
MobiLink Server-Initiated
Synchronization User’s

Guide

Part number: DC20056-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001
Certicom Corp. Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All
rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028;
4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual v
SQL Anywhere Studio documentation vi
Documentation conventions ix
Finding out more and providing feedback xi

1 Introducing Server-Initiated Synchronization 1
Introduction to server-initiated synchronization 2
Components of server-initiated synchronization 4
Supported platforms . 6
Deployment considerations 7
Quick start . 8

2 Setting Up Server-Initiated Synchronization 9
Push requests . 10
Setting properties . 15
Notifiers . 18
Gateways and carriers . 20
Device tracking . 22
Listeners . 28

3 The Listener 37
The Listener utility . 38

4 Listeners for Palm Devices 49
Palm Listener utilities . 50

5 MobiLink Notification Properties 55
Common properties . 56
Notifier properties . 57
Device tracker gateway properties 68
SMTP gateway properties . 70
UDP gateway properties . 72
Carrier properties . 74

6 Server-Initiated Synchronization Stored Procedures 77
ml_delete_device . 78
ml_delete_device_address 79
ml_delete_listening . 80
ml_set_device . 81

iii

ml_set_device_address . 83
ml_set_listening . 85

7 MobiLink Listener SDKs 87
Introduction . 88
Listener SDK for Windows . 90
Listener SDK for Palm . 114

8 Tutorial: Server-Initiated Synchronization 129
Server-initiated synchronization using the car dealer sample 130
Lesson 1: Set up the consolidated database 132
Lesson 2: Create a push request table 134
Lesson 3: Configure the Notifier 135
Lesson 4: Configure gateways and carriers 139
Lesson 5: Define an ODBC data source 140
Lesson 6: Start the MobiLink server 141
Lesson 7: Set up a remote database 143
Lesson 8: Configure the Listener 145
Lesson 9: Issue push requests 147

Index 149

iv

About This Manual

Subject This manual describes MobiLink server-initiated synchronization, a feature
of MobiLink that allows you to initiate synchronization or other remote
actions from the consolidated database.

Audience This manual is for MobiLink users who wish to use this advanced feature.

Before you begin ☞ For more information about MobiLink, see“Introducing MobiLink
Synchronization”[MobiLink Administration Guide,page 3].

v

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere SNMP Extension Agent User’s Guide
This book describes how to configure the Adaptive Server Anywhere
SNMP Extension Agent for use with SNMP management applications to
manage Adaptive Server Anywhere databases.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

vi

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Server-Initiated Synchronization User’s Guide This book
describes MobiLink server-initiated synchronization, a feature of
MobiLink that allows you to initiate synchronization from the
consolidated database.

♦ MobiLink Tutorials This book provides several tutorials that walk you
through how to set up and run MobiLink applications.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

vii

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store, at
http://eshop.sybase.com/eshop/documentation.

viii

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

ix

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

x

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ sybase.public.sqlanywhere.qanywhere

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

xi

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xii

CHAPTER 1

Introducing Server-Initiated
Synchronization

About this chapter This chapter provides an overview of server-initiated synchronization.

Contents Topic: page

Introduction to server-initiated synchronization 2

Components of server-initiated synchronization 4

Supported platforms 6

Deployment considerations 7

Quick start 8

1

Introduction to server-initiated synchronization
Server-initiated synchronization allows you to initiate MobiLink
synchronization from the consolidated database. This means you can push
data updates to remote databases, as well as cause remote databases to
upload data to the consolidated database. This MobiLink component
provides programmable options for determining what changes in the
consolidated database initiate synchronization, how remotes are chosen to
receive push messages, and how the remotes respond.

Example For example, a fleet of truck drivers uses mobile databases to determine
routes and delivery points. A driver synchronizes a report of a traffic
disruption. A component called the Notifier detects the change in the
consolidated database and automatically sends a message to the remote
device of every driver whose route is affected, which causes the drivers’
remote databases to synchronize so that the drivers will use an alternate
route.

The notification process In the following illustration, the Notifier polls a consolidated database and
detects a change that it has been configured to look for. In this scenario, the
Notifier sends a message to a single remote device, resulting in the remote
database being updated via synchronization.

4. Initiate

synchronization
Listener

1. Polling

remote

database

Notifier

remote device

server computer

2. Change detected

consolidated

database

5. Synchronization
3. Message

sent

Following are the steps that occur in this example:

2

Chapter 1. Introducing Server-Initiated Synchronization

1. Using a query based on business logic, the Notifier polls the consolidated
database to detect any change that needs to be synchronized to the
remote.

2. When a change is detected, the Notifier prepares a message to send to the
remote device.

3. The Notifier sends a message using UDP or SMTP.

4. The Listener checks the subject, content, and sender of the message
against a filter.

5. If the message matches the filter, the Listener runs a program that has
been associated with the filter. For example, the Listener runs dbmlsync
or it launches an UltraLite application.

Connection-initiated
synchronization

In addition to initiating synchronization on the server, you can also initiate
synchronization using internal messages that are generated by the Listener
on the remote device. These internal messages indicate a change in
connectivity, such as when a device enters Wi-Fi coverage, the user makes a
RAS connection, or the user puts the device in the cradle.

☞ For more information, see“Connection-initiated synchronization” on
page 32.

3

Components of server-initiated synchronization
MobiLink server-initiated synchronization uses the following components:

♦ Push requests cause synchronization to occur. A push request takes
the form of some data that you insert into a table on the MobiLink
consolidated database, or in some cases data inserted into a temporary
table or even just a SQL result set. You can create push requests in any
way that you cause data to be inserted into a table. For example, a push
request could be created by a database trigger that is activated when a
price changes. Any database application can create push requests,
including the Notifier.

☞ For more information, see“Push requests” on page 10.

♦ The Notifier is a Java program running on the same computer as the
MobiLink synchronization server. It polls the consolidated database on a
regular basis, looking for push requests. You control how often the
Notifier polls the database. You specify business logic that the Notifier
uses to gather push requests, including which remote devices should be
notified. When the Notifier detects a request, it sends the message
associated with the request via SMTP or UDP to a Listener on one or
more remote devices. You have the option to send repeatable messages
with an expiry time.

☞ For more information about Notifiers, see“Notifiers” on page 18.

♦ The Listener is a program that is installed on each remote device. It
receives messages from the Notifier and initiates action. The action is
usually synchronization, but can be other things. You can configure the
Listener to act only on messages from selected sources, or with specific
content.

On Windows or Windows CE, the Listener is an executable program
configured by command line options. In order to receive a message, the
remote device must be on and the Listener must be started.

☞ For more information, see“The Listener” on page 37.

On the Palm OS, you first create a configuration file by running the Palm
Listener Configuration utility on a Windows desktop. You then copy the
configuration file to your Palm device and run the Palm Listener.

☞ For more information, see“Listeners for Palm Devices” on page 49.

♦ Gateways provide an interface to send messages from the Notifier to
the Listener. You can send messages using an SMTP gateway or a UDP
gateway. When you use an SMTP gateway, you send an e-mail message

4

Chapter 1. Introducing Server-Initiated Synchronization

that your carrier converts into SMS before the Listener receives it. Most
carriers provide an e-mail-to-SMS service.

Device tracking gateways provide a way to automatically track remote
devices. Using device tracking functionality, you don’t have to know the
addresses of remote devices. You supply the gateway name of your
device tracker gateway (by default,Default-DeviceTracker) and the
MobiLink user name, and MobiLink routes the message through the
appropriate gateway to the appropriate device.

☞ For more information, see“Gateways and carriers” on page 20.

5

Supported platforms
In addition to MobiLink requirements, the computer must have JRE 1.4.1 or
higher to use the Notifier.

☞ For more information about MobiLink requirements, see“SQL
Anywhere Studio Supported Platforms”[Introducing SQL Anywhere Studio,
page 95].

The Listener is not supported on Windows 95 or Windows NT 4.

If you are targeting Palm remotes, you must use the Palm Listener
Configuration utility on a Windows desktop device to create a configuration
file.

♦ SMS messages can be transmitted through an SMTP gateway and go
through an e-mail-to-SMS conversion that is provided by wireless
carriers. This has been tested on the following platforms:

• Pocket PC 2002 with Sierra Wireless AirCard 510, 555, 710, or 750

• Windows 2000 and XP with the Sierra Wireless AirCard 510, 555,
710, or 750

• Palm 4.1 on the Kyocera 7135 and Palm 5.2 on the Treo 600

♦ UDP messages have been tested on the following platforms:

• Pocket PC 2002

• Windows 2000 and XP

The supported AirCards are supported for the following firmware and
drivers. (710 is compatible with 750.)

AirCard Firmware version Driver version

510 R1-3-4 Not applicable

555 R1_1_2_10AC_GEN R1_0_0_9ac_1xRTT

750 R1_1_2_10AC_GEN R1_0_7_ac_gprs

750 R3_1_17ACAP R1_0_9_ac_gprs

6

Chapter 1. Introducing Server-Initiated Synchronization

Deployment considerations
Following are some issues that you should consider before deploying
server-initiated synchronization applications.

Limitations of Listeners
when using UDP
gateways

♦ On UDP gateways, the Listener keeps a socket open for listening, and so
must be connected to an IP network to be able to listen.

♦ The IP address on the remote device needs to be reachable from the
MobiLink synchronization server.

Limitations of Listeners
on CE or PCs

♦ The current set of supported wireless modems require that the operating
system is running, which could result in battery drain. Make sure that you
have enough power for your usage pattern.

Palm Listeners can’t
automatically use device
tracking

♦ On the Palm, device tracking does not work automatically. However,
there is a way to enable it.

☞ For more information, see“Using device tracking with Listeners that
don’t support it” on page 25.

7

Quick start
To set up server-initiated synchronization, you should perform the following
steps. This assumes that MobiLink synchronization is already set up.

❖ Overview of setting up server-initiated synchronization

1. Create a table to store push requests on the consolidated database.

☞ See“Push requests” on page 10.

2. Set up the Notifier to create and manage push requests.

☞ See“Notifiers” on page 18.

3. Set up the Listener to filter and act on Notifier push requests.

☞ See“Listeners” on page 28.

4. If you are sending SMS notifications, configure gateways and carriers to
identify the interface you are using to send messages. (If you are using
UDP, you may be able to skip this step and send messages via the default
settings.) To send SMS notifications, you must also specify SMTP
listening libraries when you start the Listener.

☞ See“Gateways and carriers” on page 20and“Listening libraries” on
page 46.

Other resources for
getting started

♦ “Tutorial: Server-Initiated Synchronization” on page 129
♦ Sample applications are installed toSamples\MobiLink\SIS_*in your

SQL Anywhere Studio installation directory.

8

CHAPTER 2

Setting Up Server-Initiated
Synchronization

About this chapter This chapter describes how to set up and use server-initiated
synchronization.

Contents Topic: page

Push requests 10

Setting properties 15

Notifiers 18

Gateways and carriers 20

Device tracking 22

Listeners 28

9

Push requests
A push request takes the form of some data that you insert into a table on the
MobiLink consolidated database, or in some cases data inserted into a
temporary table or even just a SQL result set. You can create push requests
in any way that you cause data to be inserted into a table.

The Notifier sends a message to a remote database when it detects a push
request. The push request specifies the content of the message, along with
when, how, and to whom the message should be sent.

Creating the push request table

A push request is a row in a SQL result set on the consolidated database that
contains the following columns in the following order. The first five columns
are required and the last two columns are optional. The Notifier uses the
request_cursor property to fetch push requests.

In a typical implementation, you add a table to your consolidated database
with the following columns. However, push requests can also be stored in
temporary tables and across multiple tables.

Column Description

request id INTEGER. A unique ID for a push request.

gateway VARCHAR. The gateway on which to send the message.
This can be a predefined or user-defined gateway. Predefined
gateways areDefault-DeviceTracker, Default-SMTP, and
Default-UDP.

subject VARCHAR. The subject line of the message.

content VARCHAR. The content of the message.

address VARCHAR. The destination address. The format of the address
is gateway-specific. For a DeviceTracker gateway (which might
use either SMTP or UDP), it is the MobiLink user name of
the Listener database, or other MobiLink user names that you
register using dblsn -t+. For an SMTP gateway, it is an email
address. For a UDP gateway, it is an IP address or host name,
optionally followed by a colon and port number.

10

Chapter 2. Setting Up Server-Initiated Synchronization

Column Description

resend in-
terval

VARCHAR. Optional. How often the message should be resent.
The default unit is minutes. You can specifyS, M , andH for
units of seconds, minutes, and hours. You can also combine
units, as in1H 30M 10S.

The resend interval is especially useful when the remote device
is listening for UDP and the network is unreliable. The Notifier
assumes that all attributes associated with a resendable notifi-
cation request do not change: subsequent updates are ignored
after the first poll of the request. The Notifier automatically
adjusts the next polling interval if a resendable notification must
be sent before the next polling time. You can stop a resendable
notification using the request_cursor query or by deleting the
request from the request table. The default is to send exactly
once, with no resend. Delivery confirmation from the intended
Listener may stop a subsequent resend.

time to
live

VARCHAR. Optional. The time until the resend expires. The
default unit is minutes. You can specifyS, M , andH for units
of seconds, minutes, and hours. You can also combine units, as
in 1H 30M 10S.

If this value is 0, NULL, or not specified, the default is to send
exactly once, with no resend.

☞ For more information about addressing notifications when you are using
device tracking, see“Listener options for device tracking” on page 23.

Example Following is an Adaptive Server Anywhere CREATE TABLE statement that
creates a push request table.

create table PushRequest (
req_id integer default autoincrement primary key,
gateway varchar(128),
subject varchar(128),
content varchar(128),
address varchar(128),
resend_minute varchar(30),
minute_to_live varchar(30)

)

The following code uses the ml_add_property stored procedure to create a
request_cursor property that creates the push request.

11

call ml_add_property(’SIS’, ’Notifier(Simple)’, ’request_
cursor’,

’select req_id,
gateway,

subject,
content,
address,
resend_minute,

minute_to_live
from PushRequest’);

Creating push requests

You can create push requests in any way that you cause data to be inserted
into a table. Following is a list of common ways to create push requests:

♦ Specify SQL synchronization logic in Notifier properties. The most
obvious property for creating push requests is the begin_poll property.

A benefit of creating push requests inside the Notifier is that contention is
minimized because only one database connection is used for push
requests.

☞ For more information, see“begin_poll property” on page 58.

♦ Define a database trigger. For example, create a trigger that detects when
a price changes and then inserts push request data into a table of push
requests.

☞ For information about triggers, see“Introduction to triggers”[ASA
SQL User’s Guide,page 670].

♦ Use MobiLink synchronization logic to create push requests that notify
other MobiLink users. For example, create an end_upload script that
detects that a specific change has been uploaded and then creates a push
request to update other users who should have the same data.

☞ For more information, see“end_upload table event”[MobiLink
Administration Guide,page 404].

♦ Use a database client application that inserts data into a push request
table directly.

♦ Manually insert push request data using an Interactive SQL utility.

Sending push requests

The Notifier sends a set of push requests to remote devices by executing a
SQL query that you provide in the request_cursor property.

12

Chapter 2. Setting Up Server-Initiated Synchronization

☞ For more information about querying the consolidated database, see
“request_cursor property” on page 64.

Deleting push requests

You delete push requests to prevent resending old messages. Deleting
requests in a timely manner can help minimize the number of messages sent
and increase the efficiency of the application.

The most straightforward way to delete push requests is to use the Notifier
property request_delete. This property is a SQL statement with a request ID
as a parameter. Using this statement, the Notifier deletes requests that have
been confirmed as delivered or that have expired.

☞ For more information, see“request_delete property” on page 65.

Built-in delivery confirmation is not available on Palm devices; on all
devices, it can be disabled. You can optionally implement your own
delivery-confirmation mechanism. For example, your synchronization logic
can delete push requests from a request table when a specific
synchronization occurs.

Notifying the Listener with sa_send_udp

Adaptive Server Anywhere databases include a system stored procedure
called sa_send_udp that can be used to send UDP notifications to the
Listener.

If you use sa_send_udp as a way to notify the Listener, you should append a
1 to your UDP packet. This number is a server-initiated synchronization
protocol number. In future versions of MobiLink, new protocol versions
may cause the Listener to behave differently.

☞ For more information, see“sa_send_udp system procedure”[ASA SQL
Reference,page 829].

Example On a device, start the Listener as follows, wherepath is the location of your
Internet Explorer program:

dblsn -v -l "message=TheMessage;action=start ’ path \iexplore.exe’
http://www.yahoo.com"

On a different device, start an Adaptive Server Anywhere database. Start
Interactive SQL, and connect to the database. Execute the following SQL.
(Note that the UDP packet has a 1 appended to it.)

call sa_send_udp(’machine#1_ip_name’,5001,’TheMessage1’)

13

Internet Explorer will open, showing the Yahoo home page.

To make this example work with one device, use localhost as the first
paramter to sa_send_udp.

14

Chapter 2. Setting Up Server-Initiated Synchronization

Setting properties
Notifiers, gateways, and carriers are configured via properties. These
properties can be stored in the ml_property MobiLink system table or in a
Notifier properties file.

Storing properties in the
database

You have two options to configure properties in the MobiLink system table:

♦ Use the Notification folder in the MobiLink plug-in in Sybase Central.
This stores property settings in the ml_property table on the consolidated
database. You can also right-click the Notification folder in Sybase
Central and choose to export settings to a Notifier properties file, or
import settings from a Notifier properties file.

☞ For more information, click Help on the Sybase Central Notifier
dialogs.

♦ Use the ml_add_property stored procedure. This also stores configuration
information in the ml_property table on the consolidated database.

☞ For more information, see“ml_add_property”[MobiLink
Administration Guide,page 486].

Storing properties in a
properties file

Alternatively, you can store options in a Notifier properties file. This is a text
file that you can edit with a text editor.

☞ For more information, see“Notifier properties file” on page 16.

Properties For a detailed list of the properties you can set, see

♦ “MobiLink Notification Properties” on page 55

♦ “Device tracker gateway properties” on page 68

♦ “SMTP gateway properties” on page 70

♦ “UDP gateway properties” on page 72

♦ “Carrier properties” on page 74

Setting properties in
more than one place

If you specify properties in both the ml_properties table and the Notifier
properties file, the settings are determined as follows:

1. Server-initiated synchronization properties in the ml_property table in the
consolidated database are loaded.

2. If a Notifier properties file is specified with the -notifier option, the
settings in this file are loaded on top of the settings from the database.

If a Notifier properties file is not specified, and if the default
configuration file is found (config.notifier), the settings in the default file
are loaded on top of the settings from the database.

15

Changing properties Properties are read at startup. When you change properties, you must shut
down and restart the MobiLink synchronization server for them to take
effect.

Notifier properties file

Properties for Notifiers, gateways, and carriers can be stored in the
ml_property MobiLink system table or in the Notifier properties file. For
more information, see“Setting properties” on page 15.

The Notifier properties file is a text file. It can have any name. The easiest
way to create this file is to alter the template,
%asany9%\samples\MobiLink\template.notifier.

You can export the properties from the ml_property table into your Notifier
properties file. To do this, connect to the MobiLink plug-in in Sybase
Central, right-click the Notification folder, and choose Export Settings. The
exported file may be copied to a different location and used to easily
configure a Notifier there.

You can have several Notifier property files. To identify the properties file
you want to use, specify the name and location when you start dbmlsrv9
with the -notifier option. Following is a partial dbmlsrv9 command line:

dbmlsrv9 ... -notifier "c: \samples \CarDealer.notifier"

☞ For information about how properties are read if you do specify a
properties file at the command line, see“Setting properties in more than one
place” on page 15.

A Notifier properties file can configure and start multiple Notifiers and
multiple gateways. You provide a name for each Notifier and gateway that
you want to define.

Notifier properties are normally entered on one line, but you can use the
backslash (\) as a line continuation character.

The backslash is also an escape character. You can use the following escape
sequences in your property settings:

Escape se-

quence

Description

\b \u0008: backspace, BS

\t \u0009: horizontal tab, HT

\n \u000a: linefeed, LF

16

Chapter 2. Setting Up Server-Initiated Synchronization

Escape se-

quence

Description

\f \u000c: form feed, FF

\r \u000d: carriage return, CR

\” \u0022: double quote, “

\’ \u0027: single quote, ‘

\\ \u005c: backslash, \

\uhhhh Unicode character (hexadecimal)

\xhh \xhh: ASCII character (hexadecimal)

\e \u001b: Escape, ESC

17

Notifiers
The Notifier runs on the same computer as the MobiLink synchronization
server. The Notifier polls the consolidated database on a regular basis,
looking for push requests. When it detects a push request, it sends a message
to a remote device. It also contains functionality for executing custom SQL
scripts, handling delivery confirmation, deleting push requests, and
reconnecting after lost database connections. You may use the custom SQL
scripts to monitor your data and create push requests.

You can have more than one Notifier running within a single instance of the
MobiLink synchronization server. Each Notifier keeps one database
connection open all the time.

☞ For an example of multiple Notifiers, see the sample located in the
Samples\MobiLink\SIS_MultipleNotifiersubdirectory of your SQL
Anywhere Studio installation.

Starting the Notifier

You start Notifiers on the dbmlsrv9 command line. To start the Notifier, use
the dbmlsrv9 option-notifier . Optionally, you can also specify the name of
your Notifier properties file, if you have one.

Following is a partial dbmlsrv9 command line:

dbmlsrv9 ... -notifier c: \myfirst.notifier

For information about how properties are read if you specify a properties file
in the command line, see“Setting properties in more than one place” on
page 15.

☞ For information about how properties are applied, see“Setting
properties” on page 15.

☞ For more information about the -notifier option, see“-notifier option”
[MobiLink Administration Guide,page 202].

☞ When you use the -notifier option, you start every Notifier that you have
enabled. For more information about enabling Notifiers, see“enable
property” on page 61.

Configuring Notifiers

The Notifier allows you to create custom SQL to program the server-initiated
synchronization process. You do this by setting properties. For example, you
would configure properties in order to perform tasks such as the following:

18

Chapter 2. Setting Up Server-Initiated Synchronization

♦ Set a polling interval using the poll_every property.

♦ Create push requests in response to changes in the consolidated database.
The begin_poll property is often used in this way.

♦ Use the request_cursor property to determine what information is sent in
a message, to whom, where, and when.

Note: The request_cursor property is the only required property. For
more information, see“request_cursor property” on page 64.

♦ Delete push requests with the request_delete property.

☞ For a complete list of Notifier properties, see“MobiLink Notification
Properties” on page 55.

☞ For information about how to set Notifier properties, see“Setting
properties” on page 15.

Notifier property
sequence

The following pseudo-code shows the sequence in which server-initiated
synchronization properties are used. Note that except for request_cursor, all
of these properties are optional.

connect_string
isolation
begin_connection
poll_every
For each poll (

begin_poll
shutdown_query
request_cursor
request_delete
end_poll

)
end_connection

19

Gateways and carriers
Gatewaysare the mechanisms for sending messages. You can define UDP
gateways and SMTP gateways. In addition, you can use a device tracker
gateway that automatically decides which UDP or SMTP gateway to use.

Use of the device tracker gateway is recommended. If you do not use device
tracking, your request_cursor must include a UDP or SMTP gateway name
and address, and for each push request, only that gateway will be tried. But
if you use device tracking, you only need to supply a MobiLink user name,
and there is a possibility of failover if a gateway fails.

☞ For more information, see“Device tracking” on page 22.

If you are using UDP, you may not need to make any changes to the default
gateway settings. For SMTP, you need to configure an SMTP gateway and
carrier.

You configurecarriers to store information about the public wireless
carriers that you want to use. Carrier information is used to create SMS
e-mail addresses from device tracking information that is sent up from
Listeners.

Configuring gateways and carriers

☞ For information about how to set properties for gateways and carriers,
see“Setting properties” on page 15.

For a detailed list of gateway and carrier properties, see

♦ “Device tracker gateway properties” on page 68

♦ “UDP gateway properties” on page 72

♦ “SMTP gateway properties” on page 70

♦ “Carrier properties” on page 74

Gateways There are three default gateways. They are installed when you run the
MobiLink setup scripts for your consolidated database. The default
gateways are called:

♦ Default-DeviceTracker gateway

♦ Default-UDP gateway

♦ Default-SMTP gateway

A device tracker gateway can have up to two subordinate gateways: one
SMTP and one UDP. The device tracker gateway automatically routes each

20

Chapter 2. Setting Up Server-Initiated Synchronization

message to one of its subordinate gateways based on device tracking
information sent up from Listeners. For more information, see“Device
tracking” on page 22.

Default-UDP and Default-SMTP are preconfigured with some settings that
may work out of the box, especially UDP. In most cases, you should use the
default gateways. You can customize their configuration, if required.

You should not delete the default gateways or change their names. You can
create additional gateways and assign names to them.

Carriers You only need to configure a carrier if you are using device tracking with an
SMTP gateway. Carrier configuration allows you to specify information
such as the name of a network provider, their email prefix, network provider
id, and so on. This information is necessary for the Notifier to construct
e-mail addresses for each public wireless carrier’s e-mail-to-SMS service.

To configure a carrier, you can run the Listener on a device that has a modem
and service provider working, and inspect the Listener console or log. If
your Listener uses the -x option to connect to a running MobiLink
synchronization server, you can also find carrier device tracking information
in the ml_device_address MobiLink system table.

Once a carrier is configured, it requires no further attention. The carrier can
be used to send SMS messages via SMTP to all devices using that public
wireless carrier.

☞ For a list of carrier properties, see“Carrier properties” on page 74.

21

Device tracking
Device tracking allows you to address a remote database by supplying only
its MobiLink user name in a push request. When device tracking is enabled,
MobiLink keeps track of how to reach users. For example, when a device’s
IP address changes, the Listener synchronizes with the consolidated
database to update the device tracking information in the MobiLink system
table ml_device_address. The device tracker gateway first attempts to use a
UDP gateway (if one is assigned to it), and if the delivery fails it then
attempts using an SMTP gateway (if one is assigned to it).

Device tracking is especially useful for UDP addresses that may change
frequently; the Listener automatically sends the most recent address to the
consolidated database when it changes.

In most cases, you should be able to use device tracking. It is recommended
that you use it because it simplifies deployment.

Most 9.0.1 or later Listeners support device tracking. If you are using
Listeners that don’t support device tracking, you can still use a device
tracker gateway by providing tracking information yourself.

☞ For more information, see“Using device tracking with Listeners that
don’t support it” on page 25.

If you do not use device tracking, your request_cursor must include a UDP
or SMTP gateway name and address. For each push request, only that
gateway will be used, and no other gateway will be attempted.

Setting up device tracking

❖ To set up device tracking

1. Set up a UDP gateway and/or SMTP gateway, if necessary.Note:
Typically, the UDP gateway is usable without further configuration, and
you can skip this step. However, if you want to use e-mail-to-SMS
notification, the default SMTP gateway requires configuration.

☞ See“Configuring gateways and carriers” on page 20.

2. Your request_cursor script should have the following settings:
♦ The gateway name must be the name of a device tracker gateway. The

default instance is called Default-DeviceTracker.

♦ The address must be a MobiLink user name. By default, it can be the
Listener user name. However, you can use the dblsn option -t+ to add
the MobiLink user name of the remote database that you are
synchronizing, and then directly address that database.

22

Chapter 2. Setting Up Server-Initiated Synchronization

☞ See“request_cursor property” on page 64.

3. Add the Listener name to the MobiLink ml_user system table.

The default Listener name isdevice_name-dblsn, wheredevice_nameis
the name of your device. You can find the device name in your Listener
console. Optionally, you can set the device name using the dblsn -e
option. You can specify a different Listener name using the dblsn -u
option.

Whether or not you use the default name, you may need to add the
Listener_nameto the ml_user MobiLink system table on your
consolidated database. This is because theListener_nameis a MobiLink
user name. Like other MobiLink user names, it must be unique and it
must be added to the ml_user MobiLink system table on your
consolidated database.

☞ See“Creating MobiLink users”[MobiLink Clients,page 10].

4. Start the Listener with the required options.

☞ See“Listener options for device tracking” on page 23.

Listener options for device tracking

The following dblsn options are used for device tracking.

Use -x, -u, and -w to specify how to connect to the MobiLink server. This is
required if you are using device tracking so that the remote device can update
the consolidated database if the address changes. These are also required if
you wish to send delivery confirmations to the consolidated database.

The -t+ option is recommended. With it, you can register the MobiLink user
name of your remote database and use it when you address notifications
instead of addressing the MobiLink user name of the Listener database. You
only need to do this once.

♦ -t+ ml_user Use this option to register the MobiLink user name of
your remote database so that you can directly address that user name,
instead of addressing the Listener database.

This mapping is retained on the server (in the ml_listening table) once
tracking information is uploaded successfully, so you only need to
register a MobiLink user name once unless you change the MobiLink
user name or location. However, using -t+ multiple times is not harmful.

♦ -t- ml_user_alias To disable a MobiLink user name created with -t+,
use-t-.

23

♦ -u Listener_name Use -u to create a MobiLink user name for the
Listener. The -u option is optional because there is a default
Listener_name, which isdevice_name-dblsn, wheredevice_nameis the
name of your device. You can find the device name in your Listener
console. Optionally, you can set the device name using the -e option.

Whether or not you use the default name, you may need to add the
Listener_nameto the ml_user MobiLink system table on your
consolidated database. This is because theListener_nameis a MobiLink
user name. Like other MobiLink user names, it must be unique and it
must be in the ml_user MobiLink system table on your consolidated
database.

☞ See“Creating MobiLink users”[MobiLink Clients,page 10].

♦ -w password This option sets the password for the Listener name.

♦ -x connection-parameters Use -x to specify how to connect to the
MobiLink synchronization server. This is required if you are using device
tracking because it lets the remote device update the consolidated
database if the address changes. This option is also required if you wish
to send delivery confirmations to the consolidated database.

♦ -y This option updates the password for the Listener name.

☞ For more information about Listener options, see“The Listener utility”
on page 38.

Example The following command starts the Listener with device tracking.

dblsn -x tcpip(host=MLSERVER_MACHINE) -t+ user1 -u remoteuser1

Stopping device tracking

It might be useful to stop device tracking in situations such as the following:

♦ Your device listens only on UDP on a static IP address.

♦ Your device listens only on UDP and has dynamic IP with low latency
DNS update, so you can use a static IP name to address your device
directly.

To stop device tracking when you want to continue using delivery
confirmation, use the dblsn option -g.

For more information about dblsn options, see“The Listener utility” on
page 38.

24

Chapter 2. Setting Up Server-Initiated Synchronization

Using device tracking with Listeners that don’t support it

You cannot use the completely automatic form of device tracking if any of
your Listeners have the following characteristics:

♦ are prior to Adaptive Server Anywhere 9.0.1 or are Palm Listeners

☞ For information about how to set up device tracking in these
situations, see“Manually setting up device tracking” on page 25.

♦ are listening on UDP, and remote IP addresses are unreachable from the
MobiLink server machine

☞ For information about how to deal with this situation, see
“Unreachable addresses” on page 27.

Manually setting up
device tracking

Several stored procedures are provided to help you manually set up device
tracking for 9.0.0 Listeners or Palm Listeners. These stored procedures
manipulate the MobiLink system tables ml_device, ml_device_address, and
ml_listening on the consolidated database. With manual device tracking, you
can address recipients by MobiLink user name—without providing network
address information—but the information cannot be automatically updated
by MobiLink if it changes: you must change it yourself.

This method is especially useful for SMTP gateways because e-mail
addresses don’t tend to change. For UDP gateways, it is more difficult to
rely on static entries if your IP address changes every time you reconnect.
You may get around this problem by addressing by host name instead of IP
address, but in that case slow updates to DNS server tables can cause
misdirected messages. You can also deal with changing IP addresses by
setting up the following stored procedures to update the MobiLink system
tables programmatically.

❖ To manually set up device tracking

1. For each remote device, add a device record to the ml_device MobiLink
system table. For example,

call ml_set_device(
’myFirstTreo180’,
’MobiLink Listeners for Treo 180 - 9.0.1’,
’1’,
’not used’,
’y’,
’manually entered by administrator’);

The first parameter, myFirstTreo180, is a user-defined unique device
name. The second parameter contains optional remarks about the Listener
version. The third parameter, set here to 1, specifies a Listener version;

25

use0 for Listeners from SQL Anywhere Studio 9.0.0,1 for post-9.0.0
Palm Listeners, and2 for post-9.0.0 Windows Listeners. The fourth
parameter specifies optional device information. The fifth parameter is
set toy here, which specifies that device tracking should be ignored; if
this were set ton, device tracking would overwrite this record. The final
parameter contains optional remarks on the source of this record.

☞ For more information about using ml_set_device, see
“ml_set_device” on page 81.

2. For each device that you just added, add an address record to the
ml_device_address MobiLink system table. For example,

call ml_set_device_address(
’myFirstTreo180’,
’ROGERS AT&T’,
’3211234567’,
’y’,
’y’,
’manually entered by administrator’);

The first parameter, myFristTreo180, is a user-defined unique device
name. The second parameter is a network provider ID, and must match a
carrier’s network_provider_id property (for more information, see
“network_provider_id property” on page 75). The third parameter is the
phone number of your SMS-capable device. The fourth parameter, set
here toy, activates this record for sending notifications. The fifth
parameter, set here toy, specifies that device tracking should be ignored;
if this were set ton, device tracking could overwrite this record. The final
parameter contains optional remarks on the source of this record.

☞ For information about how to locate carrier information, see“Device
tracking” on page 22.

☞ For more information about using ml_set_device_address, see
“ml_set_device_address” on page 83.

3. For each remote database, add a recipient record to the ml_listening
MobiLink system table for the device that was just added. This maps the
device to the MobiLink user name. For example,

call ml_set_listening(
’myULDB’,
’myFirstTreo180’,
’y’,
’y’,
’manually entered by administrator’);

The first parameter is a MobiLink user name. The second parameter is a
user-defined unique device name. The third parameter, set here toy,
activates this record for device tracking addressing. The fourth parameter,

26

Chapter 2. Setting Up Server-Initiated Synchronization

set here toy, specifies that device tracking should be ignored; if this were
set ton, device tracking could overwrite this record. The final parameter
contains optional remarks on the source of this record.

☞ For more information, see“ml_set_listening” on page 85.

Troubleshooting gateways

This section describes some known problems and solutions connected with
communication between remote devices and servers.

Unreachable addresses

Symptom The Notifier cannot reach the device with the tracked IP address.

Cause Some or all devices cannot be addressed directly because they are private
relative to the MobiLink server. For example, a remote device is on a private
sub-network and its address is internal to that network.

Remedy Try one of the following:

♦ If the IP address is assigned by a public wireless carrier or ISP, you may
be able to upgrade your carrier plan so that you can obtain public IP
addresses instead of private ones.

♦ If you are using Wi-Fi, the IP security policy in your organization may
stop your device from being reachable. Contact your IT department for
assistance.

♦ Use an SMS gateway.

If the device’s IP address is never reachable, you may want to stop device
tracking on the Listener with the -g option. If you are using delivery
confirmation, the first attempt to connect will be via UDP, and the lack of
confirmation will prevent further UDP attempts.

Tracked address is not correct

Symptom Device tracking is not picking the best IP address for a device.

Cause There may be a problem with the routing table on the device.

Remedy Try one of the following:

♦ Fix the routing table.

♦ Use the ml_set_device_address stored procedure to ignore tracking for
the device and set the address parameter to the correct address. Be sure to
set the fourth parameter toy. In addition, use -g for the problematic
Listener.

For more information, see“ml_set_device_address” on page 83.

27

Listeners
The Listener runs on remote devices. It receives messages from the Notifier
and processes them into actions based on message handlers that you create.
A typical message handler contains filters, actions, and options.

For example, for the following Listener command line, the Listener will only
start dbmlsync if it receives a message with the subjectFullSync:

dblsn -l "subject=’FullSync’;action=’run dbmlsync.exe ...’"

Following are some of the actions that you can invoke. Typically, the desired
action is synchronization initiated via either dbmlsync or an UltraLite
application.

♦ Start a process.

♦ Run a process until it completes.

♦ Post a window message to a process that is already running.

♦ Perform text-based communication with local or remote applications via
TCP/IP with optional confirmation.

Actions can be parameterized with variables derived from the message. This
provides extra flexibility in implementing dynamic options.

Normally, you only need to start up one Listener on a device. One Listener
can listen on multiple channels and it can serve multiple MobiLink users on
the same device. A running Listener always listens on UDP (except for Palm
Listeners).

Listeners can also synchronize device tracking information back to the
consolidated database. For more information, see“Device tracking” on
page 22.

See also ☞ For Listener syntax and options, see“The Listener utility” on page 38.

☞ For information about Palm devices, see“Listeners for Palm Devices”
on page 49.

☞ For dbmlsync options, see“Adaptive Server Anywhere Client
Synchronization Parameters”[MobiLink Clients,page 95].

☞ For more information about message handlers, see“Message handlers”
on page 29

☞ Instead of typing dblsn options at a command prompt, it is often
convenient to store them in a text file. For more information, see“Storing
Listener options” on page 33.

28

Chapter 2. Setting Up Server-Initiated Synchronization

Example The following command starts the Listener utility. It must be typed on one
line.

dblsn -v2 -m -ot dblsn.log -x "host=localhost"
-l "subject=sync;action=’start dbmlsync.exe

-c eng=rem1;uid=dba;pwd=sql -ot dbmlsyncOut.txt -k’;"

The options used in this example are:

Option Description

-v2 Set verbosity to level 2 (log Listener DLL messages and action
tracing).

-m Log notification messages.

-ot Truncate the log file and send output to it. In this case, the output
file is dblsn.log.

-x Specify a way to connect to the MobiLink synchronization server.
This is required for device tracking and delivery confirmation. In
this simple example, the only protocol options that are specified are
“host=localhost”. For a complete list of protocol options, see“-x
option” [MobiLink Clients,page 151].

-l Specify a message handler. In this case the filter is that a message
must contain the subjectsync, and the action is to start dbmlsync.
Three dbmlsync command line options are also provided: -c
specifies a connection string to the MobiLink synchronization
server for the synchronization; -ot names an output log file; and -k
shuts down dbmlsync when the synchronization is complete.

Message handlers

Using the dblsn command line, you createmessage handlersto tell the
Listener which messages to filter and what actions should result from each
accepted message.

☞ For more information about dblsn, see“The Listener” on page 37.

Message interpretation

Messages arrive as a single piece of text with the following structure:

message control_information

Thecontrol_informationis for internal use only and is removed prior to
message handling. The Listener substitutes non-printable characters with
tildes, and then interprets themessageportion with the following pattern:

29

message = sender subj-open subject subj-close content

subj-open = (| [| { | < | ’ | "

Thesubj-opencharacter is determined by the first possible character found
by scanning from left to right. The value ofsubj-opendetermines the value
of subj-close. The possible values ofsubj-closeare),], },>, ‘ and “.

The location of the firstsubj-closecharacter marks the end of thesubject
and the beginning of thecontent.

Thesenderis empty when the message begins with asubj-open. In that case,
thesenderof the message is determined in a delivery path-dependent way.
For example, messages going through UDP gateways arrive as
[subject] content , and thesenderis the IP address. SMTP gateways
send an e-mail message that is converted by an e-mail to SMS service into a
format that varies between different public wireless carriers.

☞ For more information about the Listener, see“The Listener” on page 37.

Using subject and content filters

Use the filterssubjectand/orcontent to filter messages by subject and/or
content as specified in your push requests. When you use these filters, the
Listener automatically adjusts the filter to match the format received by the
carrier. For example, you may want to filter a message with the subject Sync
and the content Orders. You do not have to worry that in UDP, this would
appear as[Sync]Orders , and on one e-mail to SMS conversion service, it
would beBob@mail.com[Sync]Orders .

Your subject cannot contain the closing character that is used to enclose the
subject. In the previous example, UDP encloses the subjectSync in square
brackets. This means that you cannot use a closing square bracket in
subjects that might be received over UDP. For SMTP messages, your carrier
determines the character used to enclose the subject. This might be one of),
], }, >, ‘ or “.

Note:
For best results, only use alphanumeric characters in your subject when
creating push requests.

The Listener trims leading and trailing spaces, as well as leading and trailing
tilde (~) characters, from the sender name, subject, and content.
Non-printable characters such as the new line character are converted to
tildes by the Listener before filtering.

☞ For more information about the Listener, see“The Listener” on page 37.

30

Chapter 2. Setting Up Server-Initiated Synchronization

Using the filters message, message_start, and sender

The recommended filters are calledsubjectandcontent. However, there are
three other types of filter that you may also want to use.

The Listener translates non-printable characters in a message to a tilde (~) so
if there are non-printable characters, the filter must also use tildes.

♦ message compares the entire message to text you specify. To match,
this filter must also be the exact same length as the message. You can
specify only one message per message handler.

The format of messages is carrier-dependent, and you must account for
this if you use themessage, message_start, or senderfilters. For
example, you may want to match a message from a sender named
Bob@mail.com with the subject Help and the message Me. In UDP, this
would appear as[Help]Me . On Bell Mobility’s e-mail to SMS
conversion service, it would beBob@mail.com[Help]Me . On Fido’s
e-mail to SMS conversion service, it would arrive as
Bob@mail.com\n(Help)\nMe , but would be translated by the Listener
to Bob@mail.com~(Help)~Me . You must test with your carrier to
determine the appropriate format, using the dblsn options -v and -m.

♦ message_start compares a portion of the message (from the
beginning) to text that you specify. When you specify message_start, the
Listener creates the action variables $message_start and $message_end.
For more information, see“Action variables” on page 44. There is a
maximum of one message_start per message handler.

♦ sender is the sender of the message. You can only specify one sender
per message handler. For UDP gateways, the sender is the IP address of
the host of the gateway. For SMS e-mail, the sender is the e-mail address
embedded in the beginning of the message if the SMS format is
compatible with server-initiated synchronization. Otherwise, the sender
information is not available.

Multiple message
handlers may be required

Subject and content are the recommended filters when messages arrive in a
compatible format. However, if your message format is incompatible, you
need to use the message, message_start, and/or sender filters. In that case, if
the delivery path can vary (sometimes through UDP and sometimes through
SMTP), then you need multiple handlers with different filters.

For example, if you sent a message of the formsub, content through a
UDP gateway, it would arrive as[sub]content . But if you sent it through
an SMTP gateway, it might be rendered asmySender@mySite.com \n

sub \n content . To catch a message that has the subjectsub , you would
need two message handlers, with the following filters:

31

-l "subject=’sub’;action=..."

-l "message_start=’mySender@mySite.com ~ sub ~ ’;action=..."

☞ For more information about the Listener, see“The Listener” on page 37.

Connection-initiated synchronization

In addition to initiating synchronization from the server, on Windows
devices you can also initiate synchronization when connectivity changes.
This is possible because the Windows Listener generates an internal message
with the content _IP_CHANGED_ whenever there is a change in
connectivity, and it generates an internal message with the content
_BEST_IP_CHANGED_ whenever there is a new “best” IP connection.

The internal messages _IP_CHANGED_ and _BEST_IP_CHANGED_ are
generated only on Windows devices, including Windows CE.

Identifying a change in
the optimum path to a
MobiLink server

An IP connection is considered to be “best” if it is the best connection to use
when connecting to the MobiLink synchronization server that is specified
with the dblsn -x option. Although the “best” designation is defined by the
path to the MobiLink synchronization server, in practice it tends to indicate
the best IP connection to use in general.

To make use of a change in the best IP connection, use the keyword
_BEST_IP_CHANGED_ in your message filter. A MobiLink server is
required as a destination for the network to determine which route is
optimal, so you must also specify connection parameters for a MobiLink
server using the -x option. The message filter should be of the form:

-l "message=’_BEST_IP_CHANGED_’;action=..."

The $best_ip action variable is very useful with the
_BEST_IP_CHANGED_ filter. The value of $best_ip is the local IP address
that represents the best IP connection. If there is no IP connection, $best_ip
has the value 0.0.0.0.

You can only use _BEST_IP_CHANGED_ when the Listener is run on a
separate machine from the MobiLink synchronization server.

In the following example, the _BEST_IP_CHANGED_ filter is used to
initiate a synchronization when the best IP connection changes. If the
connection is lost, an error is generated.

32

Chapter 2. Setting Up Server-Initiated Synchronization

dblsn -x http(host=mlserver.company.com)
-v2 -m -i 3 -ot dblsn.log
-l "message=_BEST_IP_CHANGED_;

action=’start dbmlsync.exe -ra -c
eng=remote;uid=dba;pwd=sql

-n test_pub’"

Identifying any change in
connectivity

To make use of a change in IP connectivity on your remote device, use the
keyword_IP_CHANGED_ in your message filter. _IP_CHANGED_ only
indicates that there has been a change in IP connectivity. The message filter
should be of the form:

-l "message=’_IP_CHANGED_’;action=..."

The following example shows a message handler that can be used in the
dblsn command line. The filter captures messages that contain the content
_IP_CHANGED_. The action makes use of the action variables $adapters
and $network_names. If the connection is lost, an error is generated.

-l "message=_IP_CHANGED_;
action=’socket port=12345;

sendText=IP changed: $adapters|$network_names;
recvText=beeperAck;
timeout=5’;

continue=yes;"

See also ♦ “The Listener” on page 37
♦ “Action variables” on page 44

Multi-channel listening

To listen on multiple media, you can start the Listener with the -d option. A
library for UDP listening is always loaded by default, but there are several
others that you can load. For more information, see“The Listener utility” on
page 38and“Listening libraries” on page 46.

☞ For more information about the Listener, see“The Listener” on page 37.

Storing Listener options

A convenient way to configure the Listener is to store the command line
options in a text file and access it with the @ symbol. For example, store the
settings inmydblsn.txtand start the Listener by typing

dblsn @mydblsn.txt

The path to the parameters file must be fully qualified.

☞ For more information about configuration files, see“Using configuration

33

files” [ASA Database Administration Guide,page 495].

If you want to protect passwords or other information in the configuration
file, you can use the File Hiding utility to obfuscate the contents of the
configuration file.

☞ See“Hiding the contents of files using the dbfhide command-line
utility” [ASA Database Administration Guide,page 524].

You can also store command line options in an environment variable, and
call it in the dblsn command line by typing @ and the environment variable
name; for example,dblsn @dblsnoptions. If you have both a filename and
an environment variable with the same name, the environment variable is
used.

Default parameters file
dblsn.txt

If you type dblsn without any parameters, dblsn will usedblsn.txtas the
default argument file. This feature is particularly useful for CE devices.

Following is a sample parameters file.

#---- SIS_SimpleListener \dblsn.txt -----------------------------

#
This is the default argument file for dblsn.exe
#

#---

Device name
#
-e device1

#---

MobiLink connection parameters
#
-x host=localhost

34

Chapter 2. Setting Up Server-Initiated Synchronization

#---

Verbosity level 2
#
-v2

#---

Show notification messages in console and log
#
-m

#---

Polling interval of 1 seconds
#
-i 1

#---

Truncate, then write output to dblsn.log
#
-ot dblsn.log

#---

First message handler
- No filter, so it applies to all messages
- Try to send the message to the beeper utility
- If that fails, start the beeper utility with the message
- Message handling continues with the next handler
#
-l "action=’socket port=12345;

sendText=$sender:$message;
recvText=beeperAck;
timeout=5’;

altaction=’start java.exe Beeper 12345 $sender:$message’;
continue=yes;"

35

#---

Second message handler
- Only applies to messages with subject equals ’shutdown’
- The action is to send "shutdown" to the beeper utility
- Message handling continues with the next handler
#
-l "subject=’shutdown’;

action=’socket port=12345;
sendText=shutdown;
recvText=beeperAck;
timeout=5’;

continue=yes;"

#--

Third handler
- Only applies to messages with subject equals ’shutdown’
- The action is to shut down the MobiLink Listener
#
-l "subject=’shutdown’;

action=’DBLSN FULL SHUTDOWN’;"

36

CHAPTER 3

The Listener

About this chapter This chapter is a detailed reference of the Listener utility. The Listener
utility runs on Windows devices, including Windows CE.

☞ For usage information, see“Listeners” on page 28.

☞ For information about Palm devices, see“Listeners for Palm Devices”
on page 49.

Contents Topic: page

The Listener utility 38

37

The Listener utility
The Listener utility, dblsn, configures and starts the Listener on Windows
devices, including Windows CE.

☞ This section is a detailed reference of the Listener utility. For usage
information, see“Listeners” on page 28.

☞ For information about Palm devices, see“Listeners for Palm Devices”
on page 49.

Syntax dblsn [options] -l message-handler [-l message-handler...]

message-handler :
[filter ;...]action
[;continue = yes]
[;maydial = no]
[;confirm_delivery = no]

filter :
[subject = string]
[content = string]
[message = string | message_start = string]
[sender = string]

action :
action = command [;altaction = command]

command :
start program [program-arguments]
| run program [program-arguments]
| post window-message to { window-class-name | window-title }
| tcpip-socket-action
| DBLSN FULL SHUTDOWN

tcpip-socket-action :
socket port= app-port
[;host= app-host]
[;sendText= text1]
[;recvText= text2 [;timeout= num-sec]]

window-message : string | message-id

Parameters Options The following options can be used to configure the Listener. They
are all optional.

38

Chapter 3. The Listener

dblsn options Description

@data Reads options from the specified environment variable
or configuration file. If both exist, the environment
variable is used. See“Storing Listener options” on
page 33.

-a option Specifies a Listener DLL option. If you specify
multiple -d options, each -a is for the -d option it
follows.

To specify multiple options, repeat -a. For example,
-a port=2439 -a ShowSenderPort .

To see options for your dll, typedblsn -d

filename.dll -a ? or see“Listening libraries”
on page 46.

-d filename Specifies the Listener dll that you want to use. The
default dll islsn_udp.dll.

For SMTP gateways, there are several dll’s that you
can specify. For a list, see“Listening libraries” on
page 46.

You can also create a custom Listener library. See
“MobiLink Listener SDKs” on page 87.

To enable multi-channel listening, specify multiple dlls
by repeating -d. After each -d option, specify the -a
and -i options that relate to the dll. For example,

dblsn.exe -d lsn_udp.dll -i 10 -d

maac750.dll -i 60

-edevice-name Specifies the device name. By default, the device name
is automatically extracted from the system. If you do
not use -e, you must ensure that all devices have unique
names.

-f string Specifies extra information about the device. By de-
fault, this information is the operating system version.
Using this option will override the default value.

-g Stop tracking UDP addresses when -x is used. This is
useful when you do not want device tracking but you
do want delivery confirmation.

39

dblsn options Description

-i seconds Sets the polling interval in seconds for SMTP con-
nections. This is the frequency at which the Listener
checks for messages. If you use multiple -d options,
each -i setting is for the -d it follows. The default
for SMTP is 30 seconds. For UDP connections, the
Listener attempts to connect immediately.

-m Turns on message logging. The default is off.

-o filename Logs output to a file. If -o is not used, output is logged
to the console window.

-osbytes Specifies a maximum size for the log file in bytes. The
minimum size is 10 000. By default, there is no limit.

-ot filename Logs output to file, but first truncates the file.

-p Allows automatic idle power-off. This option has an
effect only on CE devices. Use it to allow the device to
shut down when idle. By default, the Listener prevents
the device from shutting itself down so that Listening
may continue.

-q Runs in a minimized window.

-t { +|-} ml_user_-
alias

Register remote databases for notification so that you
can address the remote database by name when using
device tracking.

☞ See“Listener options for device tracking” on
page 23.

-u Listener_name Specifies a unique name for this Listener. This name is
used for uploading tracking information and delivery
confirmation, and can also be used as a notification
address for the DeviceTracker gateway.

The Listener_nameis a MobiLink user name. Like
other MobiLink user names, it must be unique and
you must add it to the ml_user MobiLink system table
on your consolidated database. For more information,
see“Creating MobiLink users” [MobiLink Clients,
page 10].

The default Listener name isdevice-name-dblsn.

See“Listener options for device tracking” on page 23.

40

Chapter 3. The Listener

dblsn options Description

-v [level] Sets the verbosity level for the dblsn log and console.
The level can be0, 1, 2, or 3:

♦ 0 - show no informational messages (the default).

♦ 1 - show Listener dll messages and basic action
tracing steps.

♦ 2 - show level 1 plus detailed action tracing steps.

♦ 3 - show level 2 plus polling and listening states.

To output notification messages, you must also use -m
(see above).

-w password Specifies a password for theListener_name.

See“Listener options for device tracking” on page 23.

-x { http |tcpip}
[(keyword=value;...)]

Specifies the network protocol and protocol options
for the MobiLink synchronization server. For a list of
protocol options, see“-x option” [MobiLink Adminis-
tration Guide,page 214]. This information is required
for the Listener to send device tracking information
and delivery confirmation to the consolidated database.

See“Listener options for device tracking” on page 23.

-y new_password Specifies a new MobiLink password for the Listener
name. If your authentication system allows remote
devices to change their passwords, this option lets
them send up the new password.

See“Listener options for device tracking” on page 23.

Message-handlers The -l option allows you to specify a message handler,
which is a filter-action pair. The filter determines which messages should be
handled, and the action is invoked when the filter matches a message.

You can specify multiple instances of -l. Each instance of -l specifies a
different message handler for each incoming message. Message handlers are
processed in the order they are specified.

You can also specify the following options for message handlers:

♦ continue=yes specifies that the Listener should continue after finding
the first match. This is useful when you specify multiple -l clauses to
cause one message to initiate multiple actions. The default is no.

♦ maydial=no specifies that the action cannot dial the modem. This
provides information to the Listener to decide whether to release the

41

modem or not before the action. This option is useful when the action or
altaction need exclusive access to the modem used by the Listener. The
default is yes.

♦ confirm_delivery=no specifies that this handler should not confirm
delivery. A message requires confirmation if the gateway used to send it
has its confirm_delivery property set to yes. Delivery can only be
confirmed if the message requires confirmation and if the handler accepts
the message. The default is yes.

Normally, you do not need to specify this option. By default the first
handler that accepts the message will send delivery confirmation, if
required. This option can be used when multiple handlers might accept
the same message to give you finer control over which handler should
confirm the delivery.

Filters You specify a filter to compare to an incoming message. If the filter
matches, the action you specify is invoked.

The filter is optional. If you do not specify a filter, the action is performed
when any message is received. This is useful when debugging or when you
want a catch-all message handler as the last message handler.

☞ For information about using thesubjector contentfilters, see“Using
subject and content filters” on page 30.

☞ For information about using themessage, message_start, or sender
filters, see“Using the filters message, message_start, and sender” on
page 31.

Action and altaction Each filter is associated with an action and,
optionally, an alternative action called the altaction. If a message meets the
conditions of the filter, the action is invoked. You must specify an action. If
you specify an altaction, the altaction is invoked only if the action fails.

For each action and altaction, there can be one command, and it can be one
of start, run , post, socket, or DBLSN FULL SHUTDOWN .

♦ start spawns a process. When you start a program, the Listener
continues listening for more messages.

When youstart a program, the Listener doesn’t wait for a return code, so
it can only tell that the action has failed if it cannot find or start the
program.

The following example starts dbmlsync with some command line
options, parts of which are obtained from the message.

"action=’start dbmlsync.exe @dbmlsync.txt -n
$content -wc dbmlsync_$content -e sch=INFINITE’;"

42

Chapter 3. The Listener

♦ run runs the program and waits for it to finish. The Listener resumes
listening after the process is complete.

When yourun a program, the Listener determines that the program has
failed if the Listener cannot find or start the program or if it returns a
non-zero return code.

The following example runs dbmlsync with some command line options,
parts of which are obtained from the message.

"action=’run dbmlsync.exe @dbmlsync.txt -n $content’;"

♦ post posts a window message to a window class. This is required by
dbmlsync when scheduling is on. Post is also used when signaling
applications that use Windows messages.

You can identify the window message by message contents or by the ID
of the window message, if one exists.

You can identify the window class by its name or by the title of the
window. If you identify the window class by name, you can use the
dbmlsync -wc option to specify the window class name. If you identify
the window class by its title, only the title of the top level window can be
used to identify the window class.

If there are non-alphanumeric characters such as spaces or punctuation
marks in your window message or window class name, you can put the
message or name in single quotes. In that case, to use a single quote in
the string, use two single quotes in a row. For example, to post
my’message to my’class, use the following syntax:

... -l "action=’post my’’’’message to my’’’’class’:"

or

... -l "action=’post ’’my’’’’message’’ to ’’my’’’’class’’’:"

The following example posts a Windows message registered as
dbas_synchronize to a dbmlsync instance registered with the class name
dbmlsync_FullSync.

"action=’post dbas_synchronize to dmblsync_FullSync’;"

☞ For more information, see“-wc option” [MobiLink Clients,page 151].

♦ socket notifies an application by making a TCP/IP connection. This is
especially useful for passing dynamic information to a running
application. It is also useful for integrating with Java and Visual Basic
applications, because Java and VB don’t support custom window
messaging, and eVB doesn’t support command line parameters. You can
connect to a local socket by specifying just a port, or you can connect to a

43

remote socket by specifying the host along with the port. Using sendText,
you can send a string. You can optionally verify that the response is as
expected with recvText. When you use recvText, you can also specify a
timeout to avoid hanging if the case of application or network problems.

When you perform asocketaction, the Listener determines that the
action has failed if it failed to connect, send, or receive expected
acknowledgement before timeout.

The following example forwards the string in $sender=$message to a
local application that is listening on port 12345, and expects the
application to send back “beeperAck” as an acknowledgement within 5
seconds.

-l "action=’socket port=12345;
sendText=$sender=$message;
recvText=beeperAck;
timeout=5’"

♦ DBLSN FULL SHUTDOWN causes the Listener utility to shut down.
After shutdown, the Listener stops handling inbound messages and stops
synchronizing device tracking information. The remote user must restart
the Listener in order to continue with server-initiated synchronization.
This feature is mostly useful during testing.

For example,action=’DBLSN FULL SHUTDOWN’

You can only specify one action and one altaction in each instance of -l. If
you want an action to perform multiple tasks, you can write a cover program
or batch file that contains multiple actions, and run it as a single action.

Following is an example of altaction. In this example, $content is the
protocol option for connecting to MobiLink. The primary action is to post
the dbas_synchronize Windows message to the dbmlsync_FullSync window.
The example uses altaction to start (not run) dbmlsync with the window
class name dbmlsync_FullSync if the primary action fails. This is the
standard way to make the Listener work with dbmlsync scheduling.

-l "subject=sync;
action=’post dbas_synchronize to dbmlsync_FullSync’;
altaction=’start dbmlsync.exe

@dbmlsync.txt
-wc dbmlsync_FullSync
-e adr=$content;sch=INFINITE’"

See also “Listeners” on page 28

Action variables

The following Listener action variables can be used anywhere in the action
or altaction.

44

Chapter 3. The Listener

An action variable is substituted just before the action or altaction is
performed.

Listener action variables start with a dollar sign ($). The escape character is
also a dollar sign, so to specify a single dollar sign as plain text, type $$. For
example, type $$message_start when you don’t want $message_start to be
substituted.

Action variable Description

$subject The subject of the message.

$content The content of the message.

$message The entire message, including subject, content, and for-
matting that is specific to the delivery path.

$message_start A portion of the text of the message from the beginning,
as specified in -l message_start. This variable is only
available if you have specified -l message_start.

$message_end The part of the message that is left over after the part
specified in -l message_start is removed. This variable is
only available if you have specified -l message_start.

$sender The sender of the message.

$type The meaning of this variable is carrier library dependent.

$priority The meaning of this variable is carrier library dependent.

$request_id The request ID that was specified for the push request. For
more information, see“Push requests” on page 10.

$year The meaning of this variable is carrier library dependent.

$month The meaning of this variable is carrier library dependent.
Values can be from 1-12.

$day The meaning of this variable is carrier library dependent.
Values can be from 1-31.

$hour The meaning of this variable is carrier library dependent.
Values can be from 0-23.

$minute The meaning of this variable is carrier library dependent.
Values can be from 0-59.

$second The meaning of this variable is carrier library dependent.
Values can be from 0-59.

45

Action variable Description

$best_adapter_-
mac

The MAC address of the best NIC for reaching the Mo-
biLink server that is specified in the dblsn command line
with the -x option. If the best route does not go through a
NIC, the value is an empty string.

$best_adapter_-
name

The adapter name of the best NIC for reaching the Mo-
biLink server that is specified in the dblsn command line
with the -x option. If the best route does not go through a
NIC, the value is an empty string.

$best_ip The IP address of the best IP interface for reaching the
MobiLink server that is specified in the dblsn command
line with the -x option. If that server is unreachable, the
value is 0.0.0.0.

$best_-
network_name

The RAS or dialup profile name of the best profile for
reaching the MobiLink server that is specified in the dblsn
command line with the -x option. If the best route does
not go through a RAS/dialup connection, the value is an
empty string.

$adapters A list of active network adapter names, each separated by
a vertical bar (|).

$network_-
names

A list of connected RAS entry names, each separated by a
vertical bar (|). RAS entry names are sometimes referred
to as dial-up entry names or Dial-Up Network (DUN).

Example For example, if a message arrives in the formmessage_start pub-name ,
you can use the following $message_end action variable to determine which
publication to synchronize:

-l "message_start= message_start ;action=’dbmlsync.exe -c ... -n
$message_end’"

Listening libraries

When you run the Listener, by default the listening librarylsn_udp.dllis
used. If you are using SMTP, you need to specify an SMTP listening library.

You specify the listening library with the dblsn -d option, and specify
options for the listening library with the -a option. To enable multi-channel
listening, specify multiple dlls by repeating -d. After each -d option, specify
the -a and -i options that relate to the dll. For example,

46

Chapter 3. The Listener

dblsn.exe -d lsn_udp.dll -i 10 -d maac750.dll -i 60

To specify multiple options, repeat -a. For example,

-d maac750.dll -a port=2439 -a ShowSenderPort

To see options for your dll, typedblsn -d filename.dll -a ? .

☞ You can also create a custom Listener library. For more information, see
“MobiLink Listener SDKs” on page 87.

Following is a list of supported listening libraries and their options.

UDP (lsn_udp.dll)

Option Description

Port=port_number The default is 5001.

Timeout=seconds This value must be smaller than the polling interval of
the UDP listening thread. The default is 0.

ShowSenderPort Appends:port to the sender.

HideWSAError-
Box

Suppresses the error box showing errors on socket
operations.

CodePage=number On CE, translates multi-byte characters into Unicode
based on this code page number.

SMS for AirCard510
(lsn_swi510.dll)

Option Description

MessageStoreSize=number This size affects how the library collapses
redundant messages. If the message store is
filled, the library stops collapsing identical
messages until a message is consumed. The
default is 20.

NetworkProviderId= name The matching Carrier(name).network_-
provider_id. This information is sent up
during a device tracking synchronization.
This option is needed for device tracking.

PhoneNumber=number A 10-digit telephone number. This infor-
mation is sent up during a device tracking
synchronization. This option is needed for
device tracking.

SMS for AirCard555
(maac555.dll)

47

Option Description

MessageStoreSize=number This size affects how the library collapses
redundant messages. If the message store is
filled, the library stops collapsing identical
messages until a message is consumed. The
default is 20.

PreserveMessage Specifies that messages should be left in the
queue for other SMS applications. The default
is for the Listener to consume messages as
they are processed.

SMS for AirCard710 and
AirCard750 using
firmware R2
(maac750.dll)

Option Description

MessageStoreSize=number This size affects how the library collapses
redundant messages. If the message store is
filled, the library stops collapsing identical
messages until a message is consumed. The
default is 20.

PreserveMessage Specifies that messages should be left in the
queue for other SMS applications. The default
is for the Listener to consume messages as
they are processed.

SMS for AirCard710 and
AirCard750 using
firmware R3
(maac750r3.dll)

Option Description

MessageStoreSize=number This size affects how the library collapses
redundant messages. If the message store is
filled, the library stops collapsing identical
messages until a message is consumed. The
default is 20.

PreserveMessage Specifies that messages should be left in the
queue for other SMS applications. The default
is for the Listener to consume messages as
they are processed.

48

CHAPTER 4

Listeners for Palm Devices

About this chapter This chapter describes how to set up and run server-initiated synchronization
on Palm devices. Palm Listeners do not support UDP.

Contents Topic: page

Palm Listener utilities 50

49

Palm Listener utilities
To run server-initiated synchronization on Palm devices, you use two
utilities:

♦ Palm Listener Configuration utility (dblsncfg)

♦ Palm Listener (lsnK7135.prc or lsnT600.prc)

First, run the Palm Listener Configuration utility on a Windows desktop to
create a configuration file for the Palm. The configuration file must later be
transferred to the Palm device via HotSync.

☞ For an overview of Listeners and message handlers, see“Listeners” on
page 28.

Palm Listener Configuration utility

The Palm Listener Configuration utility, running on a Windows desktop,
creates a configuration file for the Palm Listener. For information about the
Palm Listener, see“Palm Listener utility” on page 52.

Syntax dblsncfg -n [filename] -l message-handler [-l message-handler...]

message-handler : [filter ;...] action

filter :
[subject = string]
[content = string]
[message = string | message_start = string]
[sender = string]

action : action=run application-name [arguments]

Options and parameters @data Reads options from the specified environment variable or
configuration file. If both exist, the environment variable is used. See
“Storing Listener options” on page 33.

-n [filename] The -n option is used to create a configuration file for the
Palm Listener. Thefilenameshould belsncfg.pdb.

-l message-handler -l allows you to specify a message handler, which is a
filter-action pair. The filter determines which message should be handled,
and the action is invoked when the filter matches a message. You can specify
multiple instances of -l. Each instance of -l specifies a different message
handler.

Filters You specify a filter to compare to an incoming message. If the filter
matches, the action you specify is invoked.

50

Chapter 4. Listeners for Palm Devices

☞ For information about using thesubjector contentfilters, see“Using
subject and content filters” on page 30.

☞ For information about using themessage, message_start, or sender
filters, see“Using the filters message, message_start, and sender” on
page 31.

The filter is optional. If you do not specify a filter, the action is performed
when any message is received.

Action The action fully launches the specified application. The syntax is
run application-name[arguments]. argumentsis an application-dependent
string; it may contain action variables. The PilotMain routine of the target
application should take a string as the command block. For more
information, see“Action variables” on page 51.

Note: When running the Palm Listener Configuration utility on a Windows
desktop to generate a configuration file for the Palm, you must specify the
run action. However, on the Palm device you can delete the run action using
the Handler Editor in the Palm Listener. This way you can consume the
message without causing an action.

Action variables

The following action variables can be used in the arguments in the run
clause.

An action variable is substituted just before the action is performed.

Listener action variables start with a dollar sign ($). The escape character is
also a dollar sign, so to specify a dollar sign as plain text, type $$. For
example, type $$message_start when you don’t want $message_start to be

51

substituted.

Action variable Description

$subject The subject of the message.

$object The object of the message.

$message The full message string.

$message_start A portion of the text of the message from the beginning,
as specified in -l message_start. This variable is only
available if you have specified -l message_start.

$message_end The part of the message that is left over after the part
specified in -l message_start is removed. This variable is
only available if you have specified -l message_start.

$sender The sender of the message.

$time This is the current time in seconds since 12:00 AM,
January 1, 1904.

Palm Listener utility

For Palm applications using server-initiated synchronization, each client
must have a Palm Listener installed. The two supported Palm Listeners are
for Kyocera 7135 and Treo 600. The Listener files are:

♦ lsnK7135.prc the Listener on Kyocera 7135

♦ lsnT600.prc the Listener on Treo 600

Currently, the two Palm Listeners only read from configuration file
lsncfg.pdb.

The Palm Listener also allows you to set three options. These options remain
until they are explicitly changed or until you perform a reset.

♦ Listening A way to stop the Listener from consuming messages.

♦ Enable Actions This is applicable only when Listening is on. When
disabled, no action is invoked.

♦ Prompt Before Actions This is applicable only when actions are
enabled. When this option is set, a confirmation dialog pops up before an
action is invoked.

The device need not always be on if it turns on automatically when an SMS
message is received. Kyocera and Treo devices do not need to be on for the
Listener to work.

52

Chapter 4. Listeners for Palm Devices

☞ A Listener SDK is provided that you can use to create support for other
Palm devices. For more information, see“Listener SDK for Palm” on
page 114.

53

CHAPTER 5

MobiLink Notification Properties

About this chapter This chapter describes the properties that you use to customize Notifiers,
gateways, and carriers.

☞ For information about how to set properties, see“Setting properties” on
page 15.

Contents Topic: page

Common properties 56

Notifier properties 57

Device tracker gateway properties 68

SMTP gateway properties 70

UDP gateway properties 72

Carrier properties 74

55

Common properties
There is one common property, verbosity.

☞ For more information about setting properties, see“Setting properties”
on page 15.

verbosity property

The verbosity setting applies to all Notifiers, gateways, and carriers. You can
set the verbosity to the following levels:

Level Description

0 No trace (the default)

1 Startup, shutdown, and property trace

2 Display notification messages

3 Poll-level trace

See also “Setting properties” on page 15.

Examples Following are the ways you can set verbosity to level 2.

If you are using the MobiLink plug-in in Sybase Central to change the
verbosity property, right-click the Notification folder and choose Properties.

If you are configuring properties using the Notifier properties file, include
the line:

verbosity=2

If you are using the stored procedure ml_add_property to change the
verbosity level, enter the following:

ml_add_property(’SIS’,’global’,’verbosity’,’2’);

56

Chapter 5. MobiLink Notification Properties

Notifier properties
The following properties can be set in the Notifier properties file. The enable
and request_cursor properties are required. All other Notifier properties are
optional.

You can have multiple Notifiers running with one MobiLink server. To set
up additional Notifiers, copy the properties for one Notifier and provide a
different Notifier name and property values.

☞ For more information about the Notifier, see“Notifiers” on page 18.

☞ For more information about setting properties, see“Setting properties”
on page 15.

begin_connection property

This is a SQL statement that runs in a separate transaction after the Notifier
connects to the database and before the first poll. For example, this property
can be used to create temporary tables or variables.

If the Notifier loses its connection to the consolidated database, it will
re-execute this transaction immediately after reconnecting.

You should not use this property to change isolation levels. To control
isolation levels, use the isolation property.

See also ♦ “Setting properties” on page 15
♦ “isolation property” on page 62

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier and choose Properties. Open the Logic tab and select
begin_connection from the dropdown list. Paste the following code into the
box called Execute this SQL Statement.

set temporary option blocking = ’off’

If you are configuring properties using the Notifier properties file,
begin_connection is defined for a Notifier called Car Dealer with the
following line. The backslash is a line continuation character.

Notifier(Car Dealer).begin_connection = \
set temporary option blocking = ’off’

If you are using the stored procedure ml_add_property to change the
begin_connection property, type the following (this assumes an Adaptive
Server Anywhere consolidated database):

57

ml_add_property(
’SIS’,
’Notifier(Car Dealer)’,
’begin_connection’,
’set temporary option blocking = ’’off’’’

);

begin_poll property

This is a SQL statement that is executed before each Notifier poll. Typical
uses are to detect data change in the database and create push requests that
are later fetched with the request_cursor.

The statement is executed in a standalone transaction.

This property is optional. The default is NULL.

See also “Setting properties” on page 15.

Examples For example, the following SQL statement inserts rows into a table called
PushRequest. Each row in this table represents a message to send to an
address. The WHERE clause determines what push requests are inserted
into the PushRequest table.

INSERT INTO PushRequest
(gateway, mluser, subject, content)

SELECT ’MyGateway’, DISTINCT mluser,
’sync’, stream_param

FROM MLUserExtra, Dealer
WHERE

MLUserExtra.mluser.push_sync_status = "waiting for request"
AND Dealer.last_modified > MLUserExtra.last_sync_time

If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier and choose Properties. Open the Logic tab and select begin_poll
from the dropdown list. Paste the code above into the box called Execute
this SQL Statement.

If you are configuring properties using the Notifier properties file, include
the following line for a Notifier called NotifierA. The backslash is a line
continuation character.

58

Chapter 5. MobiLink Notification Properties

Notifier(NotifierA).begin_poll = \
INSERT INTO PushRequest \
(gateway, mluser, subject, content) \

SELECT ’MyGateway’, DISTINCT mluser, \
’sync’, stream_param \

FROM MLUserExtra, Dealer \
WHERE\

MLUserExtra.mluser.push_sync_status = "waiting for request" \
AND Dealer.last_modified > MLUserExtra.last_sync_time \

);

If you are using the stored procedure ml_add_property to change the
begin_connection property, type the following (this assumes an Adaptive
Server Anywhere consolidated database):

ml_add_property(’SIS’,
’Notifier(Car Dealer)’,
’begin_connection’,
’INSERT INTO PushRequest

(gateway, mluser, subject, content)
SELECT ’’MyGateway’’, DISTINCT mluser,

’’sync’’, stream_param
FROM MLUserExtra, mluser_union, Dealer
WHERE

MLUserExtra.mluser = mluser_union.name
AND(push_sync_status = ’’waiting for request’’

OR datediff(hour, last_status_change, now()) >
12)

AND (mluser_union.publication_name is NULL
OR mluser_union.publication_name =’’FullSync’’)

AND
Dealer.last_modified > mluser_union.last_sync_

time’
);

connect_string property

By default, the Notifier uses ianywhere.ml.script.ServerContext to connect
to the consolidated database. This means that it uses the connection string
that was specified in the current dbmlsrv9 session’s command line.

This is an optional property that can be used to override the default
connection behavior. You can use it to connect to any database, including the
consolidated database. It may be useful to connect to another database when
you want notification logic and data to be separate from your
synchronization data. Most deployments will not set this property.

☞ For more information, see“ServerContext interface”[MobiLink
Administration Guide,page 311].

See also “Setting properties” on page 15.

59

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier and choose Properties. The connect string is set on the Connection
tab.

If you are configuring properties using the Notifier properties file, configure
a Notifier called Simple to use a DSN with the following line. The backslash
is a line continuation character.

Notifier(Simple).connect_string = dsn=SIS_DB \
;uid=user;pwd=myPwd

If you are using the stored procedure ml_add_property to change the connect
string, type the following (this assumes an Adaptive Server Anywhere
consolidated database):

ml_add_property(’SIS’,
’Notifier(Simple)’,
’connect_string’,
’dsn=SIS_DB;uid=user;pwd=myPwd’);

gui property

This controls whether the Notifier dialog is displayed on the computer where
the Notifier is running. This user interface allows users to temporarily
change the polling interval, or poll immediately. It can also be used to shut
down the Notifier without shutting down the MobiLink synchronization
server. (Once stopped, the Notifier can only be restarted by shutting down
and restarting the MobiLink synchronization server.)

This property is optional. The default is ON.

See also “Setting properties” on page 15.

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier and choose Properties. Open the General tab and change Display
Control Window When Running.

If you are configuring properties using the Notifier properties file, disable
the dialog for a Notifier called Simple with the following line:

Notifier(Simple).gui=off

If you are using the stored procedure ml_add_property to change this
property, type the following (this assumes an Adaptive Server Anywhere
consolidated database):

ml_add_property(’SIS’,’Notifier(Simple)’,’gui’,’off’);

60

Chapter 5. MobiLink Notification Properties

enable property

You can enable or disable existing Notifiers. If you have enabled multiple
Notifiers, all are started when you start the MobiLink synchronization server
with the -notifier option.

See also “Setting properties” on page 15.

Examples If you are using the MobiLink plug-in in Sybase Central, open the Notifiers
folder and double-click Add Notifier to add a new Notifier. New Notifiers
are automatically enabled. To disable an existing Notifier, right-click the
Notifier and choose Properties; open the General tab and clear Enable This
Notifier.

If you are configuring properties using the Notifier properties file, a Notifier
called NotifierA is enabled with the following line:

Notifier(NotifierA).enable=yes

If you are using the stored procedure ml_add_property to enable NotifierA,
type the following (this assumes an Adaptive Server Anywhere consolidated
database):

ml_add_property(’SIS’,’Notifier(NotifierA)’,’enable’,’yes’);

end_connection property

This is a SQL statement that runs as a separate transaction just before a
Notifier database connection is closed. For example, this property can be
used to delete temporary storage such as SQL variables and temporary
tables.

The statement is executed in a standalone transaction.

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier called Simple and choose Properties. Open the Logic tab and select
end_connection from the dropdown list. Paste the following code into the
box called Execute this SQL Statement.

DELETE FROM NotifierShutdown WHERE name = ’Simple’

If you are configuring properties using the Notifier properties file,
end_connection is defined for a Notifier called Simple with the following
line. The backslash is a line continuation character.

Notifier(Simple).end_connection = \
DELETE FROM NotifierShutdown WHERE name = ’Simple’

61

If you are using the stored procedure ml_add_property, type the following
(this assumes an Adaptive Server Anywhere consolidated database):

ml_add_property(’SIS’,
’Notifier(Simple)’,
’end_connection’,
’DELETE FROM NotifierShutdown WHERE name = ’’Simple’’’);

end_poll property

This is a SQL statement that is executed after each poll. Typical uses are to
perform customized cleanup or track polling.

The statement is executed in a standalone transaction.

This property is optional. The default is NULL.

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier called Simple and choose Properties. Open the Logic tab and select
end_poll from the dropdown list. Paste the following code into the box
called Execute this SQL Statement.

call reportAliveRequests()

If you are configuring properties using the Notifier properties file, end_poll
is defined for a Notifier called Simple with the following line.

Notifier(Simple).end_poll = call reportAliveRequests()

If you are using the stored procedure ml_add_property, type the following
(this assumes an Adaptive Server Anywhere consolidated database):

ml_add_property(’SIS’,
’Notifier(Simple)’,
’end_poll’,
’call reportAliveRequests()’);

isolation property

Isolation is an optional property that controls the isolation level of the
Notifier’s database connection. The default value is 1. You can use the
following values:

62

Chapter 5. MobiLink Notification Properties

Value Isolation level

0 Read uncommitted

1 Read committed (the default)

2 Repeatable read

3 Serializable

Description Be aware of the consequences of setting the isolation level. Higher levels
increase contention, and may adversely affect performance. Isolation level 0
allows reads of uncommitted data—data which may eventually be rolled
back.

See also “Setting properties” on page 15.

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier and choose Properties. Isolation levels are set on the Connection tab.

If you are configuring properties using the Notifier properties file, the
isolation level for a Notifier called NotifierA is set with the following line:

Notifier(NotifierA).isolation=2

If you are using the stored procedure ml_add_property to change the
isolation level, type the following (this assumes an Adaptive Server
Anywhere consolidated database):

ml_add_property(’SIS’,’Notifier(NotifierA)’,’isolation’,’2’);

poll_every property

This property specifies the Notifier polling interval. You can specify S, M,
and H for units of seconds, minutes. and hours. You can also combine units,
as in 1H 30M 10S. If no unit is specified, the interval is in seconds.

If the Notifier loses the database connection, it will recover automatically at
the first polling interval after the database becomes available again.

This property is optional. The default is 30 seconds.

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier and choose Properties. Open the Polling tab and choose a polling
interval.

If you are configuring properties using the Notifier properties file, a Notifier
called Simple is configured to poll every three hours with the following line:

Notifier(Simple).poll_every = 3H

63

If you are using the stored procedure ml_add_property to change the polling
interval, type the following (this assumes an Adaptive Server Anywhere
consolidated database):

ml_add_property(’SIS’,’Notifier(Simple)’,’poll_every’,’3H’);

request_cursor property

This property contains SQL used by the Notifier to fetch push requests. Each
row is a push request that determines what information is sent in the
message, who receives the information, when, and where. You must set this
property.

The result set of this statement must contain at least five columns, and can
optionally contain two other columns. These columns can have any name,
but must be in the following order in the result set:

♦ request id

♦ gateway

♦ subject

♦ content

♦ address

♦ resend interval (optional)

♦ time to live (optional)

☞ For more information about these columns, see“Push requests” on
page 10.

You might want to include a WHERE clause in your request_cursor to filter
out requests that have been satisfied. For example, you can add a column to
your push request table to track the time you inserted a request, and then use
a WHERE clause to filter out requests that were inserted prior to the last
time the user synchronized.

The statement is executed in a standalone transaction.

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier and choose Properties. Open the Logic tab and select request_cursor
from the dropdown list. Paste the following code into the box called Execute
this SQL Statement.

SELECT req_id, gateway, subject, content, address
FROM PushRequest

64

Chapter 5. MobiLink Notification Properties

If you are configuring properties using the Notifier properties file, a
request_cursor is defined for a Notifier called Simple with the following line.
The backslash is a line continuation character.

Notifier(Simple).request_cursor = \
SELECT req_id, gateway, subject, content, address \

FROM PushRequest

If you are using the stored procedure ml_add_property, type the following
(this assumes an Adaptive Server Anywhere consolidated database):

ml_add_property(
’SIS’,
’Notifier(Simple)’,
’request_cursor’,
’SELECT req_id, gateway, subject, content, address

FROM PushRequest’
);

request_delete property

This is a SQL statement that specifies cleanup operations. The statement
takes the request id as its only parameter. The placeholder for a parameter is
a question mark (?).

Using the DELETE statement, the Notifier can automatically remove these
forms of old request:

♦ implicitly dropped requests requests that appeared previously, but did
not appear in the current set of requests obtained from the request_cursor.

♦ confirmed requests messages confirmed as delivered.

♦ expired requests requests that have expired based on their resend
attributes and the current time. Requests without resend attributes are
considered expired even if they appear in the next request.

The request_delete statement is executed per request ID in a standalone
transaction when the need for deletion is detected. It is optional if you have
provided another process to do the cleanup.

You can write the request_delete script in such a way to avoid eliminating
expired or implicitly dropped requests. For example, the CarDealer sample
uses request_delete to set the status field of the PushRequest table to
‘processed’.

update PushRequest set status=’processed’ where req_id = ?

The sample’s begin_poll script uses the last synchronization time to check
that a remote device is up-to-date prior to eliminating processed requests.

65

☞ For more information, see the Car Dealer sample located in the
Samples\MobiLink\SIS_CarDealersubdirectory of your SQL Anywhere
Studio installation.

Examples In the following examples, a Notifier called Simple is configured to
substitute a req_id previously obtained from request_cursor for the question
mark (?).

If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier called Simple and choose Properties. Open the Logic tab and select
request_delete from the dropdown list. Paste the following code into the box
called Execute this SQL Statement.

DELETE FROM PushRequest WHERE req_id = ?

If you are configuring properties using the Notifier properties file,
request_delete is defined for a Notifier called Simple with the following line.
The backslash is a line continuation character.

Notifier(Simple).request_delete = \
DELETE FROM PushRequest WHERE req_id = ?

If you are using the stored procedure ml_add_property, type the following
(this assumes an Adaptive Server Anywhere consolidated database):

ml_add_property(’SIS’,
’Notifier(Simple)’,
’request_delete’,
’delete = DELETE FROM PushRequest WHERE req_id = ?’);

shutdown_query property

This is a SQL statement that is executed right after begin_poll. The result
should contain only the value yes (or 1) or no (or 0). To shut down the
Notifier, specify yes or 1. This statement is executed as a standalone
transaction.

If you are storing the shutdown state in a table, then you can use the
end_connection property to reset the state before the Notifier disconnects.

Examples If you are using the MobiLink plug-in in Sybase Central, right-click the
Notifier and choose Properties. Open the Logic tab and select
shutdown_query from the dropdown list. Paste the following code into the
box called Execute this SQL Statement.

SELECT COUNT(*) FROM NotifierShutdown
WHERE name=’Simple’

If you are configuring properties using the Notifier properties file,

66

Chapter 5. MobiLink Notification Properties

shutdown_query is defined for a Notifier called Simple with the following
line. The backslash is a line continuation character.

Notifier(Simple).shutdown_query = \
SELECT COUNT(*) FROM NotifierShutdown \
WHERE name=’Simple’

If you are using the stored procedure ml_add_property, type the following
(this assumes an Adaptive Server Anywhere consolidated database):

ml_add_property(’SIS’,’Notifier(Simple)’,’shutdown_query’,
’SELECT COUNT(*) FROM NotifierShutdown

WHERE name=’’Simple’’’

);

67

Device tracker gateway properties
To use the default device tracker gateway, include the name
Default-DeviceTracker in the second column of the result set of the
request_cursor.

A device tracker gateway utilizes automatically-tracked IP addresses, phone
numbers, and public wireless network provider IDs to deliver messages
through either a UDP or SMTP gateway. Your configuration defines which
UDP gateway and which SMTP gateway are to be used by your device
tracker gateway. You can also control tracking requirements for messages
sent through this gateway.

☞ For more information about device tracking, see“Device tracking” on
page 22.

☞ For more information about setting properties, see“Setting properties”
on page 15.

confirm_delivery property

Specifies whether the Listener should confirm with the consolidated database
that the message was received. To be able to do this, you must start the
Listener with the -x option. The default setting for confirm_delivery is yes.

For example,

DeviceTracker(Default-DeviceTracker).confirm_delivery = yes

Examples If you are using the MobiLink plug-in in Sybase Central, open the Gateways
folder, right-click Default-DeviceTracker, and choose Properties. Open the
Delivery tab and select Confirm Delivery.

If you are configuring properties using the Notifier properties file, a
DeviceTracker gateway called Default-DeviceTracker has delivery
confirmation set with the following line:

DeviceTracker(Default-DeviceTracker).confirm_deivery=yes

If you are using the stored procedure ml_add_property to set
confirm_delivery for Default-DeviceTracker, type the following (this
assumes an Adaptive Server Anywhere consolidated database):

ml_add_property(’SIS’,
’DeviceTracker(Default-DeviceTracker)’,
’confirm_delivery’,
’yes’);

68

Chapter 5. MobiLink Notification Properties

enable property

Specifyenable=yesto use a device tracker gateway. Specifyenable=noto
disable a device tracker gateway. You can define and use multiple device
tracker gateways.

Examples If you are using the MobiLink plug-in in Sybase Central, open the Carriers
folder and double-click Add Gateway. New gateways are automatically
enabled.

If you are configuring properties using the Notifier properties file, a
DeviceTracker gateway called Default-DeviceTracker is enabled with the
following line:

DeviceTracker(Default-DeviceTracker).enable=yes

If you are using the stored procedure ml_add_property to enable
Default-DeviceTracker, type the following (this assumes an Adaptive Server
Anywhere consolidated database):

ml_add_property(’SIS’,
’DeviceTracker(Default-DeviceTracker)’,
’enable’,
’yes’);

smtp_gateway property

This names an SMTP gateway that the device tracker can use. The gateway
must be enabled. A device tracker gateway can only use one SMTP gateway.
The default is Default-SMTP.

udp_gateway property

This identifies a UDP gateway that the device tracker can use. The gateway
must be enabled. A device tracker gateway can only use one UDP gateway.
The default is Default-UDP.

69

SMTP gateway properties
SMTP gateway configuration is required only if you need to send SMS
messages via SMTP.

SMTP gateways can be used to send e-mail messages. In particular, they can
send SMS messages to SMS listeners via a wireless carrier’s e-mail-to-SMS
service.

In the following list of properties, the enable and server properties are
required. The server and sender properties are often required. The user and
password properties may be required, depending on your SMTP server
setup. All other SMTP gateway properties are optional.

You can have multiple SMTP gateways. To set up additional SMTP
gateways, copy the properties for one gateway and provide a different
gateway name and property values.

☞ For more information about gateways, see“Gateways and carriers” on
page 20.

☞ For more information about setting properties, see“Setting properties”
on page 15.

confirm_delivery property

Specify yes to confirm delivery. The default is no. This property has an
effect only when sending directly through this gateway (not indirectly via a
device tracking gateway).

confirm_timeout property

Specify the amount of time before a confirmation should time out. Specify s,
m, or h for seconds, minutes, or hours. If you do not specify s, m, or h, the
default is seconds. The default confirmation timeout is 10m.

enable property

Specify enable=yes to use an SMTP gateway. You can define and use
multiple SMTP gateways.

Examples If you are using the MobiLink plug-in in Sybase Central, open the Gateways
folder and double-click Add Gateway. New gateways are automatically
enabled.

If you are configuring properties using the Notifier properties file, an SMTP
gateway called Gate3 is enabled with the following line:

70

Chapter 5. MobiLink Notification Properties

SMTP(Gate3).enable=yes

If you are using the stored procedure ml_add_property to enable the gateway
Gate3, type the following (this assumes an Adaptive Server Anywhere
consolidated database):

ml_add_property(’SIS’,’SMTP(Gate3)’,’enable’,’yes’);

listeners_are_900 property

Specify yes if all Listeners are Adaptive Server Anywhere version 9.0.0
clients. Specify no if they are version 9.0.1 or later. The default is no.

password property

This is the password for your SMTP service. Your SMTP service may not
require a password.

sender property

This is the sender address of the e-mails (SMTP requests). The default is
anonymous.

The sender may not be available as an action variable to the Listener if the
arriving message format is not compatible with MobiLink’s message
interpretation.

server property

This is the IP address or host name of the SMTP server used to send the
message to the Listener. The default ismail.

user property

This is the user name for your SMTP service. Your SMTP service may not
require a user name.

71

UDP gateway properties
UDP gateway configuration is required only if you need to send UDP
messages.

The format of the UDP message is [subject] contentwheresubjectand
contentcome from the subject and content columns of the request_cursor
Notifier property.

In the following list of properties, only the enable property is required. All
other UDP gateway properties are optional.

You can have multiple UDP gateways. To set up additional UDP gateways,
copy the properties for one gateway and provide a different gateway name
and property values.

☞ For more information about gateways, see“Gateways and carriers” on
page 20.

☞ For more information about setting properties, see“Setting properties”
on page 15.

confirm_delivery property

Specify yes to confirm delivery. The default is yes. This property has an
effect only when sending directly through this gateway (not indirectly via a
device tracking gateway).

confirm_timeout property

Specify the amount of time before a confirmation should time out. Specify s,
m, or h for seconds, minutes, or hours. If you do not specify s, m, or h, the
default is seconds. The default confirmation timeout is 1m.

enable property

Specifyenable=yesto use a UDP gateway. You can define and use multiple
UDP gateways.

Examples If you are using the MobiLink plug-in in Sybase Central, open the Gateways
folder and double-click Add Gateway. New gateways are automatically
enabled.

If you are configuring properties using the Notifier properties file, a UDP
gateway called Gate3 is enabled with the following line:

UDP(Gate3).enable=yes

72

Chapter 5. MobiLink Notification Properties

If you are using the stored procedure ml_add_property to enable the gateway
Gate3, type the following:

ml_add_property(’SIS’,’UDP(Gate3)’,’enable’,’yes’);

listeners_are_900 property

Specify yes if all Listeners are Adaptive Server Anywhere version 9.0.0
clients. Specify no if they are version 9.0.1 or later. The default is no.

listener_port property

This is the port on the remote device where the gateway sends the UDP
packet. This property is optional. The default is the default listening port of
the UDP Listener (5001).

sender property

This is the IP address or host name of the sender. This property is optional,
and is only useful for multi-homed hosts. The default is localhost.

sender_port property

This is the port to use for sending the UDP packet. This property is optional;
you may need to set it if your firewall restricts outgoing traffic. If not set,
your operating system will assign a free port.

73

Carrier properties
Carrier properties set up public wireless carrier configuration, which
provides carrier-specific information such as how to map
automatically-tracked phone numbers and network providers to SMS e-mail
addresses.

Carrier information is used when the device tracker gateway needs an SMS
e-mail address to be generated from an automatically-tracked device
address. Addresses are generated in the following form:

email-address =
sms_email_user_prefix phone-number @sms_email_domain

where:

♦ sms_email_user_prefixis the value of the sms_email_user_prefix
property

♦ the phone number comes from the ml_device_address.address column

♦ sms_email_domainis the value of the sms_email_domain property

See also ♦ “sms_email_domain property” on page 75
♦ “sms_email_user_prefix property” on page 75
♦ “ml_device_address”[MobiLink Administration Guide,page 507]

☞ For more information about carriers, see“Gateways and carriers” on
page 20.

☞ For more information about setting properties, see“Setting properties”
on page 15.

enable property

Specifyenable=yesto use a Carrier mapping. You can define and use
multiple Carrier mappings in one file.

Examples If you are using the MobiLink plug-in in Sybase Central, open the Carriers
folder and double-click Add Carrier Mapping. New carrier mappings are
automatically enabled.

If you are configuring properties using the Notifier properties file, a carrier
mapping called Bell Mobility 1x is enabled with the following line:

Carrier(Bell Mobility 1x).enable=yes

If you are using the stored procedure ml_add_property to enable the carrier
Bell Mobility 1x, type the following (this assumes an Adaptive Server
Anywhere consolidated database):

74

Chapter 5. MobiLink Notification Properties

ml_add_property(’SIS’,
’Carrier(Bell Mobility 1x)’,
’enable’,
’yes’);

network_provider_id property

Specifies the network provider ID.

sms_email_domain property

Specifies the domain name of the carrier.

Carrier information is used when the device tracker gateway needs an SMS
e-mail address to be generated from an automatically-tracked device
address. Addresses are generated in the following form:

email-address =
sms_email_user_prefix phone-number @sms_email_domain

where:

♦ sms_email_user_prefixis the value of the sms_email_user_prefix
property

♦ the phone number comes from the ml_device_address.address column

♦ sms_email_domainis the value of the sms_email_domain property

See also ♦ “sms_email_user_prefix property” on page 75
♦ “ml_device_address”[MobiLink Administration Guide,page 507]

sms_email_user_prefix property

Specifies the prefix used in e-mail addresses.

Carrier information is used when the device tracker gateway needs an SMS
e-mail address to be generated from an automatically-tracked device
address. Addresses are generated in the following form:

email-address =
sms_email_user_prefix phone-number @sms_email_domain

where:

♦ sms_email_user_prefixis the value of the sms_email_user_prefix
property

♦ the phone number comes from the ml_device_address.address column

75

♦ sms_email_domainis the value of the sms_email_domain property

See also ♦ “sms_email_domain property” on page 75
♦ “ml_device_address”[MobiLink Administration Guide,page 507]

76

CHAPTER 6

Server-Initiated Synchronization Stored
Procedures

About this chapter This chapter describes the stored procedures that are provided for
server-initiated synchronization. These stored procedures add and delete
rows in MobiLink system tables.

Note: These stored procedures are used for device tracking. If you use
remote devices that support automatic device tracking, you do not need to
use these stored procedures. If you use remote devices that do not support
automatic device tracking, you can configure manual device tracking using
these stored procedures.

☞ For more information, see“Device tracking” on page 22and“Using
device tracking with Listeners that don’t support it” on page 25.

☞ For more information about MobiLink system tables, see“MobiLink
System Tables”[MobiLink Administration Guide,page 501].

☞ For information about other MobiLink stored procedures, see“Stored
Procedures”[MobiLink Administration Guide,page 479].

Contents Topic: page

ml_delete_device 78

ml_delete_device_address 79

ml_delete_listening 80

ml_set_device 81

ml_set_device_address 83

ml_set_listening 85

77

ml_delete_device
Function Use this stored procedure to delete all information about a remote device

when you are manually setting up device tracking.

Parameters

Item Parameter Description

1 device VARCHAR(255). Device name.

Description

Example Delete a device record and all associated records that reference this device
record:

call ml_delete_device(’myOldDevice’);

78

Chapter 6. Server-Initiated Synchronization Stored Procedures

ml_delete_device_address
Function Use this stored procedure to delete a device address when you are manually

setting up device tracking.

Parameters

Item Parameter Description

1 device VARCHAR(255)

2 medium VARCHAR(255)

Description

☞ For more information, see“Using device tracking with Listeners that
don’t support it” on page 25.

Example Delete an address record:

call ml_delete_device_address(’myFirstTreo180’, ’ROGERS AT&T’
);

79

ml_delete_listening
Function Use this stored procedure to delete mappings between a MobiLink user and

remote devices when you are manually setting up device tracking.

Parameters

Item Parameter Description

1 ml_user VARCHAR(128)

Description

☞ For more information, see“Using device tracking with Listeners that
don’t support it” on page 25.

Example Delete a recipient record:

call ml_delete_listening(’myULDB’);

80

Chapter 6. Server-Initiated Synchronization Stored Procedures

ml_set_device
Function Use this stored procedure to add or alter information about remote devices

when you are manually setting up device tracking. It adds or updates a row
in the ml_device table.

Parameters

Item Parameter Description

1 device VARCHAR(255). User-defined unique
device name.

2 listener_version VARCHAR(128). Optional remarks on
listener version.

3 listener_protocol INTEGER. Use0 for version 9.0.0,1 for
post-9.0.0 Palm Listeners,2 for post-9.0.0
Windows Listeners.

4 info VARCHAR(255). Optional device informa-
tion.

5 ignore_tracking CHAR(1). Set toy to ignore tracking and
stop it from overwriting manually entered
data.

6 source VARCHAR(255). Optional remarks on the
source of this record.

Description The stored procedures ml_set_device, ml_set_device_address, and
ml_set_listening are used to override automatic device tracking by changing
information in the MobiLink system tables ml_device, ml_device_address,
and ml_listening. For example, if some of your remote devices are Palm
devices you may want to use automatic device tracking but manually insert
data for the Palm devices.

☞ For more information, see“Using device tracking with Listeners that
don’t support it” on page 25.

See also ♦ “ml_set_device_address” on page 83
♦ “ml_set_listening” on page 85
♦ “ml_device” [MobiLink Administration Guide,page 505]
♦ “ml_device_address”[MobiLink Administration Guide,page 507]
♦ “ml_listening” [MobiLink Administration Guide,page 509]

Example For each device, add a device record:

81

call ml_set_device(
’myFirstTreo180’,
’MobiLink Listeners for Treo 180 - 9.0.1’,
’1’,
’not used’,
’y’,
’manually entered by administrator’);

82

Chapter 6. Server-Initiated Synchronization Stored Procedures

ml_set_device_address
Function Use this stored procedure to add or alter information about remote device

addresses when you are manually setting up device tracking. It adds or
updates a row in the ml_device_address table.

Parameters

Item Parameter Description

1 device VARCHAR(255). Existing device name.

2 medium VARCHAR(255). Network provider ID
(must match a carrier’s network_provider_-
id property).

3 address VARCHAR(255). Phone number of an
SMS-capable device.

4 active CHAR(1).Set toy to activate this record to
be used for sending notification.

5 ignore_tracking CHAR(1). Set toy to ignore tracking and
stop it from overwriting manually entered
data.

6 source VARCHAR(255). Optional remarks on the
source of this record.

Description The stored procedures ml_set_device, ml_set_device_address, and
ml_set_listening are used to override automatic device tracking by changing
information in the MobiLink system tables ml_device, ml_device_address,
and ml_listening. For example, if some of your remote devices are Palms
you may want to use automatic device tracking but manually insert data for
the Palm devices.

☞ For more information, see“Using device tracking with Listeners that
don’t support it” on page 25.

See also ♦ “ml_set_device” on page 81
♦ “ml_set_listening” on page 85
♦ “ml_device” [MobiLink Administration Guide,page 505]
♦ “ml_device_address”[MobiLink Administration Guide,page 507]
♦ “ml_listening” [MobiLink Administration Guide,page 509]

Example For each device, add an address record for a device:

83

call ml_set_device_address(
’myFirstTreo180’,
’ROGERS AT&T’,
’3211234567’,
’y’,

’y’,
’manually entered by administrator’);

84

Chapter 6. Server-Initiated Synchronization Stored Procedures

ml_set_listening
Function Use this stored procedure to add or alter mappings between MobiLink users

and remote devices when you are manually setting up device tracking. It
adds or updates a row in the ml_listening table.

Parameters

Item Parameter Description

1 ml_user VARCHAR(128). MobiLink user name.

2 device VARCHAR(255). Existing device name.

3 listening CHAR(1). Set toy to activate this record to
be used for DeviceTracker addressing.

5 ignore_tracking CHAR(1). Set toy to ignore tracking and
stop it from overwriting manually entered
data.

6 source VARCHAR(255). Optional remarks on the
source of this record.

Description The stored procedures ml_set_device, ml_set_device_address, and
ml_set_listening are used to override automatic device tracking by changing
information in the MobiLink system tables ml_device, ml_device_address,
and ml_listening. For example, if some of your remote devices are Palms
you may want to use automatic device tracking but manually insert data for
the Palm devices.

☞ For more information, see“Using device tracking with Listeners that
don’t support it” on page 25.

See also ♦ “ml_set_device” on page 81
♦ “ml_set_device_address” on page 83
♦ “ml_device” [MobiLink Administration Guide,page 505]
♦ “ml_device_address”[MobiLink Administration Guide,page 507]
♦ “ml_listening” [MobiLink Administration Guide,page 509]

Example For each remote database, add a recipient record for a device. This maps the
device to the MobiLink user name.

call ml_set_listening(
’myULDB’,
’myFirstTreo180’,
’y’,
’y’,
’manually entered by administrator’);

85

CHAPTER 7

MobiLink Listener SDKs

About this chapter This chapter describes the Listener Software Development Kit, which is
provided to help you create support for remote devices that are not
supported.

Contents Topic: page

Introduction 88

Listener SDK for Windows 90

Listener SDK for Palm 114

87

Introduction
If you want to use remote devices that are not currently supported by
MobiLink server-initiated synchronization, you can use the Listener
Software Development Kit to create Listeners for those devices. The
Listener SDK is a simple program API that is provided to help you extend
the Listener utility.

For example, you can use the Listener SDK to create Listeners for new Palm
devices or new wireless network adapters. The SDK provides development
material for both Windows (32-bit and CE) and Palm operating systems.

☞ For more information about the Listener SDK for Palm, see“Listener
SDK for Palm” on page 114.

☞ For more information about the Listener SDK for Windows and
Windows CE, see“Listener SDK for Windows” on page 90.

The MobiLink Listener SDK and sample implementations are located in the
following files. All are located in theMobiLink\ListenerSDKsubdirectory
of your SQL Anywhere Studio installation.

Windows Listener SDK
files

Windows Files Description

\Win32andCE\Win32_-
VC\lsn.def

Visual C++ module definition for the Listener
library.

\Win32andCE\CE_EVC\lsn.-
def

Embedded Visual C module definition for
the Listener library.

\Win32andCE\src\lsn.h Win32 and CE Listener library API.

\Win32andCE\src\swi510.c Sierra Wireless AirCard 510 implementation.

Win32andCE\src\udp.c UDP implementation.

Palm Listener SDK files

88

Chapter 7. MobiLink Listener SDKs

Palm Files Description

\Palm\68k\cw\lib\PalmLsn.-
lib

Runtime library for Palm Listeners. This pro-
vides a message handling routine, Listener
controls, and a handler editor.

\Palm\68k\cw\rsc\ Contains UI resources for the Palm Listener.

\Palm\src\PalmLsn.h Runtime library header and Palm Listener
API.

\Palm\src\Kyocera7135.c Kyocera 7135 implementation.

\Palm\src\Treo600.c Treo 600 implementation.

89

Listener SDK for Windows
You can use the Listener SDK for Windows (32-bit and CE) to create shared
Listener libraries for new wireless network adapters or communication
protocols.

The library, conforming to a common interface used for retrieving server
initiated synchronization messages, includes:

♦ A class representing Listener message data.

♦ Enumerations defining return values and version numbers for the Listener
SDK.

♦ Structures storing Listener state.

♦ Functions controlling Listener message or state information.

☞ For more information about Listener libraries, see“Listening libraries”
on page 46.

The Listener utility (dblsn.exe) loads your library using the -d command line
option.

☞ For more information about dblsn options, see“The Listener utility” on
page 38.

Data types

The following data types are defined in the Listener SDK for Windows.
They map common value types to Listener types used in the SDK interface.

Name Description

lsn_bool unsigned char

lsn_ulong unsigned long

lsn_long long

Message class

The message class (a_msg) provides an interface to manage Listener
messages, including:

♦ Public fields to store message data.

♦ Functions for message allocation, comparison, and basic manipulation.

90

Chapter 7. MobiLink Listener SDKs

a_msg public fields

Function The message class contains fields you can use to represent the sender, the
message contents, and optionally the time, type, and priority of a message.

Prototype class a_msg {

// message class functions...
...

// message class fields

public:
lsn_long year;
lsn_long month; // 1 to 12
lsn_long day; // 1 to 31
lsn_long hour; // 0 to 23
lsn_long minute; // 0 to 59
lsn_long second; // 0 to 59
lsn_long type;
lsn_long priority;
TCHAR * sender;
TCHAR * message;

...

};

Parameters

Name Description

sender A string used for the sender of a message.

message A string used for the message contents.

year An integer used for the year field of a message.

month An integer used for the month field of a message.

day An integer used for the day field of a message.

hour An integer used for the hour field of a message.

minute An integer used for the minute field of a message.

second An integer used for the second field of a message.

type An integer used for the type of a message.

priority An integer used for the priority of a message.

Remarks In your implementation, you give meaning to each field listed above.

91

Use the lsn_info structure to specify if the time, type, and priority fields are
applicable. For example, you can set the lsn_info isMsgPriorityApplicable
field to FALSE to disable the a_msg priority field.

☞ For more information about the lsn_info structure, see“lsn_info
structure” on page 97.

Example The following example declares an a_msg class instance and determines if
the priority field is set to 1.

a_msg * msgA;

//...

if(msgA -> priority == 1)
{

MessageBox(NULL,
TEXT("Message Priority is 1."),

TEXT("Message from lsn_udp.dll"), MB_ICONEXCLAMATION
);

}

a_msg allocateSize function

Function Returns a new a_msg instance with the specified size for sender and message
fields.

Prototype static a_msg * allocateSize (
long senderTChars,
long messageTChars

)

Parameters ♦ senderTChars The number of characters used for the sender field.

♦ messageTChars The number of characters used for the message field.

Return value A new message class instance instance with all fields initialized to zero.

See also ♦ “Message class” on page 90

Example The following example uses the allocateSize function to create a new a_msg
instance. In this implementation the sender field is 16 characters long and
the message field is 200 characters long.

#define MAX_SENDER_TCHARS 16
#define MAX_MESSAGE_TCHARS 200

//...

a_msg* msgA;
msgA = a_msg::allocateSize(MAX_SENDER_TCHARS, MAX_MESSAGE_

TCHARS);

92

Chapter 7. MobiLink Listener SDKs

a_msg copy function

Function Overwrites the fields of the calling instance using an a_msg parameter.

Prototype void copy (a_msg * source-msg)

Parameters ♦ source-msg An a_msg instance used to replace the information
contained in the calling instance.

See also ♦ “Message class” on page 90

Example The following example uses the copy function to initialize msgA. In this
case, the source is the copyOfLastReceivedMsg field of stateB, an lsn_state
instance.

For more information about the lsn_state structure, see“lsn_state structure”
on page 98.

a_msg* msgA;
msgA -> copy(stateB -> copyOfLastReceivedMsg);

a_msg equals function

Function Determines if the public fields of the calling instance equal all fields in the
a_msg parameter.

Prototype bool equals (a_msg * source-msg)

Parameters ♦ source-msg An a_msg instance used to compare to the calling
instance.

Return value TRUE if the public fields of the calling instance equal all fields in the a_msg
parameter. FALSE otherwise.

See also ♦ “Message class” on page 90

Example The following example uses the equals function to determine if msgA equals
the copyOfLastReceivedMsg field of stateB, an lsn_state instance.

For more information about the lsn_state structure, see“lsn_state structure”
on page 98.

93

a_msg* msgA;

//...

if(msgA -> equals(stateB -> copyOfLastReceivedMsg))
{

MessageBox(NULL,
TEXT("msgA equals stateB->copyOfLastReceivedMsg."),

TEXT("Message from lsn_sw786.dll"), MB_ICONEXCLAMATION
);

}

a_msg makeEmpty function

Function Clears (zeros) the fields of an a_msg instance.

Prototype void makeEmpty ()

See also ♦ “Message class” on page 90

Example The following example uses the makeEmpty function to clear the contents of
an a_msg instance.

a_msg* msgA;
msgA -> makeEmpty();

a_msg reallocBuffers function

Function Increases the size of the sender and message buffers for an a_msg instance.

Prototype unsigned char reallocBuffers (
long senderTChars,
long messageTChars

)

Parameters ♦ senderTChars The number of characters used for the sender field.

♦ messageTChars The number of characters used for the message field.

Return value TRUE if the sender and message fields are valid or non-NULL. FALSE
otherwise.

Remarks If the values specified at the input are less than the current length of the
sender or message fields, the field size does not change.

See also ♦ “Message class” on page 90

Example The following example uses the reallocBuffers function to increase the
sender and message fields of an a_msg instance. The
LSN_RET_OUT_OF_MEMORY return code is used if the reallocation fails.

94

Chapter 7. MobiLink Listener SDKs

For more information about LSN_RET_OUT_OF_MEMORY, see
“LSN_RET enumeration” on page 95.

#define MAX_SENDER_TCHARS 16
#define MAX_MESSAGE_TCHARS 200
//...

a_msg* msgA;
//...

if(msgA.reallocBuffers(MAX_SENDER_TCHARS, MAX_MESSAGE_TCHARS))
{

ret = LSN_RET_OUT_OF_MEMORY;
goto failed;

}

LSN_RET enumeration

Function Defines the set of return values for Windows Listener SDK functions.

Prototype typedef enum {
LSN_RET_OK = 0,
LSN_RET_NOT_SUP = 1,
LSN_RET_NO_RESP = 2,
LSN_RET_FAILED = 3,
LSN_RET_MSG_NOT_READ = 4,
LSN_RET_NO_MORE_MSG = 5,
LSN_RET_OUT_OF_MEMORY = 6,
LSN_RET_BAD_ARG = 7,
LSN_RET_NOT_ENOUGH_ARG = 8,
LSN_RET_TOO_MANY_ARGS = 9,
LSN_RET_SERVICE_NOT_ACTIVATED = 10

} LSN_RET;

Parameters

Value Description

LSN_RET_OK The function call is successful.

LSN_RET_NOT_SUP The function call is invalid or not
applicable. For example, the LsnSus-
pendListening function is not sup-
ported in the UDP Listener imple-
mentation. For more information, see
“LsnSuspendListening function” on
page 105.

LSN_RET_NO_RESP The request timed out.

95

Value Description

LSN_RET_FAILED General failure.

LSN_RET_MSG_NOT_READ Indicates unread messages in the Lis-
tener storage. The request to receive
new messages has been ignored.

LSN_RET_NO_MORE_MSG No unread messages remain. An
attempt to read a message failed.

LSN_RET_OUT_OF_MEMORY The function could not continue due
to insufficient memory resources.

LSN_RET_BAD_ARG A problem occurred with one or more
input parameters.

LSN_RET_NOT_ENOUGH_-
ARG

More input arguments are required.
This return value indicates an insuf-
ficient number of string arguments
contained in the input array.

LSN_RET_TOO_MANY_ARGS Fewer input arguments are required.
This return value indicates an excess
number of string arguments contained
in the input array.

LSN_VERSION enumeration

Function Defines the Listener SDK version number.

Prototype typedef enum {
LSN_VERSION_1 = 1,
LSN_VERSION_2 = 2,
LSN_CURRENT_VERSION = LSN_VERSION_2

} LSN_VERSION;

Parameters

Value Description

LSN_VERSION_1 Specifies Listener SDK version 1.

LSN_VERSION_2 Specifies Listener SDK version 2.

LSN_CURRENT_VERSION Specifies the current Listener version.

Remarks You should use this enumeration to specify the Listener SDK version that
your application was developed against. To specify the current version, use

96

Chapter 7. MobiLink Listener SDKs

LSN_CURRENT_VERSION.

lsn_info structure

Function Stores Listener static information.

Prototype typedef struct lsn_info {
lsn_ulong version;
lsn_ulong maxSenderTChars;
lsn_ulong maxMessageTChars;
lsn_bool isExtDialNeedSuspendListening;
lsn_bool isMsgTimeApplicable;
lsn_bool isMsgTypeApplicable;
lsn_bool isMsgPriorityApplicable;
lsn_bool isMsgTimeInUTC;

// LSN_VERSION_1 fields ends here

} lsn_info;

Parameters

Value Description

version Version of the Listener interface or
SDK.

maxSenderTChars Maximum number of characters in
the sender name field.

maxMessageTChars Maximum number of characters in
the message field.

isExtDialNeedSuspendListening If a Listener library needs to be
suspended from receiving messages
before another application can dial
using a modem set this field to TRUE.

isMsgTimeApplicable If the message class time fields (year,
month, day, hour, minute, and sec-
ond) are applicable set this field to
TRUE. For more information, see
“a_msg public fields” on page 91.

isMsgTypeApplicable If the message class type field is
applicable set this field to TRUE. For
more information, see“a_msg public
fields” on page 91.

97

Value Description

isMsgPriorityApplicable If the message class priority field is
applicable set this field to TRUE. For
more information, see“a_msg public
fields” on page 91.

isMsgTimeInUTC If the message class time fields are in
coordinated universal time (UTC) set
this field to TRUE. For more infor-
mation, see“a_msg public fields” on
page 91.

See Also ♦ “Message class” on page 90

Example The following example initializes lsn_info fields for a UDP Listener.

lsn_info * info;

info->version = LSN_VERSION_2;
info->maxSenderTChars = MAX_SENDER_TCHARS;
info->maxMessageTChars = MAX_MESSAGE_TCHARS;
info->isExtDialNeedSuspendListening = false;
info->isMsgTimeApplicable = false;
info->isMsgTypeApplicable = false;
info->isMsgPriorityApplicable = false;
info->isMsgTimeInUTC = false;

lsn_state structure

Function The Listener state structure used for dynamic information.

Prototype struct lsn_state;
// Add your Listener state fields here

Remarks You add fields to this structure to store dynamic Listener information such as
a message field, receive buffer, or a flag to specify unread messages.

Example The following example shows the lsn_state structure used for the UDP
Listener implementation.

98

Chapter 7. MobiLink Listener SDKs

typedef struct lsn_state {
WSADATA wsaData;
SOCKET socket;
bool hideWSAErrorBox;
bool unread;
bool showSenderPort;
a_msg * msg;
struct timeval timeout;
char * recvBuff;
UINT codePage;
TCHAR port[6];

} lsn_state;

The following example shows the lsn_state structure used for the Sierra
Wireless AirCard 510 Listener implementation.

typedef struct lsn_state {
bool apiOpened;
int nextMsg;
int numReceivedMsg;
int messageStoreSize;
a_msg copyOfLastReceivedMsg;
a_msg ** messages;
TCHAR * phone;
TCHAR * carrier;

} lsn_state;

LsnInit function

Function Allocates and initializes a Listener state structure.

Prototype LSN_RET LsnInit (
lsn_info* info,
lsn_state** state,
lsn_long argc,
char* argv[] ,
lsn_long* badArg

)

Parameters ♦ info This is an output parameter containing an lsn_info structure with
static Listener information.

☞ For more information, see“lsn_info structure” on page 97.

♦ state This is an output parameter pointing to the allocated lsn_state
structure.

☞ For more information, see“lsn_state structure” on page 98.

♦ argc The number of string arguments contained in the argv[] array.

99

♦ argv[] An array of string arguments used to initialize the Listener state
structure.

You specify the arguments passed to argv[] using the dblsn.exe -a
command line option. For example,

dblsn -d my_lsn.dll -a prop1=v1 -a prop2=v2 ...

results in the following string arguments:

argv[] = { "prop1=v1", "prop2=v2", ... }

For more information about the -a option, see“The Listener utility” on
page 38.

♦ badArg This is an output parameter providing argument error
information. The meaning of this parameter depends on the LsnInit
return value:
• If the return value is LSN_RET_BAD_ARG, badArg is the index of

the problematic argument in argv.

• If the return is LSN_RET_NOT_ENOUGH_ARG, badArg is the
minimum number of arguments required.

• If the return value is LSN_TOO_MANY_ARGS, badArg is the
maximum number of allowed arguments.

Return value Use the following return values defined in the LSN_RET enumeration for
this function.

Value Description

LSN_RET_OK The function call is successful.

LSN_RET_FAILED General failure.

LSN_RET_OUT_OF_MEMORY The function could not continue due
to insufficient memory resources.

LSN_RET_BAD_ARG A problem occurred with one or more
input parameters.

LSN_RET_NOT_ENOUGH_-
ARG

More input arguments are required.
This return value indicates an insuf-
ficient number of string arguments
contained in the input array.[Am I
right on this?]

LSN_RET_TOO_MANY_ARGS Fewer input arguments are required.
This return value indicates an excess
number of string arguments contained
in the input array.

100

Chapter 7. MobiLink Listener SDKs

For more information about the LSN_RET enumeration, see“LSN_RET
enumeration” on page 95.

Remarks Use this function to initialize your Listener and acquire necessary resources
for the Listener to operate. If the function call is successful, your LsnInit
implementation returns the filled lsn_info and allocated lsn_state structures.

The number and type of input parameters in the argv[] array depend on your
implementation.

See also ♦ “LSN_RET enumeration” on page 95
♦ “lsn_state structure” on page 98
♦ “lsn_info structure” on page 97
♦ “Message class” on page 90

Example The following example shows the LsnInit function used for the UDP
Listener implementation.

LsnExport LSN_RET LsnExportFunc LsnInit(
lsn_info * info, lsn_state ** state, lsn_long argc,
char * argv[], lsn_long * badArg)

/ *** /
{

// Argument names
#define ARGN_RECEIVER_PORT "Port"
#define ARGN_HIDE_WSA_ERROR_BOX "HideWSAErrorBox"
#define ARGN_TIMEOUT_SEC "Timeout"
#define ARGN_SHOW_SENDER_PORT "ShowSenderPort"
#define ARGN_CODEPAGE "CodePage"

// Helper macros
#define IS_ARG(argn, x) _strnicmp(argn "=", x,

sizeof(argn)) == 0
#define ARG_VAL(argn, x) &(x)[sizeof(argn)]

LSN_RET ret = LSN_RET_FAILED;
lsn_state * s;
struct sockaddr_in receiverAddr;
unsigned short port;
int i;
bool showUsageBox = true;

* state = NULL;

// Fill static info structure
info->version = LSN_VERSION_2;
info->maxSenderTChars = MAX_SENDER_TCHARS;
info->maxMessageTChars = MAX_MESSAGE_TCHARS;
info->isExtDialNeedSuspendListening = false;
info->isMsgTimeApplicable = false;
info->isMsgTypeApplicable = false;
info->isMsgPriorityApplicable = false;
info->isMsgTimeInUTC = false;

101

// Check argc
if(argc < 0) {

* badArg = 0;
ret = LSN_RET_NOT_ENOUGH_ARG;
goto failed;

}
if(argc > 4) {

* badArg = 4;
ret = LSN_RET_TOO_MANY_ARGS;
goto failed;

}

// Allocate state structure
s = (lsn_state *)calloc(1, sizeof(lsn_state));
if(s == NULL) {

showUsageBox = false;
ret = LSN_RET_OUT_OF_MEMORY;
goto failed;

}

// Initialize state structure
memset(s, 0, sizeof(lsn_state));
s->socket = INVALID_SOCKET;
s->hideWSAErrorBox = false;
s->unread = false;
s->showSenderPort = false;
s->timeout.tv_sec = 0;
s->timeout.tv_usec = 0;

// Allocate message in state structure
s->msg = a_msg::allocateSize(MAX_SENDER_TCHARS, MAX_

MESSAGE_TCHARS);
if(s->msg == NULL) {

showUsageBox = false;
ret = LSN_RET_OUT_OF_MEMORY;

goto failed;
}

#if defined(UNICODE)
// Allocate recvBuff
s->recvBuff = (char *)malloc(MAX_MESSAGE_BYTES + 1);
if(s->recvBuff == NULL) {

ret = LSN_RET_OUT_OF_MEMORY;
goto failed;

}
#endif

port = 5001;

102

Chapter 7. MobiLink Listener SDKs

// Read args
for(i = 0; i < argc; i++) {

* badArg = i;
if(IS_ARG(ARGN_RECEIVER_PORT, argv[i])) {

port = atoi(ARG_VAL(ARGN_RECEIVER_PORT, argv[i]));
} else if(_stricmp(ARGN_HIDE_WSA_ERROR_BOX, argv[i]) == 0

) {
s->hideWSAErrorBox = true;

} else if(_stricmp(ARGN_SHOW_SENDER_PORT, argv[i]) == 0)
{

s->showSenderPort = true;
} else if(IS_ARG(ARGN_TIMEOUT_SEC, argv[i])) {

s->timeout.tv_sec = atol(ARG_VAL(ARGN_TIMEOUT_SEC,
argv[i]));

} else if(IS_ARG(ARGN_CODEPAGE, argv[i])) {
s->codePage = atol(ARG_VAL(ARGN_CODEPAGE, argv[i]));

} else {
ret = LSN_RET_BAD_ARG;
goto failed;

}
}

// Fill the port buffer
_stprintf(s->port, TEXT("%d"), port);
// At this point, all args are valid
showUsageBox = false;

* badArg = -1;
// WSAStartup
if(WSAStartup(0x202, &s->wsaData) != 0) {

foundWSAError(s);
goto failed;

}

// Setup receiver address
memset(&receiverAddr, 0, sizeof(receiverAddr));
receiverAddr.sin_family = AF_INET;
receiverAddr.sin_addr.s_addr = INADDR_ANY;
receiverAddr.sin_port = htons(port);
// Open socket
s->socket = socket(AF_INET, SOCK_DGRAM, 0);
if(s->socket == INVALID_SOCKET) {

foundWSAError(s);
goto failed;

}

103

// Bind the socket to the receiver address
if(bind(s->socket, (struct sockaddr *)&receiverAddr,

sizeof(receiverAddr))
== SOCKET_ERROR) {

foundWSAError(s);
goto failed;

}

* state = s;
return(LSN_RET_OK);

failed:
if(showUsageBox) {

MessageBox(NULL, USAGE, USAGE_TITLE, MB_ICONINFORMATION);
}
LsnFini(s);

return(ret);
}

LsnFini function

Function Shuts down the Listener and frees resources.

Prototype void LsnFini (lsn_state* state)

Parameters ♦ state Points to an lsn_state structure instance.

For more information, see“lsn_state structure” on page 98.

Remarks Use this function to shutdown your Listener and free allocated resources,
including the Listener state structure.

See also ♦ “lsn_state structure” on page 98
♦ “Message class” on page 90

Example The following example shows the LsnFini function for the UDP Listener
implementation.

LsnExport void LsnExportFunc LsnFini(lsn_state * state)
/ *** /
{

if(state != NULL) {
if(state->msg != NULL) {

delete(state->msg);
}
if(state->recvBuff != NULL) {

free(state->recvBuff);
}
if(state->socket != INVALID_SOCKET) {

closesocket(state->socket);
}
WSACleanup();
free(state);

}
}

104

Chapter 7. MobiLink Listener SDKs

LsnIsListening

Function Determines if the Listener is ready to receive messages.

Prototype bool LsnIsListening (const lsn_state* state)

Parameters ♦ state Points to an lsn_state structure instance.

For more information about lsn_state, see“lsn_state structure” on
page 98.

Return value Returns TRUE if the Listener is ready to receive messages and FALSE
otherwise.

Remarks Use this function to define when your Listener is ready to receive messages.

See also ♦ “lsn_state structure” on page 98
♦ “Message class” on page 90

Example The following example shows the LsnIsListening implementation for UDP
Listeners.

LsnExport bool LsnExportFunc LsnIsListening(
const lsn_state * state)

/ ** /
{

return(state->socket != INVALID_SOCKET);
}

LsnSuspendListening function

Function Suspends the Listener.

Prototype LSN_RET LsnSuspendListening (lsn_state* state)

Parameters ♦ state Points to a Listener state structure instance.

For more information about lsn_state, see“lsn_state structure” on
page 98.

Return value Use the following return values defined in the LSN_RET enumeration for
this function.

105

Value Description

LSN_RET_OK The function call is successful.

LSN_RET_NOT_SUP The function call is invalid or not
applicable. For example, the LsnSus-
pendListening function is not sup-
ported in the UDP Listener imple-
mentation. For more information, see
“LsnSuspendListening function” on
page 105.

LSN_RET_NO_RESP The request timed out.

LSN_RET_FAILED General failure.

For more information about the LSN_RET enumeration, see“LSN_RET
enumeration” on page 95.

Remarks Use this function to prevent your Listener from receiving messages.

See also ♦ “LSN_RET enumeration” on page 95
♦ “lsn_state structure” on page 98
♦ “Message class” on page 90

Example The following example shows the LsnSuspendListening function for the
Sierra Wireless AirCard 510 implementation. TheSwiApiClose()

function call suspends the modem from listening on SMS.

LsnExport LSN_RET LsnExportFunc LsnSuspendListening(
lsn_state * state)

/ ** /
{

if(!state->apiOpened) {
return(LSN_RET_OK);

}
state->apiOpened = FALSE;
return(transformRcode(SwiApiClose()));

}

The following example shows the LsnSuspendListening implementation for
UDP Listeners. Since UDP Listeners do not support this function, it uses the
return value LSN_RET_NOT_SUP.

☞ For more information about LSN_RET_NOT_SUP, see“LSN_RET
enumeration” on page 95.

[what is _unused ?]

106

Chapter 7. MobiLink Listener SDKs

LsnExport LSN_RET LsnExportFunc LsnSuspendListening(
lsn_state * state)

/ ** /
{

_unused(state);
return(LSN_RET_NOT_SUP);

}

LsnResumeListening function

Function Resumes a suspended listener.

Prototype LSN_RET LsnResumeListening (lsn_state* state)

Parameters ♦ state Points to a Listener state structure instance.

For more information about lsn_state, see“lsn_state structure” on
page 98.

Return value Use the following return values defined in the LSN_RET enumeration for
this function.

Value Description

LSN_RET_OK The function call is successful.

LSN_RET_NOT_SUP The function call is invalid or not
applicable. For example, the LsnSus-
pendListening function is not sup-
ported in the UDP Listener imple-
mentation. For more information, see
“LsnSuspendListening function” on
page 105.

LSN_RET_NO_RESP The request timed out.

LSN_RET_FAILED General failure.

For more information about the LSN_RET enumeration, see“LSN_RET
enumeration” on page 95.

Remarks Use this function to resume a suspended Listener.

See also ♦ “LSN_RET enumeration” on page 95
♦ “lsn_state structure” on page 98
♦ “Message class” on page 90

Example The following example shows the LsnSuspendListening function for the
Sierra Wireless AirCard 510 implementation. TheSwiApiOpen(

SESSION_NAME)function call triggers the modem to resume listening on

107

SMS.

[Can we provide a few words to describe this?]

LsnExport LSN_RET LsnExportFunc LsnResumeListening(
lsn_state * state)

/ ** /
{

LSN_RET ret;
if(state->apiOpened) {

return(LSN_RET_OK);
}
ret = transformRcode(SwiApiOpen(SESSION_NAME));
state->apiOpened = (ret == LSN_RET_OK);
return(ret);

}

The following example shows the LsnSuspendListening implementation for
UDP Listeners. Since UDP Listeners do not support this function, it uses the
return value LSN_RET_NOT_SUP.

☞ For more information about LSN_RET_NOT_SUP, see“LSN_RET
enumeration” on page 95.

LsnExport LSN_RET LsnExportFunc LsnResumeListening(
lsn_state * state

)
/ ** /
{

_unused(state);
return(LSN_RET_NOT_SUP);

}

LsnReceiveAll function

Function Receives pending messages.

Prototype LSN_RET LsnReceiveAll (
lsn_state* state,
lsn_long* nMsg

)

Parameters ♦ state Points to a lsn_state structure instance.

For more information about lsn_state, see“lsn_state structure” on
page 98.

♦ nMsg Points to the number of received messages.

Return value Use the following return values defined in the LSN_RET enumeration for
this function.

108

Chapter 7. MobiLink Listener SDKs

Value Description

LSN_RET_OK The function call is successful.

LSN_RET_NO_RESP The request timed out.

LSN_RET_FAILED General failure.

LSN_RET_MSG_NOT_READ Indicates unread messages in the
Listener storage. The request to
receive new messages has been
ignored.

For more information about the LSN_RET enumeration, see“LSN_RET
enumeration” on page 95.

Remarks Use this function to receive pending messages into your Listener storage.
This function should terminate when all pending messages are received or
the store is full.

The nMsg parameter points to the number of messages that can be read
using the LsnReadNext function.

For more information about the LsnReadNext function, see“LsnReadNext
function” on page 111.

See also ♦ “LsnReadNext function” on page 111
♦ “LSN_RET enumeration” on page 95
♦ “lsn_state structure” on page 98
♦ “Message class” on page 90

Example The following example shows the LsnReceiveAll function for the UDP
Listener implementation.

109

LsnExport LSN_RET LsnExportFunc LsnReceiveAll(
lsn_state * state, lsn_long * nMsg)

/ ** /
{

LSN_RET ret = LSN_RET_FAILED;
int wsaRet;
struct sockaddr_in from;
int fromLen = sizeof(from);
fd_set readableSockets;
char * senderIpA;

#if defined(UNICODE)
int mbwcRet;
WCHAR senderIpW[MAX_SENDER_TCHARS + 1];
#define RECVBUFF (state->recvBuff)
#define SENDERIP senderIpW

#else
#define RECVBUFF (state->msg->message)
#define SENDERIP senderIpA

#endif

if(state->unread) {
return(LSN_RET_MSG_NOT_READ);

}
if(nMsg != NULL) {

* nMsg = 0;
}
state->unread = false;

// Select readable socket
FD_ZERO(&readableSockets);
FD_SET(state->socket, &readableSockets);
switch(select(0, &readableSockets, NULL, NULL, &state-

>timeout)) {
case 0:

// Nothing to read
ret = LSN_RET_OK;

break;
case 1:

// Receive the message
wsaRet = recvfrom(state->socket, RECVBUFF,

MAX_MESSAGE_BYTES, 0,
(struct sockaddr *)&from, &fromLen);

if(wsaRet == SOCKET_ERROR) {
foundWSAError(state);
break;

}
// Null terminate the message
RECVBUFF[wsaRet] = ’ \0’;

110

Chapter 7. MobiLink Listener SDKs

#if defined(UNICODE)
mbwcRet = MultiByteToWideChar(state->codePage, 0, state-

>recvBuff,
-1, state->msg->message, MAX_MESSAGE_TCHARS);

if(mbwcRet == 0) {
MessageBox(NULL,

TEXT("Failed to translate an incoming message"),
TEXT("Message from lsn_udp.dll"), MB_ICONEXCLAMATION);

break;
}

#endif

// Retrieve the sender name and port
senderIpA = inet_ntoa(from.sin_addr);
if(senderIpA == NULL) {

break;
}

#if defined(UNICODE)
size_t i;
for(i = 0; i <= strlen(senderIpA); i++) {

senderIpW[i] = senderIpA[i];
}

#endif

if(state->showSenderPort) {
_stprintf(state->msg->sender, TEXT("%s:%d"),

SENDERIP, ntohs(from.sin_port));
} else {

_tcscpy(state->msg->sender, SENDERIP);
}

if(nMsg != NULL) {

* nMsg = 1;
}

state->unread = true;
ret = LSN_RET_OK;
break;

case SOCKET_ERROR:
foundWSAError(state);
break;

}
return(ret);

}

LsnReadNext function

Function Used to read the next message into a message buffer.

Prototype LSN_RET LsnReadNext (
lsn_state* state,
a_msg* msg

)

111

Parameters ♦ state Points to a Listener state structure instance.

For more information about lsn_state, see“lsn_state structure” on
page 98.

♦ msg Points to the destination message buffer.

Return value Use the following return values defined in the LSN_RET enumeration for
this function.

Value Description

LSN_RET_OK The function call is successful.

LSN_RET_NO_MORE_MSG No unread messages remain. An
attempt to read a message failed.

For more information about the LSN_RET enumeration, see“LSN_RET
enumeration” on page 95.

Remarks Use this function to read the next message from your Listener storage.

See also ♦ “LSN_RET enumeration” on page 95
♦ “lsn_state structure” on page 98
♦ “Message class” on page 90

Example The following example shows the LsnReadNext function for the UDP
Listener implementation.

LsnExport LSN_RET LsnExportFunc LsnReadNext(
lsn_state * state, a_msg * msg)
/ ** /
{

if(!state->unread) {
return(LSN_RET_NO_MORE_MSG);

}
msg->copy(state->msg);
state->unread = false;
return(LSN_RET_OK);

}

LsnGetAddress

Function Returns the Listener address.

Prototype const TCHAR * LsnGetAddress (lsn_state* state)

Parameters ♦ state Points to a Listener state structure instance.

For more information about lsn_state, see“lsn_state structure” on
page 98.

Return value A character array containing the Listener address.

112

Chapter 7. MobiLink Listener SDKs

Remarks Use this function to return the address used for your Listener.

The address, for example, can be specified as a phone number.

See also ♦ “lsn_state structure” on page 98
♦ “Message class” on page 90

Example The following example shows the LsnGetAddress function for the Sierra
Wireless AirCard 510 implementation.

LsnExport const TCHAR * LsnExportFunc LsnGetAddress(
lsn_state * state)

/ *** /
{

if(state->phone == NULL) {
return(TEXT("Unspecified"));

}
return(state->phone);

}

LsnGetMedium function

Function Returns the carrier or medium used for Listener communication.

Prototype TCHAR * LsnGetMedium (lsn_state* state);

Parameters ♦ state Points to a Listener state structure instance.

For more information about lsn_state, see“lsn_state structure” on
page 98.

Return value A character array storing the medium or carrier name.

Remarks Use this function to return the carrier or medium used for your Listener.

See also ♦ “lsn_state structure” on page 98
♦ “Message class” on page 90

Example The following example shows the LsnGetMedium function for the Sierra
Wireless AirCard 510 implementation.

LsnExport const TCHAR * LsnExportFunc LsnGetMedium(
lsn_state * state)

/ ** /
{

if(state->carrier == NULL) {
return(TEXT("Unspecified"));

}
return(state->carrier);

}

113

Listener SDK for Palm
You can use the Listener SDK for Palm to create Listeners for new Palm
devices. The programming interface includes a message processing interface
and device dependent functions.

Message processing interface

The message processing interface is contained inPalmLsn.lib, the Palm
Listener Library.

☞ For more information aboutPalmLsn.lib, see“Palm Listener SDK files”
on page 88.

a_palm_msg structure The Palm Listener SDK uses the a_palm_msg structure to represent Palm
Listener messages. The SDK’s message processing interface includes
functions to allocate and process a_palm_msg instances.

Overview

The following functions can be used for a_palm_msg allocation, message
field initialization, and message processing.

♦ Message allocation You can use the following functions for message
allocation and deallocation:

“Overview” on page 114

“PalmLsnFree function” on page 115

♦ Message field initialization You can use the following functions to
assign values to the message, sender, and time fields of an a_palm_msg
instance.

“PalmLsnDupMessage function” on page 115

“PalmLsnDupSender function” on page 116

“PalmLsnDupTime function” on page 117

♦ Message processing You can use the PalmLsnProcess function to
process a message’s fields and launch an application.

For more information, see“PalmLsnProcess function” on page 117.

PalmLsnAllocate function

Function Returns a new a_palm_msg instance.

Prototype struct a_palm_msg * PalmLsnAllocate()

Return value A new a_palm_msg instance with all fields initialized to zero.

114

Chapter 7. MobiLink Listener SDKs

See Also ♦ “PalmLsnFree function” on page 115

Example The following example uses PalmLsnAllocate to allocate an a_palm_msg
instance.

a_palm_msg * ulMsg;

// Allocate a message structure
ulMsg = PalmLsnAllocate();

PalmLsnFree function

Function Frees message memory resources.

Prototype void PalmLsnFree(struct a_palm_msg * const msg)

Parameters ♦ msg The a_palm_msg instance to be freed.

See Also ♦ “Overview” on page 114

Example The following example shows a partial listing for allocating the message
structure, processing the message, and using PalmLsnFree to free resources.

a_palm_msg * ulMsg;
...

// Allocate the message structure
ulMsg = PalmLsnAllocate();
...

// Fill the message fields
ret = PalmLsnDupMessage(ulMsg, msgBody);
...

// Process the message
ret = PalmLsnProcess(ulMsg, configDb, NULL, handled);
...

// Free the message
PalmLsnFree(ulMsg);

PalmLsnDupMessage function

Function Initializes the message field values of an a_palm_msg instance.

Prototype Err PalmLsnDupMessage(
struct a_palm_msg * const msg,
Char const * message

)

Parameters ♦ msg A pointer to an a_palm_msg instance.

♦ message An input parameter containing the source message text.

115

Return Value A Palm OS error code. errNone indicates success.

Remarks The PalmLsnDupMessage function duplicates a text message, extracts the
subject, content, and sender fields, and assigns these values to an
a_palm_msg instance.

The sender field is not extracted if it does not appear in the message. If you
use PalmLsnDupSender it overrides the sender field extracted from
PalmLsnDupMessage (if any).

See Also ♦ “PalmLsnDupSender function” on page 116
♦ “PalmLsnDupTime function” on page 117
♦ “a_palm_msg structure” on page 114

Example The following example, used for the Treo 600 smartphone implementation,
retrieves a text message and calls PalmLsnDupMessage to initialize the
appropriate fields in an a_palm_msg instance.

//
// Retrieve the entire message body
//
ret = PhnLibGetText(libRef, id, &msgBodyH);
if(ret != errNone) {

// handle error
goto done;

}
msgBody = (Char *)MemHandleLock(msgBodyH);
ret = PalmLsnDupMessage(ulMsg, msgBody);
//
// msgBodyH must be disposed of by the caller
//
MemHandleUnlock(msgBodyH);
MemHandleFree(msgBodyH);
if(ret != errNone) {

// handle error
goto done;

}

PalmLsnDupSender function

Function Initializes the sender field of an a_palm_msg instance.

Prototype Err PalmLsnDupSender(
struct a_palm_msg * const msg,
Char const * sender

)

Parameters ♦ msg A pointer to an a_palm_msg instance.

♦ sender An input parameter containing the source sender field.

Return Value A Palm OS error code. errNone indicates success.

116

Chapter 7. MobiLink Listener SDKs

Remarks The PalmLsnDupSender function duplicates the sender input parameter and
assigns the value to an a_palm_msg instance.

See Also ♦ “PalmLsnDupMessage function” on page 115
♦ “PalmLsnDupTime function” on page 117
♦ “a_palm_msg structure” on page 114

PalmLsnDupTime function

Function Initializes the time field of an a_palm_msg instance.

Prototype Err PalmLsnDupTime(
struct a_palm_msg * const msg,
UInt32 const time

)

Parameters ♦ msg A pointer to an a_palm_msg instance.

♦ time An input parameter containing the source time field.

Return Value A Palm OS error code. errNone indicates success.

Remarks The PalmLsnDupTime function duplicates the time input parameter and
assigns the value to an a_palm_msg instance.

See Also ♦ “PalmLsnDupMessage function” on page 115
♦ “PalmLsnDupSender function” on page 116
♦ “a_palm_msg structure” on page 114

PalmLsnProcess function

Function Processes a message according to the records in a configuration database.

Prototype palm_lsn_ret PalmLsnProcess(
struct a_palm_msg * msg,
Char const * configPDBName,
UInt16 * const problematicRecNum,
Boolean * handled

)

Parameters ♦ msg A pointer to an a_palm_msg instance.

♦ configPDBName A character array containing the name of the
configuration database. You can obtain the configuration database name
using the PalmLsnGetConfigFileName function.

☞ See“PalmLsnGetConfigFileName” on page 124.

♦ problematicRecNum An output parameter identifying the index of a
problematic or malformed record in the configuration database.

117

♦ handled An output parameter indicating if PalmLsnProcess
successfully processed the message.

Return Value Return codes defined in the palm_lsn_ret enumeration.

☞ See“palm_lsn_ret enumeration” on page 120.

Remarks PalmLsnProcess determines the appropriate action to take in response to an
incoming message. It compares the message’s fields to filters stored in a
configuration database.

☞ For more information about creating the Palm Listener configuration
database, see“Palm Listener Configuration utility” on page 50.

The records contained in the configuration database store information about
message filters and what actions should result from an accepted message.

A configuration record has the following format:

[subject= <string> ;] [content= <string> ;]
[message|message_start= <string> ;] [sender= <string> ;]
action=run <app name> [arguments]

argumentsis an application dependent string which may contain action
variables.

☞ For more information about action variables, see“Action variables” on
page 44.

See Also ♦ “Palm Listener Configuration utility” on page 50
♦ “Message handlers” on page 29
♦ “Action variables” on page 44
♦ “PalmLsnCheckConfigDB function” on page 119
♦ “a_palm_msg structure” on page 114

Example The following is a partial listing used to handle a message. The example
allocates the message structure, initializes fields, and processes the message
using PalmLsnProcess.

118

Chapter 7. MobiLink Listener SDKs

a_palm_msg * ulMsg;
Boolean * handled
Char configDb[dmDBNameLength];
...

// Allocate the message structure
ulMsg = PalmLsnAllocate();
...

// Fill the message fields
ret = PalmLsnDupMessage(ulMsg, msgBody);
...

// Get the configuration database name
PalmLsnGetConfigFileName(configDb);

// Process the message
ret = PalmLsnProcess(ulMsg, configDb, NULL, handled);
...

// Free the message
PalmLsnFree(ulMsg);

PalmLsnCheckConfigDB function

Function Reports errors in a Palm Listener configuration database.

Prototype palm_lsn_ret PalmLsnCheckConfigDB(
Char const * cfg,
UInt16 * const rec

)

Parameters ♦ cfg A character array containing the name of the configuration
database. You can obtain the configuration database name using the
PalmLsnGetConfigFileName function.

☞ See“PalmLsnGetConfigFileName” on page 124.

♦ rec An output parameter identifying the index of a problematic or
malformed record in the configuration database.

Return Value Return codes defined in the palm_lsn_ret enumeration.

☞ See“palm_lsn_ret enumeration” on page 120.

Remarks You can use this function to detect errors opening a configuration database
or reading its records.

See Also ♦ “PalmLsnProcess function” on page 117

Example The following example uses PalmLsnCheckConfigDB to detect problematic
or malformed records in a configuration database.

119

Err ret;
UInt16 badRec;
Char configDb[dmDBNameLength];

// Get configuration database name
PalmLsnGetConfigFileName(configDb);

// check for errors in the configuration database
ret = PalmLsnCheckConfigDB(configDb, &badRec);
if(ret!=errNone)
{

// handle error
}

palm_lsn_ret enumeration

Function The palm_lsn_ret enumeration specifies the possible message processing
return codes.

Prototype typedef enum {
PalmLsnOk = errNone,
PalmLsnMissingConfig = appErrorClass,
PalmLsnProblemReadingConfig,
PalmLsnProblemParsingCmd,
PalmLsnOutOfMemory,
PalmLsnUnrecognizedAction,
PalmLsnRunMissingApp

} palm_lsn_ret;

Parameters

120

Chapter 7. MobiLink Listener SDKs

Value Description

PalmLsnOk The function call is successful.
This value contains the same value
as errNone, a Palm error code
indicating no error.

PalmLsnMissingConfig Indicates a missing Palm Listener
configuration database. This field
contains the same value as the
Palm error code appErrorClass,
indicating an application-defined
error.

PalmLsnProblemReadingConfig Indicates an error reading the Palm
Listener configuration database.

PalmLsnProblemParsingCmd Indicates an inability to process
the command stored in the Palm
Listener configuration database.

PalmLsnOutOfMemory The function does not run to com-
pletion due to an error while allo-
cating memory for message pro-
cessing.

PalmLsnUnrecognizedAction The Listener does not support
an action specified in the Palm
Listener configuration database.

PalmLsnRunMissingApp The Listener cannot launch the
application specified in the run
action.

See Also ♦ “PalmLsnProcess function” on page 117

LsnMain function

Function Provides the main entry point toPalmLsn.lib, the Palm Listener library.

Prototype UInt32 LsnMain(
UInt16 cmd ,
MemPtr cmdPBP,
UInt16 launchFlags

)

Parameters ♦ cmd A Palm OS application launch code.

♦ cmdPBP A pointer to a structure containing launch code parameters. If

121

your application does not have any launch-command-specific parameters,
this value is NULL.

♦ launchFlags Flags that provide extra information about the launch.

Return Value A Palm OS error code. If the Palm listener library successfully processed the
launch code, the function returns errNone.

Remarks The values passed to LsnMain are analogous to the launch code parameters
passed to PilotMain, the main entry point of a Palm OS application.

For more information about these parameters, consult your Palm OS
Reference.

See Also ♦ “PalmLsnProcess function” on page 117
♦ “Palm Listener SDK files” on page 88

Example The following example, used in theTreo 600 smartphone implementation,
passes launch code parameters to LsnMain in the main entry point of the
Listener application.

UInt32 PilotMain(
/ *************** /

UInt16 cmd,
MemPtr cmdPBP,
UInt16 launchFlags)

{
return(LsnMain(cmd, cmdPBP, launchFlags));

}

Device dependent functions

You specify device dependent features using a group of functions defined in
the Palm Listener SDK. These functions provide:

♦ Identification You can use the following functions to provide
identification information for the Listener and the configuration database:

“PalmLsnTargetCompanyID” on page 123

“PalmLsnTargetDeviceID” on page 123

“PalmLsnGetConfigFileName” on page 124

♦ Registration or initialization You can use the following functions to
register or unregister the Listener.

“PalmLsnNormalStart” on page 124

“PalmLsnNormalStop” on page 124

♦ Event handling You can use the following function to handle
application events:

122

Chapter 7. MobiLink Listener SDKs

“PalmLsnNormalHandleEvent” on page 125

You can use the following function to respond to launch codes which may
be device dependent.

“PalmLsnSpecialLaunch” on page 125

PalmLsnTargetCompanyID

Function Returns a device’s company ID.

Prototype UInt32 PalmLsnTargetCompanyID()

Return Value A value containing the ID of the device’s company or manufacturer.

Remarks You can use PalmLsnTargetCompanyID and PalmLsnTargetDeviceID to
check for device compatibility.

See Also ♦ “PalmLsnTargetDeviceID” on page 123

Example The following example, used in the Treo 600 smartphone implementation,
returns ‘hspr’, a company ID for Handspring.

UInt32 PalmLsnTargetCompanyID(void)
/ *********************************** /
{

return(’hspr’);
}

PalmLsnTargetDeviceID

Function Returns the target device ID.

Prototype UInt32 PalmLsnTargetDeviceID()

Return Value A positive integer containing the device ID.

Remarks You can use PalmLsnTargetCompanyID and PalmLsnTargetDeviceID to
check for device compatibility.

See Also ♦ “PalmLsnTargetCompanyID” on page 123

Example The following example returns the device ID for the Treo 600 simulator.

UInt32 PalmLsnTargetDeviceID(void)
/ ********************************** /
{

// Simulator device ID is hsDeviceIDOs5Device1Sim
return(hsDeviceIDOs5Device1);

}

123

PalmLsnGetConfigFileName

Function Returns a string containing the name of your Palm Listener configuration
database.

Prototype void PalmLsnGetConfigFileName(Char * configPDBName)

Parameters ♦ configPDBName An output parameter containing the name of your
Palm Listener configuration database.

Remarks You can use this function to obtain the configuration database file name to
pass into PalmLsnProcess.

To use the default configuration database file namelsncfg copy
PalmLsnDefaultConfigDB (defined inPalmLsn.h) into the output parameter.

See Also ♦ “PalmLsnProcess function” on page 117
♦ “Palm Listener SDK files” on page 88

Example The following example, used for the Treo 600 smartphone implementation,
returns the default configuration database name in the output parameter.

void PalmLsnGetConfigFileName(Char * configPDBName)
{

StrCopy(configPDBName, PalmLsnDefaultConfigDB);
}

PalmLsnNormalStart

Function Provides custom actions when your Listener application starts.

Prototype Err PalmLsnNormalStart()

Return Value A Palm OS error code. errNone indicates success.

Remarks PalmLsnNormalStart provides a means to register your Listener device.

See Also ♦ “PalmLsnNormalStop” on page 124
♦ “PalmLsnSpecialLaunch” on page 125

PalmLsnNormalStop

Function Provides custom actions when your Listener application exits from the event
loop.

Prototype void PalmLsnNormalStop()

Remarks If you want to continue listening, do not unregister your device in
PalmLsnNormalStop. You can also use this function to get and set the
current application preferences.

124

Chapter 7. MobiLink Listener SDKs

See Also ♦ “PalmLsnNormalStart” on page 124

PalmLsnNormalHandleEvent

Function Handles application events.

Prototype Boolean PalmLsnNormalHandleEvent(EventPtr eventP)

Parameters ♦ eventP A pointer to an application event.

Return Value Returns true if the event was handled.

Remarks You can use this function to handle application events.

PalmLsnSpecialLaunch

Function Responds to launch codes which may be device dependent.

Prototype Err PalmLsnSpecialLaunch(
UInt16 cmd ,
MemPtr cmdPBP,
UInt16 launchFlags

)

Parameters ♦ cmd The Palm OS application launch code.

♦ cmdPBP A pointer to a structure containing launch code parameters. If
your application does not have any launch-command-specific parameters,
this value is NULL.

♦ launchFlags Flags that indicate status information about your
application.

Return Value A Palm OS error code. errNone indicates success.

Remarks This function responds to device dependent or standard launch codes not
defined as sysAppLaunchCmdNormalLaunch.

Example The following example, used for the Treo 600 smartphone implementation,
uses PalmLsnSpecialLaunch to handle Listener events.

Err PalmLsnSpecialLaunch(
/ *********************** /

UInt16 cmd,
MemPtr cmdPBP,
UInt16 / * launchFlags * /)

{

switch(cmd) {

case sysAppLaunchCmdSystemReset:
// Fall through

125

case phnLibLaunchCmdRegister:
break;

case phnLibLaunchCmdEvent: {
if(!IsFeatureOn(PalmLsnGetFeature(), Listening)) {

return(errNone);
}

PhnEventPtr phoneEventP = (PhnEventPtr)cmdPBP;

if(phoneEventP->eventType == phnEvtMessageInd) {
// handle the message
return(handleMessage(phoneEventP->data.params.id,

&phoneEventP->acknowledge));
}

}

default:
break;

}
return(errNone);
}

If a message is detected, handleMessage is used to process the message into
the appropriate action.

static Err handleMessage(PhnDatabaseID id, Boolean * handled)
/ *** /
// This routine will construct a_palm_msg and then call
// PalmLsnProcess to process it.
{

a_palm_msg * ulMsg;
Err ret;
Boolean newlyLoaded;
PhnAddressList addrList;
PhnAddressHandle addrH;
MemHandle msgBodyH;
Char * msgSender;
Char * msgBody;
UInt32 msgTime;
Char configDb[dmDBNameLength];
UInt16 libRef = 0;
// CDMA workaround recommended by Handspring
DmOpenRef openRef = 0;

* handled = false;

// Allocate a message structure for passing over
// to PalmLsnProcess later

ulMsg = PalmLsnAllocate();
if(ulMsg == NULL) {

return(sysErrNoFreeRAM);
}

126

Chapter 7. MobiLink Listener SDKs

// Load the phone library

ret = findOrLoadPhoneLibrary(&libRef, &newlyLoaded);
if(ret != errNone) {

goto done;
}
openRef = PhnLibGetDBRef(libRef);

// Retrieve sender of the message

ret = PhnLibGetAddresses(libRef, id, &addrList);
if(ret != errNone) {

goto done;
}
ret = PhnLibGetNth(libRef, addrList, 1, &addrH);

if(ret != errNone) {
PhnLibDisposeAddressList(libRef, addrList);
goto done;

}

msgSender = PhnLibGetField(libRef, addrH, phnAddrFldPhone);
if(msgSender != NULL) {

ret = PalmLsnDupSender(ulMsg, msgSender);
MemPtrFree(msgSender);

}
PhnLibDisposeAddressList(libRef, addrList);
if(ret != errNone) {

goto done;
}

// Retrieve message time

ret = PhnLibGetDate(libRef, id, &msgTime);
if(ret != errNone) {

goto done;
}
ret = PalmLsnDupTime(ulMsg, msgTime);
if(ret != errNone) {

goto done;
}

// Retrieve the entire message body

ret = PhnLibGetText(libRef, id, &msgBodyH);
if(ret != errNone) {

goto done;
}
msgBody = (Char *)MemHandleLock(msgBodyH);
ret = PalmLsnDupMessage(ulMsg, msgBody);

127

// msgBodyH must be disposed of by the caller

MemHandleUnlock(msgBodyH);
MemHandleFree(msgBodyH);
if(ret != errNone) {

goto done;
}

// Get the configuration database name

PalmLsnGetConfigFileName(configDb);

// Call PalmLsnProcess to process the message

ret = PalmLsnProcess(ulMsg, configDb, NULL, handled);
done:

if(ulMsg != NULL) {
PalmLsnFree(ulMsg);

}
PhnLibReleaseDBRef(libRef, openRef);

// Unload the phone library before any possible application
switch

if(newlyLoaded) {
unloadPhoneLibrary(libRef);
newlyLoaded = false;

}
return(ret);

}

128

CHAPTER 8

Tutorial: Server-Initiated Synchronization

About this chapter This chapter demonstrates how to configure a consolidated and remote
database for server-initiated synchronization. It shows how to set up a
simple synchronization from scratch using an Adaptive Server Anywhere
consolidated database.

Several sample implementations of server-initiated synchronization are
included in the SQL Anywhere Studio installation. They are fully docu-
mented in readmes and code comments. To locate the sample applications,
navigate to theSamples\MobiLinkdirectory in your SQL Anywhere Studio
install path. All server-initiated synchronization sample directories start
with the prefix SIS_.

Contents Topic: page

Server-initiated synchronization using the car dealer sample 130

Lesson 1: Set up the consolidated database 132

Lesson 2: Create a push request table 134

Lesson 3: Configure the Notifier 135

Lesson 4: Configure gateways and carriers 139

Lesson 5: Define an ODBC data source 140

Lesson 6: Start the MobiLink server 141

Lesson 7: Set up a remote database 143

Lesson 8: Configure the Listener 145

Lesson 9: Issue push requests 147

129

Server-initiated synchronization using the car
dealer sample
Car dealer sample This tutorial is based on the sample located in the

Samples\MobiLink\SIS_CarDealersubdirectory in your SQL Anywhere
installation. This tutorial uses a single client located on a desktop computer.
However, server initiated synchronization Listeners can be installed on other
platforms, such as Windows CE and Palm OS. For more information,
consult the SIS_CarDealer sample and MobiLink server-initiated
synchronization documentation.

Tutorial overview

Following is an overview of the steps required to set up MobiLink
server-initiated synchronization using the Car Dealer sample. The purpose
of this lesson is to provide an overview of what’s to come; later steps will
describe how to do each of these steps.

❖ Set up the consolidated database and Notifier utility

1. Create an Adaptive Server Anywhere database with the following
schema:

♦ A table used for synchronization.

For this tutorial, the table is called Dealer and stores the name and
rating of automobile manufacturers.

♦ Synchronization logic for download-only synchronization.

For this tutorial, you will implement the download_cursor
synchronization script.

♦ A table to store push requests.

Populating this table triggers remote notification.

2. Configure the Notifier utility.

Provide logic to handle the begin_poll, request_cursor, and
request_delete events.

3. Configure gateways and carriers.

This tutorial uses the default gateway settings for a UDP Listener.

4. Start the MobiLink synchronization server with the -notifier option.

130

Chapter 8. Tutorial: Server-Initiated Synchronization

❖ Set up the remote database and Listener utility

1. Create an Adaptive Server Anywhere database with a table used for
synchronization.

This table will be synchronized with the consolidated database Dealer
table.

2. Create a remote synchronization publication, synchronization user, and
synchronization subscription.

3. Createdblsn.txt, the command-line file for the MobiLink Listener.

4. Start a local UDP Listener.

❖ Issue push requests

1. To issue push requests, you can insert data directly into the push request
table or make other changes that will cause the Notifier begin_poll event
to populate the push request table. Each request will cause the Notifier to
send a message using the request_cursor event.

If the message of a push request matches a message defined in the
Listener command file, for example ‘sync’, the remote database will
synchronize (or take the corresponding action).

131

Lesson 1: Set up the consolidated database
In this lesson, you create a consolidated database with the scripts required
for synchronization.

One way to create an Adaptive Server Anywhere database is to use the dbinit
command-line utility. In this tutorial, the consolidated database is called
cons.

❖ To create and start a new Adaptive Server Anywhere consoli-
dated database
1. At a command prompt, navigate to the directory where you would like to

create the database.

2. Type the following command to create the database:

dbinit cons.db

3. Now, to start the database, type:

dbeng9 cons.db

Generate the
consolidated database
schema

The consolidated database schema includes a Dealer table, a
download_cursor synchronization script, and a table and stored procedure to
generate server-initiated synchronization push requests.

❖ To add the Dealer table and download_cursor synchronization
script

1. Connect to the consolidated database:

♦ In Sybase Central, select the Adaptive Server Anywhere 9 plug-in.
From the File menu, choose Connect.

The Connect dialog appears.

♦ On the Identification tab, typeDBA as the User ID andSQL as the
Password. On the Database tab, typeconsas the Server Name.

♦ Click OK to connect.

2. Start Interactive SQL:

♦ In Sybase Central, select the cons database. From the File menu,
choose Open Interactive SQL.

3. Install the Dealer table and download_cursor synchronization script.

♦ Execute the following commands in Interactive SQL:

132

Chapter 8. Tutorial: Server-Initiated Synchronization

/ * the dealer table * /
create table Dealer (

name varchar(10) not null primary key,
rating varchar(5),
last_modified timestamp default timestamp

)
go
insert into Dealer(name, rating) values (’Audi’, ’a’);
insert into Dealer(name, rating) values (’Buick’, ’b’);
insert into Dealer(name, rating) values (’Chrysler’,

’c’);
insert into Dealer(name, rating) values (’Dodge’, ’d’);
insert into Dealer(name, rating) values (’Eagle’, ’e’);
insert into Dealer(name, rating) values (’Ford’, ’f’);
insert into Dealer(name, rating) values (’Geo’, ’g’);
insert into Dealer(name, rating) values (’Honda’, ’h’);
insert into Dealer(name, rating) values (’Isuzu’, ’i’);
go

/ * the download_cursor synchronization script * /
call ml_add_table_script(’sis_ver1’, ’Dealer’,

’download_cursor’,
’SELECT * FROM Dealer WHERE last_modified >= ?’)
go

Further reading ☞ For more information about the topics in this lesson, see:

♦ “The Initialization utility” [ASA Database Administration Guide,page 530]
♦ “The database server”[ASA Database Administration Guide,page 116]
♦ “Using Interactive SQL”[Introducing SQL Anywhere Studio,page 217]
♦ “CREATE TABLE statement”[ASA SQL Reference,page 407]
♦ “Writing Synchronization Scripts”[MobiLink Administration Guide,

page 227]
♦ “download_cursor table event”[MobiLink Administration Guide,page 371]

133

Lesson 2: Create a push request table
The Notifier sends a message to a remote database when it detects a push
request. In a typical implementation, you add a push request table to your
consolidated database.

❖ To create a table for push requests

1. Execute the following command in Interactive SQL:

CREATE TABLE PushRequest (
req_id INTEGER DEFAULT AUTOINCREMENT PRIMARY KEY,
mluser VARCHAR(128),
subject VARCHAR(128),
content VARCHAR(128),
resend_interval VARCHAR(30) DEFAULT ’20s’,
time_to_live VARCHAR(30) DEFAULT ’1m’,
status VARCHAR(128) DEFAULT ’created’

)
go

2. Close Interactive SQL.

Further reading ☞ For more information about the topics in this lesson, see:

♦ “Push requests” on page 10
♦ “Introducing Server-Initiated Synchronization” on page 1
♦ “Components of server-initiated synchronization” on page 4

134

Chapter 8. Tutorial: Server-Initiated Synchronization

Lesson 3: Configure the Notifier
In this lesson you configure three Notifier properties to influence how the
Notifier creates push requests, transmits the requests to remote Listeners,
and cleans up expired requests.

❖ To configure the Notifier utility

1. Connect to the consolidated database using the MobiLink
Synchronization plug-in:

♦ Open Sybase Central.

♦ In the left pane, select the MobiLink Synchronization 9 plug-in. From
the File menu, choose Connect.

The Connect dialog appears.

♦ On the Identification tab, typeDBA as the User ID andSQL as the
Password. On the Database tab, typeconsas the Server Name.

♦ Click OK to connect.

2. Add a new Notifier.

In the left-pane, open the Notification folder and select the Notifiers
folder. In the right-pane double-click Add Notifier.

The Add a New Notifier dialog appears.

3. Name the NotifierCarDealerNotifier. Click Finish.

4. Enter the begin_poll event script.

The Notifier detects changes in the consolidated database and creates
push requests using the begin_poll event. In this case, the begin_poll
script will populate the PushRequest table if changes occur in the Dealer
table and when a remote database is not up-to-date.

♦ In the right pane, select the CarDealerNotifier. From the File menu,
choose Properties.

The CarDealerNotifier Notifier Properties dialog appears.

♦ Click the Logic tab. From the dropdown menu, choose begin_poll.

♦ Enter the following for the begin_poll script:

--
-- Insert the last consolidated database

-- modification date into @last_modified
--

declare @last_modified timestamp;
select max(last_modified) into @last_modified from

Dealer;

135

--
-- Delete processed requests if the mluser is up-to-date
--
delete from PushRequest

from PushRequest as p, ml_user as u, ml_subscription
as s

where
p.status = ’processed’

and
u.name = p.mluser

and
u.user_id = s.user_id

and
@last_modified <= greater(s.last_upload_time, s.last_

download_time);
--
-- Insert new requests when a device is not up-to-date
--
insert into PushRequest(mluser, subject, content)

select u.name, ’sync’, ’ignored’
from ml_user as u, ml_subscription as s

where
u.name in (select ml_user from ml_listening where

listening = ’y’)
and

u.user_id = s.user_id
and

@last_modified > greater(s.last_upload_time, s.last_
download_time)

and
u.name not like ’%-dblsn’

and
not exists(select * from PushRequest

where PushRequest.mluser = u.name
and PushRequest.subject = ’sync’)

In the first major section of the begin_poll script, processed requests from
the PushRequest table are eliminated if a device is up to date:

@last_modified <= greater(s.last_upload_time, s.last_
download_time)

@last_modified is the maximum modification date in the consolidated
database Dealer table. The expression greater(s.last_upload_time,
s.last_download_time) represents the last synchronization time for a
remote database.

You can also delete push requests directly using the request_delete event.
However, the begin_poll event, in this case, ensures that expired or
implicitly dropped requests are not eliminated before a remote database
synchronizes.

The next section of code checks for changes in the last_modified column
of the Dealer table and issues push requests for all active listeners (listed

136

Chapter 8. Tutorial: Server-Initiated Synchronization

in the ml_listening table) that are not up to date:

@last_modified > greater(s.last_upload_time, s.last_
download_time)

When populating the PushRequest table, the begin_poll script sets the
subject to ‘sync’.

5. Enter the request_cursor script.

The request_cursor script fetches push requests. Each push request
determines what information is sent in the message, and which remote
databases receive the information.

♦ From the dropdown menu, choose request_cursor.

♦ Enter the following code for the request_cursor script:

select
p.req_id,
’Default-DeviceTracker’,
p.subject,
p.content,
p.mluser,
p.resend_interval,
p.time_to_live

from PushRequest as p

The PushRequest table supplies rows to the request_cursor script.

The order and values in the request_cursor result set is significant. The
second parameter, for example, defines the default gateway
Default-DeviceTracker. A device tracker gateway keeps track of how to
reach users and automatically selects UDP or SMTP to connect to remote
devices.

6. Enter the request_delete script.

The request_delete notifier event specifies cleanup operations. Using this
script, the Notifier can automatically remove implicitly dropped and
expired requests.

♦ From the dropdown menu, choose request_delete.

♦ Enter the following for the request_delete script:

update PushRequest set status=’processed’ where req_id =
?

Instead of deleting the row, this request_delete script updates the status of
a row in the PushRequest table to ‘processed’.

7. Click OK to save the Notifier properties.

Further reading ☞ For more information about the topics in this lesson, see:

137

♦ “ Managing Databases with Sybase Central”[Introducing SQL Anywhere
Studio,page 241]

♦ “request_delete property” on page 65
♦ “begin_poll property” on page 58
♦ “ml_listening” [MobiLink Administration Guide,page 509]
♦ “Device tracking” on page 22
♦ “Listener options for device tracking” on page 23
♦ “request_cursor property” on page 64
♦ “request_delete property” on page 65

138

Chapter 8. Tutorial: Server-Initiated Synchronization

Lesson 4: Configure gateways and carriers
Gateways are the mechanisms for sending messages. You can define UDP
gateways and SMTP gateways. Alternatively, you can use a device tracker
gateway. With device tracking, MobiLink keeps track of how to reach users,
and automatically decides to use a UDP or SMTP gateway.

In this tutorial you use a default device tracker gateway, so no confirguration
is necessary.

Further reading ☞ For more information about the topics in this lesson, see:

♦ “Device tracker gateway properties” on page 68
♦ “Gateways and carriers” on page 20

139

Lesson 5: Define an ODBC data source
Use the Adaptive Server Anywhere 9.0 driver to define an ODBC data
source for the database.

❖ To define an ODBC data source for the consolidated database

1. Start the ODBC Administrator:

From the Start menu, choose Programs➤ SQL Anywhere 9➤ Adaptive
Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator appears.

2. On the User DSN tab, click Add.

The Create New Data Source dialog appears.

3. Select Adaptive Server Anywhere 9.0 and click Finish.

The ODBC Configuration for Adaptive Server Anywhere 9 dialog
appears.

4. On the ODBC tab, type the Data source namesis_cons. On the Logic tab,
typeDBA for the User ID andSQL for the Password. On the Database
tab, typeconsfor the Server Name.

5. Click OK.

Further reading ☞ For more information about the topics in this lesson, see:

♦ “Working with ODBC data sources”[ASA Database Administration Guide,
page 53]

☞ If you are using a consolidated database other than Adaptive Server
Anywhere, see“Introduction to iAnywhere Solutions ODBC Drivers”
[ODBC Drivers for MobiLink and Remote Data Access,page 1].

140

Chapter 8. Tutorial: Server-Initiated Synchronization

Lesson 6: Start the MobiLink server

❖ To run the MobiLink synchronization server (dbmlsrv9)

1. At a command prompt, navigate to the directory of your consolidated
database. Type the following on a single line:

dbmlsrv9
-notifier
-c "dsn=sis_cons"
-o ml.log
-fr
-v+
-zu+
-x tcpip

The following table describes each option used with the dbmlsrv9 utility.
The options -o and -v provide debugging and troubleshooting
information. Using these logging options is appropriate in a development
environment. For performance reasons, -v is typically not used in
production.

Option Description

-notifier Starts the Notifier for server-initiated synchronization.

☞ See“-notifier option” [MobiLink Administration
Guide,page 202].

-c Specifies a connection string.

☞ See“-c option” [MobiLink Administration Guide,
page 196].

-o Specifies the message log fileml.log.

☞ See“-o option” [MobiLink Administration Guide,
page 203].

-fr Prevents the MobiLink synchronization server from abort-
ing if a synchronization does not include at least one script
that uploads and one script that downloads data. This op-
tion is required for this tutorial which uses download-only
synchronization.

☞ See“-fr option” [MobiLink Administration Guide,
page 200].

-v+ The -v option specifies what information is logged. Using
-v+ sets maximum verbose logging.

☞ See“-v option” [MobiLink Administration Guide,
page 211].

141

Option Description

-zu+ Adds new users automatically.

☞ See“-zu option” [MobiLink Administration Guide,
page 222].

-x Sets the communications protocol and protocol options for
MobiLink clients.

☞ See“-x option” [MobiLink Administration Guide,
page 214].

A dialog appears to indicate the MobiLink synchronization server is
ready to handle requests. The Notifier utility also appears.

Further reading ☞ For more information about the topics in this lesson, see:

♦ “Running the MobiLink synchronization server”[MobiLink Administration
Guide,page 11]

♦ “MobiLink Synchronization Server Options”[MobiLink Administration
Guide,page 189]

142

Chapter 8. Tutorial: Server-Initiated Synchronization

Lesson 7: Set up a remote database
MobiLink server-initiated synchronization is designed for synchronization
involving a consolidated database server and a large number of mobile
databases. In this lesson, you create an Adaptive Server Anywhere remote
database, create a synchronization publication, user, and subscription. Then,
you create the command file for the Listener utility and start the Listener.

❖ To create and start a new Adaptive Server Anywhere remote
database
1. At a command prompt, navigate to the directory where you would like to

create the database.

2. Type the following command to create the database:

dbinit rem1.db

3. Now, to start the database, type:

dbeng9 rem1.db

❖ To generate the remote database schema

1. Connect to the database:

♦ In Sybase Central, select the Adaptive Server Anywhere 9 plug-in.
From the File menu, choose Connect.

The Connect dialog appears.

♦ On the Identification tab, typeDBA as the User ID andSQL as the
Password. On the Database tab, typerem1 as the Server Name.

♦ Click OK to connect.

2. Start Interactive SQL:

♦ In Sybase Central, select the rem1 database. From the File menu,
choose Open Interactive SQL.

3. Create the Dealer table.

♦ Execute the following command in Interactive SQL:

create table Dealer (
name varchar(10) not null primary key,
rating varchar(5),
last_modified timestamp default timestamp

)
go

4. Create a synchronization publication, user, and subscription.

143

♦ Execute the following commands in Interactive SQL:

CREATE PUBLICATION car_dealer_pub (table Dealer);
CREATE SYNCHRONIZATION USER sis_user1;
CREATE SYNCHRONIZATION SUBSCRIPTION

TO car_dealer_pub
FOR sis_user1
OPTION scriptversion=’sis_ver1’;

Further reading ☞ For more information about the topics in this lesson, see:

♦ “Introducing MobiLink Clients”[MobiLink Clients,page 3]
♦ “The Initialization utility” [ASA Database Administration Guide,page 530]
♦ “CREATE TABLE statement”[ASA SQL Reference,page 407]
♦ “Publishing data”[MobiLink Clients,page 64]
♦ “CREATE PUBLICATION statement”[ASA SQL Reference,page 385]
♦ “CREATE SYNCHRONIZATION USER statement [MobiLink]”[ASA

SQL Reference,page 404]
♦ “CREATE SYNCHRONIZATION SUBSCRIPTION statement

[MobiLink]” [ASA SQL Reference,page 402]
♦ “Script versions”[MobiLink Administration Guide,page 239]

144

Chapter 8. Tutorial: Server-Initiated Synchronization

Lesson 8: Configure the Listener
The Listener runs on remote devices. It receives messages from the Notifier
and processes them into actions. For example, the Listener will start
dbmlsync if it receives the message “sync” when the following dblsn option
is specified:

-l "subject=sync;action=’run dbmlsync.exe...’

A convenient way to configure the Listener is to store command line options
in a text file. For example, if you store the settings inmydblsn.txt, you can
start the Listener by typing:

dblsn @mydblsn.txt

Alternatively, if you type dblsn without any parameters, dblsn will use
dblsn.txtas the default argument file.

❖ To create and start the MobiLink Listener

1. Create a text filemydblsn.txtwith the following contents.

#----------------------------------
Verbosity level
-v2

Show notification messages in console and log
-m

Polling interval, in seconds
-i 3

Truncate, then write output to dblsn.log
-ot dblsn.log

Mobilink address and connect parameter for dblsn
-x "host=localhost"

Enable device tracking and specify the MobiLink user name.
-t+ sis_user1

Message handlers
Synchronize using dbmlsync
-l "subject=sync;
action=’start dbmlsync.exe

-c eng=rem1;uid=dba;pwd=sql
-ot dbmlsyncOut.txt -k’;"

♦ Save the file asmydblsn.txt.

2. Start the Listener.

At a command prompt, navigate to the directory of your Listener

145

command file.

Start the listener by typing:

dblsn @mydblsn.txt

A dialog appears indicating the Listener is running and has uploaded device
tracking information to the MobiLink synchronization server.

When tracking information is uploaded to the consolidated database, you
should notice a new entry in the MobiLink synchronization server window.
This information relays the successful initial communication between the
Listener and the MobiLink synchronization server.

Further reading ☞ For more information about the topics in this lesson, see:

♦ “Listeners” on page 28
♦ “The Listener utility” on page 38
♦ “Storing Listener options” on page 33

146

Chapter 8. Tutorial: Server-Initiated Synchronization

Lesson 9: Issue push requests
For server-initiated synchronization, you can issue push requests by
populating the PushRequest table directly, or making a change in the Dealer
table. In the latter case, the Notifier begin_poll script will detect the change
in the Dealer table and populate the PushRequest table.

In either case, the PushRequest table supplies rows to the Notifier
request_cursor script, which determines how remote devices receive
messages.

❖ To insert a push request directly into the PushRequest table
prompting server-initiated synchronization

1. From Interactive SQL, connect to the cons.db database and enter the
following:

INSERT INTO pushrequest(mluser,subject,content)
VALUES (’sis_user1’,’sync’,’not used’);
COMMIT;

2. Wait a few seconds for the synchronization to occur.

When populated, the PushRequest table supplies rows to the Notifier’s
request_cursor script. The request_cursor script determines what
information is sent in the message, and which remote devices receive the
information.

❖ To make a change in the consolidated database Dealer prompting
server-initiated synchronization

1. From Interactive SQL, enter the following:

UPDATE Dealer SET RATING = ’B’
WHERE name = ’Geo’; commit;

2. Wait a few seconds for the synchronization to occur.

In this case, the Notifier begin_poll script detects changes in the dealer table
and will populate the push request table appropriately. As before, once the
PushRequest table is populated, the Notifier request_cursor script
determines what information is sent in the message, and which remote
devices receive the information.

Further reading ☞ For more information about the topics in this lesson, see:

♦ “Creating push requests” on page 12
♦ “INSERT statement”[ASA SQL Reference,page 528]
♦ “UPDATE statement”[ASA SQL Reference,page 650]

147

148

Index

Symbols
$adapters

MobiLink Listener action variable 45
$best_adapter_mac

MobiLink Listener action variable 45
$best_adapter_name

MobiLink Listener action variable 45
$best_ip

MobiLink Listener action variable 45
$best_network_name

MobiLink Listener action variable 45
$content

MobiLink Listener action variable 45
$day

MobiLink Listener action variable 45
$hour

MobiLink Listener action variable 45
$message

MobiLink Listener action variable 45
MobiLink Palm Listener Configuration action

variable 52
$message_end

MobiLink Listener action variable 45
MobiLink Palm Listener Configuration action

variable 52
$message_start

MobiLink Listener action variable 45
MobiLink Palm Listener Configuration action

variable 52
$minute

MobiLink Listener action variable 45
$month

MobiLink Listener action variable 45
$network_name

MobiLink Listener action variable 45
$priority

MobiLink Listener action variable 45
$second

MobiLink Listener action variable 45
$sender

MobiLink Listener action variable 45

MobiLink Palm Listener Configuration action
variable 52

$subject
MobiLink Listener action variable 45

$time
MobiLink Palm Listener Configuration action

variable 52
$type

MobiLink Listener action variable 45
$year

MobiLink Listener action variable 45
_BEST_IP_CHANGED_

server-initiated synchronization 32
_IP_CHANGED_

server-initiated synchronization 32

A
-a option

MobiLink [dblsn] 38
a_msg allocateSize function

Listener SDK for Windows 92
a_msg copy function

Listener SDK for Windows 93
a_msg equals function

Listener SDK for Windows 93
a_msg makeEmpty function

Listener SDK for Windows 94
a_msg public fields

Listener SDK for Windows 91
a_msg reallocBuffers function

Listener SDK for Windows 94
a_palm_msg structure

Palm Listener SDK 114
action

MobiLink [dblsn] 42
MobiLink [dblsncfg] 51

action variables
MobiLink [dblsn] 44
MobiLink [dblsncfg] 51

adapters
MobiLink Listener action variable 45

AirCard 710 using firmware R2

149

Index

server-initiated synchronization 48
AirCard 710 using firmware R3

server-initiated synchronization 48
AirCard 750 using firmware R2

server-initiated synchronization 48
AirCard 750 using firmware R3

server-initiated synchronization 48
AirCard510

server-initiated synchronization 47
AirCard555

server-initiated synchronization 47
altaction

MobiLink [dblsn] 42

B
-b option

MobiLink [dblsn] 38
begin_connection

Notifier property 57
begin_poll

Notifier property 58
using to create push requests 10

BEST_IP_CHANGED_
server-initiated synchronization 32

C
car dealer sample

server-initiated synchronization 129
carrier gateway

Notifier properties 74
carrier properties

server-initiated synchronization 74
carriers

configuring 15
configuring for server-initiated synchronization20
device tracking 22
properties 74
server-initiated synchronization 20, 21

changes in connectivity
MobiLink [dblsn] 32

client event-hook procedures see alsoevent hooks
common properties

server-initiated synchronization 56
config.notifier

about 16
configuring

Notifier 15

server-initiated synchronization 15
configuring gateways and carriers

server-initiated synchronization 20
configuring Notifiers

MobiLink server-initiated synchronization 18
configuring the consolidated database

server-initiated synchronization 10
configuring the Notifier

server-initiated synchronization 15
confirm_delivery

device tracker gateway property 68
MobiLink [dblsn] 42
SMTP gateway property 70
UDP gateway property 72

confirm_timeout
SMTP gateway property 70
UDP gateway property 72

connect_string
Notifier property 59

connection-initiated synchronization
MobiLink [dblsn] 32

connectivity changes
MobiLink [dblsn] 32

consolidated databases
server-initiated synchronization 10

content
MobiLink Listener action variable 45

continue
MobiLink [dblsn] 41

conventions
documentation viii

coverage-initiated synchronization
MobiLink [dblsn] 32

creating push requests
server-initiated synchronization 10, 12

creating the push request table
server-initiated synchronization 10

D
-d option

MobiLink [dblsn] 38
data types

Listener SDK for Windows 90
day

MobiLink Listener action variable 45
dbfhide utility

server-initiated synchronization 33

150

Index

dblsn
Listener utility for Windows 28
syntax 38

DBLSN FULL SHUTDOWN
MobiLink [dblsn] 44

dblsncfg
syntax 50

dblsn.txt
MobiLink Listener default parameters 33

dbmlsrv9
-notifier option 18

Default-DeviceTracker
server-initiated synchronization 68

deleting push requests
server-initiated synchronization 13

deploying
MobiLink server-initiated synchronization 7

deployment considerations
server-initiated synchronization 7

Device dependent functions
Listener SDK for Palm 122

device tracker gateway
about 22
Notifier properties 68

device tracker gateway properties
server-initiated synchronization 68

device tracking
Listener options to enable 23
Palm devices, 9.0.0 clients 25
properties 68
server-initiated synchronization 22
setting up 22
stopping 24
troubleshooting 27

DeviceTracker
about 22
properties 68

documentation
conventions viii
SQL Anywhere Studio vi

E
-e option

MobiLink [dblsn] 38
enable

Carrier gateway property 74
device tracker gateway property 69

Notifier property 61
SMTP gateway property 70
UDP gateway property 72

end_connection
Notifier property 61

end_poll
Notifier property 62

F
-f option

MobiLink [dblsn] 38
feedback

documentation xi
providing xi

filter-action pairs
MobiLink [dblsn] 41

filters
MobiLink [dblsn] 42
MobiLink [dblsncfg] 50

G
-g option

MobiLink [dblsn] 38
gateways

configuring 15
configuring for server-initiated synchronization20
device tracker 68
device tracking 22
server-initiated synchronization 20
SMTP properties for server-initiated

synchronization 70
troubleshooting 27
UDP properties for server-initiated

synchronization 72
gateways and carriers

server-initiated synchronization 20
gui

Notifier property 60

H
hooks see alsoevent hooks
hour

MobiLink Listener action variable 45

I
-i option

151

Index

MobiLink [dblsn] 38
icons

used in manuals x
IP_CHANGED_

server-initiated synchronization 32
isolation

Notifier property 62

K
Kyocera

Palm Listener utility 52
Kyocera7135.c

server-initiated synchronization 88

L
-l option

MobiLink [dblsn] 41
MobiLink [dblsncfg] 50

Listener options for device tracking
server-initiated synchronization 23

Listener SDK for Palm
server-initiated synchronization 114

Listener SDK for Windows
server-initiated synchronization 90

Listener software development kit
about 88

Listener utility
about 28
syntax 38

listener_port
UDP gateway property 73

Listeners
about 2
configuring and starting 28
default parameters file 33
device tracking options 23
limitations of UDP Listeners 7
limitations on CE or PCs 7
Palm devices 52
SDKs for Windows and Palm 88
Windows [dblsn] 28

Listeners for Palm devices
server-initiated synchronization 49

listeners_are_900
SMTP gateway property 71
UDP gateway property 73

listening libraries

server-initiated synchronization 46
lsn_info structure

Listener SDK for Windows 97
LSN_RET enumeration

Listener SDK for Windows 95
lsn_state structure

Listener SDK for Windows 98
lsn_swi510.dll

server-initiated synchronization 47
lsn_udp.dll

server-initiated synchronization 47
LSN_VERSION enumeration

Listener SDK for Windows 96
lsn.def

server-initiated synchronization 88
LsnFini function

Listener SDK for Windows 104
LsnGet Address

Listener SDK for Windows 112
LsnGetMedium function

Listener SDK for Windows 113
lsn.h

server-initiated synchronization 88
LsnInit function

Listener SDK for Windows 99
LsnIsListening

Listener SDK for Windows 105
lsnK7135.prc

Palm Listener 52
LsnMain function

Listener SDK for Palm 121
LsnReadNext function

Listener SDK for Windows 111
LsnReceiveAll function

Listener SDK for Windows 108
LsnResumeListening function

Listener SDK for Windows 107
LsnSuspendListening function

Listener SDK for Windows 105
lsnT600.prc

Palm Listener 52

M
-m option

MobiLink [dblsn] 38
maac555.dll

server-initiated synchronization 47

152

Index

maac750.dll
server-initiated synchronization 48

maac750r3.dll
server-initiated synchronization 48

maydial
MobiLink [dblsn] 41

message
MobiLink [dblsn] 31
MobiLink Listener action variable 45
MobiLink Palm Listener Configuration action

variable 52
message class

Listener SDK for Windows 90
message handlers

MobiLink [dblsn] 41
message processing interface

Listener SDK for Palm 114
message_end

MobiLink Listener action variable 45
MobiLink Palm Listener Configuration action

variable 52
message_start

MobiLink [dblsn] 31
MobiLink Listener action variable 45
MobiLink Palm Listener Configuration action

variable 52
minute

MobiLink Listener action variable 45
ml_delete_device stored procedure

SQL syntax 78
ml_delete_device_address stored procedure

SQL syntax 79
ml_delete_listening stored procedure

SQL syntax 80
ml_set_device stored procedure

SQL syntax 81
ml_set_device_address stored procedure

SQL syntax 83
ml_set_listening stored procedure

SQL syntax 85
MobiLink

server-initiated synchronization 1
MobiLink Listener SDK

about 87
MobiLink synchronization

server-initiated synchronization 1
month

MobiLink Listener action variable 45
multi-channel listening

server-initiated synchronization 33

N
-n option

MobiLink [dblsncfg] 50
network_name

MobiLink Listener action variable 45
network_provider_id

Carrier gateway property 75
newsgroups

technical support xi
Notifier properties

server-initiated synchronization 57
Notifier properties file

about 16
Notifiers

about 2, 18
configuring 15, 18
configuring gateways and carriers 20
request_cursor property 64
starting 18

notifying the Listener with sa_send_udp
about 13

O
-o option

MobiLink [dblsn] 38
-os option

MobiLink [dblsn] 38
-ot option

MobiLink [dblsn] 38

P
-p option

MobiLink [dblsn] 38
Palm Computing Platform

MobiLink listeners for Palm devices 49
Palm devices

device tracking for 25
Listener 52

Palm Listener Configuration utility
syntax 50

Palm Listener utilities
server-initiated synchronization 50

153

Index

palm_lsn_ret enumeration
Listener SDK for Palm 120

PalmLsnAllocate function
Listener SDK for Palm 114

PalmLsnCheckConfigDB function
Listener SDK for Palm 119

PalmLsnDupMessage function
Listener SDK for Palm 115

PalmLsnDupSender function
Listener SDK for Palm 116

PalmLsnDupTime function
Listener SDK for Palm 117

PalmLsnFree function
Listener SDK for Palm 115

PalmLsnGetConfigFileName
Listener SDK for Palm 124

PalmLsn.h
server-initiated synchronization 88

PalmLsn.lib
server-initiated synchronization 88

PalmLsnNormalHandleEvent
Listener SDK for Palm 125

PalmLsnNormalStart
Listener SDK for Palm 124

PalmLsnNormalStop
Listener SDK for Palm 124

PalmLsnProcess function
Listener SDK for Palm 117

PalmLsnSpecialLaunch
Listener SDK for Palm 125

PalmLsnTargetCompanyID
Listener SDK for Palm 123

PalmLsnTargetDeviceID
Listener SDK for Palm 123

password
SMTP gateway property 71

poll_every
Notifier property 63

post
MobiLink [dblsn] 43

priority
MobiLink Listener action variable 45

properties
Notifier 15
server-initiated synchronization 15

public wireless carriers

configuration for server-initiated synchronization
74

push request table
about 10

push requests
about 2, 10
creating 12
creating the push request table 10
deleting 13
request_cursor property 64
sending 12

push technology
server-initiated synchronization 1

Q
-q option

MobiLink [dblsn] 38
-qa option

MobiLink [dblsn] 38
quick start

server-initiated synchronization 8

R
request_cursor

Notifier property 64
request_delete

Notifier property 65
run

MobiLink [dblsn] 43

S
sa_send_udp system procedure

using to notify a Listener 13
sample application

server-initiated synchronization 129
samples

MobiLink server-initiated synchronization 129
scheduling

MobiLink server-initiated synchronization 44
SDKs

Listener SDKs 88
second

MobiLink Listener action variable 45
sender

MobiLink [dblsn] 31
MobiLink Listener action variable 45

154

Index

MobiLink Palm Listener Configuration action
variable 52

SMTP gateway property 71
UDP gateway property 73

sender_port
UDP gateway property 73

sending push requests
server-initiated synchronization 12

server
SMTP gateway property 71

server initiated synchronizationseeserver-initiated
synchronization

server stored procedures
MobiLink server-initiated synchronization 77

server-initiated synchronization
about 1
architecture 4
automatic connection recovery 63
configuring and starting the Listener 28
Listener SDKs 88
listening libraries 46
Palm devices and 9.0.0 clients 25
samples 129
setup overview 8
stored procedures 77
supported platforms 6
tutorial 129
unguaranteed delivery 7

setting properties in more than one place
server-initiated synchronization 15

setting up device tracking
server-initiated synchronization 22

setting up the Listener
server-initiated synchronization 28

setting up the Notifier
server-initiated synchronization 18

shutdown_query
Notifier property 66

sis seeserver-initiated synchronization
sms_email_domain

Carrier gateway property 75
sms_email_user_prefix

Carrier gateway property 75
SMTP gateway

listening libraries for server-initiated
synchronization 46

Notifier properties 70

SMTP gateway properties
server-initiated synchronization 70

smtp_gateway
device tracker gateway property 69

socket
MobiLink [dblsn] 43

software development kits
MobiLink server-initiated synchronization 88

SQL Anywhere Studio
documentation vi

start
MobiLink [dblsn] 42

starting the Notifier
server-initiated synchronization 18

stopping device tracking
server-initiated synchronization 24

stored procedures
ml_delete_device SQL syntax 78
ml_delete_device_address SQL syntax 79
ml_delete_listening SQL syntax 80
ml_set_device SQL syntax 81
ml_set_device_address SQL syntax 83
ml_set_listening SQL syntax 85
MobiLink server-initiated synchronization 77

subject
MobiLink Listener action variable 45

support
newsgroups xi

supported platforms
server-initiated synchronization 6

swi510.c
server-initiated synchronization 88

synchronization
server-initiated 1

synchronization subscriptionssee alsosubscriptions
syntax

MobiLink Listener [dblsn] 38
MobiLink Palm Listener Configuration [dblsncfg]

50
MobiLink server-initiated synchronization stored

procedures 77

T
-t option

MobiLink [dblsn] 38
technical support

newsgroups xi

155

Index

template.notifier
about 16

time
MobiLink Palm Listener Configuration action

variable 52
tracked address is not correct

troubleshooting device tracking 27
Treo

Palm Listener utility 52
Treo600.c

server-initiated synchronization 88
troubleshooting

server-initiated synchronization gateways 27
tutorials

server-initiated synchronization 129
type

MobiLink Listener action variable 45

U
-u option

MobiLink [dblsn] 38
UDP gateway

listening libraries for server-initiated
synchronization 47

Notifier properties 72
UDP gateway properties

server-initiated synchronization 72
udp_gateway

device tracker gateway property 69
udp.c

server-initiated synchronization 88
unreachable addresses

troubleshooting device tracking 27
USER

SMTP gateway property 71
using device tracking

Palm devices and 9.0.0 clients 25
utilities

MobiLink Listener [dblsn] 38
MobiLink Palm Listener Configuration [dblsncfg]

50

V
-v option

MobiLink [dblsn] 38
variables

MobiLink [dblsn] action variables 44

MobiLink [dblsncfg] action variables 51
verbosity

Notifier property 56
server-initiated synchronization 56

W
-w option

MobiLink [dblsn] 38

X
-x option

MobiLink [dblsn] 38

Y
-y option

MobiLink [dblsn] 38
year

MobiLink Listener action variable 45

156

	MobiLink Server-Initiated Synchronization User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	Finding out more and providing feedback

	Introducing Server-Initiated Synchronization
	Introduction to server-initiated synchronization
	Components of server-initiated synchronization
	Supported platforms
	Deployment considerations
	Quick start

	Setting Up Server-Initiated Synchronization
	Push requests
	Creating the push request table
	Creating push requests
	Sending push requests
	Deleting push requests
	Notifying the Listener with sa_send_udp

	Setting properties
	Notifier properties file

	Notifiers
	Starting the Notifier
	Configuring Notifiers

	Gateways and carriers
	Configuring gateways and carriers

	Device tracking
	Setting up device tracking
	Listener options for device tracking
	Stopping device tracking

	Using device tracking with Listeners that don't support it
	Troubleshooting gateways
	Unreachable addresses
	Tracked address is not correct

	Listeners
	Message handlers
	Message interpretation
	Using subject and content filters
	Using the filters message, message_start, and sender
	Connection-initiated synchronization
	Multi-channel listening

	Storing Listener options

	The Listener
	The Listener utility
	Action variables
	Listening libraries

	Listeners for Palm Devices
	Palm Listener utilities
	Palm Listener Configuration utility
	Action variables

	Palm Listener utility

	MobiLink Notification Properties
	Common properties
	verbosity property

	Notifier properties
	begin_connection property
	begin_poll property
	connect_string property
	gui property
	enable property
	end_connection property
	end_poll property
	isolation property
	poll_every property
	request_cursor property
	request_delete property
	shutdown_query property

	Device tracker gateway properties
	confirm_delivery property
	enable property
	smtp_gateway property
	udp_gateway property

	SMTP gateway properties
	confirm_delivery property
	confirm_timeout property
	enable property
	listeners_are_900 property
	password property
	sender property
	server property
	user property

	UDP gateway properties
	confirm_delivery property
	confirm_timeout property
	enable property
	listeners_are_900 property
	listener_port property
	sender property
	sender_port property

	Carrier properties
	enable property
	network_provider_id property
	sms_email_domain property
	sms_email_user_prefix property

	Server-Initiated Synchronization Stored Procedures
	ml_delete_device
	ml_delete_device_address
	ml_delete_listening
	ml_set_device
	ml_set_device_address
	ml_set_listening

	MobiLink Listener SDKs
	Introduction
	Listener SDK for Windows
	Data types
	Message class
	a_msg public fields
	a_msg allocateSize function
	a_msg copy function
	a_msg equals function
	a_msg makeEmpty function
	a_msg reallocBuffers function

	LSN_RET enumeration
	LSN_VERSION enumeration
	lsn_info structure
	lsn_state structure
	LsnInit function
	LsnFini function
	LsnIsListening
	LsnSuspendListening function
	LsnResumeListening function
	LsnReceiveAll function
	LsnReadNext function
	LsnGetAddress
	LsnGetMedium function

	Listener SDK for Palm
	Message processing interface
	Overview
	PalmLsnAllocate function
	PalmLsnFree function
	PalmLsnDupMessage function
	PalmLsnDupSender function
	PalmLsnDupTime function
	PalmLsnProcess function
	PalmLsnCheckConfigDB function
	palm_lsn_ret enumeration

	LsnMain function
	Device dependent functions
	PalmLsnTargetCompanyID
	PalmLsnTargetDeviceID
	PalmLsnGetConfigFileName
	PalmLsnNormalStart
	PalmLsnNormalStop
	PalmLsnNormalHandleEvent
	PalmLsnSpecialLaunch

	Tutorial: Server-Initiated Synchronization
	Server-initiated synchronization using the car dealer sample
	Tutorial overview

	Lesson 1: Set up the consolidated database
	Lesson 2: Create a push request table
	Lesson 3: Configure the Notifier
	Lesson 4: Configure gateways and carriers
	Lesson 5: Define an ODBC data source
	Lesson 6: Start the MobiLink server
	Lesson 7: Set up a remote database
	Lesson 8: Configure the Listener
	Lesson 9: Issue push requests

	Index

