
MobiLink Clients

Part number: DC00193-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001
Certicom Corp. Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All
rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028;
4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual vii
SQL Anywhere Studio documentation viii
Documentation conventions xi
The CustDB sample database xiii
Finding out more and providing feedback xiv

I Introduction to MobiLink Clients 1

1 Introducing MobiLink Clients 3
Adaptive Server Anywhere clients 4
UltraLite clients . 5
Specifying the communications protocol for clients 6
MobiLink users . 7

2 Authenticating MobiLink Users 9
About MobiLink users . 10
Choosing a user authentication mechanism 13
User authentication architecture 14
Providing initial passwords for users 17
Synchronizations from new users 18
Prompting end users to enter passwords 19
Changing passwords . 20
Custom user authentication 21

3 Utilities 27
ActiveSync provider installation utility 28
MobiLink client database extraction utility (deprecated) 31

4 MobiLink Client Network Protocol Options 35
Protocol options . 36

II Adaptive Server Anywhere Clients 57

5 Adaptive Server Anywhere Clients 59
Creating a remote database 60
Publishing data . 64
Creating MobiLink users . 71

iii

Subscribing MobiLink synchronization users 75
Initiating synchronization . 78
Using ActiveSync synchronization 82
Temporarily stopping synchronization of deletes 87
Scheduling synchronization 88
Adaptive Server Anywhere version 7 MobiLink clients 90

6 Adaptive Server Anywhere Client Synchronization Param-
eters 95
MobiLink synchronization client 96
dbmlsync options . 100

7 MobiLink SQL Statements 153
ALTER PUBLICATION statement 154
ALTER SYNCHRONIZATION SUBSCRIPTION statement

[MobiLink] . 156
ALTER SYNCHRONIZATION USER statement [MobiLink] . . 158
CREATE PUBLICATION statement 160
CREATE SYNCHRONIZATION SUBSCRIPTION statement

[MobiLink] . 162
CREATE SYNCHRONIZATION USER statement [MobiLink] . 164
DROP PUBLICATION statement 167
DROP SYNCHRONIZATION SUBSCRIPTION statement

[MobiLink] . 168
DROP SYNCHRONIZATION USER statement [MobiLink] . . 169
START SYNCHRONIZATION DELETE statement [MobiLink] 170
STOP SYNCHRONIZATION DELETE statement [MobiLink] . 172

8 Dbmlsync Client Event Hooks 175
Customizing the client synchronization process 177
sp_hook_dbmlsync_abort . 183
sp_hook_dbmlsync_begin . 185
sp_hook_dbmlsync_connect_failed 187
sp_hook_dbmlsync_delay . 191
sp_hook_dbmlsync_download_begin 193
sp_hook_dbmlsync_download_com_error 195
sp_hook_dbmlsync_download_end 197
sp_hook_dbmlsync_download_fatal_sql_error 199
sp_hook_dbmlsync_download_log_ri_violation 201
sp_hook_dbmlsync_download_ri_violation 204
sp_hook_dbmlsync_download_sql_error 206
sp_hook_dbmlsync_download_table_begin 208
sp_hook_dbmlsync_download_table_end 210
sp_hook_dbmlsync_end . 212

iv

sp_hook_dbmlsync_log_rescan 215
sp_hook_dbmlsync_logscan_begin 217
sp_hook_dbmlsync_logscan_end 219
sp_hook_dbmlsync_process_return_code 221
sp_hook_dbmlsync_schema_upgrade 223
sp_hook_dbmlsync_set_extended_options 225
sp_hook_dbmlsync_upload_begin 227
sp_hook_dbmlsync_upload_end 229
sp_hook_dbmlsync_validate_download_file 233

9 Dbmlsync Integration Component 237
Introduction . 238
Setting up the Dbmlsync Integration Component 239
Dbmlsync Integration Component methods 243
Dbmlsync Integration Component properties 244
Dbmlsync Integration Component events 249
IRowTransferData interface 262

10 DBTools Interface for dbmlsync 267
Introduction . 268
Setting up the DBTools interface for dbmlsync 269

III UltraLite Clients 275

11 UltraLite Clients 277
Introduction . 278
Adding synchronization to your UltraLite application 279
Choosing data to synchronize 280

Foreign key cycles . 285
UltraLite network protocols 287
Maintaining primary key uniqueness 291
Synchronizing UltraLite databases on the Palm Computing

Platform . 296
Synchronizing UltraLite databases on Windows CE 310

12 UltraLite Synchronization Parameters 315
Synchronization parameters 316
Network protocol options for UltraLite synchronization clients 341

Index 353

v

vi

About This Manual

Subject This manual describes MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication
and is well suited to mobile computing environments.

Audience This manual is for users of Adaptive Server Anywhere and other relational
database systems who wish to add synchronization or replication to their
information systems.

Before you begin ☞ For a comparison of MobiLink with other synchronization and
replication technologies, see“ Introducing Replication Technologies”
[Introducing SQL Anywhere Studio,page 21].

vii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere SNMP Extension Agent User’s Guide
This book describes how to configure the Adaptive Server Anywhere
SNMP Extension Agent for use with SNMP management applications to
manage Adaptive Server Anywhere databases.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

viii

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Tutorials This book provides several tutorials that walk you
through how to set up and run MobiLink applications.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

ix

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store, at
http://eshop.sybase.com/eshop/documentation.

x

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xi

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xii

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

ULOrderIDPool

pool_order_id
 integer

pool_emp_id
 integer

last_modified
 timestamp

ULCustomer

cust_id

integer

cust_name varchar(30)

last_modified

 timestamp

ULProduct

prod_id

integer

price
 integer

prod_name varchar(30)

ULOrder

order_id

integer

cust_id
 integer

prod_id
 integer

emp_id
 integer

disc
 integer

quant
 integer

notes
 varchar(50)

status
 varchar(20)

last_modified timestamp

ULEmployee

emp_id

integer

emp_name varchar(30)

last_download timestamp

ULEmpCust

emp_id

integer

cust_id

integer

action
 char(1)

last_modified timestamp

ULCustomerIDPool

pool_cust_id

integer

pool_emp_id
 integer

last_modified
 timestamp

ULIdentifyEmployee

emp_id
 integer
cust_id = cust_id

emp_id = emp_id

emp_id = emp_id

emp_id = pool_emp_id

prod_id = prod_id

cust_id = cust_id

emp_id = pool_emp_id

xiii

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

xiv

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xv

xvi

PART I

INTRODUCTION TO

MOBIL INK CLIENTS

This part introduces the clients you can use for MobiLink synchronization,
and provides information common to all types of MobiLink client.

CHAPTER 1

Introducing MobiLink Clients

About this chapter This chapter introduces you to MobiLink remote databases.

MobiLink supports two types of remote database: Adaptive Server
Anywhere and UltraLite.

Contents Topic: page

Adaptive Server Anywhere clients 4

UltraLite clients 5

Specifying the communications protocol for clients 6

MobiLink users 7

3

Adaptive Server Anywhere clients
Synchronization is initiated by running a command line utility called
dbmlsync. This utility connects to the remote database and prepares the
upload stream using information contained in the transaction log of the
remote database. It then uses information stored in a synchronization
publication and synchronization subscription to connect to the MobiLink
synchronization server and exchange data.

☞ For more information about Adaptive Server Anywhere clients, see
“Adaptive Server Anywhere Clients” on page 59.

☞ For details of dbmlsync command line options, see“Adaptive Server
Anywhere Client Synchronization Parameters” on page 95.

4

Chapter 1. Introducing MobiLink Clients

UltraLite clients
Applications built with the UltraLite technology available in SQL Anywhere
Studio are automatically MobiLink-enabled whenever the application
includes a call to the appropriate MobiLink synchronization function. The
UltraLite development tools included in SQL Anywhere Studio
automatically include synchronization logic when you build your UltraLite
application.

The UltraLite application and libraries handle the synchronization actions at
the application end. You can write your UltraLite application with little
regard to synchronization. The UltraLite runtime keeps track of changes
made since the previous synchronization.

Synchronization is initiated from your application by a single call to a
synchronization function when using TCP/IP, HTTP, HTTPS, or ActiveSync.

The interface for HotSync is slightly different. Once synchronization is
initiated from the application or from HotSync, the MobiLink
synchronization server and the UltraLite runtime control the actions that
occur during synchronization.

☞ For more information about UltraLite clients, see“UltraLite Clients” on
page 277.

☞ For more information about initiating synchronization, see“UltraLite
Synchronization Parameters” on page 315.

5

Specifying the communications protocol for
clients

The MobiLink synchronization server uses the -x command line option to
specify the network protocol or protocols for the synchronization client to
connect to the MobiLink server. The network protocol you choose must
match the synchronization protocol used by the client. The syntax for this
command line option is:

dbmlsrv9 -c " connection-string" -x protocol(options)

In the following example, the TCP/IP protocol is selected with no additional
protocol options.

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -x tcpip

You can configure your protocol using options of the form:

(keyword=value;. . .)

For example:

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -x tcpip(
host=localhost;port=2439)

☞ For more information about network protocols and protocol options, see
“-x option” [MobiLink Administration Guide,page 214].

6

Chapter 1. Introducing MobiLink Clients

MobiLink users
You need to provide one unique MobiLink user name for each remote
database in the MobiLink system. This name uniquely identifies each
MobiLink remote database.

The ml_user MobiLink system table, located in the consolidated database,
holds a list of MobiLink user names. The synchronization state of each user
is recorded in the commit_state column or the progress column. This
information ensures proper recovery if synchronization is interrupted.

☞ For more information about MobiLink users, see

♦ “About MobiLink users” on page 10

♦ “Creating MobiLink users” on page 10

♦ “ml_user” [MobiLink Administration Guide,page 531]

7

CHAPTER 2

Authenticating MobiLink Users

About this chapter A MobiLink user is a name that uniquely identifies a remote database for
synchronization.

This chapter describes how to manage MobiLink users, including the
mechanisms provided to manage and authenticate their passwords.

☞ For more information about security options, see“MobiLink
Transport-Layer Security”[MobiLink Administration Guide,page 165].

Contents Topic: page

About MobiLink users 10

Choosing a user authentication mechanism 13

User authentication architecture 14

Providing initial passwords for users 17

Synchronizations from new users 18

Prompting end users to enter passwords 19

Changing passwords 20

Custom user authentication 21

9

About MobiLink users
A MobiLink user , also called asynchronization user, is a name assigned
to a remote database. Each MobiLink user name must be unique within the
synchronization system.

MobiLink user names and passwords are not the same as database user
names and passwords. MobiLink user names and passwords are used to
uniquely identify remote databases, and optionally to authenticate the
connection from the remote database to the MobiLink synchronization
server.

You can also use user names to control the behavior of the synchronization
server. You do so using the user name in synchronization scripts. For
example, you can send remote databases different rows based on their user
name.

The MobiLink user name is stored in the ml_user MobiLink system table in
the consolidated database.

Naming conventions In large-scale deployments, you might find it useful to adopt a naming
convention for your MobiLink user names. For example, you could adopt a
naming convention whereby MobiLink names were created as
user:application, whereuseridentifies a person andapplicationidentifies a
specific application, such asEmpA01:HRApp. Or your convention could be
user:application:device, wheredeviceidentifies a remote device.

UltraLite user
authentication

Although UltraLite and MobiLink user authentication schemes are separate,
you may wish to share the values of UltraLite user IDs with MobiLink user
names for simplicity. This will only work when the UltraLite application is
used by a single user.

☞ For more information about UltraLite user authentication, see“User
authentication in UltraLite”[UltraLite Database User’s Guide,page 40].

Creating MobiLink users

Warning
A MobiLink user name uniquely identifies a remote database. Therefore,
two different remote databases must have different MobiLink user names.

Create users in the
remote database

To add users to the remote database, you have the following options:

♦ For Adaptive Server Anywhere remotes, use Sybase Central or the
CREATE SYNCHRONIZATION USER statement.

☞ For more information, see“Adding MobiLink users to a remote
database” on page 71.

10

Chapter 2. Authenticating MobiLink Users

♦ For UltraLite remotes, you can use the user_name field of the
ul_synch_info structure. In Java, use the SetUserName() method of the
ULSynchInfo class before synchronizing.

☞ For more information, see“User Name synchronization parameter”
on page 338and“Password synchronization parameter” on page 324.

Add MobiLink user
names to the
consolidated database

Once user names are created on the remote database, you can use any of the
following methods to register the user names in the consolidated database:

♦ Use the dbmluser utility.

☞ For more information, see“MobiLink user authentication utility”
[MobiLink Administration Guide,page 492].

♦ Use Sybase Central.

♦ Implement a script for the authenticate_user or authenticate_user_hashed
events. When either of these scripts are invoked, the MobiLink
synchronization server automatically adds users that successfully
authenticate.

♦ Specify the -zu+ command line option with dbmlsrv9. In this case, any
existing MobiLink users that have not been added to the consolidated
database are added when they first synchronize.

☞ For more information, see“-zu option” [MobiLink Administration
Guide,page 222].

Sharing MobiLink user names

MobiLink user names must be unique within a synchronization system. If
you want two or more remote databases (UltraLite or Adaptive Server
Anywhere) to share the same MobiLink user name, you can create a
MobiLink user name that is a base name with a unique suffix.

A typical use of this technique is for a person who wants to have several
remote databases. Each remote database must have a unique MobiLink user
name, but they can share the same base name.

Example The following example creates MobiLink user names that are 102 followed
by a colon and a universally unique ID.

BEGIN
EXECUTE IMMEDIATE ’CREATE SYNCHRONIZATION USER "102’ + ’:’ +
NEWID() + ’"’;
END;

This creates a MobiLink user name such as
102:b23fdbed-bead-418a-9d53-917e774c2f4f.

11

You still need MobiLink to provide the user name to each of the MobiLink
scripts. To do this, you can use a MobiLink event called modify_user. It
takes the MobiLink user as input and allows you to modify it. The modified
value is what is passed to all the download events. For example,

CALL sp_ML_modify_user(?)

The result is that the following download_cursor is based on the value of
102, not 102:b23fdbed-bead-418a-9d53-917e774c2f4f.

Select emp_id, emp_name
From ULEmployee
Where last_modified >= ?

And emp_id = ?

Here is the procedure written using Adaptive Server Anywhere syntax. This
can easily be converted for other RDBMSs.

CREATE PROCEDURE sp_ML_modify_user(INOUT @ml_user_name
VARCHAR(255))

BEGIN
DECLARE @colon_at INT;
SET @colon_at = LOCATE(@ml_user_name, ’:’);
IF(@colon_at > 0) THEN

-- Message statements are displayed in the minimized
engine

-- window, this is useful for debugging

MESSAGE ’UUID: ’ +
RIGHT(@ml_user_name,

(LENGTH(@ml_user_name)-@colon_at));
SET @ml_user_name = LEFT(@ml_user_name, (@colon_at-1)

);
MESSAGE ’New MobiLink User: ’ + @ml_user_name;

ELSE
MESSAGE ’No change to MobiLink User: ’ + @ml_user_name;

END IF;
END;

12

Chapter 2. Authenticating MobiLink Users

Choosing a user authentication mechanism
User authentication is one part of a security system for protecting your data.

MobiLink provides you with a choice of user authentication mechanisms.
You do not have to use a single installation-wide mechanism; MobiLink lets
you use different authentication mechanisms for different script versions
within the installation for flexibility.

♦ No MobiLink user authentication If your data is such that you do not
need password protection, you can choose not to use any user
authentication in your installation. In this case, the MobiLink user name
must still be included in the ml_user table, but the hashed_password
column is NULL.

♦ Built-in MobiLink user authentication MobiLink uses the user names
and passwords stored in the ml_user MobiLink system table to perform
authentication.

The built-in mechanism is described in the following sections.

♦ Custom authentication You can use the MobiLink script
authenticate_user to replace the built-in MobiLink user authentication
system with one of your own. For example, depending on your
consolidated database-management system, you may be able to use the
database user authentication instead of the MobiLink system.

☞ For more information about custom user authentication mechanisms,
see“Custom user authentication” on page 21.

☞ For information about other security-related features of MobiLink and
its related products, see

♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,
page 165]

♦ “Encrypting UltraLite databases”[UltraLite Database User’s Guide,page 36]

♦ “Keeping Your Data Secure”[SQL Anywhere Studio Security Guide,page 3]

13

User authentication architecture
The MobiLink user authentication system relies on user names and
passwords. You can choose either to let the MobiLink synchronization
server validate the user name and password using a built-in mechanism, or
you can implement your own custom user authentication mechanism.

In the built-in authentication system, both the user name and the password
are stored in the ml_user MobiLink system table in the consolidated
database. The password is stored in hashed form so that applications other
than the MobiLink synchronization server cannot read the ml_user table and
reconstruct the original form of the password. You add user names and
passwords to the consolidated database using Sybase Central, using the
dbmluser utility, or by specifying -zu+ when you start the MobiLink
synchronization server.

☞ For more information, see“Creating MobiLink users” on page 10.

When a MobiLink client connects to a MobiLink synchronization server, it
provides the following values.

♦ user name The MobiLink user name. Mandatory. To synchronize, the
user name must be stored in the ml_user system table, or you must start
the MobiLink synchronization server with the -zu+ option to add new
users to the ml_user table.

♦ password The MobiLink password. Optional only if the user is
unknown or if the corresponding password in the ml_user MobiLink
system table is NULL.

♦ new password A new MobiLink password. Optional. MobiLink users
can change their password by setting this value.

Custom authentication Optionally, you can substitute your own user authentication mechanism.

☞ For more information, see“Custom user authentication” on page 21.

The authentication process

Following is an explanation of the order of events that occur during
authentication.

1. You initiate a synchronization request using a MobiLink user name, and
optionally a password and new password. The MobiLink synchronization
server starts a new transaction and triggers the begin_connection event.

2. MobiLink verifies that the MobiLink user name you provided is not
currently synchronizing.

14

Chapter 2. Authenticating MobiLink Users

3. If you have defined an authenticate_user script, then the following occurs:

a. The authenticate_user script is called and sets the auth_status field with
the MobiLink user name you provided and optionally the password
and new password.

b. If the authenticate_user script throws an exception, the synchronization
process stops.

c. If the authenticate_user script returns a SQL statement, the statement is
executed. The SQL statement must be a call to a stored procedure
taking 2 to 4 arguments. The auth_status value that was set in step 3.a
is passed as the first parameter and may be updated by the stored
procedure.

4. If an error occurred, authentication stops with a failure.

5. Otherwise, if an authenticate_user_hashed script exists, then the
following occurs:

a. If a password was provided, a hashed value is calculated for it. If a new
password was provided, a hashed value is calculated for it.

b. The authenticate_user_hashed script is called with the current value of
auth_status and the hashed passwords. The behavior is identical to
steps 3.b and 3.c, except that the authenticate_user_hashed script can
overwrite the value of auth_status with a larger (more severe) value if it
was set by step 3.a. If the authenticate_user script was not defined,
then the auth_status value that is set by authenticate_user_hashed is
used no matter what.

6. The MobiLink synchronization server searches the ml_user table for the
MobiLink user name you provided.

a. If either of the custom scripts authenticate_user or
authenticate_user_hashed was called but the MobiLink user name you
provided is not in the ml_user table and the auth_status is valid (1000
or 2000), the MobiLink user name is added to the MobiLink system
table ml_user. If auth_status is not valid, ml_user is not updated and an
error occurs.

b. If the custom scripts were not called and the MobiLink user name you
provided is not in the ml_user table, the MobiLink user name you
provided is added to ml_user if you started the MobiLink
synchronization server with the -zu option. Otherwise, an error occurs
and auth_status is set accordingly.

c. If the custom scripts were called and the MobiLink user name you
provided is in the ml_user table, nothing happens.

15

d. If the custom scripts were not called and the MobiLink user name you
provided is in the ml_user table, the password is checked against the
value in the ml_user table and auth_status is set accordingly.

7. The MobiLink synchronization server attempts to authenticate the
MobiLink user name you provided using the password you provided.

8. If neither of the scripts authenticate_user or authenticate_user_hashed
was called and you provided a new password, the password is changed to
the one you provided.

9. If you have defined an authenticate_parameters script and the auth_status
is valid (1000 or 2000), then the following occurs:

a. The parameters are passed to the authenticate_parameters script.

b. If the authenticate_parameters script returns an auth_status value
greater than the current auth_status, the new auth_status overwrites the
old value.

10. If auth_status is not valid, the synchronization is aborted.

11. If you have defined the modify_user script, it is called to replace the
MobiLink user name you provided with a new MobiLink user name.

12. The MobiLink synchronization server commits or rolls back the
synchronization as appropriate, and continues with the synchronization.

16

Chapter 2. Authenticating MobiLink Users

Providing initial passwords for users
The password for each user is stored along with the user name in the
ml_user table. You can provide initial passwords from Sybase Central, or
using the dbmluser command line utility.

Sybase Central is a convenient way of adding individual users and
passwords. The dbmluser utility is useful for batch additions.

If you create a user with no password, then MobiLink performs no user
authentication for that user: they can connect and synchronize without
supplying a password.

❖ To provide an initial MobiLink password for a user (Sybase Cen-
tral)

1. Connect to the consolidated database from Sybase Central using the
MobiLink plug-in.

2. Open the Users folder.

3. Double-click Add User. The Add User wizard appears.

4. Supply a user name and an optional password.

5. Click Finish to complete the task.

❖ To provide initial MobiLink passwords (command line)

1. Create a file with a single user name and password on each line, separated
by white space.

2. Open a command prompt, and execute the dbmluser command line
utility. For example:

dbmluser -c "dsn=my_dsn" -f password-file

In this command line, the -c option specifies an ODBC connection to the
consolidated database. The -f option specifies the file containing the user
names and passwords.

☞ For information about dbmluser, see“MobiLink user authentication
utility” [MobiLink Administration Guide,page 492].

17

Synchronizations from new users
Ordinarily, each MobiLink client must provide a valid MobiLink user name
and password to connect to a MobiLink synchronization server.

Setting the -zu+ option when you start the MobiLink synchronization server
allows the MobiLink synchronization server to automatically add new user
names to the ml_user table according to the following rules.

In effect, this option permits new users to create their own MobiLink
accounts, easing administration of new users. This arrangement can be
convenient when the server and clients all operate within a firewall.

If a MobiLink client synchronizes with a user name that is not in the current
ml_user table, MobiLink, by default, takes the following actions:

♦ New user, no password If the user supplied no password, then by
default the user name is added to the ml_user table with a NULL
password. This behavior provides compatibility with earlier releases of
MobiLink that did not allow user authentication.

☞ For more information, see“-zu option” [MobiLink Administration
Guide,page 222].

♦ New user, password If the user supplies a password, then the user
name and password are both added to the ml_user table and the new user
name becomes a recognized name in your MobiLink system.

♦ New user, new password A new user may provide information in the
new password field, instead of or as well as in the password field. In
either case, the new password setting overrides the password setting, and
the new user is added to the MobiLink system using the new password.

Preventing
synchronization by
unknown users

You can change the default behavior by starting the MobiLink
synchronization server using the -zu option. In this case, the MobiLink
synchronization server rejects any attempt to synchronize from a user name
that is not present in the ml_user table.

This setting provides two benefits. First, it reduces the risk of unauthorized
access to the MobiLink synchronization server. Second, it prevents
authorized users from accidentally connecting using an incorrect or
misspelled user name. Such accidents should be avoided because they can
cause the MobiLink system to behave in unpredictable ways.

18

Chapter 2. Authenticating MobiLink Users

Prompting end users to enter passwords
Each end user must supply a MobiLink user name and password each time
they synchronize from a MobiLink client, unless you choose to disable user
authentication on your MobiLink synchronization server.

❖ To prompt your end users to enter their MobiLink passwords

1. The mechanism for supplying the user name and password is different for
UltraLite and Adaptive Server Anywhere clients.

♦ UltraLite When synchronizing, the UltraLite client must supply a
valid value in the password field of the synchronization structure
(C/C++) or object (Java). For built-in MobiLink synchronization, a
valid password is one that matches the value in the ml_user MobiLink
system table.

Your application should prompt the end user to enter their MobiLink
user name and password before synchronizing.

☞ For more information, see“UltraLite Synchronization Parameters”
on page 315.

♦ Adaptive Server Anywhere You can supply a valid password on the
dbmlsync command line. However, if you do not do so, you are
prompted for one in the dbmlsync connection dialog. The latter
method is more secure because command lines are visible to other
processes running on the same computer.

If authentication fails, you are prompted to re-enter the user name and
password.

☞ For more information, see“-c option” on page 102.

19

Changing passwords
MobiLink provides a mechanism for end users to change their password.
The interface differs between UltraLite and Adaptive Server Anywhere
clients.

❖ To prompt your end users to enter MobiLink passwords

1. The mechanism for supplying the user name and password is different for
UltraLite and Adaptive Server Anywhere clients.

♦ UltraLite When synchronizing, the application must supply the
existing password in the password field of the synchronization
structure and the new password in the new_password field.

☞ For more information, see“Password synchronization parameter”
on page 324and“New Password synchronization parameter” on
page 322.

♦ Adaptive Server Anywhere Supply a valid existing password
together with the new password on the dbmlsync command line, or in
the dbmlsync connection dialog if you do not supply command line
parameters.

☞ For more information, see“-mp option” on page 141and“-mn
option” on page 141.

The new password is not verified until the next synchronization attempt. For
the dbmlsync utility, or if you prompt at synchronization time in an UltraLite
application, this attempt is almost immediate.

☞ An initial password can be set in the consolidated server or on the first
synchronization attempt. For more information, see“Providing initial
passwords for users” on page 17and“Synchronizations from new users” on
page 18.

Once a password is assigned, you cannot reset the password to NULL from
the client side.

20

Chapter 2. Authenticating MobiLink Users

Custom user authentication
You can choose to use a user authentication mechanism other than the
built-in MobiLink mechanism. Reasons for using a custom user
authentication mechanism include integration with existing DBMS user
authentication schemes or external authentication mechanisms; or supplying
custom features, such as minimum password length or password expiry, that
do not exist in the built-in MobiLink mechanism.

There are three custom authentication tools:

♦ dbmlsrv9 -zu option

♦ authenticate_user script

♦ authenticate_parameters script

The dbmlsrv9 -zu option allows you to control the automatic addition of
users. For example, specify -zu+ to have all unrecognized MobiLink user
names added to the ml_user table when they first synchronize. The -zu
option is only needed for built-in MobiLink authentication.

The authenticate_user script and authenticate_parameters script both
override the default MobiLink user authentication mechanism. Any user that
successfully authenticates is automatically added to the ml_user table

There are several predefined scripts for the authenticate_user event that are
installed with MobiLink. These make it easier for you to authenticate using
LDAP, POP3, and IMAP servers. For more information, see“Authenticating
to external servers” on page 22.

Use authenticate_user to create custom authentication of user IDs and
passwords. If this script exists, it is executed instead of the built-in password
comparison. The script must return error codes to indicate the success or
failure of the authentication.

Use authenticate_parameters to create custom authentication that depends on
values other than user IDs and passwords.

For more information, see:

♦ “-zu option” [MobiLink Administration Guide,page 222]

♦ “authenticate_user connection event”[MobiLink Administration Guide,
page 336]

♦ “authenticate_parameters connection event”[MobiLink Administration
Guide,page 334]

21

Java and .NET user authentication

User authentication is a natural use of Java and .NET synchronization logic,
as Java and .NET classes allow you to reach out to other sources of user
names and passwords used in your computing environment, such as
application servers.

A simple sample is included in the directory
Samples\MobiLink\JavaAuthentication. The sample code in
Samples\MobiLink\JavaAuthentication\CustEmpScripts.javaimplements a
simple user authentication system. On the first synchronization, a MobiLink
user name is added to the login_added table. On subsequent
synchronizations, a row is added to the login_audit table. In this sample,
there is no test before adding a user ID to the login_added table.

For a .NET sample that explains user authentication, see“.NET
synchronization example”[MobiLink Administration Guide,page 300].

SQL user authentication

A typical authenticate_user SQL script is a call to a stored procedure that
uses the parameters auth_status, ml_username, user_password, and
user_new_password. The order of the parameters in the call must match this.
For example, in an Adaptive Server Anywhere consolidated database, the
format is:

call my_authentication(?, ?, ?, ?)

where the first argument is the authentication code, and so on. The
authentication code is an integer type, and the other parameters are
VARCHAR(128).

A Transact-SQL format is:

execute ? = my_authentication(?, ?, ?)

where the authentication code is the parameter on the left hand side.

☞ For more information, see“authenticate_user connection event”
[MobiLink Administration Guide,page 336].

Authenticating to external servers

Predefined Java synchronization scripts are included with MobiLink that
make it simpler for you to authenticate to external servers using the
authenticate_user event. Currently, predefined scripts are available for the
following authentication servers:

22

Chapter 2. Authenticating MobiLink Users

♦ POP3 or IMAP servers using the JavaMail 1.2 API

♦ LDAP servers using the Java Naming and Directory Interface (JNDI)

How you use these scripts is determined by whether your MobiLink user
names map directly to the user IDs in your external authentication system.

If your MobiLink user
names map directly to
your user IDs

In the simple case where the MobiLink user name maps directly to a valid
user ID in your authentication system, the predefined scripts can be used
directly in response to the authenticate_user connection event. The
authentication code will initialize itself based on properties stored in the
ml_property table.

❖ To use predefined scripts directly in authenticate_user

1. Add the predefined Java synchronization script to the ml_scripts
MobiLink system table. You can do this using a stored procedure or in
Sybase Central.

♦ To use the ml_add_java_connection_script stored procedure, type the
following at a command prompt:

call ml_add_java_connection_script(
’ MyVersion ’
’authenticate_user’
’ianywhere.ml.authentication. ServerType .authenticate’

)

whereMyVersion is the name of a script version, andServerTypeis
LDAP , POP3, or IMAP .

♦ To use the Add Connection Script wizard in Sybase Central, choose
authenticate_user as the script type, and enter the following in the
Code Editor:

ianywhere.ml.authentication. ServerType .authenticate

whereServerTypeis LDAP , POP3, or IMAP .

2. Add properties for this authentication server.

Use the ml_add_property stored procedure for each property you need to
set:

call ml_add_property(
’ScriptVersion’
’ MyVersion ’
’ property_name ’
’ property_value ’)

whereMyVersion is the name of a script version,property_nameis
determined by your authentication server, andproperty_valueis a value

23

appropriate to your application. Repeat this call for every property you
want to set.

☞ For more information, see“External authenticator properties” on
page 25.

If your MobiLink user
names do not map
directly to your user IDs

If your MobiLink user names are not equivalent to your user IDs, the code
must be called indirectly and you must extract or map the user ID from the
ml_user value. You do this by writing a Java class.

☞ For more information about writing Java classes, see“Writing
Synchronization Scripts in Java”[MobiLink Administration Guide,page 255].

Following is a simple example. In this example, the code in the
extractUserID method has been left out because it depends on how the
ml_user value maps to a userid. All the work is done in the “authenticate”
method of the authentication class.

package com.mycompany.mycode;

import ianywhere.ml.authentication. * ;
import ianywhere.ml.script. * ;

public class MLEvents
{

private DBConnectionContext _context;
private POP3 _pop3;

public MLEvents(DBConnectionContext context)
{

_context = context;
_pop3 = new POP3(context);

}

public void authenticateUser(
InOutInteger status,
String userID,
String password,
String newPassword)

{
String realUserID = extractUserID(userID);
_pop3.authenticate(status, realUserID, password,

newPassword);
}

private String extractUserID(String userID)
{

// code here to map ml_user to a "real" POP3 user
}

}

In this example, The POP3 object needs to be initialized with the
DBConnectContext object so that it can find its initialization properties. If

24

Chapter 2. Authenticating MobiLink Users

you do not initialize it this way, you must set the properties in code. For
example,

POP3 pop3 = new POP3();
pop3.setServerName("smtp.sybase.com");
pop3.setServerPort(25);

This applies to any of the authentication classes, although the properties vary
by class.

External authenticator properties

MobiLink provides reasonable defaults wherever possible, especially in the
LDAP case. The properties that can be set vary, but following are the basic
ones.

POP3 authenticator

mail.pop3.host the hostname of the server

mail.pop3.port the port number (can be omitted if default 110 is used)

☞ For more information, seehttp://java.sun.-
com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html

IMAP authenticator

mail.imap.host the hostname of the server

mail.imap.port the port number (can be omitted if default 143 is used)

☞ For more information, see
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-
summary.html.

LDAP authenticator

java.naming.provider.url the URL of the LDAP server, such as
ldap://ops-yourLocation/dn=sybase,dn=com

☞ For more information, see the JNDI documentation.

25

http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html

CHAPTER 3

Utilities

About this chapter This chapter describes MobiLink client utilities.

☞ For information about MobiLink synchronization server utilities, see
“Utilities” [MobiLink Administration Guide,page 489].

☞ For information about other Adaptive Server Anywhere utilities, see
“Database Administration Utilities”[ASA Database Administration Guide,
page 493].

Contents Topic: page

ActiveSync provider installation utility 28

MobiLink client database extraction utility (deprecated) 31

27

ActiveSync provider installation utility
Installs a MobiLink provider for ActiveSync, or registers and installs
UltraLite applications on Windows CE devices.

Syntax dbasinst [options] [[src] dst name class [args]]

Options Description

-d Disable the application on creation.

-k path Specify the location of the desktop providerdbasdesk.dll.

-l filename Write the activity log to the specified file. If no path or a
relative path is given for the filename, the log file will be in
or relative to the ActiveSync install directory.

-n Register the application but do not copy it to the device.

-u Uninstall the MobiLink ActiveSync provider.

-v path Specify the location of the device providerdbasdev.dll.

Args Description

src The source filename and path for an application.

dst The destination filename and path for an application.

name The name of the application.

class The registered Windows class name of the application.

args Command line arguments to use when ActiveSync starts
the application.

Description This utility installs a MobiLink provider for ActiveSync. The provider
includes both a component that runs on the desktop (dbasdesk.dll) and a
component that is deployed to the Windows CE device (dbasdev.dll). The
dbasinst utility makes a registry entry pointing to the current location of the
desktop provider; and copies the device provider to the device.

If additional arguments are supplied, thedbasinstutility can also be used to
register and install UltraLite applications onto a Windows CE device.
Alternatively, you can register and install UltraLite applications using the
ActiveSync software.

Subject to licensing requirements, you may supply this application, together
with the desktop and device components to end users, so that they can
prepare their copies of your application for use with ActiveSync.

28

Chapter 3. Utilities

You must be connected to a remote device to install the ActiveSync provider.

☞ For complete instructions on using the ActiveSync provider installation
utility, see:

♦ Adaptive Server Anywhere:“Installing the MobiLink provider for
ActiveSync” on page 84

♦ UltraLite: “Installing the MobiLink provider for ActiveSync” on
page 310

Options -d By default, an application registered by dbasinst is enabled, meaning
that it is automatically synchronized when ActiveSync begins a
synchronization. With the -d option, the application is still registered, but it
is unchecked in the ActiveSync MobiLink settings dialog.

-l The ActiveSync provider logs its activities to the specified file. If no path
or a relative path is given for the filename, the log file is in or relative to the
ActiveSync install directory.

-k The path to the desktop providerdbasdesk.dll. By default the file is
looked for in thewin32 subdirectory of your SQL Anywhere directory. End
users (who generally do not have the full SQL Anywhere install) may need
to specify -k when installing the MobiLink ActiveSync provider.

-n In addition to installing the MobiLink ActiveSync provider, register an
application but do not copy it to the device. This is appropriate if the
application includes more than one file (for example, if it is compiled to use
the UltraLite runtime library DLL rather than a static library) or if you have
an alternative method of copying the application to the device.

-u Unregister all applications that have been registered for use with the
MobiLink ActiveSync provider and uninstall the MobiLink ActiveSync
provider. No files are deleted from the desktop machine or the device by this
operation. If the device is not connected to the desktop, an error is reported.

-v The path to the device providerdbasdev.dll. By default the file is looked
for in a platform-specific directory under theCE subdirectory of your
SQL Anywhere directory. End users (who generally do not have the full
SQL Anywhere install) may need to specify -v when installing the
MobiLink ActiveSync provider.

Arguments src The source filename and path for copying an application to the device.
Supply this parameter only if you are registering an application and copying
it to the device: do not supply the parameter if you use the -n option.

dst The destination filename and path on the device for an application.

name The application name. This is the name by which ActiveSync refers
to the application.

29

class The registered Windows class name for the application.

args Any command line arguments to be used when ActiveSync starts the
application.

Examples The following command installs the MobiLink provider for ActiveSync
using default arguments. It does not register an application. The device must
be connected to your desktop for the installation to succeed.

dbasinst

The following command uninstalls the MobiLink provider for ActiveSync.
The device must be connected to your desktop for the uninstall to succeed:

dbasinst -u

The following command installs the MobiLink provider for ActiveSync, if it
is not already installed, and registers the applicationmyapp.exe. It also
copies thec:\My Files\myapp.exefile to \Program Files\myapp.exeon the
device. The -p -x arguments are command line options for myapp.exe when
started by ActiveSync. The command must be entered on a single line:

dbasinst "C: \My Files \myapp.exe" " \Program Files \myapp.exe"
"My Application" MYAPP -p -x

See also ♦ “Using ActiveSync synchronization” on page 82
♦ “UltraLite Synchronization Parameters” on page 315

30

Chapter 3. Utilities

MobiLink client database extraction utility
(deprecated)

Creates an Adaptive Server Anywhere client database using another
Adaptive Server Anywhere database as a template. This utility is deprecated.
For an alternative way to create client databases, see“Creating a remote
database” on page 60.

Syntax mlxtract [additional-options] directory site-name

Option Description

-ac ”keyword=value;
. . .”

Connect to the database specified in the connect
string to do the reload.

-al filename Log file name for this new database.

-an filename Creates a database file with the same settings as
the database being unloaded and automatically
reloads it.

-c ”keyword=value;
. . .”

Supply database connection parameters.

-id Extract schema definition and data.

-it Extract triggers.

-j count Iteration count for view-creation statements.

-l level Perform all extraction operations at specified isola-
tion level.

-o file Output messages to file.

-p character Escape character.

-q Operate quietly: do not print messages or show
windows.

-r file Specify name of generated reload Interactive SQL
command file (default “reload.sql”).

-s7 Use Adaptive Server Anywhere version 7 syntax for
creating synchronization definitions.

-u Unordered data.

-v Verbose messages.

-x Use external table loads.

31

Option Description

-xh Exclude procedure hooks.

-xf Exclude foreign keys.

-xp Exclude stored procedures.

-xv Exclude views.

-y Overwrite command file without confirmation.

directory The directory to which the files are written. This
option is not needed if you use-an or -ac.

site-name Specify which client database to generate.

Description mlxtract is the MobiLink extraction utility for Adaptive Server Anywhere
client databases. It is run against an Adaptive Server Anywhere reference
database and creates a new client database or a command file for an Adaptive
Server Anywhere client database, depending on the chosen options.

The command line extraction utility creates a command file and a set of
associated data files. The command file can be run against a newly
initialized Adaptive Server Anywhere database to create the database objects
and load the data for the client database.

By default, the command file is namedreload.sql.

Options Reload the data to an existing database (-ac) You can combine the
operation of extracting a database and reloading the results into an existing
database using this option.

For example, the following command (which should be entered all on one
line) loads a copy of the data for the field_user subscriber into an existing
database file namednewdemo.db:

mlxtract -c "uid=DBA;pwd=SQL;dbf=asademo.db" -ac
"uid=DBA;pwd=SQL;dbf=newdemo.db" field_user

If you use this option, no copy of the data is created on disk, so you do not
specify an unload directory on the command line. This provides greater
security for your data, but at some cost for performance.

Reload the data to a new database (-an) You can combine the operations
of extracting a database, creating a new database, and loading the data using
this option.

For example, the following command (which should be entered all on one
line) creates a new database file namedasacopy.dband copies the schema

32

Chapter 3. Utilities

and data for the field_user subscriber ofasademo.dbinto it:

mlxtract -c "uid=DBA;pwd=SQL;dbf=asademo.db" -an asacopy.db
field_user

If you use this option, no copy of the data is created on disk, so you do not
specify an unload directory on the command line. This provides greater
security for your data, but at some cost for performance.

Connection parameters (-c) A set of connection parameters, in a string.

♦ mlxtract connection parameters The user ID should have DBA
authority to ensure that the user has permissions on all the tables in the
database.

For example, the following statement (which should be typed on one line)
extracts a database for MobiLink user name joe_remote from the
ASADemo database running on the sample_server server, connecting as
user ID DBA with password SQL. The data is unloaded into thec:\extract
directory.

mlxtract -c "eng=sample_server;dbn=sademo;
uid=DBA;pwd=SQL" c: \extract joe_remote

Extract both schema definition and data (-id) By default, only the
schema is extracted. Such a database can be initialized with data upon the
first connection to a MobiLink synchronization server. This option provides
the option of extracting the initial set of data from the reference database.

Extract triggers (-it) By default, triggers are not extracted. This option
provides causes triggers present in the reference database to be extracted.

Iteration count for views (-j) If there are nested views in the consolidated
database, this option specifies the maximum number of iterations to use
when extracting the views.

Perform extraction at a specified isolation level (-l) The default setting is
an isolation level of zero. If you are extracting a database from an active
server, you should run it at isolation level 3 to ensure that data in the
extracted database is consistent with data on the server. Increasing the
isolation level may result in large numbers of locks being used by the
extraction utility, and may restrict database use by other users.

Output messages to file (-o) Outputs the messages from the extraction
process to a file for later review.

Escape character (-p) The default escape character (\) can be replaced by
another character using this option.

Operate quietly (-q) Display no messages except errors.

33

Reload filename (-r) The default name for the reload command file is
reload.sqlin the current directory You can specify a different file name with
this option.

Use ASA v7 syntax (-s7) This option is useful when you are using an
Adaptive Server Anywhere version 8 or higher consolidated database along
with Adaptive Server Anywhere version 7 remote databases. For example,
create a version 9 consolidated database, extract the remote databases using
the -s7 option, and deploy the reload.sql files to the remote.

Output the data unordered (-u) By default the data in each table is
ordered by primary key. Unloads are quicker with the -u option, but loading
the data into the client database is slower.

Verbose mode (-v) The name of the table being unloaded and the number
of rows unloaded are displayed. The SELECT statement used is also
displayed.

Use external loads (-x) In the reload script, the default is to use the LOAD
TABLE statement to load the data into the database. If you choose to use
external loads, the Interactive SQL INPUT statement is used instead. The
LOAD TABLE statement is faster than INPUT.

INPUT takes the path of the data files relative to the client, while LOAD
TABLE takes the path relative to the server.

Exclude foreign key definitions (-xf) You can use this if the client
database contains a subset of the consolidated database schema, and some
foreign key references are not present in the client database.

Exclude stored procedure (-xp) Do not extract stored procedures from
the database.

Exclude views (-xv) Do not extract views from the database.

Operate without confirming actions (-y) Without this option, you are
prompted to confirm the replacement of an existing reloadcommand file.

34

CHAPTER 4

MobiLink Client Network Protocol Options

About this chapter This chapter describes the network protocol options that you use to connect
to the MobiLink synchronization server from a remote database.

Contents Topic: page

Protocol options 36

35

Protocol options
This chapter describes the network protocol options you can use when
connecting a MobiLink client to the MobiLink synchronization server.

For information about how to use these options with dbmlsync, see
“CommunicationAddress (adr) extended option” on page 106.

For information about how to use these options with UltraLite, see:

♦ “TCP/IP protocol options” on page 345
♦ “HTTP protocol options” on page 346
♦ “HTTPS protocol options” on page 347
♦ “UlSecureRSASocketStream synchronization parameters” on page 349
♦ “UlSecureSocketStream synchronization parameters” on page 350

For information about how to set connection options for the MobiLink
synchronization server, see“-x option” [MobiLink Administration Guide,
page 214].

buffer_size

Function Specify the maximum HTTP body size for a fixed content length message,
in bytes.

Syntax buffer_size= number

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

Default ♦ UltraLite - 1024
♦ dbmlsync on PocketPC - 1024
♦ dbmlsync on other devices - 64 000

Remarks In general, the larger the HTTP body size, the fewer the number of HTTP
request-response cycles, but the more memory required for buffering the
body.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

36

Chapter 4. MobiLink Client Network Protocol Options

certificate_company

Function If specified, the application only accepts server certificates when the
Organization field on the certificate matches this value.

Separately licensable option required
Transport-layer security requires that you obtain a separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Syntax certificate_company= organization

Protocols ♦ dbmlsync - TCP/IP (via the security option), HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP (via security parms), HTTPS,

UlSecureRSASocketStream, UlSecureSocketStream

Default None

Remarks MobiLink clients trust all certificates signed by the certificate authority, so
they may also trust certificates that the same certificate authority has issued
to other companies. Without a means to discriminate, your clients might
mistake a competitor’s MobiLink synchronization server for your own and
accidentally send it sensitive information. This option specifies a further
level of verification, that the Organization field in the identity portion of the
certificate also matches a value you specify.

For TCP/IP, set this option as part of the security option. For more
information, see“security” on page 50.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,
page 165]

♦ “Verifying certificate fields”[MobiLink Administration Guide,page 180]
♦ “-x option” [MobiLink Administration Guide,page 214]
♦ “security” on page 50
♦ “trusted_certificates” on page 53
♦ “certificate_name” on page 38

37

♦ “certificate_unit” on page 40

Example The following examples tell an Adaptive Server Anywhere client to check
all three identity fields and to accept only the named values. This example
verifies all three fields. You can instead choose to verify only one or two
fields.

For example, if you have Adaptive Server Anywhere clients you can set up
certificate verification in the subscription as follows:

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user01’
TO test_pub
ADDRESS ’port=3333;security=ecc_tls(

trusted_certificates=certicom.crt;
certificate_company=Sybase, Inc.;
certificate_unit=iAnywhere;certificate_name=sample)’

With UltraLite clients, the precise syntax depends upon the interface used to
build the application. The following fragment of C code accomplishes the
same task when developing the UltraLite application using embedded SQL
in C or C++:

ul_synch_info info;
info.stream = ULSocketStream();
info.stream_parms = TEXT("port=9999");
info.security_stream = ULSecureRSATLSStream();
info.security_parms =

UL_TEXT ("certificate_company=Sybase, Inc.")
UL_TEXT (";")
UL_TEXT ("certificate_unit=iAnywhere")
UL_TEXT (";")
UL_TEXT ("certificate_name=sample");

. . .
ULSynchronize(&info);

certificate_name

Function If specified, the application only accepts server certificates when the
Common Name field on the certificate matches this value.

Separately licensable option required
Transport-layer security requires that you obtain a separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Syntax certificate_name= common-name

38

Chapter 4. MobiLink Client Network Protocol Options

Protocols ♦ dbmlsync - TCP/IP (via the security option), HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP (via the security parameters), HTTPS,

UlSecureRSASocketStream, UlSecureSocketStream

Default None

Remarks For TCP/IP, set this option as part of the security parameter. For more
information, see“security” on page 50.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,
page 165]

♦ “Verifying certificate fields”[MobiLink Administration Guide,page 180]
♦ “-x option” [MobiLink Administration Guide,page 214]
♦ “security” on page 50
♦ “trusted_certificates” on page 53
♦ “certificate_company” on page 37
♦ “certificate_unit” on page 40

Example The following example sets up RSA encryption for an HTTPS Protocol.
This requires setup on the server and client. Each command must be written
on one line.

dbmlsrv9
-c "dsn=asa90sample;uid=DBA;pwd=SQL"
-x https(

port=9999;
certificate=c: \asa90 \win32 \rsaserver.crt;
certificate_password=test)

On an Adaptive Server Anywhere client, the implementation is:

dbmlsync
-c "dsn=mydb;uid=DBA;pwd=SQL"
-e "ctp=https;

adr=’port=9999;
trusted_certificates=c: \asa90 \win32 \rsaroot.crt;
certificate_name=RSA Server’"

On an UltraLite client, the equivalent implementation is:

39

info.stream = ULHTTPSStream();
info.stream_parms = TEXT(

"port=9999;
trusted_certificates= \rsaroot.crt;
certificate_name=RSA Server");

info.security_stream = NULL;
info.security_parms = NULL;

certificate_unit

Function If specified, the application only accepts server certificates when the
Organization Unit field on the certificate matches this value.

Separately licensable option required
Transport-layer security requires that you obtain a separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Syntax certificate_unit= organization-unit

Protocols ♦ dbmlsync - TCP/IP (via the security option), HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP (via security parms), HTTPS,

UlSecureRSASocketStream, UlSecureSocketStream

Default None

Remarks For TCP/IP, set this option as part of the security option. For more
information, see“security” on page 50.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,
page 165]

♦ “Verifying certificate fields”[MobiLink Administration Guide,page 180]
♦ “-x option” [MobiLink Administration Guide,page 214]
♦ “security” on page 50
♦ “trusted_certificates” on page 53
♦ “certificate_company” on page 37
♦ “certificate_name” on page 38

40

Chapter 4. MobiLink Client Network Protocol Options

Example For examples of https security, see“certificate_name” on page 38and
“trusted_certificates” on page 53.

client_port

Function Specify a range of client ports for communication.

Syntax client_port= nnnnn[-mmmmm]

Protocols ♦ dbmlsync - TCP/IP, HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP, HTTP, HTTPS, UlSecureRSASocketStream,

UlSecureSocketStream

Default None

Remarks Specify a low value and a high value to create a range of possible port
numbers. To restrict the client to a specific port number, specify the same
number fornnnnnandmmmmm. If you specify only one value, the end of
the range is 100 greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall communicating with a
MobiLink synchronization server outside the firewall.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

custom_header

Function Specify a custom HTTP header.

Syntax custom_header= header

HTTP headers are of the formheader_name: header_value.

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP and HTTPS, but not supported for Java UltraLite

Default None

Remarks When you specify custom HTTP headers, the client includes the headers
with every HTTP request it sends. To specify more than one custom header,
use custom_header multiple times.

Custom headers are useful when your synchronization client interacts with a

41

third-party tool that requires custom headers.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

Example Some HTTP proxies require all requests to contain special headers. The
following example sets a custom HTTP header called MyProxyHdr to the
value ProxyUser in an Embedded SQL or C++ UltraLite application.

info.stream = ULHTTPStream();
info.stream_parms = TEXT(

"host=www.myhost.com;proxy_host=www.myproxy.com;
custom_header=MyProxyHdr:ProxyUser");

host

Function Specify the host name or IP number for the machine on which the MobiLink
synchronization server is running, or, if you are synchronizing through a
web server, the computer where the web server is running.

Syntax host= hostname-or-ip

Protocols ♦ dbmlsync - TCP/IP, HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP, HTTP, HTTPS, UlSecureRSASocketStream,

UlSecureSocketStream

Default ♦ Windows CE - the default value is taken from the desktop machine where
the CE device cradle is connected, which is stored as theipaddrentry in
the registry folderComm\Tcpip\Hosts\ppp_peer.

♦ All other devices - the default islocalhost.

Remarks On Windows CE, do not use localhost, which refers to the remote device
itself. The default value allows a Windows CE device to connect to a
MobiLink synchronization server on the desktop machine where the
Windows CE device’s cradle is connected.

For the Palm Computing Platform, the default value of localhost refers to the
device. You should supply an explicit host name or IP address to connect to
a desktop machine.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

42

Chapter 4. MobiLink Client Network Protocol Options

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

http_password

Function Authenticate to third-party HTTP servers and gateways using RFC 2617
Basic or Digest authentication.

Syntax http_password= password

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

Default None

Remarks This feature supports Basic and Digest authentication as described in RFC
2617.

With Basic authentication, passwords are included in HTTP headers in clear
text; however, you can use HTTPS to encrypt the headers and protect this
password. With Digest authentication, headers are not sent in clear text but
are hashed.

You must use http_userid with this option.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “http_userid” on page 45
♦ “http_proxy_password” on page 43
♦ “http_proxy_userid” on page 44

Example The following example of an Embedded SQL or C++ UltraLite application
provides a user ID and password for basic authentication to a web server.

synch_info.stream = ULHTTPSStream();
synch_info.stream_parms = TEXT("http_userid=user;http_

password=pwd");

http_proxy_password

Function Authenticate to third-party HTTP proxies using RFC 2617 Basic or Digest

43

authentication.

Syntax http_proxy_password= password

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

Default None

Remarks This feature supports Basic and Digest authentication as described in RFC
2617.

With Basic authentication, passwords are included in HTTP headers in clear
text; you can use HTTPS, but the initial connection to the proxy is through
HTTP, so this password is clear text. With Digest authentication, headers are
not sent in clear text but are hashed.

You must use http_proxy_userid with this option.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “http_password” on page 43
♦ “http_userid” on page 45
♦ “http_proxy_userid” on page 44

Example The following example of an Embedded SQL or C++ UltraLite application
provides a user ID and password for basic authentication to a web proxy.

synch_info.stream = ULHTTPSStream();
synch_info.stream_parms = TEXT("http_proxy_userid=user;http_

proxy_password=pwd");

http_proxy_userid

Function Authenticate to third-party HTTP proxies using RFC 2617 Basic or Digest
authentication.

Syntax http_proxy_userid= userid

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

Default None

44

Chapter 4. MobiLink Client Network Protocol Options

Remarks This feature supports Basic and Digest authentication as described in RFC
2617.

With Basic authentication, passwords are included in HTTP headers in clear
text; you can use HTTPS, but the initial connection to the proxy is through
HTTP, so the password is clear text. With Digest authentication, headers are
not sent in clear text but are hashed.

You must use http_proxy_password with this option.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “http_password” on page 43
♦ “http_userid” on page 45
♦ “http_proxy_password” on page 43

Example The following example of an Embedded SQL or C++ UltraLite application
provides a user ID and password for basic authentication to a web proxy.

synch_info.stream = ULHTTPSStream();
synch_info.stream_parms = TEXT("http_proxy_userid=user;http_

proxy_password=pwd");

http_userid

Function Authenticate to third-party HTTP servers and gateways using RFC 2617
Basic or Digest authentication.

Syntax http_userid= userid

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

Default None

Remarks This feature supports Basic and Digest authentication as described in RFC
2617.

With Basic authentication, passwords are included in HTTP headers in clear
text; however, you can use HTTPS to encrypt the headers and protect the
password. With Digest authentication, headers are not sent in clear text but
are hashed.

45

You must use http_password with this option.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “http_password” on page 43
♦ “http_proxy_password” on page 43
♦ “http_proxy_userid” on page 44

Example The following example of an Embedded SQL or C++ UltraLite application
provides a user ID and password for basic authentication to a web server.

synch_info.stream = ULHTTPSStream();
synch_info.stream_parms = TEXT("http_userid=user;http_

password=pwd");

liveness_timeout

Function Specify the amount of time, in seconds, after the last communication with
the client before MobiLink assumes that the connection to the client has
been lost and aborts the synchronization.

Syntax liveness_timeout= n

Protocols ♦ dbmlsync - TCP/IP
♦ UltraLite - TCP/IP, UlSecureRSASocketStream, UlSecureSocketStream

Default 120 seconds

Remarks A value of 0 means that there is no timeout.

This option can be useful if download acknowledgement on the client is set
to off (the default). This option is not normally used when download
acknowledgement is on because if the download takes longer than n seconds
to apply, the MobiLink synchronization server aborts the synchronization.
Using a larger liveness_timeout value in this case usually defeats the
purpose of the timeout.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

46

Chapter 4. MobiLink Client Network Protocol Options

network_connect_timeout

Function Specify the number of seconds before the synchronization client should give
up trying to connect.

Syntax network_connect_timeout=seconds

Protocols ♦ dbmlsync - TCP/IP, HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP, HTTP, HTTPS

Default 120 seconds

Remarks You must specify network_name to use this option.

This feature applies to Pocket PC 2002 only. On Windows, you control this
feature by configuring the connection profile for a given network_name.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

network_leave_open

Function When you specify network_name, you can optionally specify that the
network connectivity should be left open after the synchronization finishes
(1).

Syntax network_leave_open= { 0 | 1 }

Protocols ♦ dbmlsync - TCP/IP, HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP, HTTP, HTTPS

Default Network connectivity is closed after synchronization (0)

Remarks You must specify network_name to use this option.

When this option is set to 1, network connectivity is left open after the
synchronization finishes.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with

47

UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also “network_name” on page 48

network_name

Function Specify the network name to start when not already connected to the
network.

Syntax network_name= name

Protocols ♦ dbmlsync - TCP/IP, HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP, HTTP, HTTPS

Default None

Remarks Specify the network name so that you can use MobiLink’s auto-dial feature.
This allows you to connect from a Pocket PC 2002 or Windows desktop
computer without manually dialing.

Used with scheduling, your remote can synchronize unattended. Used
without scheduling, this allows you to run dbmlsync without manually
dialing a connection. The name should be the network name that you have
specified in the dropdown list in Settings➤ Connections➤ Connections
(Pocket PC) or Network & Dialup Connections (Windows).

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “Scheduling synchronization” on page 88
♦ “network_connect_timeout” on page 47
♦ “network_leave_open” on page 47

persistent

Function Use a single TCP/IP connection for all HTTP requests in a synchronization.

Syntax persistent= { 0 | 1 }

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

HTTP, HTTPS

48

Chapter 4. MobiLink Client Network Protocol Options

Default ♦ Palm -0
♦ All other devices -1

Remarks 1 means that the client will attempt to use the same TCP/IP connection for
all HTTP requests in a synchronization. A setting of 0 is usually more
compatible with intermediate agents.

Except on Palm devices, you should only set persistent to 1 if you are
connecting directly to MobiLink. If you are connecting through an
intermediate agent such as a proxy or redirector, a persistent connection may
cause problems.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

port

Function Specify the socket port number.

Syntax port= port-number

Protocols ♦ dbmlsync - TCP/IP, HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - TCP/IP, HTTP, HTTPS, UlSecureRSASocketStream,

UlSecureSocketStream

Default For TCP/IP, the default is2439, which is the IANA-registered port number
for the MobiLink synchronization server.

For HTTP, the default is80.

For HTTPS and HTTPS_FIPS, the default is443.

Remarks The port number must be a decimal number that matches the port the
MobiLink synchronization server is set up to listen on.

If you are synchronizing through a web server, specify the web server port
accepting HTTP or HTTPS requests.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization

49

clients” on page 341.

proxy_host

Function Specify the host name or IP address of the proxy server.

Syntax proxy_host= proxy_hostname_or_ip

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

HTTP, HTTPS

Default None

Remarks Use only if going through a proxy.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

proxy_port

Function Specify the port number of the proxy server.

Syntax proxy_port= proxy_port_number

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

Default None

Remarks Use only if going through a proxy.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

security

Function Specify an encryption cipher and encryption options for synchronization.

50

Chapter 4. MobiLink Client Network Protocol Options

Separately licensable option required
Transport-layer security requires that you obtain a separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Syntax security= cipher (keyword= value;. . .)

Protocols dbmlsync - TCP/IP

Default None

Remarks All communication for this synchronization is to be encrypted using the
specified cipher. The cipher can be one of:

♦ ecc_tls for elliptic-curve encryption. For backwards compatibility,
ecc_tlscan also be specified ascerticom_tls.

♦ rsa_tls for RSA encryption.

♦ rsa_tls_fips for RSA encryption that is FIPS-approved. The
rsa_tls_fips cipher uses separate FIPS 140-2 certified software from
Certicom. Clients using rsa_tls are compatible with servers using
rsa_tls_fips, and clients using rsa_tls_fips are compatible with servers
using rsa_tls. rsa_tls_fips can only be used with Adaptive Server
Anywhere databases on Windows.

☞ For more information, see“Configuring MobiLink clients to use
transport-layer security”[MobiLink Administration Guide,page 179].

The following security keywords are supported.

♦ certificate_company=organization

♦ certificate_name=common_name

♦ certificate_unit=organization_unit

♦ trusted_certificates=filename

When using dbmlsync with HTTPS, you do not set the security option, but
set these four security keywords directly. For details of how to set the
security options, see each security keyword.

For UltraLite, see“Security synchronization parameter” on page 328.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

51

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,
page 165]

♦ “-x option” [MobiLink Administration Guide,page 214]
♦ “certificate_company” on page 37
♦ “certificate_name” on page 38
♦ “certificate_unit” on page 40
♦ “trusted_certificates” on page 53

Example The following example sets up RSA encryption for a dbmlsync TCP/IP
protocol. This requires setup on the server and client. Each command must
be written on one line.

dbmlsrv9
-c "dsn=asa90sample;uid=DBA;pwd=SQL"
-x tcpip(

port=9999;
security=rsa_tls(

certificate=c: \asa90 \win32 \rsaserver.crt;
certificate_password=test))

dbmlsync
-c "dsn=mydb;uid=DBA;pwd=SQL"
-e "ctp=tcpip;

adr=’port=9999;
security=rsa_tls(

trusted_certificates=c: \asa90 \win32 \rsaroot.crt;
certificate_name=RSA Server)’"

For UltraLite clients, you implement the client side slightly differently. The
equivalent client implementation in an Embedded SQL or C++ UltraLite
application is:

info.stream = ULSocketStream();
info.stream_parms = TEXT("port=9999");
info.security_stream = ULSecureRSATLSStream();
info.security_parms = TEXT("trusted_certificates= \

rsaroot.crt;certificate_name=RSA Server");

set_cookie

Function Specify custom HTTP cookies to set in the HTTP requests used during
synchronization.

Syntax set_cookie= cookie_name=cookie_value [,cookie_name=cookie_value, ...]

Protocols ♦ dbmlsync - HTTP, HTTPS, and HTTPS_FIPS
♦ UltraLite - HTTP and HTTPS, but not supported for Java UltraLite

52

Chapter 4. MobiLink Client Network Protocol Options

Default None

Remarks Custom HTTP cookies are useful when your synchronization client interacts
with a third-party tool, such as an authentication tool, that uses cookies to
identify sessions. For example, you have a system where a user agent
connects to a web server, proxy, or gateway and authenticates itself. If
successful, the agent receives one or more cookies from the server. The
agent then starts a synchronization and hands over its session cookies
through the set_cookie option.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

Example The following example sets a custom HTTP cookie in an Embedded SQL or
C++ UltraLite application.

info.stream = ULHTTPStream();
info.stream_parms = TEXT(

"host=www.myhost.com;
set_cookie=MySessionID=12345, enabled=yes;");

trusted_certificates

Function Specify a file containing a list of trusted root certificates used for secure
synchronization.

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Syntax trusted_certificates= filename

Protocols ♦ dbmlsync - TCP/IP (via the security option), HTTPS, HTTP_FIPS
♦ UltraLite - TCP/IP (via security parms), HTTPS. Not supported on

Palm OS.

Default None

Remarks When synchronization occurs through a Certicom TLS synchronization
stream, the MobiLink synchronization server sends its certificate to the

53

client, as well as the certificate of the entity that signed it, and so on up to a
self-signed root.

The client checks that the chain is valid and that it trusts the root certificate in
the chain. This feature allows you to specify which root certificates to trust.

This option is required when using encryption for dbmlsync.

This option is not available on the Palm platform or with UltraLite Static
Java.

For TCP/IP, set this option as part of the security option. For more
information, see“security” on page 50.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

See also ♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,
page 165]

♦ “-x option” [MobiLink Administration Guide,page 214]
♦ “security” on page 50
♦ “certificate_company” on page 37
♦ “certificate_name” on page 38
♦ “certificate_unit” on page 40

Example The following example sets up RSA encryption for an HTTPS protocol.
This requires setup on the server and client. Each command must be written
on one line.

dbmlsrv9
-c "dsn=asa90sample;uid=DBA;pwd=SQL"
-x https(

port=9999;
certificate=c: \asa90 \win32 \rsaserver.crt;
certificate_password=test)

On an Adaptive Server Anywhere client, the implementation is:

dbmlsync
-c "dsn=mydb;uid=DBA;pwd=SQL"
-e "ctp=https;

adr=’port=9999;
trusted_certificates=c: \asa90 \win32 \rsaroot.crt;
certificate_name=RSA Server’"

On an UltraLite client, the equivalent implementation is:

54

Chapter 4. MobiLink Client Network Protocol Options

info.stream = ULHTTPSStream();
info.stream_parms = TEXT(

"port=9999;
trusted_certificates= \rsaroot.crt;
certificate_name=RSA Server");

info.security_stream = NULL;
info.security_parms = NULL;

For UltraLite clients addressing the Palm OS, the following command
embeds the trusted root certificate in the generated code with the UltraLite
Generator:

ulgen.exe -c "dsn=asa90sample;uid=DBA;pwd=SQL" -r c: \asa90 \
win32 \rsaroot.crt test test.c

Alternatively, you can use the UltraLite initialization utility:

ulinit.exe -c "dsn=asa90sample;uid=DBA;pwd=SQL" -t c: \asa90 \
win32 \rsaroot.crt -f test.usm -n test_pub

url_suffix

Function Specify the suffix to add to the URL on the first line of each HTTP request
sent during synchronization.

Syntax url_suffix= suffix

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

HTTP, HTTPS

Default The default value isMobiLink\.

Remarks When synchronizing through a proxy or web server, the url_suffix may be
necessary in order to find the MobiLink synchronization server.

☞ For information about how to set this option when using the Redirector,
see“Configuring MobiLink clients and servers for the Redirector”[MobiLink
Administration Guide,page 137].

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

55

version

Function Specify the version of HTTP to use for synchronization.

Syntax version= HTTP_version_number

Protocols ♦ dbmlsync - HTTP, HTTPS, HTTPS_FIPS
♦ UltraLite - HTTP, HTTPS

Default The default value is1.1.

Remarks This option is useful if your HTTP infrastructure requires a specific version
of HTTP. Values can be1.0or 1.1.

HTTPS_FIPS is available on Windows only.

☞ For information about how to set network protocol options with
dbmlsync, see“CommunicationAddress (adr) extended option” on page 106.

☞ For information about how to set network protocol options with
UltraLite, see“Network protocol options for UltraLite synchronization
clients” on page 341.

56

PART II

ADAPTIVE SERVER

ANYWHERE CLIENTS

This part contains material that describes how to set up and run Adaptive
Server Anywhere clients for MobiLink synchronization.

CHAPTER 5

Adaptive Server Anywhere Clients

About this chapter This chapter describes how to use Adaptive Server Anywhere databases as
MobiLink clients.

☞ For a tutorial to walk you through some of the concepts in this chapter,
see“Tutorial: Introduction to MobiLink” [MobiLink Tutorials,page 1].

☞ For information about UltraLite databases as MobiLink clients,
see“UltraLite Clients” on page 277.

Contents Topic: page

Creating a remote database 60

Publishing data 64

Creating MobiLink users 71

Subscribing MobiLink synchronization users 75

Initiating synchronization 78

Using ActiveSync synchronization 82

Temporarily stopping synchronization of deletes 87

Scheduling synchronization 88

Adaptive Server Anywhere version 7 MobiLink clients 90

59

Creating a remote database
Any Adaptive Server Anywhere database can be converted for use as a
remote database in a MobiLink installation. All you need to do is create a
publication, create a MobiLink user, and subscribe the MobiLink user to the
publication.

❖ To create an Adaptive Server Anywhere remote database

1. Start with an existing Adaptive Server Anywhere database, or create a
new one and add your tables.

2. Create one or more publications in the new database.

☞ See“Publishing data” on page 64.

3. Create a MobiLink user.

☞ See“Creating MobiLink users” on page 71.

4. Subscribe a MobiLink user to one or more of the publications.

☞ See“Subscribing MobiLink synchronization users” on page 75.

Deploying remote databases

To deploy Adaptive Server Anywhere remote databases, you need to create
the databases and add the appropriate publications and subscriptions. To do
this, you customize a prototype remote database.

❖ To deploy MobiLink remote databases by customizing a proto-
type

1. Create a prototype remote database.

The prototype database should have all the tables and publications
needed, but not the information that is specific to each database. This
individual information typically includes the following:

♦ The MobiLink user name.

♦ Synchronization subscriptions.

♦ The GLOBAL_DATABASE_ID option that provides the starting point
for global autoincrement key values.

2. For each remote database, carry out the following operations:
♦ Create a directory to hold the remote database.

♦ Copy the prototype remote database into the directory.
If the transaction log is held in the same directory as the remote
database, the log filename does not need to be changed.

60

Chapter 5. Adaptive Server Anywhere Clients

♦ Run a SQL script that adds the individual information to the database.

The SQL script can be a parameterized script. For information on
parameterized scripts, see“PARAMETERS statement [Interactive
SQL]” [ASA SQL Reference,page 561], and“Using SQL command files”
[ASA SQL User’s Guide,page 596].

Example The following SQL script is taken from the Contact sample. It can be found
in Samples\MobiLink\Contact\customize.sql.

PARAMETERS ml_userid, db_id;
go
SET OPTION PUBLIC.GLOBAL_DATABASE_ID = {db_id}
go

CREATE SYNCHRONIZATION USER {ml_userid}
TYPE ’TCPIP’
ADDRESS ’host=localhost;port=2439’
OPTION MEM=’’

go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Product"

FOR {ml_userid}
go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Contact"

FOR {ml_userid}
go
commit work
go

The following command line executes the script for a remote database with
data sourcedsn_remote_1.

dbisql -c "dsn=dsn_remote_1" read customize.sql [SSinger] [2]

Partitioning data between remote databases

It is common for remote databases to fall into separate categories, each with
their own requirements. Consider a sales application. All the sales personnel
in one region may require access to a particular set of data, but not require
access to information about regions other than their own. Employees in
other departments may require data of an entirely different nature. Managers
may require data that should not be accessible to their subordinates.

Publications are typically used to specify fundamentally different sets of
data. For example, you can create one publication for the sales staff and
another publication for those employees who do technical support.

You can further fine-tune the data any given remote database will receive by
using a WHERE clause within the publication. This feature is useful when
remote databases require similar types of information. For example, it can

61

be used to provide sales representatives with only the information relevant to
their region.

☞ For more information, see“Partitioning rows among remote databases”
[MobiLink Administration Guide,page 52].

Upgrading remote databases

If you install a new Adaptive Server Anywhere remote database over an
older version, the synchronization progress information in the consolidated
database is incorrect.

You can correct this problem by setting the progress column of the ml_user
table to 0 (zero) for this user. This is an exceptional case when direct
modification of the MobiLink system tables is required. In other cases, you
should not directly access the MobiLink system tables.

☞ For more information, see“Upgrading Adaptive Server Anywhere
MobiLink clients” [What’s New in SQL Anywhere Studio,page 237].

Progress offsets

The offset, also called the progress or state, refers to a position in the
transaction log of the remote database. It indicates the point to which all
operations for the subscription have been uploaded and acknowledged.
Dbmlsync uses the offset to decide what data to upload. On the remote
database, the offset is stored in the progress column of the SYS.SYSSYNC
system table. On the consolidated database, the offset is stored in the
progress column of the ml_user table for version 7.x databases, and in the
progress column of the ml_subscription table for version 8.0 and up
databases.

For each remote, the remote and consolidated databases maintain an offset
for every subscription. When a user synchronizes, the offsets are confirmed
for all subscriptions that are associated with the user, even if they are not
being synchronized at the time. This is required because publications can
synchronize the same data. The only exception is that dbmlsync does not
check the progress offset of a subscription until it has attempted an upload.

If there is any disagreement between the remote and consolidated database
offsets, the default behavior is to update the offsets on the remote with
values from the consolidated and then send a new upload based on those
offsets. In most cases, this default is appropriate. For example, it is generally
appropriate when the consolidated database is restored from backup and the
remote transaction log is intact, or when an upload is successful but
communication failure prevented an upload acknowledgement from being

62

Chapter 5. Adaptive Server Anywhere Clients

sent.

Most progress offset mismatches are resolved automatically using the
consolidated progress values. In the rare case that you must intervene to fix a
problem with progress offsets, you can use the dbmlsync -r option.

☞ For more information, see“-r option” on page 146.

First synchronization
always works

When you delete and recreate a remote database and then synchronize for
the first time, you don’t get a progress offset mismatch even though there
may be a mismatch with the progress value on the consolidated database.
This is because dbmlsync detects that this is a first synchronization and so
does not check the offset of the consolidated database, but instead uses the
progress offset on the remote database.

Dbmlsync detects a first synchronization when the columns in the remote
database system table SYS.SYSSYNC are as follows: the value for the
progresscolumn is the same as the value for thecreatedcolumn, and the
value for thelog_sentcolumn is NULL.

However, if your first synchronization synchronizes two or more
subscriptions in the same upload stream, and one of the subscriptions is not
synchronizing for the first time, then progress offsets are checked for all
subscriptions being synchronized, including the ones that are being
synchronized for the first time. For example, you specify the dbmlsync -n
option with two publications (-n pub1,pub2), and pub1 has synchronized
before but pub2 has not. In this case, if you have deleted and recreated a
remote database, there may be a progress offset mismatch with the
consolidated database.

For more information, see:

♦ “SYSSYNC system table”[ASA SQL Reference,page 740]
♦ “ml_user” [MobiLink Administration Guide,page 531]
♦ “ml_subscription”[MobiLink Administration Guide,page 528]

63

Publishing data
A publication is a database object that identifies the data that is to be
synchronized. A publication consists of articles, which are subsets of a
table’s columns, rows, or both. Each publication can contain one or more
entire tables, or partial tables consisting of selected rows and columns. In a
single publication, no table can be included in more than one article.

You create publications using Sybase Central or with the CREATE
PUBLICATION statement.

In Sybase Central, all publications and articles appear in the Publications
folder.

Notes about publications ♦ DBA authority is required to create and drop publications.

♦ In order to be able to synchronize when you subscribe to multiple
publications, the publications must contain the same column subsets of
the same table.

♦ The publication determines which columns are selected, but it does not
determine the order in which they are sent. Columns are always sent in
the order in which they were defined in the CREATE TABLE statement.

♦ Publications must include all the columns in the primary key of the table
that they reference.

♦ A single publication can publish a subset of columns from a set of tables
and use a WHERE clause to select a set of rows to be replicated.

♦ Views and stored procedures cannot be included in publications.

♦ Publications and subscriptions are also used by the Sybase
message-based replication technology, SQL Remote. SQL Remote
requires publications and subscriptions in both the consolidated and
remote databases. In contrast, MobiLink publications appear only in
Adaptive Server Anywhere remote databases. MobiLink consolidated
databases are configured using synchronization scripts.

Publishing whole tables

The simplest publication you can make consists of a single article, which
consists of all rows and columns of one or more tables. These tables must
already exist.

64

Chapter 5. Adaptive Server Anywhere Clients

❖ To publish one or more entire tables (Sybase Central)

1. Connect to the remote database as a user with DBA authority, using the
Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. From the File menu, choose New➤ Publication. The Create a New
Publication wizard appears.

4. Type a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available Tables.
Click Add. The table appears in the list of Selected Tables on the right.

6. Optionally, you may add additional tables. The order of the tables is not
important.

7. Click Finish.

❖ To publish one or more entire tables (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of
the new publication and the table you want to publish.

Example The following statement creates a publication that publishes the whole
customer table:

CREATE PUBLICATION pub_customer (
TABLE customer

)

The following statement creates a publication including all columns and
rows in each of a set of tables from the Adaptive Server Anywhere sample
database:

CREATE PUBLICATION sales (
TABLE customer,
TABLE sales_order,
TABLE sales_order_items,
TABLE product

)

☞ For more information, see the“CREATE PUBLICATION statement”
[ASA SQL Reference,page 385].

65

Publishing only some columns in a table

You can create a publication that contains all the rows but only some of the
columns of a table from Sybase Central or by listing the columns in the
CREATE PUBLICATION statement.

Note If you create two publications that include the same table with different
column subsets, then any user who subscribes to both publications will be
unable to synchronize.

❖ To publish only some columns in a table (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. From the File menu, choose New➤ Publication. The Create a New
Publication wizard appears.

4. Type a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available Tables. Click
Add. The table is added to the list of Selected Tables on the right.

6. On the Columns tab, double-click the table’s icon to expand the list of
Available Columns. Select each column you want to publish and
click Add. The selected columns appear on the right.

7. Click Finish.

❖ To publish only some columns in a table (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the
publication name and the table name. List the published columns in
parenthesis following the table name.

Example The following statement creates a publication that publishes all rows of the
id, company_name, and city columns of the customer table:

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name,

city)
)

☞ For more information, see the“CREATE PUBLICATION statement”
[ASA SQL Reference,page 385].

66

Chapter 5. Adaptive Server Anywhere Clients

Publishing only some rows in a table

You can create a publication that contains some or all the columns in a table,
but only some of the rows. You do so by writing a search condition that
matches only the rows you want to publish.

Sybase Central and the SQL language each provide two ways of publishing
only some of the rows in a table; however, only one way is compatible with
MobiLink.

♦ WHERE clause Compatible with MobiLink. You can use a WHERE
clause to include a subset of rows in an article.

♦ Subscription expression Ignored by MobiLink.

In MobiLink, you can use the WHERE clause to exclude the same set of
rows from all subscriptions to a publication. All subscribers to the
publication upload any changes to the rows that satisfy the search condition.

❖ To create a publication using a WHERE clause (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. From the File menu, choose New➤ Publication. The Create a New
Publication wizard appears.

4. Type a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available Tables. Click
Add. The table is added to the list of Selected Tables on the right.

6. On the WHERE Clauses tab, select the table and type the search
condition in the lower box. Optionally, you can use the Insert dialog to
assist you in formatting the search condition.

7. Click Finish.

❖ To create a publication using a WHERE clause (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that includes the tables
you wish to include in the publication and a WHERE condition.

67

Examples The following statement creates a publication that publishes the id,
company_name, city, and state columns of the customer table, for the
customers marked as active in the status column.

CREATE PUBLICATION pub_customer (
TABLE customer (

id,
company_name,
city,
state)

WHERE status = ’active’
)

In this case, the status column itself is not published. All unpublished rows
must have a default value. Otherwise, an error occurs when rows are
downloaded for insert from the consolidated database.

The following example creates a single-article publication that includes
order information for sales rep number 856.

CREATE PUBLICATION pub_orders_samuel_singer (
TABLE sales_order WHERE sales_rep = 856

)

☞ For more information, see the“CREATE PUBLICATION statement”
[ASA SQL Reference,page 385]. Note that the CREATE PUBLICATION
statement includes a SUBSCRIBE BY clause. This clause can be used to
selectively publish rows in SQL Remote. However, it is ignored during
MobiLink synchronization.

Altering existing publications

After you have created a publication, you can alter it by adding, modifying,
or deleting articles, or by renaming the publication. If an article is modified,
the entire specification of the modified article must be entered.

You can perform these tasks using Sybase Central or with the ALTER
PUBLICATION statement.

Notes ♦ Publications can be altered only by the DBA or the publication’s owner.

♦ Be careful. In a running MobiLink setup, altering publications may cause
errors and can lead to loss of data.

❖ To modify the properties of existing publications or articles
(Sybase Central)

1. Connect to the remote database as a user who owns the publication or as
a user with DBA authority.

68

Chapter 5. Adaptive Server Anywhere Clients

2. In the left pane, click the publication or article. The properties will
appear in the right pane.

3. Configure the desired properties.

❖ To add articles (Sybase Central)

1. Connect to the remote database as a user who owns the publication or as
a user with DBA authority using the Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. Select a publication.

4. From the File menu, choose New➤ Article. The Create a New Article
wizard appears.

5. In the Article Creation wizard, do the following:

♦ On the first page, select a table.

♦ On the next page, select the number of columns.

♦ On the final page, enter a WHERE clause (if desired).

6. Click Finish to create the article.

❖ To remove articles (Sybase Central)

1. Connect to the database as a user who owns the publication or as a user
with DBA authority using the Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. Click the publication.

4. In the right pane, right-click the article you want to delete and choose
Delete from the popup menu.

❖ To modify an existing publication (SQL)

1. Connect to the remote database as a user who owns the publication or as
a user with DBA authority.

2. Connect to a database with DBA authority.

3. Execute an ALTER PUBLICATION statement.

Example

69

♦ The following statement adds the customer table to the pub_contact
publication.

ALTER PUBLICATION pub_contact (
ADD TABLE customer

)

☞ See also the“ALTER PUBLICATION statement”[ASA SQL Reference,
page 280].

Dropping publications

You can drop a publication using either Sybase Central or the DROP
PUBLICATION statement. Before dropping the publication, you must drop
all subscriptions connected to it.

You must have DBA authority to drop a publication.

❖ To delete a publication (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. Right-click the desired publications and choose Delete from the popup
menu.

❖ To delete a publication (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a DROP PUBLICATION statement.

Example The following statement drops the publication named pub_orders.

DROP PUBLICATION pub_orders

☞ See also the“DROP PUBLICATION statement”[ASA SQL Reference,
page 459].

70

Chapter 5. Adaptive Server Anywhere Clients

Creating MobiLink users
A MobiLink user name uniquely identifies a remote database. It is used to
identify, and optionally authenticate, clients attempting to connect to the
MobiLink synchronization server.

MobiLink users are not the same as database users. You can create a
MobiLink user name that matches the name of a database user, but neither
MobiLink nor Adaptive Server Anywhere is affected by this coincidence.

☞ For information about adding MobiLink users to the consolidated
database, see“About MobiLink users” on page 10.

Adding MobiLink users to a remote database

This section describes how to add a MobiLink user name to a remote
database. For information on supplying MobiLink user properties, including
the password, see“Configuring MobiLink user properties” on page 72.

❖ To add a MobiLink user to a remote database (Sybase Central)

1. Connect to the database from the Adaptive Server Anywhere plug-in as a
user with DBA authority.

2. Click the MobiLink Users folder.

3. From the File menu, choose New➤ MobiLink User. The Create a New
MobiLink User wizard appears.

4. Enter a name for the MobiLink user. This name is supplied to the
MobiLink synchronization server during synchronization.

The MobiLink user name uniquely identifies a remote database and so
must be unique within your synchronization system.

5. Click Finish.

❖ To add a MobiLink user to a remote database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE SYNCHRONIZATION USER statement. The
MobiLink user name uniquely identifies a remote database and so must
be unique within your synchronization system.

The following example adds a MobiLink user named SSinger:

CREATE SYNCHRONIZATION USER SSinger

71

You can specify properties for the MobiLink user as part of the CREATE
SYNCHRONIZATION USER statement, or you can specify them
separately with an ALTER SYNCHRONIZATION USER statement.

☞ For more information, see“CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 404].

Configuring MobiLink user properties

You can specify properties for each MobiLink user in a remote database.

There are two types of property:

♦ Options Options can be specified on the dbmlsync command line. For a
complete list of dbmlsync command line options, see“Adaptive Server
Anywhere Client Synchronization Parameters” on page 95.

♦ Extended options Extended options can be specified on the command
line, stored in the database, or specified with the
sp_hook_dbmlsync_set_extended_options event hook.

☞ For a list of extended options, see“dbmlsync extended options” on
page 105.

❖ To store MobiLink extended options in the database (Sybase Cen-
tral)

1. Connect to the database from the Adaptive Server Anywhere plug-in as a
user with DBA authority.

2. Open the MobiLink Users folder.

3. Right-click the MobiLink user name and choose Properties from the
pop-up menu.

4. Change the properties as needed.

❖ To store MobiLink extended options in the database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER SYNCHRONIZATION USER statement.

The following example changes the extended options for MobiLink user
named SSinger to their default values:

ALTER SYNCHRONIZATION USER SSinger
DELETE ALL OPTION

☞ For more information, see“ALTER SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 292].

72

Chapter 5. Adaptive Server Anywhere Clients

You can also specify properties when you create the MobiLink user name.

☞ For more information, see“CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 404].

❖ To configure MobiLink user properties on the command line

1. You can specify dbmlsync options when you start dbmlsync.

☞ For more information, see“Adaptive Server Anywhere Client
Synchronization Parameters” on page 95.

❖ To specify MobiLink user properties with a client event hook

1. You can programmatically customize the behavior of an upcoming
synchronization.

☞ For more information, see
“sp_hook_dbmlsync_set_extended_options” on page 225.

Priority order for extended options and connection parameters

The CREATE/ALTER SYNCHRONIZATION USER and CREATE/ALTER
SYNCHRONIZATION SUBSCRIPTION statements allow you to store
extended options and connection parameters in the database and associate
them with subscriptions, users or publications. The dbmlsync utility reads
this information from the database.

Note: You specify options for a publication by using the CREATE
SYNCHRONIZATION SUBSCRIPTION statement and omitting the FOR
clause.

If extended options are specified in both the database and the command line,
the option strings are combined. If conflicting options are specified,
dbmlsync resolves them as follows, where options specified by earlier in the
list take precedence over those occurring later in the list.

1. options specified in the sp_hook_dbmlsync_set_extended_options event
hook.

2. options specified on the command line that aren’t extended options. (For
example,-ds overrides-e "ds=off" .)

3. options specified on the command line with the dbmlsync -eu option.

4. options specified on the command line with the dbmlsync -e option.

5. options saved with the subscription definition (whether using SQL
statements or Sybase Central).

73

6. options saved with the user definition (whether using SQL statements or
Sybase Central).

7. options saved with the publication definition (whether using SQL
statements or Sybase Central).

If the connection TYPE or ADDRESS is specified in more than one place,
the one specified with the highest priority according to the list above
overrides any other specification.

Dbmlsync connection parameters

Dbmlsync connection information includes the protocol to use for
communications with the server, the address for the MobiLink
synchronization server, and other connection parameters.

☞ For more information, see:

♦ “CommunicationType (ctp) extended option” on page 111
♦ “CommunicationAddress (adr) extended option” on page 106
♦ “-c option” on page 102

Dropping MobiLink users

You must drop all subscriptions for a MobiLink user before you drop the
user from a remote database.

❖ To drop a MobiLink user from a remote database (Sybase Central)

1. Connect to the database from the Adaptive Server Anywhere plug-in as a
user with DBA authority.

2. Locate the MobiLink user in the MobiLink Users folder.

3. Right click the MobiLink user and choose Delete from the popup menu.

❖ To drop a MobiLink user from a remote database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP SYNCHRONIZATION USER statement.

The following example removes the MobiLink user named SSinger from
the database:

DROP SYNCHRONIZATION USER SSinger

☞ For more information, see“DROP SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 467].

74

Chapter 5. Adaptive Server Anywhere Clients

Subscribing MobiLink synchronization users
To complete the setup, you must subscribe at least one MobiLink user to one
or more pre-existing publications.

☞ For information about creating publications, see“Publishing data” on
page 64. For information about creating MobiLink users, see“Creating
MobiLink users” on page 71.

Subscriptions versus synchronization subscriptions
Do not confuse subscriptions (CREATE SUBSCRIPTION statement)
with synchronization subscriptions (CREATE SYNCHRONIZATION
SUBSCRIPTION statement). Subscriptions work only with SQL Remote.
They create relationships between publications anddatabase userswho
have been granted remote privileges. Synchronization subscriptions, used
with MobiLink, create relationships between publications andMobiLink
users.

A synchronization subscription links a particular MobiLink user with a
publication. It can also carry other information needed for synchronization.
For example, you can specify the address of the MobiLink server and any
desired options for a synchronization subscription. Values for a specific
synchronization subscription override those set for MobiLink users.

Synchronization subscriptions are required only in MobiLink Adaptive
Server Anywhere remote databases. Server logic is implemented through
synchronization scripts, stored in the MobiLink system tables in the
consolidated database.

A single Adaptive Server Anywhere database can synchronize with more
than one MobiLink synchronization server. To allow synchronization with
multiple servers, create different MobiLink users for each server.

Example To synchronize the customer and sales_order tables in the Adaptive Server
Anywhere sample database, you could use the following statements.

1. First, publish the customer and sales_order tables. Give the publication
the name testpub.

CREATE PUBLICATION testpub
(TABLE customer, TABLE sales_order)

2. Next, create a MobiLink user. In this case, the MobiLink user is
demo_ml_user.

CREATE SYNCHRONIZATION USER demo_ml_user

3. To complete the process, subscribe the user to the publication.

75

CREATE SYNCHRONIZATION SUBSCRIPTION TO testpub
FOR demo_ml_user
TYPE tcpip
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’

Altering MobiLink subscriptions

Synchronization subscriptions can be altered using Sybase Central or the
ALTER SYNCHRONIZATION SUBSCRIPTION statement. The syntax is
similar to that of the CREATE SYNCHRONIZATION SUBSCRIPTION
statement, but provides an extension to more conveniently add, modify, and
delete options.

❖ To alter a synchronization subscription (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Click the desired user. The properties appear in the right pane.

4. In the right pane, click the Synchronization Subscriptions tab. Right-click
the subscription you wish to change and select Properties from the popup
menu.

5. Change the properties as needed

❖ To alter a synchronization subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER SYNCHRONIZATION SUBSCRIPTION statement.

☞ For more information, see“ALTER SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 292].

Dropping MobiLink subscriptions

You can delete a synchronization subscription using either Sybase Central or
the DROP SYNCHRONIZATION SUBSCRIPTION statement.

You must have DBA authority to drop a synchronization subscription.

76

Chapter 5. Adaptive Server Anywhere Clients

❖ To delete a synchronization subscription (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Select a MobiLink user.

4. Right-click the desired subscription and choose Delete from the popup
menu.

❖ To delete a synchronization subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP SYNCHRONIZATION SUBSCRIPTION statement.

Example The following statement drops the synchronization subscription of
MobiLink user jsmith to a publication named pub_orders.

DROP SYNCHRONIZATION SUBSCRIPTION
FOR jsmith TO pub_orders

☞ See also the“DROP SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]”[ASA SQL Reference,page 466].

77

Initiating synchronization
The client always initiates MobiLink synchronization. In the case of an
Adaptive Server Anywhere client, synchronization is initiated by running the
dbmlsync utility. This utility connects to and synchronizes an Adaptive
Server Anywhere remote database.

You can specify connection parameters on the dbmlsync command line
using the -c option. These parameters are for the remote database. If you do
not specify connection parameters, a connection dialog appears, asking you
to supply the missing connection parameters and startup options.

Connection parameters set in the synchronization subscriptions within the
remote database are used to locate the appropriate MobiLink
synchronization server.

Permissions for
dbmlsync

When dbmlsync connects to a database, it must have permissions to apply all
the changes being made. The dbmlsync command line contains the
password for this connection. This could present a security issue.

To avoid security problems, grant a user (other than DBA) REMOTE DBA
authority, and use this user ID in the dbmlsync connection string. A user ID
with REMOTE DBA authority has DBA authority only when the connection
is made from the dbmlsync utility. Any other connection using the same
user ID is granted no special authority.

Multiple MobiLink synchronization users

Each remote database typically contains exactly one MobiLink
synchronization user. In this case, you do not need to specify a MobiLink
user name on the dbmlsync command line. However, if the remote database
contains more than one, you must specify which MobiLink synchronization
user to synchronize using the-u command line option.

dbmlsync -c "dsn=remote;uid=syncuser" -u mluser

Similarly, you can specify the user’s password using the-mp option, or
change the password by specifying the new password with the-mn option.
These are the user ID and password used to the MobiLink synchronization
server and may be different from the user ID and password used to connect
to the remote database.

Customizing synchronization

MobiLink provides a number of extended options to customize the
synchronization process. Extended options can be set for publications, users,

78

Chapter 5. Adaptive Server Anywhere Clients

and subscriptions. In addition, extended option values can be overridden
using options on the dbmlsync command line.

☞ For a complete list of extended options, see“dbmlsync extended
options” on page 105.

❖ To override an extended option on the dbmlsync command line

1. Supply the extended option values in the -e or -eu dbmlsync options for
dbmlsync, in the formoption-name=value. For example:

dbmlsync -e "v=on;sc=low"

❖ To set an extended option for a subscription, publication or user

1. Add the option to the CREATE SYNCHRONIZATION
SUBSCRIPTION statement or CREATE SYNCHRONIZATION USER
statement in the Adaptive Server Anywhere remote database.

Adding an extended option for a publication is a little different. To add an
extended option for a publication, use the ALTER/CREATE
SYNCHRONIZATION SUBSCRIPTION statement and omit the FOR
clause.

Example The following statement creates a synchronization subscription that uses
extended options to set the cache size for preparing the upload stream to
3 Mb and the upload increment size to 3 kb.

CREATE SYNCHRONIZATION SUBSCRIPTION TO my_pub
FOR ml_user
ADDRESS ’host=test.internal;port=2439;’
OPTION memory=’3m’,increment=’3k’

Note that the option values can be enclosed in single quotes, but the option
names must remain unquoted.

Transaction log files

To prepare the upload stream, the dbmlsync utility requires access to all
transaction logs written since the last successful synchronization. However,
log files are typically truncated and renamed as part of regular database
maintenance. In such a case, old log files must be renamed and saved in a
separate directory until all changes they describe have been synchronized
successfully.

You can specify the directory that contains the renamed log files on the
dbmlsync command line. You may omit this parameter if the working log
file has not been truncated and renamed since you last synchronized, or if
you run dbmlsync from the directory that contains the renamed log files.

79

☞ For more information, see“Backup and Data Recovery”[ASA Database
Administration Guide,page 373].

Example Suppose that the old log files are stored in the directoryc:\oldlogs. You
could use the following command to synchronize the remote database.

dbmlsync -c "dbn=remote;uid=syncuser" c: \oldlogs

The path to the old logs directory must be the final argument on the
command line.

Concurrency during synchronization

To ensure the integrity of synchronizations, dbmlsync must ensure that no
rows in the download stream are modified between the time the upload
stream is built and the time the download is applied.

On all platforms except Windows CE, by default, dbmlsync obtains a shared
lock on all tables mentioned in any publication being synchronized. On
Windows CE, by default, dbmlsync obtains an exclusive lock. Dbmlsync
obtains the lock before it begins building the upload stream, and it maintains
the lock until the download is applied.

☞ For more information about locks, see“Types of locks”[ASA SQL User’s
Guide,page 136].

The following options let you customize this locking behavior:

♦ -d option
♦ LockTables option

-d option When using the locking mechanism, if other connections to the database
exist and if these connections have any locks on the synchronization tables,
then synchronization will fail. If you want to ensure that synchronization
proceeds immediately even if other locks exist, use the dbmlsync -d option.
When this option is specified, any connection with locks that would interfere
with synchronization are dropped by the database so that synchronization
can proceed. Uncommitted changes on the dropped connections are rolled
back.

☞ For more information, see“-d option” on page 103.

LockTables option An alternative way to protect data integrity is to set the extended option
LockTables to OFF, which prevents an article’s tables from being locked.
This causes dbmlsync to track all rows that are modified after the upload
stream has been built. When the download is received, it is not applied if any
rows in the download have been modified. Dbmlsync will then retry the
synchronization. The retry will succeed unless a new download conflict is

80

Chapter 5. Adaptive Server Anywhere Clients

detected.

☞ For more information, see“LockTables (lt) extended option” on
page 122.

If a conflict is detected, the download phase is cancelled and the download
operations rolled back to avoid overwriting the new change. The dbmlsync
utility then retries the synchronization, including the upload step. This time,
because the row is present at the beginning of the synchronization process, it
is included in the upload stream and therefore not lost.

By default, dbmlsync will retry synchronization until success is achieved.
You can limit the number of retries using the extended option
ConflictRetries. Setting ConflictRetries to -1 causes dbmlsync to retry until
success is achieved. Setting it to a non-negative integer causes dbmlsync to
retry for not more than the specified number of times.

☞ For more information, see“ConflictRetries (cr) extended option” on
page 111.

Initiating synchronization from an application

You may wish to include the features of dbmlsync in your application, rather
than provide a separate executable to your remote users.

There are two ways to do this:

♦ Use the Dbmlsync Integration Component.

☞ For more information, see“Dbmlsync Integration Component” on
page 237.

♦ If you are developing in any language that can call a DLL, and are
programming in C or C#, you can include thedbtools.hheader file,
located in theh subdirectory of your SQL Anywhere directory. This file
contains a description of the a_sync_db structure and the
DBSynchronizeLog function, which you use to add this functionality to
your application. This solution works on all supported platforms,
including Windows, UNIX, Linux, and Macintosh.

☞ For more information, see:

♦ “DBTools Interface for dbmlsync” on page 267
♦ “DBSynchronizeLog function”[ASA Programming Guide,page 275]
♦ “a_sync_db structure”[ASA Programming Guide,page 298]

81

Using ActiveSync synchronization
ActiveSync is synchronization software for Microsoft Windows CE
handheld devices. Adaptive Server Anywhere MobiLink clients can use
ActiveSync version 3.1 or 3.5.

ActiveSync governs synchronization between a Windows CE device and a
desktop computer. A MobiLink provider for ActiveSync governs
synchronization to the MobiLink synchronization server, as shown in the
following diagram.

ActiveSync

software

ActiveSync

software

MobiLink

provider for

ActiveSync
 MobiLink

synchronization

server

UltraLite or

ASA MobiLink

client

Windows CE

device

Desktop

computer

Server

computer

Setting up ActiveSync synchronization for Adaptive Server Anywhere
clients involves the following steps:

♦ Configure the Adaptive Server Anywhere remote database for
ActiveSync synchronization.

☞ See“Configuring Adaptive Server Anywhere remote databases for
ActiveSync” on page 83.

♦ Install the MobiLink provider for ActiveSync.

☞ See“Installing the MobiLink provider for ActiveSync” on page 84.

♦ Register the Adaptive Server Anywhere client for use with ActiveSync.

☞ See“Registering Adaptive Server Anywhere clients for ActiveSync”
on page 85.

If you use ActiveSync synchronization, synchronization must be initiated
from the ActiveSync software. The MobiLink provider for ActiveSync can
start dbmlsync or it can wake a dbmlsync that is sleeping as scheduled by a
schedule string.

82

Chapter 5. Adaptive Server Anywhere Clients

You can also put dbmlsync into a sleep mode using a delay hook in the
remote database, but the MobiLink provider for ActiveSync cannot invoke
synchronization from this state.

☞ For information about scheduling synchronization, see“Scheduling
synchronization” on page 88.

Configuring Adaptive Server Anywhere remote databases for ActiveSync

❖ To configure your Adaptive Server Anywhere remote database for
ActiveSync

1. Select ActiveSync as the synchronization type.

The synchronization type can be set for a synchronization publication, for
a synchronization user or for a synchronization subscription. It is set in a
similar manner for each. Here is part of a typical CREATE
SYNCHRONIZATION USER statement:

CREATE SYNCHRONIZATION USER SSinger
TYPE ActiveSync
...

2. Supply an address clause to specify communication between the
MobiLink provider for ActiveSync and the MobiLink synchronization
server.

For HTTP or TCP/IP synchronization the ADDRESS clause of the
CREATE SYNCHRONIZATION USER or CREATE
SYNCHRONIZATION SUBSCRIPTION statement specifies
communication between the MobiLink client and server. For ActiveSync,
the communication takes place in two stages: from the dbmlsync utility
on the device to the MobiLink provider for ActiveSync on the desktop
machine, and from desktop machine to the MobiLink synchronization
server. The ADDRESS clause specifies the communication between
MobiLink provider for ActiveSync and the MobiLink synchronization
server.

The following statement specifies TCP/IP communication to a MobiLink
synchronization server on a machine named kangaroo:

CREATE SYNCHRONIZATION USER SSinger
TYPE ActiveSync
ADDRESS ’stream=tcpip;host=kangaroo;port=2439’

☞ For more information, see“CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 404].

83

Installing the MobiLink provider for ActiveSync

Before you register your Adaptive Server Anywhere MobiLink client for use
with ActiveSync, you must install the MobiLink provider for ActiveSync
using the installation utility (dbasinst.exe).

The Adaptive Server Anywhere for Windows CE setup program installs the
MobiLink provider for ActiveSync. If you install Adaptive Server Anywhere
for Windows CE you do not need to carry out the steps in this section.

When you have installed the MobiLink provider for ActiveSync you must
register each application separately. For instructions, see“Registering
Adaptive Server Anywhere clients for ActiveSync” on page 85.

❖ To install the MobiLink provider for ActiveSync

1. Ensure that you have the ActiveSync software on your machine, and that
the Windows CE device is connected.

2. Enter the following command to install the MobiLink provider:

dbasinst -k desk-path -v dev-path

wheredesk-pathis the location of the desktop component of the provider
(dbasdesk.dll) anddev-pathis the location of the device component
(dbasdev.dll).

If you have SQL Anywhere installed on your computer,dbasdesk.dllis in
thewin32 or win64 subdirectory of your SQL Anywhere directory and
dbasdev.dllis in a platform-specific directory in theCE subdirectory. If
you omit -v or -k, these directories are searched by default.

If you receive a message telling you that the remote provider failed to
open, perform a soft reset of the device and repeat the command:

☞ For more information, see“ActiveSync provider installation utility”
on page 28.

3. Restart your machine.

ActiveSync does not recognize new providers until the machine is
restarted.

4. Enable the MobiLink provider.

♦ From the ActiveSync window, click Options.

♦ Check the MobiLink item in the list and click OK to activate the
provider.

84

Chapter 5. Adaptive Server Anywhere Clients

♦ To see a list of registered applications, click Options again, choose the
MobiLink provider, and click Settings.
☞ For more information about registering applications, see
“Registering Adaptive Server Anywhere clients for ActiveSync” on
page 85.

Registering Adaptive Server Anywhere clients for ActiveSync

You can register your application for use with ActiveSync either by using the
ActiveSync provider install utility or using the ActiveSync software itself.
This section describes how to use the ActiveSync software.

☞ For information on the alternative approach, see“ActiveSync provider
installation utility” on page 28.

❖ To register the Adaptive Server Anywhere client for use with Ac-
tiveSync

1. Ensure that the MobiLink provider for ActiveSync is installed.

☞ For information, see“Installing the MobiLink provider for
ActiveSync” on page 84.

2. Start the ActiveSync software on your desktop machine.

3. From the ActiveSync window, choose Options.

4. From the list of information types, choose MobiLink and click Settings.

5. In the MobiLink Synchronization dialog, click New. The Properties
dialog appears.

6. Enter the following information for your application:
♦ Application name A name identifying the application to be

displayed in the ActiveSync user interface.

♦ Class name The class name for the dbmlsync client, as set using the
-wc option.
☞ For more information, see“-wc option” on page 151.

♦ Path The location of the dbmlsync application on the device.

♦ Arguments Any command line arguments to be used when
ActiveSync starts dbmlsync.
You start dbmlsync in one of two modes:

• If you specify scheduling options, dbmlsync enters hover mode. In
this case, use the dbmlsync -wc option with a matching value in the
class name setting.
☞ For more information, see“-wc option” on page 151and
“Scheduling synchronization” on page 88.

85

• Otherwise, dbmlsync is not in hovering mode. In this case, use -k to
shut down dbmlsync.
☞ For more information, see“-k option” on page 140.

7. Click OK to register the application.

86

Chapter 5. Adaptive Server Anywhere Clients

Temporarily stopping synchronization of deletes
Ordinarily, Adaptive Server Anywhere automatically logs any changes to
tables or columns that are part of a publication with a synchronization
subscription. These changes are uploaded to the consolidated database
during the next synchronization.

You may, however, wish to delete rows from synchronized data and not have
those changes uploaded. This feature can be used to make unusual
corrections, but should be used with caution as it effectively disables part of
the automatic synchronization functionality. This technique is a practical
alternative to deleting the necessary rows using a download_delete_cursor
script

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the delete operations subsequently executed on that connection are
synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed. The effects do not nest; that is, subsequent
executions of stop synchronization delete after the first will have no
additional effect.

❖ To temporarily disable upload of deletes made through a connec-
tion
1. Issue the following statement to stop automatic logging of deletes.

STOP SYNCHRONIZATION DELETE

2. Delete rows from the synchronized data, as required, using the DELETE
statement. Commit these changes.

3. Restart logging of deletes using the following statement.

START SYNCHRONIZATION DELETE

The deleted rows will not be sent up to the MobiLink synchronization server
and hence will not be deleted from the consolidated database.

87

Scheduling synchronization
Instead of running dbmlsync in a batch fashion, where it synchronizes and
then shuts down, you can set up an Adaptive Server Anywhere client so that
dbmlsync runs continuously, synchronizing at predetermined times.

You specify the synchronization schedule as an extended option. It can be
specified either on the dbmlsync command line or it can be stored in the
database for the synchronization user, subscription, or publication.

☞ For information about extended options, see“dbmlsync extended
options” on page 105or “-eu option” on page 140. For more information
about how to set scheduling, see“Schedule (sch) extended option” on
page 127.

❖ To add scheduling to the synchronization subscription

1. Set the Schedule extended option in the synchronization subscription. For
example,

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
FOR mluser
ADDRESS ’host=localhost’
OPTION schedule=’weekday@11:30am-12:30pm’

☞ For more information about scheduling syntax, see“Schedule (sch)
extended option” on page 127.

☞ You can override scheduling instructions and synchronize
immediately using the dbmlsync -is option. The -is option instructs
dbmlsync to ignore all scheduling information. For more information, see
“-is option” on page 140.

❖ To add scheduling from the dbmlsync command line

1. Set the schedule extended option. Extended options are set with -e or -eu.
For example,

dbmlsync -e sch=weekday@11:30am-12:30pm ...

If scheduled synchronization is specified in either place, dbmlsync does not
shut down after synchronizing, but runs continuously.

Hovering When scheduling options are specified, dbmlsync goes into hovering mode.
Hovering is a feature that reduces the amount of time spent scanning the log.
You can improve the performance benefits of hovering by setting the
dbmlsync extended option HoverRescanThreshold or by using the dbmlsync
stored procedure sp_hook_dbmlsync_log_rescan.

88

Chapter 5. Adaptive Server Anywhere Clients

☞ For more information, see“HoverRescanThreshold (hrt) extended
option” on page 119and“sp_hook_dbmlsync_log_rescan” on page 215.

89

Adaptive Server Anywhere version 7 MobiLink
clients

Adaptive Server Anywhere 7.0 MobiLink clients were configured using
SQL statements that are now deprecated. In particular, synchronization
definitions were used instead of publications and subscriptions. The older
statements are no longer supported. They have some disadvantages:

1. A synchronization definition is equivalent to a single publication and a
single subscription to it. There is no support for subscriptions to multiple
publications. In contrast, a single MobiLink user can now subscribe to
multiple publications. This allows you to synchronize some portions of
your data without synchronizing all of it.

2. Some people found the old terminology confusing. For example, a
MobiLink user name was formerly called a site in the context of an
Adaptive Server Anywhere client. A MobiLink user is now called a
MobiLink user or a synchronization user.

3. The new statements are analogous to those used in SQL Remote, the
Sybase message-based replication technology.

Synchronization
definitions identify data
to upload in version 7
remote databases

You can choose to synchronize all or any portion of the data in a client
Adaptive Server Anywhere database. You can choose to synchronize entire
tables, or you can choose to synchronize only particular columns and rows.

The synchronization definition, located in the client Adaptive Server
Anywhere database, describes the data that is to be replicated and the
location of the appropriate MobiLink synchronization server.

Synchronization scripts, stored in the consolidated database, control how the
uploaded rows are processed and which rows are downloaded to the remote
database. These scripts do not depend on the type of remote database.

A synchronization definition may include data from several database tables.
Each table’s contribution to a synchronization definition is called anarticle .
Each article may consist of a whole table, or a subset of the rows and
columns in a table.

90

Chapter 5. Adaptive Server Anywhere Clients

A two-table synchronization definition

Article 1: all of

table A

Article 2: some rows and

columns from table B

+

X

X

X

X

X

X

X
 X
 X
 X
 X

X
 X
 X
 X
 X

X
X
X
X
X

X

X

X

X

X

X

X

X

X

X

Synchronizing a remote
database

Once a remote database is set up, the two databases must be periodically
brought to a state where they both have the same set of information. This
process of synchronization is carried out using the dbmlsync command line
utility.

Altering a synchronized
table

A table, once added to a synchronization definition, should not be altered.
Altering the table interferes with the synchronization process. Should it be
necessary to make such an alteration, this step should be performed
immediately following synchronization.

The only way to ensure that the ALTER STATEMENT is executed
immediately following synchronization is to place this statement in a script,
then execute that script using the-I option of thedbmlsynccommand line
utility.

Comparison to UltraLite
clients

If you have developed UltraLite applications for use as MobiLink clients, the
following information may be helpful. Many of the elements of a
synchronization definition have an UltraLite counterpart.

91

Adaptive Server

Anywhere 9.0

client

Adaptive Server

Anywhere 7.0

client

UltraLite

clients

MobiLink synchro-

nization server

MobiLink syn-
chronization user

site user name MobiLink user

type type stream connection type

address address connection
parameters

the server’s address

script version script version version script version

publication part of a defini-
tion in a remote
database, or part
of a template in a
reference database

none —all
tables are
synchronized

publication

subscription part of a defini-
tion in a remote
database, or a part
of a site in a refer-
ence database

none none

Writing synchronization
definitions

The synchronization definition is a version 7.0 database object describing
data in an Adaptive Server Anywhere remote database that is to be
synchronized with a particular MobiLink synchronization server. When
using Adaptive Server Anywhere 9.0 or later, publications and
synchronization subscriptions should be used instead.

☞ For details, see“Creating a remote database” on page 60.

A synchronization definition should appear only in an Adaptive Server
Anywhere 7.0 remote database. MobiLink consolidated servers are
configured using scripts.

A synchronization definition specifies the following pieces of information

♦ name The name of the synchronization definition, known only within
the remote database.

♦ site A name that uniquely identifies this particular MobiLink client.

♦ type The type of stream to be used to communicate with the MobiLink
synchronization server.

♦ address The parameters necessary to connect to the MobiLink
synchronization server.

92

Chapter 5. Adaptive Server Anywhere Clients

♦ script version The version of the synchronization scripts the MobiLink
synchronization server is to use when synchronizing this client.

♦ articles A description of the data to be synchronized. You can
synchronize entire tables, or only particular rows and columns.

The following statement creates a synchronization definition named testpub
that defines what data is to be synchronized with site demo_sync_site.

CREATE SYNCHRONIZATION DEFINITION testpub
SITE ’demo_sync_site’
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’
(table People(person_id, fname, lname),table Pets);

In this statement,

♦ The name of this synchronization definition is testpub. This name is only
known within the remote database.

♦ The name demo_sync_site uniquely identifies this client to the MobiLink
synchronization server. This name should appear in the ml_user
MobiLink system table, located in the consolidated database.

♦ The synchronization is to occur over a TCP/IP connection. The
connection parameters appear in a string in the ADDRESS clause.

The TCP/IP connection parameters show that the MobiLink
synchronization server is listening on port 2439 of the current machine.
Only the listed columns of the People table are synchronized. The option
clause is included to indicate that the MobiLink synchronization server
should useversion1of the synchronization scripts when processing data
from this client. The default value of this parameter isdefault . Notice
that the list of columns is also enclosed in parentheses.

♦ The MobiLink synchronization server is to use the set of synchronization
scripts identified by the name version1 when synchronizing this client.
This script version name should appear in the ml_script_version
MobiLink system table, located in the consolidated database.

♦ All columns and rows of thePetstable and the listed columns of the
Peopletable are to be synchronized.

Synchronizing with
multiple servers

To synchronize a remote database with multiple MobiLink synchronization
servers, create multiple synchronization definitions within the remote
database. Each synchronization definition must have a unique site name
because, from the point of view of the MobiLink synchronization server,
each is a separate logical client.

93

Synchronizing the same data in one remote database with multiple
MobiLink synchronization servers is not presently supported.

Rewriting
synchronization
definitions for version 8
and up

To use an Adaptive Server Anywhere 7 database as a MobiLink client, you
use a synchronization definition to identify which data to upload. In
version 8.0 and later, these are better rewritten as publications and
synchronization subscriptions.

Example Suppose you wanted to synchronize the Customer and Sales_Order tables of
the sample database. You could have created the following synchronization
definition.

CREATE SYNCHRONIZATION DEFINITION testpub
SITE ’demo_ml_user’
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’
(TABLE Customer, TABLE Sales_Order);

Instead, you should now do the following.

1. First, publish the Customer and Sales_Order tables.

CREATE PUBLICATION testpub
(TABLE Customer, TABLE Sales_Order);

2. Next, create a subscription to this publication for the MobiLink user. In
this case, the MobiLink user is demo_ml_user. It is unnecessary that a
database user of the same name to exist. MobiLink users and database
users are independent.

CREATE SYNCHRONIZATION SUBSCRIPTION TO testpub
FOR demo_ml_user
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’

The information is the same, but is broken into two smaller statements
instead of one large one.

The SITE clause in the synchronization definition specifies that this
particular MobiLink client will synchronizing using the MobiLink user
name demo_sync_site. Synchronization is to occur over a TCP/IP
connection. The synchronization server is to use the version1 version of the
synchronization scripts when interacting with this client.

In the second case, the synchronized tables are published, and then a
subscription is created for the demo_sync_site MobiLink user. The TYPE,
ADDRESS, and OPTION clauses have the same syntax.

94

CHAPTER 6

Adaptive Server Anywhere Client
Synchronization Parameters

About this chapter This chapter details all the options you can set for the MobiLink
synchronization client, dbmlsync. You can use dbmlsync to synchronize
Adaptive Server Anywhere remote databases with a consolidated database.

☞ The dbmlsync utility only works with Adaptive Server Anywhere
remote databases. To synchronize UltraLite remote databases, see“UltraLite
Synchronization Parameters” on page 315.

Contents Topic: page

MobiLink synchronization client 96

dbmlsync options 100

95

MobiLink synchronization client
Use the dbmlsync utility to synchronize Adaptive Server Anywhere remote
databases with a consolidated database.

Syntax dbmlsync [options] [transaction-logs-directory]

Option Description

@data Read in options from the specified environment
variable or configuration file. See“@data option”
on page 100.

-a Do not prompt for input again on error. See“-a
option” on page 100

-ap Specify authentication parameters. See“-ap option”
on page 100.

-ba filename Apply a download file. See“-ba option” on
page 100.

-bc filename Create a download file. See“-bc option” on
page 101.

-bestring When creating a download file, add a string. See
“-be option” on page 101.

-bg When creating a download file, make it suitable for
new remotes. See“-bg option” on page 102.

-c connection-string Supply database connection parameters in the form
parm1=value1; parm2=value2,. . . If you do not
supply this option, a dialog will appear and you must
supply connection information. See“-c option” on
page 102.

-d Drop any other connections to the database whose
locks conflict with the articles to be synchronized.
See“-d option” on page 103.

-dc Enable restartable downloads. See“-dc option” on
page 103.

-dl Display log messages on the console. See“-dl
option” on page 104.

-ds Specify download-only synchronization. See“-ds
option” on page 104.

96

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Option Description

-e “option=value”. . . Specify extended options. See“dbmlsync extended
options” on page 105.

-eh Ignore errors that occur in hook functions.

-ek key Specify encryption key. See“-ek option” on
page 139.

-ep Prompt for encryption key. See“-ep option” on
page 140.

-eu Specify extended options for upload defined by most
recent-n option. See“-eu option” on page 140.

-is Ignore schedule. See“-is option” on page 140.

-k Close window on completion. See“-k option” on
page 140.

-l List available extended options. See“-l option” on
page 141.

-mn password Specify new MobiLink password. See“-mn option”
on page 141.

-mp password Specify MobiLink password. See“-mp option” on
page 141.

-n name Specify synchronization publication name(s). See
“-n option” on page 142.

-o logfile Log output messages to this file. See“-o option” on
page 142.

-ossize Specifies a maximum size for the output log, at
which point the log is renamed. See“-os option” on
page 142.

-ot logfile Truncate file and log output messages to file. See
“-ot option” on page 143.

-p Disable logscan polling. See“-p option” on
page 143.

-pd dllname;... Preload specified dlls for Windows CE. See“-pd
option” on page 144.

-pi Test that you can connect to MobiLink. See“-pi
option” on page 144.

97

Option Description

-pp number Set logscan polling period. See“-pp option” on
page 145.

-q Run in minimized window. See“-q option” on
page 146.

-r [a | b] Upload retry on client progress. See“-r option” on
page 146.

-sc Reload schema information before each synchro-
nization. See“-sc option” on page 147.

-tu Remote transactions are preserved on upload. See
“-tu option” on page 147.

-u ml_username Allows you to specify the MobiLink user to syn-
chronize. See“-u option” on page 148.

-uo Synchronization will be upload-only (no download).
See“-uo option” on page 149.

-urc row-estimate Allows you to specify an estimate of the rows that
will be uploaded. See“-urc option” on page 149.

-v[levels] Verbose operation. See“-v option” on page 150.

-wc classname Specify a window class name. See“-wc option” on
page 151.

-x Rename and restart the transaction log. See“-x
option” on page 151.

transaction-logs-
directory

Specify the location of the transaction log. See
Transaction Log File, below.

Description Run dbmlsync on the command line to synchronize an Adaptive Server
Anywhere remote database with a consolidated database.

To locate and connect to the MobiLink synchronization server, dbmlsync
uses the information on the publication, synchronization user,
synchronization subscription, or command line.

Transaction log file Thetransaction-logs-directoryis the directory that
contains the transaction log for the Adaptive Server Anywhere remote
database. There is an active transaction log and transaction log archive files,
both of which may be required by dbmlsync to determine what to upload.
You must specify this parameter if the following are true:

98

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

♦ the working log file has been truncated and renamed since you last
synchronized

♦ you run the dbmlsync utility from a directory other than the one where
the renamed log files are stored

☞ For more information, see“Transaction log files” on page 79.

dbmlsync event hooks There are also dbmlsync client stored procedures
that can help you customize the synchronization process. For more
information, see“Customizing the client synchronization process” on
page 177and“Dbmlsync Client Event Hooks” on page 175.

Using dbmlsync For more information about using dbmlsync, see
“Initiating synchronization” on page 78.

99

dbmlsync options
This section lists MobiLink synchronization client command line options.

@data option

Function Reads in options from the specified environment variable or configuration
file.

Syntax dbmlsync @ data . . .

Description With this option, you can put command line options in an environment
variable or configuration file. If both exist with the name you specify, the
environment variable is used.

☞ For more information about configuration files, see“Using configuration
files” [ASA Database Administration Guide,page 495].

If you want to protect passwords or other information in the configuration
file, you can use the File Hiding utility to obfuscate the contents of the
configuration file.

☞ See“Hiding the contents of files using the dbfhide command-line
utility” [ASA Database Administration Guide,page 524].

-a option

Function Specifies that dbmlsync should not prompt for input again on error.

Syntax dbmlsync -a . . .

-ap option

Function Specifies parameters for authentication.

Syntax dbmlsync -ap " parameters,..." . . .

Description Use when you use the authenticate_parameters connection script. For
example,

dbmlsync -ap "parm1,parm2,parm3"

☞ For more information, see“authenticate_parameters connection event”
[MobiLink Administration Guide,page 334].

-ba option

Function Applies a download file.

100

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Syntax dbmlsync -ba " filename" . . .

Description Specify the name of an existing download file. You can optionally specify a
path. If you do not specify a path, the default location is dbmlsync’s current
working directory (the directory where dbmlsync was started).

☞ For more information, see“File-Based Downloads”[MobiLink
Administration Guide,page 85].

-bc option

Function Creates a download file.

Syntax dbmlsync -bc " filename" . . .

Description Create a download file with the specified name. You should use the file
extension .df for download files.

You can optionally specify a path. If you do not specify a path, the default
location is dbmlsync’s current working directory, which is the directory
where dbmlsync was started.

Optionally, in the same dbmlsync command line as you create the download
file, you can use the -be option to specify a string that can be validated at the
remote database, and the -bg option to create a download file for new remote
databases.

See also “File-Based Downloads”[MobiLink Administration Guide,page 85]

“-be option” on page 101

“-bg option” on page 102

-be option

Function When creating a download file, this option specifies an extra string to be
included in the file.

Syntax dbmlsync -bc " filename" -be " string" . . .

Description The string can be used for authentication or other purposes. It is verified at
the remote database using the sp_hook_dbmlsync_validate_download_file
stored procedure.

See also “sp_hook_dbmlsync_validate_download_file” on page 233

“File-Based Downloads”[MobiLink Administration Guide,page 85]

“-bc option” on page 101

101

-bg option

Function When creating a download file, this option creates a file that can be used
with remote databases that have not yet synchronized.

Syntax dbmlsync -bc " filename" -bg . . .

Description The -bg option causes the download file to update the generation numbers on
the remote database.

This option allows you to build a download file that can be applied to remote
databases that have never synchronized. Otherwise, you must perform a
synchronization before you apply a download file.

Download files built with the -bg option should be snapshot downloads.
Timestamp-based downloads will not work with remote databases that have
not synchronized because the last download timestamp on a new remote is
by default January 1, 1900, which will be earlier than the last download
timestamp in the download file. For timestamp-based file-based downloads
to work, the last download timestamp in the download file must be the same
or earlier than on the remote.

You should not apply download files built with the -bg option to remote
databases that have already synchronized. The -bg option causes the
generation numbers on the remote database to be updated with the value on
the consolidated database at the time the download file was created. For
remotes that have already synchronized, this means that the remote database
is not forced to upload data before applying a download, and so data could
be lost.

See also “-bc option” on page 101

“File-Based Downloads”[MobiLink Administration Guide,page 85]

“MobiLink generation numbers”[MobiLink Administration Guide,page 93]

“Synchronizing new remotes”[MobiLink Administration Guide,page 88]

-c option

Function Specifies connection parameters for the remote database.

Syntax dbmlsync -c " connection-string" . . .

Description The connection string must give dbmlsync permission to connect to the
Adaptive Server Anywhere remote database. Commonly, a user ID with
REMOTE DBA authority is used.

102

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Specify the connection string in the formkeyword=value, with multiple
parameters separated by semicolons. If any of the parameter names contain
spaces, you need to enclose the connection string in double quotes.

If you do not specify -c, a dbmlsync Setup dialog appears. You can specify
the remaining command line options in the fields of the connection dialog.

For a complete list of connection parameters for connecting to Adaptive
Server Anywhere databases, see“Connection parameters”[ASA Database
Administration Guide,page 176].

-d option

Function Drops conflicting locks to the remote database.

Syntax dbmlsync -d . . .

Description During synchronization, unless the LockTables extended option is set to
OFF, all tables involved in the publications being synchronized are locked to
prevent any other processes from making changes. If another connection has
a lock on one of these tables, the synchronization fails. Specifying this
option forces Adaptive Server Anywhere to drop any other connections to
the remote database that hold conflicting locks.

See also “Concurrency during synchronization” on page 80

-dc option

Function Specifies restartable downloads.

Syntax dbmlsync -dc . . .

Description By default, if MobiLink fails during a download it doesn’t apply any of the
download data to the remote database. However, it stores the part of the
download it did receive in a temporary file on the remote device, so that if
you specify -dc the next time you start dbmlsync, it can more quickly
complete the download. When you specify -dc, dbmlsync restarts the
download and attempts to download the part of the previous download that it
did not receive. If it is able to download the remaining data, it applies the
complete download to your remote database.

If there is any new data to be uploaded when you use -dc, the restartable
download will fail.

You can also specify restartable downloads for Adaptive Server Anywhere
remote databases with the ContinueDownload extended option or with the
sp_hook_dbmlsync_end hook.

103

See also “Resuming failed downloads”[MobiLink Administration Guide,page 74]

“ContinueDownload (cd) extended option” on page 112

“sp_hook_dbmlsync_end” on page 212

“DownloadReadSize (drs) extended option” on page 116

-dl option

Function Displays messages in the log file.

Syntax dbmlsync -dl . . .

Description Normally when output is logged to a file, more messages are written to the
log file than to the dbmlsync window. This option forces dbmlsync to write
information normally only written to the file to the window as well. Using
this option may have an effect on the speed of synchronization.

-ds option

Function Specifies download-only synchronization.

Syntax dbmlsync -ds . . .

Description When download-only synchronization occurs, dbmlsync does not upload
any row operations or data. However, it does upload information about the
schema and progress offset.

In addition, dbmlsync ensures that changes on the remote are not overwritten
during download-only synchronization. It does this by scanning the log to
detect rows with operations waiting to be uploaded. If any of these rows is
modified by the download stream, the download stream is rolled back and
the synchronization fails. If the synchronization fails for this reason, you
must do a full synchronization to correct the problem.

When you have remotes that are synchronized by download-only
synchronization, you should regularly do a full synchronization to reduce the
amount of log that is scanned by the download-only synchronization.
Otherwise, the download-only synchronizations will take an increasingly
long time to complete.

When -ds is used, the ConflictRetries setting is ignored. dbmlsync never
retries a download-only synchronization. If a download-only
synchronization fails, it will continue to fail until a normal synchronization
is performed.

See also “Upload-only and download-only synchronization”[MobiLink Administration
Guide,page 24]

104

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

“DownloadOnly (ds) extended option” on page 115

“UploadOnly (uo) extended option” on page 133or “-uo option” on
page 149

dbmlsync extended options

Function Specifies extended options.

Syntax dbmlsync -e extended-option=value; . . .

extended-option:
adr cd cr ctp dbs dir drs ds eh el ft hrt inc isc lt mem mn mp p pp sa sc

sch scn st sv tor uo v vn vm vo vr vs vu

Parameters Extended options can be specified by their long form or short form. See each
option, below, for details.

Description Options specified on the command line with the -e option apply to all
synchronizations requested on the command line. For example, in the
following command line, the extended option sv=test applies to the
synchronization of both pub1 and pub2.

dbmlsync -e "sv=test" -n pub1 -n pub2

To specify extended options for a single upload, use the -eu option.

Extended options can be specified on the dbmlsync command line using the
-e or -eu options, or they can be stored in the database. You store extended
options in the database using Sybase Central, by using the
sp_hook_dbmlsync_set_extended_options event hook, or by using the
OPTIONS clause in any of the following statements:

♦ CREATE SYNCHRONIZATION SUBSCRIPTION

♦ ALTER SYNCHRONIZATION SUBSCRIPTION

♦ CREATE SYNCHRONIZATION USER

♦ ALTER SYNCHRONIZATION USER

♦ CREATE SYNCHRONIZATION SUBSCRIPTION without specifying a
synchronization user (which associates extended options with a
publication)

Dbmlsync combines options stored in the database with those specified on
the command line. If conflicting options are specified, dbmlsync resolves
them as follows. In the following list, options specified by methods
occurring earlier in the list take precedence over those occurring later in the
list.

105

♦ options specified in the sp_hook_dbmlsync_set_extended_options event
hook

♦ options specified on the command line with the -eu option

♦ options specified on the command line with the -e option

♦ options specified for the subscription (whether by a SQL statement or in
Sybase Central)

♦ options specified for the user (whether by a SQL statement or in Sybase
Central)

♦ options specified for the publication (whether by a SQL statement or in
Sybase Central)

You can review extended options in the log and the SYSSYNC system table.

☞ For information on how extended options can be used to tune
synchronization, see“Customizing synchronization” on page 78.

For a detailed explanation of each option, see below.

See also “-eu option” on page 140

“SYSSYNC system table”[ASA SQL Reference,page 740]

“sp_hook_dbmlsync_set_extended_options” on page 225

Example The following dbmlsync command line illustrates how you can set extended
options when you start dbmlsync:

dbmlsync -e "adr=host=localhost;dir=c: \db\logs"...

The following SQL statement illustrates how you can store extended options
in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
FOR mluser
ADDRESS ’host=localhost’
OPTION schedule=’weekday@11:30am-12:30pm’, dir=’c: \db\logs’

The following dbmlsync command line opens the usage screen that lists
options and their syntax:

dbmlsync -l

CommunicationAddress (adr) extended option

Function Specifies network protocol options for connecting to the MobiLink server.

Syntax dbmlsync -e adr= protocol-option; ...

106

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Parameters ♦ TCP/IP protocol options If you specify the tcpip protocol, you can
optionally specify the following protocol options:

TCP/IP protocol option For more information, see...

client_port=nnnnn[-mmmmm] “client_port” on page 41

host=hostname “host” on page 42

liveness_timeout=n “liveness_timeout” on page 46

network_connect_-
timeout=seconds

“network_connect_timeout” on
page 47

network_leave_open={ 0|1} “network_leave_open” on page 47

network_name=name “network_name” on page 48

port=portnumber “port” on page 49

secu-
rity= cipher(keyword=value;. . .)

“security” on page 50

♦ HTTP protocol If you specify the http protocol, you can optionally
specify the following protocol options:

HTTP protocol option For more information, see...

buffer_size=number “buffer_size” on page 36

client_port=nnnnn[-mmmmm] “client_port” on page 41

custom_header=header “custom_header” on page 41

host=hostname “host” on page 42

network_connect_-
timeout=seconds

“network_connect_timeout” on
page 47

network_leave_open={ 0|1} “network_leave_open” on page 47

network_name=name “network_name” on page 48

persistent={ 0|1} “persistent” on page 48

port=portnumber “port” on page 49

proxy_host=proxy_hostname “proxy_host” on page 50

proxy_port=proxy_portnumber “proxy_port” on page 50

set_cookie=cookie_name
=cookie_value

“set_cookie” on page 52

107

HTTP protocol option For more information, see...

url_suffix=suffix “url_suffix” on page 55

version=versionnumber “version” on page 56

♦ HTTPS or HTTPS_FIPS protocols The HTTPS protocol uses Certicom
RSA security. The HTTPS_FIPS protocol uses separate FIPS 140-2
certified RSA encryption software from Certicom.

Separately licensable option required
Transport-layer security requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

If you specify the HTTPS protocol, you can optionally specify the
following protocol options:

HTTPS/HTTPS_FIPS protocol option For more information,

see...

buffer_size=number “buffer_size” on page 36

certificate_company=company_name “certificate_company” on
page 37

certificate_name=name “certificate_name” on
page 38

certificate_unit=company_unit “certificate_unit” on
page 40

client_port=nnnnn[-mmmmm] “client_port” on page 41

custom_header=header “custom_header” on
page 41

host=hostname “host” on page 42

network_connect_timeout=seconds “net-
work_connect_timeout”
on page 47

network_leave_open={ 0|1} “network_leave_open” on
page 47

108

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

HTTPS/HTTPS_FIPS protocol option For more information,

see...

network_name=name “network_name” on
page 48

persistent={ 0|1} “persistent” on page 48

port=portnumber “port” on page 49

proxy_host=proxy_hostname “proxy_host” on page 50

proxy_port=proxy_portnumber “proxy_port” on page 50

set_cookie=cookie_name=cookie_value “set_cookie” on page 52

trusted_certificates=filename “trusted_certificates” on
page 53

url_suffix=suffix “url_suffix” on page 55

version=versionnumber “version” on page 56

♦ ActiveSync protocol During ActiveSync synchronization, ActiveSync
is used to exchange data with the MobiLink provider for ActiveSync,
which resides on the desktop machine. The ActiveSync protocol options
describe the communications between the MobiLink provider for
ActiveSync and the MobiLink synchronization server.

The address string for ActiveSync takes the following form:

stream= desktop-protocol ;[desktop-protocol-options]

where:
• desktop-protocol is the network protocol to use between the

MobiLink provider for ActiveSync and the MobiLink synchronization
server. It can behttp , https, https_fipsor tcpip. The default istcpip.

• desktop-protocol-optionsare TCP/IP, HTTP, HTTPS, or HTTPS_FIPS
options, as described in the lists above.

Separately licensable option required
Transport-layer security requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

☞ For more information, see“ActiveSync provider installation
utility” on page 28.

109

Description You must ensure that all subscriptions for a MobiLink user are synchronized
to only one consolidated database. Otherwise, you may experience data loss
and unpredictable behavior.

If you are using the Redirector, see“Configuring MobiLink clients and
servers for the Redirector”[MobiLink Administration Guide,page 137].

This option has a short form and long form: you can useadr or
CommunicationAddress.

This option can also be stored in the database using the SQL statement that
creates or alters a publication, subscription, or user. For more information,
see:

♦ “CREATE SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]” [ASA SQL Reference,page 402]

♦ “CREATE SYNCHRONIZATION USER statement [MobiLink]”[ASA
SQL Reference,page 404]

To specify the TCP/IP, HTTP, HTTPS, or HTTPS_FIPS protocol, use the
CommunicationType extended option.

☞ For more information, see“CommunicationType (ctp) extended option”
on page 111.

See also “Configuring MobiLink clients and servers for the Redirector”[MobiLink
Administration Guide,page 137]

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "adr=host=localhost"

To specify multiple network protocol options on the command line, enclose
them in single quotes. For example,

dbmlsync -e "adr=’host=somehost;port=5001’"

To store the Address or CommunicationType in the database, you can use an
extended option or you can use the ADDRESS or TYPE clause. For
example,

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
TYPE ’https’
ADDRESS host=’localhost;port=2439’

110

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

CommunicationType (ctp) extended option

Function Specifies the type of network protocol to use for connecting to the MobiLink
server.

Syntax dbmlsync -e ctp= sync-type; ...

Description sync-typecan be one oftcpip, http , https, https_fipsor ActiveSync. The
default istcpip.

You must ensure that all subscriptions for a MobiLink user are synchronized
to only one consolidated database. Otherwise, you may experience data loss
and unpredictable behavior.

This option has a short form and long form: you can usectp or
CommunicationType.

This option can also be stored in the database using the SQL statement that
creates or alters a publication, subscription, or user. For more information,
see:

♦ “CREATE SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]” [ASA SQL Reference,page 402]

♦ “CREATE SYNCHRONIZATION USER statement [MobiLink]”[ASA
SQL Reference,page 404]

See also ♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,
page 165]

♦ “CommunicationAddress (adr) extended option” on page 106

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "ctp=https"

To store the Address or CommunicationType in the database, you can use an
extended option or you can use the ADDRESS or TYPE clause. For
example,

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
TYPE ’tcpip’
ADDRESS host=’localhost’

ConflictRetries (cr) extended option

Function Specifies the number of retries if the download fails because of conflicts.

111

Syntax dbmlsync -e cr= number ; ...

Description -1 specifies that retries should continue indefinitely. The default is-1.

This option is useful only if the LockTables option is OFF, which is not the
default.

This option has a short form and long form: you can usecr or
ConflictRetries.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “Handling conflicts”[MobiLink Administration Guide,page 64]

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "cr=5"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION cr=’5’;

ContinueDownload (cd) extended option

Function Specifies restartable downloads.

Syntax dbmlsync -e cd= { ON | OFF }; ...

Description By default, if MobiLink fails during a download it doesn’t apply any of the
download data to the remote database. However, it stores the part of the
download it did receive in a temporary file on the remote device, so that if
you specify -e cd the next time you start dbmlsync, it can more quickly
complete the download. When you specify -e cd, dbmlsync restarts the
download and attempts to download the part of the previous download that it
did not receive. If it is able to download the remaining data, it applies the
complete download to your remote database.

If there is any new data to be uploaded when you use -dc, the restartable
download will fail.

You can also specify restartable downloads for Adaptive Server Anywhere
remote databases with the -dc option or with the sp_hook_dbmlsync_end
hook.

112

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

This option has a short form and long form: you can usecd or
ContinueDownload.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “Resuming failed downloads”[MobiLink Administration Guide,page 74]

“sp_hook_dbmlsync_set_extended_options” on page 225

“-dc option” on page 103

“sp_hook_dbmlsync_end” on page 212

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "cd=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION cd=’on’;

DisablePolling (p) extended option

Function Disables automatic logscan polling.

Syntax dbmlsync -e p= { ON | OFF }; ...

Description In order to build an upload stream, dbmlsync must scan the transaction log.
Usually it does this just before synchronization. However, when
synchronizations are scheduled, dbmlsync by default scans the log in the
time between scheduled synchronizations; and when the
sp_hook_dbmlsync_delay hook is used, dbmlsync by default scans the log in
the pause that occurs just before synchronization. This behavior is more
efficient because the log is already at least partially scanned when
synchronization begins. This default behavior is called logscan polling.

Logscan polling is on by default but only has an effect when
synchronizations are scheduled or when sp_hook_dbmlsync_delay hook is
used. When in effect, polling occurs at set intervals: dbmlsync scans to the
end of the log, waits for the polling period, and then scans any new
transactions in the log. By default, the polling period is 1 minute, but it can
be changed with the dbmlsync -pp option or the PollingPeriod extended
option.

113

The default is to not disable logscan polling (OFF).

This option is identical todbmlsync -p.

This option has a short form and long form: you can usep orDisablePolling.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “PollingPeriod (pp) extended option” on page 126

“-p option” on page 143

“-pp option” on page 145

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "p=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION p=’on’;

DownloadBufferSize (dbs) extended option

Function Specifies the size of the download buffer.

Syntax dbmlsync -e dbs= number [K | M]; ...

Description The buffer size is specified in units of bytes. Use the suffix k or m to specify
units of kilobytes or megabytes, respectively.

If you set this option to 0, dbmlsync does not buffer the download stream. If
the setting is greater than 0 but less than 4k, dbmlsync uses a 4k buffer size
and issues a warning. The default is32K on Windows CE, and1M on all
other operating systems.

Download buffering increases the benefit of eliminating the download
acknowledgement because it allows the worker thread to send the download
faster.

This option has a short form and long form: you can usedbsor
DownloadBufferSize.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on

114

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "dbs=32k"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION dbs=’32k’;

DownloadOnly (ds) extended option

Function Specifies that synchronization should be download-only.

Syntax dbmlsync -e ds= { ON | OFF }; ...

Description When download-only synchronization occurs, dbmlsync does not upload
any row operations or data. However, it does upload information about the
schema and progress offset.

In addition, dbmlsync ensures that changes on the remote are not overwritten
during download-only synchronization. It does this by scanning the log to
detect rows with operations waiting to be uploaded. If any of these rows is
modified by the download stream, the download stream is rolled back and
the synchronization fails. If the synchronization fails for this reason, you
must do a full synchronization to correct the problem.

When you have remotes that are synchronized by download-only
synchronization, you should regularly do a full synchronization to reduce the
amount of log that is scanned by the download-only synchronization.
Otherwise, the download-only synchronizations will take an increasingly
long time to complete.

The default isOFF (full synchronization of both upload and download).

This option has a short form and long form: you can usedsor
DownloadOnly.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “-ds option” on page 104

“Upload-only and download-only synchronization”[MobiLink Administration

115

Guide,page 24]

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "ds=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION ds=’ON’;

DownloadReadSize (drs) extended option

Function For restartable downloads, specifies the maximum amount of data that may
need to be resent after a communications failure.

Syntax dbmlsync -e drs= number [K | M]; ...

Description The DownloadReadSize option is only useful when doing restartable
downloads.

The download read size is specified in units of bytes. Use the suffix k or m to
specify units of kilobytes or megabytes, respectively.

Dbmlsync reads the download stream in chunks. The DownloadReadSize
defines the size of these chunks. When a communication error occurs,
dbmlsync loses the entire chunk that was being processed. Depending on
when the error occurs, the number of bytes lost will be between 0 and the
DownloadReadSize -1. So for example, if the DownloadReadSize is 100
bytes and an error occurs after reading 497 bytes, the last 97 bytes read will
be lost. Bytes that are lost in this way will be resent when the download is
restarted.

In general, larger DownloadReadSize values result in better performance on
successful synchronizations but result in more data being resent when an
error occurs.

The typical use of this option is to reduce the default size when
communication is unreliable.

The default is32k.

This option has a short form and long form: you can usedrs or
DownloadReadSize.

You can also store extended options in the database. For more information

116

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “ContinueDownload (cd) extended option” on page 112
♦ “sp_hook_dbmlsync_end” on page 212
♦ “-dc option” on page 103

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "drs=100"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION drs=’100’;

ErrorLogSendLimit (el) extended option

Function Specifies how much of the remote log file dbmlsync should send to the
server when synchronization error occurs.

Syntax dbmlsync -e el= number [K | M]; ...

Description This option is specified in units of bytes. Use the suffix k or m to specify
units of kilobytes or megabytes, respectively.

This option specifies the number of bytes of the output log that dbmlsync
sends to the MobiLink synchronization server when errors occur during
synchronization. Set this option to0 if you don’t want any dbmlsync output
log to be sent.

If ErrorLogSendLimit is set to be large enough, dbmlsync sends the entire
output log messages from the current session to the MobiLink
synchronization server. For example, if the output log messages were
appended to an old output log file, dbmlsync only sends the new messages
generated in the current session. If the total length of new messages is
greater than ErrorLogSendLimit, dbmlsync only logs the last part of the
newly generated error and log messages up to the specified size.

Note: The size of the output log is influenced by your verbosity settings.
You can adjust these using the dbmlsync -v option, or by using dbmlsync
extended options starting with “verbose”. For more information, see“-v
option” on page 150and -e verbose options, below.

117

The default is32K.

This option has a short form and long form: you can useel or
ErrorLogSendLimit .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "el=32k"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION el=’32k’;

FireTriggers (ft) extended option

Function Specifies that triggers should be fired on the remote database when the
download is applied.

Syntax dbmlsync -e ft= { ON | OFF }; ...

Description The default isON.

This option has a short form and long form: you can useft or FireTriggers.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "ft=off"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION ft=’off’;

118

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

HoverRescanThreshold (hrt) extended option

Function When you are using scheduling, this limits the amount of discarded memory
that is allowed to accumulate before a rescan is performed.

Syntax dbmlsync -e hrt= number [K | M]; ...

Description Specifies memory in units of bytes. Use the suffix k or m to specify units of
kilobytes or megabytes, respectively. The default is1M.

When scheduling options are specified or when more than one dbmlsync -n
option is specified, dbmlsync goes into hovering mode. Hovering is a feature
that reduces the amount of time spent scanning the log when dbmlsync is
started and asked to perform more than one synchronization before shutting
down. Hovering can occur only when all the subscriptions to be
synchronized involve the same MobiLink user.

While hovering, dbmlsync keeps track of operations read from the log using
a system than maintains information first in memory, and then spills it on to
disk. As hovering continues, dbmlsync discards memory that has become
fragmented. The amount of memory discarded is proportional to the number
of operations processed while hovering and the size of the rows involved
(not counting BLOBs). Memory is not discarded if the remote database has
only one publication for the user being synchronized.

Discarded memory can be recovered after a complete rescan is performed.
There are two ways that you can control when memory is recovered: the
HoverRescanThreshold extended option and the
sp_hook_dbmlsync_log_rescan stored procedure.

This option has a short form and long form: you can usehrt or
HoverRescanThreshold.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “sp_hook_dbmlsync_log_rescan” on page 215

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "hrt=2m"

The following SQL statement illustrates how you can store this option in the
database:

119

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION hrt=’2m’;

IgnoreHookErrors (eh) extended option

Function Specifies that errors that occur in hook functions should be ignored.

Syntax dbmlsync -e eh= { ON | OFF }; ...

Description The default isOFF.

This option has a short form and long form: you can useehor
IgnoreHookErrors .

This option is equivalent to the dbmlsync -eh option.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "eh=off"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION eh=’off’;

IgnoreScheduling (isc) extended option

Function Specifies that scheduling settings should be ignored.

Syntax dbmlsync -e isc= { ON | OFF }; ...

Description If set to ON, dbmlsync ignores any scheduling information that is specified
in extended options and synchronizes immediately. The default isOFF.

This option is equivalent to the dbmlsync -is option.

This option has a short form and long form: you can useisc or
IgnoreScheduling.

You can also store extended options in the database. For more information

120

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “Scheduling synchronization” on page 88

“Schedule (sch) extended option” on page 127

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "isc=off"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION isc=’off’;

Increment (inc) extended option

Function Controls the size of incremental uploads.

Syntax dbmlsync -e inc= number [K | M]; ...

Description This option specifies a minimum incremental scan volume in units of bytes.
Use the suffix k or m to specify units of kilobytes or megabytes, respectively.

When this option is specified, uploads are sent to MobiLink in one or more
parts. This could be useful if a site has difficulty maintaining a connection
for long enough to complete the full upload. When the option is not set,
uploads are sent as a single unit.

The value of this option specifies, very approximately, the size of each
upload part. The value of the option controls the size of each upload part as
follows. Dbmlsync builds the upload stream by scanning the database
transaction log. When this option is set, dbmlsync scans the number of bytes
that are set in the option, and then continues scanning to the first point at
which there are no outstanding partial transactions—the next point at which
all transactions have either been committed or rolled back. It then sends
what it has scanned as an upload part and resumes scanning the log from
where it left off.

You cannot use the Increment extended option with -tu.

This option has a short form and long form: you can useinc or Increment.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on

121

page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "inc=32000"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION inc=’32k’;

LockTables (lt) extended option

Function Specifies that articles (table or parts of tables in the publications being
synchronized) should be locked before synchronizing.

Syntax dbmlsync -e lt= { ON | OFF | SHARE | EXCLUSIVE }; ...

Description SHARE means that dbmlsync locks all synchronization tables in shared
mode. EXCLUSIVE means that dbmlsync locks all synchronization tables
in exclusive mode. For all platforms except Windows CE, ON is the same as
SHARE. For Windows CE devices, ON is the same as EXCLUSIVE. The
default isON.

Set to OFF to allow modifications during synchronization.

☞ For more information about shared and exclusive locks, see“How
locking works” [ASA SQL User’s Guide,page 135]and“LOCK TABLE
statement”[ASA SQL Reference,page 546].

☞ For more information about locking tables in MobiLink applications,
see“Concurrency during synchronization” on page 80.

When synchronization tables are locked in exclusive mode (the default for
Windows CE devices), no other connections can access the tables, and so
dbmlsync stored procedures that require a separate connection will not be
able to execute if they require access to any of the synchronization tables.
The stored procedures that require a separate connection are

♦ sp_hook_dbmlsync_download_com_error

♦ sp_hook_dbmlsync_download_fatal_sql_error

♦ sp_hook_dbmlsync_download_log_ri_violation

This option has a short form and long form: you can uselt or LockTables.

122

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "lt=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION lt=’on’;

Memory (mem) extended option

Function Specifies a cache size.

Syntax dbmlsync -e mem= number [K | M]; ...

Description Specifies the cache used for building the upload stream, in units of bytes. A
larger cache means that dbmlsync can keep more pages of data in memory,
thus reducing the number of disk reads/writes and improving performance.

Use the suffix k or m to specify units of kilobytes or megabytes, respectively.
The default is1M.

This option has a short form and long form: you can usememor Memory.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “-urc option” on page 149

“Performance tips”[MobiLink Administration Guide,page 106]

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "mem=2M"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION mem=’2m’;

123

MirrorLogDirectory (mld) extended option

Function Specifies the location of old mirror log files so that they can be deleted.

Syntax dbmlsync -e mld= filename ...

Description This option makes it possible for dbmlsync to delete old mirror log files
when either of the following two circumstances occur:

♦ the offline mirror log is located in a different directory from the mirror
transaction log

or

♦ dbmlsync is run on a different machine from the remote database engine

In a normal setup, the active mirror log and renamed mirror transaction logs
are located in the same directory, and dbmlsync is run on the same machine
as the remote database, so this option is not required and old mirror log files
are automatically deleted.

Transaction logs in this directory will only be affected if the
DELETE_OLD_LOGS database option is set to ON or DELAY.

This option has a short form and long form: you can usemld or
MirrorLogDirectory .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “DELETE_OLD_LOGS option [replication]”[ASA Database Administration
Guide,page 652]

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "mld=c: \tmp\file"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION mld=’c: \tmp\file’;

MobiLinkPwd (mp) extended option

Function Specifies the MobiLink password.

124

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Syntax dbmlsync -e mp= password ; ...

Description Specifies the password used to connect. This password should be the correct
password for the MobiLink user whose subscriptions are being
synchronized. This user may be specified with the dbmlsync -u option. The
default isNULL .

If the MobiLink user already has a password, use the extended option-e mn
to change it.

This option has a short form and long form: you can usemp or
MobiLinkPwd .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “NewMobiLinkPwd (mn) extended option” on page 125

“-mn option” on page 141

“-mp option” on page 141

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "mp=SQL"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION mp=’SQL’;

NewMobiLinkPwd (mn) extended option

Function Specifies a new password.

Syntax dbmlsync -e mn= new-password ; ...

Description Specifies a password for the MobiLink user whose subscriptions are being
synchronized. Use this option when you want to change an existing
password. The default isNULL .

This option has a short form and long form: you can usemn or
NewMobiLinkPwd .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on

125

page 105.

See also “MobiLinkPwd (mp) extended option” on page 124

“-mn option” on page 141

“-mp option” on page 141

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "mp=oldpassword; mn=newpassword"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION mn=’SQL’;

OfflineDirectory (dir) extended option

Function Specifies the path containing offline transaction logs.

Syntax dbmlsync -e dir= path; ...

Description This option has a short form and long form: you can usedir or
OfflineDirectory .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "dir=c: \db\logs"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION dir=’c: \db\logs’;

PollingPeriod (pp) extended option

Function Specifies the logscan polling period.

126

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Syntax dbmlsync -e pp= number [S | M | H | D]; ...

Description This option specifies the interval between log scans. Use the suffix s, m, h,
or d to specify seconds, minutes, hours or days, respectively. The default is1
minute. If you do not specify a suffix, the default unit of time is minutes.

Logscan polling occurs only when you are scheduling synchronizations or
using the sp_hook_dbmlsync_delay hook.

☞ For an explanation of logscan polling, see“DisablePolling (p) extended
option” on page 113.

This option is identical todbmlsync -pp.

This option has a short form and long form: you can usepp or
PollingPeriod.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “DisablePolling (p) extended option” on page 113

“-pp option” on page 145

“-p option” on page 143

“sp_hook_dbmlsync_delay” on page 191

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "pp=5"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION pp=’5’;

Schedule (sch) extended option

Function Specifies a schedule for synchronization.

Syntax dbmlsync -e sch= schedule; ...

schedule= { EVERY:hhhh:mm | singleSchedule | INFINITE,. . . }

hhhh : 00. . . 9999

127

mm : 00. . . 59

singleSchedule : day @hh:mm[AM | PM] [-hh:mm[AM | PM]]

hh : 00. . . 24

mm : 00. . . 59

day :
EVERYDAY | WEEKDAY | MON | TUE | WED | THU | FRI | SAT | SUN | day-
OfMonth

dayOfMonth : 0. . . 31

Parameters EVERY The EVERY keyword causes synchronization to occur
immediately, and then repeat indefinitely after the specified time period. If
the synchronization process takes longer than the specified period,
synchronization starts again immediately.

singleSchedule Given one or more single schedules, synchronization
occurs only at the specified days and times.

An interval is specified as@hh:mm–hh:mm (with optional specification of
AM or PM). If AM or PM is not specified, a 24-hour clock is assumed.
24:00 is interpreted as 00:00 on the next day. When an interval is specified,
synchronization occurs, starting at a random time within the interval. The
interval provides a window of time for synchronization so that multiple
remote databases with the same schedule do not cause congestion at the
synchronization server by synchronizing at exactly the same time.

The interval end time is always interpreted as following the start time. When
the time interval includes midnight, it ends on the next day. If dbmlsync is
started midway through the interval, synchronization occurs at a random
time before the end time.

EVERYDAY EVERYDAY is all seven days of the week.

WEEKDAY WEEKDAY is Monday through Friday.

Days of the week are Mon, Tue, and so on. You may also use the full forms
of the day, such as Monday. You must use the full forms of the day names if
the language you are using is not English, is not the language requested by
the client in the connection string, and is not the language which appears in
the server window.

dayOfMonth To specify the last day of the month regardless of the length
of the month, set thedayOfMonthto 0.

INFINITE The INFINITE keyword causes dbmlsync to run and to scan the

128

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

log periodically, but not to synchronize, even if synchronizations are
scheduled. A synchronization can happen only when initiated by another
program. You can use this option in conjunction with the dbmlsync -wc
option to wake up dbmlsync and perform a synchronization.

☞ For more information, see“-wc option” on page 151.

Description If a previous synchronization is still incomplete at a scheduled time, the
scheduled synchronization commences when the previous synchronization
completes.

The default is no schedule.

This option has a short form and long form: you can useschor Schedule.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

The schedule option syntax is the same when used in the synchronization
SQL statements and in the dbmlsync command line.

The IgnoreScheduling extended option and the -is option instruct dbmlsync
to ignore scheduling, so that synchronization is immediate. For more
information, see“IgnoreScheduling (isc) extended option” on page 120.

☞ For more information about scheduling, see“Scheduling
synchronization” on page 88.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "sch=WEEKDAY@8:00am,SUN@9:00pm"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION sch=’WEEKDAY@8:00am,SUN@9:00pm’;

ScriptVersion (sv) extended option

Function Specifies a script version.

Syntax dbmlsync -e sv= version-name; ...

Description The script version determines which scripts are run by MobiLink on the
consolidated database during synchronization. The default script version
name isdefault.

129

This option has a short form and long form: you can usesv or
ScriptVersion.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "sv=SyaAd001"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION sv=’SysAd001’;

SendColumnNames (scn) extended option

Function Specifies that column names should be sent in the upload.

Syntax dbmlsync -e scn= { ON | OFF }; ...

Description Set this option to ON to tell dbmlsync to send column names from the
remote database to the server. This option is required when you generate
scripts automatically using the dbmlsrv9 -za or -ze options. This option
increases the size of your upload, so you probably won’t want to use it if you
are not using -za or -ze.

The default isOFF.

This option has a short form and long form: you can usescnor
SendColumnNames.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “-za option” [MobiLink Administration Guide,page 219]

-ze option

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "scn=on"

The following SQL statement illustrates how you can store this option in the

130

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION scn=’on’;

SendDownloadACK (sa) extended option

Function Specifies that a download acknowledgement should be sent from the client
to the server.

Syntax dbmlsync -e sa= { ON | OFF }; ...

Description Turning the acknowledgement off (the default) can lead to less contention in
the consolidated database and also increased throughput due to shorter
download transactions. Download transactions are shorter because they are
committed or rolled back as soon as possible, since MobiLink doesn’t need
to keep these transactions open for as long as it takes the remote client to
apply the download. Enable client side download buffering to get the most
performance out of eliminating the download acknowledgement. It is
recommended that SendDownloadAck be set to OFF.

☞ For more information about improving performance by turning off the
download acknowledgement, see“Performance tips”[MobiLink
Administration Guide,page 106].

Note: When SendDownloadAck is set to ON and you are in verbose mode,
an acknowledgement line is written to the client log.

The default isOFF.

This option has a short form and long form: you can usesaor
SendDownloadACK.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "sa=off"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION sa=’off’;

131

SendTriggers (st) extended option

Function Specifies that trigger actions should be sent on upload.

Syntax dbmlsync -e st= { ON | OFF }; ...

Description Cascaded deletes are also considered trigger actions.

The default isOFF.

This option has a short form and long form: you can usest or SendTriggers.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "st=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION st=’on’;

TableOrder (tor) extended option

Function Specifies the order of tables in the upload stream.

Syntax dbmlsync -e tor= tables ; ...

Description This option allows you to specify the order of tables that are to be uploaded.
Specifytablesas a comma-separated list. You must specify all tables that are
to be uploaded. If you list tables that are not included in the synchronization,
they are ignored.

Specify table order to ensure referential integrity. For example, if Table1
refers to Table2, then Table2 must be uploaded before Table1.

In the specified table order, no table may have a foreign key that refers to a
table that comes after it in the table order, unless your tables have a cyclical
foreign key relationship. By default, dbmlsync selects a table order that
satisfies this condition.

There are no cases where this option must be used. It is provided for users
who for some reason (usually because it makes their scripts simpler on the

132

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

consolidated database) would like to ensure that tables are uploaded in a
specific order.

This option has a short form and long form: you can usetor or TableOrder.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “Referential integrity and synchronization”[MobiLink Administration Guide,
page 22]

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "tor=admin,parent,child"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION tor=’admin,parent,child’;

UploadOnly (uo) extended option

Function Specifies that synchronization should only include an upload.

Syntax dbmlsync -e uo= { ON | OFF } ; ...

Description During an upload only synchronization, dbmlsync prepares and sends an
upload to the MobiLink synchronization server exactly as in a normal full
synchronization. However, instead of sending a download stream back
down, MobiLink sends only an acknowledgement indicating if the upload
was successfully committed.

The default isOFF.

This option has a short form and long form: you can useuo or UploadOnly.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “Upload-only and download-only synchronization”[MobiLink Administration
Guide,page 24]

“DownloadOnly (ds) extended option” on page 115

Example The following dbmlsync command line illustrates how you can set this

133

option when you start dbmlsync:

dbmlsync -e "uo=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION uo=’on’;

Verbose (v) extended option

Function Specifies full verbosity.

Syntax dbmlsync -e v= { ON | OFF } ; ...

Description This option specifies a high level of verbosity, which may affect
performance and should normally be used in the development phase only.

This option is identical todbmlsync -v+. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 150.

The default isOFF.

This option has a short form and long form: you can usev or Verbose.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "v=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION v=’on’;

134

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

VerboseHooks (vs) extended option

Function Specifies that messages related to hook scripts should be logged.

Syntax dbmlsync -e vs= { ON | OFF } ; ...

Description This option is identical todbmlsync -vs. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 150.

The default isOFF.

This option has a short form and long form: you can usevsor
VerboseHooks.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

See also “Dbmlsync Client Event Hooks” on page 175

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vs=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vs=’on’;

VerboseMin (vm) extended option

Function Specifies that a small amount of information should be logged.

Syntax dbmlsync -e vm= { ON | OFF } ; ...

Description This option is identical todbmlsync -v. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all

135

options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 150.

The default isOFF.

This option has a short form and long form: you can usevm or VerboseMin.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vm=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vm=’on’;

VerboseOptions (vo) extended option

Function Specifies that information should be logged about the command line options
(including extended options) that you have specified.

Syntax dbmlsync -e vo= { ON | OFF } ; ...

Description This option is identical todbmlsync -vo. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 150.

The default isOFF.

This option has a short form and long form: you can usevo or
VerboseOptions.

You can also store extended options in the database. For more information

136

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vo=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vo=’on’;

VerboseRowCounts (vn) extended option

Function Specifies that the number of rows that are uploaded and downloaded should
be logged.

Syntax dbmlsync -e vn= { ON | OFF } ; ...

Description This option is identical todbmlsync -vn. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 150.

The default isOFF.

This option has a short form and long form: you can usevn or
VerboseRowCounts.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vn=on"

The following SQL statement illustrates how you can store this option in the
database:

137

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vn=’on’;

VerboseRowValues (vr) extended option

Function Specifies that the values of rows that are uploaded and downloaded should
be logged.

Syntax dbmlsync -e vr= { ON | OFF } ; ...

Description This option is identical todbmlsync -vr. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 150.

The default isOFF.

This option has a short form and long form: you can usevr or
VerboseRowValues.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vr=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vr=’on’;

VerboseUpload (vu) extended option

Function Specifies that information about the upload steam should be logged.

Syntax dbmlsync -e vu= { ON | OFF } ; ...

138

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Description This option is identical todbmlsync -vu. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 150.

The default isOFF.

This option has a short form and long form: you can usevu or
VerboseUpload.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“dbmlsync extended options” on
page 105.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vu=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vu=’on’;

-eh option

Function Ignores errors that occur in hook functions.

Syntax dbmlsync -eh . . .

-ek option

Function Allows you to specify the encryption key for strongly encrypted databases
directly on the command line.

Syntax dbmlsync -ek key . . .

Description If you have a strongly encrypted database, you must provide the encryption
key to use the database or transaction log in any way, including offline
transactions. For strongly encrypted databases, you must specify either -ek
or -ep, but not both. The command will fail if you do not specify a key for a

139

strongly encrypted database.

-ep option

Function Prompt for the encryption key.

Syntax dbmlsync -ep . . .

Description This option causes a dialog box to appear, in which you enter the encryption
key. It provides an extra measure of security by never allowing the
encryption key to be seen in clear text. For strongly encrypted databases,
you must specify either -ek or -ep, but not both. The command will fail if
you do not specify a key for a strongly encrypted database.

-eu option

Function Specifies extended upload options.

Syntax dbmlsync -n publication-name -eu keyword=value;. . .

Description Extended options that are specified on the command line with the -eu option
apply only to the synchronization specified by the -n option they follow. For
example, on the following command line, the extended option sv=test
applies only to the synchronization of pub2.

dbmlsync -n pub1 -n pub2 -eu sv=test

For an explanation of how extended options are processed when they are set
in more than one place, see“dbmlsync extended options” on page 105.

For a complete list of extended options, see“dbmlsync extended options” on
page 105.

-is option

Function Ignores scheduling instructions so that synchronization is immediate.

Syntax dbmlsync -is . . .

Description Ignore extended options that schedule synchronization.

☞ For information about scheduling, see“Scheduling synchronization” on
page 88.

-k option

Function Shuts down dbmlsync when synchronization is finished.

Syntax dbmlsync -k . . .

140

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Description When -k is used, dbmlsync exits after synchronization is completed if the
synchronization was successful or if an output log file was specified using
the -o or -ot options.

See also “-o option” on page 142

“-ot option” on page 143

-l option

Function Lists available extended options.

Syntax dbmlsync -l . . .

Description When used with the dbmlsync command line it shows you available
extended options.

-mn option

Function Supplies a new password for the user being synchronized.

Syntax dbmlsync -mn password . . .

Description Changes the MobiLink user’s password.

☞ For more information, see“Authenticating MobiLink Users” on page 9.

See also “MobiLinkPwd (mp) extended option” on page 124

“NewMobiLinkPwd (mn) extended option” on page 125

“-mp option” on page 141

-mp option

Function Supplies the password of the user being synchronized.

Syntax dbmlsync -mp password . . .

Description Supplies the password for MobiLink user authentication.

☞ For more information, see“Authenticating MobiLink Users” on page 9.

See also “MobiLinkPwd (mp) extended option” on page 124

“NewMobiLinkPwd (mn) extended option” on page 125

“-mn option” on page 141

141

-n option

Function Names the synchronization publication.

Syntax dbmlsync -n pubname . . .

Description Name of synchronization publication. You can supply more than one -n
option to synchronize more than one synchronization publication.

There are two ways to use -n to synchronize multiple publications:

♦ Specify-n pub1,pub2,pub3 to upload pub1, pub2, and pub3 in one
upload stream.

In this case, if you have set extended options on the publications, only the
options set on the first publication in the list are used. Extended options
set on subsequent publications are ignored.

♦ Specify-n pub1 -n pub2 -n pub3 to upload pub1 in one upload
stream, pub2 in another, and pub3 in a third upload stream.

When successive synchronizations occur very quickly, such as when you
specify-n pub1 -n pub2 , it is possible that dbmlsync may start
processing a synchronization when the server is still processing the
previous synchronization. In this case, the second synchronization will
fail with an error indicating that concurrent synchronizations are not
allowed. If you run into this situation, you can define an
sp_hook_dbmlsync_delay stored procedure to create a delay before each
synchronization. Usually a few seconds to a minute is a sufficient delay.

☞ For more information, see“sp_hook_dbmlsync_delay” on page 191.

-o option

Function Sends output to a log file.

Syntax dbmlsync -o filename . . .

Description Append output to a log file. Default is to send output to the screen.

See also “-os option” on page 142

“-ot option” on page 143

-os option

Function Specifies a maximum size for the output log, at which point the log is
renamed.

142

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

Syntax dbmlsync -os size [K | M | G]. . .

Description Thesizeis the maximum file size for logging output messages, specified in
units of bytes. Use the suffix k, m or g to specify units of kilobytes,
megabytes or gigabytes, respectively. By default, there is no size limit. The
minimum size limit is 10 kb.

Before the dbmlsync utility logs output messages to a file, it checks the
current file size. If the log message will make the file size exceed the
specified size, the dbmlsync utility renames the output file to
yymmddxx.dbr, whereyymmdd represents the year, month, and day, andxx
are sequential characters ranging from AA to ZZ.

This option allows you to manually delete old log files and free up disk
space.

See also “-o option” on page 142

“-ot option” on page 143

-ot option

Function Truncates the log file and appends output messages to it.

Syntax dbmlsync -ot logfile . . .

Description The functionality is the same as the -o option except the log file is truncated
before any messages are written to it.

See also “-o option” on page 142

“-os option” on page 142

-p option

Function Disables logscan polling.

Syntax dbmlsync -p . . .

Description In order to build an upload stream, dbmlsync must scan the transaction log.
Usually it does this just before synchronization. However, when
synchronizations are scheduled or when the sp_hook_dbmlsync_delay hook
is used, dbmlsync by default scans the log in the pause that occurs just
before synchronization. This behavior is more efficient because when
synchronization begins the log is already at least partially scanned. This
default behavior is called logscan polling.

Logscan polling is on by default but only has an effect when
synchronizations are scheduled using scheduling options or when

143

sp_hook_dbmlsync_delay hook is used. When in effect, polling occurs at set
intervals; by default this is 1 minute, but it can be changed with the
dbmlsync -pp option.

The default is to not disable logscan polling (OFF).

This option is identical todbmlsync -e p.

See also “DisablePolling (p) extended option” on page 113

“PollingPeriod (pp) extended option” on page 126

“-pp option” on page 145

-pd option

Function Preload specified dlls for Windows CE.

Syntax dbmlsync -pd dllname;...

Description When running dbmlsync on Windows CE, you should use the -pd option to
specify dlls that need to be loaded. Otherwise, the correct dlls may not be
loaded and an error may be generated.

Following are the dlls that need to be loaded for each communication
protocol:

Protocol DLL

TCP/IP dbmlsock9.dll

HTTP dbmlhttp9.dll

HTTPS dbmlhttps9.dll

You should specify multiple dlls as a semicolon-separated list. For example,

-pd dbmlsock9.dll;dbmlhttp9.dll

-pi option

Function Pings a MobiLink synchronization server.

Syntax dbmlsync -pi -c connection_string -e sv=script_version
[-n pubname] [-u ml_username]

Description The ping option allows you to test that your connection information is
correct. When you use -pi, dbmlsync does not initiate synchronization.

In order to be able to ping, dbmlsync must have a unique address for the
MobiLink synchronization server. This means that you must include

144

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

connection parameters and a script version, as well as the publication name,
MobiLink user name, or both. The publication or user hold connection
information for the remote. You need to specify both when the user is
subscribed to multiple publications or the publication has multiple users. For
example, if there is only one subscription to the publication, you can specify
the publication without the user.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client (dbmlsync or
UltraLite).

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

The MobiLink synchronization server may execute the following scripts, if
they exist:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

♦ end_connection

The client cannot synchronize while it is pinging the server.

-pp option

Function Specifies the frequency of log scans.

Syntax dbmlsync -pp number [h | m | s]. . .

Description This option specifies the interval between log scans. Use the suffix s, m, h,
or d to specify seconds, minutes, hours or days, respectively. The default is1
minute. If you do not specify a suffix, the default unit of time is minutes.

Logscan polling occurs only when you are scheduling synchronizations or
using the sp_hook_dbmlsync_delay hook.

☞ For an explanation of logscan polling, see“-p option” on page 143.

See also “PollingPeriod (pp) extended option” on page 126

“DisablePolling (p) extended option” on page 113

145

“-p option” on page 143

-q option

Function Starts the MobiLink synchronization client in a minimized window.

Syntax dbmlsync -q . . .

Description For Windows operating systems only.

-r option

Function Specifies that the remote offset should be used when there is disagreement
between the offsets in the remote and consolidated databases.

The -rb option can be used when the remote offset is less than the
consolidated offset (such as when the remote database has been restored
from backup). The -r option is provided for backward compatibility and is
identical to -rb. The -ra option, used when the remote offset is greater than
the consolidated offset, is provided only for very rare circumstances and
may cause data loss.

Syntax dbmlsync { -r | -ra | -rb } . . .

Description ☞ For information about progress offsets, see“Progress offsets” on
page 62.

-rb If the remote database is restored from backup, the default behavior
may cause data to be lost. In this case, the first time you run dbmlsync after
the remote database is restored, you should specify -rb. When you use -rb,
the upload continues from the offset recorded in the remote database if the
offset recorded in the remote is less than that obtained from the consolidated
database. If you use -rb and the offset in the remote is not less than the offset
from the consolidated database, an error is reported and the synchronization
is aborted.

The -rb option may result in some data being uploaded that has already been
uploaded. This can result in conflicts in the consolidated database and
should be handled with appropriate conflict resolution scripts.

-ra The -ra option should be used only in very rare cases. If you use -ra, the
upload is retried starting from the offset obtained from the remote database
if the remote offset is greater than the offset obtained from the consolidated
database. If you use -ra and the offset in the remote is not greater than the
offset from the consolidated database, an error is reported and the
synchronization is aborted.

The -ra option should be used with care. If the offset mismatch is the result

146

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

of a restore of the consolidated database, changes that happened in the
remote database in the gap between the two offsets are lost. The -ra option
may be useful when the consolidated database has been restored from
backup and the remote database transaction log has been truncated at the
same point as the remote offset. In this case, all data that was uploaded from
the remote database is lost from the point of the consolidated offset to the
point of the remote offset.

-sc option

Function Specifies that dbmlsync should reload schema information before each
synchronization.

Syntax dbmlsync -sc . . .

Description Prior to version 9.0, dbmlsync reloaded schema information from the
database before each synchronization. The information that was reloaded
includes foreign key relationships, publication definitions, extended options
stored in the database, and information about database settings. On slower
handheld devices, loading this information typically took 20 seconds. In
most cases this information does not change between synchronizations.

Starting with version 9.0, by default dbmlsync loads schema information
only at startup. Specify -sc if you want the information to be loaded before
every synchronization.

-tu option

Function Specifies that each transaction on the remote database should be uploaded as
a separate transaction within one synchronization.

Syntax dbmlsync -tu . . .

Description When you use -tu, you create atransaction-level upload: dbmlsync uploads
each transaction on the remote database as a distinct transaction. If you
change the same row three times on the remote database and commit the
change each time, each of the three transactions is applied in the next upload
stream. The transactions are uploaded in a single synchronization, on a
single connection, but each transaction is committed as soon as it is
successfully uploaded.

When you use -tu, the order of transactions on the remote database is always
preserved on the consolidated database. However, the order of operations in
a transaction may not be preserved, for two reasons:

♦ MobiLink always applies updates based on foreign key relationships. For
example, when data is changed in child and parent tables, MobiLink

147

inserts data into the parent table before the child table, but deletes data
from the child before the parent. If your remote operations do not follow
this order, the order of operations will be different on the consolidated
database.

♦ Operations within a transaction are coalesced. This means that if you
change the same row three times in one transaction, only the final form of
the row is uploaded.

Usage When you do not use -tu, MobiLink coalesces all changes on the remote
database into one transaction in the upload stream. This means that if you
change the same row three times between synchronizations, regardless of the
number of remote transactions, only the final form of the row is uploaded.
This default behavior is efficient and is optimal in many situations.

However, in certain situations you may wish to preserve remote transactions
on the consolidated database. For example, you may wish to define triggers
on the consolidated database that act on transactions as they occur in the
remote database. Or you may want the consolidated database to reflect all
changes on the remote database, regardless of when synchronization occurs.

In addition, there are advantages to breaking up the upload stream into
smaller transactions. Many consolidated databases are optimized for small
transactions, so sending a very large transaction is not efficient or may cause
too much contention. Also, when you use -tu each transaction is applied as it
is successfully uploaded, so you may not lose the entire upload if there are
communications errors during the upload. When you use -tu and there is an
upload error, all successfully uploaded transactions are applied.

When you use -tu, performance will be improved if you start the MobiLink
synchronization server with the -us option, which prevents MobiLink from
invoking scripts for tables which have no data to upload.

The -tu option makes MobiLink behave in a manner that is very close to
SQL Remote. The main difference is that SQL Remote replicates all
changes to the remote database in the order they occur, without coalescing.
To mimic this behavior, you must commit every change, because -tu causes
MobiLink to replicate all transactions.

You cannot use -tu with the Increment extended option.

-u option

Function Specifies the MobiLink user name.

Syntax dbmlsync -u ml_username . . .

Description You can specify one user in the dbmlsync command line, where

148

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

ml_usernameis the name used in the FOR clause of the CREATE
SYNCHRONIZATION SUBSCRIPTION statement corresponding to the
subscription to be processed.

This option should be used in conjunction with -npublicationto identify the
subscription on which dbmlsync should operate. Each subscription is
uniquely identified by anml_username, publicationpair.

You can only specify one user name on the command line. All subscriptions
to be synchronized in a single run must involve the same user. The -u option
can be omitted if each publication that is specified on the command line with
the -n option has only one subscription.

-uo option

Function Specifies that synchronization will only include an upload, and no download
will occur.

Syntax dbmlsync -uo . . .

Description During an upload only synchronization, dbmlsync prepares and sends an
upload to MobiLink exactly as it would in a normal full synchronization.
However, instead of sending a download stream back down, MobiLink sends
only an acknowledgement indicating if the upload was successfully
committed.

“Upload-only and download-only synchronization”[MobiLink Administration
Guide,page 24]

“DownloadOnly (ds) extended option” on page 115

“UploadOnly (uo) extended option” on page 133

-urc option

Function Specifies an estimate of the number of rows to be uploaded in a
synchronization.

Syntax dbmlsync -urc row-estimate . . .

Description To improve performance, you can specify an estimate of the number of rows
that will be uploaded in a synchronization. In general, a higher estimate
results in faster uploads but more memory usage.

Synchronization will proceed correctly regardless of the estimate that is
specified.

See also “Memory (mem) extended option” on page 123

149

“Performance tips”[MobiLink Administration Guide,page 106]

-v option

Function Allows you to specify what information is logged to the message log file and
displayed in the synchronization window. A high level of verbosity may
affect performance and should normally be used in the development phase
only.

Syntax dbmlsync -v [levels] . . .

Description The -v options affect the message log file and synchronization window. You
only have a message log if you specify -o or -ot on the dbmlsync command
line.

If you specify –v alone, a small amount of information is logged.

The values oflevelsare as follows. You can use one or more of these
options at once; for example, -vnrsu or -v+cp.

♦ + Turn on all logging options except for c and p.

♦ c Expose the connect string in the log.

♦ p Expose the password in the log.

♦ n Log the number of rows that were uploaded and downloaded.

♦ o Log information about the command line options and extended
options that you have specified.

♦ r Log the values of rows that were uploaded and downloaded.

♦ s Log messages related to hook scripts.

♦ u Log information about the upload stream.

There are extended options that have similar functionality to the -v options.
If you specify both -v and the extended options and there are conflicts, the -v
option overrides the extended option. If there is no conflict, the verbosity
logging options are additive—all options that you specify are used. When
logging verbosity is set by extended option, the logging does not take effect
immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and
the extended options.

See also “Verbose (v) extended option” on page 134

“VerboseHooks (vs) extended option” on page 135

150

Chapter 6. Adaptive Server Anywhere Client Synchronization
Parameters

“VerboseMin (vm) extended option” on page 135

“VerboseOptions (vo) extended option” on page 136

“VerboseRowCounts (vn) extended option” on page 137

“VerboseRowValues (vr) extended option” on page 138

-wc option

Function Specifies a window class name.

Syntax dbmlsync -wc class-name . . .

Description This option specifies a class name that can be used to poke dbmlsync and
wake it up whenever it is in hover mode, such as when scheduling is enabled
or when you are using server-initiated synchronization.

In addition, the window class name identifies the application for ActiveSync
synchronization. The class name must be given when registering the
application for use with ActiveSync synchronization.

See also ♦ “Registering Adaptive Server Anywhere clients for ActiveSync” on
page 85

♦ “Using ActiveSync synchronization” on page 82
♦ INFINITE keyword in“Schedule (sch) extended option” on page 127
♦ “Scheduling synchronization” on page 88

Example dbmlsync -wc dbmlsync_$message_end...

-x option

Function Renames and restarts the transaction log after it has been scanned for
outgoing messages.

Syntax dbmlsync -x [size [K | M | G]. . .

Description The optionalsizemeans that the transaction log is renamed only if it is
larger than the specified size. Use the suffix k, m or g to specify units of
kilobytes, megabytes or gigabytes, respectively. The default size is 0.

In some circumstances, synchronizing data to a consolidated database can
take the place of backing up remote databases, or renaming the transaction
log when the database server is shut down.

If backups are not routinely performed at the remote database, the
transaction log continues to grow. As an alternative to using the -x option to
control transaction log size, you can use an Adaptive Server Anywhere event
handler to control the size of the transaction log. For example, the following

151

event handler renames the transaction log at the remote database when its
size exceeds 5 Mb. You can use such an event handler together with the
DELETE_OLD_LOGS database option to control the space taken up by
transaction logs.

CREATE EVENT RenameLogLimit
TYPE GrowLog
WHERE event_condition(’LogSize’) > 5
AT REMOTE
HANDLER
BEGIN

If event_parameter(’NumActive’) <= 1 then
BACKUP DATABASE DIRECTORY backupdir
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME

end if;
END

In this example, NumActive ensures that only one of the stacked handlers is
executed.

See also ♦ “Automating Tasks Using Schedules and Events”[ASA Database
Administration Guide,page 301]

♦ “DELETE_OLD_LOGS option [replication]”[ASA Database
Administration Guide,page 652]

♦ “CREATE EVENT statement”[ASA SQL Reference,page 351]

152

CHAPTER 7

MobiLink SQL Statements

About this chapter This chapter presents detailed descriptions of SQL statements in alphabetical
order.

Contents Topic: page

ALTER PUBLICATION statement 154

ALTER SYNCHRONIZATION SUBSCRIPTION statement [Mo-
biLink]

156

ALTER SYNCHRONIZATION USER statement [MobiLink] 158

CREATE PUBLICATION statement 160

CREATE SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]

162

CREATE SYNCHRONIZATION USER statement [MobiLink] 164

DROP PUBLICATION statement 167

DROP SYNCHRONIZATION SUBSCRIPTION statement [Mo-
biLink]

168

DROP SYNCHRONIZATION USER statement [MobiLink] 169

START SYNCHRONIZATION DELETE statement [MobiLink] 170

STOP SYNCHRONIZATION DELETE statement [MobiLink] 172

153

ALTER PUBLICATION statement
Description Use this statement to alter a publication. In MobiLink, a publication

identifies synchronized data in a Adaptive Server Anywhere remote
database. In SQL Remote, publications identify replicated data in both
consolidated and remote databases.

Syntax ALTER PUBLICATION [owner.]publication-name alterpub-clause, . . .

alterpub-clause:
ADD TABLE article-description

| MODIFY TABLE article-description
| { DELETE | DROP } TABLE [owner.]table-name
| RENAME publication-name

owner , publication-name, table-name : identifier

article-description :
table-name [(column-name, . . .)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

Usage This statement is applicable only to MobiLink and SQL Remote.

The ALTER PUBLICATION statement alters a publication in the database.
The contribution to a publication from one table is called anarticle.
Changes can be made to a publication by adding, modifying, or deleting
articles, or by renaming the publication. If an article is modified, the entire
specification of the modified article must be entered.

You set options for a MobiLink publication with the ADD OPTION clause
in the ALTER SYNCHRONIZATION SUBSCRIPTION statement or
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

Permissions Must have DBA authority, or be the owner of the publication. Requires
exclusive access to all tables referred to in the statement.

Side effects Automatic commit.

See also ♦ “CREATE PUBLICATION statement” on page 160
♦ “DROP PUBLICATION statement” on page 167
♦ “ALTER SYNCHRONIZATION SUBSCRIPTION statement

[MobiLink]” on page 156
♦ “CREATE SYNCHRONIZATION SUBSCRIPTION statement

[MobiLink]” on page 162
♦ “sp_add_article procedure”[SQL Remote User’s Guide,page 381]
♦ “sp_add_article_col procedure”[SQL Remote User’s Guide,page 383]

Standards and
compatibility

♦ SQL/92 Vendor extension.

154

Chapter 7. MobiLink SQL Statements

♦ SQL/99 Vendor extension.

Example The following statement adds the customer table to the pub_contact
publication.

ALTER PUBLICATION pub_contact
ADD TABLE customer

155

ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to alter

the properties of a subscription of a MobiLink user to a publication.

Syntax ALTER SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]
[TYPE protocol]
[ADDRESS protocol-options]
[ADD OPTION option=value, . . .]
[MODIFY OPTION option=value, . . .]
[DELETE { ALL OPTION | OPTION option, . . . }]

ml_username: identifier

protocol-type: http | https | https_fips |tcpip | ActiveSync

protocol-options: string

value: string | integer

Parameters TO clause Specify the name of a publication.

FOR clause Specify one or more MobiLink user names.

Omit the FOR clause to set the protocol type, protocol options, and extended
options for a publication.

☞ For information about how dbmlsync processes options that are
specified in different locations, see“Priority order for extended options and
connection parameters” on page 73.

TYPE clause This clause specifies the network protocol to use for
synchronization. The default protocol istcpip.

☞ For more information about communication protocols, see
“CommunicationType (ctp) extended option” on page 111.

ADDRESS clause This clause specifies network protocol options,
including the location of the MobiLink synchronization server.

☞ For a complete list of protocol options, see“CommunicationAddress
(adr) extended option” on page 106.

ADD OPTION, MODIFY OPTION, DELETE OPTION, AND DELETE ALL
OPTION clauses These clauses allow you to add, modify, delete, or delete
all extended options. You may specify only one option in each clause.

156

Chapter 7. MobiLink SQL Statements

The values for each option cannot contain the characters “=” or “ ,” or “ ;”.

☞ For a complete list of options, see“dbmlsync extended options” on
page 105.

Usage Use this statement to alter a synchronization subscription within a MobiLink
remote or reference database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also ♦ “CREATE PUBLICATION statement” on page 160
♦ “CREATE SYNCHRONIZATION USER statement [MobiLink]” on

page 164

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Create a default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause). Indicate the address of
the MobiLink synchronization server and specify that only the Certicom root
certificate is to be trusted.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’
OPTION memory=’2m’;

Subscribe MobiLink user ml_user1 to the sales publication. Set the memory
option to 3 Mb, rather than the value specified in the default publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ’ml_user1’
OPTION memory=’3m’;

157

ALTER SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to alter

the properties of a MobiLink user.

Syntax ALTER SYNCHRONIZATION USER ml_username
[TYPE protocol-type]
[ADDRESS protocol-options]
[ADD OPTION option=value, . . .]
[MODIFY OPTION option=value, . . .]
[DELETE { ALL OPTION | OPTION option }]

ml_username: identifier

protocol-type: http | https | https_fips | tcpip | ActiveSync

protocol-options: string

value: string | integer

Parameters TYPE clause This clause specifies the network protocol to use for
synchronization.

☞ For more information about communication protocols, see
“CommunicationType (ctp) extended option” on page 111.

ADDRESS clause This clause specifies network protocol options,
including the location of the MobiLink synchronization server.

☞ For a complete list of protocol options, see“CommunicationAddress
(adr) extended option” on page 106.

ADD OPTION, MODIFY OPTION, DELETE OPTION, AND DELETE ALL
OPTION clauses These clauses allow you to add, modify, delete, or delete
all extended options. You may specify only one option in each clause.

☞ For a complete list of options, see“dbmlsync extended options” on
page 105.

Usage Use this statement to alter the properties of a synchronization user within a
MobiLink remote database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also

158

Chapter 7. MobiLink SQL Statements

♦ “ALTER SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]” on page 156

♦ “CREATE SYNCHRONIZATION USER statement [MobiLink]” on
page 164

♦ “CREATE SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]” on page 162

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

159

CREATE PUBLICATION statement
Description Use this statement to create a publication. In MobiLink, a publication

identifies synchronized data in UltraLite or Adaptive Server Anywhere
remote databases.

Syntax CREATE PUBLICATION [owner.]publication-name
(TABLE article-description, . . .)

owner , publication-name : identifier

article-description :
table-name [(column-name, . . .)]

[WHERE search-condition]
[SUBSCRIBE BY expression]

Parameters article-description Publications are built from articles. Each article is a
table or part of a table. An article may be a vertical partition of a table (a
subset of the table’s columns), a horizontal partition (a subset of the table’s
rows) or a vertical and horizontal partition.

WHERE clause The WHERE clause is a way of defining the subset of
rows of a table to be included in an article. It is useful if the same subset is to
be received by all subscribers to the publication.

SUBSCRIBE BY clause You can combine WHERE and SUBSCRIBE BY
clauses in an article definition, but the SUBSCRIBE BY clause is used only
by SQL Remote.

Usage This statement is applicable only to MobiLink and SQL Remote.

The CREATE PUBLICATION statement creates a publication in the
database. A publication can be created for another user by specifying an
owner name.

In MobiLink, publications are required in Adaptive Server Anywhere remote
databases, and are optional in UltraLite databases. These publications and
the subscriptions to them determine which data will be uploaded to the
MobiLink synchronization server. You can construct a remote database by
creating publications and subscriptions directly. Alternatively, you can
create publications and subscriptions in an Adaptive Server Anywhere
reference database, which acts as a template for the remote databases, and
then construct the remote databases using the MobiLink extraction utility.

You set options for a MobiLink publication with the ADD OPTION clause
in the ALTER SYNCHRONIZATION SUBSCRIPTION statement or
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to

160

Chapter 7. MobiLink SQL Statements

in the statement.

Side effects Automatic commit.

See also ♦ “ALTER PUBLICATION statement” on page 154
♦ “DROP PUBLICATION statement” on page 167
♦ “ALTER SYNCHRONIZATION SUBSCRIPTION statement

[MobiLink]” on page 156
♦ “CREATE SYNCHRONIZATION SUBSCRIPTION statement

[MobiLink]” on page 162
♦ “sp_create_publication procedure”[SQL Remote User’s Guide,page 386]
♦ Adaptive Server Anywhere MobiLink clients:“Publishing data” on

page 64
♦ UltraLite MobiLink clients:“ Choosing data to synchronize” on page 280

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement publishes all columns and rows of two tables.

CREATE PUBLICATION pub_contact (
TABLE contact,
TABLE company

)

The following statement publishes only some columns of one table.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city)

)

The following statement publishes only the active customer rows by
including a WHERE clause that tests the status column of the customer table.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city, state)
WHERE status = ’active’

)

161

CREATE SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to

subscribe a MobiLink user to a publication.

Syntax CREATE SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]
[TYPE protocol-type]
[ADDRESS protocol-options]
[OPTION option=value, . . .]

ml_username: identifier

protocol-type: http | https | https_fips | tcpip | ActiveSync

protocol-options: string

value: string | integer

Parameters TO clause Specify the name of a publication.

FOR clause Specify one or more MobiLink user names.

ml_usernameis a name identifying a remote database. This name must be
unique.

☞ For more information about synchronization user names, see“About
MobiLink users” on page 10.

Omit the FOR clause to set the protcol type, protocol options, and extended
options for a publication.

☞ For information about how dbmlsync processes options that are
specified in different locations, see“Priority order for extended options and
connection parameters” on page 73.

TYPE clause This clause specifies the network protocol to use for
synchronization. The default protocol istcpip.

☞ For more information about network protocols, see
“CommunicationType (ctp) extended option” on page 111.

ADDRESS clause This clause specifies network protocol options such as
the location of the MobiLink synchronization server. Multiple options must
be separated with semi-colons.

☞ For a complete list of protocol options, see“CommunicationAddress

162

Chapter 7. MobiLink SQL Statements

(adr) extended option” on page 106.

OPTION clause This clause allows you to set extended options for the
subscription. If no FOR clause is provided, the extended options act as
default settings for the publication, and are overridden by any extended
options set for a synchronization user.

☞ For information about how dbmlsync processes options that are
specified in different locations, see“Priority order for extended options and
connection parameters” on page 73.

☞ For a complete list of options, see“dbmlsync extended options” on
page 105.

Usage Use this statement to create a synchronization subscription within a
MobiLink remote or reference database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also ♦ “CREATE PUBLICATION statement” on page 160
♦ “CREATE SYNCHRONIZATION USER statement [MobiLink]” on

page 164

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Create a default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause). Indicate the address of
the MobiLink synchronization server and specify that only the Certicom root
certificate is to be trusted.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’
OPTION memory=’2m’;

Subscribe MobiLink user ml_user1 to the sales publication. Set the memory
option to 3 Mb, rather than the value specified in the default publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION memory=’3m’;

163

CREATE SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to

create a synchronization user.

Syntax CREATE SYNCHRONIZATION USER ml_username
[TYPE protocol-type]
[ADDRESS protocol-options]
[OPTION option=value, . . .]

ml_username: identifier

protocol-type: tcpip | http | https | https_fips | ActiveSync

protocol-options: string

value: string | integer

Parameters ml_username A name identifying a remote database. This name must be
unique.

☞ For more information about synchronization user names, see“About
MobiLink users” on page 10.

TYPE clause This clause specifies the communication protocol to use for
synchronization. The options aretcpip, http , https, https_fips, and
ActiveSync. The default protocol istcpip.

☞ For more information about communication protocols, see
“CommunicationType (ctp) extended option” on page 111.

ADDRESS clause This clause specifiesprotocol-optionsin the form
keyword=value, separated by semi-colons. Which settings you supply
depends on the communication protocol you are using (TCPIP, HTTP,
HTTPS, or ActiveSync).

☞ For a complete list of protocol options, see“CommunicationAddress
(adr) extended option” on page 106.

OPTION clause The OPTION clause allows you to set extended options
usingoption=valuein a comma-separated list.

The values for each option cannot contain equal signs or semicolons. The
database server accepts any option that you enter without checking for its
validity. Therefore, if you misspell an option or enter an invalid value, no
error message appears until you run the dbmlsync command to perform
synchronization.

164

Chapter 7. MobiLink SQL Statements

Options set for a synchronization user can be overridden in individual
subscriptions or on the dbmlsync command line.

☞ For information about extended options, see“dbmlsync extended
options” on page 105.

Description Theprotocol-type, protocol-options, andoptionscan be set in several places.

☞ For information about how dbmlsync processes options that are
specified in different locations, see“Priority order for extended options and
connection parameters” on page 73.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also ♦ “ALTER SYNCHRONIZATION USER statement [MobiLink]” on
page 158

♦ “CREATE SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]” on page 162

♦ “CREATE PUBLICATION statement” on page 160
♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,

page 165]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Examples The following example creates a user named SSinger, who synchronizes
over TCP/IP with a server machine named mlserver.mycompany.com using
the password Sam. The use of a password in the user definition isnot secure.

CREATE SYNCHRONIZATION USER SSinger
TYPE http
ADDRESS ’host=mlserver.mycompany.com’
OPTION MobiLinkPwd=’Sam’

The following creates a synchronization user called factory014 that will
cause dbmlsync to hover and synchronize via Certicom-encrypted TCP/IP at
a random time in every 8-hour interval. The randomness helps prevent
performance degradation at the MobiLink server due to multiple
simultaneous synchronizations:

CREATE SYNCHRONIZATION USER factory014
TYPE tcpip
ADDRESS ’host=mycompany.manufacturing.mobilink1;security=certico

m_tls(certificate=mycompany_mobilink.crt;certificate_
password=thepassword)’

OPTION Schedule=’EVERY:08:00’

165

The following creates a synchronization user called sales5322 that will be
used to synchronize with HTTP. In this example, the MobiLink
synchronization server runs behind the corporate firewall, and
synchronization requests are redirected to it using the Redirector (a reverse
proxy to an NSAPI Web server).

CREATE SYNCHRONIZATION USER sales5322
TYPE https
ADDRESS ’host=www.mycompany.com;port=80;url_

suffix=mlredirect/ml/’

166

Chapter 7. MobiLink SQL Statements

DROP PUBLICATION statement
Description Use this statement to drop a publication. In MobiLink a publication

identifies synchronized data in a Adaptive Server Anywhere remote
database. In SQL Remote, publications identify replicated data in both
consolidated and remote databases.

Syntax DROP PUBLICATION [owner.]publication-name

owner , publication-name : identifier

Usage This statement is applicable only to MobiLink and SQL Remote.

Permissions Must have DBA authority.

Side effects Automatic commit. All subscriptions to the publication are dropped.

See also ♦ “ALTER PUBLICATION statement” on page 154
♦ “CREATE PUBLICATION statement” on page 160
♦ “sp_drop_publication procedure”[SQL Remote User’s Guide,page 387]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact

167

DROP SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement to drop a synchronization subscription within a MobiLink

remote database or a MobiLink reference database. You can also use it to
drop a default subscription, which contains default subscription values, for
the specified publication.

Syntax DROP SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]

Parameters TO clause Specify the name of a publication.

FOR clause Specify one more MobiLink users.

Omitting this clause drops the default subscription for the publication.
MobiLink users subscribed to a publication inherit as defaults the values in a
default publication.

Usage Drop a synchronization subscription in a MobiLink remote or reference
database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side Effects Automatic commit.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Unsubscribe MobiLink user ml_user1 to the sales publication.

DROP SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR "ml_user1"

Drop the default subscription, which contains default subscription values,
for the sales publication (by omitting the FOR clause).

DROP SYNCHRONIZATION SUBSCRIPTION
TO sales_publication

168

Chapter 7. MobiLink SQL Statements

DROP SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement to drop a synchronization user from a MobiLink remote

database.

Syntax DROP SYNCHRONIZATION USER ml_username, . . .

ml_username: identifier

Usage Drop one or more synchronization users from a MobiLink remote database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side Effects All subscriptions associated with the user are also deleted.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example Remove MobiLink user ml_user1 from the database.

DROP SYNCHRONIZATION USER ml_user1

169

START SYNCHRONIZATION DELETE statement
[MobiLink]
Description Use this statement to restart logging of deletes for MobiLink

synchronization.

Syntax START SYNCHRONIZATION DELETE

Usage Ordinarily, Adaptive Server Anywhere and UltraLite automatically log any
changes made to tables or columns that are part of a synchronization, and
upload these changes to the consolidated database during the next
synchronization. You can temporarily suspend automatic logging of delete
operations using the STOP SYNCHRONIZATION DELETE statement. The
START SYNCHRONIZATION DELETE statement allows you to restart the
automatic logging.

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the delete operations executed on that connection will be synchronized.
The effect continues until a START SYNCHRONIZATION DELETE
statement is executed. Repeating STOP SYNCHRONIZATION DELETE
has no additional effect.

A single START SYNCHRONIZATION DELETE statement restarts the
logging, regardless of the number of STOP SYNCHRONIZATION
DELETE statements preceding it.

Do not use START SYNCHRONIZATION DELETE if your application
does not synchronize data.

Permissions Must have DBA authority.

Side effects None.

See also ♦ “STOP SYNCHRONIZATION DELETE statement [MobiLink]” on
page 172

♦ “StartSynchronizationDelete method”[UltraLite C/C++ User’s Guide,
page 317]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example The following sequence of SQL statements illustrates how to use START
SYNCHRONIZATION DELETE and STOP SYNCHRONIZATION
DELETE.

170

Chapter 7. MobiLink SQL Statements

-- Prevent deletes from being sent
-- to the consolidated database
STOP SYNCHRONIZATION DELETE;

-- Remove all records older than 1 month
-- from the remote database,
-- NOT the consolidated database
DELETE FROM PROPOSAL
WHERE last_modified < months(CURRENT TIMESTAMP, -1)

-- Re-enable all deletes to be sent
-- to the consolidated database
-- DO NOT FORGET to start this
START SYNCHRONIZATION DELETE;

-- Commit the entire operation,
-- otherwise rollback everything
-- including the stopping of the deletes
commit;

171

STOP SYNCHRONIZATION DELETE statement
[MobiLink]
Description Use this statement to temporarily stop logging of deletes for MobiLink

synchronization.

Syntax STOP SYNCHRONIZATION DELETE

Usage Ordinarily, Adaptive Server Anywhere and UltraLite remote databases
automatically log any changes made to tables or columns that are included in
a synchronization, and then upload these changes to the consolidated
database during the next synchronization. This statement allows you to
temporarily suspend logging of changes to an Adaptive Server Anywhere or
UltraLite remote database.

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the subsequent delete operations executed on that connection will be
synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed.

Repeating STOP SYNCHRONIZATION DELETE has no additional effect.
A single START SYNCHRONIZATION DELETE statement restarts the
logging, regardless of the number of STOP SYNCHRONIZATION
DELETE statements preceding it.

This command can be useful to make corrections to a remote database, but
should be used with caution as it effectively disables MobiLink
synchronization.

Do not use STOP SYNCHRONIZATION DELETE if your application does
not synchronize data.

Permissions Must have DBA authority.

Side Effects None.

See also ♦ “StartSynchronizationDelete method”[UltraLite C/C++ User’s Guide,
page 317]

♦ “StopSynchronizationDelete method”[UltraLite C/C++ User’s Guide,
page 317]

♦ “START SYNCHRONIZATION DELETE statement [MobiLink]” on
page 170

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

172

Chapter 7. MobiLink SQL Statements

Example ☞ For an example, see“START SYNCHRONIZATION DELETE
statement [MobiLink]” on page 170.

173

CHAPTER 8

Dbmlsync Client Event Hooks

About this chapter

Contents Topic: page

Customizing the client synchronization process 177

sp_hook_dbmlsync_abort 183

sp_hook_dbmlsync_begin 185

sp_hook_dbmlsync_connect_failed 187

sp_hook_dbmlsync_delay 191

sp_hook_dbmlsync_download_begin 193

sp_hook_dbmlsync_download_com_error 195

sp_hook_dbmlsync_download_end 197

sp_hook_dbmlsync_download_fatal_sql_error 199

sp_hook_dbmlsync_download_log_ri_violation 201

sp_hook_dbmlsync_download_ri_violation 204

sp_hook_dbmlsync_download_sql_error 206

sp_hook_dbmlsync_download_table_begin 208

sp_hook_dbmlsync_download_table_end 210

sp_hook_dbmlsync_end 212

sp_hook_dbmlsync_log_rescan 215

sp_hook_dbmlsync_logscan_begin 217

sp_hook_dbmlsync_logscan_end 219

sp_hook_dbmlsync_process_return_code 221

sp_hook_dbmlsync_schema_upgrade 223

sp_hook_dbmlsync_set_extended_options 225

sp_hook_dbmlsync_upload_begin 227

175

Topic: page

sp_hook_dbmlsync_upload_end 229

sp_hook_dbmlsync_validate_download_file 233

176

Chapter 8. Dbmlsync Client Event Hooks

Customizing the client synchronization process
The Adaptive Server Anywhere synchronization client, dbmlsync, provides
a set of event hooks that you can use to customize the synchronization
process. When a hook is implemented, it is called at a specific point in the
synchronization process.

You implement an event hook by creating a stored procedure with a specific
name. Most event-hook stored procedures are executed on the same
connection as the synchronization itself.

You can use event hooks to log synchronization events, schedule
synchronizations based on logical events or time and customize
synchronization behavior.

In addition, you can use event hooks to synchronize subsets of data that
cannot be easily defined in a publication. For example, you can synchronize
data in a temporary table by writing one event hook procedure to copy data
from the temporary table to a permanent table prior to the synchronization
and another to copy the data back afterwards.

Caution
The integrity of the synchronization process relies on a sequence of built-in
transactions. Thus, you must not perform an implicit or explicit commit or
rollback within your event-hook procedures.

Synchronization event hook sequence

The following pseudo-code shows the available events and the point at
which each is called during the synchronization process. For example,
sp_hook_dbmlsync_abort is the first event hook to be invoked.

Each event makes particular parameter values available, which you can use
when you implement the procedure. In some cases, you can modify the
value to return a new value; others are read-only. These parameters are not
stored procedure arguments. No arguments are passed to any of the
event-hook stored procedures. Instead, arguments are exchanged by reading
and modifying rows in the #hook_dict table.

For example, the sp_hook_dbmlsync_begin procedure has a parameter,
which is the user name that the application supplied in the synchronization
call. You can retrieve this value from the #hook_dict table.

Although the sequence has similarities to the event sequence at the
MobiLink synchronization server, there is little overlap in the kind of logic
you would want to add to the consolidated and remote databases. The two

177

interfaces are therefore separate and distinct.

Any *_end hook will be called if the corresponding *_begin hook is called
and completed successfully. A *_begin hook is considered to have run
successfully if it was not implemented when it would have been called.

☞ For more information about upload options, see“-tu option” on
page 147and“Increment (inc) extended option” on page 121.

sp_hook_dbmlsync_abort
sp_hook_dbmlsync_set_extended_options
loop until return codes direct otherwise (

sp_hook_dbmlsync_abort
sp_hook_dbmlsync_delay

)
sp_hook_dbmlsync_abort
// start synchronization
sp_hook_dbmlsync_begin
// upload events
for each upload segment
// a normal synchronization has one upload segment
// a transaction-level upload has one segment per transaction
// an incremental upload has one segment per upload piece

sp_hook_dbmlsync_logscan_begin
sp_hook_dbmlsync_logscan_end
sp_hook_dbmlsync_upload_begin
sp_hook_dbmlsync_upload_end

next upload event

// download events
sp_hook_dbmlsync_validate_download_file (only called

when -ba option is used)
sp_hook_dbmlsync_download_begin
for each table

sp_hook_dbmlsync_download_table_begin
sp_hook_dbmlsync_download_table_end

next table
sp_hook_dbmlsync_download_end
sp_hook_dbmlsync_schema_upgrade
// end synchronization
sp_hook_dbmlsync_end
sp_hook_dbmlsync_process_return_code
sp_hook_dbmlsync_log_rescan

Error handling In addition, the following event-hook procedures are available for error
handling.

178

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_all_error
sp_hook_dbmlsync_communication_error
sp_hook_dbmlsync_connect_failed
sp_hook_dbmlsync_download_com_error
sp_hook_dbmlsync_download_SQL_error
sp_hook_dbmlsync_download_fatal_SQL_error
sp_hook_dbmlsync_download_ri_violation
sp_hook_dbmlsync_download_log_ri_violation
sp_hook_dbmlsync_misc_error
sp_hook_dbmlsync_sql_error

Once implemented, each procedure is automatically executed whenever an
error of the named type occurs.

Using event-hook procedures

This section describes some considerations for designing and using
event-hook procedures.

Notes ♦ Do not perform any COMMIT or ROLLBACK operations in event-hook
procedures. The procedures are executed on the same connection as the
synchronization, and a COMMIT or ROLLBACK may interfere with
synchronization.

♦ Do not define more than one hook with the same name. If more than one
hook with the same name is created (say by different users), then which
hook is called is undefined.

♦ Hook procedures must be created by a user with DBA authority.

♦ If a *_begin hook executes successfully, the corresponding *_end hook is
called regardless of any error that occurs afterwards. If the *_begin hook
is not defined, but you have defined an *_end hook, then the *_end hook
is called unless an error occurs prior the point in time where the *_begin
hook would normally be called.

#hook_dict table

Immediately before a hook is called, dbmlsync creates the #hook_dict table
in the remote database, using the following CREATE statement. The #
before the table name means that the table is temporary.

CREATE TABLE #hook_dict(
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL)

dbmlsync uses the #hook_dict table to pass values to hook functions, and
hook functions use the #hook_dict table to pass values back to dbmlsync.

179

For example, for the following dbmlsync command line,

dbmlsync -c ’dsn=MyDsn’ -n pub1,pub2 -u MyUser

when the sp_hook_dbmlsync_abort hook is called, the #hook_dict table will
contain the following rows:

Name Value

publication_0 pub1

publication_1 pub2

MobiLink user MyUser

Abort synchroniza-
tion

false

Your abort hook can retrieve values from the #hook_dict table and use them
to customize behavior. For example, to retrieve the MobiLink user you
would use a SELECT statement like this:

SELECT value
FROM #hook_dict
WHERE name = ’MobiLink user’

In/out parameters can be updated by your hook to modify the behavior of
dbmlsync. For example, your hook could instruct dbmlsync to abort
synchronization by updating the abort synchronization row of the table using
a statement like this:

UPDATE #hook_dict
SET value=’true’
WHERE name=’abort synchronization’

The description of each hook lists the rows in the #hook_dict table.

Event-hook procedure owner

The event-hook connection calls the stored procedures without qualifying
them by owner. The stored procedures must therefore be owned by one of
the following:

♦ The user name employed on the dbmlsync connection (typically a user
with REMOTE DBA authority).

180

Chapter 8. Dbmlsync Client Event Hooks

♦ A group ID of which the dbmlsync user is a member.

Connections for event-hook procedures

Each event-hook procedure is executed on the same connection as the
synchronization itself. The following are exceptions:

♦ sp_hook_dbmlsync_all_error

♦ sp_hook_dbmlsync_communication_error

♦ sp_hook_dbmlsync_download_com_error

♦ sp_hook_dbmlsync_download_fatal_sql_error

♦ sp_hook_dbmlsync_download_log_ri_violation

♦ sp_hook_dbmlsync_misc_error

♦ sp_hook_dbmlsync_sql_error

These procedures are called before a synchronization fails. On failure,
synchronization actions are rolled back. By operating on a separate
connection, you can use these procedures to log information about the
failure, without the logging actions being rolled back along with the
synchronization actions.

Event arguments

Each hook receives parameter values. In some cases, you can modify the
value to return a new value; others are read-only.

These parameters are exchanged by reading and modifying rows in the
#hook_dict table, which is defined as follows.

CREATE TABLE #hook_dict (
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL

)

Each row in the table contains the value for one parameter.

Before calling any of the stored procedures, dbmlsync creates the
#hook_dict table, and adds the parameters for that event. Procedures can
read the values by selecting from this table.

Some parameters can be used to pass values back to dbmlsync from the
hook. The hook passes values back by updating the #hook_dict table.

☞ For a list of the parameter values supplied at each event, see“Dbmlsync
Client Event Hooks” on page 175.

181

Examples The following examples illustrate how to retrieve and set values in the
#hook_dict table.

The following sample sp_hook_dbmlsync_delay procedure illustrates the
use of the #hook_dict table to pass arguments. The procedure allows
synchronization only outside a scheduled down time of the MobiLink
system between 18:00 and 19:00.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN

DECLARE delay_val integer;
SET delay_val=DATEDIFF(

second, CURRENT TIME, ’19:00’);
IF (delay_val>0 AND

delay_val<3600)
THEN
UPDATE #hook_dict SET value=delay_val

WHERE name=’delay duration’;
END IF;

END

The following procedure is executed in the remote database at the beginning
of synchronization. It retrieves the current MobiLink user name, one of the
parameters available for the sp_hook_dbmlsync_begin event, and displays it
on the console.

CREATE PROCEDURE sp_hook_dbmlsync_begin()
BEGIN

DECLARE syncdef VARCHAR(150);
SELECT ’>>>syncdef = ’ || value INTO syncdef

FROM #hook_dict
WHERE name =’MobiLink user name’;

MESSAGE syncdef TYPE INFO TO CONSOLE;
END

Ignoring errors in event-hook procedures

By default, synchronization stops when an error is encountered in an
event-hook procedure. You can instruct the dbmlsync utility to ignore errors
that occur in event-hook procedures by supplying the -eh option.

For more information, see“IgnoreHookErrors (eh) extended option” on
page 120.

182

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_abort
Function Use this stored procedure to cancel the synchronization process.

Rows in #hook_dict table

Name Values Description

abort synchronization
(in|out)

true | false If you set the abort synchroniza-
tion row of the #hook_dict table
to true, then dbmlsync terminates
immediately after the event.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

exit code (in|out) number When abort synchronization is set
to TRUE, you can use this value to
set the return code for the aborted
synchronization. 0 indicates a
successful synchronization. Any
other number indicates that the
synchronization failed.

script version (in|out) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called at dbmlsync startup, and then
again after each synchronization delay that is caused by the
sp_hook_dbmlsync_delay hook.

If the hook requests an abort by setting the abort synchronization value to
true, the exit code is passed to the sp_hook_dbmlsync_process_exit_code
hook. If no sp_hook_dbmlsync_process_exit_code hook is defined, the exit
code is used as the exit code for the program.

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177
♦ “sp_hook_dbmlsync_process_return_code” on page 221

Examples The following procedure prevents synchronization during a scheduled
maintenance hour between 19:00 and 20:00 each day.

183

create procedure sp_hook_dbmlsync_abort()
begin

declare down_time_start time;
declare is_down_time varchar(128);
set down_time_start=’19:00’;
if abs(datediff(hour,down_time_start,now(*))) < 1
then

set is_down_time=’true’;
else

set is_down_time=’false’;
end if;
UPDATE #hook_dict
SET value = is_down_time
WHERE name = ’abort synchronization’

end

Suppose you have an abort hook that may abort synchronization for one of
two reasons. One of the reasons indicates normal completion of
synchronization, so you want dbmlsync to have an exit code of 0. The other
reason indicates an error condition, so you want dbmlsync to have a
non-zero exit code. You could achieve this with an
sp_hook_dbmlsync_abort hook defined as follows.

BEGIN
IF [condition that defines the normal abort case] THEN

UPDATE #hook_dict SET value = ’0’
WHERE name = ’exit code’;

UPDATE #hook_dict SET value = ’TRUE’
WHERE name = ’abort synchronization’;
ELSEIF [condition that defines the error abort case] THEN

UPDATE #hook_dict SET value = ’1’
WHERE name = ’exit code’;

UPDATE #hook_dict SET value = ’TRUE’
WHERE name = ’abort synchronization’;
END IF;

END;

184

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_begin
Function Use this stored procedure to add custom actions at the beginning of the

synchronization process.

Rows in #hook_dict table

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called at the beginning of the
synchronization process.

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log synchronization events on the
remote database.

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example compiles a list of publications. It logs the list of
publications and other synchronization information at the beginning of the
synchronization process.

185

CREATE PROCEDURE sp_hook_dbmlsync_begin ()
BEGIN

DECLARE pubs_list varchar(1024);
DECLARE temp_str varchar(128);
DECLARE qry varchar(128);

-- insert publication list into pubs_list
SELECT list(value) INTO pubs_list

FROM #hook_dict
WHERE name LIKE ’publication_%’;

-- log publication and synchronization information
INSERT INTO SyncLog(event_name,ml_user,pubs,event_time)

SELECT ’dbmlsync_begin’,#hook_dict.value,pubs_list,current
timestamp

FROM #hook_dict
WHERE name=’MobiLink user’;

END

186

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_connect_failed
Function Use this stored procedure to retry failed attempts to connect to the MobiLink

synchronization server using a different communication type or address.

Rows in #hook_dict table

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

connection address
(in|out)

connection ad-
dress

When the hook is invoked, this is
the address used in the most recent
failed communication attempt.
You can set this value to a new
connection address that you want
to try. If retry is set to true,
this value is used for the next
communication attempt.

connection type
(in|out)

tcpip | http
| https | Ac-
tiveSync | ecc_-
tls | rsa_tls

When the hook is invoked, this
is the communication type that
was used in the most recent failed
communication attempt. You can
set this value to a new connection
type that you want to try. If retry
is set to true, this value is used for
the next communication attempt.

user data (in|out) user-defined
data

State information to be used if the
next connection attempt fails. For
example, you might find it useful
to store the number of retries that
have occurred. The default is an
empty string.

187

Name Values Description

allow remote ahead
(in|out)

true | false This is true only if dbmlsync was
started with the -ra option. You
can use this row to read or change
the -ra option for the current
synchronization only. For more
information, see“-r option” on
page 146.

allow remote behind
(in|out)

true | false This is true only if dbmlsync was
started with the -rb option. You
can use this row to read or change
the -rb option for the current
synchronization only. For more
information, see“-r option” on
page 146.

retry (in|out) true | false Set this value to true if you want to
retry a failed connection attempt.
The default is FALSE.

Description If a procedure of this name exists, it is called if dbmlsync fails while
attempting to connect to the MobiLink synchronization server.

This hook only applies to connection attempts to the MobiLink
synchronization server, not the database.

When a progress offset mismatch occurs, dbmlsync disconnects from the
MobiLink synchronization server and reconnects later. In this kind of
reconnection, this hook is not called, and failure to reconnect causes the
synchronization to fail.

Actions of this procedure are committed immediately after execution.

Examples This example uses the sp_hook_dbmlsync_connect_failed hook to retry the
connection up to five times.

188

Chapter 8. Dbmlsync Client Event Hooks

CREATE PROCEDURE sp_hook_dbmlsync_ml_connect_failed ()
BEGIN

DECLARE idx integer;
DECLARE buf varchar(128);

SELECT value
INTO buf
FROM #hook_dict
WHERE name = ’user data’;

IF buf = ’’ THEN
SELECT 1 INTO idx;

ELSE
SELECT CONVERT(integer, value) + 1

INTO idx
FROM #hook_dict
WHERE name = ’user data’;

END IF;

IF idx <= 5 THEN
UPDATE #hook_dict
SET value = CONVERT(varchar(128), idx)
WHERE name = ’user data’;

UPDATE #hook_dict
SET value = ’TRUE’
WHERE name = ’retry’;

END IF
END

The next example uses a table containing connection information. When an
attempt to connect fails, the hook tries the next server in the list.

189

CREATE TABLE conn_list (
label integer primary key,
addr varchar(128),
type varchar(64)

);
INSERT INTO conn_list

VALUES (1, ’host=server1;port=91’, ’tcpip’);
INSERT INTO conn_list

VALUES (2, ’host=server2;port=92’, ’http’);
INSERT INTO conn_list

VALUES (3, ’host=server3;port=93’, ’tcpip’);
COMMIT;

CREATE PROCEDURE sp_hook_dbmlsync_ml_connect_failed ()
BEGIN

DECLARE idx integer;
DECLARE cnt integer;
DECLARE buf varchar(128);

SELECT value
INTO buf
FROM #hook_dict
WHERE name = ’user data’;

IF buf = ’’ THEN
SELECT 1 INTO idx;

ELSE
SELECT CONVERT(integer, value) + 1

INTO idx
FROM #hook_dict

WHERE name = ’user data’;
END IF;

SELECT count(label) INTO cnt FROM conn_list;

IF idx <= cnt THEN
UPDATE #hook_dict

SET value = (SELECT addr FROM conn_list WHERE label =
idx)

WHERE name = ’connection address’;

UPDATE #hook_dict
SET value = (SELECT type FROM conn_list WHERE label=idx)
WHERE name = ’connection type’;

UPDATE #hook_dict
SET value = CONVERT(varchar(128), idx)

WHERE name = ’user data’;

UPDATE #hook_dict
SET value = ’TRUE’
WHERE name = ’retry’;

END IF
END

190

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_delay
Function Use this stored procedure to control when synchronization takes place.

Rows in #hook_dict table

Name Values Description

delay duration (in|out) number of
seconds

If the procedure sets thedelay du-
ration value to zero, then dbml-
sync synchronization proceeds. A
non-zerodelay_duration value
specifies the number of seconds
before the delay hook is called
again.

maximum accumulated
delay (in|out)

number of
seconds

The maximum accumulated delay
specifies the maximum number
of seconds delay before each
synchronization. Dbmlsync keeps
track of the total delay created
by all calls to the delay hook
since the last synchronization. If
no synchronization has occurred
since dbmlsync started running,
the total delay is calculated from
the time dbmlsync started up.
When the total delay exceeds the
value of maximum accumulated
delay, synchronization begins
without any further calls to the
delay hook.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called before
sp_hook_dbmlsync_beginat the beginning of the synchronization process.

191

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177

Example Assume you have the following table to log orders on the remote database.

CREATE TABLE OrdersTable(
"id" integer primary key default autoincrement,
"priority" varchar(128)

)

The following example delays synchronization for a maximum accumulated
delay of one hour. Every ten seconds the hook is called again and checks for
a high priority row in the OrdersTable. If a high priority row exists the delay
duration is set to zero to start the synchronization process.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN

-- Set the maximum delay between synchronizations
-- or before the first synchronization starts to 1 hour
UPDATE #hook_dict SET value = ’3600’ // 3600 seconds

WHERE name = ’maximum accumulated delay’;

-- check if a high priority order exists in OrdersTable
IF EXISTS (SELECT * FROM OrdersTable where priority=’high’)

THEN
-- start the synchronization to process the high priority

row
UPDATE #hook_dict

SET value = ’0’
WHERE name=’delay duration’;

ELSE
-- set the delay duration to call this procedure again
-- following a 10 second delay
UPDATE #hook_dict

SET value = ’10’
WHERE name=’delay duration’;

END IF;
END

In the sp_hook_dbmlsync_end hook you can mark the high priority row as
processed.

-- change status of high priority row
UPDATE OrdersTable

SET priority = ’high-processed’
WHERE priority = ’high’;

☞ For more information about sp_hook_dbmlsync_end, see
“sp_hook_dbmlsync_end” on page 212.

192

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_download_begin
Function Use this stored procedure to add custom actions at the beginning of the

download stage of the synchronization process.

Rows in #hook_dict table

Name Values Description

publication_n
(in)

publication
name

The publications being synchronized,
wheren is an integer. There is one
publication_n entry for each publica-
tion being uploaded. The numbering
of n starts at zero.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you are
synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called at the beginning of the
download stage of the synchronization process.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

See also ♦ “Synchronization event hook sequence” on page 177

Example Assume you use the following table to log synchronization events on the
remote database.

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example compiles a list of publications. It logs the list of
publications and other synchronization information at the beginning of the
download stage of the synchronization.

193

CREATE PROCEDURE sp_hook_dbmlsync_begin ()
BEGIN

DECLARE pubs_list varchar(1024);
DECLARE temp_str varchar(128);
DECLARE qry varchar(128);

-- insert publication list into pubs_list
SELECT list(value) INTO pubs_list

FROM #hook_dict
WHERE name LIKE ’publication_%’;

-- log publication and synchronization information
INSERT INTO SyncLog(event_name,ml_user,pubs,event_time)

SELECT ’dbmlsync_download_begin’,#hook_dict.value,
pubs_list,current timestamp

FROM #hook_dict
WHERE name=’MobiLink user’;

END

194

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_download_com_error
Function Use this stored procedure to add custom actions when communications

errors occur while reading the download stream sent by the MobiLink
synchronization server.

Rows in #hook_dict table

Name Values Description

table name (in) table name The table to which operations
were being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is invoked when a communication error
is detected during the download phase of synchronization. The download is
then terminated.

This procedure executes on a separate connection, so that failures can be
logged. Otherwise, the action of logging would be rolled back along with the
synchronization actions. If dbmlsync cannot establish a separate connection,
the procedure is not called.

By default on Windows CE devices, synchronization tables are locked in
exclusive mode, which means that this hook cannot successfully execute if it
requires access to any of the synchronization tables. It also cannot execute if
it needs to access synchronization tables and you set the dbmlsync extended
option LockTables to EXCLUSIVE. For more information, see“LockTables
(lt) extended option” on page 122.

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log communication errors.

195

CREATE TABLE SyncLogComErrorTable
(

" user_name " varchar(255) NOT NULL ,
" event_time " timestamp NOT NULL ,

)

The following example logs the MobiLink user and current time stamp when
communications errors occur while reading the download stream sent by the
MobiLink synchronization server. The information is stored on the
SyncLogComErrorTable table on the remote database.

CREATE PROCEDURE sp_hook_dbmlsync_download_com_error ()
BEGIN

INSERT INTO SyncLogComErrorTable (user_name, event_time)
SELECT #hook_dict.value, current timestamp
FROM #hook_dict
WHERE name = ’MobiLink user’;

END;

196

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_download_end
Function Use this stored procedure to add custom actions at the end of the download

stage of the synchronization process.

Rows in #hook_dict table

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called at the end of the download
stage of the synchronization process.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log synchronization events on the
remote database.

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example compiles a list of publications. It logs the list of
publications and other synchronization information at the end of the
download stage of a synchronization.

197

CREATE PROCEDURE sp_hook_dbmlsync_begin ()
BEGIN

DECLARE pubs_list varchar(1024);
DECLARE temp_str varchar(128);
DECLARE qry varchar(128);

-- insert publication list into pubs_list
SELECT list(value) INTO pubs_list

FROM #hook_dict
WHERE name LIKE ’publication_%’;

-- log publication and synchronization information
INSERT INTO SyncLog(event_name,ml_user,pubs,event_time)

SELECT ’dbmlsync_download_begin’,#hook_dict.value,
pubs_list,current timestamp

FROM #hook_dict
WHERE name=’MobiLink user’;

END

198

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_download_fatal_sql_error
Function Take action when a synchronization download is about to be rolled back

because of a database error.

Rows in #hook_dict table

Name Values Description

table name (in) table name The table to which operations
were being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

SQL error code (in) SQL error
code

Identifies the SQL error code
returned by the database when the
operation failed.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately before a
synchronization download is rolled back because of a database error. This
occurs whenever an SQL error is encountered that cannot be ignored, or
when the sp_hook_dbmlsync_download_SQL_error hook has already been
called and has chosen not to ignore the error.

This procedure executes on a separate connection, so that failures can be
logged. Otherwise, the action of logging would be rolled back along with the
synchronization actions. If dbmlsync cannot establish a separate connection,
the procedure is not called.

By default on Windows CE devices, synchronization tables are locked in
exclusive mode, which means that this hook cannot successfully execute if it
requires access to any of the synchronization tables. It also cannot execute if
it needs to access synchronization tables and you set the dbmlsync extended
option LockTables to EXCLUSIVE. For more information, see“LockTables
(lt) extended option” on page 122.

199

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177
♦ “sp_hook_dbmlsync_download_sql_error” on page 206

Examples Assume you use the following table to log SQL errors.

CREATE TABLE "DBA"."SyncLogComErrorTable"
(

" error_code " varchar(255) NOT NULL ,
" event_time " timestamp NOT NULL ,

)

The following example logs the SQL error code and current time stamp
when SQL errors occur while reading the download stream. The information
is stored in SyncLogSQLErrorTable on the remote database.

CREATE PROCEDURE sp_hook_dbmlsync_download_fatal_sql_error ()
BEGIN

INSERT INTO SyncLogSQLErrorTable (error_code, event_time)
SELECT #hook_dict.value, current timestamp
FROM #hook_dict
WHERE name = ’SQL error code’;

END;

200

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_download_log_ri_violation
Function Logs referential integrity violations in the download process.

Rows in #hook_dict table

Name Values Description

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Foreign key table (in) table name The table containing the foreign
key column for which the hook is
being called.

Primary key table (in) table name The table referenced by the for-
eign key for which the hook is
being called.

Role name (in) role name The role name of the foreign key
for which the hook is being called.

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description A download RI violation occurs when rows in the download stream violate
foreign key relationships on the remote database. This hook allows you to
log RI violations as they occur so that you can investigate their cause later.

After the download is complete, but before it is committed, dbmlsync checks
for RI violations. If it finds any, it identifies a foreign key that has an RI
violation and calls sp_hook_dbmlsync_download_log_ri_violation (if it is
implemented). It then calls sp_hook_dbmlsync_download_ri_conflict (if it is
implemented). If there is still a conflict, dbmlsync deletes the rows that
violate the foreign key constraint. This process is repeated for remaining
foreign keys that have RI violations.

This hook is called only when there are RI violations involving tables that
are currently being synchronized. If there are RI violations involving tables
that are not being synchronized, this hook is not called and the
synchronization fails.

This hook is called on a separate connection from the one that dbmlsync

201

uses for the download. The connection used by the hook has an isolation
level of 0 so that the hook can see the rows that have been applied from the
download stream that are not yet committed. The actions of the hook are
committed immediately after it completes so that changes made by this hook
will be preserved regardless of whether the download stream is committed or
rolled back.

By default on Windows CE devices, synchronization tables are locked in
exclusive mode, which means that this hook cannot successfully execute if it
requires access to any of the synchronization tables. It also cannot execute if
it needs to access synchronization tables and you set the dbmlsync extended
option LockTables to EXCLUSIVE. For more information, see“LockTables
(lt) extended option” on page 122.

Do not attempt to use this hook to correct RI violation problems. It should
be used for logging only. Use sp_hook_dbmlsync_download_ri_violation to
resolve RI violations.

See also ♦ “sp_hook_dbmlsync_download_ri_violation” on page 204
♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log referential integrity violations.

CREATE TABLE "DBA"." LogRIErrorTable "
(

"id" int PRIMARY KEY NOT NULL,
"name" varchar(255) NOT NULL,
"value" timestamp NOT NULL

)

The following example logs the foreign key table name, primary key table
name, and other synchronization information when a referential integrity
violation is detected on the remote database. The information is stored in
LogRIErrorTable on the remote database.

202

Chapter 8. Dbmlsync Client Event Hooks

CREATE PROCEDURE sp_hook_dbmlsync_download_log_ri_violation()
BEGIN

--
-- get the next id for the LogRIErrorTable
--

DECLARE nextid int;

SELECT max(id)
INTO nextid
FROM LogRIErrorTable;

IF nextid is NULL THEN
SET nextid = 0

ELSE
SET nextid = nextid +1

END IF;

INSERT INTO LogRIErrorTable(id,name, value)
SELECT nextid,#hook_dict.name, #hook_dict.value
FROM #hook_dict;

END;

203

sp_hook_dbmlsync_download_ri_violation
Function Allows you to resolve referential integrity violations in the download

process.

Rows in #hook_dict table

Name Values Description

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Foreign key table (in) table name The table containing the foreign
key column for which the hook is
being called.

Primary key table (in) table name The table referenced by the for-
eign key for which the hook is
being called.

Role name (in) role name The role name of the foreign key
for which the hook is being called.

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description A download RI violation occurs when rows in the download stream violate
foreign key relationships on the remote database. This hook allows you to
attempt to resolve RI violations before dbmlsync deletes the rows that are
causing the conflict.

After the download is complete, but before it is committed, dbmlsync checks
for RI violations. If it finds any, it identifies a foreign key that has an RI
violation and calls sp_hook_dbmlsync_download_log_ri_violation (if it is
implemented). It then calls sp_hook_dbmlsync_download_ri_conflict (if it is
implemented). If there is still a conflict, dbmlsync deletes the rows. This
process is repeated for remaining foreign keys that have RI violations.

This hook is called only when there are RI violations involving tables that
are currently being synchronized. If there are RI violations involving tables
that are not being synchronized, this hook is not called and the
synchronization fails.

204

Chapter 8. Dbmlsync Client Event Hooks

This hook is called on the same connection that dbmlsync uses for the
download. This hook should not contain any explicit or implicit commits,
because they may lead to inconsistent data in the database. The actions of
this hook are committed or rolled back when the download stream is
committed or rolled back.

Unlike other hook actions, the operations performed during this hook are not
uploaded during the next synchronization.

See also ♦ “sp_hook_dbmlsync_download_log_ri_violation” on page 201

Example This example uses the Department and Employee tables shown below:

CREATE TABLE Department(
"department_id" integer primary key

);

CREATE TABLE Employee(
"employee_id" integer primary key,
"department_id" integer,
foreign key EMPLOYEE_FK1 (department_id) references Department

)

The following sp_hook_dbmlsync_download_ri_violation definition cleans
up referential integrity violations between the Department and Employee
tables. It verifies the role name for the foreign key and inserts missing
department_id values into the Department table.

CREATE PROCEDURE sp_hook_dbmlsync_download_ri_violation()
BEGIN

IF EXISTS (SELECT * FROM #hook_dict WHERE name = ’role name’
AND value = ’EMPLOYEE_FK1’) THEN

-- update the Department table with missing department_id
values

INSERT INTO Department
SELECT distinct department_id FROM Employee
WHERE department_id NOT IN (SELECT department_id FROM

Department)

END IF;

205

sp_hook_dbmlsync_download_sql_error
Function Handle database errors that occur while applying the download stream sent

by the MobiLink synchronization server.

Rows in #hook_dict table

Name Values Description

Table name (in) table name The table to which operations
were being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

Continue (in|out) true | false Indicates whether the error should
be ignored and synchronization
should continue. This parameter
should be set tofalse to call the
sp_hook_dbmlsync_download_-
fatal_sql_error hook and stop
synchronization. If you set this
parameter totrue, dbmlsync ig-
nores the error and continues with
synchronization, which may result
in data loss.

SQL error code (in) SQL error
code

Identifies the SQL error code
returned by the database when the
operation failed.

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is invoked when a database error is
detected during the download phase of synchronization. The procedure is
only invoked for errors where it is possible to ignore the error and continue
with synchronization. For fatal errors, the

206

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_download_fatal_SQL_error procedure is called.

Caution
When continue is set to TRUE, dbmlsync simply ignores the database
error and continues with synchronization. There is no attempt to retry
the operation that failed. As a result part or all of the download may be
lost. The amount of data lost depends on the type of error encountered,
when it occurred, and what steps the hook took to recover. It is very
difficult to predict which data will be lost and so this feature must be used
with extreme caution. Most users would be best advised to not attempt to
continue after an SQL error.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

See also ♦ “Synchronization event hook sequence” on page 177
♦ “sp_hook_dbmlsync_download_fatal_sql_error” on page 199

Examples Assume you use the following table to log SQL errors.

CREATE TABLE "DBA"." LogSQLErrorTable "
(

"id" int PRIMARY KEY NOT NULL,
"name" varchar(255) NOT NULL,
"value" timestamp NOT NULL

)

The following example logs the SQL error code, table name, and other
synchronization information when a database error occurs during the
download phase of synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_download_sql_error()
BEGIN

--
-- get the next LogSQLErrorTable id
--

DECLARE nextid int;

SELECT max(id)
INTO nextid
FROM LogSQLErrorTable;

IF nextid is NULL THEN
SET nextid = 0

ELSE
SET nextid = nextid +1

END IF;

INSERT INTO LogSQLErrorTable(id,name, value)
SELECT nextid,#hook_dict.name, #hook_dict.value
FROM #hook_dict;

END;

207

sp_hook_dbmlsync_download_table_begin
Function Use this stored procedure to add custom actions immediately before each

table is downloaded.

Rows in #hook_dict table

Name Values Description

Table name (in) table name The table to which operations are about
to be applied.

Publication_n
(in)

publication
name

The publications being synchronized,
wheren is an integer. There is one
publication_n entry for each publica-
tion being uploaded. The numbering of
n starts at zero.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you are
synchronizing.

Script version (in) script version
name

The MobiLink script version to be used
for the synchronization.

Description If a procedure of this name exists, it is called for each table immediately
before downloaded operations are applied to that table. Actions of this
procedure are committed or rolled back when the download stream is
committed or rolled back.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log synchronization events on the
remote database.

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example logs the MobiLink user, table name, and current

208

Chapter 8. Dbmlsync Client Event Hooks

timestamp immediately before a table is downloaded.

CREATE PROCEDURE sp_hook_dbmlsync_download_table_begin()
BEGIN

declare tbl varchar(255);

-- load the table name from #hook_dict
SELECT #hook_dict.value

INTO tbl
FROM #hook_dict
WHERE #hook_dict.name = ’table name’;

INSERT INTO SyncLog (event_name, ml_user, table_name
,event_time)

SELECT ’download_table_begin’, #hook_dict.value, tbl
,current timestamp

FROM #hook_dict
WHERE name = ’MobiLink user’ ;

END

209

sp_hook_dbmlsync_download_table_end
Function Use this stored procedure to add custom actions immediately after each table

is downloaded.

Rows in #hook_dict table

Name Values Description

Table name (in) table name The table to which operations
have just been applied.

Delete count (in) number of
rows

The number of rows in this table
deleted by the download stream.

Upsert count (in) number of
rows

The number of rows in this ta-
ble updated or inserted by the
download stream.

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately after all
operations in the download stream for a table have been applied.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log synchronization events on the
remote database.

210

Chapter 8. Dbmlsync Client Event Hooks

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example logs the MobiLink user, the table name and the
number of inserted or updated rows immediately after a table is downloaded.

CREATE PROCEDURE sp_hook_dbmlsync_download_table_end()
BEGIN

-- declare variables
declare tbl varchar(255);
declare upsertCnt varchar(255);
declare deleteCnt varchar(255);

-- load the table name from #hook_dict
SELECT #hook_dict.value

INTO tbl
FROM #hook_dict
WHERE #hook_dict.name = ’table name’;

-- load the upsert count from #hook_dict
SELECT #hook_dict.value

INTO upsertCnt
FROM #hook_dict
WHERE #hook_dict.name = ’upsert count’;

-- load the delete count from #hook_dict
SELECT #hook_dict.value

INTO deleteCnt
FROM #hook_dict
WHERE #hook_dict.name = ’delete count’;

INSERT INTO SyncLog (event_name, ml_user, table_name,
upsert_count, delete_count, event_time)

SELECT ’download_table_end’, #hook_dict.value, tbl,
upsertCnt, deleteCnt, current timestamp

FROM #hook_dict
WHERE name = ’MobiLink user’ ;

END

211

sp_hook_dbmlsync_end
Function Use this stored procedure to add custom actions immediately before

synchronization is complete.

Rows in #hook_dict table

Name Values Description

Restart (out) sync | down-
load | none

If set tosync, then dbmlsync re-
tries the synchronization it just
completed. The valuesync re-
placestrue, which is identical but
is deprecated.

If set tonone (the default), then
dbmlsync shuts down or restarts
according to its command line ar-
guments. The valuenonereplaces
false, which is identical but is
deprecated.

If set to download and the
restartable download parameter
is true, then dbmlsync attempts
to restart the download that just
failed.

Exit code (in) number If set to anything other than zero
(the default), this represents a
synchronization error.

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

212

Chapter 8. Dbmlsync Client Event Hooks

Name Values Description

Upload status (in) committed |
failed

Specifies the status returned by
the MobiLink synchronization
server when dbmlsync attempted
to verify receipt of the upload
stream.

committed The upload stream
was received by the MobiLink
synchronization server, and com-
mitted.

failed The MobiLink synchro-
nization server did not commit the
upload stream.

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Restartable download
(in)

true|false If true, the download for the
current synchronization failed and
can be restarted. Iffalse, the
download was successful or it
cannot be restarted.

Restartable download
size (in)

integer When the restartable download
parameter istrue, this parameter
indicates the number of bytes
that were received before the
download failed. When restartable
download isfalse, this value is
meaningless.

error hook user state
(in)

integer This value contains information
about errors and can be sent from
the hooks sp_hook_dbmlsync_-
all_error, sp_hook_dbmlsync_-
communication_error, sp_hook_-
dbmlsync_misc_error, or sp_-
hook_dbmlsync_sql_error.

Description If a procedure of this name exists, it is called as the last event during
synchronization.

Actions of this procedure are committed immediately after execution.

If an sp_hook_dbmlsync_end hook is defined so that the hook always sets

213

the restart parameter tosync, and you specify multiple publications on the
dbmlsync command line in the form -n pub1, -n pub2, etc., then dbmlsync
repeatedly synchronizes the first publication and never synchronizes the
second.

See also ♦ “Customizing the client synchronization process” on page 177
♦ “Synchronization event hook sequence” on page 177
♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]

Examples In the following example the download is manually restarted if the download
for the current synchronization failed and can be restarted.

CREATE PROCEDURE sp_hook_dbmlsync_end()
BEGIN

-- Restart the download if the download for the current sync
-- failed and can be restarted

IF exists(SELECT * FROM #hook_dict
WHERE name = ’restartable download’ AND value=’true’)

THEN
UPDATE #hook_dict SET value =’download’ WHERE name=’restart’;

END IF;
END

214

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_log_rescan
Function Use this stored procedure to programmatically decide when a rescan is

required.

Rows in #hook_dict table

Name Values Description

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Discarded storage (in) number The number of bytes of discarded
memory after the last synchro-
nization.

Rescan (in|out) true | false If set to True by the hook, dbml-
sync performs a complete rescan
before the next synchronization.
On entry, this value is set to False.

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description When more than one -n option is specified at the command line, dbmlsync
may experience fragmentation which results in discarded memory. This
hook allows you to decide if dbmlsync should rescan the database
transaction log to recover memory.

When no other condition has been met that would force a rescan, this hook is
called immediately after the sp_hook_dbmlsync_end hook.

See also ♦ “HoverRescanThreshold (hrt) extended option” on page 119

Examples The following example sets the rescan field in the #hook_dict table to TRUE
if the discarded storage is greater than 1000 bytes.

215

CREATE PROCEDURE sp_hook_dbmlsync_log_rescan ()
BEGIN

IF exists(SELECT * FROM #hook_dict
WHERE name = ’Discarded storage’ AND value>1000)

THEN
UPDATE #hook_dict SET value =’true’ WHERE name=’Rescan’;

END IF;

END

216

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_logscan_begin
Function Use this stored procedure to add custom actions immediately before the

transaction log is scanned for upload.

Rows in #hook_dict table

Name Values Description

Starting log offset_n
(in)

number The log offset value where scan-
ning is to begin. There is one
value for each publication being
uploaded. The numbering ofn
starts at zero.

Log scan retry (in) true | false If this is the first time the trans-
action log has been scanned for
this synchronization, the value is
false; otherwise it is true. The log
is scanned twice when the Mo-
biLink synchronization server and
dbmlsync have different infor-
mation about where the scanning
should begin.

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately before dbmlsync
scans the transaction log to assemble the upload stream.

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log synchronization events on the
remote database.

217

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example logs the MobiLink user and current timestamp
immediately before the transaction log is scanned for upload.

CREATE PROCEDURE sp_hook_dbmlsync_logscan_begin ()
BEGIN

-- log the synchronization event
INSERT INTO SyncLog (event_nam

e, ml_user,event_time)
SELECT ’logscan_begin’, #hook_dict.value, current timestamp
FROM #hook_dict
WHERE name = ’MobiLink user’ ;

END

218

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_logscan_end
Function Use this stored procedure to add custom actions immediately after the

transaction log is scanned for upload.

Rows in #hook_dict table

Name Values Description

Ending log offset (in) number The log offset value where scan-
ning ended.

Starting log offset_n
(in)

number The initial progress value for each
subscription you synchronize.
Then values correspond to those
in Publication_n. For example,
Starting log offset_1 is the offset
for Publication_1.

Log scan retry (in) true | false If this is the first time the trans-
action log has been scanned for
this synchronization, the value is
false; otherwise it is true. The log
is scanned twice when the Mo-
biLink synchronization server and
dbmlsync have different infor-
mation about where the scanning
should begin.

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately after dbmlsync
has scanned the transaction log to assemble the upload stream.

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log synchronization events on the

219

remote database.

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example logs the MobiLink user and current timestamp
immediately after the transaction log is scanned for upload. The #hook_dict
log scan retry parameter indicates if the transaction log is scanned more than
one time.

CREATE PROCEDURE sp_hook_dbmlsync_logscan_end ()
BEGIN

declare scan_retry varchar(128);

-- load the scan retry parameter from #hook_dict
SELECT #hook_dict.value

INTO scan_retry
FROM #hook_dict
WHERE #hook_dict.name = ’log scan retry’;

-- Determine if the log is being rescanned
-- and log the synchronization event

IF scan_retry=’true’ then
INSERT INTO SyncLog (event_name, ml_user,event_time,sync_

descr)
SELECT ’logscan_end’, #hook_dict.value, current timestamp,

’Transaction log rescanned’
FROM #hook_dict
WHERE name = ’MobiLink user’ ;

ELSE
INSERT INTO SyncLog (event_name, ml_user,event_time,sync_

descr)
SELECT ’logscan_end’, #hook_dict.value, current timestamp,

’Transaction log scanned normally’
FROM #hook_dict
WHERE name = ’MobiLink user’ ;

END IF;
END

220

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_process_return_code
Function Use this stored procedure to manage return codes.

Rows in #hook_dict table

Name Values Description

Publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.
The numbering ofn starts at zero.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Fatal error (in) true | false True when the hook is called
because of an error that will cause
dbmlsync to terminate.

Aborted synchroniza-
tion (in)

true | false True when the hook is called be-
cause of an abort request from the
sp_hook_dbmlsync_abort hook.

Return code (in) number The return code from the most
recent synchronization attempt.
0 indicates a successful syn-
chronization. Any other value
indicates that the synchroniza-
tion failed. This value can be
set by sp_hook_dbmlsync_abort
when that hook is used to abort
synchronization.

Last return code (in) number The value stored in thenew re-
turn code row of the #hook_dict
table the last time this hook was
called, or 0 if this is the first call
to the hook.

New return code
(in|out)

number The desired return code for the
process. When dbmlsync exits,
dblmsync’sreturn code is the
value stored in this row by the last
call to the hook. The value must
be -32768 to 32767.

221

Name Values Description

Script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description A dbmlsync session can run multiple synchronizations when you specify the
-n option more than once on the command line, when you use scheduling, or
when you use the restart parameter in sp_hook_dbmlsync_end. In these
cases, if one or more of the synchronizations fail, the default return code
does not indicate which failed. Use this hook to define the return code for
the dbmlsync process based on the return codes from the synchronizations.
This hook can also be used to log return codes.

Example Suppose that you run dbmlsync to perform five synchronizations and you
want the return code to indicate how many of the synchronizations failed,
with a return code of 0 indicating that there were no failures, a return code of
1 indicating that one synchronization failed, and so on. You can achieve this
by defining the sp_hook_dbmlsync_process_return_code hook as follows. In
this case, if three synchronizations fail, the new return code is 3.

CREATE PROCEDURE sp_hook_dbmlsync_process_return_code()
BEGIN

DECLARE rc integer;

SELECT value INTO rc FROM #hook_dict WHERE name = ’return
code’;

IF rc <> 0 THEN
SELECT value INTO rc FROM #hook_dict WHERE name = ’last

return code’;
UPDATE #hook_dict SET value = rc + 1 WHERE name = ’new

return code’;
END IF;

END;

See also ♦ “Synchronization event hook sequence” on page 177
♦ “sp_hook_dbmlsync_abort” on page 183

222

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_schema_upgrade
Function Use this stored procedure to run a SQL script that revises your schema.

Rows in #hook_dict table

Name Values Description

Publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded. The
numbering ofn starts at zero.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

Script version name of script ver-
sion

The script version that you are
synchronizing.

Drop hook (out) never | always | on
success

The values can be:

never - (the default) Do not drop
the sp_hook_dbmlsync_schema_-
upgrade hook from the database.

always - After attempting to run
the hook, ,drop the sp_hook_-
dbmlsync_schema_upgrade hook
from the database.

on success- If the hook runs
successfully, drop the sp_hook_-
dbmlsync_schema_upgrade hook
from the database. On success is
identical to always if the dbml-
sync -eh option is used, or the
dbmlsync extended option Ignore-
HookErrors is set to true.

Script version (in) script version name The MobiLink script version to be
used for the synchronization.

Description This stored procedure is intended for making schema changes to deployed
remote databases. Using this hook for schema upgrades ensures that all
changes on the remote database are synchronized before the schema is
upgraded, which is required to ensure that the database will continue to be
able to synchronize. When this hook is being used you should not set the

223

dbmlsync extended option LockTables to off (LockTables is on by default).

During any synchronization where the upload was applied successfully and
acknowledged by MobiLink, this hook is called after the
sp_hook_dbmlsync_download_end hook and before the
sp_hook_dbmlsync_end hook. This hook is not called during download-only
synchronization or when a file-based download is being created or applied.

Actions performed in this hook are committed immediately after the hook
completes.

See also ♦ “Schema changes in remote databases”[MobiLink Administration Guide,
page 81]

Examples The following example uses the sp_hook_dbmlsync_schema_upgrade
procedure to add a column to the Dealer table on the remote database. If the
upgrade is successful the sp_hook_dbmlsync_schema_upgrade hook is
dropped.

CREATE PROCEDURE sp_hook_dbmlsync_schema_upgrade()
BEGIN

-- Upgrade the schema of the Dealer table
-- here we add a column
ALTER TABLE Dealer

ADD dealer_description varchar(128);

-- if the schema upgrade is successful, drop this hook
UPDATE #hook_dict

SET value = ’on success’
WHERE name = ’drop hook’;

END

224

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_set_extended_options
Function Use this stored procedure to programmatically customize the behavior of an

upcoming synchronization by specifying extended options to be applied to
that synchronization.

Rows in #hook_dict table

Name Values Description

Publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded. The
numbering ofn starts at zero.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

Extended options
(out)

opt=val;... Extended options to add for the
next synchronization.

Description If a procedure of this name exists, it is called immediately before the
sp_hook_dbmlsync_delay hook.

Extended options specified by this hook apply only to the synchronization
identified by the publication and MobiLink user entries, and they apply only
until the next time the hook is called for the same synchronization.

Scheduling options may not be specified using this hook.

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177
♦ “dbmlsync extended options” on page 105
♦ “Priority order for extended options and connection parameters” on

page 73

Examples The following example uses sp_hook_dbmlsync_set_extended_options to
specify the SendColumnNames extended option. The extended option is
only applied if pub1 is synchronizing.

225

CREATE PROCEDURE sp_hook_dbmlsync_set_extended_options ()
BEGIN

IF exists(SELECT * FROM #hook_dict
WHERE name LIKE ’publication_%’ AND value=’pub1’)

THEN
-- specify the sendcolumnnames=on extended option
UPDATE #hook_dict

SET value = ’SendColumnNames=on’
WHERE name = ’extended options’;

END IF;
END

226

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_upload_begin
Function Use this stored procedure to add custom actions immediately before the

transmission of the upload.

Rows in #hook_dict table

Name Values Description

Publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded. The
numbering ofn starts at zero.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

Script version (in) script version name The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately before dbmlsync
sends the upload stream.

Actions of this procedure are committed immediately after execution.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log synchronization events on the
remote database.

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example logs the MobiLink user and current timestamp
immediately before the transmission of the upload.

227

CREATE PROCEDURE sp_hook_dbmlsync_upload_begin ()
BEGIN

INSERT INTO SyncLog (event_name, ml_user,event_time)
SELECT ’upload_begin’, #hook_dict.value, current timestamp
FROM #hook_dict
WHERE name = ’MobiLink user’;

END

228

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_upload_end
Function Use this stored procedure to add custom actions after dbmlsync has verified

receipt of the upload stream by the MobiLink synchronization server.

Rows in #hook_dict table

Name Values Description

Failure cause (in) See range of val-
ues in Description,
below

The cause of failure of an up-
load. For more information, see
Description.

Upload status (in) retry | committed |
failed | unknown

Specifies the status returned by
the MobiLink synchronization
server when dbmlsync attempted
to verify receipt of the upload
stream.

retry The MobiLink synchro-
nization server and dbmlsync had
different values for the log offset
from which the upload stream
should start. The upload stream
was not committed by the Mo-
biLink synchronization server.
The dbmlsync utility will attempt
to send another upload stream
starting from a new log offset.

committed The upload stream
was received by the MobiLink
synchronization server and com-
mitted.

failed The MobiLink synchro-
nization server did not commit the
upload stream.

unknown The MobiLink synchro-
nization server was started with
the -tu option, causing transaction-
level uploads. For each transac-
tion that is uploaded, the sp_-
hook_dbmlsync_upload_begin
and sp_hook_dbmlsync_upload_-
end hooks are called and the up-
load status value isunknown each
time except the last one.

229

Name Values Description

Publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded. The
numbering ofn starts at zero.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

Script version (in) script version name The MobiLink script version to be
used for the synchronization.

Authentication
value (in)

value This value is generated by the
authenticate_user, authenticate_-
user_hashed, or authenticate_-
parameters script on the server.
The value is an empty string when
the upload status is unknown or
when the upload_end hook is
called after an upload is resent
because of a conflict between the
log offsets stored in the remote
and consolidated databases.

Description If a procedure of this name exists, it is called immediately after dbmlsync
has sent the upload stream and received confirmation of it from the
MobiLink synchronization server.

Actions of this procedure are committed immediately after execution.

The range of possible parameter values for the failure cause row in the
#hook_dict table includes:

♦ UPLD_ERR_COMMUNICATIONS_FAILURE A communication error
occurred.

♦ UPLD_ERR_LOG_OFFSET_MISMATCH The upload failed because of
conflict between log offset stored on the remote and consolidated
databases.

♦ UPLD_ERR_GENERAL_FAILURE The upload failed for an unknown
reason.

♦ UPLD_ERR_INVALID_USERID_OR_PASSWORD The user ID or
password was incorrect.

230

Chapter 8. Dbmlsync Client Event Hooks

♦ UPLD_ERR_USERID_OR_PASSWORD_EXPIRED The user ID or
password expired.

♦ UPLD_ERR_USERID_ALREADY_IN_USE The user ID was already in
use.

♦ UPLD_ERR_DOWNLOAD_NOT_AVAILABLE The upload was
committed on the consolidated but an error occurred that prevented
MobiLink from generating a download stream.

♦ UPLD_ERR_PROTOCOL_MISMATCH Dbmlsyncreceived unexpected
data from the MobiLink synchronization server.

♦ UPLD_ERR_SQLCODE_n Here,n is an integer. A SQL error occurred
in the consolidated database. The integer specified is the SQLCODE for
the error encountered.

See also ♦ “Synchronization event hook sequence” on page 177

Examples Assume you use the following table to log synchronization events on the
remote database.

CREATE TABLE SyncLog
(

"event_id" integer NOT NULL DEFAULT autoincrement ,
"event_name" varchar(128) NOT NULL ,
"ml_user" varchar(128) NULL ,
"event_time" timestamp NULL,
"table_name" varchar(128) NULL ,
"upsert_count" varchar(128) NULL ,
"delete_count" varchar(128) NULL ,
"exit_code" integer NULL ,
"status_retval" varchar(128) NULL ,
"pubs" varchar(128) NULL ,
"sync_descr " varchar(128) NULL ,

PRIMARY KEY ("event_id"),
)

The following example logs the MobiLink user and current timestamp after
dbmlsync verifies that the MobiLink Synchronization server has received the
upload stream.

231

CREATE PROCEDURE sp_hook_dbmlsync_upload_end ()
BEGIN

declare status_return_value varchar(255);

-- store status_return_value
SELECT #hook_dict.value

INTO status_return_value
FROM #hook_dict
WHERE #hook_dict.name = ’upload status’;

INSERT INTO SyncLog (event_name, ml_user,
status_retval, event_time)

SELECT ’upload_end’, #hook_dict.value,
status_return_value, current timestamp

FROM #hook_dict
WHERE name = ’MobiLink user’;

END

232

Chapter 8. Dbmlsync Client Event Hooks

sp_hook_dbmlsync_validate_download_file
Function Use this hook to implement custom logic to decide if a download file can be

applied to the remote database.

Rows in #hook_dict table

Name Values Description

Publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded. The
n in publication_n and generation
number_n match. The numbering
of n starts at zero.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

File last down-
load time (in)

The download file’s last download
time. (The download file contains
all rows that were changed be-
tween its last download time and
its next last download time.)

File next last
download time
(in)

The download file’s next last
download time. (The download
file contains all rows that were
changed between its last download
time and its next last download
time.)

File creation time
(in)

The time when the download file
was created.

File generation
number_n (in)

number The generation numbers from the
download file. There is one file
generation number_n for each
publication_n entry. Then in pub-
lication_n and generation num-
ber_n match. The numbering ofn
starts at zero.

User data (in) string The string specified with the dbml-
sync -be option when the down-
load file was created.

233

Name Values Description

Apply file (in|out) True|False If true (the default), the down-
load file will be applied only if it
passes dbmlsync’s other validation
checks. If false, the download file
will not be applied to the remote
database.

Check generation
number (in|out)

True|False If true (the default), dbmlsync
validates generation numbers. If
the generation numbers in the
download file do not match those
in the remote database, dbmlsync
does not apply the download file.
If false, dbmlsync does not check
generation numbers.

Setting genera-
tion number (in)

true | false True if the -bg switch was used
when the download file was cre-
ated. If -bg was used, the gen-
eration numbers on the remote
database are updated from the
download file and normal gen-
eration number checks are not
performed.

Description Use this stored procedure to implement custom checks to decide if a
download file can be applied.

If you want to compare the generation numbers or timestamps contained in
the file with those stored in the remote database, they can be queried from
the SYSSYNC and SYSPUBLICATION tables.

This hook is called when the -ba option is specified. It is called after the
sp_hook_dbmlsync_upload_end hook and before the
sp_hook_dbmlsync_download_begin hook.

The actions of this hook are committed immediately after it completes.

See also ♦ “-be option” on page 101
♦ “-bg option” on page 102
♦ “File-Based Downloads”[MobiLink Administration Guide,page 85]

Examples The following example prevents application of download files that don’t
contain the user string ‘sales manager data’.

234

Chapter 8. Dbmlsync Client Event Hooks

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file ()
BEGIN

IF NOT exists(SELECT * FROM #hook_dict
WHERE name = ’User data’ AND value=’sales manager data’)

THEN
UPDATE #hook_dict

SET value = ’false’ WHERE name = ’Apply file’;
END IF;

END

235

CHAPTER 9

Dbmlsync Integration Component

About this chapter This chapter describes how to use the Dbmlsync Integration Component.
The Dbmlsync Integration Component helps you customize your Adaptive
Server Anywhere client applications.

Contents Topic: page

Introduction 238

Setting up the Dbmlsync Integration Component 239

Dbmlsync Integration Component methods 243

Dbmlsync Integration Component properties 244

Dbmlsync Integration Component events 249

IRowTransferData interface 262

237

Introduction
The Dbmlsync Integration Component is useful for adding synchronization
to your applications. It provides a set of properties, events, and methods to
regulate the behavior of Adaptive Server Anywhere clients.

The Dbmlsync Integration Component is available in two forms, both of
which expose the same properties, events and methods:

♦ A visual component that provides an easy way to integrate the standard
dbmlsync user interface into your applications.

♦ A non-visual component that allows you to access the component’s
functionality with no user interface or with a custom user interface that
you create yourself.

Using the Dbmlsync Integration Component, your application can initiate
synchronization, receive information about the progress of a
synchronization, and implement special processing based on
synchronization events.

As an alternative to the Dbmlsync Integration Component, you can use the
a_sync_db structure in the database tools library provided with Adaptive
Server Anywhere.

☞ For more information about a_sync_db, see“a_sync_db structure”[ASA
Programming Guide,page 298].

☞ For more information about Adaptive Server Anywhere clients, see
“MobiLink synchronization client” on page 96.

Supported platforms

You can use the Dbmlsync Integration Component on all MobiLink
supported Windows operating systems, including Windows CE versions
supporting ActiveX.

Supported development environments include Microsoft Visual Basic 6.0,
eMbedded Visual Basic, and Visual Studio .NET.

238

Chapter 9. Dbmlsync Integration Component

Setting up the Dbmlsync Integration Component
The Dbmlsync Integration Component can be used in a wide variety of
programming environments. You should consult the documentation in your
programming environment for information about how to set it up. Following
are the procedures for setting up the integration component in Windows
form applications and console applications.

Windows form
applications

❖ To set up the Dbmlsync Integration Component in a Windows ap-
plication

1. Add a reference to the component.

♦ For the visual component, usedbmlsynccomg.dll, which is located in
thewin32 subdirectory of your SQL Anywhere installation. Add it to
the development environment toolbox.

♦ For the non-visual component, usedbmlsynccom.dll, which is located
in thewin32 subdirectory of your SQL Anywhere installation.

2. Create a component instance.

♦ For the visual component, use the toolbox to drag and drop an instance
on the form.

♦ For the non-visual component, declare a global variable and create an
instance in your initialization code.

• For example, if you are using Visual Basic .NET, enter the following
as a global variable declaration:

Dim WithEvents dbmlsync1 As DbmlsyncCOM.Dbmlsync

To create an instance, enter:

dbmlsync1 = New DbmlsyncCOM.Dbmlsync

• For example, if you are using C#, enter the following as a global
variable declaration:

private DbmlsyncCOM.Dbmlsync dbmlsync1;

To create an instance, enter:

dbmlsync1 = new DbmlsyncCOM.Dbmlsync();

Note: for C# you must create the instance prior to assigning
delegates for dbmlsync events (step 3 of this procedure).

3. Add functions to handle synchronization events.

♦ For example, if you are using Visual Basic .NET, use the Handles
keyword in your function prototype.

239

Private Sub dbmlsync1_ProgressMessage(ByVal msg As
String)

Handles dbmlsync1.ProgressMessage
lblProgressMessage.Text = msg

End Sub

♦ If you are using C#, write an event handler function.

private void dbmlsync1_ProgressMessage(string msg)
{

lblProgressMessage.Text = msg;
}

In your C# initialization code, use delegates to specify the event
handler function for a dbmlsync event. The following example assigns
dbmlsync1_ProgressMessage, to handle the dbmlsync
ProgressMessage event.

dbmlsync1.ProgressMessage +=
new DbmlsyncCOM._IDbmlsyncEvents_

ProgressMessageEventHandler(dbmlsync1_
ProgressMessage);

☞ For more information about events, see“Dbmlsync Integration
Component events” on page 249.

4. Set properties.

The following example sets the UploadEventsEnabled property to true.
This enables the UploadRow event:

dbmlsync1.UploadEventsEnabled = True

☞ For more information about the UploadRow event, see“UploadRow
event” on page 259.

☞ For more information about properties, see“Dbmlsync Integration
Component properties” on page 244.

5. Use the Run method to begin one or more synchronizations. For example,

dbmlsync1.Run("-c eng=rem1;uid=dba;pwd=sql")

☞ For more information about the Run method, see“Run method” on
page 243.

Console applications Console applications can use the non-visual component only.

The fully qualified name of the Dbmlsync Integration Component is
DbmlsyncCOM.Dbmlsync.

A console application that uses the non-visual Dbmlsync Integration
Component must pump the Windows message queue. For example, with

240

Chapter 9. Dbmlsync Integration Component

.NET applications you must use the following methods in the
System.Windows.Application namespace:

System.Windows.Application.Run() Starts a standard application
message loop on the current thread.

System.Windows.Application.Exit() Requests all message pumps to
terminate and then closes all application windows.

❖ To set up the Dbmlsync Integration Component in a console ap-
plication (Visual Basic.NET)

1. Add a reference toSystem.Windows.Forms.dll.

2. Add a reference to the non-visual component,dbmlsynccom.dll, located
in thewin32 subdirectory of your SQL Anywhere installation.

3. Create an instance of the Dbmlsync Integration Component.

♦ Enter the following as a global variable declaration:

Dim WithEvents dbmlsync1 As DbmlsyncCOM.Dbmlsync

♦ To create a component instance, enter:

dbmlsync1 = New DbmlsyncCOM.Dbmlsync

4. Set properties.

The following example sets the UploadEventsEnabled property to true.
This enables the UploadRow event:

dbmlsync1.UploadEventsEnabled = True

☞ For more information about properties, see“Dbmlsync Integration
Component properties” on page 244.

☞ For more information about the UploadRow event, see“UploadRow
event” on page 259.

5. Use the Run method to begin one or more synchronizations. For example,

dbmlsync1.Run("-c eng=rem1;uid=dba;pwd=sql")

☞ For more information about the Run method, see“Run method” on
page 243.

6. Use System.Windows.Application Run method to enable pumping of the
Windows message queue:

System.Windows.Forms.Application.Run()

241

7. Add logic to handle synchronization events.

☞ For more information about events, see“Dbmlsync Integration
Component events” on page 249.

8. Use the System.Windows.Application Exit method to request all message
pumps to terminate:

System.Windows.Application.Exit()

242

Chapter 9. Dbmlsync Integration Component

Dbmlsync Integration Component methods
The following are methods implemented by the DbmlsyncCOM.Dbmlsync
class.

Run method

Function Begins one or more synchronizations using dbmlsync command line options.

Syntax Run(ByVal cmdLine As String)
Member of DbmlsyncCOM.Dbmlsync

Parameters cmdLine A string specifying dbmlsync options.

Description ☞ For a list of options, see“dbmlsync options” on page 100.

The cmdLine parameter should contain the same options you would use if
you were performing a synchronization with the dbmlsync command line
utility. For example, running dbmlsync with the command line

dbmlsync -c uid=dba;pwd=sql

is equivalent to the following Run method invocation

dbmlsync1.Run "-c uid=dba;pwd=sql"

Example The following example initiates a synchronization for a remote database
called remote1.

dbmlsync1.Run "-c eng=remote1;uid=dba;pwd=sql"

Stop method

Function Requests active synchronizations to terminate.

Syntax Stop()
Member of DbmlsyncCOM.Dbmlsync

Description The Stop method issues a request to terminate any active synchronizations.
It returns immediately.

The stop button built in to the visual Dbmlsync Integration Component
automatically invokes this method.

Example The following example stops synchronizations being run by the Dbmlsync
Integration Component instance dbmlsync1.

dbmlsync1.Stop

243

Dbmlsync Integration Component properties
Dbmlsync Integration Component properties let you customize the behavior
of the component and examine the state of a running synchronization.

Path property

Function Specifies the location ofdbmlsync.exe.

Syntax Public Property Path() As String
Member of DbmlsyncCOM.Dbmlsync

Description You do not need to set this property ifdbmlsync.exeis located in a directory
specified by the Windows PATH environment variable.

Example The following example sets the path of a Dbmlsync Integration Component
instance.

dbmlsync1.Path = "c: \program files \sybase \sql anywhere 9 \win32"

UploadEventsEnabled property

Function Enables the UploadRow event.

Syntax Public Property UploadEventsEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Description If you handle the UploadRow event, you should set this property to true. The
default is false, which disables the UploadRow event.

☞ For more information about the UploadRow event, see“UploadRow
event” on page 259.

Example The following example sets UploadEventsEnabled to true:

dbmlsync1.UploadEventsEnabled = True

DownloadEventsEnabled property

Function Enables the DownloadRow event.

Syntax Public Property DownloadEventsEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Description If you handle the DownloadRow event, you should set this property to true.
The default is false, which disables the DownloadRow event.

☞ For more information about the DownloadRow event, see
“DownloadRow event” on page 252.

244

Chapter 9. Dbmlsync Integration Component

Example The following example sets DownloadEventsEnabled to true:

dbmlsync1.DownloadEventsEnabled = True

ErrorMessageEnabled property

Function Prevents the Message event from being called for messages of type
MsgError.

Syntax Public Property ErrorMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Description If you do not handle error information in the Message event, you should set
this property to false to improve performance. The default true, which
enables messages of type MsgError to trigger the Message event.

☞ For more information about the Message event, see“Message event” on
page 256.

Example The following example sets ErrorMessageEnabled to false:

dbmlsync1.ErrorMessageEnabled = False

WarningMessageEnabled property

Function Prevents the Message event from being called for messages of type
MsgWarning.

Syntax Public Property WarningMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Description If you do not handle warning information in the Message event, you should
set this property to false to improve performance. The default is true, which
enables messages of type MsgWarning to trigger the Message event.

☞ For more information about the Message event, see“Message event” on
page 256.

Example The following example sets WarningMessageEnabled to false:

dbmlsync1.WarningMessageEnabled = False

InfoMessageEnabled property

Function Prevents the Message event from being called for messages of type MsgInfo.

Syntax Public Property InfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

245

Description If you do not handle general progress information in the Message event, you
should set this property to false to improve performance. The default is true,
which enables messages of type MsgInfo to trigger the Message event.

☞ For more information about the Message event, see“Message event” on
page 256.

Example The following example sets InfoMessageEnabled to false:

dbmlsync1.InfoMessageEnabled = False

DetailedInfoMessageEnabled property

Function Prevents the Message event from being called for messages of type
MsgDetailedInfo.

Syntax Public Property DetailedInfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Description If you do not handle detailed progress information in the Message event, you
should set this property to false to improve performance. The default is true,
which enables messages of type MsgDetailedInfo to trigger the Message
event.

☞ For more information about the Message event, see“Message event” on
page 256.

Example The following example sets DetailedInfoMessageEnabled to false:

dbmlsync1.DetailedInfoMessageEnabled = False

UseVB6Types property

Function If you are using Visual Basic 6, set this property to true to simplify handling
of row data returned by the UploadRow and DownloadRow events.

Syntax Public Property DetailedInfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Description Visual Basic 6 does not support unsigned 32 bit values and any 64 bit values.
Data of these types may be returned by the ColumnValue property of an
IRowTransferData object. When UseVB6Types is set to true, data of these
types is converted to other types supported by Visual Basic 6 for easier
processing. Uint32 values are converted to double; 64 bit values are
converted to strings.

☞ For more information about the IRowTransferData interface, see
“IRowTransferData interface” on page 262.

246

Chapter 9. Dbmlsync Integration Component

☞ For more information about the UploadRow event, see“UploadRow
event” on page 259.

☞ For more information about the DownloadRow event, see
“DownloadRow event” on page 252.

Example The following example enables data type coercion for a Dbmlsync
Integration Component instance used in Visual Basic 6.0:

dbmlsync1.UseVB6Types = True

ExitCode property

Function Returns the exit code from synchronizations started by the most recent Run
method invocation.

Syntax Public Property ExitCode() As Integer
Member of DbmlsyncCOM.Dbmlsync

Description The ExitCode property returns the exit code for the synchronizations started
by the last Run method invocation. 0 indicates successful synchronizations.
Any other value indicates that a synchronization failed.

Note:
Retrieving the value of this property before the DoneExecution event is
triggered may result in a meaningless exit code value.

Example The following example displays the exit code from the most recent
synchronization attempt when the DoneExecution event is triggered.

Private Sub dbmlsync1_DoneExecution() Handles
dbmlsync1.DoneExecution

MsgBox(dbmlsync1.ExitCode)
End Sub

EventChannelSize property

Function Specifies the size of an internal buffer used for processing method calls.

Syntax Public Property EventChannelSize() As Integer
Member of DbmlsyncCOM.Dbmlsync

Description Most users will never have to change this property.

DispatchChannelSize property

Function Specifies the size of an internal buffer used for processing event information.

247

Syntax Public Property DispatchChannelSize() As Integer
Member of DbmlsyncCOM.Dbmlsync

Description Most users will never have to change this property.

248

Chapter 9. Dbmlsync Integration Component

Dbmlsync Integration Component events
Events provide a mechanism for client applications to receive and act on
information about the progress of a synchronization.

BeginDownload event

The BeginDownload event is triggered at the beginning of the download
stage of a synchronization.

Syntax Public Event BeginDownload()
Member of DbmlsyncCOM.Dbmlsync

Description Use this event to add custom actions at the beginning of the download stage
of a synchronization.

Example The following Visual Basic .NET example outputs a message when the
BeginDownload event is triggered.

Private Sub dbmlsync1_BeginDownload()
Handles dbmlsync1.BeginDownload

MsgBox("Beginning Download")

End Sub

BeginLogScan event

The BeginLogScan event is triggered immediately before dbmlsync scans
the transaction log to assemble the upload stream.

Syntax Public Event BeginLogScan(ByVal rescanLog As Boolean)
Member of DbmlsyncCOM.Dbmlsync

Parameters rescanLog If this is the first time the transaction log has been scanned for
this synchronization, the value is false; otherwise it is true. The log is
scanned twice when the MobiLink synchronization server and dbmlsync
have different information about where scanning should begin.

Description Use this event to add custom actions immediately before the transaction log
is scanned for upload.

Example The following Visual Basic .NET example outputs a message when the
BeginLogScan event is triggered.

249

Private Sub dbmlsync1_BeginLogScan(
ByVal rescanLog As Boolean

)
Handles dbmlsync1.BeginLogScan

MsgBox("Begin Log Scan")

End Sub

BeginSynchronization event

The BeginSynchronization event is triggered at the beginning of each
synchronization.

Syntax Public Event BeginSynchronization(_
ByVal userName As String, _
ByVal pubNames As String _

)
Member of DbmlsyncCOM.Dbmlsync

Parameters userName The MobiLink user for which you are synchronizing.

pubNames The publication being synchronized. If there is more than one
publication this is a comma-separated list.

Description Use this event to add custom actions at the beginning of a synchronization.

Example The following Visual Basic .NET example outputs a message when the
BeginSynchronization event is triggered. The message outputs the user and
publication names.

Private Sub dbmlsync1_BeginSynchronization(
ByVal userName As String,
ByVal pubNames As String

)
Handles dbmlsync1.BeginSynchronization

MsgBox("Beginning synchronization for: " + userName _
+ " publication: " + pubNames)

End Sub

BeginUpload event

The BeginUpload event is triggered immediately before the transmission of
the upload.

Syntax Public Event BeginUpload()
Member of DbmlsyncCOM.Dbmlsync

250

Chapter 9. Dbmlsync Integration Component

Description Use this event to add custom actions immediately before the transmission of
the upload to the MobiLink synchronization server.

Example The following Visual Basic .NET example outputs a message when the
BeginUpload event is triggered.

Private Sub dbmlsync1_BeginUpload()
Handles dbmlsync1.BeginUpload

MsgBox("Begin Upload")

End Sub

ConnectMobilink event

The ConnectMobilink event is triggered immediately before the component
connects to the MobiLink synchronization server.

Syntax Public Event ConnectMobilink()
Member of DbmlsyncCOM.Dbmlsync

Description Use this event to add custom actions immediately before the remote database
connects to the MobiLink synchronization server. At this stage, dbmlsync
has generated the upload stream.

The ConnectMobiLink event occurs after the BeginSynchronization event.

Example The following Visual Basic .NET example outputs a message when the
ConnectMobilink event is triggered.

Private Sub dbmlsync1_ConnectMobilink()
Handles dbmlsync1.ConnectMobilink

MsgBox("Connecting to the MobiLink synchronization
server")

End Sub

DisconnectMobilink event

The DisconnectMobilink event is triggered immediately after the component
disconnects from the MobiLink synchronization server.

Syntax Public Event DisconnectMobilink()
Member of DbmlsyncCOM.Dbmlsync

Description Use this event to add custom actions immediately after the remote database
disconnects from the MobiLink synchronization server.

Example The following Visual Basic .NET example outputs a message when the
DisconnectMobilink event is triggered.

251

Private Sub dbmlsync1_DisconnectMobilink()
Handles dbmlsync1.DisconnectMobilink

MsgBox("Disconnected from the MobiLink synchronization
server")

End Sub

DoneExecution event

The DoneExecution event is triggered when all synchronizations started by a
Run method invocation have completed.

Syntax Public Event DoneExecution()
Member of DbmlsyncCOM.Dbmlsync

Description Use this event to add custom actions when all synchronizations started by a
Run method invocation have completed.

Example Using the ExitCode property, the following Visual Basic .NET example
outputs the exit code from the synchronizations started by the last Run
method invocation:

Private Sub dbmlsync1_DoneExecution()
Handles dbmlsync1.DoneExecution

MsgBox(dbmlsync1.ExitCode)

End Sub

DownloadRow event

The DownloadRow event is triggered when a row is downloaded from the
MobiLink synchronization server.

Syntax Public Event DownloadRow(
ByVal rowData As DbmlsyncCOM.IRowTransferData

)
Member of DbmlsyncCOM.Dbmlsync

Parameters rowData An IRowTransferData object containing detailed information
about the downloaded row.

☞ For more information about the IRowTransferData interface, see
“IRowTransferData interface” on page 262.

Description Use this event to examine rows being downloaded from the MobiLink
synchronization server.

To enable the DownloadRow event, use the DownloadEventsEnabled

252

Chapter 9. Dbmlsync Integration Component

property.

☞ For more information, see“DownloadEventsEnabled property” on
page 244.

When a delete operation is encountered in the download row event, only
primary key column values are available.

Example The following Visual Basic .NET example iterates through all the columns
for a row in the DownloadRow event. It determines if a column value is null,
and outputs column names and values.

Private Sub dbmlsync1_DownloadRow(
ByVal rowData As DbmlsyncCOM.IRowTransferData

)
Handles dbmlsync1.DownloadRow

Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1

If VarType(rowData.ColumnValue(liX)) <> VariantType.Null
Then

’ output the non-null column value
MsgBox("Column " + CStr(liX) + ": " +

rowData.ColumnName(liX) + _
", " + CStr(rowData.ColumnValue(liX)))

Else
’ output ’NULL’ for the column value
MsgBox("Column " + CStr(liX) + ": " +

rowData.ColumnName(liX) + _
", " + "NULL")

End If
Next liX

End Sub

EndDownload event

The EndDownload event is triggered at the end of the download stage of the
synchronization process.

Syntax Public Event EndDownload(
long upsertRows,
long deleteRows

)
Member of DbmlsyncCOM.Dbmlsync

Parameters upsertRows Indicates the number of rows updated or inserted by the
download.

deleteRows Indicates the number of rows deleted by the download.

Description Use this event to add custom actions at the end of the download stage of

253

synchronization.

Example The following Visual Basic .NET example outputs a message and the
number of inserted, updated, and deleted rows when the EndDownload event
is triggered.

Private Sub dbmlsync1_EndDownload(
ByVal upsertRows As Integer,
ByVal deleteRows As Integer

)
Handles dbmlsync1.EndDownload

MsgBox("Download complete." + _
CStr(upsertRows) + "Rows updated or inserted" + _
CStr(deleteRows) + "Rows deleted")

End Sub

EndLogScan event

The EndLogScan event is triggered immediately after the transaction log is
scanned for upload.

Syntax Public Event EndLogScan()
Member of DbmlsyncCOM.Dbmlsync

Description Use this event to add custom actions immediately after the transaction log is
scanned for upload.

Example The following Visual Basic .NET example outputs a message when the
EndLogScan event is triggered.

Private Sub dbmlsync1_EndLogScan()
Handles dbmlsync1.EndLogScan

MsgBox("Scan of transaction log complete...")

End Sub

EndSynchronization event

The EndSynchronization event is triggered when a synchronization is
complete.

Syntax Public Event EndSynchronization(
ByVal exitCode As Integer,
ByRef restart As Boolean

)
Member of DbmlsyncCOM.Dbmlsync

Parameters exitCode If set to anything other than zero, this indicates that a

254

Chapter 9. Dbmlsync Integration Component

synchronization error occurred.

restart This value is set to false when the event is called. If the event
changes its value to true, dbmlsync will restart the synchronization.

Description Use this event to add custom actions when a synchronization is complete.

Example The following Visual Basic .NET example uses the EndSynchronization
event to restart up to five failed synchronization attempts. If all restart
attempts failed, the message “All restart attempts failed” is output, along
with the exit code. If a synchronization is successful, the message
“Synchronization succeeded “ is output, along with the exit code.

’ Global variable for the number of restarts
Dim numberOfRestarts As Integer

Private Sub dbmlsync1_EndSynchronization(
ByVal ExitCode As Integer,
ByRef restart As Boolean

)
Handles dbmlsync1.EndSynchronization

If numberOfRestarts < 5 Then
MsgBox("Restart Number: " + CStr(numberOfRestarts + 1))
If ExitCode <> 0 Then

’ restart the failed synchronization
restart = True
numberOfRestarts = numberOfRestarts + 1

Else
’ the last synchronization succeeded
MsgBox("Synchronization succeeded. " + _

"Exit code: " + CStr(ExitCode))
End If

Else
MsgBox("All restart attempts failed. " + _

"Exit code: " + CStr(ExitCode))
End If

End Sub

EndUpload event

The EndUpload event is triggered immediately after transmission of the
upload stream to the MobiLink synchronization server.

Syntax Public Event EndUpload()
Member of DbmlsyncCOM.Dbmlsync

Description Use this event to add custom actions immediately after transmission of the
upload stream from dbmlsync to the MobiLink synchronization server.

Example The following Visual Basic .NET example outputs a message when the

255

EndUpload event is triggered.

Private Sub dbmlsync1_EndUpload()
Handles dbmlsync1.EndUpload

MsgBox("End Upload")

End Sub

Message event

The Message event is triggered when dbmlsync logs information.

Syntax Public Event Message(_
ByVal msgClass As DbmlsyncCOM.MessageClass, _
ByVal msgID As Integer, ByVal msg As String_

)
Member of DbmlsyncCOM.Dbmlsync

Parameters msgClass indicates the severity of the message. Values can be:

♦ MsgInfo A message containing progress information about the
synchronization.

♦ MsgDetailedInfo Like MsgInfo, but containing more detailed
information.

♦ MsgWarning A message indicating a potential problem but one that
will not prevent successful synchronization.

♦ MsgError A message indicating a problem that will prevent successful
synchronization.

msgID A unique identifier for the message. If msgID is zero, the message
does not have a unique identifier.

msg The text of the message.

Description Use this event to receive information logged by dbmlsync.

Example The following Visual Basic .NET example adds messages logged by
dbmlsync to a listbox control.

256

Chapter 9. Dbmlsync Integration Component

Private Sub dbmlsync1_Message(
ByVal msgClass As DbmlsyncCOM.MessageClass,
ByVal msgId As Integer, ByVal msg As String

)
Handles dbmlsync1.Message

Select Case msgClass
Case DbmlsyncCOM.MessageClass.MsgError

lstMessages.Items.Add("Error: " + msg)
Case DbmlsyncCOM.MessageClass.MsgWarning

lstMessages.Items.Add("Warning: " + msg)
Case DbmlsyncCOM.MessageClass.MsgInfo

lstMessages.Items.Add("Info: " + msg)
End Select

End Sub

ProgressIndex event

The ProgressIndex event is triggered when dbmlsync updates its progress
bar.

Syntax Public Event ProgressIndex(_
ByVal index As Integer, _
ByVal max As Integer _

)
Member of DbmlsyncCOM.Dbmlsync

Parameters index An integer representing the progress of the synchronization.

max The maximum progress value. If this value is zero, the maximum
value has not changed since the last time the event was fired.

Description Use this event to update a progress indicator such as a progress bar.

Example The following Visual Basic .NET example updates a progress bar control
based on the Index value. The maximum index value is set at the beginning
of the synchronization.

Private Sub dbmlsync1_ProgressIndex(
ByVal index As Integer,
ByVal max As Integer

)
Handles dbmlsync1.ProgressIndex

If max <> 0 Then
ProgressBar1.Maximum = max

End If
ProgressBar1.Value = index

End Sub

257

ProgressMessage event

The ProgressMessage event is triggered when synchronization progress
information changes.

Syntax Public Event ProgressMessage(ByVal msg As String)
Member of DbmlsyncCOM.Dbmlsync

Parameters msg The new progress string.

Description Use this event to receive the string normally displayed above the dbmlsync
progress bar.

Example The following Visual Basic .NET example sets the value of a progress label
when the ProgressMessage event is triggered.

Private Sub dbmlsync1_ProgressMessage(
ByVal msg As String

)
Handles dbmlsync1.ProgressMessage

lblProgressMessage.Text = msg

End Sub

SetTitle event

The SetTitle event is triggered when status information changes. In the
dbmlsync utility, this information is displayed in the title bar.

Syntax Public Event SetTitle(ByVal title) As String
)
Member of DbmlsyncCOM.Dbmlsync

Parameters title The title in the dbmlsync window title bar.

Description Use this event to receive the title normally seen on the dbmlsync window
when its value changes.

Example The following Visual Basic .NET example sets the title of a Windows form
when the SetTitle event is triggered.

Private Sub dbmlsync1_SetTitle(
ByVal title As String

)
Handles dbmlsync1.SetTitle

Me.Text = title

End Sub

258

Chapter 9. Dbmlsync Integration Component

UploadAck event

The UploadAck event is triggered after the component has received
acknowledgement of the upload stream from the MobiLink synchronization
server.

Syntax Public Event UploadAck(_
ByVal status As DbmlsyncCOM.UploadAckStatus _

)
Member of DbmlsyncCOM.Dbmlsync

Parameters status Indicates the status returned by MobiLink to the remote after the
upload stream is processed. Its value is one of:

♦ StatCommitted Indicates that the upload stream was received by the
MobiLink synchronization server and committed.

♦ StatRetry Indicates that the MobiLink synchronization server and the
remote database had different values for the log offset from which the
upload stream should start. The upload stream was not committed by the
MobiLink synchronization server. The component will attempt to send
another upload stream starting from the MobiLink synchronization
server’s log offset.

♦ StatFailed Indicates that the MobiLink synchronization server did not
commit the upload stream.

Description Use this event to add custom actions after dbmlsync has received
acknowledgement of the upload stream from the MobiLink synchronization
server.

Example The following Visual Basic .NET example outputs a message if the upload
has failed when the UploadAck event is triggered.

Private Sub dbmlsync1_UploadAck(ByVal status As
DbmlsyncCOM.UploadAckStatus) Handles
dbmlsync1.UploadAck

If status = DbmlsyncCOM.UploadAckStatus.StatFailed Then
MsgBox("Upload Failed")

End If

End Sub

UploadRow event

The UploadRow event is triggered when a row is uploaded to the MobiLink
synchronization server.

259

Syntax Public Event UploadRow(
ByVal rowData As DbmlsyncCOM.IRowTransferData

)
Member of DbmlsyncCOM.Dbmlsync

Parameters rowData An IRowTransferData object containing detailed information
about the uploaded row.

☞ For more information about the IRowTransferData interface, see
“IRowTransferData interface” on page 262.

Description Use this event to examine rows being uploaded to the MobiLink
synchronization server.

To enable the UploadRow event, use the UploadEventsEnabled property.

☞ For more information, see“UploadEventsEnabled property” on
page 244.

Example The following Visual Basic .NET example iterates through all the columns
for a row in the UploadRow event. It determines if a column value is null
and outputs column names and values.

Private Sub dbmlsync1_UploadRow(
ByVal rowData As DbmlsyncCOM.IRowTransferData

)
Handles dbmlsync1.UploadRow

Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1

If VarType(rowData.ColumnValue(liX)) <> VariantType.Null
Then

’ output the non-null column value
MsgBox("Column " + CStr(liX) + ": " +

rowData.ColumnName(liX) + _
", " + CStr(rowData.ColumnValue(liX)))

Else
’ output ’NULL’ for the column value
MsgBox("Column " + CStr(liX) + ": " +

rowData.ColumnName(liX) + _
", " + "NULL")

End If
Next liX

End Sub

WaitingForUploadAck event

The WaitingForUploadAck event is triggered when the component begins
waiting for upload acknowledgement from the MobiLink synchronization
server.

260

Chapter 9. Dbmlsync Integration Component

Syntax Public Event WaitingForUploadAck()
Member of DbmlsyncCOM.Dbmlsync

Description Use this event to add custom actions when the component is waiting for
upload acknowledgement from the MobiLink synchronization server.

Example The following Visual Basic .NET example outputs a message when the
WaitingForUploadAck event is triggered.

Private Sub dbmlsync1_WaitingForUploadAck()
Handles dbmlsync1.WaitingForUploadAck

MsgBox("Waiting for Upload Acknowledgement")

End Sub

261

IRowTransferData interface
Public Interface IRowTransferData
Member of DbmlsyncCOM

The UploadRow and DownloadRow events accept
DbmlsyncCOM.IRowTransferData objects as parameters to examine
uploaded and downloaded rows. This interface defines detailed row
information including the table name, row operation, and column names.

RowOperation property

Function Specifies the operation performed on the row.

Syntax Public Property RowOperation() As DbmlsyncCOM.RowEventOp
Member of DbmlsyncCOM.IRowTransferData

Description This property has one of the following values:

OpInsert The row was inserted.

OpUpdate The row was updated.

OpDelete The row was deleted.

OpTruncate The table was truncated (all the rows in the table were
deleted). When the RowOperation property has this value, the ColumnName
and ColumnValue properties return invalid information.

Note: For the DownloadRow event, upsert (update or insert) operations are
given the OpInsert value.

TableName property

Function The name of the table on which an upload or download operation occurred.

Syntax Public Property TableName() As String
Member of DbmlsyncCOM.IRowTransferData

Description The TableName property specifies the name of the table on which an upload
or download operation occurred. The following example illustrates the use
of the TableName property in the UploadRow event.

☞ For more information about the UploadRow event, see“UploadRow
event” on page 259.

Example Following is a Visual Basic .NET example.

262

Chapter 9. Dbmlsync Integration Component

Private Sub dbmlsync1_UploadRow(
ByVal rowData As DbmlsyncCOM.IRowTransferData

)
Handles dbmlsync1.UploadRow

MsgBox ("Table name:" + rowData.TableName)

End Sub

ColumnName property

Function Retrieves the column names for a row on which an upload or download
operation occurred.

Syntax Public Property ColumnName(ByVal index As String) As Object
Member of DbmlsyncCOM.IRowTransferData

Parameters index A zero based integer specifying the column name to be retrieved.
Index values range from zero to one less than the ColumnCount property
value.

☞ For more information about the ColumnCount property, see
“ColumnCount property” on page 265.

Description Associated column values can be retrieved using the ColumnValue property
with the same index.

Example The following Visual Basic .NET example iterates through all the columns
for a row in the UploadRow event. It determines if a column value is null
and outputs column names and values.

☞ For more information about the UploadRow event, see“UploadRow
event” on page 259.

263

Private Sub dbmlsync1_UploadRow(
ByVal rowData As DbmlsyncCOM.IRowTransferData

)
Handles dbmlsync1.UploadRow

Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1

If VarType(rowData.ColumnValue(liX)) <> VariantType.Null
Then

’ output the non-null column value
MsgBox("Column " + CStr(liX) + ": " +

rowData.ColumnName(liX) + _
", " + CStr(rowData.ColumnValue(liX)))

Else
’ output ’NULL’ for the column value
MsgBox("Column " + CStr(liX) + ": " +

rowData.ColumnName(liX) + _
", " + "NULL")

End If
Next liX

End Sub

ColumnValue property

Function Retrieves the value of columns on which an upload or download operation
occurred.

Syntax Public Property ColumnValue(ByVal index As Integer) As Object
Member of DbmlsyncCOM.IRowTransferData

Parameters index The zero based integer specifying the column value to be retrieved.
Index values range from zero to one less than the ColumnCount property
value.

☞ For more information about the ColumnCount property, see
“ColumnCount property” on page 265.

Description When an update operation is encountered, the column values given by this
property are the values after the update is applied.

Associated column names can be retrieved using the ColumnName property
with the same index.

Blob column values are not available through this property. When a blob
column is encountered, the ColumnValue is the string “(blob)”.

Example The following Visual Basic .NET example iterates through all the columns
for a row in the UploadRow event. It determines if a column value is null
and outputs column names and values.

264

Chapter 9. Dbmlsync Integration Component

☞ For more information about the UploadRow event, see“UploadRow
event” on page 259.

Private Sub dbmlsync1_UploadRow(
ByVal rowData As DbmlsyncCOM.IRowTransferData

)
Handles dbmlsync1.UploadRow

Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1

If VarType(rowData.ColumnValue(liX)) <> VariantType.Null
Then

’ output the non-null column value
MsgBox("Column " + CStr(liX) + ": " +

rowData.ColumnName(liX) + _
", " + CStr(rowData.ColumnValue(liX)))

Else
’ output ’NULL’ for the column value
MsgBox("Column " + CStr(liX) + ": " +

rowData.ColumnName(liX) + _
", " + "NULL")

End If
Next liX

End Sub

ColumnCount property

Function The number of columns contained in a row on which an upload or download
operation occurred.

Syntax Public Property ColumnCount() As Integer
Member of DbmlsyncCOM.IRowTransferData

Description The ColumnCount property specifies the number of columns for a row on
which an upload or download operation occurred. The following example
illustrates the use of the ColumnCount property in the UploadRow event.

☞ For more information about the UploadRow event, see“UploadRow
event” on page 259.

Example Following is a Visual Basic .NET example.

Private Sub dbmlsync1_UploadRow(
ByVal rowData As DbmlsyncCOM.IRowTransferData

)
Handles dbmlsync1.UploadRow

MsgBox "Number of Columns:" + CStr(rowData.ColumnCount)

End Sub

265

CHAPTER 10

DBTools Interface for dbmlsync

About this chapter This chapter describes how to configure and use the DBTools interface for
dbmlsync, allowing you to customize your Adaptive Server Anywhere client
applications.

Contents Topic: page

Introduction 268

Setting up the DBTools interface for dbmlsync 269

267

Introduction
Database tools (DBTools) is a library you can use to integrate database
management, including synchronization, into your applications. All the
database management utilities are built on DBTools.

☞ For more information about the DBTools library, see“The Database
Tools Interface”[ASA Programming Guide,page 259].

You can use the DBTools interface for dbmlsync to integrate
synchronization functionality into your MobiLink synchronization client
applications. For example, you can use the interface to display dbmlsync
output messages in a custom user interface.

As an alternative to the DBTools interface for dbmlsync, you can use the
Dbmlsync Integration Component.

☞ For more information about the Dbmlsync Integration Component, see
“About this chapter” on page 237.

The DBTools interface for dbmlsync consists of the following elements that
let you configure and run the MobiLink synchronization client:

♦ a_sync_db structure This structure holds settings, corresponding to
dbmlsync command line options, that allow you to customize
synchronization. This structure also contains pointers to callback
functions receiving synchronization and progress information.

☞ For more information about a_sync_db, see“a_sync_db structure”
[ASA Programming Guide,page 298].

♦ a_syncpub structure This structure holds publication information.
You can specify a linked list of publications for synchronization.

☞ For more information about a_syncpub, see“a_syncpub structure”
[ASA Programming Guide,page 306].

♦ DBSynchronizeLog function This function starts the synchronization
process. Its only parameter is a pointer to an a_sync_db instance.

☞ For more information about DBSynchronizeLog, see
“DBSynchronizeLog function”[ASA Programming Guide,page 275].

268

Chapter 10. DBTools Interface for dbmlsync

Setting up the DBTools interface for dbmlsync
This section guides you through the basic steps for using the DBTools
interface for dbmlsync.

☞ For more information about the DBTools library, see“Introduction to
the database tools interface”[ASA Programming Guide,page 260].

☞ For more information about using import libraries for your development
environment, see“Using the database tools interface”[ASA Programming
Guide,page 261].

❖ To configure and start dbmlsync using the DBTools interface

1. Include the DBTools header file.

The DBTools header file,dbtools.h, lists the entry points to the DBTools
library and defines required data types.

#include "dbtools.h"

2. Start the DBTools interface.

♦ Declare and initialize the a_dbtools_info structure.

a_dbtools_info info;
short ret;
...
// clear a_dbtools_info fields
memset(&info, 0, sizeof(info));
info.errorrtn = dbsyncErrorCallBack;

The dbsyncErrorCallBack function handles error messages and is
defined in step 4 of this procedure.

♦ Use the DBToolsInit function to start DBTools.

ret = DBToolsInit(&info);
if(ret != 0) {

printf("dbtools initialization failure \n");
}

☞ For more information about DBTools initialization, see:

• “Using the database tools interface”[ASA Programming Guide,
page 261].

• “a_dbtools_info structure”[ASA Programming Guide,page 294].

• “DBToolsInit function” [ASA Programming Guide,page 275].

3. Initialize the a_sync_db instance.

♦ Declare an a_sync_db instance. For example, declare an instance
called dbsync_info:

269

a_sync_db dbsync_info;

♦ Clear a_sync_db structure fields.

memset(&dbsync_info, 0, sizeof(dbsync_info));

♦ Set required a_sync_db fields.

dbsync_info.version = DB_TOOLS_VERSION_NUMBER;
dbsync_info.output_to_mobile_link = 1;
dbsync_info.default_window_title

= "dbmlsync dbtools sample";

♦ Set the database connection string.

dbsync_info.connectparms = "uid=dba;pwd=sql";

☞ For more information about database connection parameters, see
“-c option” on page 102.

♦ Set other a_sync_db fields to customize synchronization.

Most fields correspond to dbmlsync command line options. For more
information about this correspondence, seedbtools.h.
In the example below, verbose operation is enabled.

dbsync_info.verbose_upload = 1;
dbsync_info.verbose_option_info = 1;
dbsync_info.verbose_row_data = 1;
dbsync_info.verbose_row_cnts = 1;

♦ Initialize other a_sync_db fields.

☞ For more information about a_sync_db fields, see“a_sync_db
structure”[ASA Programming Guide,page 298].

4. Create callback functions to receive feedback during synchronization and
assign these functions to the appropriate a_sync_db fields.

The following functions use the standard output stream to display
dbmlsync error, log, and progress information.

☞ For more information about DBTools callback functions, see“Using
callback functions”[ASA Programming Guide,page 263].

♦ For example, create a function called dbsyncErrorCallBack to handle
generated error messages:

extern short _callback dbsyncErrorCallBack(char * str)
{

if(str != NULL) {
printf("Error Msg %s \n", str);

}
return 0;

}

270

Chapter 10. DBTools Interface for dbmlsync

♦ For example, create a function called dbsyncWarningCallBack to
handle generated warning messages:

extern short _callback dbsyncWarningCallBack(char * str
)

{
if(str != NULL) {

printf("Warning Msg %s \n", str);
}
return 0;

}

♦ For example, create a function called dbsyncLogCallBack to receive
verbose informational messages that you might choose to log to a file
instead of displaying in a window:

extern short _callback dbsyncLogCallBack(char * str)
{

if(str != NULL) {
printf("Log Msg %s \n", str);

}
return 0;

}

♦ For example, create a function called dbsyncMsgCallBack to receive
informational messages generated during synchronization.

extern short _callback dbsyncMsgCallBack(char * str)
{

if(str != NULL) {
printf("Display Msg %s \n", str);

}
return 0;

}

♦ For example, create a function called
dbsyncProgressMessageCallBack to receive the progress text. In the
dbmlsync utility, this text is displayed directly above the progress bar.

extern short _callback dbsyncProgressMessageCallBack(
char * str)

{
if(str != NULL) {

printf("ProgressText %s \n", str);
}
return 0;

}

♦ For example, create a function called dbsyncProgressIndexCallBack to
receive information for updating a progress indicator or progress bar.
This function receives two parameters:

• index An integer representing the current progress of a
synchronization.

271

• max The maximum progress value. If this value is zero, the
maximum value has not changed since the last time the event was
fired.

extern short _callback dbsyncProgressIndexCallBack
(a_sql_uint32 index, a_sql_uint32 max)
{

printf("ProgressIndex Index %d Max: %d \n",
index, max);

return 0;
}

A typical sequence of calls to this callback is shown below

// example calling sequence
// dbsyncProgressIndexCallBack(0, 100);
// dbsyncProgressIndexCallBack(25, 0);
// dbsyncProgressIndexCallBack(50, 0);
// dbsyncProgressIndexCallBack(75, 0);
// dbsyncProgressIndexCallBack(100, 0);

This sequence should result in the progress bar being set to 0% done,
25% done, 50% done, 75% done, and 100% done.

♦ For example, create a function called dbsyncWindowTitleCallBack to
receive status information. In the dbmlsync utility, this information is
displayed in the title bar.

extern short _callback dbsyncWindowTitleCallBack(
char * title)

{
printf("Window Title %s \n", title);
return 0;

}

♦ The dbsyncMsgQueueCallBack function is called when a delay or
sleep is required. It must return one of the following values, which are
defined indllapi.h.

• MSGQ_SLEEP_THROUGH indicates that the routine slept for the
requested number of milliseconds. In most cases this is the value
you should return.

• MSGQ_SHUTDOWN_REQUESTED indicates that you would like
the synchronization to terminate as soon as possible.

• MSGQ_SYNC_REQUESTED indicates that the routine slept for
less than the requested number of milliseconds and that the next
synchronization should begin immediately if a synchronization is
not currently in progress.

272

Chapter 10. DBTools Interface for dbmlsync

extern short _callback dbsyncMsgQueueCallBack(
a_sql_uint32 sleep_period_in_milliseconds)

{

printf("Sleep %d ms \n", sleep_period_in_milliseconds
);

Sleep(sleep_period_in_milliseconds);
return MSGQ_SLEEP_THROUGH;
}

♦ Assign callback function pointers to the appropriate a_sync_db
synchronization structure fields.

// set call back functions
dbsync_info.errorrtn = dbsyncErrorCallBack;
dbsync_info.warningrtn = dbsyncWarningCallBack;
dbsync_info.logrtn = dbsyncLogCallBack;
dbsync_info.msgrtn = dbsyncMsgCallBack;
dbsync_info.msgqueuertn = dbsyncMsgQueueCallBack;
dbsync_info.progress_index_rtn

= dbsyncProgressIndexCallBack;
dbsync_info.progress_msg_rtn

= dbsyncProgressMessageCallBack;
dbsync_info.set_window_title_rtn

= dbsyncWindowTitleCallBack;

5. Create a linked list of a_syncpub structures to specify which publications
should be synchronized.

Each node in the linked list corresponds to one instance of the -n option
on the dbmlsync command line.

♦ Declare an a_syncpub instance. For example, call it publication_info:

a_syncpub publication_info;

♦ Initialize a_syncpub fields, specifying publications you want to
synchronize.

For example, to identify the template_p1 and template_p2 publications
together in a single synchronization session:

publication_info.next = NULL; // linked list terminates
publication_info.pub_name = "template_p1,template_p2";
publication_info.ext_opt = "sv=template_ver1";
publication_info.alloced_by_dbsync = 0;

This is equivalent to specifying-n template_p1,template_p2 on
the dbmlsync command line.

The associated script version specified using the ext_opt field, provides
the same functionality as the dbmlsync -eu option.

☞ For more information, see“-eu option” on page 140.

273

♦ Assign the publication structure to the upload_defs field of your
a_sync_db instance.

dbsync_info.upload_defs = &publication_info;

You can create a linked list of a_syncpub structures. Each a_syncpub
instance in the linked list corresponds to using the dbmlsync -n option.

☞ For more information about the dbmlsync -n option, see“-n option”
on page 142.

☞ For more information about the a_syncpub structure, see“a_syncpub
structure”[ASA Programming Guide,page 306].

6. Run dbmlsync using the DBSynchronizeLog function.

In the following code listing, sync_ret_val is a return value as listed in
“Software component return codes”[ASA Programming Guide,page 263].

printf("Running dbmlsync using dbtools interface... \n");
sync_ret_val = DBSynchronizeLog(&dbsync_info);

printf(" \n Done... synchronization return value is: %I \n",
sync_ret_val);

You can repeat step 6 multiple times with the same or different parameter
values.

7. Shutdown the DBTools interface.

The DBToolsFini function frees DBTools resources.

DBToolsFini(&info);

☞ For more information about the DBToolsFini function, see
“DBToolsFini function” [ASA Programming Guide,page 275].

274

PART III

ULTRA L ITE CLIENTS

This part contains material that describes how to set up and run UltraLite
clients for MobiLink synchronization.

CHAPTER 11

UltraLite Clients

About this chapter This chapter describes how to use an UltraLite database as a MobiLink
client. It provides information on designing UltraLite databases to make the
most of synchronization. It also introduces network protocols and provides
material on how to set up Palm OS devices and Windows CE devices for
synchronization.

☞ For more information about UltraLite, seeUltraLite Database User’s
Guide.

☞ For information about how to use Adaptive Server Anywhere databases
as MobiLink clients, see“Adaptive Server Anywhere Clients” on page 59.

Contents Topic: page

Introduction 278

Adding synchronization to your UltraLite application 279

Choosing data to synchronize 280

Foreign key cycles 285

UltraLite network protocols 287

Maintaining primary key uniqueness 291

Synchronizing UltraLite databases on the Palm Computing Plat-
form

296

Synchronizing UltraLite databases on Windows CE 310

277

Introduction
UltraLite developers can synchronize the data in UltraLite databases with a
central consolidated database. This database may be a desktop database for
personal applications, or a multi-user database for shared enterprise data.

278

Chapter 11. UltraLite Clients

Adding synchronization to your UltraLite
application

Mobile and embedded databases generally cannot contain all the data that
exists in the consolidated database. In practice, however, the only data you
need locally is that used by the particular application you wish to make
mobile. UltraLite provides the ability to take such a piece of a database, and
keep it synchronized with the consolidated database.

The tables in each UltraLite database can have a subset of the rows and
columns in the central database. For example, a customer table might
contain over 100 columns and 100 000 rows in the consolidated database,
but the UltraLite database may only require 4 columns and 1000 rows.
MobiLink allows you to define the exact subset to be downloaded to each
remote database.

❖ To add synchronization to an UltraLite application

1. Prepare the synchronization stream.

Select a network protocol and set protocol options as required for that
protocol.

☞ For more information, see“Selecting a network protocol” on
page 288.

2. Call the synchronization function.

The synchronization function depends on the development model you are
using and the network protocol the application is using.

☞ For more information, see“Calling the synchronization function” on
page 289.

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

279

Choosing data to synchronize
By default, when you add synchronization to your database, all data is
synchronized. You can customize what data is synchronized using
publications, as well as a variety of other techniques.

Designing sets of data to synchronize separately

The schema of an UltraLite database is defined by the queries included in the
application. You can add publications to the reference database to define sets
of data that can be synchronized separately. If you do not use publications to
define which changes are to be synchronized, all changes are synchronized.

Publications are used for several purposes in SQL Anywhere. A publication
consists of a set of articles. In general, each article can be a whole table, or
can define a subset of the data in a table.

Articles defined for UltraLite applications can use row subsets by supplying
a WHERE clause, but cannot use column subsets or the SUBSCRIBE BY
clause. Articles in UltraLite publications governing HotSync
synchronization cannot use a WHERE clause.

❖ To synchronize subsets of data from an UltraLite database

1. Create publications representing the data you wish to synchronize.

☞ For more information, see“Creating publications” on page 281.

2. Run the UltraLite generator, specifying the publications on the -v
command-line option.

☞ For more information, see“The UltraLite Generator”[UltraLite
Database User’s Guide,page 89].

3. When calling the synchronization function, specify the publication.

If you specify no publication, all changes to the database are
synchronized. If you specify one or more publications, only changes that
fall within one or more of the listed publications are synchronized.

☞ For more information, see the following:

♦ MobileVB See“ULSyncParms class”[UltraLite for MobileVB User’s
Guide,page 141].

♦ ActiveX See“ULSyncParms class”[UltraLite ActiveX User’s Guide,
page 134].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.SyncParmsin the API Reference.

280

Chapter 11. UltraLite Clients

♦ Embedded SQL and Static C++ API See“publication
synchronization parameter”[UltraLite C/C++ User’s Guide,page 432].

♦ Static Java API See“publication synchronization parameter”
[UltraLite Static Java User’s Guide,page 78].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”
[UltraLite for M-Business Anywhere User’s Guide,page 112].

Creating publications

Components Publications can be added to the UltraLite database using the schema
painter, the ULXML utility, or from a reference database.

❖ To publish data from an UltraLite database (Schema Painter)

1. Connect to the UltraLite database.

2. In the left pane, open the Synchronization folder.

3. Double-click Add Publication.

4. Specify a set of tables to include in the publication.

5. Click OK to save the changes.

Reference database For UltraLite synchronization, each article in a publication may include
either a complete table or may include a WHERE clause.

❖ To publish data from an UltraLite reference database (Sybase
Central)

1. Connect to the database as a user with DBA authority.

2. Open the Publications folder and double-click Add Publication.

3. Type a name for the new publication. Click Next.

4. On the Tables tab, select a table from the list of Matching Tables.
Click Add. The table appears in the list of Selected Tables on the right.

5. Add additional tables as required. The order of the tables is not important.

6. If necessary, click the Where tab to specify the rows to be included in the
publication. You cannot specify column subsets. If you are using
HotSync synchronization, do not specify a WHERE clause.

7. Click Finish.

281

❖ To publish data from an UltraLite reference database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of
the new publication and the table you want to publish.

☞ For more information, see“CREATE PUBLICATION statement”
[ASA SQL Reference,page 385].

Synchronizing high-priority changes

Publications permit the synchronization of specific portions of your
UltraLite database. You can combine publications with upload-only or
download-only synchronization to synchronize high-priority changes
efficiently. Both upload-only and download-only synchronization are less
time-consuming than two-way synchronization.

☞ For more information, see“ Choosing data to synchronize” on page 280,
and the following:

♦ MobileVB See“ULSyncParms class”[UltraLite for MobileVB User’s
Guide,page 141].

♦ ActiveX See“ULSyncParms class”[UltraLite ActiveX User’s Guide,
page 134].

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ Embedded SQL and Static C++ API See“upload_only
synchronization parameter”[UltraLite C/C++ User’s Guide,page 445].

♦ Static Java API See“upload_only synchronization parameter”
[UltraLite Static Java User’s Guide,page 85].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Including non-synchronizing tables in UltraLite databases

By default, all tables in an UltraLite database are synchronized to the
consolidated database. You can include tables in your UltraLite database that
are excluded from synchronization, but you must explicitly identify these
tables when you create your reference database.

Tables with names ending in nosync are excluded from synchronization. You
can use these tables for persistent data that is not related to the consolidated

282

Chapter 11. UltraLite Clients

database. Other than being excluded from synchronization, you can use
these tables in exactly the same way as other tables in the UltraLite database.

You can alternatively use publications to achieve the same effect. For more
information, see“Designing sets of data to synchronize separately” on
page 280.

Using client-specific data to control synchronization

Some UltraLite applications require client-specific data that control
synchronization, but which are not needed on the consolidated database. For
example, you may wish your UltraLite applications to indicate which of a
number of channels or topics they are interested in, and use this information
to download the appropriate rows.

If you create a table in your UltraLite database with a name ending in
allsync, all rows of that table are synchronized at each synchronization,
whether or not they have been changed since the last synchronization.

You can store user-specific or client-specific data in allsync tables. If you
upload the data in the table to a temporary table in the consolidated database
on synchronization, you can use the data to control synchronization by your
other scripts without having to be maintained in the consolidated database.

Including read-only tables in an UltraLite database

Some applications include tables in the UltraLite database that are not
updated locally. Price lists and company policies are two examples. You can
synchronize these tables efficiently by including them in a publication, and
synchronizing the publication using download-only synchronization.
Download-only synchronization is less time-consuming than a two-way
synchronization, as no data is uploaded.

To use download-only synchronization, you must ensure that the data is not
changed locally. If any data is changed locally, synchronization fails with a
SQLE_DOWNLOAD_CONFLICT error.

Unlike two-way synchronization, you do not have to commit all changes to
the UltraLite database before download-only synchronization. Uncommitted
changes to tables not involved in synchronization are not uploaded, and so
there incomplete transactions do not cause problems.

☞ For information about download-only synchronization, see the
following:

♦ MobileVB See“ULSyncParms class”[UltraLite for MobileVB User’s
Guide,page 141].

283

♦ ActiveX See“ULSyncParms class”[UltraLite ActiveX User’s Guide,
page 134].

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ Embedded SQL and Static C++ API See“download_only
synchronization parameter”[UltraLite C/C++ User’s Guide,page 423].

♦ Static Java API See“download_only synchronization parameter”
[UltraLite Static Java User’s Guide,page 71].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

284

Chapter 11. UltraLite Clients

Foreign key cycles
This section describes a specific limitation in UltraLite synchronization that
results from a series of tables linked together by foreign keys so that a cycle
is formed.

MobiLink synchronization from an UltraLite remote database requires that
all changes be committed to the consolidated database in one transaction. To
facilitate this single transaction for multiple tables, the inserts, updates, and
deletes for each table must be ordered so that operations for a primary table
come before the associated foreign table. This ensures that the insert in the
foreign table will have its foreign key referential integrity constraint satisfied
(likewise for other operations like delete).

The UltraLite analyzer automatically orders all the tables in the remote
database so those primary tables are uploaded before foreign tables based on
the schema in the reference database. The ordering is always possible as
long as there are no foreign key cycles in the schema.

The figure illustrates a simple foreign key cycle between two tables.

If a foreign key cycle is detected by the UltraLite analyzer, the cycle must be
broken for the analyzer to successfully complete without any errors. The
foreign key cycle must be broken on both the reference database and the
consolidated database in order for synchronization transactions to be
successfully applied.

For an Adaptive Server Anywhere consolidated and reference database, one
of the foreign keys can be made tocheck on commitso that foreign key
referential integrity is checked during the commit phase rather than when the
operation is initiated. Other database vendors may have similar methods but
if not, the schema must be redesigned to eliminate the foreign key cycle.

Example

285

create table c (
id integer not null primary key,
c_pk integer not null

);
create table p (

pk integer not null primary key,
c_id integer not null,
foreign key p_to_c (c_id) references c(id)

);
alter table c
add foreign key c_to_p (c_pk)
references p(pk)
check on commit;

286

Chapter 11. UltraLite Clients

UltraLite network protocols
Each UltraLite database that synchronizes with a MobiLink synchronization
server does so over a network protocol. The network protocol is specified in
the UltraLite application. Available network protocols include TCP/IP,
HTTP, and HTTPS for TCP/IP-based networks. Support is also provided for
HotSync synchronization on the Palm Computing Platform and for
ActiveSync synchronization on Windows CE.

☞ For more information, see“Selecting a network protocol” on page 288.

Supported network protocols

UltraLite databases can synchronize with a MobiLink synchronization
server over one of a set of network protocols, including TCP/IP, HTTP, and
HTTPS. ActiveSync synchronization is available for Windows CE
applications under some development models. HotSync is available for Palm
OS applications.

Each network protocol has a set of appropriate protocol options. These
options set required values for the protocol, such as the location of the
MobiLink synchronization server, as well as network-specific control
parameters.

The following network protocols are supported for synchronizing UltraLite
clients:

Component TCP/IP HTTP HTTPS ActiveSync (Win-

dows CE only)

HotSync

(Palm OS

only)

UltraLite ActiveX ✔ ✔ ✔

UltraLite for MobileVB ✔ ✔ ✔1 ✔

Native UltraLite for Java ✔ ✔ ✔ ✔

UltraLite.NET ✔ ✔ ✔ ✔

UltraLite C++ ✔ ✔ ✔ ✔ ✔

Embedded SQL ✔ ✔ ✔ ✔ ✔

Static C++ API ✔ ✔ ✔ ✔ ✔

Static Java API ✔2 ✔ ✔

1Must be separately ordered
2Use separate protocols for secure synchronization

287

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Selecting a network protocol

Each network protocol has a set of options that govern its behavior. You
should set these synchronization protocol options when you select a network
protocol.

The way to select a network protocol and its associated synchronization
protocol options depends on the particular UltraLite development model you
are using.

♦ For UltraLite for MobileVB and UltraLite ActiveX, the network protocol
is one of the synchronization parameters set in the Stream property of the
ULSyncParms object. The protocol options are provided as a set of
keyword-value pairs in the StreamParms property.

☞ For more information, see“ULSyncParms class”[UltraLite for
MobileVB User’s Guide,page 141], and“ULSyncParms class”[UltraLite
ActiveX User’s Guide,page 134].

♦ For Native UltraLite for Java applications, the network protocol is set by
thesetStreammethod of theSyncParmsobject.

☞ For more information, seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ For embedded SQL and static C++ API applications, the network
protocol is set in the stream member of the ul_synch_info structure. The
protocol options are supplied in the stream_parms member of the
ul_synch_info structure, as a string. The following code is an example for
TCP/IP synchronization:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.stream_parms = UL_TEXT("host=myserver");

☞ For more information, see the following:
• “stream synchronization parameter”[UltraLite C/C++ User’s Guide,

page 438]

• “stream_parms synchronization parameter”[UltraLite C/C++ User’s
Guide,page 443]

288

Chapter 11. UltraLite Clients

♦ For static Java applications, the protocol options are supplied using the
setStreamParmsmethod. The following example illustrates how to call
the method:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setStream(new UlSocketStream());
synch_opts.setStreamParms("host=myserver;port=2439");

☞ For more information, see“stream synchronization parameter”
[UltraLite Static Java User’s Guide,page 81]and“stream_parms
synchronization parameter”[UltraLite Static Java User’s Guide,page 83].

Calling the synchronization function

In order to synchronize data with a MobiLink synchronization server,
UltraLite applications call a synchronization function. The particular
function depends on the development model you are using and on the
network protocol you have selected.

It is helpful to distinguish the following kinds of netowrk protocol:

♦ Externally-initiated synchronization streams ActiveSync and
HotSync synchronization are initiated by an external application.

☞ For information about calling HotSync synchronization, see the
following:

• MobileVB See“Synchronizing data”[UltraLite for MobileVB User’s
Guide,page 32].

• Embedded SQL and Static C++ API See“Adding HotSync
synchronization to Palm applications”[UltraLite C/C++ User’s Guide,
page 125].

♦ Direct network protocols TCP/IP, HTTP, and HTTPS network
protocols are initiated directly from UltraLite.

☞ For information about calling the synchronization function for these
protocols, see the following:

• UltraLite for MobileVB See“Synchronize method”[UltraLite for
MobileVB User’s Guide,page 100].

• UltraLite ActiveX See“Synchronize method”[UltraLite ActiveX
User’s Guide,page 97].

• Native UltraLite for Java See
ianywhere.native_ultralite.Connection.synchronizein the API
Reference.

• UltraLite.NET See Synchronize in the UltraLite.NET API Reference.

289

• Embedded SQL See“ULSynchronize function”[UltraLite C/C++
User’s Guide,page 388].

• Static C++ API See“Synchronize method”[UltraLite C/C++ User’s
Guide,page 317].

• Static Java API See“synchronize method”[UltraLite Static Java
User’s Guide,page 59].

290

Chapter 11. UltraLite Clients

Maintaining primary key uniqueness
You can declare the default value of a column in a reference database to be
of type GLOBAL AUTOINCREMENT. You can use this default for any
column in which you want to maintain unique values, but it is particularly
useful for primary keys. This feature simplifies the task of generating unique
values in setups where data is being replicated among multiple databases,
typically by MobiLink synchronization.

When you specify default global autoincrement, the domain of values for
that column is partitioned. Each partition contains the same number of
values. For example, if you set the partition size for an integer column in a
database to 1000, one partition extends from 1001 to 2000, the next from
2001 to 3000, and so on.

☞ For information about declaring columns as global autoincrement in
your reference database, see“Declaring default global autoincrement
columns” on page 291.

To use global autoincrement columns in your UltraLite database, you must
first assign each copy of the database a unique global database identification
number. UltraLite then supplies default values for the column only from the
partition uniquely identified by that database’s number. For example, if you
assigned a database in the above example the identity number 1, the default
values in that database would be chosen in the range 1001–2000. Another
copy of the database, assigned the identification number 2, would supply
default value for the same column in the range 2001–3000.

☞ For information about assigning global database identification numbers,
see“Setting the global database identifier” on page 292.

☞ For more information about using global autoincrement values in
MobiLink remote databases, see“Maintaining unique primary keys using
global autoincrement”[MobiLink Administration Guide,page 57].

Declaring default global autoincrement columns

You declare default column values in the Adaptive Server Anywhere
reference database. When you build your UltraLite application, your
UltraLite database inherits the default column value. You can set default
values in your reference database by selecting the column properties in
Sybase Central, or by including the DEFAULT GLOBAL
AUTOINCREMENT phrase in a TABLE or ALTER TABLE statement.

Optionally, the partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may be any

291

positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is
216 = 65536; for columns of other types the default partition size is 232 =
4294967296. Since these defaults may be inappropriate it is best to specify
the partition size explicitly.

For example, the following statement creates a simple reference table with
two columns: an integer that holds a customer identification number and a
character string that holds the customer’s name.

CREATE TABLE customer (
id INT DEFAULT GLOBAL AUTOINCREMENT (5000),
name VARCHAR(128) NOT NULL,
PRIMARY KEY (id)

)

In the above example, the chosen partition size is 5000.

Default partition sizes for some data types are different in UltraLite
applications than in Adaptive Server Anywhere databases. Declare the
partition size explicitly if you wish the reference database to behave in the
same manner as your UltraLite application.

☞ For more information on GLOBAL AUTOINCREMENT, see
“CREATE TABLE statement”[ASA SQL Reference,page 407].

Setting the global database identifier

When deploying an application, you must assign a different identification
number to each database. You can accomplish the task of creating and
distributing the identification numbers by a variety of means. One method is
to place the values in a table and download the correct row to each database
based on some other unique property, such as user name.

The method of setting this identification number varies according to the
programming interface you are using.

♦ UltraLite for MobileVB See“Properties”[UltraLite for MobileVB User’s
Guide,page 91].

♦ UltraLite ActiveX See“Properties”[UltraLite ActiveX User’s Guide,
page 91].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.Connection.databaseIDin the API
Reference.

♦ UltraLite.NET See Connection in the UltraLite.NET API Reference.

292

Chapter 11. UltraLite Clients

♦ Embedded SQL See“ULSetDatabaseID function”[UltraLite C/C++
User’s Guide,page 385].

♦ Static C++ API See“SetDatabaseID method”[UltraLite C/C++ User’s
Guide,page 316].

♦ Static Java API See“setDatabaseID method”[UltraLite Static Java
User’s Guide,page 59].

♦ UltraLite for M-Business Anywhere See“Method setDatabaseID”
[UltraLite for M-Business Anywhere User’s Guide,page 69].

How default values are chosen

The global database identifier in each deployed UltraLite application must
be set to a unique, non-negative integer before default values can be
assigned. These identification numbers uniquely identify the databases.

☞ For information, see“Setting the global database identifier” on
page 292.

The range of default values for a particular database ispn + 1 top(n + 1),
wherep is the partition size andn is the global database identification
number. For example, if the partition size is 1000 and the global database
identification number is set to 3, then the range is from 3001 to 4000.

UltraLite applications choose default values by applying the following rules:

♦ If the column contains no values in the current partition, the first default
value ispn + 1.

♦ If the column contains values in the current partition, but all are less than
p(n + 1), the next default value will be one greater than the previous
maximum value in this range.

♦ Default column values are not affect by values in the column outside of
the current partition; that is, by numbers less thanpn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated from
another database via MobiLink synchronization.

Caution
Column values downloaded via MobiLink synchronization do not update
the default value counter. Thus, an error can occur should one MobiLink
client insert a value into another client’s partition. To avoid this problem,
ensure that each copy of your UltraLite application inserts values only in
its own partition.

293

If the global database identification number is set to the default value of
2147483647, a NULL value is inserted into the column. Should NULL
values not be permitted, the attempt to insert the row causes an error. This
situation arises, for example, if the column is contained in the table’s
primary key.

Because the global database identification number cannot be set to negative
values, the values chosen are always positive. The maximum identification
number is restricted only by the column data type and the partition size.

Null default values are also generated when the supply of values within the
partition has been exhausted. In this case, a new global database
identification number should be assigned to the database to allow default
values to be chosen from another partition. Attempting to insert the NULL
value causes an error if the column does not permit nulls.

Should the values in a particular partition become exhausted, you can assign
a new database identification number to that database. You can assign new
database id numbers in any convenient manner. However, one possible
technique is to maintain a pool of unused database id values. This pool is
maintained in the same manner as a pool of primary keys.

☞ For information about determining whether the range of default values is
becoming exhausted, see“Detecting the number of available default values”
on page 295.

☞ For information about maintaining primary key uniqueness using
explicit primary key pools, see“Maintaining unique primary keys”[MobiLink
Administration Guide,page 56].

Determining the most recently assigned value

You can retrieve the value that was chosen during the most recently insert
operation. Since these values are often used for primary keys, knowing the
generated value may let you more easily insert rows that reference the
primary key of the first row.

From embedded SQL, you can obtain the most recently assigned global
autoincrement default value using the following statement.

select @@identity

From the C++ API, the value is available using theGetLastIdentity()
method on theULConnection object

The returned value is an unsigned 64-bit integer, database data type
UNSIGNED BIGINT. Since this statement only allows you to determine the
most recently assigned default value, you should retrieve this value soon

294

Chapter 11. UltraLite Clients

after executing the insert statement to avoid spurious results.

Occasionally, a single insert statement may include more than one column of
type global autoincrement. In this case, the return value is one of the
generated default values, but there is no reliable means to determine which
one. For this reason, you should design your database and write your insert
statements so as to avoid this situation.

Detecting the number of available default values

Default values are chosen from the partition identified by the global database
identification number until the maximum value is reached. When this state
has been reached or is imminent, you must assign the database a new
identification number.

The programming interfaces provide means of obtaining the proportion of
numbers that have been used. The return value is a short in the range 0–100
that represents the percent of values used thus far. For example, a value of
99 indicates that very few unused values remain and the database should be
assigned a new identification number.

The method of setting this identification number varies according to the
programming interface you are using.

♦ UltraLite for MobileVB See“Properties”[UltraLite for MobileVB User’s
Guide,page 91].

♦ UltraLite ActiveX See“Properties”[UltraLite ActiveX User’s Guide,
page 91].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.Connection.databaseIDin the API
Reference.

♦ UltraLite.NET See Connection in the UltraLite.NET API Reference.

♦ Embedded SQL See“ULGlobalAutoincUsage function”[UltraLite
C/C++ User’s Guide,page 372].

♦ Static C++ API See“GlobalAutoincUsage method”[UltraLite C/C++
User’s Guide,page 311].

♦ Static Java API See“globalAutoincUsage method”[UltraLite Static
Java User’s Guide,page 58].

♦ UltraLite for M-Business Anywhere See“Method
getGlobalAutoIncrementUsage”[UltraLite for M-Business Anywhere User’s
Guide,page 67].

295

Synchronizing UltraLite databases on the Palm
Computing Platform

This section describes the details of synchronization that are specific to the
Palm Computing Platform.

☞ For more information about UltraLite on the Palm Computing Platform,
see“Developing UltraLite Applications for the Palm Computing Platform”
[UltraLite C/C++ User’s Guide,page 113].

Choosing a synchronization method

Synchronization on the Palm Computing Platform can be carried out using
HotSync or over standard network protocols using TCP/IP or HTTP. Each
synchronization method has its advantages and disadvantages.

♦ Multiple applications If you have more than one UltraLite application
installed on a Palm device, they all synchronize when you invoke
HotSync. To synchronize multiple applications through a TCP/IP or
HTTP connection, you must activate and synchronize each application in
turn.

♦ Universal Serial Bus support HotSync synchronization has automatic
support for USB.

♦ Publications Synchronization using HotSync cannot include WHERE
clauses.

☞ For more information, see“Designing sets of data to synchronize
separately” on page 280.

Understanding HotSync synchronization

UltraLite applications on Palm devices can synchronize over a TCP/IP or
HTTP protocol, in much the same manner as UltraLite applications on other
platforms. They can also synchronize using the Palm-specific HotSync
protocols, which operate in a different manner. This section describes the
architecture of the HotSync synchronization.

The sequence of events that occur during HotSync synchronization is as
follows:

1. When your UltraLite application is closed, it saves the state of your
UltraLite application. The state information is stored in the Palm
database, separately from the UltraLite database.

296

Chapter 11. UltraLite Clients

☞ For more information, see“Saving state in UltraLite Palm
applications”[UltraLite C/C++ User’s Guide,page 120].

2. When you synchronize your Palm device, HotSync calls the MobiLink
conduit to synchronize with the MobiLink synchronization server. The
MobiLink conduit reads the pages from the UltraLite database and sends
the upload to the MobiLink synchronization server.

3. The MobiLink synchronization server integrates updates into the
consolidated database and sends a download stream to the conduit.

4. The conduit integrates the download stream into the UltraLite database
on the Palm device.

5. When your application is launched, it loads the previously saved state of
your UltraLite application.

☞ For more information, see“Restoring state in UltraLite Palm
applications”[UltraLite C/C++ User’s Guide,page 121].

HotSync architecture The following diagram depicts the HotSync architecture. A separate
HotSync conduit is required for each application. You can have multiple
HotSync conduits on a single PC.

 HotSync

conduit

 HotSync

conduit

 HotSync

conduit

 HotSync

conduit

MobiLink

synchronization

server

Consolidated

database

Palm

device

PC

ODBC

☞ For a description of how to set up your MobiLink HotSync conduit, see
“Configuring the MobiLink HotSync conduit” on page 301.

297

HotSync configuration overview

During HotSync synchronization, the HotSync Manager starts the MobiLink
HotSync conduit,dbhsync9.dll, which reads from the device and then sends
the upload stream to a MobiLink synchronization server. It then receives the
download stream from the MobiLink synchronization server and writes the
download to the device.

The MobiLink HotSync conduit synchronizes with the MobiLink
synchronization server using one of TCP/IP, HTTP, or HTTPS protocols.

In most applications, only the MobiLink HotSync conduit is deployed onto
the desktop machines of users.

☞ For information about HotSync architecture, see“Understanding
HotSync synchronization” on page 296.

❖ To install and configure the MobiLink HotSync conduit

1. Place the MobiLink conduit files on the user’s machine.

☞ For instructions, see“Conduit files” on page 298.

2. Register the MobiLink conduit to the HotSync Manager. The HotSync
Manager is then able to use the MobiLink conduit.

☞ For instructions, see“Registering the MobiLink HotSync conduit to
HotSync Manager” on page 299.

3. If you did not include astream_parmsparameter in your UltraLite
ul_synch_infostructure, enter these parameters from the HotSync
Manager.

☞ For instructions, see“Configuring the MobiLink HotSync conduit”
on page 301.

☞ For information about includingstream_parmsparameter in your
UltraLite synchronization call, see“Adding HotSync synchronization to
Palm applications”[UltraLite C/C++ User’s Guide,page 125].

4. If you are using an encrypted database, enter the encryption key in the
conduit configuration dialog. If you do not enter this key, you will have to
enter it on every synchronization.

☞ For instructions, see“Configuring the MobiLink HotSync conduit”
on page 301.

Conduit files The HotSync conduit consists of the following files:

♦ dbhsync9.dll The DLL that is called by the HotSync Manager.

298

Chapter 11. UltraLite Clients

♦ dblgen9.dll The language resource library. For languages other than
English, the letters en in the file name are replaced by a two-letter
abbreviation for the language, such asdblgde9.dllor dblgja9.dll.

♦ Stream DLL You need a DLL for the communication between the
conduit and the MobiLink synchronization server. A separate DLL is
provided for each network protocol:

• For TCP/IP, usedbmlsock9.dll.

• For HTTP, usedbmlsock9.dllanddbmlhttp9.dll.

• For HTTPS, usedbmlhttps9.dll

• If you use encryption for this communication, you also need to supply
the encryption DLLdbmltls9.dll.

These files should be in the same directory, in your system path. When you
install SQL Anywhere Studio, they are installed into the operating system
subdirectory of your installation directory, which is already in the system
path. However, you do not have to install SQL Anywhere Studio to use these
files.

Registering the MobiLink HotSync conduit to HotSync Manager

UltraLite includes a command lineconduit installation utility named
dbcond9to make a set of registry entries for the HotSync Manager to be
able to use the MobiLink conduit. This utility requires the following files:

♦ dbcond9.exe

♦ condmgr.dll

❖ To deploy the conduit installation utility

1. Choose a top-level deployment directory.

For example, you may choose a directory namedc:\deploy.

2. Add a registry entry with the full path of the deployment directory as its
value.

The registry entry must be as follows:

HKEY_CURRENT_USER\Software \Sybase \Adaptive Server Anywhere \
version-string \Location

whereversion-stringis a number representing your version of the SQL
Anywhere Studio (such as9.0). If the entry is not found in
HKEY_CURRENT_USER, the software looks in
HKEY_LOCAL_MACHINE.

299

3. Add thedbcond9.exefile to thewin32 subdirectory of the deployment
directory.

4. Add thecondmgr.dllfile.

Thecondmgr.dllfile must go in thewin32\condmgrsubdirectory of the
deployment directory.

The SQL Anywhere Studio installation creates the required registry entries
and places files in the appropriate locations.

❖ To register the MobiLink HotSync conduit to HotSync Manager

1. Ensure that the HotSync conduit files and the files for the conduit
installation utility are in place.

2. Run the conduit installation utility. On the command line, you must
specify the creator ID of the Palm application and a name that HotSync
will use to identify the conduit.

For example, the following command installs a conduit for the
application with creator IDSyb2, namedCustDB. These are the settings
for the CustDB sample application:

dbcond9 "Syb2" -n CustDB

☞ For more information about the conduit installation utility, see“The
HotSync Conduit Installer”[UltraLite Database User’s Guide,page 99].

Note A secondary location for HotSync synchronization depends on the
version of the Palm Computing Platform software you are using. This
secondary location may be under the
HKEY_CURRENT_USER\Software\U.S. Roboticsor
HKEY_CURRENT_USER\Software\Palm Computingfolders.

Checking that MobiLink HotSync conduit installation is correct

Following are instructions for verifying that your conduit is installed and is
working.

❖ To check that the HotSync conduit is properly installed

1. Check that a conduit is installed:

♦ In your PC’s system tray, right-click HotSync Manager.

♦ From the pop-up menu, choose Custom.

A list of conduits is displayed for each user. Verify that your conduit is
listed.

300

Chapter 11. UltraLite Clients

2. Set the system environment variable UL_DEBUG_CONDUIT to any
value.

3. Shut down and restart the HotSync Manager.

4. If the MobiLink conduit is properly installed, two dialog boxes appear. If
no dialog appears, the conduit was not properly installed.

5. Unset the environment variable.

6. Shut down and restart the HotSync Manager.

MobiLink must be started before using HotSync
Before using HotSync, the MobiLink synchronization server must be
started and be ready to accept connections from the MobiLink HotSync
conduit. The MobiLink synchronization server does not have to be on the
same computer, but it must be reachable across the network.

Configuring the MobiLink HotSync conduit

The MobiLink HotSync conduit needs to communicate with a MobiLink
synchronization server to synchronize the UltraLite application and the
consolidated database. You can provide the information needed by the
conduit to locate the MobiLink synchronization server in astream_parms
member of the UltraLiteul_synch_infostructure supplied to the
ULSetSynchInfo function. If you did not specify astream_parmsvalue, or
if you specified the value as null, you can enter the required parameters from
the HotSync Manager.

In addition, if you are using a strongly encrypted UltraLite database, you can
save the encryption key so that you do not have to enter it on each
synchronization.

If you have Palm Desktop software installed, the Adaptive Server Anywhere
installation creates registry entries for theCustDB sample application. You
can use these entries as a starting point for your own application.

☞ For information aboutstream_parms, see“Adding HotSync
synchronization to Palm applications”[UltraLite C/C++ User’s Guide,
page 125].

❖ To configure the MobiLink HotSync conduit for synchronization

1. Right-click the HotSync Manager icon in the system tray, and choose
Custom from the popup menu.

2. Select your MobiLink HotSync conduit from the list of conduit names,
and click Change.

301

3. Enter a set of network protocol options in the Synchronization
Parameters text box. These options are the same as those in a
stream_parmsparameter, except that a “stream” entry is used to specify
the network protocol type (TCPIP, HTTP, or HTTPS). For example:

stream=tcpip;host=localhost

☞ For more information, see“HotSync protocol options” on page 343.

4. If the database is strongly encrypted, you can enter the encryption key in
the Encryption Key text box. If no key is entered, you will be prompted
for the encryption key on each synchronization.

5. Click OK to complete the entry. The HotSync conduit is now ready to
use.

Registry locations The protocol options and encryption key are stored in the registry in
HKEY_CURRENT_USER\Software\Sybase\Adaptive Server
Anywhere\9.0\Conduit\ Creator-ID, whereCreator-IDis
application-dependent.

A secondary location for HotSync synchronization depends on the version of
the Palm Computing Platform software you are using. They are made under
theHKEY_CURRENT_USER\Software\U.S. Roboticsor the
HKEY_CURRENT_USER\Software\Palm Computingfolder.

HotSync log files HotSync records when each synchronization took place and whether each
installed conduit worked as expected. The HotSync log file is in the
subdirectoryUser\HotSync.logof your Pilot or Palm directory.

You can obtain additional debugging information in your HotSync log file
by setting the UL_DEBUG_CONDUIT_LOG environment variable. This
variable is useful during development if you have problems with the
HotSync conduit. By default, the environment variable is not set.

UL_DEBUG_CONDUIT_LOG = 1 When set to 1, basic information is
written to the HotSync log file, such as synchronization parameters, registry
locations, and attempts to load libraries.

UL_DEBUG_CONDUIT_LOG = 2 When set to 2, more detailed
information is written to the HotSync log file.

You must restart HotSync before the new setting takes effect.

☞ For information about how to set environment variables, see“Setting
environment variables”[ASA Database Administration Guide,page 276].

Deploying the MobiLink HotSync conduit

For applications using HotSync synchronization, each end user must have

302

Chapter 11. UltraLite Clients

the MobiLink HotSync conduit installed on their desktop. This installation
requires the following:

♦ Deploy the conduit files The files for the conduit must be installed into
a location in the end user’s system path.

☞ For a list of conduit files, see“Conduit files” on page 298.

♦ Install the conduit You can deploy the conduit installation utility to
your end users and provide instructions for them to run it, or you can use
the HotSync Manager to install the conduit.

☞ For instructions, see“Registering the MobiLink HotSync conduit to
HotSync Manager” on page 299.

♦ Configure the conduit If you did not include astream_parms
parameter in your UltraLiteul_synch_infostructure, enter these
parameters from the HotSync Manager. Also, if you are using an
encrypted database, you may want to enter the encryption key.

☞ For instructions, see“Configuring the MobiLink HotSync conduit”
on page 301.

Configuring TCP/IP, HTTP, or HTTPS synchronization

This section describes how to configure the synchronization setup for
UltraLite Palm applications using TCP/IP or HTTP synchronization.

☞ For information about synchronization architecture for HTTP or TCP/IP
communications, see“Parts of the synchronization system”[MobiLink
Administration Guide,page 8].

Configuring TCP/IP synchronization for the Palm Computing Platform

There are two ways of using TCP/IP networking in a Palm device. In either
case, you must connect to a Remote Access Service (RAS). The difference
lies in how you make the connection to the RAS.

♦ Use a modem to dial into an ISP The Internet Service Provider (ISP)
must provide access to a Remote Access Service (RAS). The components
of the connection are as follows:

Application
<--> Palm Net Library
<--> Palm modem
<--> NT RAS
<--> TCP/IP network

♦ Connect via the serial port to a Windows NT machine The
components of the connection are as follows:

303

Application
<--> Palm Net Library
<--> serial cable
<--> NT RAS
<--> TCP/IP network

When using TCP/IP, the MobiLink synchronization server can be any
machine on the network that is accessible via TCP/IP.

Before synchronization, the following conditions must be satisfied:

1. The device must be in its cradle.

2. If you are using the serial port to connect to a Windows NT machine
running RAS, the HotSync Manager and other applications that use the
serial port must be shut down. Windows NT only allows one application
to use a serial port at a time.

3. The MobiLink synchronization server must be started. By default, the
MobiLink synchronization server listens for TCP/IP communications
over port 2439.

4. The Palm device must have Network settings in place so that it can
connect to the network. Modem settings are also required if using a
modem to dial into an ISP.

Configuring HTTP or HTTPS synchronization for the Palm Computing platform

To use HTTP or HTTPS synchronization, you must first configure RAS
TCP/IP synchronization. For information about configuring RAS, see
“Configuring TCP/IP synchronization for the Palm Computing Platform” on
page 303.

When using HTTP or HTTPS, the MobiLink synchronization server can be
any machine on the network that is accessible via the protocol.

❖ To synchronize using HTTP or HTTPS

1. Place the Palm device in its cradle.

2. If you are using the serial port to connect to a desktop machine running
RAS, shut down the HotSync Manager and other applications that use the
serial port. Windows only allows one application to use a serial port at a
time.

3. Start the MobiLink synchronization server.

304

Chapter 11. UltraLite Clients

4. Ensure that the network settings on the Palm device are configured so that
it can connect to the network. Modem settings are also required if using a
modem to dial into an ISP.

☞ For more information, see“Configuring TCP/IP synchronization for
the Palm Computing Platform” on page 303.

Configuring Remote Access Service

Synchronizing Palm applications over TCP/IP, HTTP, or HTTPS requires a
Remote Access Service on your desktop machine. Remote Access Service
software is not part of UltraLite or MobiLink. Configuring Remote Access
Service software is tricky, however, and so this section provides some
instructions to assist with the task.

Configuring RAS for synchronization via modem

To use this method, you must have access to a Remote Access Service when
you dial in.

❖ To configure a Palm device for RAS TCP/IP via a modem

1. Install the modem by plugging the Palm device into the modem module.

2. Go to the Preferences (Prefs) panel and choose Network from the
dropdown list at the top right of screen.

3. Choose the Windows RAS service.

4. Set the dial-in username and password.

5. Set the phone number to the number at which the Remote Access Service
can be reached. Obtain this number from your ISP.

6. Tap Details.

7. Set the connection type (usually PPP).

8. Set the DNS and IP addresses as recommended by your network
administrator.

9. Tap Script and enter the script recommended by your ISP. This script will
be similar to the following sample.

305

Wait For: Username:
Delay: 1
Send UserID:
Send CR:
Wait For: Password:
Delay: 1
Send Password:
Send CR:
Wait For: >
Delay: 1
Send: ppp
Send CR:
End:

Tap OK until you are back to the Network Preferences.

At this point, you are ready to test your TCP/IP connection.

Configuring RAS for serial port connection

This procedure involves actions both on Windows NT and on the Palm
Computing device.

❖ To configure Windows NT for RAS TCP/IP via serial port

1. From the Control Panel, open Modems. Make sure that a modem is
defined forDial-Up Networking Serial Cable between 2 PCson the
COM port to which the cradle is connected.

2. Set the speed for this modem to the baud rate you are using. The default
is 19200.

3. Make sure TCP/IP protocol is installed. Select Start➤ Settings➤ Control
Panel and double-click the Network icon. Click on the Protocols tab. If
there is no TCP/IP entry, choose Add to install it.

4. Enable IP Forwarding (in the Routing tab of TCP/IP properties)

5. Under the Services tab, make sure that Remote Access Service is
installed. If there is no entry for Remote Access Service, choose Add to
install it.

In Remote Access Service Properties, addDial Up Network serial cable
between 2 pc’ s for that COM port if the cradle’s COM port is not in the
list of ports.

6. Configure this entry to receive calls. In the RAS Network properties set
encryption settings toAllow any authentication including clear text. In
the RAS Network properties allow only TCP/IP client.

306

Chapter 11. UltraLite Clients

7. Configure TCP/IP. Allow clients to access the entire network. Assigning
the TCP/IP addresses depends on your network. Contact your network
administrator for details.

8. Add a user for dial-in access. Select Start➤ Programs➤ Administrative
Tools➤ User Manager. UncheckUser Must Change Password at Next
Logon. Choose the Dialin button, and grant dialin permission to user
with No Call Back.

9. If the RAS COM port is the same one that HotSync Manager uses, shut
down the HotSync Manager or any other applications that use the COM
port.

10. Start the Remote Access Administrator. Select Start➤ Programs➤
Administrative Tools➤ Remote Access Admin.

11. Start the RAS service. Select Server➤ Start Remote Access Service.
Choose to start the service on the local machine.

HotSync Manager or any other applications that use the serial port and the
RAS service will not run at the same time. One must be shut down first for
the other to run, as Windows NT prevents two different applications from
accessing the same serial port. You have to stop the RAS service (Server➤

Stop Remote Access Service from the Remote Access Admin) before you
can restart the HotSync Manager. Alternatively, you can use separate serial
ports.

Once the RAS service is running, it is ready to receive connection requests
via the serial port.

❖ To configure a Palm device for RAS TCP/IP via serial port

1. Go to the Preferences (Prefs) panel and choose Network from the
dropdown list at the top right of screen.

2. Choose the Windows RAS service.

3. Set the dial-in username and password.

4. Set the Palm to use the serial port.
♦ For Palm OS 3.3 and above, selectDirect serial.

♦ For earlier versions of the Palm OS, set the phone number to00 (zero
zero). This is a special phone number that tells the Palm to use the
serial port directly, instead of a modem.

5. Tap Details.

6. Set the connection type (usually PPP).

307

7. Set the DNS and IP addresses as recommended by your network
administrator.

8. Tap Script and enter the following script:

Send: CLIENT
Send CR:
Delay: 1
Send: CLIENT
END

Tap OK until you are back to the Network Preferences

At this point, you are ready to test your TCP/IP connection.

Testing and troubleshooting

❖ To test the connection

1. via modem Connect the Palm device to the modem and follow the
instructions provided by your ISP for connecting to their network. Once
connected, tap the Connect button in Prefs➤ Network on the Palm
device.

2. via serial port Ensure RAS is running on the Windows NT machine.
Place the Palm device in the cradle and connect the cradle to the correct
COM port on the Windows NT machine. Tap the Connect button in Prefs
➤ Network on the Palm device.

With TCP/IP, there are two levels of service. At the minimum level, you can
connect to another TCP/IP host using an IP number of the following form.

NNN.NNN.NNN.NNN

At the next level, when a DNS server is properly configured, you are able to
connect to another host by name.

some_host_machine.any_company.com

Having a DNS service is more convenient, since most people are better at
remembering a name than a number. As long as you have the minimum
TCP/IP service, and an IP number, you can synchronize an UltraLite
application using TCP/IP.

There are a number of steps you can take to troubleshoot TCP/IP
connections on the Palm device.

♦ Hitting the scroll down button on the Palm device during the connection
phase displays the progress of the connection.

308

Chapter 11. UltraLite Clients

♦ The connection log is accessible from the Network Preferences panel.
Choose View Log from the Options menu to see information about the
network connection. The log is an interactive utility for controlling and
viewing your connection information. Enter ? for help.

♦ There are several tools for testing a TCP/IP connection from the Palm.
You can find most of them at the following locations:

http://www.roadcoders.com
http://www.palmcentral.com

There are also steps you can take for troubleshooting on Windows NT:

♦ In the Remote Access Admin, double-click on the running server.

♦ Select the appropriate port and choose Port Status. The Port Status dialog
shows you the Line condition (connected or waiting for a call) and lets
you watch the byte counts for both directions.

309

Synchronizing UltraLite databases on Windows
CE

UltraLite applications on Windows CE can synchronize using standard
network protocols (TCP/IP, HTTP, or HTTPS). UltraLite applications built
using embedded SQL, the static C++ API, or Native UltraLite for Java can
also use ActiveSync.

This section describes ActiveSync synchronization.

Installing the MobiLink provider for ActiveSync

Before you register your application for use with ActiveSync, you must
install the MobiLink provider for ActiveSync using the installation utility
(dbasinst.exe).

The MobiLink provider for ActiveSync includes a desktop component and a
device component. You must configure the provider for each device that
synchronizes through your desktop machine.

When you have installed the MobiLink provider for ActiveSync you must
register each application separately. For instructions, see“Registering
applications for use with ActiveSync” on page 311.

❖ To install the MobiLink provider for ActiveSync

1. Ensure that you have the ActiveSync software on your machine, and that
the Windows CE device is connected.

2. Enter the following command to install the MobiLink provider:

dbasinst -k desk-path -v dev-path

wheredesk-pathis the location of the desktop component of the provider
(dbasdesk.dll) anddev-pathis the location of the device component
(dbasdev.dll).

If you have SQL Anywhere installed on your machine,dbasdesk.dllis in
thewin32 subdirectory of your SQL Anywhere directory anddbasdev.dll
is in a platform-specific directory in theCE subdirectory. These
directories are default search locations, and you can omit both the -k and
-v options.

☞ For more information, see“ActiveSync provider installation utility”
on page 28.

3. Restart your machine.

310

Chapter 11. UltraLite Clients

ActiveSync does not recognize new providers until the machine is
restarted.

4. Enable the MobiLink provider.
♦ From the ActiveSync window, click Options.

♦ Check the MobiLink item in the list and click OK to activate the
provider.

♦ To see a list of registered applications, click Options again, choose the
MobiLink provider, and click Settings.
☞ For more information about registering applications, see
“Registering applications for use with ActiveSync” on page 311.

Registering applications for use with ActiveSync

You can register your application for use with ActiveSync either by using the
ActiveSync provider install utility or using the ActiveSync software itself.
This section describes how to use the ActiveSync software.

☞ For information about the alternative approach, see“ActiveSync
provider installation utility” on page 28.

❖ To register an application for use with ActiveSync

1. Ensure that the MobiLink provider for ActiveSync is installed.

☞ For information, see“Installing the MobiLink provider for
ActiveSync” on page 310.

2. Start the ActiveSync software on your desktop machine.

3. From the ActiveSync window, choose Options.

4. From the list of information types, choose MobiLink and click Settings.

5. In the MobiLink Synchronization dialog, click New. The Properties
dialog appears.

6. Enter the following information for your application:
♦ Application name A name identifying the application to be

displayed in the ActiveSync user interface.

♦ Class name The registered class name for the application.
☞ See“Assigning class names for applications”[UltraLite C/C++
User’s Guide,page 137].

♦ Path The location of the application on the device.

♦ Arguments Any command line arguments to be used when
ActiveSync starts the application.

311

7. Click OK to register the application.

Deploying applications that use ActiveSync

Applications that use ActiveSync synchronization must be registered with
ActiveSync as well as copied onto the device. Also, each desktop machine
must have the MobiLink provider for ActiveSync installed. The architecture
for ActiveSync is illustrated in the following diagram.

ActiveSync

software

ActiveSync

software

MobiLink

provider for

ActiveSync
 MobiLink

synchronization

server

UltraLite or

ASA MobiLink

client

Windows CE

device

Desktop

computer

Server

computer

❖ To deploy ActiveSync applications

1. Install the MobiLink provider for ActiveSync on each end user’s
computer.

An ActiveSync provider install utility is provided with SQL Anywhere.
This is thedbasinst.execommand line utility.

☞ For information about thedbasinst.execommand line utility, see
“Installing the MobiLink provider for ActiveSync” on page 310and
“ActiveSync provider installation utility” on page 28.

2. Register the application for use with ActiveSync.

You can register the application either by using ActiveSync, or by using
the ActiveSync provider installation utilitydbasinst.exe.

☞ For information about registering the application, see“Registering
applications for use with ActiveSync” on page 311.

3. Copy the application onto the device.

312

Chapter 11. UltraLite Clients

If your application is a single executable, statically linked with the
runtime library, you can use the ActiveSync provider installation utility
dbasinst.exeto copy the application to the device.

If the application includes multiple files (for example, if you use the
UltraLite runtime DLL rather than the static runtime library), you must
copy the files onto the device in some other way.

313

CHAPTER 12

UltraLite Synchronization Parameters

About this chapter This chapter details all the parameters that you can set to synchronize your
UltraLite applications using MobiLink.

☞ The parameters described in this chapter only apply to UltraLite remote
databases. To synchronize Adaptive Server Anywhere remote databases, see
“Adaptive Server Anywhere Client Synchronization Parameters” on page 95.

Contents Topic: page

Synchronization parameters 316

Network protocol options for UltraLite synchronization clients 341

315

Synchronization parameters
Synchronization parameters control the synchronization between an
UltraLite database and the MobiLink synchronization server. The way you
set the parameters depends on the specific UltraLite interface you are using.
This section describes the effects of the parameters, and provides links to
other locations for information on how to set them.

The Stream Type and Version parameters are required. If they are not set, the
synchronization function throws an exception
(SQLCode.SQLE_SYNC_INFO_INVALID or its equivalent).

Some synchronization parameters can conflict. Only one of Download Only,
Ping, Resume Partial Download, or Upload Only may be specified at a time.
If more than one of these parameters is set to true, the synchronization
function throws an exception (SQLCode.SQLE_SYNC_INFO_INVALID or
its equivalent).

Authentication Parameters synchronization parameter

Function Supplies parameters to the authentication_parameters script.

Usage Use this parameter to supply any values required by your
authentication_parameters script. These may be a user name and password,
for example.

If you use this parameter, you must also supply the number of parameters.
See“Number of Authentication Parameters parameter” on page 322.

Allowed values An array of strings. Null is not allowed as a value for any of the strings, but
you can supply an empty string.

See also “Number of Authentication Parameters parameter” on page 322

“authenticate_parameters connection event”[MobiLink Administration Guide,
page 334]

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“AuthenticationParms property”[UltraLite.NET
User’s Guide,page 264](iAnywhere.Data.UltraLite namespace) and
“AuthenticationParms property”[UltraLite.NET User’s Guide,page 492]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

316

Chapter 12. UltraLite Synchronization Parameters

♦ C++ Component, embedded SQL, and Static C++ API See
“auth_parms parameter”[UltraLite C/C++ User’s Guide,page 418].

♦ Static Java API See“auth_parms parameter”[UltraLite Static Java
User’s Guide,page 68].

Authentication Status synchronization parameter

Function Reports the status of MobiLink user authentication. The MobiLink
synchronization server provides this information to the client.

Usage If you are implementing a custom authentication scheme, the
authenticate_user or authenticate_user_hashed synchronization script must
return one of the allowed values of this parameter.

The parameter is set by the MobiLink synchronization server, and so is
read-only.

Allowed values The allowed values are held in an interface-specific enumeration.

If a customauthenticate_usersynchronization script at the consolidated
database returns a different value, the value is interpreted according to the
rules given in“authenticate_user connection event”[MobiLink Administration
Guide,page 336].

See also “Authenticating MobiLink Users” on page 9.

Interfaces ♦ MobileVB “ULSyncResult class”[UltraLite for MobileVB User’s Guide,
page 145]

♦ ActiveX “ULSyncResult class”[UltraLite ActiveX User’s Guide,page 138]

♦ UltraLite.NET See“AuthStatus property”[UltraLite.NET User’s Guide,
page 285](iAnywhere.Data.UltraLite namespace) and“AuthStatus
property” [UltraLite.NET User’s Guide,page 543](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncResult
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“auth_status parameter”[UltraLite C/C++ User’s Guide,page 419].

♦ Static Java API See“auth_status parameter”[UltraLite Static Java User’s
Guide,page 69].

♦ UltraLite for M-Business Anywhere See“Class SyncResult”[UltraLite
for M-Business Anywhere User’s Guide,page 120].

317

Authentication Value synchronization parameter

Function Reports results of a custom MobiLink user authentication script. The
MobiLink synchronization server provides this information to the client.

Default The values set by the default MobiLink user authentication mechanism are
described in“Authentication Status synchronization parameter” on page 317.

Usage The parameter is set by the MobiLink synchronization server, and so is
read-only.

See also “authenticate_user connection event”[MobiLink Administration Guide,
page 336]

“authenticate_user_hashed connection event”[MobiLink Administration Guide,
page 340]

“Authentication Status synchronization parameter” on page 317

Interfaces ♦ MobileVB “ULSyncResult class”[UltraLite for MobileVB User’s Guide,
page 145]

♦ ActiveX “ULSyncResult class”[UltraLite ActiveX User’s Guide,page 138]

♦ UltraLite.NET See“AuthValue property”[UltraLite.NET User’s Guide,
page 285](iAnywhere.Data.UltraLite namespace) and“AuthValue
property” [UltraLite.NET User’s Guide,page 543](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“auth_value synchronization parameter”[UltraLite C/C++ User’s Guide,
page 420].

♦ Static Java API See“auth_value synchronization parameter”[UltraLite
Static Java User’s Guide,page 70].

♦ UltraLite for M-Business Anywhere See“Class SyncResult”[UltraLite
for M-Business Anywhere User’s Guide,page 120].

Checkpoint Store synchronization parameter

Function Adds additional checkpoints of the database during synchronization to limit
database growth during the synchronization process.

The checkpoint operation adds I/O operations for the application and for the
Palm conduit and so slows synchronization. The option is most useful for

318

Chapter 12. UltraLite Synchronization Parameters

large downloads with many updates. Devices with slow flash memory may
not want to pay the performance penalty.

Default By default, only required checkpointing is done.

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“CheckpointStore property”[UltraLite.NET User’s
Guide,page 265](iAnywhere.Data.UltraLite namespace) and
“CheckpointStore property”[UltraLite.NET User’s Guide,page 493]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“checkpoint_store synchronization parameter”[UltraLite C/C++ User’s
Guide,page 421].

♦ Static Java API Not available.

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Disable Concurrency synchronization parameter

Function Disallow database access from other threads during synchronization.

Default The parameter is a Boolean value, and by default is false (allowing
concurrent database access). Data access is read-write during the download
phase, and read-only otherwise.

See also “Understanding concurrency in UltraLite”[UltraLite Database User’s Guide,
page 58]

Interfaces ♦ MobileVB Not available

♦ ActiveX Not available

♦ UltraLite.NET See“DisableConcurrency property”[UltraLite.NET
User’s Guide,page 265](iAnywhere.Data.UltraLite namespace) and
“DisableConcurrency property”[UltraLite.NET User’s Guide,page 493]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

319

♦ C++ Component, embedded SQL, and Static C++ API See
“disable_concurrency synchronization parameter”[UltraLite C/C++ User’s
Guide,page 422].

♦ Static Java API Not available.

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Download Only synchronization parameter

Function Do not upload any changes from the UltraLite database during this
synchronization.

Default The parameter is a Boolean value, and by default is false.

See also “Including read-only tables in an UltraLite database” on page 283.

“Upload Only synchronization parameter” on page 337

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“DownloadOnly property”[UltraLite.NET User’s
Guide,page 266](iAnywhere.Data.UltraLite namespace) and
“DownloadOnly property”[UltraLite.NET User’s Guide,page 494]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“download_only synchronization parameter”[UltraLite C/C++ User’s
Guide,page 423].

♦ Static Java API See“download_only synchronization parameter”
[UltraLite Static Java User’s Guide,page 71].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Ignored Rows synchronization parameter

Function This boolean parameter is set totrue if any rows were ignored by the
MobiLink synchronization server during synchronization because of absent
scripts.

320

Chapter 12. UltraLite Synchronization Parameters

The parameter is read-only.

Interfaces ♦ MobileVB “ULSyncResult class”[UltraLite for MobileVB User’s Guide,
page 145]

♦ ActiveX “ULSyncResult class”[UltraLite ActiveX User’s Guide,page 138]

♦ UltraLite.NET See“IgnoredRows property”[UltraLite.NET User’s Guide,
page 285](iAnywhere.Data.UltraLite namespace) and“IgnoredRows
property” [UltraLite.NET User’s Guide,page 543](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncResult
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“ignored_rows synchronization parameter”[UltraLite C/C++ User’s Guide,
page 425].

♦ Static Java API See“ignored_rows synchronization parameter”
[UltraLite Static Java User’s Guide,page 72].

♦ UltraLite for M-Business Anywhere See“Class SyncResult”[UltraLite
for M-Business Anywhere User’s Guide,page 120].

Keep Partial Download synchronization parameter

Function When a download fails because of a communications error during
synchronization, this parameter controls whether UltraLite holds on to the
download rather than rolling back the changes.

Default The default setting is false, indicating that UltraLite rolls back all changes
after a failed download.

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“KeepPartialDownload property”[UltraLite.NET
User’s Guide,page 266](iAnywhere.Data.UltraLite namespace) and
“KeepPartialDownload property”[UltraLite.NET User’s Guide,page 494]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“keep_partial_download synchronization parameter”[UltraLite C/C++
User’s Guide,page 424].

321

♦ Static Java API Not available.

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Resume Partial Download synchronization parameter” on page 327

New Password synchronization parameter

Function Sets a new MobiLink password associated with the user name.

Default The parameter is optional, and is a string.

See also “Authenticating MobiLink Users” on page 9.

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“NewPassword property”[UltraLite.NET User’s
Guide,page 267](iAnywhere.Data.UltraLite namespace) and
“NewPassword property”[UltraLite.NET User’s Guide,page 495]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“new_password synchronization parameter”[UltraLite C/C++ User’s
Guide,page 426].

♦ Static Java API See“new_password synchronization parameter”
[UltraLite Static Java User’s Guide,page 73].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Number of Authentication Parameters parameter

Function Supply the number of authentication parameters being passed to the
authentication_parameters script.

Default No parameters supplied.

See also “Authentication Parameters synchronization parameter” on page 316

“authenticate_parameters connection event”[MobiLink Administration Guide,
page 334]

322

Chapter 12. UltraLite Synchronization Parameters

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“AuthenticationParms property”[UltraLite.NET
User’s Guide,page 264](iAnywhere.Data.UltraLite namespace) or
“AuthenticationParms property”[UltraLite.NET User’s Guide,page 492]
(iAnywhere.UltraLite namespace)

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“num_auth_parms parameter”[UltraLite C/C++ User’s Guide,page 427].

♦ Static Java API See“num_auth_parms parameter”[UltraLite Static Java
User’s Guide,page 74].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Observer synchronization parameter

Function A pointer to a callback function or event handler that monitors
synchronization.

See also “User Data synchronization parameter” on page 338

Interfaces ♦ MobileVB Declare the connection object With Events. See
“ULConnection class”[UltraLite for MobileVB User’s Guide,page 91]

♦ ActiveX Use CreateObjectWithEvents when opening the
DatabaseManager object. See“ULDatabaseManager class”[UltraLite
ActiveX User’s Guide,page 101]

♦ UltraLite.NET See“ULSyncProgressListener members”[UltraLite.NET
User’s Guide,page 281](iAnywhere.Data.UltraLite namespace) and
“SyncProgressListener interface”[UltraLite.NET User’s Guide,page 539]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java See
ianywhere.native_ultralite.SyncProgressListenerin the API
Reference.

♦ C++ Component, embedded SQL, and Static C++ API See“observer
synchronization parameter”[UltraLite C/C++ User’s Guide,page 428].

323

♦ Static Java API See“observer synchronization parameter”[UltraLite
Static Java User’s Guide,page 75].

Partial Download Retained synchronization parameter

Function When a download fails because of a communications error during
synchronization, this parameter controls whether UltraLite applied those
changes that were downloaded rather than rolling back the changes.

Default The parameter is set by UltraLite. If there is no partial download retained,
the value is false.

Partial downloads are retained only if Keep Partial Download is set to true.

Interfaces ♦ MobileVB “ULSyncResult class”[UltraLite for MobileVB User’s Guide,
page 145]

♦ ActiveX “ULSyncResult class”[UltraLite ActiveX User’s Guide,page 138]

♦ UltraLite.NET See“PartialDownloadRetained property”[UltraLite.NET
User’s Guide,page 286](iAnywhere.Data.UltraLite namespace) and
“PartialDownloadRetained property”[UltraLite.NET User’s Guide,
page 544](iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncResult
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“partial_download_retained synchronization parameter”[UltraLite C/C++
User’s Guide,page 429].

♦ Static Java API Not available.

♦ UltraLite for M-Business Anywhere See“Class SyncResult”[UltraLite
for M-Business Anywhere User’s Guide,page 120].

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Keep Partial Download synchronization parameter” on page 321
♦ “Resume Partial Download synchronization parameter” on page 327

Password synchronization parameter

Function A string specifying the MobiLink password associated with the user name.
This user name and password are separate from any database user ID and
password, and serves to identify and authenticate the application to the
MobiLink synchronization server.

Default The parameter is optional, and is a string.

324

Chapter 12. UltraLite Synchronization Parameters

See also “Authenticating MobiLink Users” on page 9.

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“Password property”[UltraLite.NET User’s Guide,
page 268](iAnywhere.Data.UltraLite namespace) and“Password
property” [UltraLite.NET User’s Guide,page 496](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See“password
synchronization parameter”[UltraLite C/C++ User’s Guide,page 430].

♦ Static Java API See“password synchronization parameter”[UltraLite
Static Java User’s Guide,page 76].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Ping synchronization parameter

Function Confirm communications between the UltraLite client and the MobiLink
synchronization server. When this parameter is set to true, no
synchronization takes place.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

The MobiLink synchronization server may execute the following scripts, if
they exist, for a ping request:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

325

♦ end_connection

Default The parameter is optional, and is a boolean.

See also “-pi option” on page 144

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“PingOnly property”[UltraLite.NET User’s Guide,
page 268](iAnywhere.Data.UltraLite namespace) and“PingOnly
property” [UltraLite.NET User’s Guide,page 496](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See“ping
synchronization parameter”[UltraLite C/C++ User’s Guide,page 431].

♦ Static Java API See“ping synchronization parameter”[UltraLite Static
Java User’s Guide,page 77].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Publication synchronization parameter

Function Specifies the publications to be synchronized.

Default If you do not specify a publication, all data is synchronized.

Usage When synchronizing, set the publication parameter to apublication mask:
an OR’d list of publication constants.

See also “The UltraLite Generator”[UltraLite Database User’s Guide,page 89]

“Designing sets of data to synchronize separately” on page 280

Interfaces ♦ MobileVB “ULPublicationSchema class”[UltraLite for MobileVB User’s
Guide,page 121]

♦ ActiveX “ULPublicationSchema class”[UltraLite ActiveX User’s Guide,
page 116]

♦ UltraLite.NET See“ULPublicationSchema class”[UltraLite.NET User’s
Guide,page 226](iAnywhere.Data.UltraLite namespace) and
“PublicationSchema class”[UltraLite.NET User’s Guide,page 448]
(iAnywhere.UltraLite namespace).

326

Chapter 12. UltraLite Synchronization Parameters

♦ Native UltraLite for Java See
ianywhere.native_ultralite.PublicationSchemain the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“publication synchronization parameter”[UltraLite C/C++ User’s Guide,
page 432].

♦ Static Java API See“publication synchronization parameter”[UltraLite
Static Java User’s Guide,page 78].

♦ UltraLite for M-Business Anywhere See“Class PublicationSchema”
[UltraLite for M-Business Anywhere User’s Guide,page 95].

Resume Partial Download synchronization parameter

Function Resume a failed download. The synchronization does not upload changes,
and downloads only those changes that were to be downloaded in the failed
download.

Default False.

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Keep Partial Download synchronization parameter” on page 321
♦ “Partial Download Retained synchronization parameter” on page 324

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“ResumePartialDownload property”[UltraLite.NET
User’s Guide,page 269](iAnywhere.Data.UltraLite namespace) and
“ResumePartialDownload property”[UltraLite.NET User’s Guide,page 497]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“resume_partial_download synchronization parameter”[UltraLite C/C++
User’s Guide,page 433].

♦ Static Java API Not available.

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

327

Security synchronization parameter

Function Set the UltraLite client to use Certicom encryption technology when
exchanging messages with the MobiLink synchronization server.

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

This parameter is not used in the static Java API. To use secure
synchronization from the static Java API, choose a separate stream. For
more information, see“UlSecureRSASocketStream synchronization
parameters” on page 349and“UlSecureSocketStream synchronization
parameters” on page 350.

Default The parameter is null by default, corresponding to no transport-layer
security.

Usage The security stream is specified in addition to the synchronization stream.
Allowed values are as follows:

♦ ULSecureCerticomTLSStream() Elliptic-curve transport-layer security
provided by Certicom. If you use this stream, you must link your
application againstulecc.llib or supplyulecc9.dllwith your application
(ulecc9w.dll for Unicode applications).

♦ ULSecureRSATLSStream() RSA transport-layer security provided by
Certicom. If you use this stream, you must link your application against
ulrsa.lib or supplyulrsa9.dllwith your application (ulrsa9w.dll for
Unicode applications).

Example The following C++ code sets synchronization to use RSA transport-layer
security over TCP/IP:

//C++
ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULSecureRSATLSStream();

See also ♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,
page 165]

♦ “Security Parameters synchronization parameter” on page 329
♦ “certificate_company” on page 37
♦ “certificate_name” on page 38

328

Chapter 12. UltraLite Synchronization Parameters

♦ “certificate_unit” on page 40
♦ “trusted_certificates” on page 53“certificate_company” on page 37

Interfaces ♦ C++ Component, embedded SQL, and Static C++ API See“security
synchronization parameter”[UltraLite C/C++ User’s Guide,page 434].

♦ Static Java API Use a separate synchronization stream. See
“UlSecureRSASocketStream synchronization parameters” on page 349,
and“UlSecureSocketStream synchronization parameters” on page 350.

Security Parameters synchronization parameter

Function Sets the options required when using transport-layer security. This
parameter must be used together with thesecurity parameter.

☞ For more information, see“Security synchronization parameter” on
page 328.

This parameter is not applicable to static Java applications. To use secure
synchronization from UltraLite static Java applications, choose a separate
stream. For more information, see“UlSecureRSASocketStream
synchronization parameters” on page 349and“UlSecureSocketStream
synchronization parameters” on page 350.

Default The default setting is an empty string.

Usage The ULSecureCerticomTLSStream() and ULSecureRSATLSStream()
security parameters take a string composed of the following options,
supplied in an semicolon-separated string.

♦ certificate_company The UltraLite application only accepts server
certificates when the organization field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_name The UltraLite application only accepts server
certificates when the common name field on the certificate matches this
value. By default, this field is not checked.

♦ trusted_certificates If this value is supplied, the UltraLite application
retrieves the certificat from permanent storage rather than from the
database schema itself. The option cannot be used on Palm OS.

For example:

329

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULSecureCerticomTLSStream();
info.security_parms =

UL_TEXT("certificate_company=Sybase")
UL_TEXT(";")
UL_TEXT("certificate_unit=Sales");

If you use secure synchronization on the Palm OS, trusted_certificates is not
available. You must use the-r command-line option on the UltraLite
generator to embed the certificate in the application itself. For more
information, see“The UltraLite Generator”[UltraLite Database User’s Guide,
page 89].

See also ♦ “Security synchronization parameter” on page 328
♦ “certificate_company” on page 37
♦ “certificate_name” on page 38
♦ “certificate_unit” on page 40
♦ “trusted_certificates” on page 53“certificate_company” on page 37

Interfaces ♦ C++ Component, embedded SQL, and Static C++ API See
“security_parms synchronization parameter”[UltraLite C/C++ User’s
Guide,page 435].

♦ Static Java API Use a separate synchronization stream.

Send Column Names synchronization parameter

Function When set to true, UltraLite sends each column name to the MobiLink
synchronization server.

This parameter is typically used together with the -za or -ze switch on the
MobiLink synchronization server for automatically generating
synchronization scripts.

This parameter is not available for UltraLite static Java applications.

Default False.

See also “-za option” [MobiLink Administration Guide,page 219]

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“SendColumnNames property”[UltraLite.NET User’s
Guide,page 270](iAnywhere.Data.UltraLite namespace) and

330

Chapter 12. UltraLite Synchronization Parameters

“SendColumnNames property”[UltraLite.NET User’s Guide,page 497]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“send_column_names synchronization parameter”[UltraLite C/C++
User’s Guide,page 436].

♦ Static Java API This feature is not available in the static Java API.

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Send Download Acknowledgement synchronization parameter

Function Set this boolean parameter to true to instruct the MobiLink synchronization
server that the client will provide a download acknowledgement.

If the client does send a download acknowledgement, the MobiLink
synchronization server worker thread must wait for the client to apply the
download. If the client does not sent a download acknowledgement, the
MobiLink synchronization server is freed up sooner for its next
synchronization.

Default False.

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“SendDownloadAck property”[UltraLite.NET User’s
Guide,page 270](iAnywhere.Data.UltraLite namespace) and
“SendDownloadAck property”[UltraLite.NET User’s Guide,page 498]
(iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“send_download_ack synchronization parameter”[UltraLite C/C++ User’s
Guide,page 437].

♦ Static Java API This parameter is not available for static Java
applications.

331

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Stream Error synchronization parameter

Function Set a structure to hold communications error reporting information.

Applies To This parameter applies only to C/C++ interfaces.

UltraLite components other than the UltraLite C++ Component receive
communications error information as part of the Sync Result parameter. See
“Sync Result synchronization parameter” on page 335.

This feature is not available for UltraLite static Java applications.

Default The parameter is set by the MobiLink synchronization server, and so is
read-only. It is set only if a communication error occurs during
synchronization.

Interfaces ♦ MobileVB “ULSyncResult class”[UltraLite for MobileVB User’s Guide,
page 145]

♦ ActiveX “ULSyncResult class”[UltraLite ActiveX User’s Guide,page 138]

♦ UltraLite.NET See ianywhere.UltraLite.SyncResult.

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“stream_error synchronization parameter”[UltraLite C/C++ User’s Guide,
page 440].

♦ Static Java API This feature is not available in static Java.

♦ UltraLite for M-Business Anywhere See“Class SyncResult”[UltraLite
for M-Business Anywhere User’s Guide,page 120].

Stream Type synchronization parameter

Function Set the MobiLink network protocol to use for synchronization.

Most network protocols require protocol options to identify the MobiLink
synchronization server address and other behavior. These options are
supplied in thestream_parmsparameter.

☞ For more information, see“Stream Parameters synchronization
parameter” on page 334.

Default This parameter is required. It has no default value.

332

Chapter 12. UltraLite Synchronization Parameters

Usage When the network protocol requires an option, pass that option using the
Stream Parameters parameter; otherwise, set the Stream Parameters
parameter to null.

The following stream functions are available, but not all are available on all
target platforms:

Network protocol Description

ActiveSync ActiveSync synchronization (Windows CE only).

☞ For a list of protocol options, see“Ac-
tiveSync protocol options” on page 341.

HTTP Synchronize via HTTP.

The HTTP protocol uses TCP/IP as its underly-
ing transport. UltraLite applications act as Web
browsers and the MobiLink synchronization
server acts as a Web server. UltraLite applica-
tions send POST requests to send data to the
server and GET requests to read data from the
server.

☞ For a list of protocol options, see“HTTP
protocol options” on page 346.

HTTPS and HTTPS_-
FIPS

Synchronize via the HTTPS protocol.

The HTTPS protocol uses SSL or TLS as its
underlying protocol. It operates over Internet
protocols (HTTP and TCP/IP).

The HTTPS protocol requires the use of tech-
nology supplied by Certicom. Use of Certi-
com technology requires that you obtain the
separately-licensable SQL Anywhere Studio se-
curity option and is subject to export regulations.
For more information, see“Separately-licensable
components” [Introducing SQL Anywhere Stu-
dio, page 5].

☞ For a list of protocol options, see“HTTPS
protocol options” on page 347.

TCP/IP Synchronize via TCP/IP.

☞ For a list of protocol options, see“TCP/IP
protocol options” on page 345.

333

Network protocol Description

UlSecureSocketStream() TCP/IP or HTTP synchronization with transport-
layer security using elliptic curve encryption.
This stream is available for static Java applica-
tions only.

☞ For a list of protocol options, see“UlSe-
cureSocketStream synchronization parameters”
on page 350.

UlSecureRSASocket-
Stream()

TCP/IP or HTTP synchronization with transport-
layer security using RSA encryption. This stream
is available for static Java applications only.

☞ For a list of protocol options, see“UlSe-
cureSocketStream synchronization parameters”
on page 350.

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“Stream property”[UltraLite.NET User’s Guide,
page 270](iAnywhere.Data.UltraLite namespace) and“Stream property”
[UltraLite.NET User’s Guide,page 498](iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See“stream
synchronization parameter”[UltraLite C/C++ User’s Guide,page 438].

♦ Static Java API See“stream synchronization parameter”[UltraLite
Static Java User’s Guide,page 81].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Stream Parameters synchronization parameter

Function Sets options to configure the network protocol.

A semi-colon separated list of network protocol options. Each option is of
the formkeyword=value, where the allowed sets of keywords depends on
the network protocol.

For a list of available options for each protocol, see the following sections:

334

Chapter 12. UltraLite Synchronization Parameters

♦ “ActiveSync protocol options” on page 341

♦ “HotSync protocol options” on page 343

♦ “HTTP protocol options” on page 346

♦ “HTTPS protocol options” on page 347

♦ “TCP/IP protocol options” on page 345

♦ “UlSecureRSASocketStream synchronization parameters” on page 349

♦ “UlSecureSocketStream synchronization parameters” on page 350

Default The parameter is optional, is a string, and by default is null.

See also “Network protocol options for UltraLite synchronization clients” on
page 341.

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“StreamParms property”[UltraLite.NET User’s Guide,
page 271](iAnywhere.Data.UltraLite namespace) and“StreamParms
property” [UltraLite.NET User’s Guide,page 498](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“stream_parms synchronization parameter”[UltraLite C/C++ User’s Guide,
page 443].

♦ Static Java API See“stream_parms synchronization parameter”
[UltraLite Static Java User’s Guide,page 83].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Sync Result synchronization parameter

Function Reports the status of a synchronization.

Applies To This parameter applies only to the UltraLite components.

The C/C++ interfaces receive this information in separate parameters.

335

Communications error information is not available for UltraLite static Java
applications.

Default The parameter is set by the MobiLink synchronization server, and so is
read-only. It is set only if a communication error occurs during
synchronization.

Remarks Sync Result is a compound parameter containing a variety of information in
separate fields:

♦ Authentication Status Reports success or failure of authentication.
See“Authentication Status synchronization parameter” on page 317.

♦ Ignored Rows Reports the number of ignored rows. See“Ignored
Rows synchronization parameter” on page 320.

♦ Stream Error information The Stream Error information includes a
Stream Error Code, Stream Error Context, Stream Error ID, and Stream
Error System.

♦ Upload OK Reports the success or failure of the upload phase. See
“Upload OK synchronization parameter” on page 336.

Interfaces ♦ MobileVB “ULSyncResult class”[UltraLite for MobileVB User’s Guide,
page 145]

♦ ActiveX “ULSyncResult class”[UltraLite ActiveX User’s Guide,page 138]

♦ UltraLite.NET See“ULSyncResult class”[UltraLite.NET User’s Guide,
page 284](iAnywhere.Data.UltraLite namespace) and“SyncResult class”
[UltraLite.NET User’s Guide,page 542](iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL„ Static C++ API See“stream_error
synchronization parameter”[UltraLite C/C++ User’s Guide,page 440].

♦ Static Java API This feature is not available in static Java.

♦ UltraLite for M-Business Anywhere See“Class SyncResult”[UltraLite
for M-Business Anywhere User’s Guide,page 120].

Upload OK synchronization parameter

Function Reports the status of data uploaded to the MobiLink synchronization server.

Usage The MobiLink synchronization server sets this parameter, and so it is
read-only.

336

Chapter 12. UltraLite Synchronization Parameters

After synchronization, the parameter holdstrue if the upload was
successful, andfalseotherwise. You can check this parameter if there was a
synchronization error, to know whether data was successfully uploaded
before the error occurred.

Interfaces ♦ MobileVB “ULSyncResult class”[UltraLite for MobileVB User’s Guide,
page 145]

♦ ActiveX “ULSyncResult class”[UltraLite ActiveX User’s Guide,page 138]

♦ UltraLite.NET See“UploadOK property”[UltraLite.NET User’s Guide,
page 287](iAnywhere.Data.UltraLite namespace) and“UploadOK
property” [UltraLite.NET User’s Guide,page 545](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“upload_ok synchronization parameter”[UltraLite C/C++ User’s Guide,
page 444].

♦ Static Java API See“upload_ok synchronization parameter”[UltraLite
Static Java User’s Guide,page 84].

♦ UltraLite for M-Business Anywhere See“Class SyncResult”[UltraLite
for M-Business Anywhere User’s Guide,page 120].

Upload Only synchronization parameter

Function Indicates that there should be no downloads in the current synchronization,
which can save communication time, especially over slow communication
links. When set to true, the client waits for the upload acknowledgement
from the MobiLink synchronization server, after which it terminates the
synchronization session successfully.

Default The parameter is an optional Boolean value, and by default is false.

See also “Synchronizing high-priority changes” on page 282

“Download Only synchronization parameter” on page 320

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“UploadOnly property”[UltraLite.NET User’s Guide,
page 271](iAnywhere.Data.UltraLite namespace) and“UploadOnly

337

property” [UltraLite.NET User’s Guide,page 499](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“upload_only synchronization parameter”[UltraLite C/C++ User’s Guide,
page 445].

♦ Static Java API See“upload_only synchronization parameter”
[UltraLite Static Java User’s Guide,page 85].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

User Data synchronization parameter

Function Make application-specific information available to the synchronization
observer.

Usage When implementing the synchronization observer callback function or event
handler, you can make application-specific information available by
providing information using the User Data parameter.

Some components, such as UltraLite.NET, do not require a separate
parameter to handle user data and so have no User Data parameter.

See also “Observer synchronization parameter” on page 323

Interfaces ♦ MobileVB “ULConnection class”[UltraLite for MobileVB User’s Guide,
page 91]

♦ ActiveX “ULDatabaseManager class”[UltraLite ActiveX User’s Guide,
page 101]

♦ Native UltraLite for Java Seeianywhere.native_ultralite.Connection
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“user_data synchronization parameter”[UltraLite C/C++ User’s Guide,
page 446].

♦ Static Java API See“user_data synchronization parameter”[UltraLite
Static Java User’s Guide,page 86].

User Name synchronization parameter

Function A string specifying the user name that uniquely identifies the MobiLink
client to the MobiLink synchronization server. MobiLink uses this value to

338

Chapter 12. UltraLite Synchronization Parameters

determine the download content, to record the synchronization state, and to
recover from interruptions during synchronization.

Default The parameter has no default value, and must be explicitly set.

Usage The user name is required unless the MobiLink synchronization server is
being run with user authentication turned off. For more information, see
“-zu option” [MobiLink Administration Guide,page 222].

See also “Authenticating MobiLink Users” on page 9.

“MobiLink users” on page 7.

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

♦ UltraLite.NET See“UserName property”[UltraLite.NET User’s Guide,
page 272](iAnywhere.Data.UltraLite namespace) and“UserName
property” [UltraLite.NET User’s Guide,page 499](iAnywhere.UltraLite
namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See
“user_name synchronization parameter”[UltraLite C/C++ User’s Guide,
page 447].

♦ Static Java API See“user_name synchronization parameter”[UltraLite
Static Java User’s Guide,page 87].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

Version synchronization parameter

Function Each synchronization script in the consolidated database is marked with a
version string. For example, there may be two differentdownload_cursor
scripts, identified by different version strings. The version string allows an
UltraLite application to choose from a set of synchronization scripts.

Default This parameter is required and is a string.

See also “Script versions”[MobiLink Administration Guide,page 239].

Interfaces ♦ MobileVB “ULSyncParms class”[UltraLite for MobileVB User’s Guide,
page 141]

♦ ActiveX “ULSyncParms class”[UltraLite ActiveX User’s Guide,page 134]

339

♦ UltraLite.NET See“Version property”[UltraLite.NET User’s Guide,
page 272](iAnywhere.Data.UltraLite namespace) and“Version property”
[UltraLite.NET User’s Guide,page 500](iAnywhere.UltraLite namespace).

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ C++ Component, embedded SQL, and Static C++ API See“version
synchronization parameter”[UltraLite C/C++ User’s Guide,page 448].

♦ Static Java API See“version synchronization parameter”[UltraLite
Static Java User’s Guide,page 88].

♦ UltraLite for M-Business Anywhere See“Class SyncParms”[UltraLite
for M-Business Anywhere User’s Guide,page 112].

340

Chapter 12. UltraLite Synchronization Parameters

Network protocol options for UltraLite
synchronization clients

This section lists the options you can use with each network protocol. The
network protocol options provide information such as addressing
information (host and port) and protocol-specific information to ensure that
the client can locate and properly communicate with the MobiLink
synchronization server.

ActiveSync protocol options

The ActiveSync synchronization stream is accessible only from Native
UltraLite for Java, embedded SQL, and static C++ API applications running
on Windows CE.

To choose ActiveSync synchronization:

♦ In Native UltraLite for Java, supply StreamType.ACTIVE_SYNC as the
argument to the syncParms.setStream method. For example:

_conn.syncParms.setStream(StreamType.ACTIVE_SYNC);

☞ For more information, seeianywhere.native_ultralite.StreamType
andianywhere.native_ultralite.SyncParmsin the Native UltraLite for
Java API Reference.

♦ In embedded SQL and the static C++ API, supply
ULActiveSyncStream() as the network protocol. For example:

ul_synch_info info;
...
info.stream = ULActiveSyncStream();

☞ For more information, see“ULActiveSyncStream function”
[UltraLite C/C++ User’s Guide,page 363].

Meaning of protocol
options

The protocol options control the connection from the MobiLink ActiveSync
provider, running on the desktop machine, to the MobiLink synchronization
server.

The protocol options take the following form:

stream= stream_name ; provider_stream_parameters

wherestream_nameindicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

♦ tcpip

341

♦ http

♦ https

and whereprovider_stream_parametersis a set of protocol options for use
by the ActiveSync provider, and has the same form as the protocol options
for the protocol in use. For the given protocol, the
provider_stream_parametersadopts the same defaults as the protocol
options for the protocol. The default value for thestream_nameis tcpip.

For example, the following static C++ code uses an HTTP protocol:

ULInitSynchInfo(&info);
info.stream = ULActiveSyncStream();
info.stream_parms = "stream=http";
ULSynchronize(&sqlca, &info);

☞ For more information onprovider_stream_parameters, see“TCP/IP
protocol options” on page 345, “HTTP protocol options” on page 346, and
“HTTPS protocol options” on page 347.

Adding encryption to
ActiveSync
synchronization

To add Certicom encryption to the stream, the root certificates must be in a
file on the desktop machine. This is different from other UltraLite
applications, where the encryption information is embedded in thesecurity
synchronization parameter.

The protocol options need to be specified in much the same way as for
Adaptive Server Anywhere MobiLink clients . The format is:

security= cipher { keyword=value;. . . }

whereciphermust be certicom_tls and the keywords are taken from the
following list:

♦ certificate_company The organization field on the certificate.

♦ certificate_unit The organization unit field on the certificate.

♦ certificate_name The common name field on the certificate.

♦ trusted_certificates The location of the trusted certificates.

For example, a static C++ application may use a line such as the following:

info.stream_parms = "stream=tcpip;security=ecc_tls(trusted_
certificates=trusted.crt)";

☞ For more information, see:

♦ “certificate_company” on page 37
♦ “certificate_name” on page 38

342

Chapter 12. UltraLite Synchronization Parameters

♦ “certificate_unit” on page 40
♦ “trusted_certificates” on page 53

HotSync protocol options

The HotSync synchronization stream is accessible only from UltraLite for
MobileVB applications, embedded SQL applications, and static C++ API
applications running on the Palm Computing Platform. Unlike HTTP or
TCP/IP synchronization, HotSync synchronization is initiated externally by
the HotSync Manager, rather than by a synchronization function within the
UltraLite application.

To choose HotSync synchronization:

♦ In UltraLite for MobileVB, choose ulPalmConduit from the
ULStreamType enumeration as the ULSyncParms.Stream.

☞ For more information, see“ULSyncParms class”[UltraLite for
MobileVB User’s Guide,page 141].

♦ In embedded SQL or the static C++ API, supply the ul_synch_info
structure to the ULSetSynchInfo method of your application. The stream
parameter is ignored and may be set to UL_NULL.

☞ For more information, see“ULSetSynchInfo function”[UltraLite
C/C++ User’s Guide,page 386].

Meaning of protocol
options

For HotSync synchronization, the protocol options donot control the
connection from the device to the HotSync Manager or HotSync Server.
Instead, they specify the connection from the MobiLink conduit, running at
the HotSync manager or server, to the MobiLink synchronization server.

The argument has the following form:

stream=stream_name; conduit_stream_parameters

wherestream_nameindicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

♦ tcpip

♦ http

♦ https

and whereconduit_stream_parametersis a set of protocol options for use by
the conduit, and has the same form as thestream_parmsargument for the
protocol in use. For the given stream, theconduit_stream_parametersadopts

343

the same defaults as thestream_parmsargument for the protocol. The
default value for thestream_nameis tcpip.

For example, the following embedded SQL code uses an HTTP
synchronization stream:

ULInitSynchInfo(&info);
info.stream_parms = "stream=http";

☞ For more information onconduit_stream_parameters, see“TCP/IP
protocol options” on page 345, “HTTP protocol options” on page 346, and
“HTTPS protocol options” on page 347.

Null value and default
settings

If you use HotSync synchronization, and do not supply protocol options, the
conduit searches in the registry for the protocol name and protocol options.
If it finds no valid network protocol, the default protocol and protocol
options are used. This default stream parameter setting is:

stream=tcpip;host=localhost

Adding encryption to
HotSync synchronization

To add Certicom encryption to the stream, the root certificates must be in a
file on the desktop machine. This is different from other UltraLite
applications, where the encryption information is embedded in thesecurity
synchronization parameter.

The protocol options need to be specified in much the same way as for
Adaptive Server Anywhere MobiLink clients . The format is:

security= cipher { keyword=value;. . . }

whereciphermust be certicom_tls and the keywords are taken from the
following list:

♦ certificate_company The organization field on the certificate.

♦ certificate_unit The organization unit field on the certificate.

♦ certificate_name The common name field on the certificate.

♦ trusted_certificates The location of the trusted certificates.

For example, in a static C++ application:

info.stream_parms = "stream=tcpip;security=ecc_tls(trusted_
certificates=trusted.crt)";

☞ For more information, see:

♦ “certificate_company” on page 37
♦ “certificate_name” on page 38
♦ “certificate_unit” on page 40

344

Chapter 12. UltraLite Synchronization Parameters

♦ “trusted_certificates” on page 53

TCP/IP protocol options

The TCP/IP synchronization stream is accessible from all UltraLite
interfaces.

Selecting the TCP/IP
synchronization stream

To select TCP/IP as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite ActiveX, choose ulTCPIP from
the ULStreamType enumeration as the ULSyncParms.Stream.

☞ For more information, see“ULSyncParms class”[UltraLite for
MobileVB User’s Guide,page 141]and“ULSyncParms class”[UltraLite
ActiveX User’s Guide,page 134].

♦ In Native UltraLite for Java, supply StreamType.TCPIP as the argument
for SyncParms.setStream().

☞ For more information, seeianywhere.native_ultralite.StreamType
andianywhere.native_ultralite.SyncParmsin the Native UltraLite for
Java API Reference.

♦ In embedded SQL or the static C++ API, supply ULSocketStream() as
the stream synchronization parameter.

☞ For more information, see“ULSocketStream function”[UltraLite
C/C++ User’s Guide,page 387].

♦ In the static Java API, supply UlSocketStream as the argument for
UlSynchOptions.setStream(). For example:

UlSynchOptions opts = new UlSynchOptions;
opts.setStream(new UlSocketStream());

For more information, see“stream synchronization parameter”[UltraLite
Static Java User’s Guide,page 81].

Protocol options When you use the TCP/IP protocol, you can choose from the following
protocol options:

345

Parameter For more information, see...

client_port= nnnnn[-
mmmmm]

“client_port” on page 41

host=hostname “host” on page 42

liveness_timeout=n “liveness_timeout” on page 46

network_connect_-
timeout=seconds

“network_connect_timeout” on page 47

network_leave_-
open={ 0|1}

“network_leave_open” on page 47

network_-
name=name

“network_name” on page 48

port=portnumber “port” on page 49

HTTP protocol options

The HTTP synchronization stream is accessible from all UltraLite
components.

Selecting the HTTP
synchronization stream

To select HTTP as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite for ActiveX, choose ulHTTP
from the ULStreamType enumeration as the ULSyncParms.Stream.

☞ For more information, see“ULSyncParms class”[UltraLite for
MobileVB User’s Guide,page 141].

♦ In Native UltraLite for Java, supply StreamType.HTTP as the argument
for SyncParms.setStream().

☞ For more information, seeianywhere.native_ultralite.StreamType
andianywhere.native_ultralite.SyncParmsin the Native UltraLite for
Java API Reference.

♦ In embedded SQL or the static C++ API, supply ULHTTPStream() as the
stream synchronization parameter.

☞ For more information, see“ULHTTPStream function”[UltraLite
C/C++ User’s Guide,page 375].

Protocol options When you use the HTTP stream, you can choose from the following
protocol options:

346

Chapter 12. UltraLite Synchronization Parameters

Parameter For more information, see...

buffer_size=nnnn “buffer_size” on page 36

client_port= nnnnn[-
mmmmm]

“client_port” on page 41

custom_header=header “custom_header” on page 41

host=hostname “host” on page 42

network_connect_-
timeout=seconds

“network_connect_timeout” on page 47

network_leave_-
open={ 0|1}

“network_leave_open” on page 47

network_name=name “network_name” on page 48

persistent={ 0|1} “persistent” on page 48

port=portnumber “port” on page 49

proxy_host=proxy_-
hostname

“proxy_host” on page 50

proxy_port= proxy_-
portnumber

“proxy_port” on page 50

set_cookie=cookie_-
name=cookie_value

“set_cookie” on page 52

url_suffix=suffix “url_suffix” on page 55

version=versionnumber “version” on page 56

See also “Configuring MobiLink clients and servers for the Redirector”[MobiLink
Administration Guide,page 137]

HTTPS protocol options

The HTTPS synchronization stream is accessible from all UltraLite
components.

Selecting the HTTPS
synchronization stream

To select HTTPS as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite for eMbedded Visual Basic,
choose ulHTTPS from the ULStreamType enumeration as the
ULSyncParms.Stream.

347

☞ For more information, see“ULSyncParms class”[UltraLite for
MobileVB User’s Guide,page 141].

♦ In Native UltraLite for Java, supply StreamType.HTTPS as the argument
for SyncParms.setStream().

☞ For more information, seeianywhere.native_ultralite.StreamType
andianywhere.native_ultralite.SyncParmsin the Native UltraLite for
Java API Reference.

♦ In embedded SQL or the static C++ API, supply ULHTTPSStream() as
the stream synchronization parameter.

☞ For more information, see“ULHTTPSStream function”[UltraLite
C/C++ User’s Guide,page 374].

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Protocol options When you use the HTTPS stream, you can choose from the following
protocol options:

Parameter For more information, see...

buffer_size=nnnn “buffer_size” on page 36

certificate_-
company=company_name

“certificate_company” on page 37

certificate_name=name “certificate_name” on page 38

certificate_-
unit=company_unit

“certificate_unit” on page 40

client_port= nnnnn[-
mmmmm]

“client_port” on page 41

custom_header=header “custom_header” on page 41

host=hostname “host” on page 42

network_connect_-
timeout=seconds

“network_connect_timeout” on page 47

network_leave_-
open={ 0|1}

“network_leave_open” on page 47

348

Chapter 12. UltraLite Synchronization Parameters

Parameter For more information, see...

network_name=name “network_name” on page 48

persistent={ 0|1} “persistent” on page 48

port=portnumber “port” on page 49

proxy_host=proxy_-
hostname

“proxy_host” on page 50

proxy_port=proxy_-
portnumber

“proxy_port” on page 50

set_cookie=cookie_-
name=cookie_value

“set_cookie” on page 52

trusted_-
certificates=filename

“trusted_certificates” on page 53

url_suffix=suffix “url_suffix” on page 55

version=versionnumber “version” on page 56

See also ♦ “Configuring UltraLite clients to use transport-layer security”[MobiLink
Administration Guide,page 183]

♦ “Configuring MobiLink clients and servers for the Redirector”[MobiLink
Administration Guide,page 137]

UlSecureRSASocketStream synchronization parameters

Transport-layer security using Certicom RSA encryption is accessed from
static Java applications as a separate stream, accessed using the
UlSecureRSASocketStream object. This is different behavior from other
UltraLite applications, where a separate parameter is supplied to the
synchronization structure.

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Protocol options The parameters for the UlSecureSocketStream are supplied in a
semicolon-separated string. When you use UlSecureRSASocketStream, you
can choose from the following protocol options:

349

Parameter Description

certificate_company=company_-
name

“certificate_company” on page 37

certificate_name=name “certificate_name” on page 38

certificate_unit=company_unit “certificate_unit” on page 40

client_port= nnnnn[-mmmmm] “client_port” on page 41

host=hostname “host” on page 42

liveness_timeout=n “liveness_timeout” on page 46

port=portnumber “port” on page 49

UlSecureSocketStream synchronization parameters

Transport-layer security using Certicom elliptic-curve encryption is accessed
from static Java applications as a separate stream, accessed using the
UlSecureSocketStream object.

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

☞ For more information, see“stream synchronization parameter”[UltraLite
Static Java User’s Guide,page 81], and“Using transport-layer security”
[UltraLite Static Java User’s Guide,page 42].

Protocol options The parameters for the UlSecureSocketStream are supplied in a
semicolon-separated string. When you use UlSecureRSASocketStream, you
can choose from the following protocol options:

350

Chapter 12. UltraLite Synchronization Parameters

Parameter Description

certificate_company=company_-
name

“certificate_company” on page 37

certificate_name=name “certificate_name” on page 38

certificate_unit=company_unit “certificate_unit” on page 40

client_port= nnnnn[-mmmmm] “client_port” on page 41

host=hostname “host” on page 42

liveness_timeout=n “liveness_timeout” on page 46

port=portnumber “port” on page 49

351

352

Index

Symbols
#hook_dict table

about 181
dbmlsync 179

A
-a option

MobiLink [dbmlsync] 100
a_dbtools_info structure

initializing 269
a_sync_db structure

initializing 269
introduction 268

a_syncpub structure
introduction 268

about MobiLink users 10
ActiveSync

class name for dbmlsync 151
communications options 109
configuring in UltraLite 341
CREATE SYNCHRONIZATION USER

statement for MobiLink ASA clients 83
deploying MobiLink UltraLite applications 312
installing the MobiLink provider 28
installing the MobiLink provider for ASA clients

84
installing the MobiLink provider for UltraLite

clients 310
MobiLink ActiveSync provider [dbasinst] 28
MobiLink ASA clients 82
registering applications for ASA clients 85
registering applications for UltraLite clients 311
transport-layer security in UltraLite 342

ActiveSync options
MobiLink 109

ActiveSync protocol options
UltraLite MobiLink clients 341

ActiveSync provider installation utility [dbasinst]
syntax 28

ActiveX
MobiLink dbmlsync integration component 237

Adaptive Server Anywhere
as MobiLink clients 4

Adaptive Server Anywhere client synchronization
parameters

listed 95
Adaptive Server Anywhere clients

about MobiLink 59
dbmlsync 96
introduction 4
registering for ActiveSync 85

Adaptive Server Anywhere remote databases
about MobiLink 59

Adaptive Server Anywhere version 7 MobiLink
clients 90

add user wizard
using 17

adding
articles for MobiLink ASA clients 68
MobiLink users to an ASA client 71

adding MobiLink users to a remote database 71
adding synchronization to your UltraLite application

about 279
ADDRESS clause

CREATE SYNCHRONIZATION USER
(MobiLink) 164

adr dbmlsync extended option
about 106

allsync tables
UltraLite databases 283

ALTER PUBLICATION statement
SQL syntax (MobiLink) 154

ALTER SYNCHRONIZATION SUBSCRIPTION
statement

SQL syntax (MobiLink) 156
ALTER SYNCHRONIZATION USER statement

SQL syntax (MobiLink) 158
altering

ALTER PUBLICATION statement (MobiLink)
154

articles for MobiLink ASA clients 68
MobiLink publications for ASA clients 68
subscriptions for ASA clients 76

353

Index

altering existing publications
MobiLink ASA clients 68

altering MobiLink subscriptions
ASA clients 76

-ap option
MobiLink [dbmlsync] 100

article creation wizard
using in MobiLink 69

articles
adding for MobiLink ASA clients 68
altering for MobiLink ASA clients 68
creating for MobiLink ASA clients 64
MobiLink synchronization subscriptions 75
removing from MobiLink ASA clients 68
UltraLite databases 280
UltraLite restrictions 280

authenticate_user
about 21
using predefined scripts 22

authenticating MobiLink users
about 9

authentication
MobiLink 9

authentication parameters
UltraLite synchronization parameter 316

authentication process
MobiLink 14

authentication status
UltraLite synchronization parameter 317

authentication value
UltraLite synchronization parameter 318

auto-dial
MobiLink clients 48

autoincrement see alsoglobal autoincrement
automating scripts

synchronization in UltraLite 330

B
-ba option

MobiLink [dbmlsync] 100
backups

restoring remote databases 146
-bc option

MobiLink [dbmlsync] 101
-be option

MobiLink [dbmlsync] 101
BeginDownload event

dbmlsync integration component 249
BeginLogScan event

dbmlsync integration component 249
BeginSynchronization event

dbmlsync integration component 250
BeginUpload event

dbmlsync integration component 250
-bg option

MobiLink [dbmlsync] 102
buffer_size protocol option

MobiLink clients 36
buffer_size stream parameter

UltraLite synchronization using HTTP 346
UltraLite synchronization using HTTPS 347

C
-c option

MobiLink [dbmlsync] 102
cache size

dbmlsync upload stream 123
calling the synchronization function

UltraLite 289
cd dbmlsync extended option

about 112
Certicom

transport-layer security in UltraLite 328, 329
certificate fields

MobiLink TLS certificate_company option 37
MobiLink TLS certificate_name option 38
MobiLink TLS certificate_unit option 40

certificate_company protocol option
MobiLink clients 37

certificate_name protocol option
MobiLink clients 38

certificate_unit protocol option
MobiLink clients 40

changing passwords
MobiLink 20

checking that MobiLink HotSync conduit
installation is correct

UltraLite clients 300
checkpoint store

UltraLite synchronization parameter 318
checkpoint_store synchronization parameter

synchronization parameter in UltraLite 318
choosing a synchronization method

UltraLite 296

354

Index

choosing a user authentication mechanism
about 13

cipher
security protocol option for MobiLink clients 50

class names
ActiveSync 151

client database extraction utility [mlxtract]
syntax 31

client databases
MobiLink dbmlsync options 95
MobiLink UltraLite options 315

client event-hook procedures
MobiLink ASA clients 175

client_port protocol option
MobiLink clients 41

clients
ASA as MobiLink 4
ASA MobiLink clients 59
dbmlsync 96
UltraLite applications as MobiLink 5
UltraLite MobiLink clients 277

ColumnCount property
dbmlsync integration component 265

ColumnName
dbmlsync integration component 263

ColumnValue property
dbmlsync integration component 264

column-wise partitioning
MobiLink ASA clients 66

command line
starting dbmlsync 96

command line utilities
dbasinst command line syntax 28
MobiLink synchronization 27

COMMIT statement
event-hook procedures 179

commit_state column
about 7

communication protocols
multiple settings in MobiLink 165

CommunicationAddress dbmlsync extended option
about 106

communications
MobiLink clients 36
MobiLink dbmlsync adr option 106
MobiLink dbmlsync -c option 102
MobiLink dbmlsync ctp option 111

MobiLink UltraLite protocol options 341
specifying for MobiLink 6

CommunicationType dbmlsync extended option
about 111

components
MobiLink dbmlsync integration component 237

concurrency
MobiLink ASA clients 80

concurrency during synchronization
ASA clients 80

concurrent synchronization
Disable Concurrency synchronization parameter

in UltraLite 319
conduit

dbcond9.exe in UltraLite 298
deploying in UltraLite 302
deploying UltraLite applications 298
HotSync synchronization in UltraLite 304
installing for UltraLite synchronization 299
testing in UltraLite 300

conduit installation utility
UltraLite synchronization 299

configuring
ASA remote databases for ActiveSync 83
MobiLink user properties for ASA clients 72

configuring Adaptive Server Anywhere remote
databases for ActiveSync 83

configuring HTTP or HTTPS synchronization for
the Palm Computing platform

UltraLite clients 304
configuring MobiLink user properties

ASA clients 72
configuring RAS for serial port connection

UltraLite clients 306
configuring RAS for synchronization via modem

UltraLite clients 305
configuring Remote Access Service

UltraLite clients 305
configuring TCP/IP, HTTP, or HTTPS

synchronization
UltraLite clients 303

configuring the MobiLink HotSync conduit
UltraLite clients 301

ConflictRetries dbmlsync extended option
about 111

ConflictRetries synchronization option
ASA clients 80

355

Index

connecting
MobiLink clients 36
MobiLink dbmlsync adr option 106
MobiLink dbmlsync -c option 102
MobiLink dbmlsync ctp option 111
MobiLink UltraLite protocol options 341
MobiLink UltraLite Stream Type synchronization

parameter 332
connection options

dbmlsync 106
connection parameters

MobiLink clients 36
priority order for MobiLink ASA clients 73
UltraLite synchronization 341

connections
MobiLink clients 36
MobiLink dbmlsync adr option 106
MobiLink dbmlsync -c option 102
MobiLink dbmlsync ctp option 111
MobiLink UltraLite protocol options 341

connections for event-hook procedures
ASA clients 181

ConnectMobilink event
dbmlsync integration component 251

consistency see alsosynchronization
consolidated databases

MobiLink user names 10
ContinueDownload dbmlsync extended option

about 112
conventions

documentation x
cr dbmlsync extended option

about 111
CREATE PUBLICATION statement

SQL syntax (MobiLink) 160
CREATE SYNCHRONIZATION SUBSCRIPTION

statement
ActiveSync for MobiLink ASA clients 83
SQL syntax (MobiLink) 162

CREATE SYNCHRONIZATION USER statement
ActiveSync for MobiLink ASA clients 83
SQL syntax (MobiLink) 164

creating
articles for MobiLink ASA clients 64
ASA remote databases 60
CREATE PUBLICATION statement (MobiLink)

160

CREATE SYNCHRONIZATION
SUBSCRIPTION statement (MobiLink) 162

MobiLink client databases 31
MobiLink users 10
MobiLink users in ASA clients 71
publications for MobiLink ASA clients 64
publications with column-wise partitioning for

MobiLink ASA clients 66
publications with row-wise partitioning for

MobiLink ASA clients 67
publications with whole tables for MobiLink

ASA clients 64
UltraLite publications 281

creating a remote database
ASA clients 60

creating MobiLink users
about 10
about ASA clients 71

creating publications for UltraLite databases
MobiLink applications 281

ctp dbmlsync extended option
about 111

custom authentication
MobiLink clients 21

custom user authentication
MobiLink clients 21

custom_header protocol option
MobiLink clients 41

customizing
ASA client synchronization process 177

customizing synchronization
ASA clients 78

customizing the client synchronization process
ASA clients 177

D
-d option

MobiLink [dbasinst] 28
MobiLink [dbmlsync] 103

data consistency see alsosynchronization
database extraction utility

MobiLink 31
database tools interfacesee alsoDBTools interface

dbmlsync 267
setting up for dbmlsync 269

database tools interface for dbmlsync
about 267

356

Index

databases
MobiLink remote databases 3

dbasdesk.dll
installing 28

dbasdev.dll
installing 28

dbasinst utility
installing the MobiLink provider for ActiveSync

for ASA clients 84
installing the MobiLink provider for ActiveSync

for UltraLite clients 310
options 28
syntax 28

dbcond9 utility
deploying in UltraLite 299
HotSync conduit in UltraLite 299

dbhsync9.dll
HotSync conduit in UltraLite 298

dblgen9.dll
HotSync conduit deployment in UltraLite 298

dbmlhttp9.dll
deploying UltraLite applications 298

dbmlhttps9.dll
deploying UltraLite applications 298

dbmlsock9.dll
deploying UltraLite applications 298

dbmlsync extended options 105
dbmlsync integration component

about 237
events 249
IRowTransfer interface 262
methods 243
properties 244
setup 239
supported platforms 238

dbmlsync options
alphabetical list 100

dbmlsync utility
#hook_dict table 179
about 95
ActiveSync for MobiLink ASA clients 82
changing passwords 20
concurrency 80
customizing MobiLink synchronization 177
DBTools interface 267
dial-up 106
error handling event hooks 178

event hooks 175
extended options 105
initiating synchronization from an application 81
integration component 237
multiple users 78
options 96
passwords 19
permissions 78
progress offsets 62
sp_hook_dbmlsync_abort hook 183
sp_hook_dbmlsync_begin 185
sp_hook_dbmlsync_connect_failed 187
sp_hook_dbmlsync_delay 191
sp_hook_dbmlsync_download_begin 193
sp_hook_dbmlsync_download_com_error 195
sp_hook_dbmlsync_download_end 197
sp_hook_dbmlsync_download_fatal_sql_error

199
sp_hook_dbmlsync_download_log_ri_violation

201
sp_hook_dbmlsync_download_ri_violation 204
sp_hook_dbmlsync_download_sql_error 206
sp_hook_dbmlsync_download_table_begin 208
sp_hook_dbmlsync_download_table_end 210
sp_hook_dbmlsync_end 212
sp_hook_dbmlsync_log_rescan 215
sp_hook_dbmlsync_logscan_begin 217
sp_hook_dbmlsync_logscan_end 219
sp_hook_dbmlsync_process_return_code 221
sp_hook_dbmlsync_schema_upgrade 223
sp_hook_dbmlsync_set_extended_options 225
sp_hook_dbmlsync_upload_begin 227
sp_hook_dbmlsync_upload_end 229
sp_hook_dbmlsync_validate_download_file 233
syntax 96
transaction logs 79
using 78
using version 7 clients 90

dbmlsynccom.dll
dbmlsync integration component 238

dbmlsynccomg.dll
dbmlsync integration component 238

dbmltls9.dll
deploying UltraLite applications 298

dbmluser utility
using 19

dbs dbmlsync extended option

357

Index

about 114
dbser9.dll

deploying UltraLite applications 298
DBSynchronizeLog function

introduction 268
DBTools interface see alsodatabase tools interface

dbmlsync 267
setting up for dbmlsync 269

DBTools interface for dbmlsync
about 267

DBToolsFini function
using 274

dbtools.h
synchronizing ASA clients 81

DBToolsInit function
starting dbtools 269

-dc option
MobiLink [dbmlsync] 103

declaring default global autoincrement columns
UltraLite clients in MobiLink systems 291

deletes
stopping upload of for ASA clients 87

deleting
articles from MobiLink ASA clients 68
publications from MobiLink ASA clients 70
START SYNCHRONIZATION DELETE

statement (MobiLink) 170
STOP SYNCHRONIZATION DELETE

statement (MobiLink) 172
deploying

applications that use ActiveSync for UltraLite
clients 312

MobiLink ASA clients 60
MobiLink synchronization conduit for Palm 302
troubleshooting MobiLink deployment of ASA

clients 62
UltraLite Palm applications for MobiLink 302

deploying applications that use ActiveSync
UltraLite clients 312

deploying remote databases
MobiLink ASA clients 60

deploying the MobiLink HotSync conduit
UltraLite clients 302

deprecated features
MobiLink differences from version 7 90

designing sets of data to synchronize separately
UltraLite 280

DetailedInfoMessageEnabled property
dbmlsync integration component 246

detecting the number of available default values
UltraLite primary key uniqueness 295

determining the most recently assigned value
UltraLite primary key uniqueness 294

dial-up
dbmlsync connection 106
MobiLink client protocol options 36
UltraLite connection 341

dial-up networking
configuring UltraLite Palm clients for sync via

serial port 306
UltraLite synchronization 303

dir dbmlsync extended option
about 126

disable concurrency
UltraLite synchronization parameter 319

DisablePolling dbmlsync extended option
about 113

DisconnectMobilink event
dbmlsync integration component 251

DispatchChannelSize property
dbmlsync integration component 247

-dl option
MobiLink [dbmlsync] 104

dllapi.h
DBTools interface for dbmlsync 272

documentation
conventions x
SQL Anywhere Studio viii

DoneExecution event
dbmlsync integration component 252

download acknowledgements
send_download_ack synchronization parameter in

UltraLite 331
download continues

dbmlsync -dc option 103
download only

UltraLite synchronization parameter 320
download only synchronization

dbmlsync -ds option 104
download_only synchronization parameter in

UltraLite 320
download_only synchronization parameter

UltraLite 320
DownloadBufferSize dbmlsync extended option

358

Index

about 114
DownloadEventsEnabled property

dbmlsync integration component 244
downloading rows

resolving MobiLink RI violations 201
DownloadOnly dbmlsync extended option

about 115
download-only synchronization

ASA remote databases 115
getNewPassword method in UltraLite 322
UltraLite databases 283, 320

DownloadReadSize dbmlsync extended option
about 116

DownloadRow event
dbmlsync integration component 252

DROP PUBLICATION statement
about 70
SQL syntax (MobiLink) 167

DROP SYNCHRONIZATION SUBSCRIPTION
statement

about 76
SQL syntax (MobiLink) 168

DROP SYNCHRONIZATION USER statement
SQL syntax (MobiLink) 169

dropping
DROP PUBLICATION statement (MobiLink)167
DROP SYNCHRONIZATION SUBSCRIPTION

statement (MobiLink) 168
DROP SYNCHRONIZATION USER statement

(MobiLink) 169
MobiLink subscriptions from ASA clients 76
MobiLink users from ASA clients 74

dropping MobiLink subscriptions
ASA clients 76

dropping MobiLink users
ASA clients 74

dropping publications
MobiLink ASA clients 70

drs dbmlsync extended option
about 116

ds dbmlsync extended option
about 115

-ds option
MobiLink [dbmlsync] 104

E
-e adr

dbmlsync extended option 106
-e cd

dbmlsync extended option 112
-e CommunicationAddress

dbmlsync extended option 106
-e CommunicationType

dbmlsync extended option 111
-e ConflictRetries

dbmlsync extended option 111
-e ContinueDownload

dbmlsync extended option 112
-e cr

dbmlsync extended option 111
-e ctp

dbmlsync extended option 111
-e dbs

dbmlsync extended option 114
-e dir

dbmlsync extended option 126
-e DisablePolling

dbmlsync extended option 113
-e DownloadBufferSize

dbmlsync extended option 114
-e DownloadOnly

dbmlsync extended option 115
-e DownloadReadSize

dbmlsync extended option 116
-e drs

dbmlsync extended option 116
-e ds

dbmlsync extended option 115
-e eh

dbmlsync extended option 120
-e el

dbmlsync extended option 117
-e ErrorLogSendLimit

dbmlsync extended option 117
-e FireTriggers

dbmlsync extended option 118
-e ft

dbmlsync extended option 118
-e HoverRescanThreshold

dbmlsync extended option 119
-e hrt

dbmlsync extended option 119
-e IgnoreHookErrors

dbmlsync extended option 120

359

Index

-e IgnoreScheduling
dbmlsync extended option 120

-e inc
dbmlsync extended option 121

-e Increment
dbmlsync extended option 121

-e isc
dbmlsync extended option 120

-e LockTables
dbmlsync extended option 122

-e lt
dbmlsync extended option 122

-e mem
dbmlsync extended option 123

-e Memory
dbmlsync extended option 123

-e MirrorLogDirectory
dbmlsync extended option 124

-e mld
dbmlsync extended option 124

-e mn
dbmlsync extended option 125

-e MobiLinkPwd
dbmlsync extended option 124

-e mp
dbmlsync extended option 124

-e NewMobiLinkPwd
dbmlsync extended option 125

-e OfflineDirectory
dbmlsync extended option 126

-e option
MobiLink [dbmlsync] 105

-e p
dbmlsync extended option 113

-e PollingPeriod
dbmlsync extended option 126

-e pp
dbmlsync extended option 126

-e sa
dbmlsync extended option 131

-e sch
dbmlsync extended option 127

-e Schedule
dbmlsync extended option 127

-e scn
dbmlsync extended option 130

-e ScriptVersion

dbmlsync extended option 129
-e SendColumnNames

dbmlsync extended option 130
-e SendDownloadACK

dbmlsync extended option 131
-e SendTriggers

dbmlsync extended option 132
-e st

dbmlsync extended option 132
-e sv

dbmlsync extended option 129
-e TableOrder

dbmlsync extended option 132
-e tor

dbmlsync extended option 132
-e uo

dbmlsync extended option 133
-e UploadOnly

dbmlsync extended option 133
-e v

dbmlsync extended option 134
-e Verbose

dbmlsync extended option 134
-e VerboseHooks

dbmlsync extended option 135
-e VerboseMin

dbmlsync extended option 135
-e VerboseOptions

dbmlsync extended option 136
-e VerboseRowCounts

dbmlsync extended option 137
-e VerboseRowValues

dbmlsync extended option 138
-e VerboseUpload

dbmlsync extended option 138
-e vm

dbmlsync extended option 135
-e vn

dbmlsync extended option 137
-e vo

dbmlsync extended option 136
-e vr

dbmlsync extended option 138
-e vs

dbmlsync extended option 135
-e vu

dbmlsync extended option 138

360

Index

ECC
encryption cipher for MobiLink ASA clients 50

ecc_tls
encryption cipher for MobiLink ASA clients 50

eh dbmlsync extended option
about 120

-eh option
MobiLink [dbmlsync] 139

-ek option
MobiLink [dbmlsync] 139

el dbmlsync extended option
about 117

encryption
HotSync synchronization 301
security in UltraLite 279

EndDownload event
dbmlsync integration component 253

EndLogScan event
dbmlsync integration component 254

EndSynchronization event
dbmlsync integration component 254

EndUpload event
dbmlsync integration component 255

-ep option
MobiLink [dbmlsync] 140

ErrorLogSendLimit dbmlsync extended option
about 117

ErrorMessageEnabled property
dbmlsync integration component 245

-eu option
MobiLink [dbmlsync] 140

event arguments
ASA clients 181

event hook sequence
ASA clients 177

event hooks
#hook_dict table 181
about 175
commits not allowed 179
connections 181
customizing the ASA client synchronization

process 177
error handling 178
event arguments 181
fatal errors 181
ignoring errors 182
procedure owner 180

rollbacks not allowed 179
sp_hook_dbmlsync_abort 183
sp_hook_dbmlsync_begin 185
sp_hook_dbmlsync_connect_failed 187
sp_hook_dbmlsync_delay 191
sp_hook_dbmlsync_download_begin 193
sp_hook_dbmlsync_download_com_error 195
sp_hook_dbmlsync_download_fatal_SQL_error

199
sp_hook_dbmlsync_download_log_ri_violation

201
sp_hook_dbmlsync_download_ri_violation 204
sp_hook_dbmlsync_download_sql_error 206
sp_hook_dbmlsync_download_table_begin 208
sp_hook_dbmlsync_download_table_end 210
sp_hook_dbmlsync_end 212
sp_hook_dbmlsync_log_rescan 215
sp_hook_dbmlsync_logscan_begin 217
sp_hook_dbmlsync_logscan_end 219
sp_hook_dbmlsync_process_return_code 221
sp_hook_dbmlsync_set_extended_options 225
sp_hook_dbmlsync_upload_begin 223, 227
sp_hook_dbmlsync_upload_end 229
sp_hook_dbmlsync_validate_download_file 233
synchronization event hook sequence 177
synchronization event hooks 175
using 179

EventChannelSize property
dbmlsync integration component 247

event-hook procedure owner
ASA clients 180

event-hooks
sp_hook_dbmlsync_begin 193
sp_hook_dbmlsync_download_end 197

events
dbmlsync integration component 249

exit codes
dbmlsync [sp_hook_dbmlsync_abort] 183
dbmlsync

[sp_hook_dbmlsync_process_return_code] 221
ExitCode property

dbmlsync integration component 247
extended options

configuring at ASA clients 72
dbmlsync 105
priority order for ASA clients 73

extracting

361

Index

MobiLink client databases 31
extraction utility

MobiLink 31

F
feedback

documentation xiv
providing xiv

file-based downloads
dbmlsync -bc option 101
dbmlsync -be option 101
dbmlsync -bg option 102

FIPS
ActiveSync synchronization 109
encrypting MobiLink ASA client streams 50
HTTPS synchronization options for dbmlsync108

FireTriggers dbmlsync extended option
about 118

foreign key cycles
UltraLite 285

ft dbmlsync extended option
about 118

G
GetLastIdentity method

UltraLite synchronization 294
getNewPassword method

UltraLite 322
getPassword method

synchronization in UltraLite 324
getScriptVersion method

UltraLite 339
getStream method

UltraLite 332
getUploadOK method

UltraLite 336
getUploadOnly method

UltraLite 337
getUserName method

UltraLite 338
global autoincrement see alsoautoincrement

exhausted range in UltraLite 295
setting default in UltraLite 291
setting in UltraLite 292
using in UltraLite 291

global database identifier
setting in UltraLite 292

GLOBAL_DATABASE_ID option
setting in UltraLite 292

H
high-priority changes

synchronization in UltraLite 282
hooks

about dbmlsync event hooks 175
ignoring errors 120
sp_hook_dbmlsync_abort 183
sp_hook_dbmlsync_begin 185
sp_hook_dbmlsync_connect_failed 187
sp_hook_dbmlsync_delay 191
sp_hook_dbmlsync_download_begin 193
sp_hook_dbmlsync_download_com_error 195
sp_hook_dbmlsync_download_end 197
sp_hook_dbmlsync_download_fatal_sql_error

199
sp_hook_dbmlsync_download_log_ri_violation

201
sp_hook_dbmlsync_download_ri_violation 204
sp_hook_dbmlsync_download_sql_error 206
sp_hook_dbmlsync_download_table_begin 208
sp_hook_dbmlsync_download_table_end 210
sp_hook_dbmlsync_end 212
sp_hook_dbmlsync_log_rescan 215
sp_hook_dbmlsync_logscan_begin 217
sp_hook_dbmlsync_logscan_end 219
sp_hook_dbmlsync_process_return_code 221
sp_hook_dbmlsync_schema_upgrade 223
sp_hook_dbmlsync_set_extended_options 225
sp_hook_dbmlsync_upload_begin 227
sp_hook_dbmlsync_upload_end 229
sp_hook_dbmlsync_validate_download_file 233
synchronization event hook sequence 177
synchronization event hooks 175

host name
ULSynchronize arguments in UltraLite 334

host protocol option
MobiLink clients 42

HotSync conduit
configuring in UltraLite 301
testing in UltraLite 300

HotSync configuration overview
UltraLite clients 298

HotSync synchronization
architecture in UltraLite 297

362

Index

configuring 343
Palm Computing Platform in UltraLite 298
transport-layer security in UltraLite 344
UltraLite clients 296

hovering
dbmlsync 88

HoverRescanThreshold dbmlsync extended option
about 119

how default values are chosen
UltraLite primary key uniqueness 293

hrt dbmlsync extended option
about 119

HTTP
MobiLink ASA clients using 107
MobiLink UltraLite clients using 346
synchronization in UltraLite 346

HTTP stream parameter
UltraLite synchronization 346, 347

HTTP synchronization
options for dbmlsync 107
Palm Computing Platform and UltraLite 304

http_password protocol option
MobiLink clients 43

http_proxy_password protocol option
MobiLink clients 43

http_proxy_userid protocol option
MobiLink clients 44

http_userid protocol option
MobiLink clients 45

HTTPS
MobiLink ASA clients using 108
MobiLink UltraLite clients using 347

HTTPS synchronization
options for dbmlsync 108
Palm Computing Platform and UltraLite 304

HTTPS_FIPS
MobiLink ASA clients using 108

HTTPS_FIPS synchronization
options for dbmlsync 108

I
icons

used in manuals xii
ignored rows

synchronization in UltraLite 320
UltraLite synchronization parameter 320

ignored_rows synchronization parameter

synchronization in UltraLite 320
IgnoreHookErrors dbmlsync extended option

about 120
IgnoreScheduling dbmlsync extended option

about 120
ignoring errors in event-hook procedures

ASA clients 182
IMAP servers

MobiLink authentication 22
inc dbmlsync extended option

about 121
including non-synchronizing tables in UltraLite

databases 282
including read-only tables in an UltraLite database

MobiLink applications 283
Increment dbmlsync extended option

about 121
incremental uploads

MobiLink synchronization 121
InfoMessageEnabled property

dbmlsync integration component 245
initiating

MobiLink synchronization from UltraLite
applications 5

synchronization for ASA clients 78
initiating synchronization

ASA clients 78
initiating synchronization from an application

ASA clients 81
installing

MobiLink provider for ActiveSync for ASA
clients 84

MobiLink provider for ActiveSync for UltraLite
clients 310

installing the MobiLink provider for ActiveSync
ASA clients 84
UltraLite clients 310

integration component
dbmlsync 237

interfaces
DBTools for dbmlsync 267

introducing MobiLink clients 3
IRowTransferData

dbmlsync integration component 262
-is option

MobiLink [dbmlsync] 140
isc dbmlsync extended option

363

Index

about 120

J
Java

MobiLink user authentication 22

K
-k option

MobiLink [dbasinst] 28
MobiLink [dbmlsync] 140

keep partial download
UltraLite synchronization parameter 321

L
-l option

MobiLink [dbasinst] 28
MobiLink [dbmlsync] 141

LDAP servers
MobiLink authentication 22

library functions
ULSynchronize 5

liveness_timeout protocol option
MobiLink clients 46

locking
MobiLink ASA clients 80

LockTables dbmlsync extended option
about 122

LockTables synchronization option
ASA clients 80

log files
mirror log deletion for dbmlsync 124
UltraLite Palm synchronization 302

log offsets
MobiLink ASA clients 62

logging
dbmlsync -v option 150
MobiLink RI violations 201

logscan polling
about 113

lt dbmlsync extended option
about 122

M
maintaining primary key uniqueness

UltraLite clients in MobiLink systems 291
mem dbmlsync extended option

about 123
Memory dbmlsync extended option

about 123
Message event

dbmlsync integration component 256
mirror logs

deleting for dbmlsync 124
MirrorLogDirectory dbmlsync extended option

about 124
ml_user

about 10
installing an ASA client over an old one 62

ml_username
about 10

mld dbmlsync extended option
about 124

mlxtract utility
syntax 31

mn dbmlsync extended option
about 125

-mn option
MobiLink [dbmlsync] 141

MobiLink
ALTER PUBLICATION statement 154
ALTER SYNCHRONIZATION

SUBSCRIPTION statement 156
ALTER SYNCHRONIZATION USER statement

158
ASA clients 59
connection parameters for clients 36
CREATE PUBLICATION statement 160
CREATE SYNCHRONIZATION

SUBSCRIPTION statement 162
CREATE SYNCHRONIZATION USER

statement 164
dbmlsync event hooks 175
dbmlsync options 95
deprecated features from version 7 90
DROP PUBLICATION statement 167
DROP SYNCHRONIZATION SUBSCRIPTION

statement 168
hooks 175
logging RI violations 201
scheduling ASA clients 88
START SYNCHRONIZATION DELETE

statement 170
STOP SYNCHRONIZATION DELETE

364

Index

statement 172
UltraLite clients 277
users 9
utilities 27

MobiLink ActiveSync provider installation utility
[dbasinst]

syntax 28
MobiLink client database extraction utility

[mlxtract]
syntax 31

MobiLink performance
estimate number of upload rows 149

MobiLink security
changing passwords 20
choosing a user authentication mechanism 13
custom user authentication 21
new users 18
passwords 17
user authentication 9
user authentication architecture 14
user authentication passwords 19

MobiLink synchronization
ASA clients 59
scheduling ASA clients 88
UltraLite clients 277

MobiLink synchronization client
about 95
dbmlsync options 96

MobiLink synchronization server
HotSync in UltraLite 298

MobiLink synchronization subscriptions
ASA clients 75

MobiLink user creation wizard
using 71

MobiLink user names
about 10
naming conventions 10

MobiLink users
about 9
adding to an ASA client 71
ALTER SYNCHRONIZATION USER statement

(MobiLink) 158
configuring properties at ASA clients 72
CREATE SYNCHRONIZATION USER

statement (MobiLink) 164
creating 10
creating in ASA clients 71

DROP SYNCHRONIZATION USER statement
(MobiLink) 169

dropping from ASA clients 74
sharing a name 11
synchronization state 7

MobiLink utilities
MobiLink ActiveSync provider [dbasinst] 28
MobiLink client database extraction [mlxtract] 31

MobiLinkPwd dbmlsync extended option
about 124

modems
Palm Computing Platform in UltraLite 303

monitoring
logging MobiLink RI violations 201

monitoring synchronization
observer synchronization parameter in UltraLite

323
setObserver method in UltraLite 323

mp dbmlsync extended option
about 124

-mp option
MobiLink [dbmlsync] 141

MSGQ_SHUTDOWN_REQUESTED
DBTools interface for dbmlsync 272

MSGQ_SLEEP_THROUGH
DBTools interface for dbmlsync 272

MSGQ_SYNC_REQUESTED
DBTools interface for dbmlsync 272

multiple MobiLink synchronization users
ASA clients 78

N
-n option

MobiLink [dbasinst] 28
MobiLink [dbmlsync] 142

.NET
MobiLink user authentication 22

network options
dbmlsync 106

network parameters
MobiLink clients 36

network protocol options
dbmlsync 106
MobiLink clients 36
UltraLite synchronization 341

network protocols
about UltraLite 287

365

Index

dbmlsync using HTTP 107
dbmlsync using HTTPS 108
dbmlsync using HTTPS_FIPS 108
dbmlsync using TCP/IP 107
specifying for dbmlsync 111
specifying for MobiLink 6
Sync Result synchronization parameter in

UltraLite 335
UltraLite support 287
UltraLite synchronization using ActiveSync 333
UltraLite synchronization using HTTP 333
UltraLite synchronization using HTTPS 333
UltraLite synchronization using HTTPS_FIPS333
UltraLite synchronization using TCP/IP 333
UltraLite synchronization using

UlSecureRSASocketStream 333
UltraLite synchronization using

UlSecureSocketStream 333
network_connect_timeout protocol option

MobiLink clients 47
network_leave_open protocol option

MobiLink clients 47
network_name protocol option

MobiLink clients 48
new password

UltraLite synchronization parameter 322
new users

MobiLink user authentication 18
new_password synchronization parameter

UltraLite 322
NewMobiLinkPwd dbmlsync extended option

about 125
newsgroups

technical support xiv
nosync suffix

non-synchronizing tables in UltraLite 282
number of authentication parameters

UltraLite synchronization parameter 322

O
-o option

MobiLink [dbmlsync] 142
observer

UltraLite synchronization parameter 323
OfflineDirectory dbmlsync extended option

about 126
offsets

MobiLink ASA clients 62
OPTION clause

CREATE SYNCHRONIZATION USER 109
options

dbmlsync 96
dbmlsync extended options 105
extended options for dbmlsync 105
MobiLink ActiveSync provider [dbasinst] 28
MobiLink client [dbmlsync] 96
MobiLink extended option priority order 73

options for performance tuning
MobiLink ASA clients 78

-os option
MobiLink [dbmlsync] 142

-ot option
MobiLink [dbmlsync] 143

P
p dbmlsync extended option

about 113
-p option

MobiLink [dbmlsync] 143
Palm Computing Platform

HotSync synchronization in UltraLite 298
publication restrictions 280
synchronization using UltraLite 303
TCP/IP synchronization in UltraLite 303
UltraLite application development for MobiLink

296
partial download retained

UltraLite synchronization parameter 324
partitioning

column-wise for MobiLink ASA clients 66
data among MobiLink ASA clients 61
row-wise partitioning for MobiLink ASA clients

67
partitioning data between remote databases

MobiLink ASA clients 61
password

UltraLite synchronization parameter 324
passwords

changing for MobiLink 20
MobiLink user authentication 17, 19
synchronization in UltraLite 322, 324

path property
dbmlsync integration component 244

-pd option

366

Index

MobiLink [dbmlsync] 144
performance

download-only synchronization in UltraLite 320
MobiLink ASA clients 78
upload only synchronization in UltraLite 337

persistent protocol option
MobiLink clients 48

persistent stream parameter
UltraLite synchronization using HTTP 346
UltraLite synchronization using HTTPS 347

-pi option
MobiLink [dbmlsync] 144

ping
UltraLite synchronization parameter 325

pinging
MobiLink synchronization server 144

polling
dbmlsync logscan polling 113

PollingPeriod dbmlsync extended option
about 126

POP3 servers
MobiLink authentication 22

port number
ULSynchronize arguments in UltraLite 334

port protocol option
MobiLink clients 49

port stream parameter
UltraLite synchronization using HTTP 346
UltraLite synchronization using HTTPS 347

pp dbmlsync extended option
about 126

-pp option
MobiLink [dbmlsync] 145

preparing
remote databases for MobiLink 61

primary key pools
generating unique values using in UltraLite 291

priority order for extended options and connection
parameters

ASA clients 73
procedures

MobiLink dbmlsync event hooks 175
progress offsets

MobiLink ASA clients 62
ProgressIndex event

dbmlsync integration component 257
ProgressMessage event

dbmlsync integration component 258
prompting end users to enter passwords

MobiLink 19
properties

dbmlsync integration component 244
protocol options

dbmlsync 106
MobiLink clients 36
UltraLite MobiLink clients 341
UltraLite synchronization 341

protocols see alsonetwork protocols
dbmlsync using HTTP 107
dbmlsync using HTTPS 108
dbmlsync using HTTPS_FIPS 108
dbmlsync using TCP/IP 107
specifying for dbmlsync 111

providing initial passwords for users
MobiLink 17

proxy_host protocol option
MobiLink clients 50

proxy_hostname protocol option
MobiLink clients 50

proxy_port protocol option
MobiLink clients 50

proxy_portnumber protocol option
MobiLink clients 50

publication
UltraLite syncrhonization parameter 326

publication creation wizard
column-wise partitioning in MobiLink 66
creating MobiLink publications for ASA clients

64
creating publications in UltraLite 281
row-wise partitioning in MobiLink ASA clients67

publication masks
UltraLite 326

publications
about MobiLink ASA clients 64
about MobiLink UltraLite clients 280
ALTER PUBLICATION statement (MobiLink)

154
altering for MobiLink ASA clients 68
column-wise partitioning for MobiLink ASA

clients 66
CREATE PUBLICATION statement (MobiLink)

160
creating for MobiLink ASA clients 64

367

Index

DROP PUBLICATION statement (MobiLink)167
dropping from MobiLink ASA clients 70
MobiLink ASA client offsets 62
row-wise partitioning for MobiLink ASA clients

67
simple publications for MobiLink ASA clients 64
synchronization in UltraLite 326
UltraLite databases 280, 281
UltraLite publication synchronization parameter

326
UltraLite setSynchPublication method 326
using a WHERE clause in MobiLink 67

publishing
selected columns for MobiLink ASA clients 66
selected rows in MobiLink 67
tables for MobiLink ASA clients 64
whole table in UltraLite 281
whole tables for MobiLink ASA clients 64

publishing data
MobiLink ASA clients 64

publishing only some columns in a table
MobiLink ASA clients 66

publishing only some rows in a table
MobiLink ASA clients 67

publishing whole tables
MobiLink ASA clients 64

Q
-q option

MobiLink [dbmlsync] 146

R
-r option

MobiLink [dbmlsync] 146
-ra option

MobiLink [dbmlsync] 146
RAS

configuring UltraLite Palm clients 305
configuring UltraLite Palm clients for sync via

modem 305
configuring UltraLite Palm clients for sync via

serial port 306
UltraLite synchronization 303

-rb option
MobiLink [dbmlsync] 146

read-only tables
UltraLite databases 283

reconciling data seesynchronization
referential integrity

resolving MobiLink RI violations 201
registering

MobiLink ASA applications with ActiveSync 85
MobiLink UltraLite applications with ActiveSync

311
registering Adaptive Server Anywhere clients for

ActiveSync 85
registering applications for use with ActiveSync

MobiLink UltraLite clients 311
registering the MobiLink HotSync conduit to

HotSync Manager
UltraLite clients 299

registry
HotSync parameters in UltraLite 298

Remote Access Service
configuring UltraLite Palm clients 305
configuring UltraLite Palm clients for sync via

modem 305
configuring UltraLite Palm clients for sync via

serial port 306
UltraLite synchronization 303

remote databases
creating ASA clients 60
deploying ASA clients 60
MobiLink ASA clients 59
restoring from backup 146

remote DBA permissions
MobiLink synchronization of ASA clients 78

removing
articles from MobiLink ASA clients 68

restartable downloads
dbmlsync -dc option 103
keep partial download in UltraLite 321
partial download retained in UltraLite 324
resume partial download in UltraLite 327
sp_hook_dbmlsync_end 212

restoring
remote databases from backup 146

resume partial download
UltraLite synchronization parameter 327

return codes
dbmlsync [sp_hook_dbmlsync_abort] 183
dbmlsync

[sp_hook_dbmlsync_process_return_code] 221
ROLLBACK statement

368

Index

event-hook procedures 179
RowOperation property

dbmlsync integration component 262
row-wise partitioning

MobiLink ASA clients 67
RSA

encryption cipher for MobiLink ASA clients 50
rsa_tls

encryption cipher for MobiLink ASA clients 50
rsa_tls_fips

encryption cipher for MobiLink ASA clients 50
run method

dbmlsync integration component 243

S
sa dbmlsync extended option

about 131
-sc option

MobiLink [dbmlsync] 147
sch dbmlsync extended option

about 127
Schedule dbmlsync extended option

about 127
scheduling

ignore for dbmlsync 120
MobiLink ASA clients 88
MobiLink schedule option syntax 127

scheduling synchronization
ASA clients 88

scn dbmlsync extended option
about 130

script versions
getScriptVersion method in UltraLite 339
setScriptVersion method in UltraLite 339
version synchronization parameter in UltraLite

339
ScriptVersion dbmlsync extended option

about 129
security

Certicom in UltraLite 328, 329
changing MobiLink passwords 20
MobiLink custom user authentication 21
MobiLink synchronization of ASA clients 78
MobiLink user authentication 9
new MobiLink users 18
security_parms synchronization parameter in

UltraLite 329

send_column_names synchronization parameter
330

synchronization in UltraLite 279
UltraLite applications 329
UltraLite synchronization parameter 328
user authentication passwords 19

security parameters
UltraLite synchronization parameter 329

security protocol option
MobiLink clients 50

security_parms
synchronization parameters in UltraLite 329

security_parms synchronization parameter
UltraLite 329

selecting a network protocol
UltraLite 288

send column names
dbmlsync extended option 130
UltraLite synchronization parameter 330

send download acknowledgement
dbmlsync extended option 131
UltraLite synchronization parameter 331

send_column_names synchronization parameter
UltraLite 330

send_download_ack synchronization parameter
UltraLite 331

SendColumnNames dbmlsync extended option
about 130

SendDownloadACK dbmlsync extended option
about 131

SendTriggers dbmlsync extended option
about 132

sequences
synchronization event hooks 177

server stored procedures
MobiLink dbmlsync event hooks 175

set_cookie protocol option
MobiLink clients 52

setNewPassword method
UltraLite 322

setObserver method
UltraLite 323

setPassword method
UltraLite 324

setPing method
UltraLite 325

setScriptVersion method

369

Index

UltraLite 339
setStream method

UltraLite 332
setStreamParms method

UltraLite 334
setSynchPublication method

UltraLite 326
setting the global database identifier

UltraLite clients in MobiLink systems 292
setting up the DBTools interface for dbmlsync

about 269
SetTitle event

dbmlsync integration component 258
setUploadOnly method

UltraLite 337
setUserData method

UltraLite 338
setUserName method in UltraLite

UltraLite 338
sharing MobiLink user names

about 11
shutting down

dbmlsync automatically 140
sp_hook_dbmlsync_abort stored procedure

SQL syntax 183
sp_hook_dbmlsync_begin stored procedure

SQL syntax 185
sp_hook_dbmlsync_connect_failed stored procedure

SQL syntax 187
sp_hook_dbmlsync_delay stored procedure

SQL syntax 191
sp_hook_dbmlsync_download_begin stored

procedure
SQL syntax 193

sp_hook_dbmlsync_download_com_error stored
procedure

SQL syntax 195
sp_hook_dbmlsync_download_end stored procedure

SQL syntax 197
sp_hook_dbmlsync_download_fatal_SQL_error

stored procedure
SQL syntax 199

sp_hook_dbmlsync_download_log_ri_violation
stored procedure

SQL syntax 201
sp_hook_dbmlsync_download_ri_violation stored

procedure

SQL syntax 204
sp_hook_dbmlsync_download_sql_error stored

procedure
SQL syntax 206

sp_hook_dbmlsync_download_table_begin stored
procedure

SQL syntax 208
sp_hook_dbmlsync_download_table_end stored

procedure
SQL syntax 210

sp_hook_dbmlsync_end stored procedure
SQL syntax 212

sp_hook_dbmlsync_log_rescan stored procedure
SQL syntax 215

sp_hook_dbmlsync_logscan_begin stored procedure
SQL syntax 217

sp_hook_dbmlsync_logscan_end stored procedure
SQL syntax 219

sp_hook_dbmlsync_process_return_code stored
procedure

SQL syntax 221
sp_hook_dbmlsync_schema_upgrade stored

procedure
SQL syntax 223

sp_hook_dbmlsync_set_extended_options stored
procedure

SQL syntax 225
sp_hook_dbmlsync_upload_begin stored procedure

SQL syntax 227
sp_hook_dbmlsync_upload_end stored procedure

SQL syntax 229
sp_hook_dbmlsync_validate_download_file stored

procedure
SQL syntax 233

specifying the network protocol for clients
MobiLink 6

SQL Anywhere Studio
documentation viii

SQL statements
ALTER PUBLICATION syntax (MobiLink) 154
ALTER SYNCHRONIZATION

SUBSCRIPTION syntax (MobiLink) 156
ALTER SYNCHRONIZATION USER syntax

(MobiLink) 158
CREATE PUBLICATION syntax (MobiLink)160
CREATE SYNCHRONIZATION

SUBSCRIPTION syntax (MobiLink) 162

370

Index

CREATE SYNCHRONIZATION USER syntax
(MobiLink) 164

DROP PUBLICATION syntax (MobiLink) 167
DROP SYNCHRONIZATION SUBSCRIPTION

syntax (MobiLink) 168
DROP SYNCHRONIZATION USER syntax

(MobiLink) 169
START SYNCHRONIZATION DELETE syntax

(MobiLink) 170
STOP SYNCHRONIZATION DELETE syntax

(MobiLink) 172
st dbmlsync extended option

about 132
START SYNCHRONIZATION DELETE statement

SQL syntax (MobiLink) 170
starting

MobiLink synchronization from UltraLite
applications 5

state
MobiLink ASA clients 62

statements
ALTER PUBLICATION syntax (MobiLink) 154
ALTER SYNCHRONIZATION

SUBSCRIPTION syntax (MobiLink) 156
ALTER SYNCHRONIZATION USER syntax

(MobiLink) 158
CREATE PUBLICATION syntax (MobiLink)160
CREATE SYNCHRONIZATION

SUBSCRIPTION syntax (MobiLink) 162
CREATE SYNCHRONIZATION USER syntax

(MobiLink) 164
DROP PUBLICATION syntax (MobiLink) 167
DROP SYNCHRONIZATION SUBSCRIPTION

syntax (MobiLink) 168
DROP SYNCHRONIZATION USER syntax

(MobiLink) 169
START SYNCHRONIZATION DELETE syntax

(MobiLink) 170
STOP SYNCHRONIZATION DELETE syntax

(MobiLink) 172
stop method

dbmlsync integration component 243
STOP SYNCHRONIZATION DELETE statement

ASA clients 87
SQL syntax (MobiLink) 172

stopping
upload of deletes for ASA clients 87

stored procedures
MobiLink client procedures 175
MobiLink dbmlsync event hooks 175
sp_hook_dbmlsync_abort SQL syntax 183
sp_hook_dbmlsync_begin SQL syntax 185
sp_hook_dbmlsync_connect_failed SQL syntax

187
sp_hook_dbmlsync_delay SQL syntax 191
sp_hook_dbmlsync_download_begin SQL syntax

193
sp_hook_dbmlsync_download_com_error SQL

syntax 195
sp_hook_dbmlsync_download_end SQL syntax

197
sp_hook_dbmlsync_download_fatal_SQL_error

SQL syntax 199
sp_hook_dbmlsync_download_log_ri_violation

201
sp_hook_dbmlsync_download_ri_violation 204
sp_hook_dbmlsync_download_sql_error SQL

syntax 206
sp_hook_dbmlsync_download_table_begin SQL

syntax 208
sp_hook_dbmlsync_download_table_end SQL

syntax 210
sp_hook_dbmlsync_end SQL syntax 212
sp_hook_dbmlsync_log_rescan SQL syntax 215
sp_hook_dbmlsync_logscan_begin SQL syntax

217
sp_hook_dbmlsync_logscan_end SQL syntax 219
sp_hook_dbmlsync_process_return_code SQL

syntax 221
sp_hook_dbmlsync_schema_upgrade SQL syntax

223
sp_hook_dbmlsync_set_extended_options SQL

syntax 225
sp_hook_dbmlsync_upload_begin SQL syntax

227
sp_hook_dbmlsync_upload_end SQL syntax 229
sp_hook_dbmlsync_validate_download_file SQL

syntax 233
stream error

UltraLite synchronization parameter 332
stream parameters

MobiLink clients 36
UltraLite synchronization 341
UltraLite synchronization parameter 334

371

Index

stream type
UltraLite synchronization parameter 332

stream_error synchronization parameter
ul_stream_error structure 332
UltraLite 332

stream_parms synchronization parameter
configuring in UltraLite 343
UltraLite 334
UltraLite synchronization using HotSync297, 301

SUBSCRIBE BY clause
UltraLite restrictions 280

SUBSCRIBE BY clause (MobiLink)
CREATE PUBLICATION statement 160

subscribing MobiLink synchronization users
ASA clients 75

subscriptions
ALTER SYNCHRONIZATION

SUBSCRIPTION statement (MobiLink) 156
CREATE SYNCHRONIZATION

SUBSCRIPTION statement (MobiLink) 162
DROP SYNCHRONIZATION SUBSCRIPTION

statement (MobiLink) 168
MobiLink ASA clients 75

support
newsgroups xiv

supported network protocols
UltraLite 287

supported platforms
dbmlsync integration component 238
MobiLink synchronization of UltraLite clients287

sv dbmlsync extended option
about 129

switches
MobiLink ActiveSync provider [dbasinst] 28
MobiLink client [dbmlsync] 96

Sybase Central
creating publications in UltraLite 281

sync result
UltraLite synchronization parameter 335

synchronization
ActiveSync for MobiLink ASA clients 82
adding to an UltraLite application 279
ASA clients 59
canceling in UltraLite 323
changing passwords 20
Checkpoint Store synchronization parameter in

UltraLite 318

client-specific data in UltraLite 283
concurrency in UltraLite 319
connection parameters for clients 36
custom user authentication 21
customizing 175
download_only parameter in UltraLite 320
excluding tables in UltraLite 282
high-priority changes in UltraLite 282
HotSync Palm Computing Platform in UltraLite

298
ignored rows in UltraLite 320
initiating for ASA clients 78
introduction in UltraLite 278
MobiLink dbmlsync event hooks 175
MobiLink utilities 27
monitoring in UltraLite 323
Palm Computing Platform and UltraLite 303
protocols in UltraLite 279
publications in UltraLite 280
schedule option syntax for MobiLink 127
scheduling MobiLink ASA clients 88
stopping in UltraLite 323
transactions 179
UltraLite clients 277
upload only in UltraLite 337

synchronization conduit
HotSync in UltraLite 304

synchronization definitions
differences from version 7 90
rewriting version 7 94
writing 92

synchronization event hook sequence
ASA clients 177

synchronization parameters
Authentication Value in UltraLite 318
conflicting 316
Disable Concurrency in UltraLite 319
download_only in UltraLite 320
getNewPassword method in UltraLite 322
getPassword method in UltraLite 324
getScriptVersion method in UltraLite 339
getStream method in UltraLite 332
getUploadOK method in UltraLite 336
getUploadOnly method in UltraLite 337
getUserName method in UltraLite 338
keep partial download in UltraLite 321
new_password in UltraLite 322

372

Index

observer in UltraLite 323
partial download retained in UltraLite 324
password in UltraLite 324
ping 325
publication in UltraLite 326
required 316
resume partial download in UltraLite 327
security in UltraLite 328
security_parms in UltraLite 329
send_column_names in UltraLite 330
send_download_ack in UltraLite 331
setNewPassword method in UltraLite 322
setObserver method in UltraLite 323
setPassword method in UltraLite 324
setPing method in UltraLite 325
setScriptVersion method in UltraLite 339
setStream method in UltraLite 332
setStreamParms method in UltraLite 334
setSynchPublication method in UltraLite 326
setUploadOnly method in UltraLite 337
setUserData method in UltraLite 338
setUserName method in UltraLite 338
stream type in UltraLite 332
stream_error in UltraLite 332
stream_parms in UltraLite 334
Sync Result in UltraLite 335
UltraLite 316
upload_ok in UltraLite 336
upload_only in UltraLite 337
user_data in UltraLite 338
user_name in UltraLite 338
version in UltraLite 339

synchronization streams
getStream method 332
setStream method in UltraLite 332
setStreamParms method in UltraLite 334
setting in UltraLite 332
stream synchronization parameter in UltraLite332
stream_error synchronization parameter in

UltraLite 332
stream_parms synchronization parameter in

UltraLite 334
ULActiveSyncStream 333
UlHTTPSStream in UltraLite 333
ULHTTPStream in UltraLite 333
UlHTTPStream in UltraLite 333
UlSecureSocketStream in UltraLite 333

ULSocketStream in UltraLite 333
UlSocketStream in UltraLite 333

synchronization subscriptionssee alsosubscriptions
altering for ASA clients 76
ASA clients 75
dropping from ASA clients 76
options 73

synchronization users
about 9
adding to an ASA client 71
configuring properties at ASA clients 72
creating 10
creating in ASA clients 71
dropping from ASA clients 74
multiple ASA clients 78
sharing a name 11

synchronizations from new users
about 18

synchronizing see alsosynchronization
synchronizing high-priority changes

UltraLite MobiLink applications 282
synchronizing UltraLite applications

introduction 278
synchronizing UltraLite databases on the Palm

Computing Platform 296
synchronizing UltraLite databases on Windows CE

about 310
syntax

MobiLink ActiveSync provider [dbasinst] 28
MobiLink client [dbmlsync] 96
MobiLink client database extraction [mlxtract] 31
MobiLink dbmlsync event hooks 175
MobiLink synchronization utilities 27
SQL statements 153

SYSSERVERS system table
remote servers for Component Integration

Services 165
system procedures

MobiLink dbmlsync event hooks 175

T
TableName property

dbmlsync integration component 262
TableOrder dbmlsync extended option

about 132
tables

373

Index

column-wise partitioning for MobiLink ASA
clients 66

publishing for MobiLink ASA clients 64
publishing in UltraLite 281
row-wise partitioning for MobiLink ASA clients

67
TCP/IP

MobiLink ASA clients using 107
MobiLink UltraLite clients using 345

TCP/IP synchronization
options for dbmlsync 107
Palm Computing Platform in UltraLite 303
parameters in UltraLite 345

technical support
newsgroups xiv

temporarily stopping synchronization of deletes
ASA clients 87

temporary tables
synchronization using client-specific data in

UltraLite 283
testing and troubleshooting

MobiLink UltraLite clients 308
tor dbmlsync extended option

about 132
transaction log

dbmlsync location 79
transaction log files

dbmlsync location 79
transactional uploads seetransaction-level uploads
transaction-level uploads

dbmlsync -tu option 147
transport-layer security

ActiveSync synchronization in UltraLite 342
HotSync synchronization in UltraLite 344
UltraLite Java applications 349, 350

troubleshooting
conduit in UltraLite 300
dial-up networking for MobiLink UltraLite

clients 308
getUploadOK method in UltraLite 336
HotSync conduit in UltraLite 302
MobiLink deployment of ASA clients 62
ping synchronization parameter for UltraLite 325
RAS for MobiLink UltraLite clients 308
restoring the remote database from backup 146
setPing method in UltraLite 325
synchronization in UltraLite 332, 335

upload_ok synchronization parameter in UltraLite
336

trusted_certificates protocol option
MobiLink clients 53

-tu option
MobiLink [dbmlsync] 147

TYPE clause
CREATE SYNCHRONIZATION USER 164

U
-u option

MobiLink [dbasinst] 28
MobiLink [dbmlsync] 148

UL_DEBUG_CONDUIT environment variable
troubleshooting conduit in UltraLite 300

UL_DEBUG_CONDUIT_LOG environment
variable

troubleshooting HotSync conduit in UltraLite 302
ul_stream_error structure

UltraLite 332
UL_SYNC_ALL macro

publication mask in UltraLite 326
UL_SYNC_ALL_PUBS macro

publication mask in UltraLite 326
ULActiveSyncStream function

setting synchronization stream in UltraLite 333
ULConduitStream function

setting synchronization stream in UltraLite 333
ulecc9.dll

using with ULSecureCerticomTLSStream 328
ulecc.lib

using with ULSecureCerticomTLSStream 328
ULHTTPSStream function

setting synchronization stream in UltraLite 333
UlHTTPSStream object

Java synchronization stream in UltraLite 333
ULHTTPStream function

setting synchronization stream in UltraLite 333
UlHTTPStream object

Java synchronization stream in UltraLite 333
ulrsa9.dll

using with ULSecureRSATLSStream 328
ulrsa.lib

using with ULSecureRSATLSStream 328
ULSecureCerticomTLSStream function

about 328
security 329

374

Index

UlSecureRSASocketStream object
parameters in UltraLite 349

ULSecureRSATLSStream function
about 328
security in UltraLite 329

UlSecureSocketStream object
Java synchronization stream in UltraLite 333
parameters in UltraLite 350

ULSocketStream function
setting synchronization stream in UltraLite 333

UlSocketStream object
Java synchronization stream in UltraLite 333

ULSynchronize library function 5
UltraLite

introduction to synchronization 278
MobiLink clients 5

UltraLite applications
as MobiLink clients 5

UltraLite clients
about MobiLink 277
introduction 5

UltraLite network protocols
UltraLite clients 287

UltraLite synchronization parameters
about 315

UltraLite synchronization streams
UltraLite clients 287

understanding HotSync synchronization
UltraLite clients 296

unique values
using default global autoincrement in UltraLite

291
Universal Serial Bus

HotSync support for in UltraLite 296
uo dbmlsync extended option

about 133
-uo option

MobiLink [dbmlsync] 149
upgrading remote databases

MobiLink ASA clients 62
upload ok

UltraLite synchronization parameter 336
upload only

UltraLite synchronization parameter 337
upload only synchronization

dbmlsync -uo option 149
getUploadOnly method in UltraLite 337

setUploadOnly method in UltraLite 337
UltraLite databases 337
upload_only in UltraLite synchronization

parameter 337
upload stream

-uo option for upload-only synchronization 149
upload_ok synchronization parameter

UltraLite 336
upload_only synchronization parameter

UltraLite 337
UploadAck event

dbmlsync integration component 259
UploadEventsEnabled property

dbmlsync integration component 244
UploadOnly dbmlsync extended option

about 133
upload-only synchronization

ASA remote databases 133
UltraLite databases 282

UploadRow event
dbmlsync integration component 259

-urc option
MobiLink [dbmlsync] 149

url_suffix protocol option
MobiLink clients 55

USB
HotSync support for in UltraLite 296

UseNaturalTypes property
dbmlsync integration component 246

user authentication
Authentication Value synchronization parameter

in UltraLite 318
changing MobiLink passwords 20
choosing a mechanism in MobiLink 13
custom MobiLink 316
custom MobiLink in UltraLite 322
getPassword method in UltraLite 324
getUserName method in UltraLite 338
Java synchronization logic 22
MobiLink architecture 14
MobiLink custom mechanism 21
MobiLink passwords 17
MobiLink security 9
.NET synchronization logic 22
new MobiLink users 18
new_password synchronization parameter in

UltraLite 322

375

Index

password synchronization parameter in UltraLite
324

passwords 19
reporting in UltraLite synchronization 317
setNewPassword method in UltraLite 322
setPassword method in UltraLite 324
setUserName method in UltraLite 338
SQL synchronization logic 22
status in UltraLite synchronization 317
user_name synchronization in UltraLite

parameter 338
user authentication architecture

about 14
user data

UltraLite synchronization parameter 338
user name

UltraLite synchronization parameter 338
user names

MobiLink 10
user_data synchronization parameter

UltraLite 338
user_name synchronization parameter

UltraLite 338
users

about MobiLink 10
ALTER SYNCHRONIZATION USER statement

(MobiLink) 158
CREATE SYNCHRONIZATION USER

statement (MobiLink) 164
DROP SYNCHRONIZATION USER statement

(MobiLink) 169
using ActiveSync synchronization

MobiLink ASA clients 82
using client-specific data to control synchronization

UltraLite MobiLink applications 283
using event-hook procedures

ASA clients 179
utilities

MobiLink ActiveSync provider [dbasinst] 28
MobiLink client [dbmlsync] 96
MobiLink client database extraction [mlxtract] 31
MobiLink list of utilities 27

V
v dbmlsync extended option

about 134
-v option

MobiLink [dbasinst] 28
MobiLink [dbmlsync] 150

-v+ option
MobiLink [dbmlsync] 150

-vc option
MobiLink [dbmlsync] 150

Verbose dbmlsync extended option
about 134

VerboseHooks dbmlsync extended option
about 135

VerboseMin dbmlsync extended option
about 135

VerboseOptions dbmlsync extended option
about 136

VerboseRowCounts dbmlsync extended option
about 137

VerboseRowValues dbmlsync extended option
about 138

VerboseUpload dbmlsync extended option
about 138

verbosity
setting in MobiLink [dbmlsync] 150

verbosity option
MobiLink [dbmlsync] 150

verifying certificate fields
MobiLink TLS certificate_company option 37
MobiLink TLS certificate_name option 38
MobiLink TLS certificate_unit option 40

version
UltraLite synchronization parameter 339

version protocol option
MobiLink clients 56

version synchronization parameter
UltraLite 339

vm dbmlsync extended option
about 135

vn dbmlsync extended option
about 137

-vn option
MobiLink [dbmlsync] 150

vo dbmlsync extended option
about 136

-vo option
MobiLink [dbmlsync] 150

-vp option
MobiLink [dbmlsync] 150

vr dbmlsync extended option

376

Index

about 138
-vr option

MobiLink [dbmlsync] 150
vs dbmlsync extended option

about 135
-vs option

MobiLink [dbmlsync] 150
vu dbmlsync extended option

about 138
-vu option

MobiLink [dbmlsync] 150

W
WaitingForUploadAck event

dbmlsync integration component 260
WarningMessageEnabled property

dbmlsync integration component 245
-wc option

MobiLink [dbmlsync] 151
WHERE clause

MobiLink publications 67
whole tables

publishing in UltraLite 281
Windows CE

dbmlsync applications 144
MobiLink UltraLite clients 310

wizards
add user 17
creating articles in MobiLink 69
MobiLink user creation 71
publication creation in MobiLink 64

X
-x option

MobiLink [dbmlsync] 151

Z
-za option

dbmlsrv9 and UltraLite applications 330
-ze option

dbmlsrv9 and UltraLite applications 330

377

	MobiLink Clients
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Introduction to MobiLink Clients
	Introducing MobiLink Clients
	Adaptive Server Anywhere clients
	UltraLite clients
	Specifying the communications protocol for clients
	MobiLink users

	Authenticating MobiLink Users
	About MobiLink users
	Creating MobiLink users
	Sharing MobiLink user names

	Choosing a user authentication mechanism
	User authentication architecture
	The authentication process

	Providing initial passwords for users
	Synchronizations from new users
	Prompting end users to enter passwords
	Changing passwords
	Custom user authentication
	Java and .NET user authentication
	SQL user authentication
	Authenticating to external servers
	External authenticator properties

	Utilities
	ActiveSync provider installation utility
	MobiLink client database extraction utility (deprecated)

	MobiLink Client Network Protocol Options
	Protocol options
	buffer_size
	certificate_company
	certificate_name
	certificate_unit
	client_port
	custom_header
	host
	http_password
	http_proxy_password
	http_proxy_userid
	http_userid
	liveness_timeout
	network_connect_timeout
	network_leave_open
	network_name
	persistent
	port
	proxy_host
	proxy_port
	security
	set_cookie
	trusted_certificates
	url_suffix
	version

	Adaptive Server Anywhere Clients
	Adaptive Server Anywhere Clients
	Creating a remote database
	Deploying remote databases
	Partitioning data between remote databases
	Upgrading remote databases
	Progress offsets

	Publishing data
	Publishing whole tables
	Publishing only some columns in a table
	Publishing only some rows in a table
	Altering existing publications
	Dropping publications

	Creating MobiLink users
	Adding MobiLink users to a remote database
	Configuring MobiLink user properties
	Priority order for extended options and connection parameters
	Dbmlsync connection parameters

	Dropping MobiLink users

	Subscribing MobiLink synchronization users
	Altering MobiLink subscriptions
	Dropping MobiLink subscriptions

	Initiating synchronization
	Multiple MobiLink synchronization users
	Customizing synchronization
	Transaction log files
	Concurrency during synchronization
	Initiating synchronization from an application

	Using ActiveSync synchronization
	Configuring Adaptive Server Anywhere remote databases for ActiveSync
	Installing the MobiLink provider for ActiveSync
	Registering Adaptive Server Anywhere clients for ActiveSync

	Temporarily stopping synchronization of deletes
	Scheduling synchronization
	Adaptive Server Anywhere version 7 MobiLink clients

	Adaptive Server Anywhere Client Synchronization Parameters
	MobiLink synchronization client
	dbmlsync options
	@data option
	-a option
	-ap option
	-ba option
	-bc option
	-be option
	-bg option
	-c option
	-d option
	-dc option
	-dl option
	-ds option
	dbmlsync extended options
	CommunicationAddress (adr) extended option
	CommunicationType (ctp) extended option
	ConflictRetries (cr) extended option
	ContinueDownload (cd) extended option
	DisablePolling (p) extended option
	DownloadBufferSize (dbs) extended option
	DownloadOnly (ds) extended option
	DownloadReadSize (drs) extended option
	ErrorLogSendLimit (el) extended option
	FireTriggers (ft) extended option
	HoverRescanThreshold (hrt) extended option
	IgnoreHookErrors (eh) extended option
	IgnoreScheduling (isc) extended option
	Increment (inc) extended option
	LockTables (lt) extended option
	Memory (mem) extended option
	MirrorLogDirectory (mld) extended option
	MobiLinkPwd (mp) extended option
	NewMobiLinkPwd (mn) extended option
	OfflineDirectory (dir) extended option
	PollingPeriod (pp) extended option
	Schedule (sch) extended option
	ScriptVersion (sv) extended option
	SendColumnNames (scn) extended option
	SendDownloadACK (sa) extended option
	SendTriggers (st) extended option
	TableOrder (tor) extended option
	UploadOnly (uo) extended option
	Verbose (v) extended option
	VerboseHooks (vs) extended option
	VerboseMin (vm) extended option
	VerboseOptions (vo) extended option
	VerboseRowCounts (vn) extended option
	VerboseRowValues (vr) extended option
	VerboseUpload (vu) extended option

	-eh option
	-ek option
	-ep option
	-eu option
	-is option
	-k option
	-l option
	-mn option
	-mp option
	-n option
	-o option
	-os option
	-ot option
	-p option
	-pd option
	-pi option
	-pp option
	-q option
	-r option
	-sc option
	-tu option
	-u option
	-uo option
	-urc option
	-v option
	-wc option
	-x option

	MobiLink SQL Statements
	ALTER PUBLICATION statement
	ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	ALTER SYNCHRONIZATION USER statement [MobiLink]
	CREATE PUBLICATION statement
	CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	CREATE SYNCHRONIZATION USER statement [MobiLink]
	DROP PUBLICATION statement
	DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	DROP SYNCHRONIZATION USER statement [MobiLink]
	START SYNCHRONIZATION DELETE statement [MobiLink]
	STOP SYNCHRONIZATION DELETE statement [MobiLink]

	Dbmlsync Client Event Hooks
	Customizing the client synchronization process
	Synchronization event hook sequence
	Using event-hook procedures
	##hook_dict table
	Event-hook procedure owner
	Connections for event-hook procedures
	Event arguments
	Ignoring errors in event-hook procedures

	sp_hook_dbmlsync_abort
	sp_hook_dbmlsync_begin
	sp_hook_dbmlsync_connect_failed
	sp_hook_dbmlsync_delay
	sp_hook_dbmlsync_download_begin
	sp_hook_dbmlsync_download_com_error
	sp_hook_dbmlsync_download_end
	sp_hook_dbmlsync_download_fatal_sql_error
	sp_hook_dbmlsync_download_log_ri_violation
	sp_hook_dbmlsync_download_ri_violation
	sp_hook_dbmlsync_download_sql_error
	sp_hook_dbmlsync_download_table_begin
	sp_hook_dbmlsync_download_table_end
	sp_hook_dbmlsync_end
	sp_hook_dbmlsync_log_rescan
	sp_hook_dbmlsync_logscan_begin
	sp_hook_dbmlsync_logscan_end
	sp_hook_dbmlsync_process_return_code
	sp_hook_dbmlsync_schema_upgrade
	sp_hook_dbmlsync_set_extended_options
	sp_hook_dbmlsync_upload_begin
	sp_hook_dbmlsync_upload_end
	sp_hook_dbmlsync_validate_download_file

	Dbmlsync Integration Component
	Introduction
	Supported platforms

	Setting up the Dbmlsync Integration Component
	Dbmlsync Integration Component methods
	Run method
	Stop method

	Dbmlsync Integration Component properties
	Path property
	UploadEventsEnabled property
	DownloadEventsEnabled property
	ErrorMessageEnabled property
	WarningMessageEnabled property
	InfoMessageEnabled property
	DetailedInfoMessageEnabled property
	UseVB6Types property
	ExitCode property
	EventChannelSize property
	DispatchChannelSize property

	Dbmlsync Integration Component events
	BeginDownload event
	BeginLogScan event
	BeginSynchronization event
	BeginUpload event
	ConnectMobilink event
	DisconnectMobilink event
	DoneExecution event
	DownloadRow event
	EndDownload event
	EndLogScan event
	EndSynchronization event
	EndUpload event
	Message event
	ProgressIndex event
	ProgressMessage event
	SetTitle event
	UploadAck event
	UploadRow event
	WaitingForUploadAck event

	IRowTransferData interface
	RowOperation property
	TableName property
	ColumnName property
	ColumnValue property
	ColumnCount property

	DBTools Interface for dbmlsync
	Introduction
	Setting up the DBTools interface for dbmlsync

	UltraLite Clients
	UltraLite Clients
	Introduction
	Adding synchronization to your UltraLite application
	 Choosing data to synchronize
	Designing sets of data to synchronize separately
	Creating publications
	Synchronizing high-priority changes
	Including non-synchronizing tables in UltraLite databases
	Using client-specific data to control synchronization
	Including read-only tables in an UltraLite database

	Foreign key cycles
	UltraLite network protocols
	Supported network protocols
	Selecting a network protocol
	Calling the synchronization function

	Maintaining primary key uniqueness
	Declaring default global autoincrement columns
	Setting the global database identifier
	How default values are chosen
	Determining the most recently assigned value
	Detecting the number of available default values

	Synchronizing UltraLite databases on the Palm Computing Platform
	Choosing a synchronization method
	Understanding HotSync synchronization
	HotSync configuration overview
	Registering the MobiLink HotSync conduit to HotSync Manager
	Checking that MobiLink HotSync conduit installation is correct
	Configuring the MobiLink HotSync conduit
	Deploying the MobiLink HotSync conduit
	Configuring TCP/IP, HTTP, or HTTPS synchronization
	Configuring TCP/IP synchronization for the Palm Computing Platform
	Configuring HTTP or HTTPS synchronization for the Palm Computing platform

	Configuring Remote Access Service
	Configuring RAS for synchronization via modem
	Configuring RAS for serial port connection
	Testing and troubleshooting

	Synchronizing UltraLite databases on Windows CE
	Installing the MobiLink provider for ActiveSync
	Registering applications for use with ActiveSync
	Deploying applications that use ActiveSync

	UltraLite Synchronization Parameters
	Synchronization parameters
	Authentication Parameters synchronization parameter
	Authentication Status synchronization parameter
	Authentication Value synchronization parameter
	Checkpoint Store synchronization parameter
	Disable Concurrency synchronization parameter
	Download Only synchronization parameter
	Ignored Rows synchronization parameter
	Keep Partial Download synchronization parameter
	New Password synchronization parameter
	Number of Authentication Parameters parameter
	Observer synchronization parameter
	Partial Download Retained synchronization parameter
	Password synchronization parameter
	Ping synchronization parameter
	Publication synchronization parameter
	Resume Partial Download synchronization parameter
	Security synchronization parameter
	Security Parameters synchronization parameter
	Send Column Names synchronization parameter
	Send Download Acknowledgement synchronization parameter
	Stream Error synchronization parameter
	Stream Type synchronization parameter
	Stream Parameters synchronization parameter
	Sync Result synchronization parameter
	Upload OK synchronization parameter
	Upload Only synchronization parameter
	User Data synchronization parameter
	User Name synchronization parameter
	Version synchronization parameter

	Network protocol options for UltraLite synchronization clients
	ActiveSync protocol options
	HotSync protocol options
	TCP/IP protocol options
	HTTP protocol options
	HTTPS protocol options
	UlSecureRSASocketStream synchronization parameters
	UlSecureSocketStream synchronization parameters

	Index

