample

	Monitoring statistics and errors in the Contact sample

	The CustDB Sample Application
	Introduction
	Setup
	Setting up the CustDB consolidated database
	Creating a consolidated database

	Setting up an UltraLite remote database

	Tables in the CustDB databases
	Users in the CustDB sample
	Synchronization
	Synchronization logic source code
	Synchronizing orders in the CustDB sample
	Synchronizing customers in the CustDB sample
	Synchronizing products in the CustDB sample

	Maintaining the customer and order primary key pools
	ULCustomerIDPool
	ULOrderIDPool

	Further reading

	Index

