
MobiLink Administration
Guide

Part number: DC38132-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001
Certicom Corp. Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All
rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028;
4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual ix
SQL Anywhere Studio documentation x
Documentation conventions xiii
The CustDB sample database xv
Finding out more and providing feedback xvi

I Using MobiLink Technology 1

1 Introducing MobiLink Synchronization 3
The MobiLink synchronization process 4

2 Synchronization Basics 7
Parts of the synchronization system 8
Consolidated database . 10
The MobiLink synchronization server 11
MobiLink clients . 14
The synchronization process 15
Upload-only and download-only synchronization 24
Options for writing synchronization logic 25
Security . 29

3 MobiLink Consolidated Databases 31
Introduction . 32
Setting up a consolidated database 33
DBMS-dependent synchronization scripts 34
Adaptive Server Anywhere consolidated database 36
Sybase Adaptive Server Enterprise consolidated database . 37
Oracle consolidated database 39
IBM DB2 consolidated database 40
Microsoft SQL Server consolidated database 43

4 Synchronization Techniques 45
Introduction . 46
Development tips . 47
Timestamp-based synchronization 48
Snapshot synchronization . 50
Partitioning rows among remote databases 52
Maintaining unique primary keys 56

iii

Handling conflicts . 64
Data entry . 72
Handling deletes . 73
Handling failed downloads . 74
Downloading a result set from a stored procedure call 78
Schema changes in remote databases 81

5 File-Based Downloads 85
Introduction . 86
Setting up file-based downloads 87
Validation checks . 91
Examples . 95

6 MobiLink Performance 105
Performance tips . 106
Key factors influencing MobiLink performance 110
Monitoring MobiLink performance 115

7 MobiLink Monitor 117
Introduction . 118
Starting the MobiLink Monitor 119
Using the MobiLink Monitor 121
Saving Monitor data . 126
Customizing your statistics 128
MobiLink statistical properties 130

8 Synchronizing Through a Web Server With the Redirector 133
Introduction . 134
Setting up the Redirector . 136
Configuring MobiLink clients and servers for the Redirector . 137
Configuring Redirector properties (all versions) 139
NSAPI Redirector for Netscape/Sun web servers 141
ISAPI Redirector for Microsoft web servers 144
Servlet Redirector . 146
Apache Redirector . 150
M-Business Anywhere Redirector 153

9 Running MobiLink Outside the Current Session 157
Running the UNIX MobiLink server as a daemon 158
Running the Windows MobiLink server as a service 159
Troubleshooting MobiLink server startup 164

10 MobiLink Transport-Layer Security 165
Introduction . 166

iv

Setting up transport-layer security 168
Creating digital certificates 169
Starting the MobiLink synchronization server with transport-

layer security . 177
Configuring MobiLink clients to use transport-layer security . 179

11 MobiLink Synchronization Server Options 189
MobiLink synchronization server 190

II MobiLink Scripting Logic 225

12 Writing Synchronization Scripts 227
Introduction to synchronization scripts 228
Scripts and the synchronization process 234
Script types . 236
Script parameters . 238
Script versions . 239
Adding and deleting scripts in your consolidated database . . 241
Writing scripts to upload rows 244
Writing scripts to download rows 246
Writing scripts to handle errors 252
Testing script syntax . 254

13 Writing Synchronization Scripts in Java 255
Introduction . 256
Setting up Java synchronization logic 257
Writing Java synchronization logic 259
Java synchronization example 267
MobiLink Java API Reference 273

14 Writing Synchronization Scripts in .NET 281
Introduction . 282
Setting up .NET synchronization logic 283
Writing .NET synchronization logic 286
.NET synchronization techniques 295
Loading Shared Assemblies 297
.NET synchronization example 300
MobiLink .NET API Reference 303

15 Synchronization Events 319
Overview of MobiLink events 322
authenticate_parameters connection event 334
authenticate_user connection event 336

v

authenticate_user_hashed connection event 340
begin_connection connection event 343
begin_connection_autocommit connection event 345
begin_download connection event 346
begin_download table event 348
begin_download_deletes table event 351
begin_download_rows table event 353
begin_publication connection event 356
begin_synchronization connection event 359
begin_synchronization table event 361
begin_upload connection event 363
begin_upload table event . 365
begin_upload_deletes table event 367
begin_upload_rows table event 369
download_cursor table event 371
download_delete_cursor table event 375
download_statistics connection event 378
download_statistics table event 381
end_connection connection event 384
end_download connection event 386
end_download table event . 388
end_download_deletes table event 390
end_download_rows table event 393
end_publication connection event 395
end_synchronization connection event 398
end_synchronization table event 400
end_upload connection event 402
end_upload table event . 404
end_upload_deletes table event 407
end_upload_rows table event 409
example_upload_cursor table event 411
example_upload_delete table event 412
example_upload_insert table event 413
example_upload_update table event 414
handle_error connection event 415
handle_odbc_error connection event 419
modify_error_message connection event 422
modify_last_download_timestamp connection event 424
modify_next_last_download_timestamp connection event . . 427
modify_user connection event 429
new_row_cursor table event (deprecated) 431
old_row_cursor table event (deprecated) 434
prepare_for_download connection event 436

vi

report_error connection event 438
report_odbc_error connection event 440
resolve_conflict table event 442
synchronization_statistics connection event 445
synchronization_statistics table event 448
time_statistics connection event 450
time_statistics table event . 453
upload_cursor table event (deprecated) 456
upload_delete table event . 459
upload_fetch table event . 461
upload_insert table event . 463
upload_new_row_insert table event 465
upload_old_row_insert table event 467
upload_statistics connection event 469
upload_statistics table event 472
upload_update table event . 475

III MobiLink Reference 477

16 Stored Procedures 479
Stored procedures to add or delete scripts 480
Stored procedures to add or delete properties 486

17 Utilities 489
MobiLink stop utility . 490
MobiLink user authentication utility 492
Certificate reader utility . 495
Certificate generation utility 496

18 MobiLink System Tables 501
Introduction . 503
ml_connection_script . 504
ml_device . 505
ml_device_address . 507
ml_listening . 509
ml_property . 511
ml_qa_delivery . 512
ml_qa_delivery_client . 513
ml_qa_global_props . 514
ml_qa_global_props_client 515
ml_qa_notifications . 516
ml_qa_repository . 517
ml_qa_repository_client . 518

vii

ml_qa_repository_content_client 519
ml_qa_repository_props . 520
ml_qa_repository_props_client 521
ml_qa_repository_staging . 522
ml_qa_status_staging . 524
ml_script . 525
ml_script_version . 526
ml_scripts_modified . 527
ml_subscription . 528
ml_table . 529
ml_table_script . 530
ml_user . 531

19 DataType Conversions 533
Adaptive Server Enterprise data mapping 534
IBM DB2 data mapping . 536
Oracle data mapping . 538
Microsoft SQL Server data mapping 540

20 Character Set Considerations 543
Character set considerations 544

21 iAnywhere Solutions ODBC Drivers 547
ODBC drivers supported by MobiLink 548

22 Deploying MobiLink Applications 549
Deployment overview . 550
Deploying the MobiLink server 551
Deploying Adaptive Server Anywhere MobiLink clients 557
Deploying UltraLite MobiLink clients 560
Deploying QAnywhere applications 561

Index 563

viii

About This Manual

Subject This manual describes MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication
and is well suited to mobile computing environments.

Audience This manual is for users of Adaptive Server Anywhere and other relational
database systems who wish to add synchronization or replication to their
information systems.

Before you begin ☞ For a comparison of MobiLink with other synchronization and
replication technologies, see“ Introducing Replication Technologies”
[Introducing SQL Anywhere Studio,page 21].

ix

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere SNMP Extension Agent User’s Guide
This book describes how to configure the Adaptive Server Anywhere
SNMP Extension Agent for use with SNMP management applications to
manage Adaptive Server Anywhere databases.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

x

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Server-Initiated Synchronization User’s Guide This book
describes MobiLink server-initiated synchronization, a feature of
MobiLink that allows you to initiate synchronization from the
consolidated database.

♦ MobiLink Tutorials This book provides several tutorials that walk you
through how to set up and run MobiLink applications.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

xi

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store, at
http://eshop.sybase.com/eshop/documentation.

xii

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xiii

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xiv

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following diagram shows the tables in the CustDB database and how
they are related to each other.

ULOrderIDPool

pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULCustomer

cust_id integer
cust_name varchar(30)
last_modified timestamp

ULProduct

prod_id integer
price integer
prod_name varchar(30)

ULOrder

order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee

emp_id integer
emp_name varchar(30)
last_download timestamp

ULEmpCust

emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULCustomerIDPool

pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULIdentifyEmployee

emp_id integercust_id = cust_id

emp_id = emp_id

emp_id = emp_id

emp_id = pool_emp_id

prod_id = prod_id

cust_id = cust_id

emp_id = pool_emp_id

xv

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

xvi

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xvii

xviii

PART I

USING MOBIL INK

TECHNOLOGY

This part introduces MobiLink synchronization technology and describes
how to use it to replicate data between two or more databases.

CHAPTER 1

Introducing MobiLink Synchronization

About this chapter This chapter introduces you to MobiLink synchronization technology. It
describes the purpose and characteristics of MobiLink.

☞ For information about MobiLink clients, see“Introducing MobiLink
Clients” [MobiLink Clients,page 3].

☞ For a more detailed introduction to MobiLink technology, see
“Synchronization Basics” on page 7.

Contents Topic: page

The MobiLink synchronization process 4

3

The MobiLink synchronization process
MobiLink is a session-based synchronization system that allows two-way
synchronization between a main database, called the consolidated database,
and many remote databases. The consolidated database, which can be one of
several ODBC-compliant databases, holds the master copy of all the data.
Remote databases can be either Adaptive Server Anywhere or UltraLite
databases.

Synchronization typically begins when a MobiLink remote site opens a
connection to a MobiLink synchronization server. During synchronization,
the MobiLink client at the remote site uploads database changes that were
made to the remote database since the previous synchronization. On
receiving this data, the MobiLink synchronization server updates the
consolidated database, and then downloads changes on the consolidated
database to the remote database.

MobiLink features

MobiLink synchronization is adaptable and flexible. Following are some of
its key features:

♦ Data coordination MobiLink allows you to choose selected portions of
the data for synchronization. MobiLink synchronization also allows you
to resolve conflicts between changes made in different databases. The
synchronization process is controlled by synchronization logic, which
can be written as a SQL, Java, or .NET application. Each piece of logic is
called ascript. With scripts, for example, you can specify how uploaded
data is applied to the consolidated, specify what gets downloaded, and
handle different schema and names between the consolidated and remote
databases.

♦ Automation MobiLink has a number of automated capabilities. The
MobiLink synchronization server can be instructed to generate scripts
suitable for snapshot synchronization, or instructed to generate example
synchronization scripts. It can also automatically add users for
authentication. Server-initiated synchronization allows you to push data
updates to remote databases.

♦ Monitoring and reporting MobiLink provides two mechanisms for
monitoring your synchronizations: the MobiLink Monitor, and statistical
scripts. You can monitor scripts, schema contents, row-count values,
script names, translated script contents, and row values.

♦ Performance tuning There are a number of mechanisms for tuning
MobiLink performance. For example, you can adjust the degree of

4

Chapter 1. Introducing MobiLink Synchronization

contention, upload cache size, number of database connections, number
of worker threads, logging verbosity, or BLOB cache size.

♦ Two-way synchronization Changes to a database can be made at any
location.

♦ Upload-only or download-only synchronization You can choose to
perform only an upload or only a download.

♦ File-based download Downloads can be distributed as files, enabling
offline distribution of synchronization changes. This allows you to create
a file once and distribute it widely.

♦ Server-initiated synchronization You can initiate MobiLink
synchronization from the consolidated database. This means you can
push data updates to remote databases, as well as cause remote databases
to upload data to the consolidated database.

♦ Choice of communication streams Synchronization can be carried out
over TCP/IP, HTTP, or HTTPS. Palm devices can synchronize through
HotSync. Windows CE devices can synchronize using ActiveSync.

♦ Remote-initiated Synchronization between a remote database and a
consolidated database can be initiated at the remote database.

♦ Session-based All changes can be uploaded in a single transaction and
downloaded in a single transaction. At the end of each successful
synchronization, the consolidated and remote databases are consistent.

♦ Transactional integrity Either a whole transaction is synchronized, or
none of it is synchronized. This ensures transactional integrity for each
database.

♦ Data consistency MobiLink operates using aloose consistencypolicy.
All changes are synchronized with each site over time in a consistent
manner, but different sites may have different copies of data at any
instant.

♦ Wide variety of hardware and software platforms A variety of
widely-used database management systems can be used as a MobiLink
consolidated database: Adaptive Server Anywhere, Adaptive Server
Enterprise, Oracle, Microsoft SQL Server, or IBM DB2. Remote
databases can be Adaptive Server Anywhere or UltraLite databases. The
MobiLink synchronization server runs on Windows or UNIX platforms.
Adaptive Server Anywhere runs on Windows, Windows CE, or UNIX
machines. UltraLite runs on Palm, Windows CE, or Java-based devices.

5

♦ Flexibility The MobiLink synchronization server uses SQL, Java, or
.NET scripts to control the upload and download of data. The scripts are
executed according to an event model during each synchronization.
Event-based scripting provides great flexibility in the design of the
synchronization process, including such features as conflict resolution,
error reporting, and user authentication.

♦ Scalability and performance MobiLink synchronization is scalable: a
single server can handle thousands of simultaneous synchronizations, and
multiple MobiLink servers can be run simultaneously using load
balancing. The MobiLink synchronization server is multi-threaded and
uses connection pooling with the consolidated database. MobiLink
provides extensive monitoring and reporting facilities.

♦ Easy to get started Simple MobiLink installations can be constructed
quickly. More complex refinements can be added incrementally for
full-scale production work.

6

CHAPTER 2

Synchronization Basics

About this chapter This chapter introduces the basic components of MobiLink technology and
provides information about how to set up your synchronization system.

Contents Topic: page

Parts of the synchronization system 8

Consolidated database 10

The MobiLink synchronization server 11

MobiLink clients 14

The synchronization process 15

Upload-only and download-only synchronization 24

Options for writing synchronization logic 25

Security 29

7

Parts of the synchronization system
The following diagram shows the major parts of the synchronization system.

MobiLink

synchronization server

Consolidated
database

network

Consolidated
database server Adaptive Server

Anywhere or UltraLite

MobiLink clients

ODBC

♦ consolidated database This database contains the central copy of all
information in the synchronization system.

☞ For more information, see“Consolidated database” on page 10.

♦ consolidated database server The server, or DBMS, that manages the
consolidated database. This server can be a Sybase product, such as
Adaptive Server Anywhere or Adaptive Server Enterprise, or it may be a
supported system made by another company.

☞ For more information, see“MobiLink Consolidated Databases” on
page 31.

♦ ODBC connection All communication between the MobiLink
synchronization server and the consolidated database occurs through an
ODBC connection. ODBC allows the synchronization server to utilize a
variety of consolidated database systems.

☞ For more information, see“iAnywhere Solutions ODBC Drivers” on
page 547.

♦ MobiLink synchronization server This server manages the
synchronization process and provides the interface between all MobiLink
clients and the consolidated database server.

☞ For more information, see“The MobiLink synchronization server”
on page 11.

8

Chapter 2. Synchronization Basics

♦ Network The connection between the MobiLink synchronization server,
dbmlsrv9, and the MobiLink client, dbmlsync or UltraLite, can use a
number of protocols.

☞ For more information about connecting to dbmlsync, see“-x option”
[MobiLink Clients,page 151]. For information about connecting to
UltraLite, see“Network protocol options for UltraLite synchronization
clients” [MobiLink Clients,page 341].

♦ MobiLink client The client can be installed on a handheld device such
as a Palm Pilot or PocketPC, a server or desktop computer, or an
embedded device such as a cell phone or vending machine. Two types of
clients are supported: UltraLite and Adaptive Server Anywhere
databases. Either or both may be used in a single MobiLink installation.

☞ For more information, see“MobiLink clients” on page 14.

9

Consolidated database
Applications synchronize with a central, consolidated database. This
database is the master repository of information in the synchronization
system.

There are many ways to structure the relations between consolidated and
remote databases. Following are two examples.

The schema of the remote databases can be a subset of the schema of the
consolidated database. For example, a table called emp might be repeated
among a number of different remote sites, and the consolidated database
might use column data from emp.salary in a table called expense. In this
instance, the schemas of the consolidated and remote databases are different,
though data is shared.

The schema of the remote database can also be parallel in structure to the
schema of the consolidated database. Here, the schema of the consolidated
database is a reference for the remote database. In the consolidated database,
you may already have tables that correspond to each of the remote tables. In
this instance, the schemas in the consolidated and remote databases are
virtually the same, and the data in the remote is only a subset of the data on
the consolidated.

You writesynchronization scriptsfor each table in the remote database and
you save these scripts on the consolidated database. These scripts, from their
central location on the consolidated database, direct the synchronization
server in moving data between remote and consolidated databases. One
script for a particular remote table tells the synchronization server where to
store data uploaded from that remote table in the consolidated database.
Another script tells the synchronization server which data to download to the
same remote table.

☞ For more information about consolidated databases, see“MobiLink
Consolidated Databases” on page 31.

10

Chapter 2. Synchronization Basics

The MobiLink synchronization server
All MobiLink clients synchronize through the MobiLink synchronization
server. None connect directly to a database server. You must start the
MobiLink synchronization server before asking a MobiLink client to
synchronize.

Running the MobiLink synchronization server

The MobiLink synchronization server opens connections, via ODBC, with
your consolidated database server. It then accepts connections from remote
applications and controls the synchronization process.

❖ To start the MobiLink synchronization server

1. Run dbmlsrv9. Use the –c option to specify the ODBC connection
parameters for your consolidated database.

☞ For information about connection parameters, see“-c option” on
page 196.

You must specify connection parameters. Other options are available, but are
optional. These options allow you to specify how the server works. For
example, you can specify a maximum number of worker threads, cache size,
and logging options.

☞ For more information about dbmlsrv9 options, see“MobiLink
Synchronization Server Options” on page 189.

Note: The dbmlsrv9 options allow you to specify how the MobiLink
synchronization server works. To control what the server does, you define
scripts that are invoked at synchronization events.

☞ For more information, see“MobiLink events” on page 16.

Example The following command starts the MobiLink synchronization server,
identifying the ODBC data sourceUltraLite 9.0 Sampleas the consolidated
database. Enter the entire command on one line.

dbmlsrv9
-c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL"
-zs MyServer
-o mlsrv.log
-vcr
-x tcpip

In this example, the -zs option provides a server name. The –o option
specifies that the log file should be namedmlsrv.log. The contents of

11

mlsrv.logare verbose because of the –vcr option. The –x option specifies
that MobiLink clients will be permitted to connect via TCP/IP.

☞ You can also start the MobiLink synchronization server as a Windows
service or UNIX daemon. For more information, see“Running MobiLink
Outside the Current Session” on page 157.

Stopping the MobiLink synchronization server

The MobiLink synchronization server can be stopped from the computer
where the server was started. You can stop the MobiLink server in the
following ways:

♦ Click Shutdown on the MobiLink server window.

♦ Use Exit from the System tray context menu.

♦ Use the dbmlstop utility.

☞ For more information, see“MobiLink stop utility” on page 490.

Logging MobiLink synchronization server actions

Logging the actions that the server takes is particularly useful during the
development process, and when troubleshooting. Verbose output is not
recommended for normal operation of a production environment because it
can slow performance.

Logging output to a file Logging output is sent to the MobiLink synchronization server window. In
addition, you can send the output to a log file using the -o option. The
following command sends output to a log file namedmlsrv.log.

dbmlsrv9 -o mlsrv.log -c ...

☞ For more information, see“-o option” on page 203.

Controlling the size of log
files

You can control the size of log files, and specify what you want done when a
file reaches its maximum size.

♦ With the -on option, you specify the size at which the log file is renamed
with the extension .old, and a new file is started with the original name.

♦ With the -os option, you specify the size at which a new log file is started
with a new name based on the date and a sequential number.

♦ With the -ot option, the contents of the log file are deleted before
messages are sent to it.

☞ For more information, see

12

Chapter 2. Synchronization Basics

♦ “-on option” on page 204

♦ “-os option” on page 205

♦ “-ot option” on page 206

Controlling the amount of
logging output

You can control the amount of output that is logged using the -v option.

☞ For more information, see“-v option” on page 211.

Controlling which errors
are reported

☞ You can also control which warning messages are reported.

☞ For more information, see

♦ “-zw option” on page 222

♦ “-zwd option” on page 223

♦ “-zwe option” on page 223

13

MobiLink clients
Each remote database, together with its applications, is referred to as a
MobiLink client. Two types of MobiLink client are supported:

♦ Adaptive Server Anywhere

♦ UltraLite

☞ For more information, see“Introducing MobiLink Clients”[MobiLink
Clients,page 3].

14

Chapter 2. Synchronization Basics

The synchronization process
A synchronization is the process of bidirectional data exchange between the
MobiLink client and synchronization server. During this process, the client
must establish and maintain a connection to the synchronization server. If
successful, the session leaves the remote and consolidated databases in a
mutually consistent state.

The client normally initiates the synchronization process. It begins by
establishing a connection to the MobiLink synchronization server.

The upload stream and
the download stream

To upload rows, MobiLink clients prepare and send anupload streamthat
contains a list of all the rows that have been updated, inserted, or deleted on
the MobiLink client since the last synchronization. Similarly, to download
rows, the MobiLink synchronization server prepares and sends adownload
stream that contains a list of inserts, updates, and deletes.

1. Upload stream The MobiLink client automatically keeps track of
which rows in the remote database have been inserted, updated, or
deleted since the previous successful synchronization. Once the
connection is established, the MobiLink client uploads a list of all these
changes to the synchronization server.

The upload stream consists of a set of new and old row values for each
row modified in the remote database. If a row has been updated or
deleted, the old values are those that were present immediately following
the last successful synchronization. If a row has been inserted or updated,
the new values are the current row values. No intermediate values are
sent, even if the row was modified several times before arriving at its
current state.

The MobiLink synchronization server receives the upload stream and
applies the changes to the consolidated database. It normally applies all
the changes in a single transaction. When it has finished, the MobiLink
synchronization server commits the transaction.

Note
MobiLink operates using the ODBC isolation level SQL_TXN_-
READ_COMMITTED as the default isolation level for the consolidated
database. MobiLink does so because repeatable reads are required for
conflict detection purposes. If you have no conflict detection scripts or
if you want to select an isolation level more suited to your needs, you
can set this level in your begin_connection script.

2. Download stream The MobiLink synchronization server compiles a
list of rows to be inserted, updated, or deleted on the MobiLink client,
using synchronization logic that you create. It downloads these rows to

15

the MobiLink client. To compile this list, the MobiLink synchronization
server opens a new transaction on the consolidated database.

The MobiLink client receives the download stream. It takes the arrival of
this stream as confirmation that the consolidated database has
successfully applied all uploaded changes. It will then ensure these
changes are not sent to the consolidated database again.

Next, the MobiLink client automatically processes the download stream,
deleting old rows, inserting new rows, and updating rows that have
changed. It applies all these changes in a single transaction in the remote
database. When finished, it commits the transaction.

3. Optional download acknowledgement The MobiLink client
optionally sends a short confirmation message to the MobiLink
synchronization server.

The MobiLink synchronization server receives the confirmation message.
This message tells the synchronization server that the client has received
and processed all downloaded changes. In response, it commits the
download transaction begun in step 2.

☞ For more information about the SendDownloadAck extended option,
see“SendDownloadACK (sa) extended option”[MobiLink Clients,
page 131]and“Send Download Acknowledgement synchronization
parameter”[MobiLink Clients,page 331].

During MobiLink synchronization, there are few distinct exchanges of
information. The client builds and uploads the entire upload stream. In
response, the synchronization server builds and downloads the entire
download stream. Limiting the chattiness of the protocol is especially
important when communication is slower and has higher latency, as is the
case when using telephone lines or public wireless networks.

MobiLink events

When the MobiLink client initiates a synchronization, a number of
synchronization events occur. At the occurrence of an event, MobiLink
looks for a script to match the synchronization event. This script contains
your instructions outlining what you want done. The basic sequence is:

Event occurs➤ Script is invoked(if it exists)

☞ For more information about synchronization events and scripts, see:

♦ “Synchronization Events” on page 319

♦ “Writing Synchronization Scripts” on page 227

16

Chapter 2. Synchronization Basics

MobiLink scripts

Whenever an event occurs, the MobiLink synchronization server executes
the associated script if you have created one. If no script exists, the next
event in the sequence occurs.

Following are some typical synchronization scripts for tables.

Event Script

upload_insert INSERT INTO
emp (emp_id,emp_name)
VALUES (?,?)

upload_delete DELETE FROM emp
WHERE emp_id=?

upload_update UPDATE emp
SET emp_name=?
WHERE emp_id=?

upload_old_row_insert INSERT INTO old_emp
(emp_id,emp_name)
VALUES (?,?)

upload_new_row_insert INSERT INTO new_emp
(emp_id,emp_name)
VALUES (?,?)

upload_fetch SELECT id, name, size, quantity,
unit_price

FROM Product WHERE id=?

The first event, upload_insert, triggers the running of the upload_insert
script, which inserts the emp_id and emp_name into the emp table. In like
fashion, the upload_delete and upload_update tables will perform similar
functions for delete and update actions on the same emp table.

The download script uses a cursor. Following is an example of a
download_cursor script:

SELECT emp_id, emp_name
FROM emp
WHERE emp_name = ?

The download_cursor acquires data from the emp table for a specified

17

emp_name.

COMMIT or ROLLBACK statements within scripts alter the transactional
nature of the synchronization steps. If you use them, you cannot guarantee
the integrity of your data in the event of a failure. There should be no
implicit or explicit commit or rollback in your synchronization scripts or the
procedures or triggers that are called from your synchronization scripts.

Scripts can be written in
SQL, Java, or .NET

You can write scripts using the native SQL dialect of your consolidated
database, or using Java or .NET synchronization logic. Java and .NET
synchronization logic allow you to write code, invoked by the MobiLink
synchronization server, to connect to a database, manipulate variables, and
create user-defined procedures that can work with MobiLink and any
supported relational database. There is a MobiLink Java API and a
MobiLink .NET API that have routines to suit the needs of synchronization.

☞ For more information about programming synchronization logic, see
“Options for writing synchronization logic” on page 25.

☞ For information about DBMS-dependent scripting, such as scripting for
Oracle, MS SQL Server, IBM DB2 or Adaptive Server Enterprise databases,
see“DBMS-dependent synchronization scripts” on page 34.

Storing scripts SQL scripts are stored in system tables in the consolidated database. For
Java and .NET, pointers to other locations are stored in the consolidated
database. You can add all kinds of scripts to a consolidated database in two
ways:

♦ By using stored procedures that are installed along with the MobiLink
system tables when you create a consolidated database.

♦ By using Sybase Central.

☞ For more information, see“Adding and deleting scripts in your
consolidated database” on page 241.

Stored procedures

MobiLink stored procedures are used for programmatic conflict resolution,
adding scripts, user authentication, and other customization procedures.

☞ For more information about using MobiLink stored procedures for
customization, see“Stored Procedures” on page 479.

Other means to gain procedural control are commonly used with databases
that don’t have a defined procedural language. For example, with databases
that do not permit user-defined procedures, such as IBM’s DB2, Java
procedures may be employed to act as MobiLink stored procedures.

18

Chapter 2. Synchronization Basics

☞ For more information about writing scripts using Java or .NET
synchronization logic, see“Writing Synchronization Scripts in Java” on
page 255and“Writing Synchronization Scripts in .NET” on page 281.

For Adaptive Server Anywhere clients, you can use stored procedures called
client event hook procedures, which are held on the remote database. A
variety of event hook procedures are available for you to insert your own
logic into the MobiLink synchronization process.

☞ For more information, see“Dbmlsync Client Event Hooks”[MobiLink
Clients,page 175].

Transactions in the synchronization process

The MobiLink synchronization server incorporates changes uploaded from
each MobiLink client into the consolidated database in one transaction. The
MobiLink synchronization server commits these changes once it has
completed inserting new rows, deleting old rows, making updates, and
resolving any conflicts.

The MobiLink synchronization server prepares the download stream,
including all deletes, inserts, and updates, using another transaction.
Depending on the SendDownloadAck setting, it does not commit this
transaction until it receives a positive confirmation from the MobiLink
client. If the client confirms a successful download, the MobiLink
synchronization server commits the download transaction. If the application
encounters problems or cannot reply, the MobiLink synchronization server
instead rolls back the download transaction.

Do not commit or roll back transactions within a script
COMMIT or ROLLBACK statements within scripts alter the transactional
nature of the synchronization steps. If you use them, you cannot guarantee
the integrity of your data in the event of a failure. There should be no
implicit or explicit commit or rollback in your synchronization scripts or
the procedures or triggers that are called from your synchronization scripts.

Tracking downloaded
information

The primary role of the download transaction is to select rows in the
consolidated database. If the download fails being sent to the remote, the
remote will upload the same timestamp over again, and no data will be lost.

The MobiLink synchronization server uses two other transactions, one at the
beginning of synchronization, and one at the end. These transactions allow
you to record information regarding each synchronization and its duration.
Thus, you can record statistics about attempted synchronizations, successful
synchronizations, and the duration of synchronizations. Since data is
committed at various points in the process, these transactions also let you

19

commit data useful when analyzing failed synchronization attempts.

Similarly, the MobiLink client processes information in the download stream
in one transaction. Rows are inserted, updated, and deleted to bring the
remote database up to date with the consolidated data.

How synchronization failure is handled

MobiLink synchronization is fault tolerant. For example, if a
communication link fails during synchronization, both the remote database
and the consolidated database are left in a consistent state.

On the client, failure is indicated by a return code. For example, in an
embedded SQL UltraLite application, the SQLCode is set to
SQLE_COMMUNICATION_ERROR when ULSynchronize returns.

There are three cases that are handled in different ways:

♦ Failure during upload If the failure occurs while building or applying
the upload stream, the remote database is left in exactly the same state as
at the start of synchronization. At the server, any part of the upload
stream that has been applied will be rolled back.

♦ Failure between upload and download If the failure occurs once the
upload stream is complete, but before the MobiLink client receives the
download stream, the client cannot be certain whether the uploaded
changes were successfully applied to the consolidated database. The
upload stream might be fully applied and committed, or the failure may
have occurred before the server applied the entire upload stream. The
MobiLink synchronization server automatically rolls back incomplete
transactions in the consolidated database.

The MobiLink client maintains a record of all uploaded changes in case
they must be sent again. The next time the client synchronizes, it requests
the state of the previous upload stream before building the new upload
stream. If the previous upload was not committed, the new upload stream
contains all changes from the previous upload stream.

♦ Failure during download If the failure occurs in the remote device
while applying the download stream, any part of the download that has
been applied is rolled back and the remote database is left in the same
state as before the download. The MobiLink synchronization server
automatically rolls back the download transaction in the consolidated
database.

In all cases where failure may occur, no data is lost. The MobiLink server
and the MobiLink client manage this for you. The developer/user need not
worry about maintaining consistent data in their application.

20

Chapter 2. Synchronization Basics

How the upload stream is processed

When the MobiLink synchronization server receives an upload stream from
a MobiLink client, the entire upload stream is stored until the
synchronization is complete. This is done for three purposes.

♦ Deadlock When an upload stream is being applied to the consolidated
database, it may encounter deadlock due to concurrency with other
transactions. These transactions might be upload transactions from other
MobiLink synchronization server database connections, or transactions
from other applications using the consolidated database. When an upload
transaction is deadlocked, it is rolled back and the MobiLink
synchronization server automatically starts applying the upload stream
from the beginning again.

Performance tip
It is important to write your synchronization scripts to avoid contention
as much as possible. Contention has a significant impact on performance
when multiple users are synchronizing simultaneously.

♦ Filtering download rows The most common technique for determining
rows to download is to download rows that have been modified since the
previous download. When synchronizing, the upload precedes the
download. Any rows inserted or updated during the upload will be rows
that have been modified since the previous download.

It would be difficult to write a download_cursor script that omits from the
download stream rows that were sent as part of the upload. For this
reason, the MobiLink synchronization server automatically removes
these rows from the download stream. When a row is being added to the
download stream, the MobiLink synchronization server locates the row in
the upload stream and omits the row from the download stream when it is
found to be the same.

♦ Processing deletes after inserts and updates The upload stream is
applied to the consolidated database in an order that avoids referential
integrity violations. The upload stream is formatted so all operations
(inserts, updates, and deletes) for a single table are grouped together. The
tables in the upload stream are ordered based on foreign key
relationships. All tables in the remote database that are referenced by
another table in the remote database will be in the upload stream before
the referencing table.

For example, if table A and table C both have foreign keys that reference
a primary key column in B, then table B rows are uploaded first.

21

When the upload stream is applied to the consolidated database, the
inserts and updates are applied in the order they appear in the upload
stream. When an inserted or updated row references a newly inserted
row, this ensures the referenced row will be inserted before the
referencing row. Deletes are applied in the opposite order after all inserts
and updates have been applied. When a row being deleted references
another row that is also being deleted, this order of operations ensures the
referencing row is deleted before the referenced row is deleted.

Referential integrity and synchronization

All MobiLink clients enforce referential integrity when they incorporate the
download stream into the remote database.

Rather than failing the download transaction, the MobiLink client
automatically deletes all rows that violate referential integrity.

This feature affords you these key benefits.

♦ Protection from mistakes in your synchronization scripts. Given the
flexibility of the scripts, it is possible to accidentally download rows that
would break the integrity of the remote database. The MobiLink client
automatically maintains referential integrity without requiring
intervention.

♦ You can use this referential integrity mechanism to delete information
from a remote database efficiently. By only sending a delete to a parent
record, the MobiLink client will remove all the child records
automatically for you. This can greatly reduce the amount of traffic
MobiLink must send to the remote database.

MobiLink clients provide notification if they have to explicitly delete rows to
maintain referential integrity.

♦ For Adaptive Server Anywhere clients, dbmlsync writes an entry in a log.

♦ For UltraLite clients, a warning SQLE_ROW_DELETED_TO_-
MAINTAIN_REFERENTIAL_INTEGRITY is raised. This warning
takes a parameter, which is the table name. The warning is raised on
every row that is deleted to maintain referential integrity. Your application
can ignore the warnings if you wish synchronization to just proceed. If
you wish to explicitly handle the warnings, you can use the error callback
function to trap them and, for example, count the number of rows deleted.

If you wish to fail synchronization when the warning is raised, you must
implement a synchronization observer and then signal the observer
(perhaps through a global variable) from the error callback function to
fail the synchronization on the next call to the observer.

22

Chapter 2. Synchronization Basics

Referential integrity
checked at the end of the
transaction

The MobiLink client incorporates changes from the download stream in a
single transaction. To offer more flexibility, referential integrity checking
occurs at the end of this transaction. Because checking is delayed, the
database may temporarily pass through states where referential integrity is
violated as rows are inserted, updated, and deleted, but the rows that violate
referential integrity are automatically removed before the download is
committed.

Errors are avoided The MobiLink client resolves referential integrity violations automatically.
This feature minimizes administration requirements. It also prevents an error
in a synchronization script from disabling an MobiLink client. UltraLite
clients raise a warning when a row is deleted to maintian referential
integrity, which your application can handle or ignore.

An efficient way to delete
rows

You can exploit the automatic referential integrity mechanism of MobiLink
clients to delete large quantities of information in a very efficient manner. If
your MobiLink client contains a primary row, and other rows that reference
it, you can delete all the referencing rows simply by synchronizing a delete
of the primary row.

Example Suppose that an UltraLite sales application contains, among others, the
following two tables. One table contains sales orders. Another table contains
items that were sold in each order. They have the following relationship.

sales_order

id <pk>

cust_id
order_date

fin_code_id

region

sales_rep

sales_order_items

id <pk,fk>
line_id <pk>

prod_id

quantity

ship_date

id = id

If you use the download_delete_cursor for the sales_order table to delete an
order, the automatic referential integrity mechanism automatically deletes all
rows in the sales_order_items table that point to the deleted sales order.

This arrangement has the following advantages.

♦ You do not require a sales_order_items script because rows from this
table will be deleted automatically.

♦ The efficiency of synchronization is improved. You need not download
rows to delete from the sales_order_item table. If each sales order
contains many items, the performance improves because the download
stream is now smaller. This technique is particularly valuable when using
slow communication methods.

23

Upload-only and download-only synchronization
For both Adaptive Server Anywhere and UltraLite remote databases, you
can choose to do a full synchronization, or you can perform only an upload
or download.

Adaptive Server
Anywhere remote
databases

In Adaptive Server Anywhere remote databases, you perform upload-only
synchronization using the dbmlsync option -ds or the extended option
DownloadOnly.

☞ For more information, see“-ds option” [MobiLink Clients,page 104]and
“DownloadOnly (ds) extended option”[MobiLink Clients,page 115].

In Adaptive Server Anywhere remote databases, you perform
download-only synchronization using the dbmlsync option -uo or the
extended option UploadOnly.

☞ For more information, see“-uo option” [MobiLink Clients,page 149]or
“UploadOnly (uo) extended option”[MobiLink Clients,page 133].

UltraLite remote
databases

In UltraLite remote databases, you perform download-only synchronization
using the Download Only synchronization parameter.

☞ For more information, see“Download Only synchronization parameter”
[MobiLink Clients,page 320].

In UltraLite remote databases, you perform upload-only synchronization
using the Upload Only synchronization parameter.

☞ For more information, see“Upload Only synchronization parameter”
[MobiLink Clients,page 337].

24

Chapter 2. Synchronization Basics

Options for writing synchronization logic
MobiLink synchronization scripts can be written in SQL, in Java, or in .NET
programming languages. Java or .NET are a good choice whenever your
design is restricted by the limitations of the SQL language or by the
capabilities of your database-management system, of if you want
DBMS-independent synchronization logic.

Program synchronization logic can function just as SQL logic functions, as
shown in the figure below. The MobiLink synchronization server can make
calls to Java or .NET methods on the occurrence of MobiLink events just as
it can access SQL scripts on the occurrence of MobiLink events. However,
the upload and download streams are not directly accessible from Java or
.NET synchronization logic, where a SQL string must be returned to
MobiLink.

Java or .NET
Synchronization Logic

consolidated

data store

MobiLink
synchronization

server

ODBC

INSERT...
AUTHENTICATE_

USER

Other
scripts

Calls for

events

SQL string

returned

network

client

applications

SQL synchronization logic is restricted to the procedural language
capabilities of your consolidated database. SQL languages are unlikely to
offer all the programming logic given by Java or .NET programming
languages. You might want to use Java or .NET synchronization logic when

25

your SQL logic is limited, when you need to perform operations across
database platforms, and when you need portability across RDBMSs and
operating systems. Following are some scenarios where you might want to
consider writing scripts in Java or .NET.

♦ A user authentication procedure can be written in Java or .NET that
inserts the user ID of a MobiLink user into a table on the consolidated
database for audit purposes.

♦ If your database lacks the ability to handle variables, you can create a
variable in Java or .NET that persists throughout your connection or
synchronization.

♦ If your database lacks the ability to make user-defined stored procedures,
you can make a method in Java or .NET that can perform the needed
functionality.

♦ If your program calls for contacting an external server midway through a
synchronization event, you can use Java or .NET synchronization logic to
perform actions triggered by synchronization events. Java and .NET
synchronization logic can be shared across multiple connections.

♦ With Java and .NET synchronization logic, you can use MobiLink to
access data from application servers, Web servers, and files. You can use
JDBC or iAnywhere classes in your synchronization logic to access data
in relational databases other than the consolidated database. For example,
an external server can be used to validate a user ID and password. The
figure below shows the links between Java or .NET synchronization logic
and both a consolidated database and a second data server.

26

Chapter 2. Synchronization Basics

Java or .NET

synchronization

logic

consolidated
data store

MobiLink

synchronization

server

client applications

ODBC

External data

server

network

MobiLink APIs With Java and .NET synchronization logic, you have access to a MobiLink
API. The MobiLink APIs are sets of classes and interfaces for MobiLink
synchronization. There are two MobiLink APIs: Java and .NET.

The MobiLink Java API offers you:

♦ Access to the existing ODBC connection as a JDBC connection.

♦ The ability to create new JDBC connections to perform commits or
connects outside the current synchronization connection. For example,
you can use this for error logging.

♦ The ability to write and debug Java code before it is executed by the
MobiLink server. SQL development environments for many database
management systems are relatively primitive compared to those available
for Java applications.

27

♦ Code that runs inside the Java virtual machine and allows access to all
Java libraries and Java Native Interface calls.

☞ For more information, see“MobiLink Java API Reference” on page 273.

The MobiLink .NET API offers you:

♦ Access to the existing ODBC connection using iAnywhere classes that
call ODBC from .NET.

♦ Code that runs inside the .NET Common Language Runtime (CLR) and
allows access to all .NET libraries and unmanaged calls.

☞ For more information, see“MobiLink .NET API Reference” on
page 303.

Further reading ☞ For more information about your options for writing synchronization
scripts, see

♦ “Writing Synchronization Scripts” on page 227

♦ “Synchronization Techniques” on page 45

♦ “Writing Synchronization Scripts in Java” on page 255

♦ “Writing Synchronization Scripts in .NET” on page 281

28

Chapter 2. Synchronization Basics

Security
There are several aspects to securing data throughout a widely distributed
system such as a MobiLink installation:

♦ Protecting data in the consolidated database Data in the
consolidated database can be protected using the DBMS user
authentication system and other security features.

☞ For more information, see your DBMS documentation. If you are
using an Adaptive Server Anywhere consolidated database, see“Keeping
Your Data Secure”[SQL Anywhere Studio Security Guide,page 3].

♦ Protecting data in the remote databases If you are using Adaptive
Server Anywhere remote databases, the data can be protected using
Adaptive Server Anywhere security features. By default, these are
designed to prevent unauthorized access through client/server
communications, but not to be proof against a serious attempt to extract
information directly from the database file.

Files on the client are protected by the security features of the client
operating system.

☞ If you are using an Adaptive Server Anywhere remote database, see
“Keeping Your Data Secure”[SQL Anywhere Studio Security Guide,page 3].

♦ Protecting data during synchronization Communication from
MobiLink clients to MobiLink synchronization servers can be protected
by the MobiLink transport layer security features.

☞ For more information, see“MobiLink Transport-Layer Security” on
page 165.

♦ Protecting the synchronization system from unauthorized users
MobiLink synchronization can be secured by a password-based user
authentication system. This mechanism prevents unauthorized users from
synchronizing data.

☞ For more information, see“Authenticating MobiLink Users”
[MobiLink Clients,page 9].

29

CHAPTER 3

MobiLink Consolidated Databases

About this chapter This chapter describes how to set up and use your consolidated database.

Contents Topic: page

Introduction 32

Setting up a consolidated database 33

DBMS-dependent synchronization scripts 34

Adaptive Server Anywhere consolidated database 36

Sybase Adaptive Server Enterprise consolidated database 37

Oracle consolidated database 39

IBM DB2 consolidated database 40

Microsoft SQL Server consolidated database 43

31

Introduction
Your consolidated database can be one of the following ODBC-compliant
databases: Adaptive Server Anywhere, Adaptive Server Enterprise, Oracle,
IBM DB2, and Microsoft SQL Server. You can use synchronization scripts
to exploit the features of your particular consolidated server.

Synchronization scripts are associated with the consolidated database. SQL
scripts are stored in the consolidated database, and Java and .NET scripts are
referenced.

☞ For information about setting up each type of database as a consolidated
database, see“Setting up a consolidated database” on page 33.

☞ For information about writing synchronization scripts for particular
consolidated databases, see“DBMS-dependent synchronization scripts” on
page 34.

How remote tables relate to consolidated tables

Synchronization designs can specify mappings between tables and rows in
the remote database with tables and rows in the consolidated database.

Arbitrary relationships
permitted

Tables in a remote database need not be identical to those in the consolidated
database. Synchronized data in one remote application table can be
distributed between columns in different tables, and even between tables in
different consolidated databases. You specify these relationships using
synchronization scripts.

Direct relationships are
simple

You can often simplify your design using a table structure in the remote
database that is a subset of that in the consolidated database. Using this
method, every table in the remote database exists in the consolidated
database. Corresponding tables have the same structure and foreign key
relationships as those in the consolidated database.

Tables in the consolidated database will frequently contain extra columns
that are not synchronized. Indeed, extra columns can aid synchronization.
For example, a timestamp column can identify new or updated rows in the
consolidated database. In other cases, extra columns or tables in the
consolidated database may hold information that is not required at remote
sites.

32

Chapter 3. MobiLink Consolidated Databases

Setting up a consolidated database
Setup scripts To set up a database so that it can be used as a MobiLink consolidated

database, you must run asetup script that installs MobiLink system tables
and stored procedures. The exception is Adaptive Server Anywhere
databases, which are preconfigured with the appropriate system tables and
stored procedures. For instructions on how to run the setup scripts, see the
sections below for each supported RDBMS.

☞ For more information about MobiLink system tables, see“MobiLink
System Tables” on page 501.

☞ For more information about stored procedures, see“Stored Procedures”
on page 479.

ODBC connection In addition, the MobiLink synchronization server needs an ODBC
connection to your consolidated database. You must configure the
appropriate ODBC driver for your server and create an ODBC data source
for the database on the computer where your MobiLink synchronization
server is running.

☞ For a summary of supported ODBC drivers, see“iAnywhere Solutions
ODBC Drivers” on page 547.

☞ For updated information and complete functional specifications, see
http://www.ianywhere.com/developer/technotes/odbc_mobilink.html.

☞ For information about configuring ODBC drivers for MobiLink
consolidated databases, see“Introduction to iAnywhere Solutions ODBC
Drivers” [ODBC Drivers for MobiLink and Remote Data Access,page 1].

☞ For specific information about each type of consolidated database, see
the appropriate section:

♦ “Adaptive Server Anywhere consolidated database” on page 36
♦ “Sybase Adaptive Server Enterprise consolidated database” on page 37
♦ “Oracle consolidated database” on page 39
♦ “IBM DB2 consolidated database” on page 40
♦ “Microsoft SQL Server consolidated database” on page 43

33

http://www.ianywhere.com/developer/technotes/odbc_mobilink.html

DBMS-dependent synchronization scripts
MobiLink uses synchronization scripts to provide flexibility in the rules you
use to synchronize data. The scripts define:

♦ How data uploaded from the remote database is to be applied to the
consolidated database.

♦ What data should be downloaded from the consolidated database.

☞ For more information about writing synchronization scripts, see
“Writing Synchronization Scripts” on page 227.

☞ For a complete list of events you can write scripts for, see
“Synchronization Events” on page 319.

Some aspects of scripts depend on the DBMS you are using. A number of
factors determine the kind of scripting needed for your synchronization with
your ODBC compliant database, and these factors include, but are not
limited to:

♦ User defined procedures

♦ Session-wide connection variables

Session-wide variables provide a useful means to store values persisting
through a synchronization. For example, in the begin_synchronization
script store the user name into a session-wide variable variable called
UserName. In subsequent scripts, refer to UserName as many times as
you want.

♦ Autoincrement methods

If supported, you can use autoincrement to maintain unique primary key
values in a MobiLink environment. For more information, see
“Maintaining unique primary keys” on page 56.

☞ For specific information about each type of consolidated database, see
the appropriate section:

♦ “Adaptive Server Anywhere consolidated database” on page 36

♦ “Sybase Adaptive Server Enterprise consolidated database” on page 37

♦ “Oracle consolidated database” on page 39

♦ “IBM DB2 consolidated database” on page 40

♦ “Microsoft SQL Server consolidated database” on page 43

34

Chapter 3. MobiLink Consolidated Databases

.NET and Java
synchronization scripts

One strategy for using MobiLink with supported databases is to write your
table scripts and synchronization logic in the DBMS version of the SQL
language. Another strategy for using MobiLink with any supported
consolidated database uses Java or .NET synchronization logic. When you
use Java or .NET synchronization logic you can hold session-wide variables
and create user-defined procedures.

☞ For information about Java synchronization logic, see“Writing Java
synchronization logic” on page 259.

☞ For information about .NET synchronization logic, see“Writing
Synchronization Scripts in .NET” on page 281.

Invoking procedures from
scripts

Some databases, such as Microsoft SQL Server, require that procedure calls
with parameters be written using the ODBC syntax.

{ CALL procedure_name(?, ?, ...) }

You can pass return values by defining the parameters as OUT or INOUT in
the procedure definition.

CHAR columns In many other DBMSs, CHAR data types are fixed length and blank-padded
to the full length of the string. In MobiLink remote databases (Adaptive
Server Anywhere or UltraLite) CHAR is the same as VARCHAR: values are
not blank-padded to a fixed width. The dbmlsrv9 -b command line option
can be used to remove trailing blanks from strings during synchronization.
This option is important for string comparisons used to detect conflicts.

☞ For more information, see“-b option” on page 195.

Data conversion For information about the conversion of data that must take place when a
MobiLink synchronization server communicates with a consolidated
database that was not made with Adaptive Server Anywhere, see“DataType
Conversions” on page 533.

35

Adaptive Server Anywhere consolidated database
Adaptive Server Anywhere databases are automatically configured so that
they can be used as a MobiLink consolidated database without running a
setup script.

A setup script is provided for Adaptive Server Anywhere databases in case
you want to examine source code. For example, it includes source code for
the ml_add_connection_script stored procedure. This setup script is called
syncasa.sqland it is located in thescriptssubdirectory of your SQL
Anywhere installation.

Setting up the ODBC
driver

You must set up an ODBC DSN for your Adaptive Server Anywhere
consolidated database. The ODBC driver for Adaptive Server Anywhere is
installed with SQL Anywhere Studio.

☞ For information about the Adaptive Server Anywhere ODBC driver, see
“Working with ODBC data sources”[ASA Database Administration Guide,
page 53].

36

Chapter 3. MobiLink Consolidated Databases

Sybase Adaptive Server Enterprise consolidated
database

To set up Adaptive Server Enterprise version 12.5 or later to work as a
MobiLink consolidated database, run thesyncase125.sqlsetup script,
located in theMobiLink\setupsubdirectory of your SQL Anywhere
installation. For versions prior to 12.5, runsyncase.sqlfrom the same
location.

To ensure that the MobiLink administrator has adequate permissions to
change the MobiLink system tables (required for adding scripts and other
things), the user who will need access to those tables should run the setup
script.

ODBC driver You must set up an ODBC DSN for your Adaptive Server Enterprise
consolidated database. SQL Anywhere Studio includes an iAnywhere
Solutions ODBC driver for Adaptive Server Enterprise. You must configure
this driver to work with MobiLink.

☞ For more information, see“iAnywhere Solutions ODBC Driver for
Sybase Adaptive Server Enterprise”[ODBC Drivers for MobiLink and Remote
Data Access,page 11].

Adaptive Server
Enterprise issues

♦ Column sizes To download BLOB data from an Adaptive Server
Enterprise consolidated database, you need to set an ODBC driver
connection option to allow column sizes greater than 4096 bytes. To do
this, use the ODBC driver connection option called
StaticCursorLongColBuffLen. For example,

dbmlsrv9 -c "...;StaticCursorLongColBuffLen=number"

wherenumberis in bytes, and is larger than the largest expected BLOB.

Note that using this option consumes significantly more disk space on the
computer that runs the MobiLink synchronization server.

♦ Numeric primary key values In addition, the MobiLink
synchronization server requires that primary key values of type numeric
or decimal be explicitly converted to their types under Adaptive Server
Enterprise.

You must add an explicit conversion to the numeric parameters in the
script as displayed in the following examples.

SELECT ...
WHERE numeric_col = CONVERT(NUMERIC, ?)
...

The above statement explicitly converts the first parameter to type

37

NUMERIC.

SELECT ...
WHERE decimal_col = CONVERT(DECIMAL(10,8), ?)
...

The above statement explicitly converts the first parameter to type
DECIMAL (10,8).

♦ CHAR columns In Adaptive Server Enterprise, CHAR data types are
fixed length and blank-padded to the full length of the string. In
MobiLink remote databases (Adaptive Server Anywhere or UltraLite)
CHAR is the same as VARCHAR: values are not blank-padded to a fixed
width. The dbmlsrv9 -b command line option can be used to remove
trailing blanks from strings during synchronization. This option is
important for string comparisons used to detect conflicts.

☞ For more information, see“-b option” on page 195.

♦ Data type mapping For details of how Adaptive Server Anywhere data
types are mapped to Adaptive Server Enterprise data types, see“Adaptive
Server Enterprise data mapping” on page 534.

38

Chapter 3. MobiLink Consolidated Databases

Oracle consolidated database
To set up Oracle to work as a MobiLink consolidated database, run the
syncora.sqlsetup script, located in theMobiLink\setupsubdirectory of your
SQL Anywhere installation.

To ensure that the MobiLink administrator has adequate permissions to
change the MobiLink system tables (required for adding scripts and other
things), the user who will need access to those tables should run the setup
script.

ODBC driver You must set up an ODBC DSN for your Oracle consolidated database. SQL
Anywhere Studio includes an iAnywhere Solutions ODBC driver for Oracle.
You must configure this driver to work with MobiLink.

☞ For more information, see“iAnywhere Solutions ODBC Driver for
Oracle” [ODBC Drivers for MobiLink and Remote Data Access,page 31].

Oracle issues ♦ Session-wide variables Oracle does not provide session-wide
variables. You can store session-wide information in variables within
Oracle packages. Oracle packages allow variables to be created, modified
and destroyed and these variables may last as long as the Oracle package
is current.

♦ Autoincrement methods To maintain primary key uniqueness, you
can use an Oracle sequence to generate a list of keys similar to that of an
autoincrement field. The CustDB sample database provides coding
examples, which can be found inSamples\MobiLink\CustDB\custora.sql.
Unlike autoincrement, however, you must explicitly reference the
sequence. Autoincrement inserts a column value automatically if the
column is not referenced in an INSERT statement.

☞ For an example of using an Oracle sequence, see“Tutorial: Using
MobiLink with an Oracle 8i Consolidated Database”[MobiLink Tutorials,
page 39].

♦ CHAR columns In Oracle, CHAR data types are fixed length and
blank-padded to the full length of the string. In MobiLink remote
databases (Adaptive Server Anywhere or UltraLite) CHAR is the same as
VARCHAR: values are not blank-padded to a fixed width. The dbmlsrv9
-b command line option can be used to remove trailing blanks from
strings during synchronization. This option is important for string
comparisons used to detect conflicts.

☞ For more information, see“-b option” on page 195.

♦ Data type mapping For details of how Adaptive Server Anywhere data
types are mapped to Oracle data types, see“Oracle data mapping” on
page 538.

39

IBM DB2 consolidated database
To set up IBM DB2 UDB to work as a MobiLink consolidated database, run
thesyncdb2long.sqlsetup script, located in theMobiLink\setup
subdirectory of your SQL Anywhere installation. However, prior to running
the script you must complete the following steps.

To install MobiLink system tables using the setup script, an IBM DB2
tablespace must use a minimum of 8 Kb pages. If a tablespace does not use
8 Kb pages, complete the following steps.

♦ Verify that at least one of your buffer pools has 8 Kb pages. If not, create
a buffer pool with 8 Kb pages.

♦ Create a new tablespace and temporary tablespace that use the buffer pool
with 8 Kb pages. For more information, consult your DB2
documentation.

To ensure that the MobiLink administrator has adequate permissions to
change the MobiLink system tables (required for adding scripts and other
things), the user who will need access to those tables should run the setup
script.

Thesyncdb2long.sqlscript contains a default connection statement,
connect to DB2Database . You should make a copy of the script and
alter this line to be appropriate for your installation. The syntax of the line
must be:

connect to DB2Database user userid using password ~

whereDB2Database, userid, andpasswordare names you provide.

Thesyncdb2long.sqlscript uses the tilde character (~) as a command
delimiter. You can run the scripts as follows:

db2 -c -ec -td~ +s -v -f syncdb2long.sql

In order for DB2 to use the stored procedures defined insyncdb2long.sql,
you must copy thesyncdb2long_versionJava and class files located in the
MobiLink\setupsubdirectory of your SQL Anywhere installation to the
FUNCTION subdirectory of your DB2 installation.

ODBC driver To set up an ODBC DSN for your DB2 consolidated database, use the
iAnywhere Solutions DB2 Wire Protocol driver.

☞ For more information, see“iAnywhere Solutions ODBC Driver for
DB2” [ODBC Drivers for MobiLink and Remote Data Access,page 51].

DB2 issues

40

Chapter 3. MobiLink Consolidated Databases

♦ Tablespace capacity A tablespace and temporary tablespace of any
DB2 database that you wish to use as a consolidated database must use
8 Kb pages.

In addition, there are columns that require a LONG tablespace. If there is
no default LONG tablespace, the creation statements for the tables
containing these columns must be qualified appropriately, as in the
following example.

CREATE TABLE ... (...)
IN tablespace
LONG IN long-tablespace

For an example using the sample application, see“The CustDB Sample
Application” [MobiLink Tutorials,page 99].

♦ Session-wide variables Earlier versions of DB2 (prior to version 8) do
not support session-wide variables. A convenient solution is to use a base
table with columns for the MobiLink user name and other session data.
The base table will have rows representing concurrent synchronizations.

♦ User-defined procedures. DB2 requires a C compiler to compile SQL
procedures into an executable library (such as a DLL). The resulting
DLL/shared library must be copied to a special directory on the server.
Note that you can write stored procedures using several different
languages, including C/C++ and Java, among others.

☞ For an example of Java as a procedural language for DB2, see the
CustDB scripts in the filesSamples\MobiLink\CustDB\custdbq.sqland
Samples\MobiLink\CustDB\custdbq.java.

☞ For more information about Java and .NET synchronization scripts,
see

• “Options for writing synchronization logic” on page 25

• “Writing Synchronization Scripts in Java” on page 255

• “Writing Synchronization Scripts in .NET” on page 281

♦ CHAR columns In IBM DB2, CHAR data types are fixed length and
blank-padded to the full length of the string. In MobiLink remote
databases (Adaptive Server Anywhere or UltraLite) CHAR is the same as
VARCHAR: values are not blank-padded to a fixed width. The dbmlsrv9
-b command line option can be used to remove trailing blanks from
strings during synchronization. This option is important for string
comparisons used to detect conflicts.

☞ For more information, see“-b option” on page 195.

41

♦ Data type mapping For details of how Adaptive Server Anywhere data
types are mapped to DB2 data types, see“IBM DB2 data mapping” on
page 536.

42

Chapter 3. MobiLink Consolidated Databases

Microsoft SQL Server consolidated database
To set up Microsoft SQL Server to work as a MobiLink consolidated
database, run thesyncmss.sqlsetup script, located in theMobiLink\setup
subdirectory of your SQL Anywhere installation.

To ensure that the MobiLink administrator has adequate permissions to
change the MobiLink system tables (required for adding scripts and other
things), the user who will need access to those tables should run the setup
script.

ODBC driver You must set up an ODBC DSN for your Microsoft SQL Server
consolidated database. Unlike the other consolidated databases, iAnywhere
Solutions does not provide an ODBC driver for Microsoft SQL Server. This
is because the Microsoft SQL Server driver is freely available for download.

☞ For updated details, see
http://www.ianywhere.com/developer/technotes/odbc_mobilink.html.

SQL Server issues ♦ Procedure calls Microsoft SQL Server requires that procedure calls
with parameters be written using the ODBC syntax:

{ CALL procedure_name(?, ?, ...) }

♦ CHAR columns In Microsoft SQL Server, CHAR data types are fixed
length and blank-padded to the full length of the string. In MobiLink
remote databases (Adaptive Server Anywhere or UltraLite) CHAR is the
same as VARCHAR: values are not blank-padded to a fixed width. The
dbmlsrv9 -b command line option can be used to remove trailing blanks
from strings during synchronization. This option is important for string
comparisons used to detect conflicts.

☞ For more information, see“-b option” on page 195.

♦ Data type mapping For details of how Adaptive Server Anywhere data
types are mapped to SQL Server data types, see“Microsoft SQL Server
data mapping” on page 540.

43

http://www.ianywhere.com/developer/technotes/odbc_mobilink.html

CHAPTER 4

Synchronization Techniques

About this chapter This chapter describes a variety of techniques that you can use to tackle
common synchronization tasks encountered in MobiLink installations.

☞ There are sample applications that provide examples of the techniques
that are described in this chapter. For more information, see“The Contact
Sample Application”[MobiLink Tutorials,page 83], and“The CustDB Sample
Application” [MobiLink Tutorials,page 99].

The techniques in this chapter are illustrated using SQL scripts. Many of the
same techniques can be implemented in Java or .NET synchronization logic.
For more information, see

♦ “Writing Synchronization Scripts in Java” on page 255

♦ “Writing Synchronization Scripts in .NET” on page 281

Contents Topic: page

Introduction 46

Development tips 47

Timestamp-based synchronization 48

Snapshot synchronization 50

Partitioning rows among remote databases 52

Maintaining unique primary keys 56

Handling conflicts 64

Data entry 72

Handling deletes 73

Handling failed downloads 74

Downloading a result set from a stored procedure call 78

Schema changes in remote databases 81

45

Introduction
The chapter“Writing Synchronization Scripts” on page 227describes how
to write simple synchronization scripts, store them in your database, and test
that they are free of syntax errors.

Many useful synchronization features require not just one script, but a set of
scripts working together. This chapter describes how to implement some
common synchronization techniques. The examples describe SQL
synchronization scripts. You can also use Java or .NET synchronization
logic, although the upload and download events still require a knowledge of
the SQL scripts.

Example The timestamp-based synchronization of the Customer table used in the
Contact sample application requires the following scripts:

♦ An upload_insertscript to handle new rows added at remote databases at
the consolidated database.

♦ An upload_updatescript to handle modifications made at remote
databases at the consolidated database.

♦ An upload_deletescript to handle rows deleted from remote databases at
the consolidated database.

♦ A download_cursorscript to download new and updated rows to remote
databases.

♦ A download_delete_cursorscript to download rows to be deleted from
remote databases.

46

Chapter 4. Synchronization Techniques

Development tips
Adding synchronization functionality to an application adds an added level
of complexity to your application. The following tips may be useful.

♦ Wait If you try to add synchronization to a prototype application, it can
be difficult to see which components are causing problems. This is
particularly the case with UltraLite applications, where database and
application are compiled together. When developing a prototype,
temporarily hard code INSERT statements in your application to provide
data for testing and demonstration purposes. Once your prototype is
working correctly, enable synchronization and discard the temporary
INSERT statements.

♦ Go step-by-step Start with straightforward synchronization techniques.
Operations such as a simple upload or download require only one or two
scripts. Once those are working correctly, you can introduce more
advanced techniques, such as timestamps, primary key pools, and conflict
resolution.

Following are some fundamental rules of MobiLink synchronization
applications.

♦ Every table that is to be synchronized must have a primary key.

♦ Don’t update the values of primary keys.

♦ Primary keys must be unique across all synchronized databases.

♦ The MobiLink user name that identifies each remote database must be
unique.

47

Timestamp-based synchronization
The timestamp method is the most useful general technique for efficient
synchronization. The technique involves tracking the last time that each user
synchronized, and using this information to control the rows downloaded to
each remote database.

MobiLink maintains a timestamp value indicating when each MobiLink user
last downloaded data. This value is called thelast download timestamp.
The last download timestamp is provided as a parameter to many events, and
can be used in synchronization scripts.

If you are using an Adaptive Server Anywhere consolidated database and the
column holding last modified information is of type DEFAULT
TIMESTAMP, then the column should not be synchronized. If your remote
databases require such a column, a different column name should be used.
Otherwise, the default timestamp value may be overridden by the uploaded
value, and will not contain the time that the row was last modified on the
consolidated.

❖ To implement timestamp-based synchronization for a table

1. At the consolidated database, add a column that holds the most recent
time the row was modified. The column is typically declared as follows:

DBMS last modified column

Adaptive Server Anywhere timestamp DEFAULT timestamp

Adaptive Server Enterprise datetime

Microsoft SQL Server datetime

Oracle date

IBM DB2 timestamp

2. In scripts for the download_cursor and download_delete_cursor events,
compare the first parameter to the value in the timestamp column.

Example The following table declaration and scripts implement timestamp-based
synchronization on the Customer table in the Contact sample:

♦ Table definition:

48

Chapter 4. Synchronization Techniques

CREATE TABLE "DBA"."Customer"(
"cust_id" integer NOT NULL

DEFAULT GLOBAL AUTOINCREMENT,
"name" char(40) NOT NULL,
"rep_id" integer NOT NULL,
"last_modified" timestamp NULL DEFAULT timestamp,
"active" bit NOT NULL,
PRIMARY KEY ("cust_id"))

♦ download_delete_cursor script:

SELECT cust_id
FROM Customer JOIN SalesRep
ON Customer.rep_id = SalesRep.rep_id
WHERE Customer.last_modified >= ?

AND (SalesRep.ml_username != ?
OR Customer.active = 0)

♦ download_cursor script:

SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer KEY JOIN SalesRep
WHERE Customer.last_modified >= ?
AND SalesRep.ml_username = ?
AND Customer.active = 1

☞ For more information, see“Synchronization logic source code”
[MobiLink Tutorials,page 113], and“Synchronizing contacts in the Contact
sample”[MobiLink Tutorials,page 93].

49

Snapshot synchronization
Timestamp-based synchronization is appropriate for most synchronizations.
However, occasionally you may want to update a snapshot of your data.

Snapshot synchronization of a table is a complete download of all relevant
rows in the table, even if they have been downloaded before. This is the
simplest synchronization method, but can involve unnecessarily large data
sets being exchanged, which can limit performance.

You can use snapshot synchronization for downloading all the rows of the
table, or in conjunction with a partitioning of the rows as described in
“Partitioning rows among remote databases” on page 52.

When to use snapshot
synchronization

The snapshot method is typically most useful for tables that have both the
following characteristics.

♦ Relatively few rows When there are few rows, the overhead associated
with downloading all of them is small.

♦ Rows that change frequently When most rows in a table change
frequently, there is little to be gained by explicitly excluding those that
have not changed since the last synchronization.

A table that holds a list of exchange rates could be suited to this approach
because there are relatively few currencies, but the rates of most change
frequently. Depending on the nature of the business, a table that holds
prices, a list of interest rates, or current news items could all be candidates.

❖ To implement snapshot-based synchronization

1. Leave the upload scripts undefined unless remote users update the values.

2. If the table may have rows deleted, write a download_delete_cursor script
that deletes all the rows from the remote table, or at least all rows no
longer required. Do not delete the rows from the consolidated database;
rather, mark them for deletion. You must know the row values to delete
them from the remote database.

☞ For more information, see“Writing download_delete_cursor scripts”
on page 248.

3. Write a download_cursor script that selects all the rows you want to
include in the remote table.

Deleting rows Rather than deleting rows from the consolidated database, mark them for
deletion. You must know the row values to delete them from the remote
database. Select only unmarked rows in the download_cursor script and only
marked rows in the download_delete_cursor script.

50

Chapter 4. Synchronization Techniques

The download_delete_cursor script is executed before the download_cursor
script. If a row is to be included in the download stream, you need not
include a row with the same primary key in the delete list. When a
downloaded row is received at the remote location, it replaces a preexisting
row with the same primary key.

☞ For more information, see“Writing scripts to download rows” on
page 246.

An alternative deletion
technique

Rather than delete rows from the remote database using a download_cursor
script, you can allow the remote application to delete the rows. For example,
immediately following synchronization, you could allow the application to
execute SQL statements that delete the unneeded rows.

Rows deleted by the application are ordinarily uploaded to the MobiLink
synchronization server upon the next synchronization, but you can prevent
this upload using the STOP SYNCHRONIZATION DELETE statement. For
example,

STOP SYNCHRONIZATION DELETE;
DELETE FROM table-name

WHERE expiry_date < CURRENT TIMESTAMP;
COMMIT;
START SYNCHRONIZATION DELETE;

☞ For more information about deleting rows, see“Writing
download_delete_cursor scripts” on page 248.

Snapshot example The ULProduct table in the sample application is maintained by snapshot
synchronization. The table contains relatively few rows, and for this reason,
there is little overhead in using snapshot synchronization.

1. There is no upload script. This reflects a business decision that products
cannot be added at remote databases.

2. There is no download_delete_cursor, reflecting an assumption that
products are not removed from the list.

3. The download_cursor script selects the product identifier, price, and
name of every current product. If the product is pre-existing, the price in
the remote table will be updated. If the product is new, a row will be
inserted in the remote table.

SELECT prod_id, price, prod_name
FROM ULProduct

☞ For another example of snapshot synchronization in a table with very
few rows, see“Synchronizing sales representatives in the Contact sample”
[MobiLink Tutorials,page 91].

51

Partitioning rows among remote databases
Each MobiLink remote database can contain a different subset of the data in
the consolidated database. Stated another way, you can write your scripts so
that data ispartitioned among remote databases.

The partitioning may be disjoint, or it may contain overlaps. For example, if
each employee has their own set of customers, with no shared customers, the
partitioning would bedisjoint . If there are shared customers, who appear in
more than one remote database, the partitioning containsoverlaps.

Partitioning is implemented in the download_cursor and
download_delete_cursor scripts for the table, which define the rows to be
downloaded to the remote database. Each of these scripts takes a MobiLink
user name as a parameter parameter. By defining your scripts using this
parameter in the WHERE clause, each user gets the appropriate rows.

Disjoint partitioning

Partitioning is controlled by the download_cursor and
download_delete_cursor scripts for each table involved in synchronization.
These scripts take two parameters, a last download timestamp and the
MobiLink user name supplied in the call to synchronize.

❖ To partition a table among remote databases

1. Include in the table definition a column containing the synchronization
user name in the consolidated database. You need not download this
column to remote databases.

2. Include a condition in the WHERE clause of the download_cursor and
download_delete_cursor scripts requiring this column to match the script
parameter.

The script parameter is represented by a question mark in the script. The
user name is the second parameter in the download_cursor script. For
example, the following download_cursor script partitions the Contact
table by employee ID.

SELECT id, contact_name
FROM Contact
WHERE last_modified >= ?
AND emp_id = ?

☞ For more information, see“download_cursor table event” on
page 371, and“download_delete_cursor table event” on page 375.

Example The primary key pool tables in the CustDB sample application are used to

52

Chapter 4. Synchronization Techniques

supply each remote database with its own set of primary key values. This
technique is used to avoid duplicate primary keys, and is discussed in
“Maintaining unique primary keys using key pools” on page 60.

A necessary feature of the method is that primary key-pool tables must be
partitioned among remote databases in a disjoint fashion.

One key-pool table is ULCustomerIDPool, which holds primary key values
for each user to use when they add customers. The table has three columns:

♦ pool_cust_id A primary key value for use in the ULCustomer table.
This is the only column downloaded to the remote database.

♦ pool_emp_id The employee who owns this primary key.

♦ last_modified This table is maintained using the timestamp technique,
based on the last_modified column.

☞ For information on timestamp synchronization, see
“Timestamp-based synchronization” on page 48.

The download_cursor script for this table is as follows.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE last_modified >= ?

AND pool_emp_id = ?

When not using a variable, you should use a join or sub-selection that
includes the? placeholder.

☞ For more information, see“Synchronizing customers in the Contact
sample”[MobiLink Tutorials,page 91], and“Synchronizing contacts in the
Contact sample”[MobiLink Tutorials,page 93].

Partitioning with overlaps

Some tables in your consolidated database may have rows that belong to
many remote databases. Each remote database has a subset of the rows in
the consolidated database and the subset overlaps with other remote
databases. This is frequently the case with a customer table. In this case,
there is a many-to-many relationship between the table and the remote
databases and there will usually be a table to represent the relationship. The
scripts for the download_cursor and download_delete_cursor events need to
join the table being downloaded to the relationship table.

Example The CustDB sample application uses this technique for the ULOrder table.
The ULEmpCust table holds the many-to-many relationship information
between ULCustomer and ULEmployee.

53

Each remote database receives only those rows from the ULOrder table for
which the value of the emp_id column matches the MobiLink user name.

The Adaptive Server Anywhere version of the download_cursor script for
ULOrder in the CustDB application is as follows:

SELECT o.order_id, o.cust_id, o.prod_id,
o.emp_id, o.disc, o.quant, o.notes, o.status

FROM ULOrder o , ULEmpCust ec
WHERE o.cust_id = ec.cust_id

AND ec.emp_id = ?
AND (o.last_modified >= ?

OR ec.last_modified >= ?)
AND (o.status IS NULL

OR o.status != ’Approved’)
AND (ec.action IS NULL)

This script is fairly complex. It illustrates that the query defining a table in
the remote database can include more than one table in the consolidated
database. The script downloads all rows in ULOrder for which all of the
following are true:

♦ the cust_id column in ULOrder matches the cust_id column in
ULEmpCust

♦ the emp_id column in ULEmpCust matches the synchronization user
name

♦ the last modification of either the order or the employee-customer
relationship was later than the most recent synchronization time for this
user

♦ the status is anything other thanApproved

The action column on ULEmpCust is used to mark columns for delete. Its
purpose is not relevant to the current topic.

The download_delete_cursor script is as follows.

SELECT o.order_id
FROM ULOrder o, ULEmpCust ec
WHERE o.cust_id = ec.cust_id

AND ec.emp_id = ?
AND (o.last_modified >= ? OR

c.last_modified >= ?)
AND (o.status IS NULL OR

o.status != ’Approved’)
AND (ec.action IS NULL)

This script deletes all approved rows from the remote database.

54

Chapter 4. Synchronization Techniques

Partitioning child tables

The example in“Partitioning with overlaps” on page 53illustrates how to
partition tables based on a criterion in some other table.

Some tables in your remote database may have disjoint subsets or
overlapping subsets, but do not contain a column that determines the subset.
These are child tables that usually have a foreign key (or a series of foreign
keys) referencing another table. The referenced table has a column that
determines the correct subset.

In this case, the download_cursor script and the download_delete_cursor
script need to join the referenced tables and have a WHERE clause that
restricts the rows to the correct subset.

☞ For an example, see“Synchronizing contacts in the Contact sample”
[MobiLink Tutorials,page 93].

55

Maintaining unique primary keys
Every table that is to be synchronized must have a primary key, and the
primary key must be unique across all synchronized databases. The values
of primary keys should not be updated.

It is often convenient to use a single column as the primary key for tables.
For example, each customer should be assigned a unique identification
value. If all the sales representatives work in an environment where they can
maintain a direct connection to the database, assigning these numbers is
easily accomplished. Whenever a new customer is inserted into the customer
table, automatically add a new primary key value that is greater than the last
value.

In a disconnected environment, assigning unique values for primary keys
when new rows are inserted is not as easy. When a sales representative adds
a new customer, she is doing so to a remote copy of the Customer table. You
must prevent other sales representatives, working on other copies of the
Customer table, from using the same customer identification value.

This section describes the following ways to solve the problem of how to
generate unique primary keys:

♦ Using Universally Unique IDs (UUIDs)

♦ Using global autoincrement values.

♦ Using primary key pools.

Maintaining unique primary keys using UUIDs

You can ensure that primary keys in Adaptive Server Anywhere databases
are unique by using the newid() function to create universally unique values
for your primary key. The resulting UUIDs can be converted to a string
using the uuidtostr() function, and converted back to binary using the
strtouuid() function.

UUIDs are unique across all computers. However, the values are completely
random and so cannot be used to determine when a value was added, or the
order of values. UUID values are also considerably larger than the values
required by other methods (including global autoincrement), and require
more table space in both the primary and foreign key tables. Indexes on
tables using UUIDs are also less efficient.

☞ For more information, see

♦ “The NEWID default” [ASA SQL User’s Guide,page 86]

56

Chapter 4. Synchronization Techniques

♦ “NEWID function [Miscellaneous]”[ASA SQL Reference,page 185]

♦ “UNIQUEIDENTIFIER data type [Binary]”[ASA SQL Reference,page 75]

Example The following CREATE TABLE statement creates a primary key that is
universally unique:

CREATE TABLE customer (
cust_key UNIQUEIDENTIFIER NOT NULL

DEFAULT NEWID(),
rep_key VARCHAR(5),
PRIMARY KEY(cust_key))

Maintaining unique primary keys using global autoincrement

In Adaptive Server Anywhere and UltraLite databases, you can set the
default column value to be GLOBAL AUTOINCREMENT. You can use this
default for any column in which you want to maintain unique values, but it is
particularly useful for primary keys.

❖ To use global autoincrement columns

1. Declare the column as a global autoincrement column.

When you specify default global autoincrement, the domain of values for
that column is partitioned. Each partition contains the same number of
values. For example, if you set the partition size for an integer column in
a database to 1000, one partition extends from 1001 to 2000, the next
from 2001 to 3000, and so on.

☞ See“Declaring default global autoincrement” on page 58.

2. Set the GLOBAL_DATABASE_ID value.

Adaptive Server Anywhere supplies default values in a database only
from the partition uniquely identified by that database’s number.
For example, if you assigned the database in the above example the
identity number 10, the default values in that database would be chosen
in the range 10001–11000. Another copy of the database, assigned the
identification number 11, would supply default value for the same
column in the range 11001–12000.

☞ See“Setting the GLOBAL_DATABASE_ID value” on page 58.

For more information This section describes how to use global autoincrement columns in Adaptive
Server Anywhere remote databases. For information on using global
autoincrement columns in UltraLite databases, see“Declaring default global
autoincrement columns”[MobiLink Clients,page 291].

57

☞ For information on how global autoincrement columns work in Adaptive
Server Anywhere databases, see“How default values are chosen” on
page 59.

Declaring default global autoincrement

You can set default values in your database by selecting the column
properties in Sybase Central, or by including the DEFAULT GLOBAL
AUTOINCREMENT phrase in a CREATE TABLE or ALTER TABLE
statement.

Optionally, the partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may be any
positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is
216 = 65536; for columns of other types the default partition size is 232 =
4294967296. Since these defaults may be inappropriate, especially if our
column is not of type INT or BIGINT, it is best to specify the partition size
explicitly.

For example, the following statement creates a simple table with two
columns: an integer that holds a customer identification number and a
character string that holds the customer’s name.

CREATE TABLE customer (
id INT DEFAULT GLOBAL AUTOINCREMENT (5000),
name VARCHAR(128) NOT NULL,
PRIMARY KEY (id)

)

In the above example, the chosen partition size is 5000.

☞ For more information on GLOBAL AUTOINCREMENT, see
“CREATE TABLE statement”[ASA SQL Reference,page 407].

Setting the GLOBAL_DATABASE_ID value

When deploying an application, you must assign a different identification
number to each database. You can accomplish the task of creating and
distributing the identification numbers by a variety of means. One method is
to place the values in a table and download the correct row to each database
based on some other unique property, such as user name.

58

Chapter 4. Synchronization Techniques

❖ To set the global database identification number

1. You set the identification number of a database by setting the value of the
public option GLOBAL_DATABASE_ID. The identification number
must be a non-negative integer.

Example For example, the following statement sets the database identification number
to 20.

SET OPTION PUBLIC.GLOBAL_DATABASE_ID = 20

If the partition size for a particular column is 5000, default values for this
database are selected from the range 100001–105000.

How default values are chosen

The public option GLOBAL_DATABASE_ID in each database must be set
to a unique, non-negative integer. The range of default values for a particular
database ispn + 1 top(n + 1), wherep is the partition size andn is the value
of the public option GLOBAL_DATABASE_ID. For example, if the
partition size is 1000 and GLOBAL_DATABASE_ID is set to 3, then the
range is from 3001 to 4000.

If GLOBAL_DATABASE_ID is set to a non-negative integer, Adaptive
Server Anywhere chooses default values by applying the following rules:

♦ If the column contains no values in the current partition, the first default
value ispn + 1.

♦ If the column contains values in the current partition, but all are less than
p(n + 1), the next default value will be one greater than the previous
maximum value in this range.

♦ Default column values are not affect by values in the column outside of
the current partition; that is, by numbers less thanpn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated from
another database via MobiLink synchronization.

If the public option GLOBAL_DATABASE_ID is set to the default value of
2147483647, a null value is inserted into the column. Should null values not
be permitted, the attempt to insert the row causes an error. This situation
arises, for example, if the column is contained in the table’s primary key.

Because the public option GLOBAL_DATABASE_ID cannot be set to
negative values, the values chosen are always positive. The maximum
identification number is restricted only by the column data type and the
partition size.

59

Null default values are also generated when the supply of values within the
partition has been exhausted. In this case, a new value of
GLOBAL_DATABASE_ID should be assigned to the database to allow
default values to be chosen from another partition. Attempting to insert the
null value causes an error if the column does not permit nulls. To detect that
the supply of unused values is low and handle this condition, create an event
of typeGlobalAutoincrement.

Should the values in a particular partition become exhausted, you can assign
a new database id to that database. You can assign new database id numbers
in any convenient manner. However, one possible technique is to maintain a
pool of unused database id values. This pool is maintained in the same
manner as a pool of primary keys.

You can set an event handler to automatically notify the database
administrator (or carry out some other action) when the partition is nearly
exhausted. For more information, see“Defining trigger conditions for
events”[ASA Database Administration Guide,page 308].

☞ For more information, see“Setting the GLOBAL_DATABASE_ID
value” on page 58, and“GLOBAL_DATABASE_ID option [database]”[ASA
Database Administration Guide,page 656].

Maintaining unique primary keys using key pools

One efficient means of solving this problem is to assign each user of the
database a pool of primary key values to assign as the need arises. For
example, you can assign each sales representative 100 new identification
values. Each sales representative can freely assign values to new customers
from his own pool.

❖ To implement a primary key pool

1. Add a new table to the consolidated database and to each remote database
to hold the new primary key pool. Apart from a column for the unique
value, these tables should contain a column for a user name, to identify
who has been given the right to assign the value.

2. Write a stored procedure to ensure that each user is assigned enough new
identification values. Assign more new values to remote users who insert
many new entries or who synchronize infrequently.

3. Write a download_cursor script to select the new values assigned to each
user and download them to the remote database.

4. Modify the application that uses the remote database so that when a user
inserts a new row, the application uses one of the values from the pool.

60

Chapter 4. Synchronization Techniques

The application must then delete that value from the pool so it is not used
a second time.

5. Write an upload scripts. The MobiLink synchronization server will then
delete rows from the consolidated pool of values that a user has deleted
from his personal value pool in the remote database.

6. Write an end_upload script to call the stored procedure that maintains the
pool of values. Doing so has the effect of adding more values to the
user’s pool to replace those deleted during upload.

Example The sample application allows remote users to add customers. It is essential
that each new row has a unique primary key value, and yet each remote
database is disconnected when data entry is occurring.

The ULCustomerIDPool holds a list of primary key values that can be used
by each remote database. In addition, the ULCustomerIDPool_maintain
stored procedure tops up the pool as values are used up. The maintenance
procedures are called by a table-level end_upload script, and the pools at
each remote database are maintained by upload_cursor and
download_cursor scripts.

1. The ULCustomerIDPool table in the consolidated database holds the pool
of new customer identification numbers. It has no direct link to the
ULCustomer table.

ULCustomer

cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmployee

emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool

pool_cust_id integer
pool_emp_id integer
last_modified timestamp

emp_id = pool_emp_id

2. The ULCustomerIDPool_maintain procedure updates the
ULCustomerIDPool table in the consolidated database. The following
sample code is for an Adaptive Server Anywhere consolidated database.

61

CREATE PROCEDURE ULCustomerIDPool_maintain (IN syncuser_id
INTEGER)

BEGIN
DECLARE pool_count INTEGER;

-- Determine how may ids to add to the pool
SELECT COUNT(*) INTO pool_count
FROM ULCustomerIDPool
WHERE pool_emp_id = syncuser_id;

-- Top up the pool with new ids
WHILE pool_count < 20 LOOP

INSERT INTO ULCustomerIDPool (pool_emp_id)
VALUES (syncuser_id);
SET pool_count = pool_count + 1;

END LOOP;
END

This procedure counts the numbers presently assigned to the current user,
and inserts new rows so that this user has a sufficient supply of customer
identification numbers.

This procedure is called at the end of the upload stream, by the
end_upload table script for the ULCustomerIDPool table. The script is as
follows:

CALL ULCustomerIDPool_maintain(?)

3. The download_cursor script for the ULCustomerIDPool table downloads
new numbers to the remote database.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE pool_emp_id = ?
AND last_modified >= ?

4. To insert a new customer, the application using the remote database must
select an unused identification number from the pool, delete this number
from the pool, and insert the new customer information using this
identification number. The following embedded SQL function for an
UltraLite application retrieves a new customer number from the pool.

62

Chapter 4. Synchronization Techniques

bool CDemoDB::GetNextCustomerID(void)
/ ************************************* /
{

short ind;

EXEC SQL SELECT min(pool_cust_id)
INTO :m_CustID:ind FROM ULCustomerIDPool;
if(ind < 0) {

return false;
}
EXEC SQL DELETE FROM ULCustomerIDPool
WHERE pool_cust_id = :m_CustID;
return true;

}

63

Handling conflicts

Caution
Don’t update primary keys in a MobiLink environment. A primary key
uniquely identifies a row for conflict detection purposes.

Conflicts arise during the upload of rows to the consolidated database. If two
users modify the same row on different remote databases, a conflict is
detected when the second of the rows arrives at the MobiLink
synchronization server. When conflicts can occur, you should define a
process to compute the correct values, or at least to log the conflict.

During the download stage of a synchronization, no conflicts arise in the
remote database. If a downloaded row contains a new primary key, the
values are inserted into a new row. If the primary key matches that of a
pre-existing row, the values in the row are updated.

Conflicts are not the same as errors. Conflict handling is an integral part of a
well-designed application.

Default behavior Conflicts are detected only during updates of a row. An attempt to update a
row that has been updated or deleted since that last synchronization is a
conflict. By default:

♦ If an attempt to insert a row finds that the row has already been inserted,
an error is generated.

♦ If an attempt to delete a row finds that the row has already been deleted,
the attempt to delete is ignored.

These are the built-in behaviors that have been defined for convenience. If
you need different behavior, you may implement it yourself using one or
more of the upload events.

☞ For a description of how to handle syncrhonization conflicts, see
“Tutorial: Writing MobiLink Scripts and Monitoring Synchronizations”
[MobiLink Tutorials,page 13].

Detecting conflicts

When a MobiLink client sends an updated row to the MobiLink
synchronization server, it includes not only the new values (the post-image),
but also a copy of the old row values (the pre-image). When the pre-image
does not match the current values in the consolidated database, a conflict is
detected.

There are two ways to detect conflicts:

64

Chapter 4. Synchronization Techniques

♦ Define an upload_fetch script.

♦ Define an upload_update script that includes all non-primary key
columns in the WHERE clause.

If you define both of these scripts for the same table, only the upload_fetch
script is used.

The MobiLink synchronization server detects conflicts only if an
upload_fetch or appropriate upload_update script is applied. If an
upload_fetch script is supplied, the MobiLink synchronization server
compares the pre-image of an update to the values of the row returned by the
upload_fetch script with the same primary key values. If values in the
pre-image do not match the current consolidated values, the MobiLink
synchronization server detects a conflict.

upload_fetch The upload_fetch script typically selects a single row of data from a
consolidated database table corresponding to the row being updated. A
typical upload_fetch script has the following syntax:

SELECT col1, col2, . . .
FROM table-name
WHERE pk1 = ? AND pk2 = ? . . .

☞ For more information, see“upload_fetch table event” on page 461.

upload_update The upload_update script provides a parameter for each column in the row.

The parameters for an upload_update event are arranged so that statements
with the following syntax update rows correctly:

UPDATE table-name
SET col1 = ?, col2 = ?, . . .
WHERE pk1 = ? AND pk2 = ? . . .

In this statement, col1, col2 and so on are the non-primary key columns,
while pk1, pk2 and so on are primary key columns.

For a conflict to be detected, the syntax must be as follows:

UPDATE table-name
SET col1 = ?, col2 = ?, . . .
WHERE pk1 = ? AND pk2 = ? . . .
AND col1 = ? AND col2 = ? . . .

The WHERE clause compares old values uploaded from the remote to
current values in the consolidated database. If the values do not match, the
update is ignored, thus preserving the values already on the consolidated
database.

☞ For more information, see“upload_update table event” on page 475.

65

Resolving conflicts

You have several options for resolving conflicts:

♦ Resolve conflicts as they occur using temporary or permanent tables and
a resolve_conflict script.

☞ See“Resolving conflicts with resolve_conflict scripts” on page 66.

♦ Resolve conflicts as they occur using an upload_update script.

☞ See“Resolving conflicts with upload_update scripts” on page 68.

♦ Resolve all conflicts at once using a table’s end_upload event.

☞ See“end_upload table event” on page 404.

☞ For an example of conflict resolution using statement-based uploads, see
“Synchronizing products in the Contact sample”[MobiLink Tutorials,page 95].

Example For example, User1 starts with an inventory of ten items, and then sells three
and updates the Remote1 inventory value to seven items. User2 sells four
items and updates the Remote2 inventory to six. When Remote1
synchronizes, the consolidated database is updated to seven. When Remote2
synchronizes, a conflict is detected because the value of the inventory is no
longer ten. To resolve this conflict programmatically, you need three row
values:

1. The current value in the consolidated database.

2. The new row value that Remote2 uploaded.

3. The old row value that Remote2 obtained during the last synchronization.

In this case, the business logic would use the following to calculate the new
inventory value and resolve the conflict:

current consolidated - (old remote - new remote)
-> 7 - (10-6) = 3

Resolving conflicts with resolve_conflict scripts

When the MobiLink synchronization server detects a conflict using an
upload_fetch script, the following events take place.

♦ The MobiLink synchronization server inserts old row values uploaded
from the remote database as defined by the upload_old_row_insert script.
Typically, the old values are inserted into a temporary table.

☞ For more information, see“upload_old_row_insert table event” on
page 467.

66

Chapter 4. Synchronization Techniques

♦ The MobiLink synchronization server inserts the new row values
uploaded from the remote database as defined by the
upload_new_row_insert script. Typically, the new values are inserted into
a temporary table.

☞ For more information, see“upload_new_row_insert table event” on
page 465.

♦ The MobiLink synchronization server executes the resolve_conflict
script. In this script you can either call a stored procedure, or define a
sequence of steps to resolve the conflict using the new and old row values.

☞ For more information, see“resolve_conflict table event” on page 442.

Example In the following example, you create scripts for six events and then you
create a stored procedure.

♦ In the begin_synchronization script, you create two temporary tables
called contact_new and contact_old. This is done in
begin_synchronization instead of begin_connection so that the
corresponding “end_” script will run even if the synchronization fails,
ensuring that the temporary tables are deleted.

♦ In the upload_old_row_insert and upload_new_row_insert scripts, you
populate the two temporary tables with the new and old data uploaded
from the remote database.

♦ The upload_fetch script detects the conflict.

♦ The resolve_conflict script calls the stored procedure MLResolveConflict
to resolve the conflict.

Event Script

begin_synchronization CREATE TABLE #contact_new(
id INTEGER,
location CHAR(36),
contact_date DATE);

CREATE TABLE #contact_old(
id INTEGER,
location CHAR(36),
contact_date DATE)

upload_fetch SELECT id, location, contact_date
FROM contact
WHERE id = ?

upload_old_row_insert INSERT INTO #contact_new(id,
location, contact_date)
VALUES (?, ?, ?)

67

Event Script

upload_new_row_insert INSERT INTO #contact_old(id,
location, contact_date)

VALUES (?, ?, ?)

resolve_conflict CALL MLResolveConflict()

end_synchronization DROP TABLE #contact_new;
DROP TABLE #contact_old

The stored procedure MLResolveConflict is as follows:

CREATE PROCEDURE MLResolveConflict()
BEGIN

--update the consolidated database only if the new contact
date

--is later than the existing contact date
UPDATE contact c

SET c.contact_date = cn.contact_date
FROM #contact_new cn
WHERE c.id = cn.id

AND cn.contact_date > c.contact_date;
--cleanup
DELETE FROM #contact_new;
DELETE FROM #contact_old;

END

Resolving conflicts with upload_update scripts

Instead of using the resolve_conflict script for conflict resolution, you can
call a stored procedure in the upload_update script. With this technique, you
must both detect and resolve conflicts programmatically.

For example, the following stored procedure, sp_update_customer, contains
logic for conflict detection and resolution. It accepts new column values,
primary keys, and old column values for parameters.

68

Chapter 4. Synchronization Techniques

call ml_add_table_script(’version_1’, ’customer’, ’upload_
update’, ’

CALL sp_update_customer (?,?,?,?,?,?)
)

CREATE PROCEDURE sp_update_customer(
IN @new_first_name varchar(30)

,IN @new_last_name varchar(30)
,IN @new_nullable_col varchar(30)
,IN @new_last_modified timestamp
,IN @cust_1st_pk integer
,IN @cust_2nd_pk integer
,IN @old_first_name varchar(30)
,IN @old_last_name varchar(30)
,IN @old_nullable_col varchar(30)
,IN @old_last_modified timestamp

)

To detect a conflict you can check the number of rows affected by the
following update operation. The WHERE clause compares old values
uploaded from the remote to current values in the consolidated database. If
the values match, the update succeeds and no conflict has occurred.

UPDATE customer
SET first_name = @new_first_name,

last_name = @new_last_name,
nullable_col = @new_nullable_col,
last_modified = @new_last_modified

WHERE cust_1st_pk = @cust_1st_pk
AND cust_2nd_pk = @cust_2nd_pk
AND first_name = @old_first_name
AND last_name = @old_last_name
AND COALESCE(nullable_col, ’’) = COALESCE(@old_nullable_col,

’’)
AND last_modified = @old_last_modified;

...

Note:
The COALESCE function returns the first non-NULL expression from a
list, and is used in this case to compare values for a nullable column.

☞ For more information, see“COALESCE function [Miscellaneous]”
[ASA SQL Reference,page 115].

You can use a mechanism in your consolidated database to determine the
outcome of the update statement shown above. Using Adaptive Server
Anywhere, for example, you can check the @@rowcount global variable to
determine the number of rows affected by the update. If @@rowcount = 0
then a conflict has occurred, and you can programmatically resolve the
conflict, as follows. In this example, the database with the most recent

69

update wins the conflict. If the consolidated database wins the conflict, it
retains its current values and no action is taken.

IF(@@rowcount = 0) THEN
-- A conflict has been detected. To resolve, you:
-- b) Use business logic to determine which values to use
-- c) Update the consolidated database with the final values

IF(@new_last_modified > @current_last_modified) THEN
-- The remote has won the conflict
-- use the values it uploaded.

UPDATE customer
SET first_name = @new_first_name,

last_name = @new_last_name,
nullable_col = @new_nullable_col,
last_modified = @new_last_modified
WHERE cust_1st_pk = @cust_1st_pk

AND cust_2nd_pk = @cust_2nd_pk;

END IF;
END IF;

Forced conflicts

Forced conflict resolution is a special technique that forces every uploaded
row to be treated as if it were a conflict.

The MobiLink synchronization server uses forced conflict resolution when
the upload_insert, upload_update, and upload_delete script are all undefined.
In this mode of operation, the MobiLink synchronization server attempts to
insert all uploaded rows from that table using the statements defined by the
upload_old_row_insert and upload_new_row_insert scripts. In essence, all
uploaded rows are then treated as conflicts. You can write stored procedures
or scripts to process the uploaded values in any way you want.

Without any of the upload_insert, upload_update, or upload_delete scripts,
the normal conflict-resolution procedure is bypassed. This technique has two
principal uses.

♦ Arbitrary conflict detection and resolution The automatic mechanism
only detects errors when updating a row, and only then when the old
values do not match the present values in the consolidated database.

You can capture the raw uploaded data using the upload_old_row_insert
and upload_new_row_insert scripts, then process the rows as you see fit.

♦ Performance When the upload_insert, upload_update, and
upload_delete are not defined, the MobiLink synchronization server is
relieved of its normal conflict-detection tasks, which involve querying the

70

Chapter 4. Synchronization Techniques

consolidated database one row at a time. Instead, it needs only to insert
the raw uploaded information using the statements defined by the
upload_old_row_insert and upload_new_row_insert scripts. Since only
inserts are involved, the MobiLink synchronization server performs more
efficiently.

Storing the user name

When you write upload_old_row_insert or upload_new_row_insert scripts,
you can include an extra parameter in your INSERT statement. If you do so,
the MobiLink synchronization server automatically inserts the user name
into the first parameter, and then uses the rest of the parameters as usual.
This mechanism is available because some database-management systems
provide no convenient mechanism to store the identity of the current user.

You can use this feature to conveniently identify which user inserted each
row. It is also useful when one or two tables are used to hold the new and old
uploaded values from many different users at the same time. This
information allows you to include user-specific logic in the resolve_conflict
script.

For example, an ordinary upload_old_row_insert script is of the following
form. The items in the select list correspond to the columns of the remote
table.

INSERT INTO MyTable (c1, c2, . . . , cN) VALUES (?,?,...,?)

However, the following syntax is also permitted.

INSERT INTO MyTableWithUser (user_name, c1, c2, . . . , cN)
VALUES (?,?,...,?)

Normally, the selected columns must match the columns of the remote table
in both number and type. This case is an exception. The single extra
parameter in the values list must be of a type suitable to hold the user name;
for example, VARCHAR(128). The subsequent parameters in the list must
match the columns of the remote table in order and type, as usual. If you
include more than one extra parameter, an error results.

☞ For more information, see“upload_old_row_insert table event” on
page 467and“upload_new_row_insert table event” on page 465.

71

Data entry
In some databases, there are tables that are only used for data entry. One
way of processing these tables is to upload all inserted rows at each
synchronization, and remove them from the remote database on the
download stream. After synchronization, the remote table is empty again,
ready for another batch of data.

To achieve this model, you can upload rows into a temporary table and then
insert them into a base table using an end_upload table script. The
temporary table can be used in the download_delete_cursor to remove rows
from the remote database following a successful synchronization.

Alternatively, you can allow the client application to the delete the rows,
using the STOP SYNCHRONIZATION DELETE statement to stop the
deletes being uploaded during the next synchronization.

☞ For more information, see“STOP SYNCHRONIZATION DELETE
statement [MobiLink]”[ASA SQL Reference,page 637].

72

Chapter 4. Synchronization Techniques

Handling deletes
When rows are deleted from the consolidated database, there needs to be a
record of the row so it can be removed from any remote databases that have
the row.

One technique is to not delete the row. Data that is no longer required can be
marked as inactive by changing a status column in the row. In this case,
called a logical delete, the download_cursor and download_delete_cursor
can refer to the status of the row in the WHERE clause. This technique is
used in the ULEmpCust table in the CustDB sample application, in which
the action column holds a D for Delete. The scripts use this value to delete
the record from the remote database, and delete the record from the
consolidated database at the end of the synchronization. CustDB also uses
this technique for the ULOrder table, and the Contact sample uses the
technique on the Customer, Contact, and Product tables.

A second technique is to have a shadow table that stores the primary key
values of deleted rows. When a row is deleted, a trigger can populate the
shadow table. The download_delete_cursor can use the shadow table to
remove rows from remote databases. The shadow table only needs to have
the primary key columns from the real table.

☞ For more information, see“Writing download_delete_cursor scripts” on
page 248.

73

Handling failed downloads
Bookkeeping information about what is downloaded must be maintained in
the download transaction. This information is updated atomically with the
download being applied to the remote database.

If a failure occurs before the entire download stream is applied to the remote
database, and if you change SendDownloadAck to ON, then the MobiLink
synchronization server does not get confirmation for the download and rolls
back the download transaction. Since the bookkeeping information is part of
the download transaction, it is also rolled back. Next time the download
stream is built, it will use the original bookkeeping information.

☞ For more information, see“SendDownloadACK (sa) extended option”
[MobiLink Clients,page 131]or “Send Download Acknowledgement
synchronization parameter”[MobiLink Clients,page 331].

When testing your synchronization scripts, you should add logic to your
end_download script that causes occasional failures. This will ensure that
your scripts can handle a failed download.

Resuming failed downloads

Download failure is caused by a communication error during download or a
user aborting the download. MobiLink has functionality that helps you
recover from download failure, and may help you avoid having to retransmit
the entire download. This functionality has separate implementations for
Adaptive Server Anywhere and UltraLite remote databases.

Adaptive Server
Anywhere remote
databases

When synchronization fails during a download, none of the download is
applied to the remote database. However, the part of the download that was
successfully transmitted is stored in a temporary file on the remote device.
You cannot access this file directly, but dbmlsync provides functionality that
makes use of the file. When you use this functionality, you may be able to
avoid lengthy retransmission of data. You may also be able to recover from
download failure automatically.

Note
The download cannot be resumed when the SendDownloadACK extended
option is set to ON (the default is OFF) or when the DownloadBufferSize
extended option is set to 0 (which is also not the default).

There are three ways to implement this functionality. In all cases, the
resumed download will fail if there is any new data to be uploaded, and
dbmlsync will abort.

74

Chapter 4. Synchronization Techniques

♦ -dc After a download fails, use -dc the next time you start dbmlsync to
resume the download. If part of the failed download was transmitted, the
MobiLink synchronization server will only transmit the remainder of the
download.

☞ For more information, see“-dc option” [MobiLink Clients,page 103].

♦ ContinueDownload (cd) extended option When used on the dbmlsync
command line, the cd extended option works just like the -dc option. You
can also store this option in the database, or use
sp_hook_dbmlsync_set_extended_options to set this option in a single
synchronization.

☞ For more information, see“ContinueDownload (cd) extended
option” [MobiLink Clients,page 112]and
“sp_hook_dbmlsync_set_extended_options”[MobiLink Clients,page 225].

♦ sp_hook_dbmlsync_end hook You can use therestart parameter to
cause a download to resume. You know a download is resumable if the
restartable downloadparameter is set to true. You can also create logic
in the hook to resume a download if a download file exists and is a certain
size.

☞ For more information, see“sp_hook_dbmlsync_end”[MobiLink
Clients,page 212].

UltraLite remote
databases

You can control the behavior of UltraLite applications following a failed
download as follows:

♦ If you set the Keep Partial Download synchronization parameter to true
when you synchronize, and the download fails before completion, then
UltraLite applies that portion of the changes that were downloaded.
UltraLite also sets the Partial Download Retained synchronization
parameter to true.

The UltraLite database may be in an inconsistent state at this point.
Depending on your application, you may wish to ensure that
synchronization completes successfully or is rolled back before you allow
changes to the data.

☞ For more information, see“Keep Partial Download synchronization
parameter”[MobiLink Clients,page 321], and“Partial Download Retained
synchronization parameter”[MobiLink Clients,page 324].

♦ To resume the download, set the Resume Partial Download
synchronization parameter to true and synchronize again.

☞ For more information, see“Resume Partial Download
synchronization parameter”[MobiLink Clients,page 327].

75

The restarted synchronization does not carry out an upload, and
downloads only those changes that would have been downloaded by the
failed download. That is, it completes the failed download, but does not
synchronize changes made since the previous attempt. To get those
changes, you would need to synchronize again once the failed download
has completed, or and call Rollback Partial Download and synchronize
with Resume Partial Download set to false.

When you restart the download, many of the synchronization parameters
from the failed synchronization are used again automatically. For
example, the publications parameter is ignored: the synchronization
downloads those publications requested on the initial download. The only
parameters that must be set are the Resume Partial Download parameter
(which must be set to true) and the User Name parameter. In addition,
settings for the following parameters are obeyed, if set:

♦ Keep Partial Download (in case of further interruption)
♦ DisableConcurrency
♦ Observr
♦ User Data

♦ To roll back the changes from the failed download without resuming
synchronization, call the function to roll back the changes. This function
is ULRollbackPartialDownload function for embedded SQL. For
UltraLite components, it is a method on the Connection object.

• MobileVB “RollbackPartialDownload method”[UltraLite for
MobileVB User’s Guide,page 98].

• UltraLite.NET See“RollbackPartialDownload method”
[UltraLite.NET User’s Guide,page 95](iAnywhere.Data.UltraLite
namespace) and“RollbackPartialDownload method”[UltraLite.NET
User’s Guide,page 359](iAnywhere.UltraLite namespace)..

• Native UltraLite for Java
ianywhere.native_ultralite.Connection.rollbackPartialDownload
method in the API Reference.

• UltraLite C++ Component “RollbackPartialDownload method”
[UltraLite C/C++ User’s Guide,page 316]

• UltraLite ActiveX “RollbackPartialDownload method”[UltraLite
ActiveX User’s Guide,page 95].

• Embedded SQL “ULRollbackPartialDownload function”[UltraLite
C/C++ User’s Guide,page 383].

• Static C++ API “RollbackPartialDownload method”[UltraLite
C/C++ User’s Guide,page 316].

• Static Java API This feature is not available in the Static Java API.

76

Chapter 4. Synchronization Techniques

You may wish to roll back the changes from a failed download if
synchronization cannot be completed (perhaps the server or network is
unavailable) and if you want to maintain a consistent set of data while
letting the end user carry on working on the application.

☞ For more information about communications errors, seeASA Error
Messages.

Note
If the send_download_ack synchronization parameter is set to true (which
is not the default), the setting will be ignored for the resumed download.

77

Downloading a result set from a stored procedure
call

You can download a result set from a stored procedure call. For example,
you might currently have a download_cursor for the following table:

CREATE TABLE MyTable (
pk INTEGER PRIMARY KEY NOT NULL,
col1 VARCHAR(100) NOT NULL,
col2 VARCHAR(20) NOT NULL

)

The download_cursor table script might look as follows:

SELECT pk, col1, col2
FROM MyTable

WHERE last_modified >= ?
AND employee = ?

If you want your downloads to MyTable to use more sophisticated business
logic, you can now create your script as follows, where DownloadMyTable
is a stored procedure taking two parameters (last-download timestamp and
MobiLink user name) and returning a result set. (This example uses an
ODBC calling convention for portability):

{call DownloadMyTable(?, ?)}

Following are some simple examples for each supported consolidated
database. Consult the documentation for your consolidated database for full
details.

The following example works with Adaptive Server Anywhere, Adaptive
Server Enterprise, and Microsoft SQL Server.

CREATE PROCEDURE SPDownload
@last_dl_ts DATETIME,
@u_name VARCHAR(128)

AS
BEGIN

SELECT pk, col1, col2
FROM MyTable

WHERE last_modified >= @last_dl_ts
AND employee = @u_name

END

The following example works with Oracle. Oracle requires that a package be
defined. This package must contain a record type for the result set, and a
cursor type that returns the record type.

78

Chapter 4. Synchronization Techniques

Note
This example requires that Oracle return a result set. In the ODBC
Oracle Driver Setup dialog, you must select the Procedure Returns Results
option; or in the connection string, set ProcedureRetResults=1. For more
information about setting up the Oracle ODBC driver, see“iAnywhere
Solutions ODBC Driver for Oracle”[ODBC Drivers for MobiLink and Remote
Data Access,page 31].

Create or replace package SPInfo as
Type SPRec is record (

pk integer,
col1 varchar(100),
col2 varchar(20)

);
Type SPCursor is ref cursor return SPRec;
End SPInfo;

Next, Oracle requires a stored procedure with the cursor type as the first
parameter. Note that the download_cursor script only passes in two
parameters, not three. For stored procedures returning result sets in Oracle,
cursor types declared as parameters in the stored procedure definition define
the structure of the result set, but do not define a true parameter as such.

Create or replace procedure
DownloadMyTable(spcursor IN OUT SPInfo.SPCursor,

last_dl_ts IN DATE,
user_name IN VARCHAR) As

Begin
Open spcursor For

select pk, col1, col2
from MyTable

where last_modified >= last_dl_ts
and employee = user_name;

End;

The following example works with IBM DB2 UDB.

CREATE PROCEDURE DownloadMyTable(
IN last_dl_ts TIMESTAMP,
IN u_name VARCHAR(128))

EXTERNAL NAME ’DLMyTable!DownloadMyTable’
RESULT SETS 1
FENCED
LANGUAGE JAVA PARAMETER STYLE DB2GENERAL

The following example is a Java implementation of the stored procedure, in
DLMyTable.java. To return a result set, you must leave the result set open
when the method returns:

79

import COM.ibm.db2.app. * ;
import java.sql. * ;

public class DLMyTable extends StoredProc
{

public void DownloadMyTable(
Date last_dl_ts,
String u_name) throws Exception

{
Connection conn = getConnection();
conn.setAutoCommit(false);
Statement s = conn.createStatement();
// Execute the select and leave it open.
ResultSet r = s.executeQuery(

"select pk, col1, col2 from MyTable"
+ " where last_modified >= ’"
+ last_dl_ts
+ "’ and employee = ’"
+ u_name + "’");

}
}

80

Chapter 4. Synchronization Techniques

Schema changes in remote databases
As your needs evolve, deployed remote databases may require schema
changes. The most common schema changes are adding a new column to an
existing table or adding a new table to the database.

Adaptive Server Anywhere remote databases

You can change the schema of remote Adaptive Server Anywhere databases
after they are deployed.

❖ To add tables to Adaptive Server Anywhere remote databases

1. Add the associated table scripts in the consolidated database.

The same script version may be used for the remote database without the
new table and the remote database with the new table. However, if the
presence of the new table changes how existing tables are synchronized,
then you must create a new script version, and create new scripts for all
tables being synchronized with the new script version.

2. Perform a normal synchronization.

This step is optional, but recommended, before changing schema.

3. Use the ALTER PUBLICATION statement to add the table. For example,

ALTER PUBLICATION your_pub
ADD TABLE table_name

☞ For more information, see“ALTER PUBLICATION statement”[ASA
SQL Reference,page 280].

4. Synchronize. Use the new script version, if required.

Changing table
definitions in remote
databases

Changing the number or type of columns in an existing table must be done
carefully. When a MobiLink client synchronizes with a new schema, it
expects scripts, such as upload_update or download_cursor, which have
parameters for all columns in the remote table. An older remote database
expects scripts that have only the original columns.

❖ To alter a published table in a deployed Adaptive Server Any-
where remote database
1. At the consolidated database, create a new script version.

☞ For more information, see“Script versions” on page 239.

2. For your new script version, create scripts for all tables in the
publication(s) that contain the table that you want to alter and that are
synchronized with the old script version.

81

3. At the remote database, perform a normal synchronization using the old
script version.

4. At the remote database, use the ALTER PUBLICATION statement to
temporarily drop the table from the publication. For example,

ALTER PUBLICATION your_pub
DROP TABLE table_name

☞ For more information, see“ALTER PUBLICATION statement”[ASA
SQL Reference,page 280].

5. At the remote database, use the ALTER TABLE statement to alter the
table.

☞ For more information, see“ALTER TABLE statement”[ASA SQL
Reference,page 294].

6. At the remote database, use the ALTER PUBLICATION statement to add
the table back into the publication.

☞ For more information, see“ALTER PUBLICATION statement”[ASA
SQL Reference,page 280].

7. Synchronize with the new script version.

Note: Steps 4 through 6 may also be performed by the
sp_hook_dbmlsync_schema_upgrade stored procedure. For more
information, see“sp_hook_dbmlsync_schema_upgrade”[MobiLink Clients,
page 223].

☞ For more information about changing schemas for Adaptive Server
Anywhere remote databases, see“sp_hook_dbmlsync_schema_upgrade”
[MobiLink Clients,page 223].

UltraLite remote databases

You can change the schema of a remote UltraLite database by deploying a
new application or through a schema upgrade.

♦ If you deploy a new application without a schema upgrade, you need to
repopulate the UltraLite database by synchronizing with the MobiLink
synchronization server.

♦ In the schema upgrade case, your data will be preserved. It is usually
impractical to have all users upgrade to the new version of the application
at the same time.

82

Chapter 4. Synchronization Techniques

You need to be able to have both versions co-existing in the field and
synchronizing with a single consolidated database. You can create two or
more versions of the synchronization scripts that are stored in the
consolidated database and control the actions of the MobiLink
synchronization server. Each version of your application can then select the
appropriate set of synchronization scripts by specifying the correct version
name when it initiates synchronization.

☞ For more information about schemas in UltraLite, see“Creating
UltraLite databases and schemas”[UltraLite Database User’s Guide,page 28].

83

CHAPTER 5

File-Based Downloads

About this chapter This chapter describes an alternative way to download data to Adaptive
Server Anywhere remote databases: downloads can be distributed as files,
enabling offline distribution of synchronization changes. This allows you to
create a file once and distribute it to many remote databases.

This chapter provides a complete description of how to use file-based
downloads and then provides two in-depth examples that demonstrate how
to set it up.

Contents Topic: page

Introduction 86

Setting up file-based downloads 87

Validation checks 91

Examples 95

85

Introduction
With file-based downloads, you can put download synchronization changes
in a file and transfer it to Adaptive Server Anywhere remote databases in any
way a file can be transferred. For example,

♦ broadcast the data by satellite multicast

♦ apply the update using Sybase Manage Anywhere

♦ e-mail or ftp the file to users

You choose the users you want to receive the file. Full synchronization
integrity is preserved in file-based downloads, including conflict detection
and resolution. You can ensure that the file is secure by applying third-party
encryption on the file.

When to use File-based downloads are useful when a large amount of data changes on the
consolidated database, but the remote database does not update the data
frequently or does not do any updates at all. For example, price lists, product
lists, and code tables.

File-based downloads are not useful when the downloaded data is updated
frequently on the remote database or when you are running frequent
upload-only synchronizations. In these situations, the remote sites may be
unable to apply download files because of integrity checks that are
performed when download files are applied.

File-based downloads cannot be used as the sole means of updating remote
databases. You still need to regularly perform full synchronizations or
upload-only synchronizations. Full or upload-only synchronizations are
required to advance log offsets and to maintain the log file, which otherwise
will grow large and slow down synchronization. A full synchronization may
also be required to recover from errors.

File-based downloads currently can be used only with Adaptive Server
Anywhere remote databases.

86

Chapter 5. File-Based Downloads

Setting up file-based downloads
To set up file-based download, you:

1. Create a file-definition database.

2. At the consolidated database, create scripts with a new script version.

3. Create a download file.

4. Apply the download file.

Complete instructions follow.

Create the file-definition database

To set up file-based downloads, you create afile-definition database. This
is an Adaptive Server Anywhere database that has the same synchronization
tables and publications as your remote databases. It can be located
anywhere. This database contains no data or state information. It does not
have to be backed up or maintained; in fact, you can delete it and recreate it
as needed.

The file-definition database must include the following:

♦ the same publications as the remote databases, as well as the tables and
columns used in the publication, the foreign key relationships and
constraints of those tables and columns, and the tables required by those
foreign key relationships.

♦ a MobiLink user name that identifies the group of remote databases that
are to apply the download file. You will use this group MobiLink user
name in your synchronization scripts to identify the group of remote
databases.

Changes at the consolidated database

On the consolidated database, create a new script version for your file-based
downloads, and implement any scripts required by your existing
synchronization system into it. Upload scripts are not required. This script
version will be used only for file-based downloads. For this script version,
all scripts that take MobiLink user names as parameters will instead take a
MobiLink user name that refers to a group of remote databases. This is the
user name that is defined in the file-definition database.

For each script version that you have defined, implement a
begin_publication script.

87

For timestamp-based downloads, implement a
modify_last_download_timestamp script for each script version. How you
implement this script depends on how much data you intend to send in each
download file. For example, one approach is to use the earliest time that any
user from the group last downloaded successfully. Remember that the
ml_username parameter passed to this script is actually the group name.

☞ For more information, see“modify_last_download_timestamp
connection event” on page 424.

Creating the download file

The download file contains the data to be synchronized. To create the
download file, set up your file-definition database and consolidated database
as described above. Run dbmlsync with the -bc option and supply a file
name with the extension .df. For example,

dbmlsync -c "uid=dba;pwd=sql;eng=fbdl_eng;dbf=fdef.db" -v+
-e "sv=filebased" -bc file1.df

Optionally, you can specify options when you create the download file:

♦ -be option Use -be to add a string to the download file that can be
accessed at the remote database using the
sp_hook_dbmlsync_validate_download_file stored procedure.

☞ For more information, see“-be option” [MobiLink Clients,page 101]
“sp_hook_dbmlsync_validate_download_file”[MobiLink Clients,
page 233]and .

♦ -bg option Use the -bg option to create a download file that can be
used by remotes that have never synchronized.

Use the -bg option to create a download file that can be used by remotes
that have never synchronized.

Synchronizing new remotes

If you want to apply a download file to a remote database that has never
synchronized using MobiLink, then before you apply the download file you
need to either perform a normal synchronization on the remote database or
use the dbmlsync -bg option when creating the download file.

For timestamp-based synchronization, doing either of these two things
causes the download of an initial snapshot of the data. For both timestamp
and snapshot based synchronization, this step sets the generation number to
the value that is generated by the begin_publication script on the
consolidated database.

88

Chapter 5. File-Based Downloads

Perform a normal
synchronization

You can prepare a remote database to receive download files by performing a
synchronization that does not use a download file.

Use the -bg option Alternatively, you can create a download file with the -bg option to use with
remotes that haven’t yet synchronized. You apply this initial download file to
prepare the remote database for file-based synchronization.

♦ Snapshot downloads If you are performing snapshot downloads, then
the initial download file just needs to set the generation number. You may
choose to include an initial snapshot of the data in this file, but since each
snapshot download contains all the data and does not depend on previous
downloads, this is not required.

For snapshot downloads, using the -bg option is straightforward. Just
specify -bg in the dbmlsync command line when you create the download
file. You can use the same script version to create the initial download file
as you use for subsequent download files.

♦ Timestamp-based downloads If you are performing timestamp-based
downloads, then the initial download must set the generation number on
the remote database and include a snapshot of the data. With
timestamp-based downloads, each download builds on previous ones.
Each download file contains a last download timestamp. All rows
changed on the consolidated after the file’s last download timestamp are
included in the file. To apply a file, a remote database must already have
received all the changes that occurred before the file’s last download
timestamp. This is confirmed by checking that the file’s last download
timestamp is greater than or equal to the remote database’s last download
timestamp (the time up to which the remote database has received all
changes from the consolidated database).

Before a remote can apply its first normal download file, it must receive
all data changed before that file’s last download timestamp and after
January 1, 1900. The initial download file created with the -bg option
must contain this data. The easiest way to select this data is to create a
separate script version that uses the same download_cursor’s as your
normal file-based synchronization script version but does not have a
modify_last_download_timestamp script. If no
modify_last_download_timestamp script is defined, then the last
download timestamp for a file-based download will default to January 1,
1900.

If you apply download files built with the -bg option to remote databases that
have already synchronized, the -bg option causes the generation numbers on
the remote database to be updated with the value on the consolidated
database at the time the download file was created. This defeats the purpose
of generation numbers, which is to prevent you from applying further

89

file-based downloads until an upload has been performed in situations such
as when recovering a consolidated database that is lost or corrupted.

☞ For more information about generation numbers, see“MobiLink
generation numbers” on page 93.

90

Chapter 5. File-Based Downloads

Validation checks
Before applying a download file to a remote database, dbmlsync does a
number of things to ensure that the synchronization is valid.

♦ dbmlsync checks the download file to ensure that the file-definition
database that was used to create it has:

• the same publication as the remote database

• the same tables and columns used in the publication

• the same foreign key relationships and constraints as those tables and
columns

♦ dbmlsync checks to see if there is any data in the publication that has not
been uploaded from the remote. If there is, the download file is not
applied, because applying the download file could cause pending upload
data to be lost.

♦ dbmlsync checks the last download timestamp, next last download
timestamp, and creation time of the download file to ensure that:

• newer data on the remote database will not be overwritten by older
data contained in the download file.

• a download file will not be applied if applying it means that the remote
database would miss some changes that have occurred on the
consolidated database. This situation might occur if the remote did not
apply previous file-based downloads.

☞ For more information, see“Automatic validation” on page 91.

♦ Optionally, dbmlsync checks the generation number in the remote
database to ensure it matches the generation number in the download file.

☞ For more information, see“MobiLink generation numbers” on
page 93.

♦ Optionally, you can create custom validation logic with the
sp_hook_dbmlsync_validate_download_file stored procedure.

☞ For more information, see“Custom validation” on page 93.

Automatic validation

Before applying a download file, dbmlsync performs special checks on the
last download timestamp, next last download timestamp, download file
creation time, and transaction log.

Last download
timestamp and next last
download timestamp

Each download file contains all changes to be downloaded that occurred on
the consolidated database between the file’s last download timestamp, and

91

its next last download timestamp. Both times are expressed in terms of the
time at the consolidated database. By default the file’s last download time is
Jan 1, 1900 12:00 AM and the file’s next last download timestamp is the
time the download file was created. These defaults can be overridden by
implementing the modify_last_download_timestamp and
modify_next_last_download_timestamp scripts on the consolidated
database.

A remote site can apply a download file only if the file’s last download
timestamp is less than or equal to the remote’s last download timestamp.
This ensures that a remote never misses operations that occur on the
consolidated database. Usually when a file-based download fails based on
this check, the remote has missed one or more download files. The situation
can be corrected by applying the missing download files or by performing a
full or download-only synchronization.

In addition, a remote site can apply a download file only if the file’s next last
download timestamp is greater than the remote’s last download timestamp.
The remote’s last download timestamp is the time (at the consolidated
database) up to which the remote has received all changes that are to be
downloaded. The remote database’s last download time is updated each time
the remote successfully applies a download (normal or file-based). This
check ensures that a download file will not be applied if more recent data has
already been downloaded. A common case where this could happen occurs
when download files are applied out of order. For example, suppose a
download file F1.df is created, and another file F2.df is created later. This
check ensures that F1.df cannot be applied after F2.df, because that could
allow newer data in F2.df to be overwritten with older data in F1.df.

When a file-based download fails based on the next last download
timestamp, no additional action is required other than to delete the file.
Synchronization will succeed once a new file is received.

Creation time The download file’s creation time indicates the time at the consolidated
database when creation of the file began. A download file can only be
applied if the file’s creation time is greater than the remote database’s last
upload time. The remote’s last upload time is the time at the consolidated
database when the remote’s last successful upload was committed. This
check ensures that data that has been uploaded after the creation of the
download (and hence is newer than the download) will not be overwritten by
older data in the download file.

When a download file is rejected based on this check, no action is required.
The remote site should be able to apply the next download file.

When an upload fails because dbmlsync sent an upload to the MobiLink

92

Chapter 5. File-Based Downloads

synchronization server but got no acknowledgement, the remote database’s
last upload time may be incorrect. In this case, the creation time check
cannot be performed and the remote is unable to apply download files until it
completes a normal synchronization.

Transaction log Before applying a download file, dbmlsync scans the remote database’s
transaction log and builds up a list of all changes that must be uploaded.
Dbmlsync will only apply a download file if it does not contain any
operations that affect rows with changes that must be uploaded.

MobiLink generation numbers

Generation numbers provide a mechanism for forcing remote databases to
upload data before applying any more download files. This is especially
useful when a problem on the consolidated database has resulted in data loss
and you must recover lost data from the remote databases.

On the remote database, a separate generation number is automatically
maintained for each subscription. On the consolidated database, the
generation number for each subscription is determined by the
begin_publication script. Each time a remote performs a successful upload,
it updates the remote generation number with the value set by the
begin_publication script in the consolidated database.

Each time a download file is created, the generation number set by the
begin_publication script is stored in the download file. A remote site will
only apply a download file if the generation number in the file is equal to the
generation number stored in the remote database.

Note
Whenever the generation number generated by the begin_publication script
for a file-based download changes, the remote databases must perform a
successful upload before they can apply any new download files.

The sp_hook_dbmlsync_validate_download_file stored procedure can be
used to override the default checking of the generation number.

For more information about managing MobiLink generation numbers, see:

♦ “begin_publication connection event” on page 356

♦ “end_publication connection event” on page 395

♦ “sp_hook_dbmlsync_validate_download_file”[MobiLink Clients,page 233]

Custom validation

You can create custom validation logic to determine if a download file

93

should be applied to a remote database. You do this with the
sp_hook_dbmlsync_validate_download_file stored procedure. With this
stored procedure, you can both reject a download file and override the
default checking of the generation number.

You can use the dbmlsync -be option to embed a string in the file. You use
the -be option against the file-definition database when you create the
download file This string is passed to the
sp_hook_dbmlsync_validate_download_file through the #hook_dict table,
and can be used in your validation logic.

☞ For more information, see
“sp_hook_dbmlsync_validate_download_file”[MobiLink Clients,page 233].

94

Chapter 5. File-Based Downloads

Examples
This section contains two very simple examples. Each sets up a file-based
download synchronization using a consolidated database with only one
table. The first is a snapshot example and the second is a timestamp-based
example.

Snapshot example

This example implements file-based download for snapshot synchronization.
It set up the three databases that are required by the file-based download, and
then demonstrates how to download data. This example is presented in such
a way that you can either just read through it, or you can cut and paste the
text to run the sample.

Create databases for the
sample

The following commands create the three databases used in the example: a
consolidated database, a remote database, and a file-definition database.

dbinit scons.db
dbinit sremote.db
dbinit sfdef.db

The following commands start the three databases, create a data source name
for MobiLink to use to connect to the consolidated database, and start the
MobiLink synchronization server.

dbeng9 -n sfdef_eng sfdef.db
dbeng9 -n scons_eng scons.db
dbeng9 -n sremote_eng sremote.db
dbdsn -y -w fbd_demo -c "eng=scons_eng;dbf=scons.db;uid=dba;

pwd=sql;astart=off;astop=off"
start dbmlsrv9 -v+ -c "dsn=fbd_demo"

-zu+ -ot scons.txt

Set up the snapshot
example consolidated
database

In this example, the consolidated database has one table, called T1. After
connecting to the consolidated database, you can run the following SQL to
create table T1:

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

The following code creates a script version called filebased and creates a
download script for that script version.

CALL ml_add_table_script(’filebased’,
’T1’, ’download_cursor’,

’SELECT pk, c1 FROM T1’);

95

The following code creates a script version called normal and creates upload
and download scripts for that script version.

CALL ml_add_table_script (’normal’, ’T1’,
’upload_insert’,
’INSERT INTO T1 VALUES (?,?)’);

CALL ml_add_table_script(’normal’, ’T1’,
’upload_update’,
’UPDATE T1 SET c1 = ? WHERE pk = ? ’);

CALL ml_add_table_script(’normal’, ’T1’,
’upload_delete’,

’DELETE FROM T1 WHERE pk = ?’);

CALL ml_add_table_script(’normal’, ’T1’,
’download_cursor’,

’SELECT pk, c1 FROM T1’);

COMMIT;

The following command creates the stored procedure begin_pub and
specifies that begin_pub is the begin_publication script for both the
“normal” and “filebased” script versions:

CREATE PROCEDURE begin_pub (
INOUT generation_num integer,

IN username varchar(128),
IN pubname varchar(128))

BEGIN
SET gnum=1;

END;

CALL ml_add_connection_script(
’filebased’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

CALL ml_add_connection_script(’normal’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

Create the snapshot
example remote
database

In this example, the remote database also contains one table, called T1.
Connect to the remote database and run the following SQL to create the
table T1, a publication called P1, and a user called U1. The SQL also creates
a subscription for U1 to P1.

96

Chapter 5. File-Based Downloads

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

CREATE PUBLICATION P1 (
TABLE T1

);

CREATE SYNCHRONIZATION USER U1;

CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR U1;

The following code creates an sp_hook_dbmlsync_validate_download_file
hook to implement user-defined validation logic in the remote database:

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file()
BEGIN

DECLARE udata varchar(256);
SELECT value

INTO udata
FROM #hook_dict
WHERE name = ’user data’;

IF udata <> ’ok’ THEN
UPDATE #hook_dict

SET value = ’FALSE’
WHERE name = ’apply file’;

END IF;
END

Create the snapshot
example file-definition
database

A file-definition database is required in MobiLink systems that use
file-based downloads. This database has the same schema as the remote
databases being updated by file-based download, and it contains no data or
state information. The file-definition database is used solely to define the
structure of the data that is to be included in the download file. One
file-definition database can be used for many groups of remote databases,
each defined by its own MobiLink group user name.

The following code defines the file-definition database for this sample. It
creates a schema that is identical to the remote database, and also creates:

♦ a publication called P1 that publishes all rows of the T1 table. The same
publication name must be used in the file-definition database and the
remote databases.

♦ a MobiLink user called G1. This user represents all the remotes that are
to be updated in the file-based download.

♦ a subscription to the publication

97

You must connect to sfdef.db before running this code.

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

CREATE PUBLICATION P1 (
TABLE T1

);

CREATE SYNCHRONIZATION USER G1;

CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR G1;

Prepare for initial
synchronization

To prepare your new remote database so that you can apply a download file,
you need to either perform a normal synchronization or create the download
file with the dbmlsync -bg option. This example shows you how to initialize
your new remote database by performing a normal synchronization.

You can perform an initial synchronization of the remote database with the
script version called normal that was created earlier:

dbmlsync -c "uid=dba;pwd=sql;eng=sremote_eng;
dbf=sremote.db" -v+ -e "sv=normal"

Demonstrate the
snapshot example
file-based download

Connect to the consolidated database and insert some data that will be
synchronized by file-based download, such as the following:

INSERT INTO T1 VALUES(1, 1);
INSERT INTO T1 VALUES(2, 4);
INSERT INTO T1 VALUES(3, 9);
COMMIT;

The following command must be run on the computer that holds the
file-definition database. It does the following:

♦ the dbmlsync -bc option creates the download file, and names it file1.df.

♦ the -be option includes the string “OK” in the download file that will be
accessible to the sp_dbmlsync_validate_download_file hook.

dbmlsync -c
"uid=dba;pwd=sql;eng=sfdef_eng;dbf= sfdef.db "
-v+ -e "sv=filebased" -bc file1.df -be ok -ot fdef.txt

To apply the download file, run dbmlsync with the -ba option on the remote
database, supplying the name of the download file you want to apply:

dbmlsync -c "uid=dba;pwd=sql;eng=sremote_eng;
dbf= sremote.db " -v+ -ba file1.df -ot remote.txt

98

Chapter 5. File-Based Downloads

The changes are now applied to the remote database. Open Interactive SQL,
connect to the remote database, and run the following SQL command to
verify that the remote has the data:

SELECT * FROM T1

Clean up the snapshot
example

The following commands stop all three database engines and erase the files.

del file1.df
dbmlstop -h -w
dbstop -y -c eng=sfdef_eng
dbstop -y -c eng=scons_eng
dbstop -y -c eng=sremote_eng
dberase -y sfdef.db
dberase -y scons.db
dberase -y sremote.db

Timestamp-based example

This example implements file-based download for timestamp-based
synchronization. It set up the three databases that are required by the
file-based download, and then demonstrates how to download data with this
functionality. This example is presented in such a way that you can either
just read through it, or you can cut and paste the text to run the sample.

Create databases for the
sample

The following commands create the three databases used in the example: a
consolidated database, a remote database, and a file-definition database.

dbinit tcons.db
dbinit tremote.db
dbinit tfdef.db

The following commands start the three databases, create a data source name
for MobiLink to use to connect to the consolidated database, and start the
MobiLink synchronization server.

dbeng9 -n tfdef_eng tfdef.db
dbeng9 -n tcons_eng tcons.db
dbeng9 -n tremote_eng tremote.db
dbdsn -y -w tfbd_demo -c "eng=tcons_eng;dbf=tcons.db;uid=dba;

pwd=sql;astart=off;astop=off"
start dbmlsrv9 -v+ -c "dsn=tfbd_demo" -zu+ -ot tcons.txt

Set up the timestamp
example consolidated
database

In this example, the consolidated database has one table, called T1. After
connecting to the consolidated database, you can run the following code to
create T1:

99

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER,
last_modified TIMESTAMP DEFAULT TIMESTAMP

);

The following code defines a script version called normal with a minimal
number of scripts. This script version is used for synchronizations that do
not use file-based download.

CALL ml_add_table_script(’normal’, ’T1’,
’upload_insert’,

’INSERT INTO T1(pk, c1) VALUES(?, ?)’);

CALL ml_add_table_script(’normal’, ’T1’,
’upload_update’,
’UPDATE T1 SET c1 = ? WHERE pk = ? ’);

CALL ml_add_table_script(’normal’, ’T1’,
’upload_delete’,

’DELETE FROM T1 WHERE pk = ?’);

CALL ml_add_table_script(’normal’, ’T1’,
’download_cursor’,

’SELECT pk, c1 FROM T1 WHERE last_modified >= ?’);

The following code sets the generation number for all subscriptions to 1. It
is good practice to use generation numbers in case your consolidated
database ever becomes lost or corrupted and you need to force an upload.

CREATE PROCEDURE begin_pub (
INOUT generation_num integer,

IN username varchar(128),
IN pubname varchar(128))

BEGIN
SET generation_num = 1;

END;

CALL ml_add_connection_script(’normal’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

COMMIT;

The following code defines the script version called filebased. This script
version is used to create file-based downloads.

100

Chapter 5. File-Based Downloads

CALL ml_add_connection_script(’filebased’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

CALL ml_add_table_script(’filebased’, ’T1’,
’download_cursor’,

’SELECT pk, c1 FROM T1 WHERE last_modified >= ?’);

The following code sets the last download time so that all changes that
occurred within the last five days will be included in download files. Any
remote that has missed all the download files created in the last five days will
have to perform a normal synchronization before being able to apply any
more file-based downloads.

CREATE PROCEDURE ModifyLastDownloadTimestamp(
INOUT last_download_timestamp TIMESTAMP,
IN ml_username VARCHAR(128))

BEGIN
SELECT dateadd(day, -5, CURRENT TIMESTAMP)
INTO last_download_timestamp;

END;

CALL ml_add_connection_script(’filebased’,
’modify_last_download_timestamp’,

’CALL ModifyLastDownloadTimestamp(?, ?)’);

COMMIT;

Create the timestamp
example remote
database

In this example, the remote database also contains one table, called T1.
After connecting to the remote database, run the following code to create
table T1, a publication called P1, and a user called U1. The code also creates
a subscription for U1 to P1.

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

CREATE PUBLICATION P1 (
TABLE T1

);

CREATE SYNCHRONIZATION USER U1;

CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR U1;

The following code defines a sp_hook_dbmlsync_validate_download_file
stored procedure. This stored procedure prevents the application of
download files that do not have the string “ok” embedded in them.

101

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file()
BEGIN

DECLARE udata varchar(256);

SELECT value
INTO udata
FROM #hook_dict
WHERE name = ’user data’;

IF udata <> ’ok’ THEN
UPDATE #hook_dict

SET value = ’FALSE’
WHERE name = ’apply file’;

END IF;
END

Create the timestamp
example file-definition
database

The following code defines the file-definition database for the timestamp
example. It creates a table, a publication, a user, and a subscription for the
user to the publication.

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

CREATE PUBLICATION P1 (
TABLE T1

);

CREATE SYNCHRONIZATION USER G1;

CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR G1;

Prepare for initial
synchronization

To prepare your new remote database so that you can apply a download file,
you need to either perform a normal synchronization or create the download
file with the dbmlsync -bg option. This example shows you how to use -bg.

The following code defines a script version called filebased_init for the
consolidated database. This script version has a single begin_publication
script.

CALL ml_add_table_script(
’filebased_init’, ’T1’, ’download_cursor’,

’SELECT pk, c1 FROM T1’);

CALL ml_add_connection_script(
’filebased_init’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

COMMIT;

102

Chapter 5. File-Based Downloads

The following two command lines create and apply an initial download file
using the script version called filebased_init and the -bg option.

dbmlsync -c "uid=dba;pwd=sql;eng=tfdef_eng;dbf=tfdef.db"
-v+ -e "sv=filebased_init" -bc tfile1.df -be ok -bg
-ot tfdef1.txt

dbmlsync -c "uid=dba;pwd=sql;eng=tremote_eng;dbf=tremote.db"
-v+ -ba tfile1.df -ot tremote.txt

Demonstrate the
timestamp example
file-based download

Connect to the consolidated database and insert some data that will be
synchronized by file-based download, such as the following:

INSERT INTO T1(pk, c1) VALUES(1, 1);
INSERT INTO T1(pk, c1) VALUES(2, 4);
INSERT INTO T1(pk, c1) VALUES(3, 9);
commit;

The following command line creates a download file containing the new
data.

dbmlsync -c
"uid=dba;pwd=sql;eng=tfdef_eng;dbf=tfdef.db"
-v+ -e "sv=filebased" -bc tfile2.df -be ok -ot tfdef2.txt

The following command line applies the download file to the remote
database.

dbmlsync -c "uid=dba;pwd=sql;eng=tremote_eng;dbf=tremote.db"
-v+ -ba tfile2.df -ot tfdef3.txt

The changes are now applied to the remote database. Open Interactive SQL,
connect to the remote database, and run the following SQL command to
verify that the remote has the data:

SELECT * FROM T1

Clean up the timestamp
example

The following commands stop all three database engines and then erase the
files.

del file1.df
dbmlstop -h -w
dbstop -y -c eng=tfdef_eng
dbstop -y -c eng=tcons_eng
dbstop -y -c eng=tremote_eng
dberase -y tfdef.db
dberase -y tcons.db
dberase -y tremote.db

103

CHAPTER 6

MobiLink Performance

About this chapter This chapter provides information that can help you improve the
performance of your MobiLink synchronization.

☞ For more information about MobiLink performance, see theMobiLink
Performancewhitepaper athttp://my.sybase.com/detail?id=1009664.

☞ For a hands-on description of how to monitor performance, see
“Tutorial: Writing MobiLink Scripts and Monitoring Synchronizations”
[MobiLink Tutorials,page 13].

Contents Topic: page

Performance tips 106

Key factors influencing MobiLink performance 110

Monitoring MobiLink performance 115

105

http://my.sybase.com/detail?id=1009664

Performance tips
Following are some suggestions to help you get the best performance out of
MobiLink.

♦ Test Before deploying, perform volume testing using the same
hardware and network that you plan to use for production. Use this time
to experiment with the following performance tips.

♦ Avoid contention Avoid contention in your synchronization scripts.
Another way of putting this is that you should maximize concurrency.

For example, suppose a begin_download script increments a column in a
table to count the total number of downloads. If multiple users
synchronize at the same time, this script would effectively serialize their
downloads. The same counter would be better in the
begin_synchronization or end_synchronization script because these
scripts are called just before a commit.

☞ For more information about contention, see“Contention” on
page 111.

☞ For information on the transaction structure of synchronization, see
“Transactions in the synchronization process” on page 19.

♦ Use an optimal number of worker threads Use the MobiLink –w
option to set the number of MobiLink worker threads to the smallest
number that gives you optimum throughput. You will need to experiment
to find the best number for your situation.

A larger number of worker threads can improve throughput by allowing
more synchronizations to occur at the same time.

Keeping the number of worker threads small reduces the chance of
contention in the consolidated database, the number of connections to the
consolidated database, and the memory required for optimal caching.

For example, in tests with fast clients, it was discovered that
approximately five worker threads gave optimum throughput. For slower
clients, more worker threads were needed to maximize download
throughput, and the best upload throughput was obtained by limiting the
number that can simultaneously upload, via the -wu option. In tests with
extremely slow clients, the best throughput for both uploads and
downloads was obtained with hundreds of worker threads with only five
allowed to upload simultaneously. Note that these numbers are from a
specific set of tests. Every deployment has different characteristics, and
you must test to determine the optimal values for -w and -wu.

☞ For more information about worker threads, see“Number of worker
threads” on page 112.

106

Chapter 6. MobiLink Performance

☞ For more information, see“-w option” on page 212and“-wu option”
on page 214.

♦ Enable the client-side download buffer for ASA clients For Adaptive
Server Anywhere clients, a download buffer allows a MobiLink worker
thread to transmit the download without waiting for the client to apply the
download. The download buffer is enabled by default. However, the
download buffer cannot be used if download acknowledgement is
enabled (see next bullet).

☞ For more information about setting the download buffer size, see the
“DownloadBufferSize (dbs) extended option”[MobiLink Clients,page 114].

♦ Do not enable download acknowledgement for ASA clients By
default, download acknowledgement is not enabled. This frees up
MobiLink worker threads that otherwise would be waiting for
confirmation of successful download from the client, which also frees up
the connection that the worker thread is using. It also makes it possible
for the MobiLink synchronization server to buffer the downloads.

UltraLite clients do not buffer downloads, so the benefit of not
acknowledging downloads is not as great.

☞ For more information about download acknowledgements, see the
“SendDownloadACK (sa) extended option”[MobiLink Clients,page 131].

♦ Set the upload cache size To avoid the situation where the upload
cache overflows to disk, set the upload cache size to be larger than the
size of your largest upload stream times the number of worker threads.
You set the upload cache size with the dbmlsrv9 –u option.

☞ For more information, see“-u option” on page 211.

♦ Set the download cache size To avoid the situation where the
download buffer overflows to disk, set the download cache size to be
larger than the size of your largest download times the number of worker
threads. You set the download cache size with the dbmlsrv9 -d option.

☞ For more information about setting the memory allocated to the
download buffer, see“-d option” on page 198.

♦ Set the BLOB cache size If your rows have data of type LONG
VARCHAR or LONG BINARY, you can avoid having the BLOB cache
access disk if you set the BLOB cache size to be larger than twice the
largest BLOB data in a row times the number of worker threads. You set
the BLOB cache size with the dbmlsrv9 -bc option.

☞ For more information, see“-bc option” on page 196.

107

♦ Set maximum number of database connections Set the maximum
number of MobiLink database connections to be your typical number of
synchronization script versions times the number of MobiLink worker
threads, plus one. This reduces the need for MobiLink to close and create
database connections. You set the maximum number of connections with
the dbmlsrv9 -cn option.

☞ For more information, see“MobiLink database connections” on
page 114and“-cn option” on page 197.

♦ Have sufficient physical memory Ensure that the computer running
MobiLink has enough physical memory to accommodate the upload,
download and BLOB caches in addition to its other memory
requirements.

♦ Use sufficient processing power Dedicate enough processing power
to MobiLink so that the MobiLink server processing is not a bottleneck.
In tests with an Adaptive Server Anywhere consolidated database,
MobiLink required a third to a half of the processing required by
Adaptive Server Anywhere when both were stressed and executing on the
same computer.

♦ Use minimum logging verbosity Use the minimum logging verbosity
that is compatible with your business needs. By default, verbose logging
is off, and MobiLink does not write its log to disk. You can control
logging verbosity with the -v option, and enable logging to a file with the
-o or -ot options.

As an alternative to verbose log files, you can monitor your
synchronizations with the MobiLink Monitor. The Monitor does not need
to be on the same computer as the MobiLink synchronization server, and
a Monitor connection has negligible effect on MobiLink server
performance. For more information, see“MobiLink Monitor” on
page 117.

♦ Java or .NET vs. SQL synchronization logic No significant
throughput difference has been found between using Java or .NET
synchronization logic vs. SQL synchronization logic. However, Java and
.NET synchronization logic have some extra overhead per
synchronization and require more memory.

In addition, SQL synchronization logic is executed on the computer that
runs the consolidated database, while Java or .NET synchronization logic
is executed on the computer that runs the MobiLink server. Thus, Java or
.NET synchronization logic may be desirable if your consolidated
database is heavily loaded.

108

Chapter 6. MobiLink Performance

♦ Priority synchronization If you have some tables that you need to
synchronize more frequently than others, create a separate publication
and subscription for them. You can synchronize this priority publication
more frequently than other publications, and synchronize other
publications at off-peak times.

♦ Download only the rows you need Take care to download only the
rows that are required. It is easier to write synchronization scripts that
download all rows upon each synchronization, but downloading
unneeded rows affects synchronization performance.

♦ Optimize script execution The performance of your scripts in the
consolidated database is an important factor. It may help to create indexes
on your tables so that the upload and download cursor scripts can
efficiently locate the required rows. However, too many indexes may
slow uploads.

♦ For large uploads from ASA clients, estimate the number of rows
You can significantly improve the speed of uploading a large number of
rows by providing dbmlsync with an estimate of the number of rows that
will be uploaded. You do this with the dbmlsync -urc option.

☞ For more information, see“-urc option” [MobiLink Clients,page 149].

109

Key factors influencing MobiLink performance
The overall performance of any system, including throughput for MobiLink
synchronization, is usually limited by a bottleneck at one point in the
system. For MobiLink synchronization, the following might be the
bottlenecks limiting synchronization throughput:

♦ The performance of the consolidated database Of particular
importance for MobiLink is the speed at which it can execute the
MobiLink scripts. Multiple worker threads might execute scripts
simultaneously, so for best throughput you need to avoid database
contention in your synchronization scripts.

♦ The bandwidth for MobiLink to consolidated communication This is
unlikely to be a bottleneck if both MobiLink and the consolidated
database are running on the same computer, or if they are on separate
computers connected by a high-speed network.

♦ The speed of the computer running MobiLink If the processing
power of the computer running MobiLink is slow, or if it does not have
sufficient memory for the MobiLink worker threads and buffers, then
MobiLink execution speed could be a synchronization bottleneck. The
MobiLink server’s performance depends little on disk speed as long as
the buffers and worker threads fit in physical memory.

♦ The number of MobiLink worker threads A smaller number of threads
will involve fewer database connections, less chance of contention in the
consolidated database and less operating system overhead. However, too
small a number may leave clients waiting for a free worker thread, or
have fewer connections to the consolidated database than it can overlap
efficiently.

♦ The bandwidth for client-to-MobiLink communications For slow
connections, such as those over dial-up or wide-area wireless networks,
the network may cause clients and MobiLink worker threads to wait for
data to be transferred.

♦ The client processing speed Slow client processing speed is more
likely to be a bottleneck in downloads than uploads, since downloads
involve more client processing as rows and indexes are written.

Tuning MobiLink for performance

The key to achieving optimal MobiLink synchronization throughput is to
have multiple synchronizations occurring simultaneously and executing
efficiently. To enable multiple simultaneous synchronizations, MobiLink

110

Chapter 6. MobiLink Performance

assigns a worker thread to each synchronization. A worker thread receives
the changes uploaded from the client and applies them to the consolidated
database. It then fetches the changes from the consolidated database, and
downloads them to the client. Each worker thread uses a single connection
to the consolidated database for applying and fetching changes, using your
synchronization scripts.

Contention The most important factor is to avoid database contention in your
synchronization scripts. Just as with any other multi-client use of a database,
you want to minimize database contention when clients are simultaneously
accessing a database. Database rows that must be modified by each
synchronization can increase contention. For example, if your scripts
increment a counter, then updating that counter can be a bottleneck.

The figure below shows the following:

♦ a pool of connections to the consolidated database, shown as C1 to Cn

♦ a number of synchronization requests, shown as S1 to Sn

♦ MobiLink worker threads, shown as W1 to Wn

111

MobiLink synchronization
server

consolidated

database server

remotes

C1 C2 C3

... SnS3S2S1 ...

C1 C2 Cn...

W
1

W
n

...W
3

W
2

Sn......S1 S2 S3

... Cn

...

C3

If there are more synchronization requests than worker threads, the excess
requests are queued until a worker thread becomes available after
completing a synchronization. You can control the number of worker threads
and connections, but MobiLink will always ensure that there is at least one
connection per worker thread. If there are more connections than worker
threads, the excess connections will be idle. Excess connections may be
useful with multiple script versions, as discussed below.

Number of worker
threads

Other than contention in your synchronization scripts, the most important
factor for synchronization throughput is the number of worker threads. The
number of worker threads controls how many synchronizations can proceed
simultaneously.

Testing is vital to determine the optimum number of worker threads.

Increasing the number of worker threads allows more overlapping
synchronizations, and increased throughput, but it will also increase resource

112

Chapter 6. MobiLink Performance

and database contention between the overlapping synchronizations, and
increase the time for individual synchronizations. As the number of worker
threads is increased, the benefit of more simultaneous synchronizations
becomes outweighed by the cost of longer individual synchronizations, and
adding more worker threads decreases throughput. Experimentation is
required to determine the optimal number of worker threads for your
situation, but the following may help to guide you.

For uploads, performance testing shows that the best throughput happens
with a relatively small number of worker threads: in most cases, three to ten
worker threads. Variation depends on factors like the type of consolidated
database, data volume, database schema, the complexity of the
synchronization scripts, and the hardware used. The bottleneck is usually
due to contention between worker threads executing the SQL of your upload
scripts at the same time in the consolidated database.

For downloads, the optimum number of worker threads depends on the client
to MobiLink bandwidth and the processing speed of clients. For slower
clients, more worker threads are needed to get optimal download
performance. This is because downloads involve more client processing and
less consolidated database processing than uploads.

For Adaptive Server Anywhere clients, leaving download acknowledgement
off (and not disabling the optional download buffering) can reduce the
optimal number of worker threads for download, because worker threads do
not have to wait for clients to apply downloads. There is little effect for
UltraLite clients since UltraLite clients apply the download as it is received,
without buffering.

☞ For more information on disabling the download acknowledgement, see
the“SendDownloadACK (sa) extended option”[MobiLink Clients,page 131].

To get both the best download throughput and the best upload throughput,
MobiLink provides two options. You can specify a total number of worker
threads to optimize downloads. You can also limit the number that can
simultaneously apply uploads to optimize upload throughput.

The -w option controls the total number of worker threads. The default is
five.

The -wu option limits the number of worker threads that can simultaneously
apply uploads to the consolidated database. By default, all worker threads
can apply uploads simultaneously, but that can cause severe contention in the
consolidated database. The -wu option lets you reduce that contention while
still having a larger number of worker threads to optimize downloads and
receive uploads. The -wu option only has an effect if the number is less than
the total number of worker threads.

113

☞ For more information, see“-w option” on page 212and“-wu option” on
page 214.

MobiLink database
connections

MobiLink creates a database connection for each worker thread. You can use
the -cn option to specify that MobiLink create a larger pool of database
connections, but any excess connections will be idle unless MobiLink needs
to close a connection or use a different script version.

There are two cases where MobiLink will close a database connection and
open a new one. The first case is if an error occurs. The second case is if the
client requests a synchronization script version, and none of the available
connections have already used that synchronization version.

Note
Each database connection is associated with a script version. To change the
version, the connection must be closed and reopened.

If you have more than one synchronization version, you may want to set the
maximum number of pooled connections to be larger than the number of
worker threads, which is the default number. Then MobiLink will not need
to close and open a new database connection each time a different
synchronization version is requested.

If you routinely use more than one script version, you can reduce the need
for MobiLink to close and open connections by increasing the number of
connections. You can eliminate the need completely if the number of
connections is the number of worker threads times the number of versions.

An example of tuning MobiLink for two script versions is given in the
command line below:

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -w 5 -cn 10

Since the maximum usable number of database connections is the number of
script versions times the number of worker threads plus one, you can set -cn
to 10 to ensure that database connections are not closed and opened to
accommodate synchronization versions.

An example of tuning MobiLink for three script versions is:

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -w 7 -cn 21

☞ For more information on setting the number of connections for any
number of script versions, see“-cn option” on page 197.

114

Chapter 6. MobiLink Performance

Monitoring MobiLink performance
There are a variety of tools available to help you monitor the performance of
your synchronizations.

The MobiLink Monitor is a graphical tool for monitoring synchronizations.
It allows you to see the time taken by every aspect of the synchronization,
sorted by MobiLink user or by worker thread.

☞ For more information, see“MobiLink Monitor” on page 117.

In addition, there are a number of MobiLink scripts that are available for
monitoring synchronizations. These scripts allow you to use performance
statistics in your business logic. You may, for example, want to store the
performance information for future analysis, or alert a DBA if a
synchronization takes too long. For more information, see

♦ “download_statistics connection event” on page 378

♦ “download_statistics table event” on page 381

♦ “synchronization_statistics connection event” on page 445

♦ “synchronization_statistics table event” on page 448

♦ “time_statistics connection event” on page 450

♦ “time_statistics table event” on page 453

♦ “upload_statistics connection event” on page 469

♦ “upload_statistics table event” on page 472

115

CHAPTER 7

MobiLink Monitor

About this chapter The MobiLink Monitor is a tool for monitoring MobiLink synchronizations.
This chapter describes how to use the MobiLink Monitor.

☞ For a hands-on description of how to use the Monitor, see“Tutorial:
Writing MobiLink Scripts and Monitoring Synchronizations”[MobiLink
Tutorials,page 13].

Contents Topic: page

Introduction 118

Starting the MobiLink Monitor 119

Using the MobiLink Monitor 121

Saving Monitor data 126

Customizing your statistics 128

MobiLink statistical properties 130

117

Introduction
The MobiLink Monitor is a MobiLink administration tool that provides you
with detailed information about the performance of your synchronizations.

When you start the Monitor and connect it to a MobiLink synchronization
server, the Monitor begins to collect statistical information about all
synchronizations that occur in that monitoring session. The Monitor
continues to collect data until you disconnect it or shut down the MobiLink
server.

You can view the data in tabular or graphical form in the Monitor interface.
You can also save the data in binary format for viewing with the Monitor
later, or in .csv format to open in another tool, such as Microsoft Excel; or
you can export it to an ODBC data source such as a MobiLink-supported
relational database.

Monitor output allows you to see a wide variety of information about your
synchronizations. For example, you can quickly identify synchronizations
that result in errors, or that meet other criteria that you specify. You can
identify possible contention in synchronization scripts by checking to see if
synchronizations of differing durations have phases that end around the
same time (because synchronizations are waiting for a previous phase to
finish before they can continue).

The MobiLink Monitor can be used routinely in development and
production, because monitoring does not degrade performance, particularly
when the Monitor is run on a different computer from the MobiLink
synchronization server.

118

Chapter 7. MobiLink Monitor

Starting the MobiLink Monitor
If synchronization is already occurring when the MobiLink Monitor is
started, the Monitor must wait until a worker thread is free before it can start
monitoring. Therefore, you may want to start the Monitor before starting
synchronizations. Once the Monitor is running it does not use a MobiLink
worker thread.

You can have one instance of the Monitor running for each MobiLink
synchronization server.

❖ To start monitoring data

1. From the Start menu, choose Programs➤ SQL Anywhere 9➤ MobiLink
➤ MobiLink Monitor.

Alternatively, you can typedbmlmon at a command prompt. For details,
see below.

2. Start your consolidated database and MobiLink synchronization server, if
they are not already running.

3. In the MobiLink Monitor, choose Monitor➤ Connect to MobiLink
Server.

The Connect to MobiLink Server dialog appears.

A Monitor connection starts like a synchronization connection to the
MobiLink synchronization server. For example, if you started the
MobiLink server with -zu+ then it doesn’t matter what user ID you use
here. For all MobiLink Monitor sessions, the script version is set to
for_ML_Monitor_only.

The Connect to MobiLink Server dialog should be completed as follows:

♦ Host is the computer where the MobiLink synchronization server is
running. By default, it is the computer where the Monitor is running.

♦ Network Protocol should be set to the same protocol and port as the
MobiLink synchronization server is using for synchronization requests.

♦ Additional Network Parameters allows you to set optional
parameters. You can set the following parameters, separated by
semi-colon if you need to specify multiple parameters:

• buffer_size=number(HTTP and HTTPS only)

• client_port=nnnn
• client_port=nnnn-mmmmm
• persistent={ 0|1}

• proxy_host=proxy_hostname(HTTP and HTTPS only)

119

• proxy_port=proxy_portnumber(HTTP and HTTPS only)

• url_suffix=suffix (HTTP and HTTPS only)

• version=versionnumber(HTTP and HTTPS only)

☞ For more information about these network parameters, see
“Network protocol options for UltraLite synchronization clients”
[MobiLink Clients,page 341].

4. Start synchronizing.

The data appears in the Monitor as it is collected.

Starting dbmlmon on the
command line

Command line options allow you to have the Monitor open a file or connect
to a MobiLink synchronization server on startup. Following is the syntax:

dbmlmon [connect-options | inputfile.{ mlm | csv } | -?]

where:

connect-options can be one or more of the following:

-u ml_username

-p password

-x { tcpip | http | https } [(keyword=value;...)]

The keyword=value pairs can be the host, protocol, and Additional Network
Parameters as described above.

-o outputfile.{ mlm | csv }

The -o option closes the Monitor at the end of the connection and saves the
session in the specified file.

-? You can typedbmlmon -? to view the dbmlmon syntax.

Note: The options -u and -x are required to connect.

❖ To stop the MobiLink Monitor

1. In the Monitor, choose Monitor➤ Disconnect from MobiLink Server.
This stops the collection of data.

You can also stop collecting data by shutting down the MobiLink
synchronization server or closing the Monitor.

Before closing the Monitor, you can save the data for the session. For
more information, see“Saving Monitor data” on page 126.

2. When you are ready to close the Monitor, choose File➤ Close.

120

Chapter 7. MobiLink Monitor

Using the MobiLink Monitor
The Monitor has three panes:

♦ Details Table is the top pane. It is a spreadsheet that shows the total
time taken by each synchronization, with a breakdown showing the
amount of time taken by each part of the synchronization.

☞ For more information, see“Details Table pane” on page 121.

♦ Chart is the middle pane. It provides a graphical representation of the
data. The scale at the bottom of this pane represents time. You can select
the data that is displayed in the Chart by drawing a box around data in the
Overview pane; or by choosing View➤ Go To.

☞ For more information, see“Chart pane” on page 123.

♦ Overview is the bottom pane. It shows an overview of all the data. To
choose data to see in the Chart, click in the Overview and draw a box.
The Chart will show everything that is located in the box.

☞ For more information, see“Overview pane” on page 124.

In addition, there is an Options dialog that you can use to customize the data,
and properties dialogs for viewing more detailed information. For more
information, see

♦ “Options dialog” on page 124

♦ “Session properties” on page 124

♦ “Synchronization properties” on page 125

Details Table pane

The Details Table provides information about the duration of each part of the
synchronization. All times are measured by the MobiLink synchronization
server. Some times may be non-zero even when you do not have the
corresponding script defined.

You can choose the columns that appear in the Details Table pane by
opening Tools➤ Options and then opening the Table tab. For a description
of the statistics that are available, see“MobiLink statistical properties” on
page 130.

The following columns appear by default:

♦ Sync Identifies each synchronization.

121

♦ Worker Identifies the MobiLink worker thread that carried out the
synchronization. The worker is identified asn.m, wheren is the stream
number andm is the thread number.

♦ User Identifies the synchronization user.

♦ Version The version of the synchronization script.

☞ For information about script versions, see“Script versions” on
page 239.

♦ Start_Time The date and time when the MobiLink synchronization
server started the synchronization. (This may be later than when the
synchronization was requested by the client.)

♦ Duration The total duration of the synchronization, in seconds.

♦ Verify_Upload The time in seconds for MobiLink to validate the
synchronization request, validate the user name, and validate the
password (if your synchronization setup requires authentication).

♦ Preload_Upload The time in seconds for MobiLink to receive the
uploaded data from the client.

♦ Begin_Sync The time in seconds to run your begin_synchronization
script, if one was run.

♦ Upload The time in seconds to apply the upload to the consolidated
database. This is the time between the begin_upload script and the
end_upload script.

♦ Prepare_for_Download The time in seconds to run your
prepare_for_download script, if one was run.

♦ Download The time in seconds to download the data. This is the time
between the begin_download script and the end_download script. If
download acknowledgement is enabled, this includes the time to apply
the download on the remote database and return acknowledgement.

♦ End_Sync The time in seconds to run the end_synchronization script, if
one was run.

To sort the table by a specific column, click on the column heading. If new
data is appearing in the Monitor, it will be sorted as it is added.

You can close the Details Table pane by clearing View➤ Details Table.

122

Chapter 7. MobiLink Monitor

Chart pane

The Chart pane presents the same information as the Details Table, but in
graphical format. The bars in the Chart represent the length of time taken by
each synchronization, with subsections of the bars representing the phases of
the synchronization.

Viewing data Click a synchronization to select that synchronization in the Details Table.

Double-click a synchronization to open the Synchronization Session
Properties for the synchronization. For more information, see
“Synchronization properties” on page 125.

Grouping data by thread
or user

You can group the data by worker thread or by user. Choose View➤ By
User or View➤ By Worker Thread.

Zooming in on data There are several ways to select the data that is visible:

♦ Zoom options There are zoom options in the View menu and zoom
buttons on the toolbar that allow you to zoom in and out. To have a
synchronization fill the available space, use Zoom to Selection.

♦ Scrollbar Click the scrollbar at the bottom of the Chart pane and slide
it.

♦ Go To dialog Open this dialog by choosing View➤ Go To. The Go To
dialog appears.

Start Date & Time lets you specify the start time for the data that appears
in the Chart pane. If you change this setting, you must specify at least the
year, month, and date of the date-time.

Chart Range lets you specify the duration of time that is displayed. The
chart range can be specified in milliseconds, seconds, minutes, hours, or
days. The chart range determines the granularity of the data: a smaller
length of time means that more detail is visible.

♦ Overview Pane The box in the Overview pane indicates the area being
displayed in the Chart. It allows you to quickly select a portion of data to
view. You can easily resize or move the box to see different data, or see
data at different granularity. If you make the box smaller you shorten the
interval of the visible data in the Chart, which makes more detail visible.
Click to move the current box without changing the zoom. Drag in the
Overview to redraw the box and select a different zoom and position.

Time axis At the bottom of the Chart pane there is a scale showing time periods. The
format of the time is readjusted automatically depending on the span of time

123

that is displayed. You can always see the complete date-time by hovering
your cursor over the scale.

Default color scheme You can view or set the colors in the Chart pane by opening the Options
dialog (available from the Tools menu). The default color scheme for the
Chart pane uses green for uploads, red for downloads, and blue for begin and
end phases, with a darker shade for earlier parts of a phase.

☞ For information about setting colors, see“Options dialog” on page 124.

Overview pane

The Overview pane shows you an overview of the entire Monitor session.
The area that is currently displayed in the Chart pane is represented as a box
in the Overview. Click in the Overview pane to move the box (and thus
move the start time of the data shown in the Chart) or drag in the Overview
to redraw the box to change the box’s location and size (and thus change the
start time and the range of data)

You can separate the Overview pane from the rest of the Monitor window. In
the Options dialog, open the Overview tab and clear the Keep Overview
Window Attached to Main Window checkbox.

☞ For more information, see“Options dialog” on page 124.

You can close the Overview pane by clearing View➤ Overview Pane.

Options dialog

Options allow you to specify a number of settings, including colors and
patterns for the graphical display in the Chart pane (the middle pane of the
MobiLink Monitor) and the Overview pane (the bottom pane).

To open the Options dialog, open the Monitor and choose Tools➤ Options.

Restoring defaults To restore default settings, delete the file .mlMonitorSettings. This file is
stored in your user profiles directory.

Session properties

The Session Properties dialog provides basic information about the
monitoring session.

To open the Session Properties dialog, open the Monitor and choose File➤

Properties.

124

Chapter 7. MobiLink Monitor

Synchronization properties

Double-click a synchronization in either the Details Table or the Chart to see
properties for that synchronization.

You can choose to see statistics for all tables (which is the sum for all tables
in the synchronization), or for individual tables. The dropdown list provides
a list of the tables that were involved in the synchronization.

☞ For an explanation of the statistics in Synchronization Properties, see
“MobiLink statistical properties” on page 130.

125

Saving Monitor data
You can save the data from a Monitor session as a binary file (.mlm), as a
text file with comma-separated values (.csv), as tables in a relational
database, or as a Microsoft Excel file.

Saving to file To save the data as a file, choose File➤ Save As.

♦ Save the data as a binary (.mlm) file if you want to view the saved data in
the MobiLink Monitor. To reopen, choose File➤ Open.

♦ Save the data as a comma separated file (.csv) if you want to view it in
another tool, such as Microsoft Excel. This will save all the information
in the session and synchronization property sheets, except per table
information and the session begin and end time. You can also open a .csv
file in the Monitor.

In the .csv file format, time durations are stored in milliseconds.

You can specify that you want data to be saved automatically to a file. To do
this, choose Tools➤ Options, and enter an output file name on the General
tab. The output file is overwritten by new data.

Exporting to a relational
database or Excel

You can also export Monitor data using an ODBC or JConnect connection.
With JConnect, you can only export to Adaptive Server Anywhere or
Adaptive Server Enterprise databases. With ODBC, you can export to any
relational database that is supported by MobiLink, as well as to Excel.

When you export data, all the columns in your Monitor session are exported,
as well as a column called export_time that identifies the time the export was
performed.

The data source must have quoted identifiers enabled, because some of the
columns are reserved words. The Monitor enables quoted identifiers
automatically for Adaptive Server Anywhere, Adaptive Server Enterprise,
and Microsoft SQL Server databases. If quoted identifiers is not enabled, the
export will fail.

❖ To export the data to a database or Excel

1. After collecting Monitor information, disconnect from the MobiLink
synchronization server.

2. In the MobiLink Monitor, choose File➤ Export to Database.

The Export to Database dialog appears.

3. Select options for the output.

126

Chapter 7. MobiLink Monitor

♦ You can name the two tables that will be created to hold the data, or
use the defaults (mlm_by_sync and mlm_by_table). If the tables do
not exist, they will be created by the Monitor. For Excel output, the
two table names identify the two worksheets that are created.

♦ Choose whether you want to overwrite data in existing tables. If you do
not choose to overwrite the data, new data is appended to existing data.

4. Click OK.

A Connect dialog appears that allows you to connect to the database or
Excel spreadsheet using ODBC or JConnect.

127

Customizing your statistics
The Watch Manager allows you to visibly distinguish synchronizations that
meet criteria that you specify. For example, you might want to highlight big
synchronizations, long synchronizations, small synchronizations that take a
long time, or synchronizations that receive warnings.

To open the Watch Manager, open the Monitor and then click Tools➤ Watch
Manager.

The left pane of the Watch Manager contains a list of all available watches.
The right pane contains a list of active watches. To add or remove a watch
from the active list, select a watch in the left pane and click the appropriate
button.

There are three predefined watches (Active, Completed, and Failed). You
can edit predefined watches to change the way they are displayed, and you
can deactivate them by removing them from the right pane.

No synchronizations are displayed in the Chart unless they meet the
conditions of a watch. If you disable all watches (by removing them from
the Current Watches list), then no synchronizations are shown in the Chart or
Overview.

The order of watches in the right pane is important. Watches that are closer
to the top of the list are processed first. Use the Move Up and Move Down
buttons to organize the order of watches in the right pane.

You can use the predefined watches, and create other watches. To edit a
watch condition, remove it and then add the new watch condition.

❖ To create a new watch

1. In the Watch Manager, click New.

The New Watch dialog appears.

2. Give the watch a name in the Name box.

3. Select a property, comparison operator, and value.

☞ For a complete list of properties, see“MobiLink statistical
properties” on page 130.

4. Click Add. (You must click Add to save the settings.)

5. If desired, select another property, operator, and value, and click Add.

6. Select a pattern for the watch in the Chart pane. (The Chart pane is the
middle pane in MobiLink Monitor.)

128

Chapter 7. MobiLink Monitor

7. Select a color for the watch in the Overview pane. (The Overview pane is
the bottom pane in the MobiLink Monitor.)

129

MobiLink statistical properties
Following is a list of the properties that are available in the MobiLink
Monitor. These statistics can be viewed in the New Watch dialog, the Details
Table pane, or the Synchronization Properties. In Synchronization
Properties, the property names do not contain underscores.

☞ For more information about the New Watch dialog, see“Customizing
your statistics” on page 128.

☞ For more information about the Details Table, see“Details Table pane”
on page 121.

☞ For more information about the Synchronization Properties dialog, see
“Synchronization properties” on page 125.

Property Notes

active True if the synchronization is in progress.

begin_sync Time for the begin_synchronization event.

completed True if the synchronization completed success-
fully.

conflicted_deletes Number of uploaded deletes for which con-
flicts were detected.

conflicted_inserts Number of uploaded inserts for which conflicts
were detected.

conflicted_updates Number of uploaded updates for which con-
flicts were detected.

connection_retries Number of times the MobiLink synchro-
nization server retried the connection to the
consolidated database.

download Time for the download.

download_bytes Bytes downloaded to the synchronization
client.

download_deleted_rows Number of row deletions fetched from the con-
solidated database by the MobiLink synchro-
nization server (using download_delete_cursor
scripts).

download_errors Number of errors that occurred during the
download.

130

Chapter 7. MobiLink Monitor

Property Notes

download_fetched_rows Number of rows fetched from the consolidated
database by the MobiLink synchronization
server (using download_cursor scripts).

download_filtered_rows Number of fetched rows that were not down-
loaded to the MobiLink client because they
matched rows that the client uploaded.

download_warnings Number of warnings that occurred during the
download.

duration Total time for the synchronization, as mea-
sured by the MobiLink synchronization server.
This does not include time when the syn-
chronization request is queued waiting for an
available worker thread.

end_sync Time for the end_synchronization event.

ignored_deletes Number of uploaded deletes that were ignored.

ignored_inserts Number of uploaded inserts that were ignored.

ignored_updates Number of uploaded updates that were ig-
nored.

preload_upload Time for the transfer of the upload data from
the client to the MobiLink synchronization
server.

prepare_for_download Time for the prepare_for_download event.

start_time Date-time (in ISO-8601 extended format) for
the start of the synchronization. All fields
of the format must be specified:YYYY-
MM-DD hh :mm:ss.sssor YYYY-MM-DD
hh:mm:ss,sss, depending on your locale set-
ting.

sync A number uniquely identifying the synchro-
nization within the Monitor session.

sync_deadlocks Total number of deadlocks in the consolidated
database that were detected for the synchro-
nization.

sync_errors Total number of errors that occurred for the
synchronization.

131

Property Notes

sync_tables Number of client tables that were involved in
the synchronization.

sync_warnings Total number of warnings that occurred for the
synchronization.

upload Time for data to be uploaded to the consoli-
dated database.

upload_bytes Number of bytes uploaded from the synchro-
nization client.

upload_deadlocks Number of deadlocks in the consolidated
database that were detected during the upload.

upload_deleted_rows Number of row deletions that were uploaded
from the synchronization client.

upload_errors Number of errors that occurred during the
upload.

upload_inserted_rows Number of row insertions that were uploaded
from the synchronization client.

upload_updated_rows Number of row updates that were uploaded
from the synchronization client.

upload_warnings Number of warnings that occurred during the
upload.

user Name of the MobiLink client.

verify_upload Time for verifying the synchronization pro-
tocol and authenticating the synchronization
client.

version Name of the synchronization version.

worker Identifier for the MobiLink worker thread used
for the synchronization in the formn.m, where
n is the stream number andm is the thread
number.

132

CHAPTER 8

Synchronizing Through a Web Server
With the Redirector

About this chapter This chapter describes how to route MobiLink synchronization through a
web server, focusing on the Redirector.

Contents Topic: page

Introduction 134

Setting up the Redirector 136

Configuring MobiLink clients and servers for the Redirector 137

Configuring Redirector properties (all versions) 139

NSAPI Redirector for Netscape/Sun web servers 141

ISAPI Redirector for Microsoft web servers 144

Servlet Redirector 146

Apache Redirector 150

M-Business Anywhere Redirector 153

133

Introduction
MobiLink includes a web server extension called theRedirector that routes
requests and responses between a client and the MobiLink synchronization
server. A plug-in such as this is also commonly called areverse proxy.

The main reason for routing requests through a web server is to use existing
web server and firewall configurations for HTTP or HTTPS synchronization.
However, a web server can operate as a proxy without the Redirector. The
Redirector is most useful when you have more than one MobiLink
synchronization server.

☞ For more information, see“Options when using a web server” on
page 135.

Using the Redirector, you can configure your web server to route specific
URL requests to one or more computers running the MobiLink
synchronization server.

Web servers can be configured to pass requests with specific URLs or ranges
of URLs to extension programs commonly written in the form of perl CGI
scripts, DLLs, or other extension mechanisms. These extension programs
may access external data sources and provide responses for the web server to
deliver to its clients.

Load balancing and
failover

The Redirector implements load balancing and failover using a simple round
robin algorithm (servers are chosen in a fixed cyclic order). Each MobiLink
synchronization server is tested at set intervals and requests are no longer
sent to a server that is not responding. The Redirector detects when a
MobiLink synchronization server is running again and resumes sending
requests at that time.

HTTPS synchronization In HTTPS synchronization, HTTP headers are encrypted over SSL/TLS
using RSA encryption before being sent to or from the server. HTTPS is
only used for the connection between the MobiLink client and the web
server. The web server decrypts the HTTPS and sends HTTP to MobiLink
via the Redirector.

The HTTPS protocol is slower than other secure protocols, so it is
recommended that it be used only if the HTTPS protocol is required.

Supported web servers Plug-ins are provided for the following web servers:

134

Chapter 8. Synchronizing Through a Web Server With the Redirector

Redirector plug-in ...supports

ISAPI Redirector Microsoft web servers

NSAPI Redirector Sun One (previously Netscape) web servers on
Windows

Servlet Redirector Web servers that support the Java Servlet API
2.3, including Apache Tomcat and Sun One web
servers on UNIX

Native Apache Redirector Apache web server

M-Business Anywhere
Redirector

M-Business Anywhere web server

Options when using a web server

The Redirector is one way to route MobiLink synchronization through a web
server. The Redirector is particularly useful for synchronizing across a
firewall or with multiple MobiLink synchronization servers.

The main reason for routing requests through a web server is to use existing
web server and firewall configurations for HTTP or HTTPS synchronization.
The Redirector is most useful when you have more than one MobiLink
synchronization server.

You can also route synchronizations through a web server without using the
Redirector. In this case, you might configure your web server as a proxy to
route synchronizations to a MobiLink server. For more information on how
to do this with your web server, see your web server documentation.

The following table contains recommendations to help you decide how best
to route your MobiLink synchronizations.

Direct connection

possible

Direct connection not possi-

ble

One MobiLink
synchronization
server

Use TCP/IP instead
of HTTP

Use an HTTP or HTTPS proxy
to pass messages through the
web server to the MobiLink
synchronization server

Multiple Mo-
biLink synchro-
nization servers

Use the Redirec-
tor with HTTP or
HTTPS

Use the Redirector with HTTP
or HTTPS

☞ See“Synchronizing Through a Web Server With the Redirector” on
page 133.

135

Setting up the Redirector
The following sections describe how to configure your web server to manage
synchronization requests.

❖ Overview of the configuration process

1. Configure MobiLink clients and the MobiLink synchronization server.

☞ See“Configuring MobiLink clients and servers for the Redirector”
on page 137.

2. Ensure that the Redirector configuration file is on the same computer as
the web server.

☞ See“Configuring Redirector properties (all versions)” on page 139.

3. Modify the Redirector configuration file.

☞ See“Configuring Redirector properties (all versions)” on page 139.

4. Perform web server-specific configuration.

☞ See one of the following:

♦ “NSAPI Redirector for Netscape/Sun web servers” on page 141

♦ “ISAPI Redirector for Microsoft web servers” on page 144

♦ “Servlet Redirector” on page 146

♦ “Apache Redirector” on page 150

♦ “M-Business Anywhere Redirector” on page 153

136

Chapter 8. Synchronizing Through a Web Server With the Redirector

Configuring MobiLink clients and servers for the
Redirector

This section describes how to configure MobiLink clients and the MobiLink
synchronization server for synchronization through a web server. The
following procedures set the parameters required for requests directed
through web servers.

MobiLink clients

❖ To configure MobiLink clients (Adaptive Server Anywhere and Ul-
traLite)

1. Specify the communication type for MobiLink clients to HTTP or
HTTPS.

☞ For more information about setting the communication type for
Adaptive Server Anywhere clients, see“CommunicationType (ctp)
extended option”[MobiLink Clients,page 111].

☞ For more information about setting the communication type for
UltraLite clients, see“HTTP protocol options”[MobiLink Clients,
page 346]or “HTTPS protocol options”[MobiLink Clients,page 347].

2. Specify the following HTTP/HTTPS synchronization protocol options
for MobiLink clients:

♦ host the name or IP address of the web server.

♦ port the web server port accepting HTTP or HTTPS requests.

♦ url_suffix This setting depends on the type of web server you are
using:

• For ISAPI web servers:

exe_dir /iaredirect.dll/ml/

whereexe_diris the location ofiaredirect.dll.
• For NSAPI web servers:

mlredirect /ml/

wheremlredirectis a name mapped in yourobj.conf file.

• For servers that support the Java Servlet API 2.2, including Apache
with Tomcat using the servlet Redirector:

iaredirect/ml/

• For the native Redirector for Apache, set this to whatever you chose
in the Redirector’s<location> tag in thehttpd.conffile. For
example:

137

iaredirect/ml/

☞ For more information about setting protocol options for UltraLite
clients, see“HTTP protocol options”[MobiLink Clients,page 346]or “HTTPS
protocol options”[MobiLink Clients,page 347].

☞ For more information about setting protocol options for Adaptive Server
Anywhere clients, see“CommunicationAddress (adr) extended option”
[MobiLink Clients,page 106].

MobiLink synchronization
server

❖ To configure MobiLink servers

1. The MobiLink synchronization server must be started with the HTTP
protocol to use HTTP or HTTPS for communication between the client
and the proxy. The Redirector cannot use HTTPS directly.

For example, the HTTP protocol may be specified on the dbmlsrv9
command line as follows:

dbmlsrv9 -x http

☞ For more information, see“-x option” on page 214.

2. In addition, you may want to set the following parameters for the
MobiLink synchronization server:

♦ port for the HTTP protocol, MobiLink defaults to port 80. For the
HTTPS protocol, MobiLink defaults to port 443. If the MobiLink
synchronization server is running on the same machine as the web
server, port 80 is normally in use by the web server. If this is the case
you must specify a different port. For example, you could use port
2439, which is the Internet Assigned Numbers Authority
(IANA)-registered port number for the MobiLink synchronization
server.

♦ contd_timeout This is the number of seconds to wait to receive the
next part of a partially completed synchronization before the
synchronization is abandoned. This setting is optional and has a
default value of 30 seconds.

You may wish to increase the timeout parameters if your applications
involve large synchronizations over slow networks.

☞ For more information about port and contd_timeout, see“-x option”
on page 214.

138

Chapter 8. Synchronizing Through a Web Server With the Redirector

Configuring Redirector properties (all versions)
This section describes generic web server configuration steps to configure
Redirector properties.

❖ To configure Redirector properties

1. Complete the steps in“Configuring MobiLink clients and servers for the
Redirector” on page 137.

2. Copyredirector.configto the web server.

The fileredirector.configis provided with the MobiLink synchronization
server installation, in theMobiLink\redirectorsubdirectory of your
SQL Anywhere installation.

If the MobiLink synchronization server is not installed on the same
computer as the web server, copyredirector.configto the computer that
holds the web server.

For Microsoft web servers, copyredirector.configto the directory
Inetpub/scripts. For other web servers, you can copyredirector.configto
any directory.

3. Configure the Redirector configuration file.

To configure communications between the web server and MobiLink
synchronization server, you must edit the fileredirector.configon the
computer that holds the web server.

You can set the following directives in this file:

♦ LOG_LEVEL used to control the amount of output written to the log
file. Values are 0, 1, and 2, with 1 being the default and 2 generating
the most output. For the Apache Redirector, this setting has no effect;
set the log level in the LogLevel section of the Apache configuration
file, httpd.conf.

♦ ML used to list the computers running MobiLink synchronization
server, in the formML=host:port . ML is case sensitive.

♦ ML_CLIENT_TIMEOUT used to ensure that each step of a single
synchronization is directed to the same MobiLink synchronization
server. The default value is 600 seconds (ten minutes).

Information is maintained by the MobiLink synchronization server for
the duration of a synchronization, so each step of a synchronization
should be handled by the same server. The Redirector maintains an
association between client and server for the duration of
ML_CLIENT_TIMEOUT. The value of this parameter should be
greater than the longest step in any user’s synchronization.

139

♦ SLEEP used to set the interval in seconds at which the Redirector
checks that the servers are functioning. The default is 1800 (30
minutes). For example,SLEEP=3600. SLEEP is case sensitive.

The following rules apply toredirector.config:

• The maximum line length is 300 characters.

• Comments start with the hash character (#).

• You cannot include spaces or tabs in the directive definitions.

4. Complete web server-specific configuration in one of the following
sections:

♦ “ISAPI Redirector for Microsoft web servers” on page 144

♦ “NSAPI Redirector for Netscape/Sun web servers” on page 141

♦ “Servlet Redirector” on page 146

♦ “Apache Redirector” on page 150

Example Following is a sampleredirector.configfile. This file specifies the following:

♦ The Redirector should check every 1800 seconds that the servers are
functioning.

♦ The three computers running MobiLink synchronization servers that are
able to process requests. When you specify multiple servers, load
balancing is automatically enabled.

SLEEP=1800
ML=myServ-pc:80
ML=209.123.123.1:8080
ML=myCompany.com:8081

140

Chapter 8. Synchronizing Through a Web Server With the Redirector

NSAPI Redirector for Netscape/Sun web servers
The NSAPI Redirector is provided for the Sun One web server, which was
previously the Netscape iPlanet Enterprise Edition web server. Following
are setup instructions for Sun One, service pack 1.

This Redirector works only on Windows. To use the Redirector with
Netscape/Sun web servers on UNIX, you can use the servlet Redirector. See
“Servlet Redirector” on page 146.

❖ To configure the NSAPI Redirector for Sun One

1. Complete the steps in“Configuring Redirector properties (all versions)”
on page 139.

2. If necessary, copy the fileiaredirect.dllto the computer that holds the
web server. This file is installed with the MobiLink synchronization
server, in theMobiLink\redirector\nsapisubdirectory of your
SQL Anywhere installation.

3. Update the Sun One web server configuration fileobj.conf as follows.

Sample file provided
A complete sample copy ofobj.conf, preconfigured for the MobiLink
synchronization server, is provided inMobiLink\redirector\nsapi, and is
calledobj.conf.example. You can use this sample file to confirm where
the following sections fit in to the file.

Update the following sections of the filesmagnus.confandobj.conf.
♦ In magnus.conf, specify whereiaredirect.dllandredirector.configare

located.

At the end of the Init section, add the following text, wherelocation is
the actual location of the files. (iaredirect.dllandredirector.configcan
be in different locations, although both must be on the same computer
as the web server.)

Init fn="load-modules" shlib=" location /iaredirect.dll"
funcs="redirector,initialize_redirector"
Init fn="initialize_redirector"

configFile=" location /redirector.config"

♦ In obj.conf, specify the name of the Redirector to be used in URLs.

At the beginning of the “default object” section, add the following text.
This section should appear exactly as provided below, except that you
can changemlredirectto whatever you wish. All requests of the form
http://host:port/mlredirect/ml/*will be sent to one of the MobiLink
synchronization servers running with the Redirector.

141

<Object name=default>
NameTrans fn="assign-name" from="/ mlredirect /ml/ * "

name="redirectToML"

♦ In obj.conf, specify the objects that are called by the Redirector. After
the “default object” section, add the following section:

<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

4. Set the buffer size for the MobiLink upload streams.

Add a directive to your web server’smagnus.conffile to set the buffer
size (in bytes) for the upload and download stream. For example:

ChunkedRequestBufferSize 2000000

This directive increases the buffer to 2 Mb. The value must be sufficient
to accommodate the size of the uploaded data.

If you are using any network protocol other than HTTPS, your
configuration is complete.

5. If you are using HTTPS synchronization, configure your server as
follows:

♦ Start the Sun One web server Administration Server.
Choose Start➤ Programs➤ iPlanet Web Server➤ Start iWS
Administration Server.

♦ Log in to the Administration Server.
Choose Start➤ Programs➤ iPlanet Web Server➤ Administer Web
Server.
When prompted, enter your user ID and password.

♦ On the Servers tab, select your server from the list and click Manage.

♦ On the Security tab, click Request a Certificate.

♦ Generate a certificate request and have it signed by a certificate
authority or using gencert, which requires a separate license.

• To have the certificate request signed by a certificate authority, fill
out the form.

• To use the gencert utility, fill out the form, supplying your own
e-mail address instead of the e-mail address of a certificate authority.
Save the text of the certificate request to a file, then run the gencert
utility. For more information, see“Certificate generation utility” on
page 496.

♦ On the Security tab, click Install Certificate. Fill out the form and
specify the location of your signed certificate.

142

Chapter 8. Synchronizing Through a Web Server With the Redirector

♦ Click Manage Certificates to verify that your certificate has been
installed correctly.

♦ On the Preferences tab, click Add Listen Socket. Specify the required
parameters. The default port for HTTPS is 443. Select On from the
Security dropdown list to activate HTTPS synchronization.

☞ For more information about using HTTPS, see“MobiLink
Transport-Layer Security” on page 165.

Example Following is an example of the section ofmagnus.confthat you need to
customize.

Init fn="load-modules" shlib="D:/iaredirect.dll"
funcs="redirector,initialize_redirector"
Init fn=" initialize_redirector "

configFile="D:/redirector.config"

Following is an example of the sections ofobj.conf that you need to
customize.

<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/ * "

name="redirectToML"
...
<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

❖ To test your configuration

1. Call the Redirector using the following syntax:

http:// host : port /mlredirect/ml/

2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink
synchronization server.

143

ISAPI Redirector for Microsoft web servers
If you are using a Microsoft web server, you can use the ISAPI version of
the Redirector. Following are setup instructions for IIS 5.0.

❖ To configure ISAPI Redirector for Microsoft web servers

1. Complete the steps in“Configuring Redirector properties (all versions)”
on page 139.

2. Copy the fileiaredirect.dllto Inetpub/scriptson the computer that holds
the web server.

The file iaredirect.dllis installed with the MobiLink synchronization
server, inMobiLink\redirector\isapiunder your SQL Anywhere
directory.

The directoryInetpub/scriptsis in the Microsoft web server installation
directory.

3. Copy the fileredirector.configto Inetpub/scriptson the computer that
holds the web server.

If you are using any network protocol other than HTTPS, your
configuration is complete. If your configuration is not successful, see the
Note, below.

4. If you are using HTTPS synchronization, configure your server as
follows:

♦ Right-click My Computer and select Manage from the popup menu.

♦ In the left pane, open the Services and Applications folder. Select
Internet Information Services.

♦ In the right pane, right-click the default web site and select Configure
from the popup menu.

♦ Click the Directory Security tab.

♦ Click Server Certificate.

The Web Server Certificate wizard appears.

♦ Select Create a New Certificate to generate a certificate request.
Follow the remaining prompts, choosing to output the certificate
request to a file.

♦ Sign your certificate.

You can sign the certificate using a third-party certificate authority or
using the gencert utility, which requires a separate license. For more
information, see“Certificate generation utility” on page 496.

144

Chapter 8. Synchronizing Through a Web Server With the Redirector

♦ Click Server Certificate.

The Web Server Certificate wizard appears with different prompts to
allow you to install the signed certificate. Follow the prompts.

♦ Click View Certificate to verify that your certificate has been correctly
installed.

☞ For more information about using HTTPS, see“MobiLink
Transport-Layer Security” on page 165.

Note The directoryInetpub/scriptsshould be created during the web server
installation with execute permissions. You can putredirector.configand
iaredirect.dllin a different directory only if you use Internet Information
Services to give execute permissions to the directory.

If you are unable to connect to the MobiLink synchronization server, the
problem may be that you do not have a virtual directory that points to the
Inetpub/scriptsdirectory. If this is the case, you must open Internet
Information Services and manually create a virtual directory. This virtual
directory should point toInetpub/scriptsand have Execute Permissions set
to Scripts and Executables. See the IIS online help for instructions.

❖ To test your configuration

1. Call the ISAPI Redirector using the following syntax:

protocol://host[:port]/exec_dir/iaredirect.dll/ml/

where:

♦ protocol is http or https.

♦ host is the host name of the web server.

♦ port is the port on which the web server is listening, if it is not the
default port.

♦ exec_dir is the directory where you installed the Redirector dll,
iaredirect.dll. The default directory isscripts.
For example,

http://server:8080/scripts/iaredirect.dll/ml/

2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink
synchronization server.

145

Servlet Redirector
The servlet Redirector is supported for web servers that support the Java
servlet specification version 2.3. The following procedure is an example for
how to set up the servlet Redirector for Apache Tomcat 4.0.6.

☞ There is also a native Redirector for Apache web servers. For more
information, see“Apache Redirector” on page 150.

To configure the servlet
Redirector for Apache
Tomcat

This section describes how to install the servlet version of the Redirector to
work on an Apache web server in conjunction with the Tomcat servlet
container. Testing of the Redirector software has been carried out using
Tomcat version 4.0.6 and Apache 2.0.47.

Installation requires the following steps:

1. Complete the steps in“Configuring Redirector properties (all versions)”
on page 139.

2. Install the servlet version of the Redirector in Tomcat.

3. Configure the Apache web server to run as a proxy.

This section uses%CATALINA_HOME% and%APACHE_HOME%as the
root directory of your Tomcat and Apache installation respectively.

❖ To install the servlet Redirector in Tomcat

1. Install Tomcat as a standalone server.

You can download Tomcat binaries from the Jakarta project on the
Apache web site at
http://archive.apache.org/dist/jakarta/tomcat-4/archive/v4.0.6/bin/.

2. Optionally, set the required Tomcat HTTP port.

Tomcat binds to port 8080 by default. If there is a conflict, perhaps
because another web server is using this port,

♦ open the file:%CATALINA_HOME%/conf/server.xml

♦ search for 8080 (which is in a<Connector> tag)

♦ change it to a port that is not in use

3. Install the servlet Redirector as a web application.

♦ Copy iaredirect.warfile to %CATALINA_HOME%/webapps

♦ Shut down and restart Tomcat.

Tomcat expands the war file and creates the directoryiaredirectfor the
Redirector web application.

146

http://archive.apache.org/dist/jakarta/tomcat-4/archive/v4.0.6/bin/

Chapter 8. Synchronizing Through a Web Server With the Redirector

♦ Edit the file
%CATALINA_HOME%/webapps/iaredirect/WEB-INF/web.xml.
Search forredirector.config (in an<init-param> tag), and correct the
path for theredirector.configfile.

Change the entryredirector.config to read
drive:/path/redirector.config. Even on Windows operating systems,
use a forward slash as a path separator, as ind:/redirector.config.

♦ Shut down and restart Tomcat for the changes to take effect.

Once the changes have taken effect, you no longer need the war file in
the deployed location.

♦ The Redirector can now be invoked through the following URL:

http://tc-host:tc-port/iaredirect/ml/

wheretc-hostis the machine andtc-port the port on which Tomcat is
listening.

❖ To configure the Apache web server as a proxy

1. Install the Apache web server.

You can download binaries from the Apache web site at
http://www.apache.org.

2. Optionally, change the Apache web server port.

Edit the file%APACHE_HOME%/conf/httpd.confand change thePort
setting to the desired port.

3. Configure Apache to run as a proxy.

In %APACHE_HOME%/conf/httpd.conf, add the following two
directives:

LoadModule proxy_module {module-path}/mod_proxy.so
LoadModule proxy_connect_module {module-path}/mod_proxy_

connect.so
LoadModule proxy_http_module {module-path}/mod_proxy_

http.so

For example, the path may bemodules/mod_proxy.so(the default).

4. Configure Apache to forward Redirector URLs to Tomcat.

In %APACHE_HOME%/conf/httpd.conf, add the following two
directives so that Apache forwards URLs of the form
http://localhost/iaredirect/* to the Tomcat 4 Connector listening on port
8080:

ProxyPass /iaredirect http://localhost:8080/iaredirect

147

http://tcmachine:TCPort/iaredirect/servlet/redirect/iaws/yourApp
http://www.apache.org/

The port number must match the port number used for Tomcat. If Tomcat
and Apache are not running on the same machine, provide the machine
name where Tomcat is running instead oflocalhost.

If you are using any network protocol other than HTTPS, your
configuration is complete.

5. If you are using HTTPS synchronization, configure your server as
follows. (Note that this HTTPS configuration is identical to the HTTPS
instructions for the native Redirector for Apache and M-Business
Anywhere.)

♦ Download and install binaries for mod_ssl and OpenSSL. You can find
them using the Apache Module Registry athttp://modules.apache.org/.
mod_ssl.somust be copied to%APACHE_HOME%\modules.
libeay32.dllandssleay32.dllmust be copied to
%APACHE_HOME%\bin.

♦ Generate a server certificate and private key either by generating a
request with reqtool.exe and sending it to a third party certificate
authority to sign it, or by generating a certificate directly using
gencert.exe. The private key can either be in the same file as the server
certificate or in its own file.

♦ Add the following lines to%APACHE_HOME%\conf\httpd.conf:

LoadModule ssl_module modules/mod_ssl.so
SSLEngine on
SSLCertificateFile certificate_file

wherecertificate_fileis the path and file name of the server’s
certificate file.

If the server’s private key is in a separate file from the server’s
certificate, add the additional line

SSLCertificateKeyFile private_key_file

whereprivate_key_fileis the path and file name of the server’s private
key.

If the private key is encrypted using a pass phrase and you are running
under win32, add the additional line

SSLPassPhraseDialog exec: exe_name

whereexe_nameis the path and file name of an executable that will
return the pass phrase on stdout.

Alternatively, the pass phrase can be removed from the private key
using openssl:

openssl rsa -in src_file -out dst_file

148

http://modules.apache.org/

Chapter 8. Synchronizing Through a Web Server With the Redirector

wheresrc_file is the path and file name of the private key protected by
a pass phrase, anddst_file is the path and file name of the output file
that will contain the unprotected private key. Note that this may reduce
server security.

☞ For more information about using HTTPS, see“MobiLink
Transport-Layer Security” on page 165.

Example of HTTPS
Configuration

Following is an example of how to configure Apache for HTTPS. This
example uses Apache’s virtual host feature to read HTTPS from port 443
(the default HTTPS port) and HTTP from port 80 at the same time.

LoadModule ssl_module modules/mod_ssl.so

Listen 80
Listen 443

NameVirtualHost * :443
<VirtualHost _default_:443>

ServerName server_name:443
ErrorLog logs/https_error
CustomLog logs/https_access common

SSLEngine on
SSLCertificateFile rsaserver.crt
SSLCertificateKeyFile rsaserver.key

</VirtualHost>

Verifying your setup

❖ To check your configuration

1. Call the Redirector using the following syntax:

http://host:port/iaredirect/ml/

2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink
synchronization server.

149

Apache Redirector
The Apache Redirector is a native Redirector for Apache web servers
version 2.0.x. It has been tested with version 2.0.47. The Apache Redirector
is supported for Windows, Solaris and Linux.

If you are using Tomcat, you can also use the servlet Redirector. For more
information, see“Servlet Redirector” on page 146.

❖ To configure the Apache Redirector

1. Complete the steps in“Configuring Redirector properties (all versions)”
on page 139.

2. Copy the filemod_iaredirect.dllor mod_iaredirect.soto the appropriate
directory in your web server, as follows:

♦ For Apache on Windows, the filemod_iaredirect.dllis located in the
MobiLink\redirector\apache\v20\subdirectory of your SQL Anywhere
installation. Copy this file to the%apache-home%\modulesdirectory
on the computer that holds the web server.

♦ For Apache for Solaris or Linux, the filemod_iaredirect.sois located
in theMobiLink/redirector/apache/v20/OSsubdirectory of your
SQL Anywhere installation, whereOS is linux or solaris. Copy it to
the%apache-home%/modulesdirectory on the computer that holds the
web server.

3. Update the Apache web server configuration filehttpd.confas follows.
♦ In the LoadModule section, add the following line:

(Windows) LoadModule iaredirect_module path modules/mod_
iaredirect.dll

(Solaris and Linux) LoadModule iaredirect_module
path modules/mod_iaredirect.so

wherepath is the location of the Apachemodulesdirectory.

♦ Add the following section to the file:

<Location /iaredirect /ml>
SetHandler iaredirect-handler
iaredirectorConfigFile location /redirector.config

</Location>

where/iaredirect/mlis the path that you will use to invoke the
Redirector, andlocation is the directory whereredirector.configis
located.

♦ If you are using Apache on Solaris or Linux, you may also want to add
the following optional directives to the<Location> section you just
created:

150

Chapter 8. Synchronizing Through a Web Server With the Redirector

• MaxSyncUsers number The maximum number of MobiLink
users synchronizing through the Redirector. This number is used to
allocate necessary resources to the Redirector. This number cannot
be less than 60. The default is 1000. Only change this setting if the
default number of users is less than the actual number.

• ShmemDiagnosis on|off If set to on, allows debugging of the
memory resource. The default is off.

4. To help with debugging, you may want to increase the amount of logging
information that the Redirector outputs. To do this, modify the LogLevel
directive inhttpd.confand set it toLogLevel info. The log level can be
(from most to least verbose): debug, info, notice, warn, error, crit, alert,
and emerg.

If you are using any network protocol other than HTTPS, your
configuration is complete.

5. If you are using HTTPS synchronization, configure your server as
follows. (Note that this HTTPS configuration is identical to the HTTPS
instructions for the servlet Redirector on Apache Tomcat and the native
Redirector for M-Business Anywhere.)

♦ Download and install binaries for mod_ssl and OpenSSL. You can find
them using the Apache Module Registry athttp://modules.apache.org/.
The filemod_ssl.somust be copied to%APACHE_HOME%\modules.
The fileslibeay32.dllandssleay32.dllmust be copied to
%APACHE_HOME%\bin.

♦ Generate a server certificate and private key either by generating a
request with reqtool.exe and sending it to a third party certificate
authority to sign it, or by generating a certificate directly using
gencert.exe. The private key can either be in the same file as the server
certificate or in its own file.

♦ Add the following lines tohttpd.conf:

LoadModule ssl_module modules/mod_ssl.so
SSLEngine on
SSLCertificateFile certificate_file

wherecertificate_fileis the path and file name of the server’s
certificate file.

If the server’s private key is in a separate file from the server’s
certificate, add the additional line

SSLCertificateKeyFile private_key_file

whereprivate_key_fileis the path and file name of the server’s private
key.

151

http://modules.apache.org/

If the private key is encrypted using a pass phrase and you are running
under win32, add the additional line

SSLPassPhraseDialog exec: exe_name

whereexe_nameis the path and file name of an executable that will
return the pass phrase on stdout.

Alternatively, the pass phrase can be removed from the private key
using openssl:

openssl rsa -in src_file -out dst_file

wheresrc_file is the path and file name of the private key protected by
a pass phrase, anddst_file is the path and file name of the output file
that will contain the unprotected private key. Note that this may reduce
server security.

☞ For more information about using HTTPS, see“MobiLink
Transport-Layer Security” on page 165.

Example Following are examples of the sections ofhttpd.confthat configure the
Apache web server to route requests to the MobiLink synchronization
server. The line starting withAddModule applies only to version 1.3.x. This
example works for Windows. For UNIX and Linux, change
mod_iaredirect.dllto mod_iaredirect.so.

LoadModule iaredirect_module modules/mod_iaredirect.dll
...
AddModule mod_iaredirect.c
...
<Location /iaredirect/ml>

SetHandler iaredirect-handler
iaredirectorConfigFile c:/redirector.config

</Location>

❖ To test your configuration

1. Call the Redirector using the following syntax:

http:// host : port/iaredirect /ml/

whereiaredirect/mlis the path you specified in the<Location> tag of
httpd.conf.

2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink
synchronization server.

152

Chapter 8. Synchronizing Through a Web Server With the Redirector

M-Business Anywhere Redirector
The M-Business Anywhere Redirector is supported on Windows, Solaris,
and Linux. It has been tested for M-Business Anywhere version 5.5.

❖ To configure the M-Business Anywhere Redirector

1. Complete the steps in“Configuring Redirector properties (all versions)”
on page 139.

2. Copy the filemod_iaredirect.dllor mod_iaredirect.soto the
%avantgo-home%\bindirectory on the computer that holds the web
server. This file is located in theMobiLink\redirector\avantgo\OS
subdirectory of your SQL Anywhere installation, whereOS is linux or
solaris. (For Windows, there is noOS sub-directory.)

3. For Windows, update the M-Business Anywhere web server
configuration filesync.confas follows:

♦ In the LoadModule section, add the following line:

LoadModule iaredirect_module path /bin/mod_iaredirect.dll

wherepath is the location of the M-Business Anywherebin directory.

♦ Add the following section to the file:

<Location /iaredirect /ml>
SetHandler iaredirect-handler
iaredirectorConfigFile location /redirector.config

</Location>

where/iaredirect/mlis the path that you will use to invoke the
Redirector, andlocation is the directory whereredirector.configis
located.

♦ In the SyncLoadFile section, add the following line:

SyncLoadFile path /bin/mod_iaredirect.dll

wherepath is the location of the M-Business Anywherebin directory.

4. For Solaris and Linux, update the M-Business Anywhere web server
configuration filesync.confas follows:

♦ In the LoadModule section, add the following line:

LoadModule iaredirect_module path bin/mod_iaredirect.so

wherepath is the location of the M-Business Anywherebin directory.

♦ Add the following section to the file:

153

<Location /iaredirect /ml>
SetHandler iaredirect-handler
iaredirectorConfigFile location /redirector.config

</Location>

where/iaredirect/mlis the path that you will use to invoke the
Redirector, andlocation is the directory whereredirector.configis
located.

♦ You may also want to add the following optional directives to the
<Location> section you just created:

• MaxSyncUsers number The maximum number of MobiLink
users synchronizing through the Redirector. This number is used to
allocate necessary resources to the Redirector. This number cannot
be less than 60. The default is 1000. Only change this setting if the
default number of users is less than the actual number.

• ShmemDiagnosis on|off If set to on, allows debugging of the
memory resource. The default is off.

5. To help with debugging, you may want to increase the amount of logging
information that the Redirector outputs. To do this, modify the LogLevel
directive insync.confand set it toLogLevel info. The log level can be
(from most to least verbose): debug, info, notice, warn, error, crit, alert,
and emerg.

If you are using any network protocol other than HTTPS, your
configuration is complete.

6. If you are using HTTPS synchronization, you must implement both ECC
and RSA security.

☞ For more information, see the chapters “Security on Windows” or
“Security on UNIX” in theAdministrator Guide for M-Business Server.

Example Following are examples of the sections ofsync.confthat configure the
M-Business Anywhere web server to route requests to the MobiLink
synchronization server.

This example works on Windows:

LoadModule iaredirect_module "c: \program files \M-Business
Anywhere \bin \mod_iaredirect.dll"

...
SyncLoadFile "c: \program files \M-Business Anywhere \bin \mod_

iaredirect.dll"
...
<Location \iaredirect \ml>

SetHandler iaredirect-handler
iaredirectorConfigFile "c: \AvantGoServer \conf \

redirector.config"
</Location>

154

Chapter 8. Synchronizing Through a Web Server With the Redirector

The following example works on UNIX and Linux:

LoadModule iaredirect_module modules/mod_iaredirect.so
...
<Location /iaredirect/ml>

SetHandler iaredirect-handler
iaredirectorConfigFile "/redirector.config"

</Location>

❖ To test your configuration

1. Call the Redirector using the following syntax:

http:// host : port/iaredirect /ml/

whereiaredirectis the path you specified in the<Location> tag of
sync.conf.

2. Check the log file to see if the Redirector logged a request.

Note: This test does not make a connection to the MobiLink
synchronization server.

155

CHAPTER 9

Running MobiLink Outside the Current
Session

About this chapter This chapter describes how to run the MobiLink synchronization server as a
daemon or service.

You can set up MobiLink synchronization server to be available all the time.
To make this easier, you can run the MobiLink synchronization server for
Windows and for UNIX in such a way that, when you log off the computer it
remains running. The way you do this depends on your operating system.

♦ UNIX daemon You can run the MobiLink synchronization server as a
daemon using the-ud command line option, enabling the MobiLink
server to run in the background, and to continue running after you log off.

♦ Windows service You can run the Windows MobiLink server as a
service.

Contents Topic: page

Running the UNIX MobiLink server as a daemon 158

Running the Windows MobiLink server as a service 159

Troubleshooting MobiLink server startup 164

157

Running the UNIX MobiLink server as a daemon
To run the UNIX MobiLink server in the background, and to enable it to run
independently of the current session, you run it as a daemon.

❖ To run the UNIX MobiLink server as a daemon

1. Use the -ud option when starting the MobiLink server. For example:

dbmlsrv9 -c "dsn=ASA 9.0 Sample;uid=DBA;pwd=SQL" -ud

☞ For more information, see“-ud option” on page 211.

158

Chapter 9. Running MobiLink Outside the Current Session

Running the Windows MobiLink server as a
service

To run the Windows MobiLink server in the background, and to enable it to
run independently of the current session, you run it as aservice.

You can carry out the following service management tasks from the
command line, or on the Services tab in Sybase Central:

♦ Add, edit, and remove services.

♦ Start, stop, and pause services.

♦ Modify the parameters governing a service.

♦ Add databases to a service, so you can run several databases at one time.

Adding, modifying, and removing services

The service icons in Sybase Central display the current state of each service
using a traffic light icon that displays running, paused, or stopped.

❖ To add a new service (Sybase Central)

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. Double-click Add Service.

3. Follow the instructions in the wizard.

You can also use the dbsvc utility to create the service. For more
information, see“Managing services using the dbsvc command-line utility”
[ASA Database Administration Guide,page 569].

❖ To remove a service (Sybase Central)

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. In the right pane, right-click the icon of the service you want to remove
and choose Delete from the popup menu.

159

❖ To change the parameters for a service

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. In the right pane, right-click the service you want to change and choose
Properties from the popup menu.

3. Alter the parameters as needed on the tabs of the Service property sheet.

4. Click OK when finished.

Changes to a service configuration take effect the next time the service is
started.

Setting the startup option The following options govern startup behavior for MobiLink services. You
can set them on the General tab of the service property sheet.

♦ Automatic If you chooseAutomatic, the service starts whenever the
Windows operating system starts. This setting is appropriate for database
servers and other applications running all the time.

♦ Manual If you chooseManual, the service starts only when a user with
Administrator permissions starts it. For information about Administrator
permissions, see your Windows documentation.

♦ Disabled If you chooseDisabled, the service will not start.

The startup option is applied the next time Windows is started.

Specifying command line
options

The Configuration tab of the service property sheet provides a text box for
typing command line options for a service. Do not type the name of the
program executable in this box.

For example, to start a MobiLink synchronization service with verbose
logging and three worker threads, type the following in the Parameters box:

-c "dsn=ASA 9.0 Sample;uid=DBA;pwd=SQL"
-vc
-w 3

☞ The command line options for a service are the same as those for the
executable. For a full description of the command line options for
MobiLink, see“MobiLink Synchronization Server Options” on page 189.

Setting account options You can choose which account the service runs under. Most services run
under the special LocalSystem account, which is the default option for
services. You can set the service to log on under another account by opening
the Account tab on the Service property sheet, and typing the account
information.

160

Chapter 9. Running MobiLink Outside the Current Session

If you choose to run the service under an account other than LocalSystem,
that account must have the “log on as a service” privilege. This can be
granted from the Windows User Manager application, under Advanced
Privileges.

Whether or not an icon for the service appears on the taskbar or desktop
depends on the account you select, and whether Allow Service to Interact
with Desktop is checked, as follows:

♦ If a service runs under LocalSystem, and Allow Service to Interact with
Desktop is checked in the service property sheet, an icon appears on the
desktop of every user logged in to Windows NT/2000/XP on the
computer running the service. Consequently, any user can open the
application window and stop the program running as a service.

♦ If a service runs under LocalSystem, and Allow Service to Interact with
Desktop is unchecked in the service property sheet, no icon appears on
the desktop for any user. Only users with permissions to change the state
of services can stop the service.

♦ If a service runs under another account, no icon appears on the desktop.
Only users with permissions to change the state of services can stop the
service.

Changing the executable
file

To change the program executable file associated with a service in Sybase
Central, click the Configuration tab on the Service property sheet and type
the new path and file name in the File Name box.

If you move an executable file to a new directory, you must modify this entry.

Starting, stopping, and
pausing services

❖ To start, stop, or pause a service

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. Right-click the service and choose Start, Stop, or Pause from the popup
menu.

To resume a paused service, right-click the service and select Continue
from the popup menu.

If you start a service, it keeps running until you stop it. Closing Sybase
Central or logging off does not stop the service.

Stopping a service closes all connections to the database and stops the
database server. For other applications, the program closes down.

161

Pausing a service prevents any further action being taken by the application.
It does not shut the application down or (in the case of server services) close
any client connections to the database. Most users do not need to pause their
services.

Running more than one service at a time

Although you can use the Windows Service Manager in the Control Panel
for some tasks, you cannot install or configure a MobiLink service from the
Windows Service Manager. You can use Sybase Central to carry out all the
service management for MobiLink.

When you open the Windows Service Manager from the Windows Control
Panel, a list of services appears. The names of the Adaptive Server
Anywhere services are formed from the Service Name you provided when
installing the service, prefixed by Adaptive Server Anywhere. All the
installed services appear together in the list.

This section describes topics specific to running more than one service at a
time.

Service dependencies In some circumstances you may wish to run more than one executable as a
service, and these executables may depend on each other. For example, you
must run the MobiLink synchronization server and the database server in
order to synchronize.

In cases such as these, the services must start in the proper order. If a
MobiLink synchronization service starts up before the consolidated database
server has started, it fails because it cannot find the consolidated database
server. The sequence must be such that the database server is running when
you start the MobiLink server. (This does not apply if the consolidated
database server is on another computer.)

You can prevent these problems using service groups, which you manage
from Sybase Central.

Service groups You can assign each service on your system to be a member of a service
group. By default, each service belongs to a group. The default group for the
MobiLink synchronization server is ASANYMobiLink.

Before you can configure your services to ensure they start in the correct
order, you must check that your service is a member of an appropriate group.
You can check which group a service belongs to, and change this group,
from Sybase Central.

162

Chapter 9. Running MobiLink Outside the Current Session

❖ To check and change which group a service belongs to

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. Right-click the service and choose Properties from the popup menu.

3. Click the Dependencies tab. The top text box displays the name of the
group the service belongs to.

4. Click Change to display a list of available groups on your system.

5. Select one of the groups, or type a name for a new group.

6. Click OK to assign the service to that group.

Managing service
dependencies

With Sybase Central, you can specify dependencies for a service. For
example:

♦ You can ensure that at least one group has started before the current
service.

♦ You can ensure that any service starts before the current service.

❖ To add a service or group to a list of dependencies

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane

2. Right-click the service and choose Properties from the popup menu.

3. Click the Dependencies tab.

4. Click Add Services or Add Service Groups to add a service or group to
the list of dependencies.

5. Select one of the services or groups from the list.

6. Click OK to add the service or group to the list of dependencies.

163

Troubleshooting MobiLink server startup
This section describes some common problems when starting the MobiLink
server.

Ensure that network communication software is running

Appropriate network communication software must be installed and running
before you run the MobiLink server. If you are running reliable network
software with just one network installed, this should be straightforward. You
should confirm that other software requiring network communications is
working properly before running the MobiLink server.

If you are running under the TCP/IP protocol, you may want to confirm that
ping and telnet are working properly. The ping and telnet applications are
provided with many TCP/IP protocol stacks.

Debugging network communications startup problems

If you are having problems establishing a connection across a network, you
can use debugging options at both client and server to diagnose problems.
The startup information appears on the server window: you can use the-o

option to log the results to an output file.

164

CHAPTER 10

MobiLink Transport-Layer Security

About this chapter This chapter shows you how to secure communications between the
MobiLink synchronization server and MobiLink clients using MobiLink
transport-layer security.

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Contents Topic: page

Introduction 166

Setting up transport-layer security 168

Creating digital certificates 169

Starting the MobiLink synchronization server with transport-layer
security

177

Configuring MobiLink clients to use transport-layer security 179

165

Introduction

Separately licensable option required
Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

Transport-layer security, an IETF standard protocol, secures client/server
applications using digital certificates and public-key cryptography.

Clients use trusted public certificates to encrypt data and authenticate servers
in the initial client/server handshake. Data transmitted by the client can only
be decrypted by the matching private key, which is stored in your MobiLink
synchronization server certificate.

For server authentication, the MobiLink synchronization server sends its
public certificate to the client. The client verifies the identity of the server
using certificate fields and the digital signature embedded in the certificate.

Efficiency The transport-layer security standard overcomes the inefficiencies associated
with public-key cryptography. Once a secure connection is established, the
client and server exchange a common key. They use a highly efficient
symmetric cipher for the rest of their communication.

Supported platforms FIPS-certified security options are available on Windows only, and do not
work on UltraLite.

FIPS 140-2 certification

Federal Information Processing Standard (FIPS) 140-2 specifies
requirements for security algorithms. It does not, however, specify
requirements for security protocols such as SSL or transport-layer security.
FIPS 140-2 is granted by the American and Canadian governments through
the National Institute of Standards and Testing (NIST) and the Canadian
Communication Security Establishment (CSE). Certicom has earned FIPS
certification for security algorithms implemented on Windows.

SQL Anywhere Studio offers transport-layer security with the option of
using the underlying FIPS-certified algorithms in the Certicom software.

To use transport-layer security, you must purchase a separate security option.

☞ For information about how to order transport-layer security, see
“Separately-licensable components”[Introducing SQL Anywhere Studio,page 5].

You can use FIPS-certified security algorithms to encrypt your database

166

Chapter 10. MobiLink Transport-Layer Security

files, or to encrypt communications for database client/server
communication, web services, and MobiLink client/server communication.

☞ For more information, see:

♦ “Encrypting a database”[SQL Anywhere Studio Security Guide,page 15]
♦ “Using transport-layer security for web services”[SQL Anywhere Studio

Security Guide,page 44]
♦ “Starting the MobiLink synchronization server with transport-layer

security” on page 177
♦ “Configuring MobiLink clients to use transport-layer security” on

page 179

167

Setting up transport-layer security
To set up MobiLink transport-layer security, perform the following steps:

♦ Create digital certificates Create public certificates and server
certificates. Public certificates are distributed to MobiLink clients, while
server certificates are stored securely with MobiLink synchronization
servers.

☞ See“Creating digital certificates” on page 169.

♦ Start the MobiLink synchronization server with transport-layer
security Use dbmlsrv9 command-line options to specify the type of
security, the server certificate, and the password to protect the private key.

☞ See“Starting the MobiLink synchronization server with
transport-layer security” on page 177.

♦ Configure MobiLink clients to use transport-layer security Specify
the path and file name of trusted public certificates.

Supply the appropriate security or network protocol options with the
MobiLink synchronization client utility (dbmlsync) or UltraLite
application.

☞ See“Configuring MobiLink clients to use transport-layer security”
on page 179.

168

Chapter 10. MobiLink Transport-Layer Security

Creating digital certificates
To set up transport-layer security you must generate digital certificates.

You can create self-signed certificates, use enterprise root certificates and
certificate chains, or have your certificates signed by a Certificate Authority
(CA).

♦ Self-signed certificates Self-signed certificates can be used for simple
setups involving a single MobiLink synchronization server. In this case,
the private key used to create trusted public certificates is stored with
your MobiLink synchronization server instead of a commercial
Certificate Authority or dedicated facility.

☞ See“Self-signed root certificates” on page 169.

♦ Enterprise root certificates Enterprise root certificates increase data
integrity and extensibility for multi-server deployments.

♦ You can store the private key used to create trusted public certificates
in a secure central location.

♦ You can add MobiLink synchronization servers without reconfiguring
clients.

See“Certificate chains” on page 170.

♦ Commercial Certificate Authorities You can use a third-party
Certificate Authority instead of an enterprise root certificate. Commercial
Certificate Authorities have dedicated facilities to store private keys and
create high-quality server certificates.

☞ See“Certificate chains” on page 170and“Globally-signed
certificates” on page 173.

Certificate utilities The SQL Anywhere Studio certificate generation utility, gencert, creates
certificates. It prompts you for certificate identification and file information
and uses RSA or elliptic-curve encryption technology. You can use the
certificate reader utility, readcert, to display certificate values and validate a
chain of certificates.

Self-signed root certificates

Self-signed root certificates can be used for simple setups involving a single
MobiLink synchronization server. In this case, the private key used to create
trusted public certificates is stored with your MobiLink synchronization
server instead of a commercial Certificate Authority or dedicated facility.

169

Tip
Use enterprise level certificate chains if you operate multiple MobiLink
synchronization servers or are looking for a higher level of certificate
integrity.

☞ For more information about setting up certificate chains, see“Certifi-
cate chains” on page 170.

To set up self-signed certificates, you generate the following certificates
using the gencert utility:

♦ Public certificate The self-signed public certificate is distributed to
MobiLink clients. It is an electronic document including identity
information, the public key of the MobiLink synchronization server, and
a self-signed digital signature used for server authentication.

☞ For more information about digital signatures and server
authentication, see“Server authentication” on page 179.

♦ Server certificate The server certificate is stored securely with a
MobiLink synchronization server. It is a combination of the self-signed
public certificate (that is distributed to MobiLink clients) and the
corresponding private key. The private key gives the MobiLink
synchronization server the ability to decrypt messages sent by Adaptive
Server Anywhere or UltraLite clients.

public information

and

public key

self-signed

digital signature

private key

public information

and

public key

self-signed

digital signature

private key

Public certificate

Private key

Server certificate

A server identity certificate is created by

concatenating a public certificate and the

matching private key.

☞ For information about how to generate self-signed root certificates, see
“Certificate generation utility” on page 496.

Certificate chains

You can improve the security and extensibility of a multi-server environment

170

Chapter 10. MobiLink Transport-Layer Security

using certificate chains instead of self-signed certificates. Certificate chains
require a Certificate Authority or an enterprise root certificate to sign
MobiLink synchronization server certificates.

☞ For more information about self-signed certificates, see“Self-signed
root certificates” on page 169.

Benefits of using
certificate chains

Certificate chains provide the following advantages:

♦ Extensibility You can configure MobiLink synchronization clients to
trust any certificate signed by an enterprise root certificate or Certificate
Authority. If you add a new MobiLink synchronization server, clients do
not require a copy of the new public certificate.

♦ Security The enterprise root certificate’s private key does not reside
with MobiLink synchronization servers. Storing the root certificate’s
private key in a high-security location, or using a Certificate Authority
with dedicated facilities, protects the integrity of server authentication.

The following diagram provides the basic enterprise root certificate
architecture.

Give a trusted copy of the
public enterprise root

certificate to each client

public information
and

enterprise public key

Public enterprise

root certificate and

private key

Store the

enterprise private
key in a secure

location
enterprise private key

public information
and

public key 1

private key 1

signature 1

enterprise signature 1

Server

certificate (1)

public information
and

public key 2

private key 2

signature 2
enterprise signature 2

Server

certificate (2)

. . .

To create certificates used in a multi-server environment:

171

♦ Generate a public enterprise root certificate and enterprise private key.

You distribute the public enterprise root certificate to MobiLink clients.
You store the enterprise private key in a secure location, preferably a
dedicated facility.

♦ Generate server certificates for each MobiLink synchronization server.

Use the public enterprise root certificate and enterprise private key to sign
each server certificate.

You can also use a third-party Certificate Authority to sign your server
certificates. Commercial Certificate Authorities have dedicated facilities to
store private keys and create high-quality server certificates.

☞ For more information, see“Globally-signed certificates” on page 173.

Enterprise root certificates

Enterprise root certificates increase data integrity and extensibility for
multi-server deployments.

♦ You can store the private key used to create trusted public certificates in a
secure central location.

♦ You can add MobiLink synchronization servers without reconfiguring
clients.

To set up enterprise root certificates, you create the enterprise root certificate
and the enterprise private key that you use to sign server certificates.

☞ For information about creating server certificates, see“Signed server
certificates” on page 172.

☞ For information about how to generate enterprise root certificates, see
“Certificate generation utility” on page 496.

Signed server certificates

You generate server certificates for each MobiLink synchronization server.
Since these certificates are signed by an enterprise root certificate, you use
the gencert -s option.

☞ For information about generating signed server certificates, see
“Certificate generation utility” on page 496.

☞ For information about how to generate signed server certificates fo each
MobiLink synchronization server, see“Certificate generation utility” on
page 496.

172

Chapter 10. MobiLink Transport-Layer Security

Globally-signed certificates

A commercial Certificate Authority is an organization that is in the business
of creating high-quality certificates and using these certificates to sign your
certificate requests.

Globally-signed certificates have the following advantages:

♦ In the case of inter-company communication, common trust in an outside,
recognized authority may increase confidence in the security of the
system. A Certificate Authority must guarantee the accuracy of the
identification information in any certificate that it signs.

♦ Certificate Authorities provide controlled environments and advanced
methods to generate certificates.

♦ The private key for the root certificate must remain private. Your
organization may not have a suitable place to store this crucial
information, whereas a Certificate Authority can afford to design and
maintain dedicated facilities.

Setting up
globally-signed
certificates

To set up globally signed certificates, you:

♦ Create a certificate request using Certicom’s reqtool utility.

☞ See“Using reqtool to obtain global certificates” on page 173.

♦ Use a Certificate Authority to sign each MobiLink synchronization server
certificate request.

☞ See“Using a global certificate as a server certificate” on page 174.

Globally-signing enterprise root certificates
You might be able to globally-sign an enterprise root certificate. This is
only applicable if your Certificate Authority generates certificates that
can be used to sign other certificates.

Using reqtool to obtain global certificates

MobiLink transport-layer security is based on Certicom SSL/TLS Plus
libraries, which require elliptic-curve or RSA certificates. You can obtain a
global certificate from any Certificate Authority that can supply certificates
in the correct format.

There are several ways to obtain certificates. One way is to use the reqtool
utility, which is installed when you install the security component. This tool
creates a server’s private key and a global certificate request.

173

Example The following example creates an elliptic-curve certificate request:

> reqtool
-- Certicom Corp. Certificate Request Tool 3.0d1 --
Choose certificate request type:

E - Personal email certificate request.
S - Server certificate request.
Q - Quit.

Please enter your request [Q] : S
Choose key type:

R - RSA key pair.
D - DSA key pair.
E - ECC key pair.
Q - Quit.

Please enter your request [Q] : E
Using curve ec163a02. Generating key pair (please wait)...
Country: CA
State: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: IAS_Waterloo
Enter password to protect private key : mypwd123
Enter file path to save request : global.req
Enter file path to save private key : serv1_private_key.pri

The fileglobal.reqcontains the public certificate and request information.
Paste the contents of this file into a form on the certificate-issuing web site.
The Certificate Authority will sign the request and create the public
certificateglobal.crt.

The fileserv1_private_key.pricontains the corresponding private key. This
file is protected by the password you entered, but since the protection
provided by the password is weak, you must store this file in a secure
location.

☞ For more information about using reqtool, see the documentreqtool.pdf,
located in thewin32 subdirectory of your SQL Anywhere 9 installation.

Using a global certificate as a server certificate

You can use globally-signed certificates directly as MobiLink
synchronization server certificates. The following diagram shows the
configuration for a multi-server deployment:

174

Chapter 10. MobiLink Transport-Layer Security

Give a trusted copy of the
certificate authority's public

certificate to each client.
Require each client to verify

certificate fields.

public information

and
public key 1

signature 1
certificate authority

signature 1

private key 1

Server

certificate (1)

public information

and
public key 1

signature 2
certificate authority

signature 2

private key 2

Server

certificate (2)

Use matching server

identity (2) with another
MobiLink synchronization

server

. . .

public information
and

root public key

root signature

Certificate

Authority's public

root certificate

Use matching server

identity (1) with one
MobiLink synchronization

server

Create certificate
requests using reqtool

and have your
Certificate Authority sign

them. Combine the
server's private key with

the signed certificate to
form the server

certificate.

certificates for other
database servers

You can use globally-signed certificates directly as database server
certificates. The following diagram shows the configuration for a
multi-server deployment:

To create the server identity, you must concatenate the public certificate
signed by the Certificate Authority and private key created using the reqtool
utility.

☞ For more information about the reqtool utility, see“Using reqtool to
obtain global certificates” on page 173.

The following example concatenates the globally-signed public certificate
global.crtand the private keyserv1_private_key.prito create the server
certificateserver1_certificate.crt.

copy global.crt+serv1_private_key.pri server1_certificate.crt

You reference the server certificateserver1_certificate.crtand the password
for the private keyserv1_private_key.priat the dbmlsrv9 command line.

☞ For more information, see“Starting the MobiLink synchronization
server with transport-layer security” on page 177.

Setting up clients to trust the certificate authority’s public certificate

You must ensure that clients contacting your MobiLink synchronization
server trust the root certificate in the chain. In the case of globally-signed

175

certificates, the root certificate is the Certificate Authority’s public
certificate.

Certificate field verification
When using a globally-signed certificate, each MobiLink client must verify
field values to avoid trusting certificates that the same Certificate Authority
has signed for other clients.

☞ For more information about verifying certificate fields for globally-
signed certificates, see“Verifying certificate fields” on page 180.

☞ For more information about configuring MobiLink clients to trust server
certificates, see“Configuring MobiLink clients to use transport-layer
security” on page 179.

☞ For more information about using globally-signed certificates to
establish trust, see“Globally-signed certificates” on page 173.

176

Chapter 10. MobiLink Transport-Layer Security

Starting the MobiLink synchronization server with
transport-layer security

To start the MobiLink synchronization server with transport-layer security,
supply the server certificate and the password protecting the server’s private
key.

☞ For an overview of the steps required to set up transport-layer security,
see“Setting up transport-layer security” on page 168.

Securing the server over
TCP/IP

If you are using TCP/IP, use the dbmlsrv9 -x server option to specify
certificate and certificate_password parameters. Following is a partial
dbmlsrv9 command line:

-x tcpip(security= cipher (certificate= server-certificate;certificate_
password= password ;...))

♦ cipher can bersa_tlsor ecc_tlsfor RSA and elliptic-curve encryption,
respectively. For FIPS-approved RSA encryption, specifyrsa_tls_fips.
rsa_tls_fips uses separate FIPS 140-2 certified software from Certicom. It
is compatible with clients using rsa_tls (with version 9.0.2 or later), and
clients using rsa_tls_fips are also compatible with servers using rsa_tls.
rsa_tls_fips can only be used with Adaptive Server Anywhere databases
on Windows.

The cipher must match the encryption used to create your certificates.

♦ server-certificate is the path and file name of the server certificate.

☞ For more information about creating the server certificate, which can
be self-signed, or signed by a Certificate Authority or enterprise root
certificate, see“Creating digital certificates” on page 169.

♦ password is the password for the server certificate’s private key. You
specify this password when you create the server certificate.

☞ For more information about the dbmlsrv9 -x option, see“-x option” on
page 214.

Securing the server over
HTTPS

If you are using HTTPS, use the dbmlsrv9 -x option to specify certificate
and certificate_password parameters directly. Following is a partial
dbmlsrv9 command line:

-x protocol(certificate= server-certificate;certificate_
password= password ;...))

♦ protocol can behttps; or https_fips for FIPS-approved RSA
encryption. https_fips uses separate uses separate FIPS 140-2 certified

177

software from Certicom but is compatible with clients using https (and
version 9.0.2 or later). https_fips can only be used with Adaptive Server
Anywhere databases on Windows.

♦ server-certificate is the path and file name of the server certificate.

For HTTPS, you must use an RSA certificate.

☞ For more information about creating the server certificate, see
“Creating digital certificates” on page 169.

♦ password is the password for the server certificate’s private key. You
specify this password when you create the server certificate.

☞ For more information about the dbmlsrv9 -x option, see“-x option” on
page 214.

Static Java UltraLite
applications

Static Java UltraLite uses a separate protocol for transport-layer security.

☞ For more information about using transport-layer security for static Java
UltraLite, see“Using transport-layer security”[UltraLite Static Java User’s
Guide,page 42].

Examples The following example specifies the type of security (RSA), the server
certificate, and the password protecting the server’s private key:

dbmlsrv9 -c "dsn=my_cons"
-x tcpip(security=rsa_tls(certificate=c: \test \serv_

rsa1.crt;certificate_password=pwd))

For elliptic-curve certificates, enter:

dbmlsrv9 -c "dsn=my_cons"
-x tcpip(security=ecc_tls(certificate=c: \test \serv_

ecc1.crt;certificate_password=pwd))

☞ For more information about the dbmlsrv9 -x option, see“-x option” on
page 214.

☞ For more information about creating the server certificate, in this case
serv1.crt, see“Creating digital certificates” on page 169.

☞ You can hide the command-line options using a configuration file and
the File Hiding utility, dbfhide. For more information, see“@data option”
on page 194.

178

Chapter 10. MobiLink Transport-Layer Security

Configuring MobiLink clients to use
transport-layer security

You can configure Adaptive Server Anywhere or UltraLite clients for
MobiLink transport-layer security. For each client, you specify trusted
public certificates, the type of encryption, and the network protocol.

☞ For an overview of the steps required to set up transport-layer security,
see“Setting up transport-layer security” on page 168.

Server authentication

Server authentication allows a remote client to verify the identity of a
MobiLink synchronization server. Digital signatures and certificate field
verification work together to achieve server authentication.

Digital signatures

A MobiLink synchronization server certificate contains one or more digital
signatures used to maintain data integrity and protect against tampering.
Following are the steps used to create a digital signature:

♦ An algorithm performed on a certificate generates a unique value or hash.

♦ The hash is encrypted using a signing certificate’s or Certificate
Authority’s private key.

♦ The encrypted hash, called a digital signature, is embedded in the
certificate.

A digital signature can be self-signed or signed by an enterprise root
certificate or Certificate Authority.

When a MobiLink client contacts a MobiLink synchronization server, and
each is configured to use transport-layer security, the server sends the client
a copy of its public certificate. The client decrypts the certificate’s digital
signature using the server’s public key included in the certificate, calculates
a new hash of the certificate, and compares the two values. If the values
match, this confirms the integrity of the server’s certificate.

☞ For more information about self-signed certificates, see“Self-signed
root certificates” on page 169.

☞ For more information about enterprise root certificates and Certificate
Authorities, see“Certificate chains” on page 170.

179

Verifying certificate fields

When using a globally signed certificate, each client must verify certificate
field values to avoid trusting certificates that the same Certificate Authority
has signed for other clients. This is resolved by requiring your clients to test
the value of fields in the identity portion of the certificate. A Certificate
Authority must guarantee the accuracy of the identification information in
any certificate that it signs.

☞ For more information about globally signed certificates, see
“Globally-signed certificates” on page 173.

When creating a certificate using the gencert utility, you enter values for the
organization, organizational unit, and common name fields. You verify these
fields using corresponding MobiLink client connection parameters.

♦ Organization The organization field corresponds to the
certificate_company MobiLink client connection parameter.

☞ See“certificate_company”[MobiLink Clients,page 37].

♦ Organizational unit The organizational unit field corresponds to the
certificate_unit MobiLink client connection parameter.

☞ See“certificate_unit”[MobiLink Clients,page 40].

♦ Common name The common name field corresponds to the
certificate_name MobiLink client connection parameter.

☞ See“certificate_name”[MobiLink Clients,page 38].

The common name field corresponds to the certificate_name encryption
connection parameter.

☞ For more information about setting up MobiLink synchronization
clients, see:

♦ “Configuring UltraLite clients to use transport-layer security” on
page 183.

♦ “Client security options” on page 180.

☞ For more information about creating digital certificates, see“Creating
digital certificates” on page 169.

Client security options

Adaptive Server Anywhere and UltraLite use a common set of connection
parameters to configure transport-layer security.

180

Chapter 10. MobiLink Transport-Layer Security

trusted_certificates
parameter

MobiLink clients use the trusted_certificates connection parameter to
specify trusted MobiLink synchronization server certificates. The trusted
certificate can be a server’s self-signed public certificate, a public enterprise
root certificate, or the public certificate belonging to a commercial
Certificate Authority.

☞ For more information, see:

♦ “trusted_certificates”[MobiLink Clients,page 53]

♦ “Creating digital certificates” on page 169

Verifying certificate fields The certificate_company, certificate_unit, and certificate_name connection
parameters are used to verify certificate fields, an important step for server
authentication. It is strongly recommended that you verify certificate fields if
you are using a third-party Certificate Authority to globally-sign certificates.

☞ For more information about verifying certificate fields, see:

♦ “Verifying certificate fields” on page 180

♦ “Globally-signed certificates” on page 173

♦ “Server authentication” on page 179

Configuring Adaptive Server Anywhere clients to use transport-layer
security

This section shows you how to configure Adaptive Server Anywhere clients
to use transport-layer security over HTTPS or TCP/IP.

Transport-layer security over HTTPS

MobiLink transport-layer security is an inherent feature of the MobiLink
HTTPS protocol. To use transport-layer security over HTTPS, specify the
trusted_certificates connection parameter using the ADR extended option.
Following is a partial dbmlsync command line.

-e " ctp= protocol ;adr=trusted_certificates= public-certificate..."

♦ protocol can behttps, or https_fips for FIPS-approved RSA
encryption. https_fips uses separate FIPS 140-2 certified software from
Certicom but is compatible with MobiLink synchronization servers using
https and version 9.0.2 or later.

♦ public-certificate is the path and file name of a trusted public
certificate.

For HTTPS or HTTPS_FIPS, you must use certificates created using
RSA encryption.

181

☞ For more information about trusted_certificates and other client security
parameters, see“Client security options” on page 180.

☞ For more information about creating or obtaining the public certificate,
see“Creating digital certificates” on page 169.

☞ For more information about HTTPS parameters, see the HTTPS section
in “CommunicationAddress (adr) extended option”[MobiLink Clients,
page 106].

Examples The following example specifies RSA security over HTTPS at the dbmlsync
command line.

dbmlsync -c "eng=rem1;uid=dba;pwd=mypwd"
-e "ctp=https;adr=trusted_certificates=c: \temp \public_

cert.crt;certificate_company=Sybase, Inc.;certificate_
unit=IAS;certificate_name=MobiLink)"

Alternatively, you can specify the CommunicationAddress extended option
using the CREATE SYNCHRONIZATION SUBSCRIPTION or ALTER
SYNCHRONIZATION SUBSCRIPTION statement. This method provides
the same information but stores it in the database.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO pub1
FOR user1
ADDRESS ’trusted_certificates=c: \temp \public_cert.crt;

certificate_company=Sybase, Inc.;
certificate_unit=IAS;

certificate_name=MobiLink’
OPTION scriptversion=’ver1’;

Transport-layer security over TCP/IP

To configure Adaptive Server Anywhere clients to use transport-layer
security over TCP/IP, use the CommunicationAddress (adr) extended option
to specify trusted certificates.

Unlike HTTPS, where you can specify trusted_certificates and certificate
fields directly, you must use the security option and the following syntax for
TCP/IP:

adr=security= cipher (trusted_certificates= public-certificate; ...)

♦ cipher can bersa_tlsor ecc_tlsfor RSA and elliptic-curve encryption,
respectively.

For FIPS-approved RSA encryption, specifyrsa_tls_fips. rsa_tls_fips
uses a separate approved library but is compatible with servers using
rsa_tls. Clients using rsa_tls are also compatible with servers using

182

Chapter 10. MobiLink Transport-Layer Security

rsa_tls_fips. rsa_tls_fips can be used on SQL Anywhere Studio databases
on Windows.

The cipher must match the encryption used to create your certificates.

♦ public-certificate is the path and file name of a trusted public
certificate.

☞ For more information about trusted_certificates and other client security
parameters, see“Client security options” on page 180.

☞ For more information about creating or obtaining the public certificate,
see“Creating digital certificates” on page 169.

☞ For more information about the CommunicationAddress (adr) extended
option, including a list of security parameters, see“CommunicationAddress
(adr) extended option”[MobiLink Clients,page 106].

Examples The following example specifies RSA security and TCP/IP at the dbmlsync
command line:

dbmlsync -c "eng=rem1;uid= myuid ;pwd= mypwd"
-e "ctp=tcpip;adr=port=3333;security=rsa_tls(trusted_

certificates=c: \test \public_cert.crt;certificate_
company=Sybase, Inc.;certificate_unit=IAS;certificate_
name=MobiLink)"

Another option is to specify the CommunicationAddress extended option
using the CREATE SYNCHRONIZATION SUBSCRIPTION or ALTER
SYNCHRONIZATION SUBSCRIPTION statement:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO pub1
FOR user1
ADDRESS ’port=3333;security=rsa_tls(trusted_

certificates=public_cert.crt;
certificate_company=Sybase, Inc.;
certificate_unit=IAS;

certificate_name=MobiLink)’
OPTION scriptversion=’ver1’;

☞ For more information see“CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink]”[MobiLink Clients,page 162]and
“ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
[MobiLink Clients,page 156].

Configuring UltraLite clients to use transport-layer security

This section shows you how to configure UltraLite clients to use
transport-layer security over HTTPS or TCP/IP.

183

Transport-layer security over HTTPS

MobiLink transport-layer security is an inherent feature of the MobiLink
HTTPS protocol. If you use HTTPS and UltraLite clients, you can specify
trusted certificates and certificate fields directly as network protocol options.

For HTTPS, you must use RSA certificates.

☞ For more information about specifying the HTTPS protocol for your
UltraLite interface, see“HTTPS protocol options”[MobiLink Clients,
page 347].

The ul_synch_info security_stream and security_parms security
synchronization parameters are only used for TCP/IP and have no effect
when you use HTTPS.

☞ For more information about the security synchronization parameter, see
“Security synchronization parameter”[MobiLink Clients,page 328]and
“Transport-layer security over TCP/IP” on page 186.

❖ To configure your UltraLite client to use transport-layer security
over HTTPS
1. Specify trusted root certificates in the UltraLite schema.

♦ Static UltraLite interfaces For static UltraLite interfaces, including
UltraLite for static C/C++, Embedded SQL, and static Java, use the
ulgen -r option. The following example specifies the trusted root
certificateent_root.crtfor static C/C++ UltraLite:

ulgen -a -c "dsn=myCons" -j Product -s ISampleSQL
-f SampleDB -r ent_root.crt

For more information about the ulgen -r option, see“The UltraLite
Generator”[UltraLite Database User’s Guide,page 89].

♦ UltraLite component interfaces For UltraLite component
interfaces, specify trusted certificates using the Schema Painter. The
Schema Painter’s Database Schema Properties dialog includes a
Certification tab.

☞ For more information, see“Database Schema property sheet:
Certification tab”[SQL Anywhere Studio Help,page 267].

2. Specify the HTTPS protocol for synchronization.

The following example uses the ULHTTPSStream() function for C/C++
UltraLite:

184

Chapter 10. MobiLink Transport-Layer Security

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("ul_default");
...
synch_info.stream = ULHTTPSStream();
...

☞ For more information about ULHTTPSStream(), see
“ULHTTPSStream function”[UltraLite C/C++ User’s Guide,page 374].

3. Specify HTTPS protocol options.

The following example uses the stream_parms field of ul_synch_info to
specify standard HTTPS parameters and verify certificate fields for
C/C++ UltraLite.

auto ul_synch_info synch_info;
...
synch_info.stream = ULHTTPSStream();
synch_info.stream_parms = TEXT(

"port=9999;
certificate_company=Sybase, Inc.;
certificate_unit=IAS;
certificate_name=MobiLink");

synch_info.security_stream = NULL;
synch_info.security_parms = NULL;

The certificate_company, certificate_unit, and certificate_name
parameters are used to verify certificate fields.

☞ For more information about verifying certificate fields, see
“Verifying certificate fields” on page 180.

You can also specify the trusted_certificates HTTPS protocol option,
which overrides any trusted certificate information embedded in the
UltraLite schema (step 1 of this procedure). You can only use this
parameter for Windows NT/2000/XP or Windows CE.

auto ul_synch_info synch_info;
...
synch_info.stream = ULHTTPSStream();
synch_info.stream_parms = TEXT(

"port=9999;
trusted_certificates= \rsaroot.crt;
certificate_company=Sybase, Inc.;
certificate_unit=IAS;
certificate_name=MobiLink");

synch_info.security_stream = NULL;
synch_info.security_parms = NULL;

For more information about HTTPS options, see“HTTPS protocol
options” [MobiLink Clients,page 347]

185

Transport-layer security over TCP/IP

To configure UltraLite clients to use transport-layer security over TCP/IP,
specify trusted root certificates and the appropriate security stream.

❖ To configure your UltraLite client to use transport-layer security
over TCP/IP
1. Specify trusted root certificates in the UltraLite schema.

♦ Static UltraLite interfaces For static UltraLite interfaces, including
UltraLite for static C/C++, Embedded SQL, and static Java, use the
ulgen -r option. The following example specifies trusted root
certificates for static C/C++ UltraLite:

ulgen -a -c "dsn=myCons" -j Product -s ISampleSQL
-f SampleDB -r ent_root.crt

For more information about the ulgen -r option, see“The UltraLite
Generator”[UltraLite Database User’s Guide,page 89].

♦ UltraLite component interfaces For UltraLite component
interfaces, specify trusted certificates using the Schema Painter. The
Schema Painter’s Database Schema Properties dialog includes a
Certification tab.
☞ For more information, see“Database Schema property sheet:
Certification tab”[SQL Anywhere Studio Help,page 267].

2. Supply the appropriate security or protocol options in the programming
interface.

♦ Static Java UltraLite Static Java UltraLite requires a separate stream
for transport-layer security and does not provide a separate security
parameter. The following example use the UlSecureSocketStream as
the protocol for elliptic-curve security:

UlSynchOptions opts = new UlSynchOptions();
opts.setStream(new UlSecureSocketStream());
opts.setStreamParms("host=myserver;"

+ "port=2439;"
+ "certificate_company=Sybase Inc.;"
+ "certificate_unit="IAS;"
+ "certificate_name=Mobilink");

// set other options here
conn.synchronize(opts);

For more information about using Transport-Layer Security for static
Java UltraLite, see“Using transport-layer security”[UltraLite Static
Java User’s Guide,page 42].

♦ UltraLite Interfaces using the security synchronization parameter
Set the security synchronization parameter for applicable UltraLite

186

Chapter 10. MobiLink Transport-Layer Security

interfaces including UltraLite for static C++, Embedded SQL, and the
C++ UltraLite component. For other component interfaces, you must
use HTTPS for transport-layer security.

You can use ULSecureRSATLSStream() or
ULSecureCerticomTLSStream() to specify RSA and elliptic-curve
security, respectively.

☞ For more information, see“Security synchronization parameter”
[MobiLink Clients,page 328].

The following example specifies RSA security and TCP/IP for C/C++
UltraLite.

ul_synch_info synch_info;
...
synch_info.stream = ULSocketStream();
synch_info.security = ULSecureRSATLSStream();
synch_info.security_parms = TEXT(

"port=9999;
certificate_company=Sybase, Inc.;
certificate_unit=IAS;
certificate_name=MobiLink");

The certificate_company, certificate_unit, and certificate_name
parameters are used to verify certificate fields.

☞ For more information about verifying certificate fields, see
“Verifying certificate fields” on page 180.

You can also specify the trusted_certificates security parameter, which
overrides any trusted certificate information embedded in the UltraLite
schema (step 1 of this procedure). You can only use this parameter for
Windows NT/2000/XP or Windows CE.

ul_synch_info synch_info;
...
synch_info.stream = ULSocketStream();
synch_info.security = ULSecureRSATLSStream();
synch_info.security_parms = TEXT(

"port=9999;
trusted_certificates= \rsaroot.crt;
certificate_company=Sybase, Inc.;
certificate_unit=IAS;
certificate_name=MobiLink");

For more information about the ul_synch_info security_parms field,
see“security_parms synchronization parameter”[UltraLite C/C++
User’s Guide,page 435].

♦ UltraLite interfaces using ActiveSync For information about using
Transport-Layer Security and ActiveSync, see“ActiveSync protocol
options” [MobiLink Clients,page 341].

♦ UltraLite interfaces using HotSync For information about using

187

Transport-Layer Security and HotSync, see“HotSync protocol
options” [MobiLink Clients,page 343].

188

CHAPTER 11

MobiLink Synchronization Server Options

About this chapter This chapter describes the options that can be set when starting the
MobiLink synchronization server, dbmlsrv9.

Contents Topic: page

MobiLink synchronization server 190

189

MobiLink synchronization server
The MobiLink synchronization server lets you synchronize remote databases
or applications with an ODBC-compliant consolidated database.

Function Start a MobiLink synchronization server.

Syntax dbmlsrv9 -c " connection-string" [options]

Option Description

@data Read in options from the specified envi-
ronment variable or configuration file. See
“@data option” on page 194.

–a Disable automatic reconnection upon syn-
chronization error. See“-a option” on
page 194.

-b Trim blank padding of strings. See“-b
option” on page 195.

–bcsize Specify the amount of memory to reserve
for BLOB caching. See“-bc option” on
page 196.

–bn size Specify the maximum number of bytes
to consider when comparing BLOBs for
conflict detection. See“-bn option” on
page 196.

–c ”keyword=value; . . .” Supply ODBC database connection param-
eters for your consolidated database. See
“-c option” on page 196.

–cnconnections Set the maximum number of simultaneous
connections with the consolidated database
server. See“-cn option” on page 197.

–cr count Set the maximum number of database
connection retries. See“-cr option” on
page 197.

–ct connection-timeout Set the length of time a connection may
be unused before it is timed out. See“-ct
option” on page 198.

–d number Specify the size of the download cache. See
“-d option” on page 198.

190

Chapter 11. MobiLink Synchronization Server Options

Option Description

-dd directory Specify where download streams are stored.
See“-dd option” on page 198.

–dl Display all log messages on the console.
See“-dl option” on page 199.

-ds size Specify the amount of disk storage that
can be used to store restartable download
streams. See“-ds option” on page 199.

–efilename Store remote error logs sent into the named
file. See“-e option” on page 199.

–etfilename Truncate the file and append remote syn-
chronization logs to the new file. See“-et
option” on page 200.

–f Assume synchronization scripts do not
change. See“-f option” on page 200.

–fr If table data scripts are missing, synchro-
nization will not abort, but just issue a
warning. See“-fr option” on page 200.

-m [filename] Enables QAnywhere messaging. See“-m
option” on page 201.

-notifier Starts a Notifier for server-initiated syn-
chronization. See“-notifier option” on
page 202.

–o logfile Log messages to a file. See“-o option” on
page 203.

-on size Set maximum size for log file. See“-on
option” on page 204.

–oq Prevent the popup dialog on startup error.
See“-oq option” on page 205.

–ossize Maximum size of output file. See“-os
option” on page 205.

–ot logfile Log messages to a file, but truncate it first.
See“-ot option” on page 206.

–psnum Set maximum number of prepared state-
ments to cache per connection. See“-ps
option” on page 206.

191

Option Description

–q Minimize the synchronization server win-
dow. See“-q option” on page 206.

–r retries Retry deadlocked uploads at most this many
times. See“-r option” on page 206.

–rd delay Set maximum delay, in seconds, before
retrying a deadlocked transaction. See“-rd
option” on page 207.

–scount Specify the maximum number of rows to be
fetched or sent at once. See“-s option” on
page 207.

–sl dnetscript-options Set the .NET CLR options and force loading
of the virtual machine on startup. See“-sl
dnet option” on page 207.

–sl javascript-options Set the Java virtual machine options and
force loading of the virtual machine on
startup. See“-sl java option” on page 209.

–t ODBC-output-file Log ODBC calls issued by MobiLink to
this file. See“-t option” on page 210.

–tt ODBC-output-file Log ODBC calls issued by MobiLink to
this file, but first delete the file if it exists.
See“-tt option” on page 210.

–u size Specify the amount of memory to reserve
for caching upload streams. See“-u option”
on page 211.

–ud On UNIX platforms, run as a daemon. See
“-ud option” on page 211.

-us Prevents MobiLink from invoking upload
scripts for tables for which there is no
upload. See“-us option” on page 211.

–v [levels] Controls the type of messages written to the
log file. See“-v option” on page 211.

–w count Set the number of worker threads. See“-w
option” on page 212.

192

Chapter 11. MobiLink Synchronization Server Options

Option Description

–wu count Set the maximum number of worker threads
permitted to process uploads concurrently.
See“-wu option” on page 214.

–x protocol[(network-
parameters)]

Specify the communications protocol. Op-
tionally, specify network parameters in
form parameter=value, with multiple pa-
rameters separated by semicolons. See“-x
option” on page 214.

–za Allow generation of active scripts. See“-za
option” on page 219.

–ze Allow generation of sample scripts. See
“-ze option” on page 220.

–zp In the event of a timestamp conflict between
the consolidated and remote database, this
option allows timestamp values with a
precision higher than the lowest-precision
to be used for conflict detection purposes.
See“-zp option” on page 221.

–zsname Specify a server name. See“-zs option” on
page 221.

–zt number Specify the maximum number of processors
used to run the MobiLink synchronization
server. See“-zt option” on page 221.

–zu { + | – } Controls the automatic addition of users
when the authenticate_user script is unde-
fined. See“-zu option” on page 222.

-zw 1,. . . 5 Controls which levels of warning message
to display. See“-zw option” on page 222.

-zwd code Disables specific warning codes. See“-zwd
option” on page 223.

-zwecode Enables specific warning codes. See“-zwe
option” on page 223.

Description The MobiLink synchronization server opens connections, via ODBC, with
your consolidated database server. It then accepts connections from client
applications and controls the synchronization process.

193

The MobiLink synchronization server is compatible with a variety of
database-management systems, including Adaptive Server Anywhere,
Adaptive Server Enterprise, Oracle, Microsoft SQL Server, and IBM DB2.

You must supply connection parameters for the consolidated database using
the –c option. The command line options may be presented in any order.
The –c option is shown here as the first item in a command string as a
convention only. It can be anywhere in a list of options, but must precede a
connection string.

Unless your ODBC data source is configured to automatically start the
consolidated database, the database must be running before you start the
MobiLink server.

dbmlsrv9 options

This section lists all MobiLink synchronization server command line
options.

@data option

Function Reads in options from the specified environment variable or configuration
file.

Syntax dbmlsrv9 -c " connection-string" @data . . .

Description Use this option to read in dbmlsrv9 command line options from the specified
environment variable or configuration file. If both exist with the same name
that is specified, the environment variable is used.

☞ For more information about configuration files, see“Using configuration
files” [ASA Database Administration Guide,page 495].

If you want to protect passwords or other information in the configuration
file, you can use the File Hiding utility to obfuscate the contents of the
configuration file.

☞ See“Hiding the contents of files using the dbfhide command-line
utility” [ASA Database Administration Guide,page 524].

-a option

Function Instructs the MobiLink synchronization server to not reconnect on
synchronization error.

Syntax dbmlsrv9 -c " connection-string" -a . . .

Description Should an error occur during synchronization, the MobiLink

194

Chapter 11. MobiLink Synchronization Server Options

synchronization server automatically disconnects from the consolidated
database, and then re-establishes the connection. Reconnecting ensures that
the following synchronization starts from a known state. When this behavior
is not required, you can use this option to disable it. The maintenance of
state information depends on programmer requirements and may vary
depending on the ways in which the programmer configures MobiLink
scripting to work with the DBMS. This applies even if that database is an
Oracle, Adaptive Server Anywhere database, or other supported product.
Some status information may need to be re-initialized depending on the
client application.

-b option

Function For columns of type VARCHAR, CHAR, LONG VARCHAR, or LONG
CHAR, removes trailing blanks from strings during synchronization.

Syntax dbmlsrv9 -c " connection-string" -b . . .

Description This option is intended to help resolve differences between the Adaptive
Server Anywhere CHAR data type and the CHAR or VARCHAR data type
used by the consolidated database. The Adaptive Server Anywhere CHAR
data type is equivalent to VARCHAR. However, in most consolidated
databases that are not Adaptive Server Anywhere, the CHAR(n) data type is
blank-padded to n characters.

When -b is specified, the MobiLink synchronization server removes trailing
blanks from strings for columns of type CHAR, VARCHAR, LONG CHAR,
or LONG VARCHAR if the column on the remote is a string. It does this
before filtering rows that were uploaded in the current synchronization. The
trimmed data is then downloaded to the remote databases.

This option can also be used to detect conflict updates. For each upload
update row, the MobiLink synchronization server fetches the row from the
consolidated database for the given primary key, compares the row with the
pre-image of the update, and then determines whether the update is a conflict
update. When -b is used, MobiLink trims trailing blanks from columns of
type CHAR, VARCHAR, LONG CHAR, or LONG VARCHAR before
doing the comparison.

Example If the -b option is not used, a primary-key value of ‘abc’ uploaded from an
Adaptive Server Anywhere or UltraLite remote to a CHAR(10) column in
the consolidated database will become ‘abc’ followed by seven blank spaces.
If the same row is downloaded, then it will appear on the remote as ‘abc’
followed by seven spaces. If the remote database is not blank-padded, then
the remote will now have two rows: both ‘abc’ and ‘abc’ followed by seven
spaces. There is now a duplicate row on the remote.

195

If the -b option is used, a primary-key value of ‘abc’ uploaded from an
Adaptive Server Anywhere or UltraLite remote to a CHAR(10) column in
the consolidated database will become ‘abc’ followed by seven spaces.
Seven spaces still pad the value to ten characters, but if the same row is
downloaded, then MobiLink server will strip the trailing spaces, and the
value will appear on the remote as ‘abc’. The -b option thus fixes the
duplicate row problem.

-bc option

Function Sets the BLOB cache size.

Syntax dbmlsrv9 -c " connection-string" -bc size [k | m | g] . . .

Description The amount of memory to use for caching BLOBs. If more memory is
required, the MobiLink synchronization server uses disk space, instead. For
this reason, too small a value can degrade performance. To calculate the
minimum recommended size, multiply the maximum size of all BLOB data
in any one row by the number of worker threads, then multiply the result by
4, which provides for a large reserve of memory.

Thesize is the amount of memory to reserve in bytes. Use the suffix k, m, or
g to specify units of kilobytes, megabytes, or gigabytes, respectively. The
default is 524 288 bytes.

-bn option

Function Sets the maximum number of BLOB bytes to compare during conflict
detection.

Syntax dbmlsrv9 -c " connection-string" -bn size. . .

Description When two BLOBs contain similar or identical values, the operation of
comparing them for filtering or conflict detection can be expensive due to the
amount of data involved. This option tells the MobiLink synchronization
server to consider only the firstsizebytes of two BLOBs when making the
comparison. The default is to compare the two BLOBs in their entirety.

Under some situations, limiting the maximum amount of data compared can
speed synchronization substantially; however, it can also cause errors.
For example, if two large BLOBs differ only in the last few bytes, the
MobiLink synchronization server may consider them identical when in fact
they are not.

-c option

Function Specifies connection parameters for the consolidated database.

196

Chapter 11. MobiLink Synchronization Server Options

Syntax dbmlsrv9 -c " connection-string" . . .

Description The connection string must give the MobiLink synchronization server
information sufficient to connect to the consolidated database. The
connection string is required.

The connection string must specify connection parameters in the form
keyword=value, separated by semicolons, with no spaces between
parameters.

Connection parameters must be included in the ODBC data source
specification if not given in the command line. Check your RDBMS and
ODBC data source to determine required connection data.

☞ For a complete list of SQL Anywhere connection parameters, see
“Connection parameters”[ASA Database Administration Guide,page 176].

☞ For information about how to hide the password, see“The File Hiding
utility” [ASA Database Administration Guide,page 524].

Example dbmlsrv9 -c "dsn=odbcname;uid=DBA;pwd=sql"

-cn option

Function Sets the maximum number of simultaneous consolidated database
connections.

Syntax dbmlsrv9 -c " connection-string" -cn value. . .

Description Specifies the maximum number of simultaneous connections that the
MobiLink synchronization server should make to the consolidated database.
The minimum and the default value are one greater than the number of
worker threads. A warning is issued if the supplied value is too small.

A value larger than the number of worker threads may speed performance,
particularly if connecting to the consolidated database is slow or if multiple
script versions are in use. The optimum maximum number of database
connections is the number of script versions times the number of worker
threads, plus one. Connections above this optimum value will not necessarily
speed synchronization, and will needlessly consume resources in both the
MobiLink synchronization server and the consolidated database server.

-cr option

Function Sets the maximum number of database connection retries.

Syntax dbmlsrv9 -c " connection-string" -cr value. . .

197

Description Set the maximum number of times that the MobiLink synchronization server
will attempt to connect to the database, before quitting, when a connection
goes bad. The default value is three connection retries.

-ct option

Function Sets the length of time, in minutes, that a connection may be unused before
it is timed out and disconnected by the MobiLink synchronization server.

Syntax dbmlsrv9 -c " connection-string" -ct connection-timeout . . .

Description MobiLink database connections that go unused for a specified amount of
time are freed by the server. The timeout can be set using the -ct option. A
default timeout period of 60 minutes is used.

-d option

Function Sets the size of the download cache.

Syntax dbmlsrv9 -c " connection-string" -d number [k | m | g]. . .

Description When no download acknowledgement is required, MobiLink buffers the
download stream in a download cache. Since no acknowledgement is
required from the client to commit the download transaction, the buffered
download stream is sent to the client after the commit.

Use the suffix k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively. The default size for the download cache is 0.5
megabytes.

-dd option

Function For use with restartable downloads. Specifies where download streams are
stored.

Syntax dbmlsrv9 -c " connection-string" -dd directory . . .

Description When the MobiLink synchronization server is shut down, the download
directory is cleaned. This means that a download cannot be restarted across
a server restart.

The default directory is your TEMP directory.

See also “Resuming failed downloads” on page 74

“-dc option” [MobiLink Clients,page 103]

“-ds option” on page 199

198

Chapter 11. MobiLink Synchronization Server Options

-dl option

Function Displays all log messages on screen.

Syntax dbmlsrv9 -c " connection-string" -v -dl ...

Description Display all log messages in the MobiLink synchronization server window.
By default, only a subset of all messages is shown in the window when a log
file is being output (using -o). In circumstances with many messages, this
option can degrade performance.

-ds option

Function For use with restartable downloads. Specifies the amount of disk space that
can be used to store the restartable download stream.

Syntax dbmlsrv9 -c " connection-string" -ds size [k | m | g]. . .

Description Use the suffix k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively. The default is 10 Mb.

See also “Resuming failed downloads” on page 74

“-dc option” [MobiLink Clients,page 103]

“-dd option” on page 198

-e option

Function Stores error logs sent from Adaptive Server Anywhere MobiLink clients.

Syntax dbmlsrv9 -c " connection-string" -e filename. . .

Description With no -e option, error logs from Adaptive Server Anywhere MobiLink
clients are stored in a file nameddblmsrv.mle. The -e option instructs the
MobiLink synchronization server to store the error logs in the named file.
By default, dbmlsync sends, on the occurrence of an error on the remote site,
up to 32 kilobytes of remote log messages to a MobiLink synchronization
server.

This option provides centralized access to remote error logs to help diagnose
synchronization issues.

The amount of information delivered from a remote site can be controlled by
the dbmlsync extended option ErrorLogSendLimit.

See also ♦ “-et option” on page 200
♦ “ErrorLogSendLimit (el) extended option”[MobiLink Clients,page 117]

199

-et option

Function Stores error logs sent from Adaptive Server Anywhere MobiLink clients in
the named file after truncating the existing file.

Syntax dbmlsrv9 -c " connection-string" -et filename. . .

Description The -et option is the same as the -e option, except that the error log file is
truncated before any new errors are added to it.

The amount of information delivered from a remote site can be controlled by
the dbmlsync extended option ErrorLogSendLimit.

See also ♦ “ErrorLogSendLimit (el) extended option”[MobiLink Clients,page 117]
♦ “-e option” on page 199

-f option

Function Loads synchronization scripts only once, for better performance.

Syntax dbmlsrv9 -c " connection-string" -f. . .

Description Without the -f option, the MobiLink synchronization server checks to see if
synchronization scripts have changed during regular operation. This
checking is helpful during development, but can have an unnecessary
performance impact in a production environment. With the -f option, the
MobiLink synchronization server loads the synchronization scripts only
once per MobiLink session..

-fr option

Function If table data scripts are missing, synchronization will not abort, but just issue
a warning.

Syntax dbmlsrv9 -c " connection-string" -fr . . .

Description Without the -fr option, the MobiLink synchronization server aborts if a
synchronization does not include at least one script that uploads or
downloads data. This option causes MobiLink to issue a warning instead of
aborting.

For bi-directional or upload-only synchronization, -fr will cause an error to
occur if data is uploaded and there is no corresponding upload script:

♦ if you attempt to upload an INSERT with no upload_insert,
upload_new_row_insert, upload_cursor, or new_row_cursor script
defined

200

Chapter 11. MobiLink Synchronization Server Options

♦ if you attempt to upload a DELETE with no upload_delete,
upload_old_row_insert, upload_cursor, or old_row_cursor script defined

if you attempt to upload an UPDATE with no upload_update,
upload_new_row_insert, upload_cursor, or new_row_cursor script
defined

For download-only synchronization, -fr will cause an error if any tables in
the synchronization are missing a download script (download_cursor or
download_delete_cursor).

-m option

Function Enables QAnywhere messaging.

Syntax dbmlsrv9 -c " connection-string" -m [message-properties-file] . . .

Description The optionalmessage-properties-filespecifies property settings for
QAnywhere messaging, including the name of files that specify property
settings for connectors and transmission rules.

In themessage-properties-file, each property must appear on its own line and
consist of a property name, the = character, and then a property value.

Following are the properties you can set in the QAnywhere properties file:

♦ ianywhere.qa.server.logLevel The logging level of the messaging.
The property value may be one of 1, 2, 3, or 4. 1 indicates that only
message errors are logged. 2 additionally causes warnings to be logged. 3
additionally causes informational messages to be logged. 4 additionally
causes more verbose informational messages to be logged, including
details about each QAnywhere message that is transmitted with the
MobiLink synchronization server. The default is 2.

These logging messages are output to the MobiLink synchronization
server console. If the dbmlsrv9 -o or -ot option was specified, the
messages are output to the MobiLink synchronization server log file.

♦ ianywhere.qa.compressionLevel The default amount of compression
applied to each message received by a QAnywhere connector. The
compression is an integer between 0 and 9, with 0 being no compression
and 9 being the most compression. The default is 0.

If you also set the compression level for a connector in the connector
properties file, this setting is overridden for that connector. For more
information, see“Configuring the JMS connector properties file”
[QAnywhere User’s Guide,page 43].

♦ ianywhere.qa.server.connectorPropertiesFiles A list of one or more

201

files that specify the configuration of QAnywhere connectors to an
external message system such as JMS. The default is no connectors.

For more information, see“Using JMS Connectors”[QAnywhere User’s
Guide,page 42].

♦ ianywhere.qa.server.transmissionRulesFile A file used to specify
rules for governing the transmission and persistence of messages. By
default, there are no filters for messages, and messages are deleted when
the final status of the message has been transmitted to the message
originator.

♦ ianywhere.qa.server.autoRulesEvaluationPeriod The time in
milliseconds between evaluations of rules, including message
transmission and persistence rules. Since, typically, rules are evaluated
on the fly as messages are transmitted to the server store, the rule
evaluation period is only for rules that are timing-sensitive. The default
value is 60000 (one minute).

See also ♦ “Introduction to QAnywhere”[QAnywhere User’s Guide,page 1]
♦ “QAnywhere Transmission Rules”[QAnywhere User’s Guide,page 101]
♦ “Configuring the JMS connector properties file”[QAnywhere User’s Guide,

page 43]
♦ “Starting the MobiLink synchronization server for QAnywhere

messaging”[QAnywhere User’s Guide,page 33]
♦ “Starting the MobiLink server for JMS integration”[QAnywhere User’s

Guide,page 43]

Example For example, the following lines could be contained in a QAnywhere
message properties file calledqanymsgprop.ini; it tells QAnywhere to:

♦ read connector properties from a file calledconnector.ini
♦ read server transmission rules from a file calledrules.ini
♦ set the logging level to 4 (verbose)

ianywhere.qa.server.connectorPropertiesFiles=connector.ini
ianywhere.qa.server.transmissionRulesFiles=rules.ini
ianywhere.qa.server.logLevel=4

To run these settings, start the MobiLink synchronization server with the -m
option and the message properties filename. Following is a partial command
line:

dbmlsrv9 -m qanymsgprop.ini ...

-notifier option

Function Starts the Notifier for server-initiated synchronization.

202

Chapter 11. MobiLink Synchronization Server Options

Syntax dbmlsrv9 -c " connection-string" -notifier [notifier-properties-file] . . .

Description If you specify a Notifier configuration file name, or if you do not specify a
file name but you have a default Notifier properties file calledconfig.notifier,
the Notifier is configured using that file. This overrides any configuration
information that is stored in the ml_properties table in the consolidated
database.

Otherwise, MobiLink uses the configuration information that is stored in the
ml_properties table in the consolidated database.

When you use the -notifier option, you start every Notifier that you have
enabled.

For more information about enabling Notifiers, see“enable property”
[MobiLink Server-Initiated Synchronization User’s Guide,page 61].

The -notifier option cannot be used on AIX 4.3.3. For more information, see
http://www-106.ibm.com/developerworks/eserver/articles/JavaPart1.html.

See also ♦ “Setting properties in more than one place”[MobiLink Server-Initiated
Synchronization User’s Guide,page 15]

♦ “Notifier properties file”[MobiLink Server-Initiated Synchronization User’s
Guide,page 16]

♦ “Notifiers” [MobiLink Server-Initiated Synchronization User’s Guide,page 18]
♦ “MobiLink Notification Properties”[MobiLink Server-Initiated

Synchronization User’s Guide,page 55]

-o option

Function Logs output messages to a MobiLink synchronization server message log
file, and limits the data logged to the console window.

Syntax dbmlsrv9 -c " connection-string" -o logfile. . .

Description Write all log messages to the specified file. Note that the MobiLink
synchronization server window, if present, usually shows a subset of all
messages logged.

The MobiLink synchronization server gives the full error context in its
output file if errors occur during synchronization. The error context may
include the following information:

♦ User Name This is the actual user name that is provided by MobiLink
Adaptive Server Anywhere applications during synchronization.

♦ Modified User Name This is the user name as modified by the
modify_user script.

203

http://www-106.ibm.com/developerworks/eserver/articles/JavaPart1.html

♦ Transaction This lists the transaction the error occurs in. The
transaction could be authenticate_user, begin_synchronization, upload,
prepare_for_download, download, or end_synchronization.

♦ Table Name This shows the table name if it is available or NULL.

♦ Row Operation The operation could be INSERT, UPDATE, DELETE
or FETCH.

♦ Row Data This shows all the column values of the row that caused the
error.

♦ Script Version This is the script version currently used for
synchronization.

♦ Script This is the script that caused the error.

Error context information appears in the log regardless of your chosen level
of verbosity.

See also ♦ “-os option” on page 205
♦ “-dl option” on page 199
♦ “-ot option” on page 206
♦ “-on option” on page 204
♦ “-v option” on page 211

-on option

Function Specifies a maximum size for the MobiLink synchronization server message
log file, after which the file is renamed with the extension .old and a new file
is started.

Syntax dbmlsrv9 -c " connection-string" -on size [k | m]. . .

Description Thesize is the maximum file size for the output log, in bytes. Use the suffix
k or m to specify units of kilobytes or megabytes, respectively. The
minimum size limit is 10 Kb.

When the log file reaches the specified size, the MobiLink synchronization
server renames the output file with the extension .old, and starts a new one
with the original name.

Note
If the .old file already exists, it is overwritten. To avoid losing old log files,
use the -os option instead.

This option cannot be used with the -os option.

See also ♦ “-o option” on page 203

204

Chapter 11. MobiLink Synchronization Server Options

♦ “-ot option” on page 206
♦ “-on option” on page 204
♦ “-os option” on page 205
♦ “-v option” on page 211

-oq option

Function On Windows, prevents the appearance of the error dialog when a startup
error occurs.

Syntax dbmlsrv9 -c " connection-string" -oq . . .

Description By default, the MobiLink synchronization server displays a message box
dialog if a startup error occurs. The- oq option prevents this dialog from
being displayed.

-os option

Function Sets the maximum size of the MobiLink synchronization server message log
file, after which a new log file with a new name is created and used.

Syntax dbmlsrv9 -c " connection-string" -os size [k | m]. . .

Description Thesize is the maximum file size for logging output messages. The default
unit is bytes. Use the suffix k or m to specify units of kilobytes or
megabytes, respectively. The minimum size limit is 10 kb.

Before the MobiLink synchronization server logs output messages to a file,
it checks the current file size. If the log message will make the file size
exceed the specified size, the MobiLink synchronization server renames the
message log file toyymmddxx.mls, wherexx is a number from 00 to 99,
andyymmdd represents the current year, month, and day.

You can use this option to prune old message log files to free up disk space.
The latest output is always appended to the file specified by -o or -ot.

You cannot use this option with the -on option.

Note
This option will make an unlimited number of log files. To avoid this
situation, use -o or -on.

See also ♦ “-o option” on page 203
♦ “-on option” on page 204
♦ “-ot option” on page 206
♦ “-v option” on page 211

205

-ot option

Function Logs output messages to the MobiLink synchronization server message log
file, but truncates it first.

Syntax dbmlsrv9 -c " connection-string" -ot logfilename . . .

Description Truncate the message log file and then append output messages to it. The
default is to send output to the screen.

See also ♦ “-on option” on page 204
♦ “-os option” on page 205
♦ “-v option” on page 211
♦ “-o option” on page 203

-ps option

Function Sets the maximum number of prepared statements to cache per connection.

Syntax dbmlsrv9 -c " connection-string" -ps num . . .

Description Controls the maximum number of ODBC prepared statements kept in the
prepared statement cache.

Caching prepared statements improves performance, but consumes
resources. Some consolidated database types have configurable limits on the
number of prepared statements, so this option may be set accordingly.

-q option

Function Instructs MobiLink to run in a minimized window on startup.

Syntax dbmlsrv9 -c " connection-string" -q . . .

Description Minimize the MobiLink synchronization server window.

-r option

Function Sets the maximum number of deadlock retries.

Syntax dbmlsrv9 -c " connection-string" -r retries . . .

Description By default, MobiLink synchronization server retries uploads that are
deadlocked, for a maximum of 10 attempts. If the deadlock is not broken,
synchronization fails, since there is no guarantee that the deadlock can be
overcome. This option allows an arbitrary retry limit to be set. To stop the
server from retrying deadlocked transactions, specify–r 0. The upper bound
on this setting is 2 to the power 32, minus one.

206

Chapter 11. MobiLink Synchronization Server Options

-rd option

Function Sets the maximum delay time between deadlock retries.

Syntax dbmlsrv9 -c " connection-string" -rd delay . . .

Description When upload transactions are deadlocked, the MobiLink synchronization
server waits a random length of time before retrying the transaction. The
random nature of the delay increases the likelihood that future attempts will
succeed. This option allows you to specify the maximum delay in units of
seconds. The value 0 (zero) makes retries instantaneous, but larger values
are recommended because they yield more successful retries. The default
and maximum delay value is 30.

-s option

Function Sets the maximum number of rows fetched, inserted, updated, or deleted at
once.

Syntax dbmlsrv9 -c " connection-string" -s count . . .

Description Set the maximum number of rows transferred between the MobiLink
synchronization server and the consolidated database tocount.

Set this option to no less than the number of rows specified in the ODBC
prefetch option, if this option is set. The default value is 10.

The number of rows fetched at once can be viewed in the log file asrowset
size.

Note: The actual maximum number of rows transferred is influenced by
settings in your ODBC data source, and/or database client software.

-sl dnet option

Function Sets the .NET Common Language Runtime (CLR) options and forces the
CLR to load on startup.

Syntax dbmlsrv9 -c " connection-string" -sl dnet options . . .

Description Sets options to pass directly to the .NET CLR. The options are:

207

Option Description

Option Description

-Dname=value Set an environment variable. For example,

-Dsynchtype=far -Dextra_rows=yes

For more information, see the .NET frame-
work class System.Environment.

-MLAutoLoadPath= path Set the location of base assemblies. Only
works with private assemblies. To tell Mo-
biLink where assemblies are located, use this
option or -MLDomConfigFile, but not both.
When you use -MLAutoLoadPath, you can-
not specify a domain in the event script. The
default is the current directory.

-MLDomConfigFile=file Set the location of base assemblies. Use when
you have shared assemblies, or you don’t want
to load all assemblies in the directory, or you
can’t use MLAutoLoadPath for some other
reason. To tell MobiLink where assemblies
are located, use -MLDomConfigFile or -
MLAutoLoadPath, but not both.

-MLStartClasses=

classnames

At server startup, load and instantiate user-
defined start classes in the order listed.

-clrConGC Enable concurrent garbage collection in the
CLR.

-clrFlavor= (wks | svr) Flavor of the .NET CLR to load. The flavor
is svr for server andwks for workstation. By
default,wks is loaded.

-clrVersion=version Version of the .NET CLR to load. This must
be prefixed withv. For example,v1.0.3705
loads the directory\WINNT\Microsoft.-
NET\Framework\v1.0.3705.

To display this list of options, use the following command:

dbmlsrv9 -sl dnet (?)

See also ♦ “Writing Synchronization Scripts in .NET” on page 281

208

Chapter 11. MobiLink Synchronization Server Options

-sl java option

Function Sets the Java virtual machine options and forces the virtual machine to load
on startup.

Syntax dbmlsrv9 -c " connection-string" -sl java (options) . . .

Description Sets -jrepath and other options to pass directly to the Java virtual machine.
The options are:

Option Description

{ -hotspot | -server | -classic} Override the default choice for the Java VM
to use.

{ –cp | –classpath } loca-
tion;. . .

Specify a set of directories or jar files in
which to search for classes. You must
enclose -cp or -classpath in either curly
braces or round brackets.

–Dname=value Set a system property. For example,

-Dsynchtype=far -Dextra_rows=yes

–DMLStartClasses=class, . . . At server startup, load and instantiate user-
defined start classes in the order listed.

–jrepath path Override the default JRE path, which
is the sun\jre142directory under the
Sybase\shareddirectory.

–verbose[:class|:gc | :jni] Enable verbose output.

–X vm-option Set a VM-specific option as described in the
file Xusage.txt, which by default is installed
to Sybase\Shared\Sun\jre142\bin\hotspot.

Options must be enclosed in brackets. These can be round brackets, as
shown in the syntax above, or curly braces { }.

To display this list of options, use the following command:

dbmlsrv9 -sl java (?)

To display a list of Java options you can use, type:

java

209

Description The -jrepath option is only available on Windows. On UNIX, if you want to
load a specific JRE, you should set the LD_LIBRARY_PATH (LIBPATH on
AIX, SHLIB_PATH on HP-UX) to include the directory containing the JRE.
The directory must be listed before any of the Adaptive Server Anywhere
install directories.

See also ♦ “Writing Synchronization Scripts in Java” on page 255

Examples For example, the following partial dbmlsrv9 command line sets the Java
virtual machine option that enables system asserts:

dbmlsrv9 -sl java {-cp ; \myclasses; -esa} ...

The following partial dbmlsrv9 command line defines the LDAP_SERVER
system property:

dbmlsrv9 -sl java { -cp ; \myclasses; -DLDAP_SERVER=huron-ldap }
...

-t option

Function Creates a file containing all the ODBC calls issued by MobiLink.

Syntax dbmlsrv9 -c " connection-string" -t ODBC-output-file . . .

Description This option can be used to create a file containing all of the ODBC calls
issued by MobiLink. If used on UNIX, with the Adaptive Server Anywhere
driver used as a driver manager, this feature is ignored. The feature is useful
for tracing what was called, passed, and retrieved. It has a severe impact on
performance, so should not be used in production.

To prevent the file from becoming large, use the“-tt option” on page 210.

See also ♦ “-tt option” on page 210

-tt option

Function Logs ODBC calls issued by MobiLink to a file. If the file already exists, it
first deletes it.

Syntax dbmlsrv9 -c " connection-string" -tt ODBC-output-file . . .

Description This option is used to create a file containing all of the ODBC calls issued by
MobiLink. If used on UNIX with the Adaptive Server Anywhere driver used
as a driver manager, this feature is ignored. The feature is useful for tracing
what was called, passed, and retrieved. It has a severe impact on
performance, so should not be used in production.

See also ♦ “-t option” on page 210

210

Chapter 11. MobiLink Synchronization Server Options

-u option

Function Sets the upload cache size.

Syntax dbmlsrv9 -c " connection-string" -u size[k | m | g] . . .

Description The amount of space, in bytes, to reserve for caching upload streams that are
being processed. Use the suffix k, m, or g to specify units of kilobytes,
megabytes, or gigabytes respectively. You should consider enlarging this
value if your clients upload large streams, or many clients synchronize at
once, or both. The suggested size is the maximum expected size of an
upload stream multiplied by the number of worker threads. The default
value is 500 Kb.

See also ♦ “-bc option” on page 196

-ud option

Function Instructs MobiLink to run as a daemon.

Syntax dbmlsrv9 -c " connection-string" -ud . . .

Description UNIX platforms only.

See also ♦ “Running MobiLink Outside the Current Session” on page 157

-us option

Function Prevents the MobiLink synchronization server from invoking upload scripts
for a table when no rows are uploaded for the table.

Syntax dbmlsrv9 -c " connection-string" -us . . .

Description This option is particularly useful when dbmlsync transaction-level uploads
are used.

See also “-tu option” [MobiLink Clients,page 147]

-v option

Function Allows you to specify what information is logged to the message log file and
displayed in the synchronization window.

Syntax dbmlsrv9 -c " connection-string" -v[levels] . . .

Description This option is particularly useful when dbmlsync transaction-level uploads
are used.

This option controls the type of messages written to the message log file.

211

If you specify –v alone, the MobiLink synchronization server writes a
minimal amount of information about each synchronization.

The values of levels are as follows. You can use one or more of these options
at once; for example, -vnrsu.

♦ + Turn on all logging options that increase verbosity.

♦ c Show the content of each synchronization script when it is invoked.
This level implies s.

♦ f Show first-read errors. This will log errors caused when
load-balancing devices check for server liveness by making connections
that don’t send any data, and thus result in failed synchronizations.

For TCP/IP connections, you might be better off using the TCP/IP option
ignore. For more information, see“-x option” on page 214.

♦ h Show the remote schema as uploaded during synchronization.

♦ n Show row-count summaries.

♦ p Show progress offsets.

♦ r Display the column values of each row uploaded or downloaded.

♦ s Show the name of each synchronization script as it is invoked.

♦ t Show the translated SQL that results from scripts that are written in
ODBC canonical format. This level implies c. The following example
shows the automatic translation of a statement for Adaptive Server
Anywhere.

I. 02/11 11:02:14. [102]: begin_upload synch2
{ call SynchLogLine(?, ?, ’begin_upload’) }
I. 02/11 11:02:14. [102]: Translated SQL:
call SynchLogLine(?, ?, ’begin_upload’)

The following example shows the translation of the same statement for
Microsoft SQL Server.

I. 02/11 11:03:21. [102]: begin_upload synch2
{ call SynchLogLine(?, ?, ’begin_upload’) }
I. 02/11 11:03:21. [102]: Translated SQL:
EXEC SynchLogLine ?, ?, ’begin_upload’

♦ u Show undefined table scripts. This may help new users understand
the synchronization process.

-w option

Function Sets the number of worker threads.

212

Chapter 11. MobiLink Synchronization Server Options

Syntax dbmlsrv9 -c " connection-string" -w count . . .

Description Each worker thread accepts synchronization requests one at a time. Each
worker thread is associated with a network protocol. If you have more than
one protocol defined, the worker threads are divided evenly among the
protocols.

Each worker thread uses one connection to the consolidated database. The
MobiLink synchronization server opens one additional connection for
administrative purposes. Hence, the minimum number of connections from
the MobiLink synchronization server to the consolidated database is
count+ 1.

The number of worker threads has a strong influence on MobiLink
synchronization throughput, and you need to run tests to determine the
optimum number for your particular synchronization setup. The number of
worker threads determines how many synchronizations can be active
simultaneously; the rest will be queued waiting for worker threads to
become available. Thus adding worker threads should increase throughput,
but it will also increase the possibility of contention between the active
synchronizations. At some point adding more worker threads will decrease
throughput, because the increased contention outweighs the benefit of
overlapping synchronizations.

☞ For more information, see the MobiLink Performance whitepaper at
http://my.sybase.com/detail?id=1009664, and“MobiLink Performance” on
page 105.

The value set for this option is also the default setting for the -wu option,
which can be used to limit the number of threads that can simultaneously
upload. This is useful if the optimum number of worker threads for
downloading is larger than the optimum number for uploading, as is
typically the case with remote databases on slow computers or with slow
connections to the MobiLink server. Tests have shown that for slow
synchronization clients (such as Palm devices or computers connected by
dialup), the best throughput is achieved with a large number of worker
threads (via -w) with a small number allowed to apply uploads
simultaneously (via -wu). In general, the optimum number for -wu depends
on the consolidated database, and is relatively independent of the processing
or network speeds for the remote databases. Therefore, when you increase
the number of threads with -w, you may want to use -wu to restrict the
number that can upload simultaneously. For more information, see“-wu
option” on page 214.

The default number of worker threads is 5.

213

http://my.sybase.com/detail?id=1009664

-wu option

Function Sets the maximum number of worker threads that can apply uploads
simultaneously.

Syntax dbmlsrv9 -c " connection-string" -wu count . . .

Description Use the- wu option to limit the number of worker threads that can
simultaneously apply uploads. When the limit is reached, a worker thread
that is ready to apply its upload must wait until another finishes its upload.
The excess worker threads are still free to receive uploads or to download.

The most common cause of contention in the consolidated database is having
too many worker threads applying uploads simultaneously. This can be an
issue when the network connection is slow, or when the client device has low
processing speed. For example, when working over a wide-area wireless
network or using a Palm device you may want to increase the total number
of threads (-w) but limit the number that can apply uploads simultaneously.

Consider the following example. In a pilot setup using a LAN and remote
databases on PCs, you find that the optimum number of worker threads is
approximately 10 for both upload-only and download-only
synchronizations, and that corresponds to 100% CPU utilization on the
consolidated database. With fewer worker threads you find that throughput
is less and the CPU utilization for the consolidated database is lower. With
more worker threads, throughput does not increase because the consolidated
database is already processing as fast as it can with 10 workers. When you
switch to using a dialup network with 10 MobiLink worker threads, you will
probably find that throughput is lower and the consolidated CPU utilization
has dropped. You may find that you can get throughput (and consolidated
CPU utilization) to approach the values obtained with the LAN by
increasing the number of worker threads (via -w) while keeping the number
that apply uploads simultaneously limited to 10 (via -wu).

By default, all worker threads can apply uploads simultaneously. The
number of worker threads that are used is set by the -w option. The default is
5.

-x option

Function Sets network protocol and protocol options for MobiLink clients. These are
used by the MobiLink synchronization server to listen for synchronization
requests.

Syntax dbmlsrv9 -c " connection-string"
-x protocol [protocol-options]. . .

214

Chapter 11. MobiLink Synchronization Server Options

protocol-options : (keyword=value;...)

Description Specify communications protocol through which to communicate with client
applications. The default is TCPIP with port 2439.

Note for UltraLite users
If you are using an UltraLite Java application and you are using TLS
security, the syntax of -x is slightly different. For details, see“Using
transport-layer security”[UltraLite Static Java User’s Guide,page 42].

The allowed values ofprotocol are as follows:

♦ tcpip Accept connections from applications via TCP/IP.

♦ http Accept connections via the standard Web protocol. Client
applications can pick their HTTP version and the MobiLink
synchronization server adjusts on a per-connection basis.

♦ https Accept connections via a variant of HTTP that handles secure
transactions. The HTTPS stream implements HTTP over SSL/TLS using
RSA encryption, and is compatible with any other HTTPS server.

♦ https_fips Accept connections using the HTTPS protocol and
FIPS-approved algorithms for encryption. HTTPS_FIPS uses separate
FIPS 140-2 certified software. Servers using rsa_tls are compatible with
clients using rsa_tls_fips, and servers using rsa_tls_fips are compatible
with clients using rsa_tls. rsa_tls_fips can only be used with Adaptive
Server Anywhere databases on Windows.

Optionally, you can also specify network protocol options, in the form
option=value. You should separate multiple options with semicolons. Which
options you specify depends on the protocol you choose.

♦ TCP/IP options If you specify thetcpip protocol, you can optionally
specify the following protocol options:

• backlog=number-of-connections ă The maximum number of
remote connections before MobiLink should reject new
synchronization requests, causing synchronization to fail on the client
side. By specifying a backlog size, you can prevent clients from
waiting to synchronize when the server is busy. If you do not specify a
backlog size, clients will attempt to synchronize regardless of the size
of the backlog.

• host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

215

• ignore=hostname A host name or IP number that will be ignored by
the MobiLink synchronization server if it makes a connection. This
option allows you to ignore requests from load balancers at the lowest
possible level, preventing excessive output in the MobiLink server log
and MobiLink Monitor output files. You can specify multiple hosts to
ignore; for example-x
tcpip(ignore=lb1;ignore=123.45.67.89) .

• liveness_timeout=n The amount of time, in seconds, after the last
communication with a client before MobiLink aborts the
synchronization. A value of 0 means that there is no timeout. This
option is only effective if download acknowledgement on the client is
set to off (the default). The default is 120 seconds.

• port=portnumber The socket port number on which the MobiLink
synchronization server should listen. The default port is 2439, which is
the IANA registered port number for the MobiLink synchronization
server.

• security=cipher(keyword=value;. . .) All communication through
this connection is to be encrypted and authenticated using
transport-layer security. The cipher can be one ofecc_tls, rsa_tls, or
rsa_tls_fips, for elliptic-curve encryption, RSA encryption, or RSA
encryption that is FIPS-approved, respectively. rsa_tls_fips uses
separate FIPS 140-2 certified software from Certicom but is compatible
with clients using https (and version 9.0.2 or later). rsa_tls_fips can
only be used with Adaptive Server Anywhere clients on Windows.

For backwards compatibility,ecc_tlscan also be specified as
certicom_tls.
The security parameters arecertificate (the path and file name of the
certificate that is to be used for server authentication), and
certificate_password. You must use a certificate that matches the
cipher suite you choose.

☞ For more information, see“Starting the MobiLink synchronization
server with transport-layer security” on page 177.

Separately licensable option required
Transport-layer security requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

♦ HTTP options If you specify thehttp protocol, you can optionally
specify the following protocol options:

216

Chapter 11. MobiLink Synchronization Server Options

• backlog=number-of-connections ă The maximum number of
remote connections before MobiLink should reject new
synchronization requests, causing synchronization to fail on the client
side. By specifying a backlog size, you can prevent clients from
waiting to synchronize when the server is busy. If you do not specify a
backlog size, clients will attempt to synchronize regardless of the size
of the backlog.

• buffer_size=number The maximum body size for an HTTP message
sent from MobiLink server, in bytes. Changing the option will
decrease or increase the amount of memory allocated for sending
HTTP messages. The default is 65 535 bytes.

• contd_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive the next part of a partially
completed synchronization before the synchronization is abandoned.
You can tune this option to free MobiLink worker threads when the
wait time indicates that the client will never continue the connection.
The default value is 30 seconds.

• host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

• port=portnumber The socket port number on which the MobiLink
synchronization server should listen. The port number must be a
decimal number that matches the port the MobiLink synchronization
server is setup to monitor. The default port is 80.

• unknown_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive HTTP headers on a new
connection before the synchronization is abandoned. You can tune this
option to free MobiLink worker threads when the wait time indicates
that a network failure has occurred. The default value is 30 seconds.

• url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. This parameter can be used to help ensure that a
particular client connects to the intended server. Values must match or
synchronization will not be successful.

• version=http-version The MobiLink synchronization server
automatically detects the HTTP version used by a client. This
parameter is a string specifying the default version of HTTP to use in
case the server cannot detect the method used by the client. You have a
choice of1.0or 1.1. The default value is1.1.

♦ HTTPS or HTTPS_FIPS options The https communication stream uses
RSA digital certificates for transport-layer security. The https_fips stream
uses separate FIPS 140-2 certified software but is compatible with https.

217

☞ For more information, see“Starting the MobiLink synchronization
server with transport-layer security” on page 177.

Separately licensable option required
Transport-layer security requires that you obtain a separately-licensable
SQL Anywhere Studio security option and is subject to export regula-
tions.

☞ To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

If you specify thehttps protocol, you can optionally specify the
following protocol options:
• backlog=number-of-connections ă The maximum number of

remote connections before MobiLink should reject new
synchronization requests, causing synchronization to fail on the client
side. By specifying a backlog size, you can prevent clients from
waiting to synchronize when the server is busy. If you do not specify a
backlog size, clients will attempt to synchronize regardless of the size
of the backlog.

• buffer_size=number ă The maximum body size for an HTTPS
message sent from MobiLink server, in bytes. Changing the option will
decrease or increase the amount of memory allocated for sending
HTTPS messages. The default is 65 535 bytes.

• contd_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive the next part of a partially
completed synchronization before the synchronization is abandoned.
You can tune this option to free MobiLink worker threads when the
wait time indicates that the client will never continue the connection.
The default value is 30 seconds.

• host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

• port=portnumber The socket port number on which the MobiLink
synchronization server should listen. The port number must be a
decimal number that matches the port the MobiLink synchronization
server is setup to monitor. The default port is 443.

• certificate The path and file name of the certificate that is to be used
for server authentication. This must be an RSA certificate.

• certificate_password An optional parameter that specifies a
password for the certificate.
☞ For more information about security, see“MobiLink
Transport-Layer Security” on page 165.

218

Chapter 11. MobiLink Synchronization Server Options

• unknown_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive HTTP headers on a new
connection before the synchronization is abandoned. You can tune this
option to free MobiLink worker threads when the wait time indicates
that a network failure has occurred. The default value is 30 seconds.

• url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. This parameter can be used to help ensure that a
particular client connects to the intended server. Values must match or
synchronization will not be successful.

• version=http-version The MobiLink synchronization server
automatically detects the HTTP version used by a client. This
parameter is a string specifying the default version of HTTP to use in
case the server cannot detect the method used by the client. You have a
choice of1.0or 1.1. The default value is1.1.

Examples The following command line sets the backlog size to 10 connections.

dbmlsrv9 -c dsn=asa90sample;uid=DBA;pwd=SQL -x http(backlog=10)

-za option

Function Generates statement-based scripts that perform a simple snapshot
synchronization.

Syntax dbmlsrv9 -c " connection-string" -za

Description The following scripts are generated:

♦ upload_insert

♦ upload_update

♦ upload_delete

♦ download_cursor

This option generates active scripts; that is, they are used for the current
synchronization. The scripts are also saved and will work for subsequent
synchronizations using the same script version. The -za option is typically
used for quick demos. To generate scripts as a starting point for writing your
own scripts, the dbmlsrv9 -ze option might be more useful.

To generate scripts, you must also specify that the client sends column
names. You do this when you initiate synchronization. For Adaptive Server
Anywhere remotes, see“SendColumnNames (scn) extended option”
[MobiLink Clients,page 130]. For UltraLite remotes, see“Send Column
Names synchronization parameter”[MobiLink Clients,page 330].

219

The generated scripts perform one-to-one snapshot synchronization using
the table and column names sent from the client. If the consolidated
database has different table or column names than the remote, activating
these scripts will cause an error during the synchronization.

Note:
Scripts are generated the first time that a remote synchronizes with a script
version that doesn’t exist. If the given script version already exists, -za has
no effect. This means that you cannot use -za to generate scripts one table
at a time for the same script version. Using -za, you must generate scripts
for all tables and publications at once.

See also ♦ “-ze option” on page 220

Example The following dbmlsrv9 command enables automatic script generation. The
dbmlsync command sets the necessary SendColumnNames option.

dbmlsrv9 -c "dsn=YourDBDSN" -za
dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

-ze option

Function Generates sample scripts that, if activated, perform a simple snapshot
synchronization.

Syntax dbmlsrv9 -c " connection-string" -ze

Description The following scripts are generated:

♦ example_upload_insert

♦ example_upload_update

♦ example_upload_delete

♦ example_download_cursor

You can use these scripts as starting points for creating your own scripts.

To generate scripts, you must also specify that the client sends column
names. You do this when you initiate synchronization. For Adaptive Server
Anywhere remotes, see“SendColumnNames (scn) extended option”
[MobiLink Clients,page 130]. For UltraLite remotes, see“Send Column
Names synchronization parameter”[MobiLink Clients,page 330].

The generated scripts perform one-to-one snapshot synchronization using
the table and column names sent from the client. If the consolidated
database has different table or column names than the remote, activating
these scripts will cause an error during the synchronization.

220

Chapter 11. MobiLink Synchronization Server Options

Note:
Scripts are generated only the first time that a remote synchronizes, and
only when the given script version does not exist. Otherwise, -ze has no
effect.

See also ♦ “-za option” on page 219

-zp option

Function Adjusts which timestamp values will be used for conflict detection purposes.

Syntax dbmlsrv9 -c " connection-string" -zp

Description In the event of a timestamp conflict between the consolidated and remote
database, this option allows timestamp values with a precision higher than
the lowest precision to be used for conflict detection purposes. The option is
useful when timestamps in the consolidated database are more precise than
in the remote, as updated timestamps on the remote can cause conflicts in the
next synchronization. The option allows MobiLink to ignore these conflicts.
When there is a precision mismatch and -zp is not used, a per
synchronization and a schema sensitive per table warning are written to the
log to advertise the -zp option. Another per synchronization warning is also
added to advise users to adjust the timestamp precision on the remote
database where possible.

-zs option

Function Specifies a MobiLink server name for dbmlstop.

Syntax dbmlsrv9 -c " connection-string" -zs name

Description The name that is specified may include letters and numbers, but no other
characters.

When dbmlstop is used to shut down a MobiLink synchronization server
started with the -zs option, you must specify the server name on the
dbmlstop command line. For example,dbmlstop myMLserver . Shutdown
may only be initiated from the computer where the MobiLink
synchronization server is installed.

See also ♦ “MobiLink stop utility” on page 490

-zt option

Function Specifies the maximum number of processors used to run the MobiLink
synchronization server.

Syntax dbmlsrv9 -c " connection-string" -zt number

221

Description This option may be required for some ODBC drivers. It also gives you fine
control of processor resources.

This option can only be used on Windows operating systems. The default is
the number of processors on the computer.

-zu option

Function Controls the automatic addition of users when the authenticate_user script is
undefined.

Syntax dbmlsrv9 -c " connection-string" -zu{ + | - } . . .

Description If this is supplied as -zu+, then unrecognized MobiLink user names are
added to the ml_user table on first synchronizing. If the argument is supplied
as -zu-, or not supplied, unrecognized user names are prevented from
synchronizing.

See also ♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9]
♦ “MobiLink user authentication utility” on page 492
♦ “authenticate_user connection event” on page 336

-zw option

Function Controls which levels of warning message to display.

Syntax dbmlsrv9 -c " connection-string" -zw levels

Description MobiLink has five levels of warning messages:

Level Description

0 Suppress all warning messages

1 Server and high ODBC level: warning messages when the
MobiLink synchronization server starts

2 Synchronization and user level: warning messages when
a synchronization starts

3 Schema level: warning messages when a MobiLink
synchronization server is processing a client schema

4 Script and lower ODBC level: warning messages when
a MobiLink synchronization server fetches, prepares, or
executes scripts

5 Table or row level: warning messages when a MobiLink
synchronization server performs table operations in an
upload or download

222

Chapter 11. MobiLink Synchronization Server Options

To specify the level of warning messages you want reported, you can
separate levels with a comma, or separate a range with two dots. For
example,-zw 1..3,5is the same as-zw 1,2,3,5.

The reporting of messages has a slight impact on performance. Levels with a
higher number tend to produce more messages.

If -zw is used more than once in the same command line, MobiLink
recognizes only the last instance. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

The default is1,2,3,4,5, which indicates that all levels of warning message
should be displayed.

-zwd option

Function Disables specific warning codes.

Syntax dbmlsrv9 -c " connection-string" -zwd code,. . .

Description You can disable specific warning codes so that they will not be reported,
even though other codes of the same level are reported.

☞ For a complete list of warning message codes, see“MobiLink
Synchronization Server Warning Messages”[ASA Error Messages,page 509].

If -zwd is used more than once in the same command line, MobiLink
accumulates the settings. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

-zwe option

Function Enables specific warning codes.

Syntax dbmlsrv9 -c " connection-string" -zwe code,. . .

Description You can enable specific warning codes so that they will be reported even
though you have disabled other codes of the same level using -zw.

☞ For a complete list of warning message codes, see“MobiLink
Synchronization Server Warning Messages”[ASA Error Messages,page 509].

If -zwe is used more than once on the same command line, MobiLink
accumulates the settings. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

223

224

PART II

MOBIL INK SCRIPTING

LOGIC

This part describes how to use MobiLink scripting logic.

CHAPTER 12

Writing Synchronization Scripts

About this chapter You control the synchronization process by writing synchronization scripts
and storing them in the consolidated database.

You can write scripts in SQL, Java, or .NET. This chapter applies to all kinds
of scripts, but focuses on how to write synchronization scripts in SQL.

For more information about writing scripts, see

♦ “Synchronization Events” on page 319

♦ “Synchronization Techniques” on page 45

♦ “Writing Synchronization Scripts in Java” on page 255

♦ “Writing Synchronization Scripts in .NET” on page 281

Contents Topic: page

Introduction to synchronization scripts 228

Scripts and the synchronization process 234

Script types 236

Script parameters 238

Script versions 239

Adding and deleting scripts in your consolidated database 241

Writing scripts to upload rows 244

Writing scripts to download rows 246

Writing scripts to handle errors 252

Testing script syntax 254

227

Introduction to synchronization scripts
MobiLink Synchronization logic consists of scripts, which may be
individual statements or stored procedure calls, stored in your consolidated
database. During synchronization, the MobiLink synchronization server
reads the scripts and executes them against the consolidated database.
Scripts provide you with opportunities to perform tasks at various points of
time during the synchronization process. You can use Sybase Central to add
scripts to the consolidated database or you can use stored procedures.

upload_insert

upload_delete

other scripts

consolidated
server

MobiLink

synchronization

server

remote

applications

client data

store

synchronization scripts

network

The synchronization process is composed of multiple steps. A uniqueevent
name identifies each step. You control the synchronization process by
writing scripts associated with some of these events. You write a script only
when some particular action must occur at a particular event. The MobiLink
synchronization server executes each script when its associated event occurs.
If you do not define a script for a particular event, the MobiLink
synchronization server simply proceeds to the next step.

228

Chapter 12. Writing Synchronization Scripts

For example, one event is begin_upload_rows. You can write a script and
associate it with this event. The MobiLink synchronization server reads this
script when it is first needed, and executes it during the upload phase of
synchronization. If you write no script, the MobiLink synchronization server
proceeds immediately to the next step, which is processing the uploaded
rows.

Some scripts, calledtable scripts, are associated not only with an event, but
also with a particular table in the remote database. The MobiLink
synchronization server performs some tasks on a table-by-table basis; for
example, downloading rows. You can have many scripts associated with the
same event, but each with different application tables. Alternatively, you can
define many scripts for some application tables, but none for others.

☞ For an overview of events, see“The synchronization process” on
page 15.

☞ For a description of every script you can write, see“Synchronization
Events” on page 319.

You can write scripts in SQL, Java, or .NET. This chapter applies to all kinds
of scripts, but focuses on how to write synchronization scripts in SQL.

☞ For a description and comparison of SQL, Java, and .NET, see“Options
for writing synchronization logic” on page 25.

☞ For information about writing scripts in .NET, see“Writing
Synchronization Scripts in .NET” on page 281.

☞ For information about writing scripts in Java, see“Writing
Synchronization Scripts in Java” on page 255.

☞ For information about how to implement synchronization scripts, see
“Synchronization Techniques” on page 45.

A simple synchronization script

MobiLink provides many events that you can exploit, but it is not mandatory
to provide scripts for each event. In a simple synchronization model, you
may need only a few scripts.

Downloading all the rows from the table to each remote database
synchronizes the ULProduct table in the CustDB sample application. In this
case, no additions are permitted at the remote databases. You can implement
this simple form of synchronization with a single script; in this case only one
event has a script associated with it.

The MobiLink event that controls the rows to be downloaded during each

229

synchronization is named the download_cursor event. Cursor scripts must
contain SELECT statements. The MobiLink synchronization server uses
these queries to define a cursor. In the case of a download_cursor script, the
cursor selects the rows to be downloaded to one particular table in the
remote database.

In the CustDB sample application, there is a single download_cursor script
for the ULProduct table in the sample application, which consists of the
following query.

SELECT prod_id, price, prod_name
FROM ULProduct

This query generates a result set. The rows that make up this result set are
downloaded to the client. In this case, all the rows of the table are
downloaded.

The MobiLink synchronization server knows to send the rows to the
ULProduct application table because this script is associated with both the
download_cursor event and ULProduct table by the way it is stored in the
consolidated database. Sybase Central allows you to make these
associations.

Note
In this example, the query selects data from a consolidated table also named
ULProduct. The names need not match. You could, instead, download data
to the ULProduct application table from any table, or any combination of
tables, in the consolidated database by rewriting the query.

You can write more complicated synchronization scripts. For example, you
could write a script that downloads only recently modified rows, or one that
provides different information to each remote database.

Generating scripts automatically

You can use the dbmlsrv9 -za option to generate default synchronization
scripts. The synchronization scripts perform a snapshot synchronization of
your consolidated database with your remote database using table and
column names that are sent from the client.

To use this feature with Adaptive Server Anywhere clients, set the
SendColumnNames extended option to ON to cause dbmlsync to send the
column names with the upload header. To use this feature with UltraLite
clients, set the send_column_names parameter to ul_true.

When you use -za, scripts are generated the first time that a remote
synchronizes with a script version that doesn’t exist. If the given script

230

Chapter 12. Writing Synchronization Scripts

version already exists, -za has no effect. This means that you cannot use -za
to generate scripts one table at a time for the same script version. Using -za,
you must generate scripts for all tables and publications at once.

☞ For more information, see“-za option” on page 219.

Example Start the MobiLink synchronization server using the -za switch. For
example, type:

dbmlsrv9 -c "dsn=YourDBDSN" -za

Run dbmlsync and set the SendColumnNames extended option to ON. For
example, type:

dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

Scripts are generated for all tables specified in the publication. On
synchronization, these automatically-generated scripts control the upload
and download of data to and from your client and consolidated databases.
The following table describes these scripts for the emp table.

Script name Script contents

upload_insert INSERT INTO emp (emp_id, emp_name)
VALUES (?,?)

upload_update UPDATE emp SET emp_name=?
WHERE emp_id=?

upload_delete DELETE FROM emp
WHERE emp_id=?

download_cursor SELECT emp_id, emp_name FROM emp

Generating example scripts

You can use the dbmlrv9 -ze option to generate example synchronization
scripts. The example synchronization scripts are capable of performing a
snapshot synchronization of your consolidated database with your remote
database using the table and column names sent from the client, but they are
not enabled. If the consolidated database has different table or column
names, then activating these scripts causes an error during the
synchronization.

To use this feature with Adaptive Server Anywhere clients, set the
SendColumnNames extended option to ON to cause dbmlsync to send the

231

column names with the upload header. To use this feature with UltraLite
clients, set the send_column_names parameter to ul_true.

The -ze option generates the example scripts example_upload_insert,
example_upload_update, example_upload_delete, and
example_download_cursor.

☞ For more information, see“-ze option” on page 220.

Example The following example generates scripts for an Adaptive Server Anywhere
remote database.

At a command prompt, type:

dbmlsrv9 -c "dsn=YourDBDSN" -ze

At a command prompt, type:

dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

In the example above, example scripts are generated for all tables specified
in the synchronization definition. The scripts exist for each table specified in
the synchronization definition. The following table lists these scripts for the
emp table.

Script name Script

example_upload_insert INSERT INTO emp (emp_id,emp_name)
VALUES (?,?)

example_upload_update UPDATE emp SET emp_name=?
WHERE emp_id=?

example_upload_delete DELETE FROM emp
WHERE emp_id=?

example_download_cursor SELECT emp_id, emp_name FROM emp

The example scripts select and upload all records from any table in the
synchronization subscription that meet the conditions specified in the
statement. So, for example, the upload_insert script for emp inserts all
records from emp. The example scripts are generated for each table in the
remote database specified in the synchronization subscription. The
MobiLink synchronization server generates complete scripts needed for a
snapshot synchronization. The scripts are added right after the
synchronization description is processed. The synchronization is aborted

232

Chapter 12. Writing Synchronization Scripts

after scripts are generated.

Example scripts for UltraLite

When you build an UltraLite application, the UltraLite generator
automatically inserts an example_download_cursor script into the UltraLite
reference database. The action of the example download script is to
download all rows of a corresponding table that exists in the remote
database. The script specifies the select list in the correct order.

The example script is inserted into the ml_scripts table, but they are not used
unless you insert an entry in the ml_table_script table that associates them
with the download_cursor event.

Minimally, the example scripts for download cursors provide the order of
columns expected by the remote database.

233

Scripts and the synchronization process
Each script corresponds to a particular event in the synchronization process.
You write a script only when some action must occur. All unnecessary
events can be left undefined.

The two principal parts of the process are the processing of uploaded
information and the preparation of rows for downloading.

The MobiLink synchronization server reads and prepares each script once,
when it is first needed. The script is then executed whenever the event is
invoked.

The sequence of events ☞ For information about the full sequence of MobiLink events, see
“Overview of MobiLink events” on page 322.

☞ For the details of upload stream processing, see“Writing scripts to
upload rows” on page 244.

☞ For the details of download stream processing, see“Writing scripts to
download rows” on page 246.

Notes ♦ MobiLink technology allows multiple clients to synchronize
concurrently. In this case, each client uses a separate connection to the
consolidated database.

♦ The begin_connection and end_connection events are independent of any
one synchronization as one connection can handle many synchronization
requests. These scripts have no parameters. These are examples of
connection-level scripts.

♦ Some events are invoked only once for each synchronization and have a
single parameter. This parameter is the user name, which uniquely
identifies the MobiLink client that is synchronizing. These are also
examples of connection-level scripts.

♦ Some events are invoked once for each table being synchronized. Scripts
associated with these events are called table-level scripts. They provide
two parameters. The first is the user name supplied in the call to the
synchronization function, and the second is the name of the table in the
remote database being synchronized.

While each table can have its own table scripts, you can also write
table-level scripts that are shared by several tables.

♦ Some events, such as begin_synchronization, occur at both the
connection level and the table level. You can supply both connection and
table scripts for these events.

234

Chapter 12. Writing Synchronization Scripts

♦ The COMMIT statements illustrate how the synchronization process is
broken up into distinct transactions.

♦ Errors are a separate event that can occur at any point within the
synchronization process. Errors are handled using the following script.

handle_error(error_code, error_message, user_name, table_
name)

☞ For reference material, including detailed information about each script
and its parameters, see“Synchronization Events” on page 319.

235

Script types
Synchronization scripts can apply to the entire connection or to specific
tables.

♦ connection scripts These scripts perform actions that are
connection-specific or synchronization-specific and that are independent
of any one remote table. These scripts are used in conjunction with other
scripts when implementing more complex synchronization schemes.

♦ table scripts These scripts perform actions specific to one
synchronization and one particular remote table. These scripts are used in
conjunction with other scripts when implementing more complex
synchronization schemes.

Connection scripts

Connection-level scripts control high level events that are not associated
with a particular table. Use these events to perform global tasks that are
required during every synchronization.

Connection scripts control actions centered on connecting and
disconnecting, as well as actions at synchronization-level events such as
beginning and ending the upload or download process. Some connection
scripts have related table scripts. These connection scripts are always
invoked regardless of the tables being synchronized.

You only need to write a connection-level script when some action must
occur at a particular event. You may need to create scripts for only a few
events. The default action at any event is for the MobiLink synchronization
server to carry out no actions. Some simple synchronization schemes need
no connection scripts.

Table scripts

Table scripts allow actions at specific events relating to the synchronization
of a specific table, such as the start or end of uploading rows, resolving
conflicts, or selecting rows to download.

The synchronization scripts for a given table can refer to any table, or
combination of tables, in the consolidated database. You can use this feature
to fill a particular remote table with data stored in one or more consolidated
tables, or to store data uploaded from a single remote table into multiple
tables in the consolidated database.

Table names need not
match

The names of tables in the remote databases need not match the names of the
tables in the consolidated database. The MobiLink synchronization server

236

Chapter 12. Writing Synchronization Scripts

determines which scripts are associated with a table by looking up the
remote table name in the ml_table system table.

237

Script parameters
Most synchronization scripts receive parameters from the MobiLink
synchronization server. You can use these parameters in your scripts by
placing question marks in the script.

The following are some common parameters used in scripts.

♦ last_download_timestamp The last download timestamp is the value
obtained from the consolidated database during the last successful
synchronization immediately prior to the download phase. If the current
MobiLink user has never synchronized, or has never synchronized
successfully, this value is set to 1900-01-01.

☞ For more information, see“Timestamp-based synchronization” on
page 48.

♦ ml_username The value of this parameter is the string that uniquely
identifies a MobiLink client. Each client must identify itself by this name
when initiating synchronization with a MobiLink synchronization server.
This parameter is available within most connection-level scripts, all
table-level scripts, and some cursor scripts.

The user name can be used to partition tables among remote databases.

♦ table This parameter identifies a table in the remote database. The
consolidated database may or may not contain a table with the same
name. Only table scripts use this parameter.

To use parameters, place a single question mark in your SQL script for each
parameter. Some parameters are optional. The MobiLink synchronization
server replaces each question mark with the value of a parameter. It
substitutes values in the order the parameters appear in the script definition.

☞ For reference material, including detailed information about each script
and its parameters, see“Synchronization Events” on page 319.

238

Chapter 12. Writing Synchronization Scripts

Script versions
Scripts are organized into groups calledscript versions. By specifying a
particular version, MobiLink clients can select which set of synchronization
scripts will be used to process the upload stream and prepare the download
stream.

☞ For information about how to add a script version to the consolidated
database, see“Adding a script version” on page 240.

Application of script
versions

Script versions allow you to organize your scripts into sets, which are run
under different circumstances. This ability provides flexibility and is
especially useful in the following circumstances.

♦ customization Using a different set of scripts to process information
from different types of remote users. For example, you could write a
different set of scripts for use when managers synchronize their databases
than would be used for other people in the organization. Although you
could achieve the same functionality with one set of scripts, these scripts
would be more complicated.

♦ upgrading applications When you wish to upgrade a database
application, new scripts may be needed because the new version of your
application may handle data differently. New scripts are almost always
necessary when the remote database changes. It is usually impossible to
upgrade all users simultaneously. MobiLink clients can request that a
new set of scripts be used during synchronization. Since both old and
new scripts can coexist on the server, all users can synchronize no matter
which version of your application they are using.

♦ multiple applications A single MobiLink synchronization server may
need to synchronize two entirely different applications. For example,
some employees may use a sales application, whereas others require an
application designed for inventory control. When two applications
require different sets of data, you can create two versions of the
synchronization scripts, one version for each application.

♦ set properties for the script version You can set properties for your
script version that can be referenced from classes in .NET or Java
synchronization logic. For more information, see“ml_add_property” on
page 486.

Assigning version names A script version name is a string. You specify this name when you add a
script to the consolidated database. For example, if you add your scripts with
the ml_add_connection_script and the ml_add_table_script stored
procedures, the script version name is the first parameter. Alternatively, if

239

you add your scripts using Sybase Central, you are prompted for the version
name.

You cannot use the following names for script versions:ml_sis_1or
ml_qa_1. These names are used internally by MobiLink. In addition, it is
recommended that your script versions do not start withml_.

The default script version Whenever a remote site fails to supply a script version, the MobiLink
synchronization server uses the first version defined in the ml_script_version
table. If no script version has been defined, the synchronization fails.

Adding a script version

All scripts are associated with a script version. You must add a version name
to your consolidated database before you can add any connection scripts.

☞ For more information, see“Script versions” on page 239.

❖ To add a script version to a database (Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open the Versions folder.

3. Double-click Add Version and follow the instructions in the wizard.

❖ To remove a script version from a database (Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open the Versions folder.

3. Right-click the version name and select Delete.

4. The Confirm Delete dialog appears. Click Yes.

❖ To add a script version to a database (stored procedures)

1. You can add a script version in the same operation as adding a connection
script or table script.

☞ For more information, see“Stored procedures to add or delete scripts”
on page 480.

240

Chapter 12. Writing Synchronization Scripts

Adding and deleting scripts in your consolidated
database

When you have created scripts, you must add them to MobiLink system
tables in the consolidated database. To do this, you can use stored
procedures or Sybase Central wizards.

☞ For information about the MobiLink system tables, see“MobiLink
System Tables” on page 501.

Note: SQL scripts are stored in the consolidated database. In the case of
Java and .NET scripts, the location of the script is stored in the consolidated
database. However, the method for adding/deleting a script or script location
is similar.

Adding or deleting scripts

You can add synchronization scripts using Sybase Central wizards. The
procedure is different for connection scripts and table scripts. Table scripts
correspond to tables in the remote database, so before you can add a table
script, you must add the name of the remote database table to the
consolidated database.

If you are using Sybase Central, you must add a synchronization version to
the database before you can add individual scripts. For more information,
see“Adding a script version” on page 240.

❖ To add or delete a connection script (Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open Connection Scripts.

3. To add a connection script, double-click Add Connection Script and
follow the instructions in the wizard.

or

To delete a connection script, right-click the script name and select
Delete. The Confirm Delete dialog appears. Click Yes.

❖ To add or delete a remote table in the list of synchronized tables
(Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

241

2. Open Synchronized Tables.

3. To add a remote table to the list of synchronized tables, double-click Add
Synchronized Table. Enter the name of a table at the remote database for
which you are going to write synchronization scripts. The wizard
provides a shortcut if the consolidated database has a table with a
matching name.

or

To delete a remote table from the list of synchronized tables, right-click
the table name and select Delete. The Confirm Delete dialog appears.
Click Yes.

❖ To add or delete a table script in a database (Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open Synchronized Tables.

3. Select the table for which you wish to add a script.

4. To add a table script, double-click Add Table Script and follow the
instructions in the wizard.

or

To delete a table script, right-click the script name and select Delete. The
Confirm Delete dialog appears. Click Yes.

❖ To add or delete all types of scripts (stored procedures)

1. You can add scripts to a consolidated database or delete scripts from a
consolidated database using stored procedures that are installed along
with the MobiLink system tables when you create your consolidated
database.

☞ For a description of the stored procedures that you can use to add or
delete scripts, see“Stored procedures to add or delete scripts” on
page 480.

Direct inserts of scripts

In most cases, it is recommended that you use stored procedures or Sybase
Central to insert scripts into the system tables. However, in some rare cases
you may need to use an INSERT statement to directly insert the scripts. For
example, older versions of some DBMSs may have length limitations that
make it difficult to use stored procedures.

242

Chapter 12. Writing Synchronization Scripts

☞ For a complete description of the MobiLink system tables, see
“MobiLink System Tables” on page 501.

The format of the INSERT statements that are required to directly insert
scripts can be found in the source code for the ml_add_connection_script
and ml_add_table_script stored procedures. The source code for these stored
procedures is located in the MobiLink setup scripts. There is a different
setup script for each supported RDBMS. The setup scripts are:

Consolidated database Setup file

Adaptive Server Anywhere scripts\syncasa.sql

Oracle MobiLink\setup\syncora.sql

IBM DB2 UDB MobiLink\setup\syncdb2long.sql

Microsoft SQL Server MobiLink\setup\syncmss.sql

Adaptive Server Enterprise
version 12.5 and later

MobiLink\setup\syncase125.sql

Adaptive Server Enterprise
prior to version 12.5

MobiLink\setup\syncase.sql

243

Writing scripts to upload rows
To upload information contained in your remote database to your
consolidated database, you define upload scripts. You write separate scripts
to handle rows that are updated, inserted, or deleted at the remote database.
A simple implementation would carry out corresponding actions (update,
insert, delete) at the consolidated database.

☞ The MobiLink synchronization server uploads data in a single
transaction. For a description of the upload process, see“Events during
upload” on page 328.

☞ For techniques for uploading rows in .NET synchronization logic, see
“Uploading rows” on page 295.

Notes ♦ The begin_upload and end_upload scripts for each remote table hold
logic that is independent of the individual rows being updated.

♦ The upload stream consists of single row inserts, updates, and deletes.
These actions are typically performed using upload_insert,
upload_update and upload_delete scripts.

♦ To prepare the upload for Adaptive Server Anywhere clients, the
dbmlsync utility requires access to all transaction logs written since the
last successful synchronization. For more information, see“Transaction
log files” [MobiLink Clients,page 79].

Writing upload_insert scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows inserted into the remote database. The
following INSERT statement shows how you use the upload_insert
statement.

INSERT INTO emp (emp_id,emp_name)
VALUES (?,?)

☞ For more information, see“upload_insert table event” on page 463.

Writing upload_update scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows updated at the remote database. The
following UPDATE statement illustrates use of the upload_update statement.

UPDATE emp
SET emp_name=?
WHERE emp_id=?

244

Chapter 12. Writing Synchronization Scripts

For more information, see“upload_update table event” on page 475.

Writing upload_delete scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows deleted from the remote database. The
following statement shows how to use the upload_delete statement.

DELETE FROM emp
WHERE emp_id=?

For more information, see“upload_delete table event” on page 459.

Writing upload_fetch scripts

The upload_fetch script is a SELECT statement that defines a cursor in the
consolidated database table. This cursor is used to compare the old values of
updated rows, as received from the remote database, against the value in the
consolidated database. In this way, the upload_fetch script identifies
conflicts when updates are being processed.

Given a synchronized table defined as:

CREATE TABLE uf_example (
pk1 integer NOT NULL,
pk2 integer NOT NULL,
val varchar(200),
PRIMARY KEY(pk1, pk2))

Then one possible upload_fetch script for this table is:

SELECT pk1, pk2, val
FROM uf_example
WHERE pk1 = ? and pk2 = ?

☞ For more information, see“upload_fetch table event” on page 461.

The MobiLink synchronization server requires the WHERE clause of the
query in the upload_fetch script to identify exactly one row in the
consolidated database to be checked for conflicts.

245

Writing scripts to download rows
There are two scripts that can be used for processing each table during the
download transaction. These are the download_cursor script, which carries
out inserts and updates, and the download_delete_cursor script, which
carries out deletes.

These scripts are either SELECT statements or calls to procedures that
return result sets. The MobiLink synchronization server downloads the
result set of the script to the remote database. The MobiLink client
automatically inserts or updates rows based on the download_cursor script
result set, and deletes rows based on the download_delete_cursor event.

☞ For more information about using stored procedures, see“Downloading
a result set from a stored procedure call” on page 78.

The MobiLink synchronization server downloads data in a single
transaction. For a description of the download process, see“Events during
download” on page 332.

Notes ♦ Like the upload stream, the download stream starts and ends with
connection events. Other events are table-level events.

♦ If you change the SendDownloadAck setting to ON, if no confirmation of
the download is received from the client, the entire download transaction
is rolled back in the consolidated database. (By default,
SendDownloadAck is set to OFF.)

☞ For more information, see“SendDownloadACK (sa) extended
option” [MobiLink Clients,page 131]or “Send Download
Acknowledgement synchronization parameter”[MobiLink Clients,
page 331].

♦ The begin_download and end_download scripts for each remote table
hold logic that is independent of the individual rows being updated.

♦ The download stream does not distinguish between inserts and updates.
The script associated with the download_cursor event is a SELECT
statement that defines the rows to be downloaded. The client detects
whether the row exists or not and carries out the appropriate insert or
update operation.

♦ At the end of the download processing, the client automatically deletes
rows if necessary to avoid referential integrity violations.

☞ For more information, see“Referential integrity and
synchronization” on page 22.

246

Chapter 12. Writing Synchronization Scripts

Writing download_cursor scripts

You write download_cursor scripts to download information from the
consolidated database to your remote database. You must write one of these
scripts for each table in the remote database for which you want to download
changes. You can use other scripts to customize the download process, but
no others are necessary.

♦ Each download_cursor script must contain a SELECT statement or a call
to a procedure that contains a SELECT statement. The MobiLink
synchronization server uses this statement to define a cursor in the
consolidated database.

♦ The script must select all columns that correspond to the columns in the
corresponding table in the remote database. The columns in the
consolidated database can have different names than the corresponding
columns in the remote database, but they must be of compatible types.

♦ The columns must be selected in the order that the corresponding
columns are defined in the remote database. This order is identical to the
order of the columns in the reference database.

Example The following script could serve as a download_cursor script for a remote
table that holds employee information. The MobiLink synchronization
server would use this SQL statement to define the download cursor. This
script downloads information about all the employees.

SELECT emp_id, emp_fname, emp_lname
FROM employee

The MobiLink synchronization server passes specific parameters to some
scripts. To use these parameters, you include a question mark in your SQL
statement. The MobiLink synchronization server substitutes the value of the
parameter before executing the statement against the consolidated database.
The following script shows how you can use these parameters:

call ml_add_table_script(’Lab’, ’ULOrder’, ’download_cursor’,
’SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc,

o.quant, o.notes, o.status
FROM ULOrder o
WHERE o.last_modified >= ?
AND o.emp_name = ?’)

In this example, the MobiLink synchronization server replaces the question
mark with the value of the parameter to the download_cursor script.

Notes ♦ Row values can be selected from a single table or from a join of multiple
tables.

247

♦ The script itself need not include the name of the remote table. The
remote table need not have the same name as the table in the consolidated
database. The name of the remote table is identified by an entry in the
ml_tabletable. In Sybase Central, the remote tables are listed together
with their scripts.

♦ The rows in the remote table must contain the values ofemp_id,
emp_fname, andemp_lname. The remote columns must be in that order,
although they can have different names. The columns in the remote
database are in the same order as those in the reference database.

UltraLite tip
The example scripts list the columns in the order that they are defined
in the reference database. Inspect the example_download_cursor and
example_upload_cursor scripts to see the column order.

♦ All cursor scripts must select the columns in the same order as the
columns are defined in the remote database. Where column names or
table structure is different in the consolidated database, columns should
be selected in the correct order for the remote database, or equivalently,
the reference database. Columns are assigned to columns in the remote
database based on their order in the SELECT statement.

♦ When you build an UltraLite application, the UltraLite generator creates
a sample download script for each table in your UltraLite application. It
inserts these sample scripts into your reference database. The example
scripts assume that the consolidated database contains the same tables as
your application. You must modify the sample scripts if your
consolidated database differs in design, but these scripts provide a
starting point.

See also ♦ “download_cursor table event” on page 371
♦ “Partitioning rows among remote databases” on page 52
♦ “Writing download_delete_cursor scripts” on page 248

Writing download_delete_cursor scripts

You write download_delete_cursor scripts to delete rows from your remote
database. You must write one of these scripts for each table in the remote
database from which you want to delete rows during synchronization.

You cannot just delete rows from the consolidated database and have them
disappear from remote databases. You need to keep track of the primary
keys for deleted rows, so that you can select those primary keys with your
download_delete_cursor. There are two common techniques for achieving
this:

248

Chapter 12. Writing Synchronization Scripts

♦ Logical deletes Do not physically delete the row in the consolidated
database. Instead, have a status column that keeps track of whether rows
are valid. This simplifies the download_delete_cursor. However, the
download_cursor and other applications may need to be modified to
recognize and use the status column. If you have a last modified column
that holds the time of deletion, and if you also keep track of the last
download time for each remote, then you can physically delete the row
once all remote download times are newer than the time of deletion.

♦ Shadow table For each table for which you want to track deletes,
create a shadow table with two columns, one holding the primary key for
the table, and the other holding a timestamp. Create a trigger that inserts
the primary key and timestamp into the shadow table whenever a row is
deleted. Your download_delete_cursor can then select from this shadow
table. As with logical deletes, you can delete the row from the shadow
table once all remote databases have downloaded it.

The MobiLink synchronization server deletes rows in the remote database
by selecting primary key values from the consolidated database and passing
those values to the remote database. If the values match those of a primary
key in the remote database, then that row is deleted.

♦ Each download_delete_cursor script must contain a SELECT statement
or a call to a stored procedure that returns a result set. The MobiLink
synchronization server uses this statement to define a cursor in the
consolidated database.

♦ This statement must select all the columns that correspond to the primary
key columns in the table in the remote database. The columns in the
consolidated database can have different names than the corresponding
columns in the remote database, but they must be of compatible types.

♦ The values must be selected in the same order as the corresponding
columns are defined in the remote database. That order is the order of the
columns in the CREATE TABLE statement used to make the table, not
the order they appear in the statement that defines the primary key.

While each download_delete_cursor script must select all the column values
present in the primary key of the corresponding remote table, it may also
select all the other columns. This feature is present only for compatibility
with older clients. Selecting the additional columns is less efficient, as the
database engine must retrieve more data. Unless the client is of an old
design, the MobiLink synchronization server discards the extra values
immediately. The extra values are downloaded only to older clients.

Deleting all the rows in a
table

When MobiLink detects a download_delete_cursor with a row that contains
all NULLs, it deletes all the data in the remote table. The number of NULLs

249

in the download_delete_cursor can be the number of primary key columns or
the total number of columns in the table.

For example, the following download_delete_cursor SQL script deletes
every row in a table in which there are two primary key columns. This
example works for Adaptive Server Anywhere, Adaptive Server Enterprise,
and Microsoft SQL Server databases.

SELECT NULL, NULL

In IBM DB2 and Oracle consolidated databases, you must specify a dummy
table to select NULL. For IBM DB2 7.1, you can use the following syntax:

SELECT NULL FROM SYSIBM.SYSDUMMY1

For Oracle consolidated databases, you can use the following syntax:

SELECT NULL FROM DUAL

Examples The following example is a download_delete_cursor script for a remote table
that holds employee information. The MobiLink synchronization server uses
this SQL statement to define the delete cursor. This script deletes
information about all employees who are both in the consolidated and
remote databases at the time the script is executed.

SELECT emp_id
FROM employee

The download_delete_cursor accepts the parameters last_download and
ml_username. The following script shows how you can use each parameter
to narrow your selection.

SELECT order_id
FROM ULOrder
WHERE last_modified >= ?

AND status = ’Approved’
AND user_name = ?

Note that these examples could prove inefficient in an organization with
many employees. You can make the delete process more efficient by
selecting only rows that could be present in the remote database. For
example, you could limit the number of rows by selecting only those people
who have recently been assigned a new manager. Another strategy is to
allow the client application to delete the rows itself. This method is possible
only when a rule identifies the unneeded rows. For example, rows might
contain a timestamp that indicates an expiry date. Before you delete the
rows, use the STOP SYNCHRONIZATION DELETE statement to stop
these deletes being uploaded during the next synchronization. Be sure to
execute START SYNCHRONIZATION DELETE immediately afterwards if

250

Chapter 12. Writing Synchronization Scripts

you want other deletes to be synchronized in the normal fashion.

See also ☞ You can use the referential integrity checking built into all MobiLink
clients to delete rows in a particularly efficient manner. For details, see
“Referential integrity and synchronization” on page 22.

☞ For more information about using download_delete_cursor scripts, see

♦ “download_delete_cursor table event” on page 375
♦ “Temporarily stopping synchronization of deletes”[MobiLink Clients,

page 87]
♦ “STOP SYNCHRONIZATION DELETE statement [MobiLink]”[ASA

SQL Reference,page 637]
♦ “Handling deletes” on page 73
♦ “download_cursor table event” on page 371
♦ “Partitioning rows among remote databases” on page 52
♦ “Snapshot synchronization” on page 50

251

Writing scripts to handle errors
An error in a synchronization script occurs when an operation in the script
fails while the MobiLink synchronization server is executing it. The DBMS
returns a SQLCODE to the MobiLink synchronization server indicating the
nature of the error. Each consolidated database DBMS has its own set of
SQLCODE values.

When an error occurs, the MobiLink synchronization server invokes the
handle_error event. You should provide a connection script associated with
this event to handle errors. The MobiLink synchronization server passes
several parameters to this script to provide information about the nature and
context of the error, and requires an output value to tell it how to respond to
the error.

Error handling actions Some actions you may wish to take in an error-handling script are:

♦ Log the error in a separate table.

♦ Instruct the MobiLink synchronization server whether to ignore the error
and continue, or rollback the synchronization, or rollback the
synchronization and shut down the MobiLink synchronization server.

♦ Send an e-mail message.

☞ For more information, see“handle_error connection event” on page 415.

Reporting errors

Since errors can disrupt the natural progression of the synchronization
process, it can be difficult to create a log of errors and their resolutions. The
report_error script provides a means of accomplishing this task. The
MobiLink synchronization server executes this script whenever an error
occurs. If the handle_error script is defined, it is executed immediately prior
to the reporting script.

The parameters to the report_error script are identical to those of the
handle_error script, except that the report_error script can not modify the
action code. Since the value of the action code is that returned by the
handle_error script, this script can be used to debug error-handling problems.

This script typically consists of an insert statement, which records the
values, perhaps with other data, such as the time or date, in a table for later
reference. To ensure that this data is not lost, the MobiLink synchronization
server always runs this script in a separate transaction and automatically
commits the changes as soon as this script completes.

☞ For more information, see“report_error connection event” on page 438.

252

Chapter 12. Writing Synchronization Scripts

Example The following report_error script, which consists of a single insert statement,
adds the script parameters into a table, along with the current date and time.
The script does not commit this change because the MobiLink
synchronization server always does so automatically.

INSERT INTO errors
VALUES(CURRENT DATE, ?, ? ,?, ?, ?);

Handling multiple errors on a single SQL statement

ODBC allows multiple errors per SQL statement, and some DBMSs make
use of this feature. Microsoft SQL Server, for example, can have two errors
for a single statement. The first is the actual error, and the second is usually
an informational message telling you why the current statement has been
terminated.

When a single SQL statement causes multiple errors, the handle_error script
is invoked once per error. The MobiLink synchronization server uses the
most severe action code (that is, the numerically greatest) to determine the
action to take. The same applies to the handle_error script.

If the handle_error script itself causes a SQL error, then the default action
code (3000) is assumed.

253

Testing script syntax
As you develop your synchronization scripts, you can use Sybase Central to
test for syntax errors in your scripts.

Testing the scripts is done without any remote site in place. No data is added
to the database or downloaded from the database during testing. The validity
of the synchronized data itself is not tested.

❖ To test your synchronization scripts

1. Start Sybase Central and connect to a database from MobiLink
Synchronization.

2. In the left pane, click the database name.

3. Right-click the Synchronized Tables folder or the Connection scripts
folder and select Test Scripts from the popup menu.

The Test Scripts window appears:

4. Click Test. If prompted, enter parameters. The results of the test are
displayed in the window.

The test results include a listing of which scripts are executed, in which
order. They also include a listing of any syntax errors or data type errors
found during the test.

254

CHAPTER 13

Writing Synchronization Scripts in Java

About this chapter You control the actions of the MobiLink synchronization server by writing
synchronization scripts. You can implement these scripts in SQL, .NET or
Java. This chapter describes how to implement synchronization scripts in
Java.

☞ For a tutorial using Java synchronization scripts, see“Tutorial: Java
Synchronization Logic With Adaptive Server Anywhere ”[MobiLink
Tutorials,page 51].

☞ For a description and comparison of SQL, Java, and .NET, see“Options
for writing synchronization logic” on page 25.

☞ For information about writing scripts, see“Writing Synchronization
Scripts” on page 227.

☞ For information about writing scripts in .NET, see“Writing
Synchronization Scripts in .NET” on page 281.

Contents Topic: page

Introduction 256

Setting up Java synchronization logic 257

Writing Java synchronization logic 259

Java synchronization example 267

MobiLink Java API Reference 273

255

Introduction
MobiLink synchronization scripts can be written in Java. Java
synchronization logic can function just as SQL logic functions: the
MobiLink synchronization server can make calls to Java methods on the
occurrence of MobiLink events just as it accesses SQL scripts on the
occurrence of MobiLink events. A SQL string may be returned as a Java
method to MobiLink.

This section tells you how to set up, develop, and run Java synchronization
logic. It includes a sample application and the MobiLink Java API.

☞ For a tutorial using Java synchronization scripts, see“Tutorial: Java
Synchronization Logic With Adaptive Server Anywhere ”[MobiLink
Tutorials,page 51].

256

Chapter 13. Writing Synchronization Scripts in Java

Setting up Java synchronization logic
When you install SQL Anywhere Studio, the installer automatically sets the
location of the MobiLink Java API classes. When you start the MobiLink
synchronization server, it automatically includes these classes in your
classpath. The MobiLink Java API classes are installed tojava\mlscript.jar
in your SQL Anywhere Studio installation directory. MobiLink uses the
ASANYSH9 environment variable to determine the shared component path.

☞ For more information, see“ASANYSH9 environment variable”[ASA
Database Administration Guide,page 277].

❖ To implement synchronization scripts in Java

1. Create your own class or classes. Write a method for each required
synchronization script. These methods must be public. The class must be
public in the package.

☞ For more information about methods, see“Methods” on page 261.

Each class with non-static methods should have a public constructor. The
MobiLink synchronization server automatically instantiates each class
the first time a method in that class is called.

☞ For more information about constructors, see“Constructors” on
page 260.

2. When compiling the class, you must include the JAR file
java\mlscript.jar.

For example,

javac MyClass.java -classpath %ASANY9% \java \mlscript.jar

3. In your consolidated database, specify the name of the package, class,
and method to call for each synchronization script. One class is permitted
per script version.

The easiest way to add this information to the MobiLink system tables is
to use the ml_add_java_connection_script stored procedure or the
ml_add_java_table_script stored procedure.

For example, the following SQL statement, when run in an Adaptive
Server Anywhere database, specifies that for the script version ver1,
myPackage.myClass.myMethod should be run whenever the
authenticate_user connection-level event occurs. The method that is
specified must be the fully qualified name of a public Java method, and
the name is case sensitive.

call ml_add_java_connection_script(’ver1’,
’authenicate_user’, ’myPackage.myClass.myMethod’)

257

☞ For more information about adding scripts, see:

♦ “Stored procedures to add or delete scripts” on page 480
♦ “ml_add_java_connection_script” on page 483
♦ “ml_add_java_table_script” on page 484

4. Instruct the MobiLink server to load classes. A vital part of setting up
Java synchronization logic is to tell the virtual machine where to look for
Java classes. There are two ways to do this:

♦ Use the dbmlsrv9 -sl java -cp option to specify a set of directories or
jar files in which to search for classes. For example, at the command
line, enter:

dbmlsrv9 -c "dsn=consolidated1" -sl java (-cp
%classpath%;c: \local \Java \myclasses.jar)

The MobiLink synchronization server automatically appends the
location of the MobiLink Java API classes (java\mlscript.jar) to the set
of directories or jar files. The -sl java option also forces the Java VM to
load on server startup.

☞ For more information about the available Java options, see“-sl
java option” on page 209.

♦ Explicitly set the classpath. To set the classpath for user-defined
classes, use a statement such as the following:

SET classpath=%classpath%;c: \local \Java \myclasses.jar

If your system classpath includes your Java synchronization logic
classes, you do not need to make changes to your MobiLink
synchronization server command line.

You can use the -sl java option to force the Java virtual machine to load
at server startup. Otherwise, the Java virtual machine is started when
the first Java method is executed.

☞ For more information about the available Java options, see“-sl
java option” on page 209.

5. On UNIX, if you want to load a specific JRE, you should set the
LD_LIBRARY_PATH (LIBPATH on AIX, SHLIB_PATH on HP-UX) to
include the directory containing the JRE. The directory must be listed
before any of the Adaptive Server Anywhere install directories.

258

Chapter 13. Writing Synchronization Scripts in Java

Writing Java synchronization logic
Writing Java synchronization logic is no different in complexity from writing
any other Java code. What is required from you is knowledge of MobiLink
events, some knowledge of Java, and knowledge of the MobiLink Java API.
The following sections help you write useful synchronization logic.

Java synchronization logic can be used to maintain state information, and
implement logic around the upload and download events. For example, a
begin_synchronization script written in Java could store the MobiLink user
name in a variable. Scripts called later in the synchronization process can
access this variable. Also, you can use Java to access rows in the
consolidated database, before or after they are committed.

Using Java reduces dependence on the consolidated database. Behavior is
affected less by upgrading the consolidated database to a new version or
switching to a different database-management system.

☞ For a complete description of the API, see“MobiLink Java API
Reference” on page 273.

Class instances

The MobiLink synchronization server instantiates your classes at the
connection level. When an event is reached for which you have written a
non-static Java method, the MobiLink synchronization server automatically
constructs the class, if it has not already done so on the present connection.

☞ For more information, see“Constructors” on page 287.

All methods directly associated with a connection-level or table-level event
for one script versionmust belong to the same class.

For each database connection, once a class has been instantiated, the class
persists until that connection is closed. Thus, the same instance may well be
used for multiple consecutive synchronization sessions. Information present
in public or private variables will thus persist across synchronizations that
occur on the same connection unless explicitly cleared.

You can also use static classes or variables. In this case, the values are
available across all connections.

The MobiLink synchronization server automatically deletes your class
instances only when the connection to the consolidated database is closed.

Transactions

The normal rules regarding transactions apply to Java methods. The start

259

and duration of database transactions is critical to the synchronization
process. Transactions must be started and ended only by the MobiLink
synchronization server. Explicitly committing or rolling back transactions
on the synchronization connection within a Java method violates the
integrity of the synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink
synchronization server and, in particular, to SQL statements returned by
methods. If your classes create other database connections, you are free to
manage them as you please.

SQL-Java data types

The following table shows SQL data types and the corresponding Java data
types.

SQL data type Corresponding Java data type

VARCHAR java.lang.String

CHAR java.lang.String

INTEGER Int or Integer

BINARY byte[]

TIMESTAMP java.sql.Timestamp

INOUT INTEGER ianywhere.ml.script.InOutInteger

INOUT VARCHAR ianywhere.ml.script.InOutString

INOUT CHAR ianywhere.ml.script.InOutString

INOUT BYTEARRAY ianywhere.ml.script.InOutByteArray

The MobiLink synchronization server automatically adds this package to
your classpath if it is not already present.

However, when you compile your class you need to add the path of
java\mlscript.jar, from your SQL Anywhere Studio installation directory.

Constructors

The constructor of your class may have one of two possible signatures.

public MyScriptClass (
ianywhere.ml.script.DBConnectionContext sc)

or

260

Chapter 13. Writing Synchronization Scripts in Java

public MyScriptClass ()

The synchronization context passed to you is for the connection through
which the MobiLink synchronization server is synchronizing the current
user.

The getConnection method of the DBConnectionContext class returns the
same database connection that MobiLink is using to synchronize the present
user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink synchronization server
manages the transactions.

The MobiLink synchronization server prefers to use constructors with the
first signature. It only uses the non-argument constructor if a constructor
with the first signature is not present.

☞ For more information, see“DBConnectionContext interface” on
page 273.

Methods

In general, you implement one method for each synchronization event.
These methods must be public. If they are private, the MobiLink
synchronization server cannot use them and will fail to recognize that they
exist.

The names of the methods are not important, as long as the names match the
names specified in the ml_script table in the consolidated database. In the
examples included in the documentation, however, the method names are the
same as those of the MobiLink events because this naming convention
makes the Java code easier to read.

The signature of your method should match the signature of the script for
that event, except that you can truncate the parameter list if you do not need
the values of parameters at the end of the list. Indeed, you should accept
only the parameters you need, because overhead is associated with passing
the parameters.

You cannot, however, overload the methods. Only one method prototype per
class may appear in the ml_script system table.

Return values Methods called for a MobiLink upload or download must return a valid SQL
language statement. The return type of these methods must be
java.lang.String. No other return types are allowed.

The return type of all other scripts must either be java.lang.String or void.
No other types are allowed. If the return type is a string and not null, the
MobiLink synchronization server assumes that the string contains a valid

261

SQL statement and executes this statement in the consolidated database as it
would an ordinary SQL-language synchronization script. If a method
ordinarily returns a string but does not wish to execute a SQL statement
against the database upon its return, it can return null.

Debugging Java classes

MobiLink provides various information and facilities that you may find
helpful when debugging your Java code. This section describes where you
can find this information and exploit these capabilities.

Information in the
MobiLink synchronization
server’s log file

The MobiLink synchronization server writes various related information to
its output log file. The synchronization server log file contains the following
information:

♦ The Java Runtime Environment. You can use the -jrepath option to
request a particular JRE when you start the MobiLink synchronization
server. The default is the path installed with Adaptive Server Anywhere 9.

♦ The path of the standard Java classes loaded. If you did not specify these
explicitly, the MobiLink synchronization server automatically adds them
to your classpath before invoking the Java virtual machine.

♦ The fully specified names of the specific methods invoked. You can use
this information to verify that the MobiLink synchronization server is
invoking the correct methods.

♦ Any output written in a Java method to java.lang.System.out or
java.lang.System.err is redirected to the MobiLink synchronization server
log file.

♦ The dbmlsrv9 command line option -verbose can be used.

☞ For more information, see“-sl java option” on page 209.

Using a Java debugger You can debug your Java classes using a standard Java debugger. Specify the
necessary parameters using the -sl java option on the dbmlsrv9 command
line.

☞ For more information, see“-sl java option” on page 209.

Specifying a debugger causes the Java virtual machine to pause and wait for
a connection from a Java debugger.

Printing information from
Java

Alternatively, you may choose to add statements to your Java methods that
print information to the MobiLink output log, using java.lang.System.err or
java.lang.System.out. Doing so can help you track the progress and behavior
of your classes.

262

Chapter 13. Writing Synchronization Scripts in Java

Performance tip
Printing information in this manner is a useful monitoring tool, but is not
recommended in a production scenario.

The same technique can be exploited to log arbitrary synchronization
information or collect statistical information on how your scripts are used.

Writing your own test
driver

You may wish to write your own driver to exercise your Java classes. This
approach can be helpful because it isolates the actions of your Java methods
from the rest of the MobiLink system.

Handling MobiLink server errors in Java

When scanning the log is not sufficient, you can monitor your applications
programmatically. For example, you can send messages of a certain type in
an email.

You can write methods that are passed a class representing every error or
warning message that is printed to the log. This may help you monitor and
audit a MobiLink synchronization server.

The following code installs a LogListener for all warning messages, and
writes the information to a file.

class TestLogListener implements LogListener {
FileOutputStream _out_file;

public TestLogListener(FileOutputStream out_file)
{

_out_file = out_file;
}

public void messageLogged(ServerContext sc,
LogMessage msg)

{
String type;
String user;
try {

if(msg.getType() == LogMessage.ERROR) {
type = "ERROR";

} else if(msg.getType() == LogMessage.WARNING)
{

type = "WARNING";
} else {

type = "UNKNOWN!!!";
}

263

user = msg.getUser();
if(user == null) {

user = "NULL";
}
_out_file.write(

("Caught msg type=" + type +
" user=" + user +
" text=" +msg.getText() +
" \n").getBytes());

_out_file.flush();
} catch(Exception e) {

// print some error output to the MobiLink log
e.printStackTrace();

}
}

}

// This line of code will register TestLogListener to receive
// warning messages. Call this code from anywhere that has
// access to the ServerContext such as a class constructor or
// synchronization script. ServerContext serv_context;
serv_context.addWarningListener(

new MyLogListener(ll_out_file));

See also addErrorListener, removeErrorListener, addWarningListener,
removeWarningListener in“ServerContext interface” on page 275

“LogListener interface” on page 275

“LogMessage class” on page 275

User-defined start classes

You can define start classes that are loaded automatically when the server is
started. The purpose of this feature is to allow you to write Java code that
executes at the time the MobiLink server starts the JVM—before the first
synchronization. This means you can create connections or cache data
before a user synchronization request.

You do this with the DMLStartClasses option of the dbmlsrv9 -sl java
option. For example, the following is part of a dbmlsrv9 command line. It
causes mycl1 and mycl2 to be loaded as start classes.

-sl java(-DMLStartClasses=com.test.mycl1,com.test.mycl2)

Classes are loaded in the order in which they are listed. If the same class is
listed more than once, more than one instance is created.

All start classes must be public and must have a public constructor that
either accepts no arguments or accepts one argument of type
ianywhere.ml.script.ServerContext.

264

Chapter 13. Writing Synchronization Scripts in Java

The names of loaded start classes are output to the MobiLink log with the
message “Loaded JAVA start class:classname”.

☞ For more information about Java virtual machine options, see“-sl java
option” on page 209.

☞ To see the start classes that are constructed at server start time, see
“getStartClassInstances” on page 276.

Example Following is a template start class. It starts a daemon thread that processes
events and creates a database connection. (Not all start classes will need to
create a thread but if a thread is spawned it should be a daemon thread.)

import ianywhere.ml.script. * ;
import java.sql. * ;

public class StartTemplate extends
Thread implements ShutdownListener {

//===
ServerContext _sc;
Connection _conn;
boolean _exit_loop;

public StartTemplate(ServerContext sc)
//===

throws SQLException
{

// perform setup first so that an exception will
// cause MobiLink startup to fail

_sc = sc;
// create a connection for use later
_conn = _sc.makeConnection();
_exit_loop = false;
setDaemon(true);
start();

}

265

public void run()
//===============
{

_sc.addShutdownListener(this);
// we can’t throw any exceptions through run()
try {

handlerLoop();
_conn.close();
_conn = null;

} catch(Exception e) {
// print some error output to the MobiLink log
e.printStackTrace();
// we will die so we don’t need to be notified
// of shutdown
_sc.removeShutdownListener(this);
// ask server to shutdown so that this fatal
// error will be fixed
_sc.shutdown();

}
// shortly after return this thread will no longer
// exist
return;

}

public void shutdownPerformed(ServerContext sc)
//===
// stop our event handler loop
{

try {
// wait max 10 seconds for thread to die

join(10 * 1000);
} catch(Exception e) {

// print some error output to the MobiLink log
e.printStackTrace();

}
}

private void handlerLoop()
//================throws InterruptedException
{

while(!_exit_loop) {
// Handle events in this loop. Sleep not
// needed, we should block on event queue.
sleep(1 * 1000);

}
}

}

266

Chapter 13. Writing Synchronization Scripts in Java

Java synchronization example
Java synchronization logic works with MobiLink and common Java classes
to provide you with flexibility in deploying applications using MobiLink
synchronization server. The following section introduces you to this
extended range of functionality using a simple example.

Note:
This section provides a simple example to illustrate basic Java synchro-
nization logic. Typically, reasons for using a custom user authentication
mechanism include integration with existing DBMS user authentication
schemes, or supplying custom features, such as minimum password length
or password expiry. MobiLink also has a built-in mechanism.

☞ For more information about MobiLink authentication, see“Choosing
a user authentication mechanism”[MobiLink Clients,page 13].

Introduction

This section describes a working example of Java synchronization logic.
Before you try to use this class or write your own class, use the following
checklist to ensure you have all the pieces in place before compiling the
class.

♦ Plan your desired functionality using, for example, pseudocode.

♦ Create a map of database tables and columns.

♦ Set up the consolidated database by ensuring you have specified in the
MobiLink system tables the language type and location of the Java
synchronization methods.

☞ For more information see“Setting up Java synchronization logic” on
page 257.

♦ Create a list of associated Java classes that are called during the running
of your Java class.

♦ Have a location for your Java classes that is in the classpath for MobiLink
synchronization server.

Plan The Java synchronization logic for this example points to the associated Java
files and classes that contain functionality needed for the example to work. It
will show you how to create a class CustEmpScripts. It shows you how to
set up a synchronization context for the connection. Finally, the example
provides Java methods to

♦ Authenticate a MobiLink user

267

♦ Perform download and upload operations using cursors for each database
table.

Schema The tables to be synchronized are emp and cust. The emp table has three
columns called emp_id, emp_name and manager. The cust table has three
columns called cust_id, cust_name and emp_id. All columns in each table
are synchronized. The mapping from consolidated to remote database is
such that the table names and column names are identical in both databases.
One additional table, an audit table, is added to the consolidated database.

Java class files The files used in the example are included in the
Samples\MobiLink\JavaAuthenticationdirectory.

Create your Java synchronization script

Setup The following sets up the Java synchronization logic. The import statements
tell the Java virtual machine the location of needed files. The public class
statement declares the class.

// use a package when you create your own script
import ianywhere.ml.script.InOutInteger;
import ianywhere.ml.script.DBConnectionContext;
import ianywhere.ml.script.ServerContext;
import java.sql. * ;
public class CustEmpScripts {
/ * Context for this synchronization connection.

* /
DBConnectionContext _conn_context;

/ * Same connection MobiLink uses for sync we can’t commit or

* close this.

* /
Connection _sync_connection;
Connection _audit_connection;

/ * Get a user id given the user name. On audit connection.

* /
PreparedStatement _get_user_id_pstmt;

/ * Add record of user logins added. On audit connection.

* /
PreparedStatement _insert_login_pstmt;

/ * Prepared statement to add a record to the audit table.

* On audit connection.

* /
PreparedStatement _insert_audit_pstmt;

TheCustEmpScripts constructor sets up all the prepared statements for
theauthenticateUser method. It sets up member data.

268

Chapter 13. Writing Synchronization Scripts in Java

public CustEmpScripts(DBConnectionContext cc)
throws SQLException

{
try

{
_conn_context = cc;
_sync_connection = _conn_context.getConnection();

ServerContext serv_context =
_conn_context.getServerContext();
_audit_connection = serv_context.makeConnection();

// get the prep statements ready
_get_user_id_pstmt =
_audit_connection.prepareStatement(

"select user_id from ml_user where name = ?"
);

_insert_login_pstmt =

_audit_connection.prepareStatement(
"insert into login_added(ml_user, add_time)
" + " values(?, { fn CONVERT({ fn NOW() },
SQL_VARCHAR) })"
);

_insert_audit_pstmt =
_audit_connection.prepareStatement(
"insert into login_audit(ml_user_id,
audit_time, audit_action) " +
" values(?, { fn CONVERT({ fn NOW() },
SQL_VARCHAR) }, ?) "
);

} catch (SQLException e) {
freeJDBCResources();
throw e;

} catch (Error e) {
freeJDBCResources();
throw e;

}
}

The finalize method cleans up JDBC resources if end_connection is not
called.

protected void finalize()
throws SQLException, Throwable

{
super.finalize();
freeJDBCResources();

}

The freeJDBCResources method frees allocated memory and we close the
audit connection. It is a housekeeping procedure.

269

private void freeJDBCResources()
throws SQLException

{
if(_get_user_id_pstmt != null) {

_get_user_id_pstmt.close();
}
if(_insert_login_pstmt != null) {

_insert_login_pstmt.close();
}
if(_insert_audit_pstmt != null) {

_insert_audit_pstmt.close();
}
if(_audit_connection != null) {

_audit_connection.close();
}
_conn_context = null;
_sync_connection = null;
_audit_connection = null;
_get_user_id_pstmt = null;
_insert_login_pstmt = null;
_insert_audit_pstmt = null;

}

TheendConnection method cleans up resources once the resources are not
needed. This is also a housekeeping procedure.

public void endConnection()
throws SQLException

{
freeJDBCResources();

}

The authenticateUser method below approves all user logins and logs user
information to database tables. If the user is not in the ml_user table they are
logged to login_added. If the user id is found in ml_user then they are
logged to login_audit. In a real system we would not ignore the
user_password but in order to keep this sample simple we approve all users.
The procedure throws SQLException if any of the database operations we
perform fail with an exception

270

Chapter 13. Writing Synchronization Scripts in Java

public void authenticateUser(InOutInteger auth_status,
String user_name)

throws SQLException
{

boolean new_user;
int user_id;

// get ml_user id
_get_user_id_pstmt.setString(1, user_name);
ResultSet user_id_rs =
_get_user_id_pstmt.executeQuery();
new_user = !user_id_rs.next();
if(!new_user) {

user_id = user_id_rs.getInt(1);
} else {

user_id = 0;
}

user_id_rs.close();
user_id_rs = null;
// in this tutorial always allow the login
auth_status.setValue(1000);
if(new_user) {

_insert_login_pstmt.setString(1, user_name);
_insert_login_pstmt.executeUpdate();
java.lang.System.out.println("user: " +

user_name + " added. ");
} else {

_insert_audit_pstmt.setInt(1, user_id);
_insert_audit_pstmt.setString(2, "LOGIN ALLOWED");
_insert_audit_pstmt.executeUpdate();

}
_audit_connection.commit();
return;

}

The following methods use SQL code to act as cursors on the database
tables. Since these are cursor scripts, they must return a SQL string.

public static String empUploadInsertStmt()
{

return("INSERT INTO emp(
emp_id, emp_name) VALUES(?, ?) ");

}

public static String empUploadDeleteStmt()
{

return("DELETE FROM emp WHERE emp_id = ?");
}

public static String empUploadUpdateStmt()
{

return("UPDATE emp SET emp_name = ?
WHERE emp_id = ? ");

}

271

public static String empDownloadCursor()
{

return("SELECT emp_id, emp_name FROM emp");
}

public static String custUploadInsertStmt()
{

return("INSERT INTO cust(
cust_id, emp_id, cust_name)
VALUES (?, ?, ?) ");

}

public static String custUploadDeleteStmt()
{

return("DELETE FROM cust WHERE cust_id = ? ");
}

public static String custUploadUpdateStmt()
{

return("UPDATE cust
SET emp_id = ?, cust_name = ?
WHERE cust_id = ? ");

}

public static String custDownloadCursor()
{

return("SELECT cust_id, emp_id, cust_name
FROM cust");

}
}

This code would be compiled using the command

javac -cp %asany9% \java \mlscript.jar CustEmpScripts.jar

and we could run the MobiLink synchronization server with the location of
CustEmpScripts.class in the classpath. Following is a partial command line:

dbmlsrv9 ... -sl java (-cp <class_location>)

272

Chapter 13. Writing Synchronization Scripts in Java

MobiLink Java API Reference
This section explains the MobiLink Java interfaces and classes, and their
associated methods and constructors.

DBConnectionContext interface

Interface for obtaining and accessing information about the current database
connection. This is passed to the constructor of classes containing scripts. If
context is required for a background thread or beyond the lifetime of a
connection, use a ServerContext.

Caution
A DBConnectionContext instance should not be used outside the thread
that calls into your Java code.

getConnection method public java.sql.Connection getConnection()
throws java.sql.SQLException

Returns the existing connection java.sql.Connection as a JDBC connection.
The connection is the same connection that MobiLink uses to execute SQL
scripts.

This connection must not be committed, closed or altered in any way that
would affect the MobiLink server use of this connection. The connection
returned is only valid for the lifetime of the underlying MobiLink
connection. Do not use the connection after the end_connection event has
been called for that connection.

If an error occurs binding the existing connection as a JDBC connection then
it throws java.sql.SQLException

If a server connection with full access is required, use
ServerContext.makeConnection().

getProperties method public java.util.Properties getProperties()

Returns the properties for this connection, based on this connection’s script
version. Properties are stored in the ml_property table.

For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

getServerContext
method

public ServerContext getServerContext()

Returns the ServerContext for this MobiLink server.

getVersion method public java.util.Properties getVersion()

273

Returns the name of the script version.

For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

InOutByteArray interface

Passed into methods to enable the functionality of an in/out parameter
passed to a SQL script.

getValue method public byte[] getValue()

Returns the value of this byte array parameter.

setValue method public void setValue(byte[] new_value)

Sets the value of this byte array parameter. There is one parameter,
new_value, which is the value this byte array should take.

InOutInteger interface

Passed into methods to enable the functionality of an in/out parameter
passed to a SQL script.

getValue method public int getValue()

Returns the value of this integer parameter.

setValue method public void setValue(int new_value)

Sets the value of this integer parameter. There is one parameter,new_value,
which is the value this integer should take.

InOutString interface

Passed into methods to enable the functionality of an in/out parameter
passed to a SQL script.

getValue method public java.lang.String getValue()

Returns the value of this string parameter.

setValue method public void setValue(int new_value)

Sets the value of this integer parameter. There is one parameter,new_value,
which is the value this string should take.

274

Chapter 13. Writing Synchronization Scripts in Java

LogListener interface

The listener interface for catching messages that are printed to the log.

messageLogged method public void messageLogged(
ServerContext sc
LogMessage message)

Invoked when a message is printed to the log. There are two parameters:sc,
which is the context for the server that is printing the message; andmessage,
which is the LogMessage that has been sent to the MobiLink log.

LogMessage class

Holds the data associated with a log message.

Extends java.lang.Object

Constants int ERROR

int WARNING

getType method public int getType()

Accessor for this message type.

Returns the type of this message, which can be either ERROR or
WARNING.

getUser method public java.lang.String getUser()

Accessor for this message user. If the message has no user, then the user is
NULL.

Returns the user associated with this message.

getText method public java.lang.String getText()

Accessor for the message text.

Returns the main text of this message.

ServerContext interface

An instantiation of all the context that is present for the duration of the
MobiLink server. This context can be held as static data and used in a
background thread. It is valid for the duration of the Java virtual machine
invoked by MobiLink.

275

To access a ServerContext instance, use the
DBConnectionContext.getServerContext method.

addShutdownListener public void addShutdownListener(ShutdownListener sl)

Adds the specified ShutdownListener that is to receive notification before
the server context is destroyed. On shutdown, the method
ShutdownListener.shutdownPerformed (ianywhere.ml.script.ServerContext)
is called. There is one parameter,sl, which specifies that the
ShutdownListener is to be notified on shutdown.

removeShutdownListener public void removeShutdownListener(ShutdownListener sl)

Removes the specified ShutdownListener from the list of listeners that are to
receive notification before the server context is destroyed. There is one
parameter,sl, which specifies the listener that will no longer be notified on
shutdown.

shutdown public void shutdown()

Forces the server to shut down.

getStartClassInstances public java.lang.Object[] getStartClassInstances()

Gets an array of the start classes that were constructed at server start time.
The array length is zero if there are no start classes.

☞ For more information about user-defined start classes, see“User-defined
start classes” on page 264.

Following is an example of getStartClassInstances():

Object objs[] = sc.getStartClassInstances();
int I;
for(I=0; i<objs.length; I+=1) {

if(objs[i] instanceof MyClass) {
//use class

}
}

getProperties public java.util.Properties getProperties(
java.lang.String component_name
java.lang.String prop_set_name)

Returns the set of properties associated with the script version. These are
stored in the MobiLink system table ml_property.

☞ For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

276

Chapter 13. Writing Synchronization Scripts in Java

getPropertiesByVersion public java.util.Properties getPropertiesByVersion(java.lang.String
script_version)

Returns the set of properties associated with the script version. These are
stored in the MobiLink system table ml_property. The script version is
stored in the prop_set_name column when the component_name is
ScriptVersion.

☞ For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

getPropertySetNames public java.util.Properties getPropertySetNames(
java.lang.String component_name)

Returns the list of property set names for a given component. These are
stored in the MobiLink system table ml_property.

☞ For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

makeConnection method public java.sql.Connection makeConnection()
throws java.sql.SQLException

Creates a new server connection. If an error occurs when opening a new
connection, the method throws java.sql.SQLException.

addErrorListener method public void addErrorListener(LogListener ll)

Adds the specified LogListener to receive a notification when an error is
printed.

ll is the LogListener that is to be notified.

The following method will be called:
LogListener.messageLogged(ianywhere.ml.script.ServerContext,
ianywhere.ml.script.LogMessage).

removeError Listener
method

public void removeErrorListener(LogListener ll)

Removes the specified LogListener from the list of listeners that are to
receive a notification when an error is printed.

ll is the LogListener that is no longer to be notified.

addWarningListener
method

public void addWarningListener(LogListener ll)

Adds the specified LogListener to receive a notification when a warning is
printed.

ll is the LogListener that is to be notified.

The following method will be called:

277

LogListener.messageLogged(ianywhere.ml.script.ServerContext,
ianywhere.ml.script.LogMessage).

removeWarningListener
method

public void removeWarningListener(LogListener ll)

Removes the specified LogListener from the list of listeners that are to
receive a notification when a warning is printed.

ll is the LogListener that is no longer to be notified.

ServerException class

Thrown to indicate that there is an error condition that makes any further
synchronization on the server impossible. Throwing this exception causes
the MobiLink server to shut down.

ServerException
constructors

public ServerException()

Constructs a ServerException with no detail message.

public ServerException(java.lang.String s)

Constructs a ServerException with a specified detail message. There is one
parameter,s, which specifies the detailed message.

ShutdownListener interface

The listener interface for catching server shutdowns. Use this interface to
ensure that all resources, threads, connections, and so on are cleaned up
before the server exits.

shutdownPerformed
method

public void shutdownPerformed(ServerContext sc)

Invoked before the ServerContext is destroyed due to server shutdown.
There is one parameter, sc, which is the context for the server that is being
shut down.

SynchronizationException class

Thrown to indicate that there is an error condition that makes the completion
of the current synchronization impossible. Throwing this exception will
force the MobiLink server to rollback.

SynchronizationException
constructors

public SynchronizationException()

Constructs a SynchronizationException with no detail message.

public SynchronizationException(java.lang.String s)

278

Chapter 13. Writing Synchronization Scripts in Java

Constructs a SynchronizationException with the specified detail message.
There is one parameter, s, which specifies a detail message.

279

CHAPTER 14

Writing Synchronization Scripts in .NET

About this chapter You control the actions of the MobiLink synchronization server by writing
synchronization scripts. You can implement these scripts in SQL, Java, or
.NET. This chapter describes how to implement synchronization scripts in
.NET.

☞ For a tutorial using .NET synchronization scripts, see“Tutorial: .NET
Synchronization Logic With Adaptive Server Anywhere”[MobiLink Tutorials,
page 65].

☞ For information about writing scripts, see“Writing Synchronization
Scripts” on page 227.

☞ For a description and comparison of SQL, Java, and .NET, see“Options
for writing synchronization logic” on page 25.

☞ For information about writing scripts in Java, see“Writing
Synchronization Scripts in Java” on page 255.

Contents Topic: page

Introduction 282

Setting up .NET synchronization logic 283

Writing .NET synchronization logic 286

.NET synchronization techniques 295

Loading Shared Assemblies 297

.NET synchronization example 300

MobiLink .NET API Reference 303

281

Introduction
Microsoft .NET is a platform for building, deploying, and running Web
services and applications.

MobiLink supports Visual Studio .NET programming languages for writing
synchronization scripts. To write MobiLink scripts in .NET, you can use any
language that lets you create valid .NET assemblies. In particular, the
following languages are tested and documented:

♦ C#

♦ Visual Basic .NET

♦ C++

.NET synchronization logic can function just as Java logic functions: the
MobiLink synchronization server can make calls to .NET methods on the
occurrence of MobiLink events. A SQL string may be returned to MobiLink.

This section tells you how to set up, develop, and run .NET synchronization
logic for C#, Visual Basic .NET, and C++. It includes a sample application
and the MobiLink .NET API Reference.

☞ For a tutorial using .NET synchronization scripts, see“Tutorial: .NET
Synchronization Logic With Adaptive Server Anywhere”[MobiLink Tutorials,
page 65].

282

Chapter 14. Writing Synchronization Scripts in .NET

Setting up .NET synchronization logic
The most important part of implementing synchronization scripts in .NET is
telling MobiLink where to find the packages, classes, and methods that are
contained in your assemblies.

❖ To implement synchronization scripts in .NET

1. Create your own class or classes. Write a method for each required
synchronization event. These methods must be public.

☞ For more information about methods, see“Methods” on page 288.

Each class with non-static methods should have a public constructor. The
MobiLink synchronization server automatically instantiates each class
the first time a method in that class is called for a connection.

☞ For more information about constructors, see“Constructors” on
page 287.

2. Create one or more assemblies. While compiling, reference
iAnywhere.MobiLink.Script.dllwhich contains a repository of MobiLink
API classes to utilize in your own .NET methods.
iAnywhere.MobiLink.Script.dllis located inwin32 subdirectory of your
SQL Anywhere installation.

☞ For more information about the MobiLink .NET API, see“MobiLink
.NET API Reference” on page 303.

You can compile your class on the command line, or using Visual Studio
.NET or another .NET development environment.

♦ To Compile from Visual Studio .NET:

a. From the VS.NET Project menu, choose Add Existing Item...

b. LocateiAnywhere.MobiLink.Script.dll; from the Open dropdown
list choose Link File:

283

Caution:
For Visual Studio .NET, always use the Link File method shown
above. Do not use the Add Reference option to reference
iAnywhere.MobiLink.Script.dll. The Add Reference option dupli-
catesiAnywhere.MobiLink.Script.dllin the same physical direc-
tory as your class assembly, creating problems for the MobiLink
synchronization server.

c. Use the Build menu to build your assembly.

♦ To compile from the command line:
You can referenceiAnywhere.MobiLink.Script.dllfrom the command
line as follows:

csc /out:c: \out.dll /target:library /reference:c: \
iAnywhere.MobiLink.Script.dll sync_v1.cs

The above example assumesiAnywhere.MobiLink.Script.dllhas been
copied toc:\.

☞ For a complete description of the API, see“MobiLink .NET API
Reference” on page 303.

3. In the MobiLink system tables in your consolidated database, specify the
name of the package, class, and method to call for each synchronization
script. One class is permitted per script version.

The easiest way to add this information to the MobiLink system tables is
to use the ml_add_dnet_connection_script stored procedure or the
ml_add_dnet_table_script stored procedure.

For example, the following statement, when run in an Adaptive Server
Anywhere database, specifies that myNamespace.myClass.myMethod

284

Chapter 14. Writing Synchronization Scripts in .NET

should be run whenever the authenticate_user connection-level event
occurs.

call ml_add_dnet_connection_script(’version1’,
’authenicate_user’, ’myNamespace.myClass.myMethod’)

Note:
The fully qualified method name is case sensitive.

As a result of this procedure call, the script_language column of the
ml_script system table must contain the worddnet. The string in the
script column, which contains a statement for scripts implemented in
SQL, must instead contain the qualified name of a public .NET method.

☞ For more information, see“ml_add_dnet_connection_script” on
page 482and“ml_add_dnet_table_script” on page 483.

You can also add this information using Sybase Central.

4. Instruct the MobiLink server to load assemblies and start the CLR. You
tell MobiLink where to locate these assemblies using options on the
dbmlsrv9 command line. There are two options to choose from:

♦ Use -sl dnet (-MLAutoLoadPath) This sets the given path to the
application base directory and loads all the private assemblies within it.
You should use this option in most cases. For example, to load all
assemblies located inc:\, enter:

dbmlsrv9 -c "dsn=consolidated1" -sl dnet(-
MLAutoLoadPath=c: \)

When you use the -MLAutoLoadPath option you cannot specify a
domain when entering the fully qualified method name for the event
script.
☞ For more information about loading assemblies, see“Loading
assemblies” on page 297. For more information about the dbmlsrv9
option -sl dnet, see“-sl dnet option” on page 207.

♦ Use -sl dnet (-MLDomConfigFile) This option requires a
configuration file that contains domain and assembly settings. You
should use this option when you have shared assemblies, when you
don’t want to load all the assemblies in a directory, or when for some
other reason you need to use a configuration file.
☞ For more information about loading shared assemblies, see
“Loading assemblies” on page 297. For more information about the
dbmlsrv9 option -sl dnet, see“-sl dnet option” on page 207.

Note:
You can use the -MLAutoLoadPath option or the -MLDomConfigFile
option, but not both.

285

Writing .NET synchronization logic
Writing .NET synchronization logic is no different in complexity from
writing any other .NET code. What is required from you is knowledge of
MobiLink events and familiarity with the MobiLink .NET API. The
following sections help you write useful synchronization logic.

☞ For a complete description of the API, see“MobiLink .NET API
Reference” on page 303.

.NET synchronization logic can be used to maintain state information, and
implement logic around the upload and download events. For example, a
begin_synchronization script written in .NET could store the MobiLink user
name in a variable. Scripts called later in the synchronization process can
access this variable. Also, you can use .NET to access rows in the
consolidated database, before or after they are committed.

Using .NET also reduces dependence on the consolidated database.
Behavior is affected less by upgrading the consolidated database to a new
version or switching to a different database-management system.

Class instances

The MobiLink synchronization server instantiates your classes at the
connection level. When an event is reached for which you have written a
non-static .NET method, the MobiLink synchronization server automatically
constructs the class, if it has not already done so on the present database
connection.

☞ For more information, see“Constructors” on page 287.

All methods directly associated with a connection-level or table-level event
for one script versionmust belong to the same class.

For each database connection, once a class has been instantiated, the class
persists until that connection is closed. Thus, the same instance may well be
used for multiple consecutive synchronization sessions. Information present
in public or private variables will thus persist across synchronizations that
occur on the same connection unless explicitly cleared.

You can also use static classes or variables. In this case, the values are
available across all connections in the same domain.

The MobiLink synchronization server automatically deletes your class
instances only when the connection to the consolidated database is closed.

286

Chapter 14. Writing Synchronization Scripts in .NET

Transactions

The normal rules regarding transactions apply to .NET methods. The start
and duration of database transactions is critical to the synchronization
process. Transactions must be started and ended only by the MobiLink
synchronization server. Explicitly committing or rolling back transactions
on the synchronization connection within a .NET method violates the
integrity of the synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink
synchronization server and, in particular, to SQL statements returned by
methods. If your classes create other database connections, you are free to
manage them as you please.

SQL-.NET data types

The following table shows SQL data types and the corresponding .NET data
types for MobiLink script parameters.

SQL data type Corresponding .NET data type

VARCHAR string

CHAR string

INTEGER int

BINARY byte []

TIMESTAMP DateTime

INOUT INTEGER ref int

INOUT VARCHAR ref string

INOUT CHAR ref string

INOUT BYTEARRAY ref byte []

Constructors

The constructor of your class can have one of two possible signatures.

public ExampleClass(
iAnywhere.MobiLink.Script.DBConnectionContext cc)

or

public ExampleClass()

287

The synchronization context passed to you is for the connection through
which the MobiLink synchronization server is synchronizing the current
user.

The getConnection method of the DBConnectionContext class returns the
same database connection that MobiLink is using to synchronize the present
user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink synchronization server
manages the transactions.

The MobiLink synchronization server prefers to use constructors with the
first signature. It only uses the void constructor if a constructor with the first
signature is not present.

☞ For more information about the DBConnectionContext class, see
“DBConnectionContext interface” on page 305.

Methods

In general, you implement one method for each synchronization event.
These methods must be public. If they are private, the MobiLink
synchronization server cannot use them and will fail to recognize that they
exist.

The names of the methods are not important, as long as the names match the
names specified in the ml_script table in the consolidated database. In the
examples included in the documentation, however, the method names are the
same as those of the MobiLink events as this naming convention makes the
.NET code easier to read.

The signature of your method should match the signature of the script for
that event, except that you can truncate the parameter list if you do not need
the values of parameters at the end of the list. Indeed, you should accept
only the parameters you need, because overhead is associated with passing
the parameters.

You cannot, however, overload the methods. Only one method prototype per
class may appear in the ml_script system table.

Return values Methods called for a MobiLink upload or download must return a valid SQL
language statement. The return type of these methods must be String. No
other return types are allowed.

The return type of all other scripts must either be string or void. No other
types are allowed. If the return type is a string and not null, the MobiLink
synchronization server assumes that the string contains a valid SQL
statement and executes this statement in the consolidated database as it
would an ordinary SQL-language synchronization script. If a method

288

Chapter 14. Writing Synchronization Scripts in .NET

ordinarily returns a string but does not wish to execute a SQL statement
against the database upon its return, it can return null.

User-defined start classes

You can define start classes that are loaded automatically when the server is
started. The purpose of this feature is to allow you to write .NET code that
executes at the time the MobiLink server starts the CLR—before the first
synchronization. This means you can create connections or cache data
before a user synchronization request.

You do this with the MLStartClasses option of the dbmlsrv9 -sl dnet option.
For example, the following is part of a dbmlsrv9 command line. It causes
mycl1 and mycl2 to be loaded as start classes.

-sl dnet(-MLStartClasses=com.test.mycl1,com.test.mycl2)

Classes are loaded in the order in which they are listed. If the same class is
listed more than once, more than one instance is created.

All start classes must be public and must have a public constructor that
either accepts no arguments or accepts one argument of type
MobiLink.Script.ServerContext.

The names of loaded start classes are output to the MobiLink log with the
message “Loaded .NET start class:classname”.

☞ For more information about .NET CLR, see“-sl dnet option” on
page 207.

☞ To see the start classes that are constructed at server start time, see
“GetStartClassInstances method” on page 312.

Example Following is a template start class. It starts a daemon thread that processes
events and creates a database connection. (Not all start classes will need to
create a thread but if a thread is spawned it should be a daemon thread.)

using System;
using System.IO;
using System.Threading;
using iAnywhere.MobiLink.Script;

namespace TestScripts
{

public class MyStartClass {
ServerContext _sc;
bool _exit_loop;
Thread _thread;
OdbcConnection _conn;

289

public MyStartClass(ServerContext sc)
//=====================================
{

// perform setup first so that an exception will
// cause MobiLink startup to fail
_sc = sc;
// create connection for use later
_conn = _sc.makeConnection();
_exit_loop = false;
_thread = new Thread(new ThreadStart(run)) ;
_thread.IsBackground = true;

_thread.Start();
}

public void run()
//===============
{

ShutdownCallback callback = new ShutdownCallback(
shutdownPerformed);

_sc.ShutdownListener += callback;
// we can’t throw any exceptions through run()
try {

handlerLoop();
_conn.close();
_conn = null;

} catch(Exception e) {
// print some error output to the MobiLink log
Console.Error.Write(e.ToString());
// we will die so we don’t need to be notified of
// shutdown
_sc.ShutdownListener -= callback;
// ask server to shutdown so that this fatal error will
// be fixed
_sc.Shutdown();

}
// shortly after return this thread will no longer
// exist
return;

}

public void shutdownPerformed(ServerContext sc)
//===
// stop our event handler loop
{

try {
_exit_loop = true;
// wait max 10 seconds for thread to die
_thread.Join(10 * 1000);

} catch(Exception e) {
// print some error output to the MobiLink log
Console.Error.Write(e.ToString());

}
}

290

Chapter 14. Writing Synchronization Scripts in .NET

private void handlerLoop()
//========================
{

while(!_exit_loop) {
// handle events in this loop
Thread.Sleep(1 * 1000);

}
}

}
}

Printing information from .NET

You may choose to add statements to your .NET methods that print
information to the MobiLink log using System.Console. Doing so can help
you track the progress and behavior of your classes.

Performance tip
Printing information in this manner is a useful monitoring tool, but is not
recommended in a production scenario.

The same technique can be exploited to log arbitrary synchronization
information or collect statistical information on how your scripts are used.

Handling MobiLink server errors with .NET

When scanning the log is not sufficient, you can monitor your applications
programmatically. For example, you can send messages of a certain type in
an email.

You can write methods that are passed a class representing every error or
warning message that is printed to the log. This may help you monitor and
audit a MobiLink synchronization server.

The following code installs a Listener for all error messages and prints the
information to a StreamWriter.

291

class TestLogListener {
public TestLogListener(StreamWriter output_file)
{

_output_file = output_file;
}
public void errCallback(ServerContext sc, LogMessage lm)
{

string type;
string user;
if(lm.Type==LogMessage.MessageType.ERROR) {

type = "ERROR";
} else if(lm.Type==LogMessage.MessageType.WARNING) {

type = "WARNING";
} else {

type = "INVALID TYPE!!";
}
if(lm.User == null) {

user = "null";
} else {

user = lm.User;
}

_output_file.WriteLine("Caught msg type=" + type +
" user=" + user +
" text=" + lm.Text);

_output_file.Flush();
}
StreamWriter _output_file;

}

// Two lines that registers the TestLogListener Call this code
// from anywhere that has access to the ServerContext such as
// a class constructor or synchronization script.
// ServerContext serv_context;
TestLogListener etll = new TestLogListener(log_listener_file);
serv_context.ErrorListener += new LogCallback(etll.errCallback);

See also “LogCallback delegate” on page 311

ErrorListener and WarningListener in“ServerContext interface” on page 311

“LogMessage class” on page 311

“MessageType enumeration” on page 311

Debugging .NET synchronization logic

The following procedure describes one way you can debug your .NET
scripts using Microsoft Visual Studio .NET.

292

Chapter 14. Writing Synchronization Scripts in .NET

❖ To debug .NET scripts

1. Compile your code with debugging information turned on:
♦ On the csc command line, set the flag/debug+

or

♦ Use Microsoft Visual Studio .NET settings to set debug output

• From the File menu choose Build➤ Configuration Manager. From
the Active Solution Configuration drop down list, select Debug.

• Build your assembly.

2. Close running instances of Visual Studio .NET that contain your source
files.

In the next step, you start a new Visual Studio .NET instance to debug the
MobiLink synchronization server and your .NET synchronization scripts.

3. Start Visual Studio .NET using a command line option to debug the
MobiLink synchronization server.

♦ At a command prompt, navigate to theCommon7\IDEsubdirectory of
your Visual Studio .NET installation.

♦ Start devenv (the Visual Studio .NET IDE) using the /debugexe option.
For example, type the following command line to debug the MobiLink
synchronization server. Remember to specify dbmlsrv9 options,
including the connection string and the option to load .NET assemblies.

devenv /debugexe %asany9% \win32 \dbmlsrv9.exe -c ...

This causes Visual Studio .NET to start and dbmlsrv9.exe to appear in
the Solution Explorer window.

4. Set up Microsoft Visual Studio for debugging .NET code:
♦ In the Visual Studio Solution Explorer window, right-click

dbmlsrv9.exe and choose Properties.

♦ ChangeDebugger Typefrom Auto to Mixed or Managed Only.
This ensures Visual Studio .NET will only debug your .NET
synchronization scripts.

5. Open the associated .NET source files and set break points.

Note: Open the source files individually in the dbmlsrv9 solution. Do not
open the original solution or project file.

6. Start MobiLink from the Debug menu or using F5.

If prompted, savedbmlsrv9.slnin an appropriate location.

If the dialog No Symbolic Information appears, click OK to debug
anyway. You are debugging the managed .NET synchronization scripts
that MobiLink calls, not the MobiLink synchronization server itself.

293

7. Perform a synchronization that causes the code with a breakpoint to be
executed by MobiLink.

294

Chapter 14. Writing Synchronization Scripts in .NET

.NET synchronization techniques
This section describes techniques you can use to tackle common .NET
synchronization tasks.

Uploading rows

You can use the upload_insert, upload_update, and upload_delete events to
handle rows uploaded to the consolidated database.

For more information about these events, see:

♦ “upload_insert table event” on page 463

♦ “upload_update table event” on page 475

♦ “upload_delete table event” on page 459

The variable number of rows passed to these events are not passed as
parameters to the corresponding .NET functions. For special processing on
these rows you can insert them into a temporary table and handle the result
set using a subsequent event.

❖ To handle rows uploaded to the consolidated database

1. Insert the uploaded values into a temporary table.

For example, use the following function for the upload_insert event:

public static string UploadInsert(/ * no parameters * /)
{

return("INSERT INTO tempULCustomer(cust_id, cust_name)
values (?,?)");

}

2. Use a subsequent script to obtain the values from the temporary table and
process the rows.

Register the following function for the end_upload event:

295

public void EndUpload(string user, string table)
{

// declare variables to store your row values
string _custid;
string _custname;

// create the command
DBCommand stmt = currConn.CreateCommand();
stmt.CommandText = "select * from tempULCustomer";

// store the result set in a DBRowReader instance
DBRowReader rset = stmt.ExecuteReader();

// traverse the result set
object[] rvalues = rset.NextRow();

while(rvalues != null)
{

_custid = (string)rvalues[0];
_custname = (string)rvalues[1];

//... your logic to process the rows

rvalues = rset.NextRow();
}

rset.Close();
stmt.Close();

}

296

Chapter 14. Writing Synchronization Scripts in .NET

Loading Shared Assemblies
This section details options to load .NET assemblies and details the process
to load shared assemblies.

Loading assemblies

A .NET assembly is a package of types, metadata, and executable code. In
.NET applications, all code must be in an assembly. Assembly files have the
extension.dll or .exe.

There are two types of assemblies:

♦ Private assemblies A private assembly is a file in the file system.

♦ Shared assemblies A shared assembly is an assembly that is installed
in the global assembly cache.

Before MobiLink can load a class and call a method of that class, it must
locate the assembly that contains the class. MobiLink only needs to locate
the assembly that it calls directly. The assembly can then call any other
assemblies it needs.

For example, MobiLink calls MyAssembly, and MyAssembly calls
UtilityAssembly and NetworkingUtilsAssembly. In this situation, MobiLink
only needs to be configured to find MyAssembly.

MobiLink provides two ways to load assemblies:

♦ Use -sl dnet (-MLAutoLoadPath) This option only works with private
assemblies. It sets the path to the application base directory and loads all
the assemblies within it. This option is simpler to use and it is expected
that it will be sufficient in most cases.

When you use the -MLAutoLoadPath option you cannot specify a domain
when entering the fully qualified method name for the event script.

When you specify a path and directory with -MLAutoLoadPath,
MobiLink does the following:

• sets this path as the application base path

• loads all classes in all files ending with.dll or .exe in the directory that
you specified

• creates one application domain and loads into that domain all user
classes that do not have a domain specified

Assemblies in the global assembly cache cannot be called directly with
this option. To call these shared assemblies, use -MLDomConfigFile.

297

♦ Use -sl dnet (-MLDomConfigFile) This option works with both
private and shared assemblies. It requires a configuration file that
contains domain and assembly settings. You should use this option when
you have shared assemblies, when you don’t want to load all the
assemblies in the application base path, or when for some other reason
you need to use a configuration file.

With this option, MobiLink reads the settings in the specified domain
configuration file. A domain configuration file contains configuration
settings for one or more .NET domains. If there is more than one domain
represented in the file, the first one that is specified is used as the default
domain. (The default domain is used when scripts do not have a domain
specified.)

When loading assemblies, MobiLink tries to load the assembly first as
private, and then attempts to load the assembly from the global assembly
cache. Private assemblies must be located in the application base
directory. Shared assemblies are loaded from the global assembly cache.

With the -MLDomConfigFile option, only assemblies that are specified in
the domain configuration file can be called directly from event scripts.

Sample domain
configuration file

A sample domain configuration file calledmlDomConfig.xmlis installed
with MobiLink. You can write your own file from scratch, or edit the sample
to suit your needs. The sample file is located in the SQL Anywhere Studio
path, in

MobiLink\setup\dnet\mlDomConfig.xml

Following is the content of the sample domain configuration file
mlDomConfig.xml:

298

Chapter 14. Writing Synchronization Scripts in .NET

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="iAnywhere.MobiLink.mlDomConfig"

xsi:schemaLocation=’iAnywhere.MobiLink.mlDomConfig
mlDomConfig.xsd’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’ >

<domain>
<name>SampleDomain1</name>
<appBase>C: \scriptsDir</appBase>
<configFile></configFile>
<assembly name="Assembly1" />
<assembly name="Assembly2" />

</domain>
<domain>

<name>SampleDomain2</name>
<appBase> \Dom2assembly</appBase>
<configFile> \Dom2assembly \

AssemblyRedirects.config</configFile>
<assembly name="Assembly3" />
<assembly name="Assembly4" />

</domain>
</config>

Following is an explanation of the contents ofmlDomConfig.xml:

♦ name is the domain name, used when specifying the domain in an event
script. An event script with the format
"DomainName:Namespace.Class.Method" would require a domain
called DomainName be in the domain configuration file.

You must specify at least one domain name.

♦ appBase is the directory that the domain should use as its application
base directory. All private assemblies are loaded by the .NET CLR based
on this directory. You must specify appBase.

♦ configFile is the .NET application configuration file that should be used
for the domain. This can be left blank. It is usually used to modify the
default assembly binding and loading behavior. Refer to your .NET
documentation for more information about application configuration files.

♦ assembly is the name of an assembly that MobiLink should load and
search when resolving type references in event scripts. You must specify
at least one assembly. If an assembly is used in more than one domain, it
must be specified as an assembly in each domain. If the assembly is
private, it must be in the application base directory for the domain.

☞ For more information about the dbmlsrv9 option -sl dnet, see“-sl dnet
option” on page 207.

299

.NET synchronization example
This example modifies an existing application to describe how to use .NET
synchronization logic to handle the authenticate_user event. It creates a C#
script for authenticate_user calledAuthUser.cs. This script looks up the
user’s password in a table called user_pwd_table and authenticates the user
based on that password.

Note:
This section provides a simple example to illustrate basic .NET synchro-
nization logic. Typically, reasons for using a custom user authentication
mechanism include integration with existing DBMS user authentication
schemes, or supplying custom features, such as minimum password length
or password expiry. MobiLink also has a built-in default mechanism.

☞ For more information about MobiLink authentication, see“Choosing
a user authentication mechanism”[MobiLink Clients,page 13].

First, add the table user_pwd_table to the database. Execute the following in
Interactive SQL:

CREATE TABLE user_pwd_table (
user_name varchar(128) PRIMARY KEY NOT NULL,
pwd varchar(128)

)

Next, add a user and password to the table:

INSERT INTO user_pwd_table VALUES(’user1’, ’myPwd’)

Create a directory for your .NET assembly. For example:

mkdir c: \mlexample

Create a file calledAuthUser.cswith the following contents:

☞ For more information, see“authenticate_user connection event” on
page 336.

using System;
using iAnywhere.MobiLink.Script;

namespace MLExample
{

public class AuthClass
{

private DBConnection _conn;

300

Chapter 14. Writing Synchronization Scripts in .NET

/// AuthClass constructor.

public AuthClass(DBConnectionContext cc)
{

_conn = cc.GetConnection();
}

/// The DoAuthenticate method handles the ’authenticate_user’
/// event.

/// Note: This method does not handle password changes for
/// advanced authorization status codes.

public void DoAuthenticate(
ref int authStatus,
string user,
string pwd,
string newPwd)

{
DBCommand pwd_command = _conn.CreateCommand();
pwd_command.CommandText = "select pwd from user_pwd_table"

+ " where user_name = ? ";
pwd_command.Prepare();

// add a parameter for the user name
DBParameter user_param = new DBParameter();
user_param.DbType = SQLType.SQL_CHAR;
// we need to set the size for SQL_VARCHAR
user_param.Size = (uint)user.Length;
user_param.Value = user;
pwd_command.Parameters.Add(user_param);

// fetch the password for this user.
DBRowReader rr = pwd_command.ExecuteReader();
object[] pwd_row = rr.NextRow();
if(pwd_row == null) {
// user is unknown
authStatus = 4000;
} else {
if(((string)pwd_row[0]) == pwd) {

// password matched
authStatus = 1000;

} else {
// password did not match
authStatus = 4000;

}
}
pwd_command.Close();
rr.Close();
return;

}
}

}

The MLExample.AuthClass.DoAuthenticate method handles the
authenticate_user event. It accepts the user name and password and returns

301

an authorization status code indicating the success or failure of the
validation.

Compile the fileAuthUser.cs. You can do this on the command line or in
Visual Studio .NET.

For example, the following command line will compileAuthUser.csand
generate an Assembly namedexample.dllin c:\mlexample. Substitute your
install directory forasany9.

csc /out:c: \mlexample \example.dll /target:library /reference: \
asany9 \win32 \iAnywhere.MobiLink.Script.dll AuthUser.cs

Register .NET code for the authenticate_user event. The method you need to
execute (DoAuthenticate) is in the namespace MLExample and class
AuthClass. Execute the following SQL:

call ml_add_dnet_connection_script(’ex_version’, ’authenticate_
user’, ’MLExample.AuthClass.DoAuthenticate’)

COMMIT

Next, run the MobiLink synchronization server with the following option.
This option causes MobiLink to load all assemblies inc:\myexample:

-sl dnet (-MLAutoLoadPath=c: \mlexample)

Now, when a user synchronizes with the version ex_version, they are
authenticated with the password from the table user_pwd_table.

302

Chapter 14. Writing Synchronization Scripts in .NET

MobiLink .NET API Reference
This section explains the MobiLink .NET interfaces and classes, and their
associated methods, properties, and constructors. To use these classes,
reference the assembly \win32\iAnywhere.MobiLink.Script.dll in your SQL
Anywhere Studio installation directory.

This section focuses on C#, but there are equivalents in VB.NET and C++.

DBCommand interface

public interface DBCommand
Member of iAnywhere.MobiLink.Script

Represents a SQL statement or database command. DBCommand can
represent an update or query.

For example, the following C# code uses the DBCommand interface to
execute two queries:

DBCommand stmt = conn.CreateCommand();

stmt.CommandText = "select t1a1, t1a2 from table1 ";

DBRowReader rs = stmt.ExecuteReader();
printResultSet(rs);
rs.Close();

stmt.CommandText = "select t2a1 from table2 ";

rs = stmt.ExecuteReader();
printResultSet(rs);
rs.Close();
stmt.Close();

The following C# example uses DBCommand to execute an update with
parameters:

DBCommand cstmt = conn.CreateCommand();

cstmt.CommandText = "call myProc(?,?,?)";

cstmt.Prepare();

DBParameter param = new DBParameter();
param.DbType = SQLType.SQL_CHAR;
param.Value = "10000";
cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_INTEGER;
param.Value = 20000;
cstmt.Parameters.Add(param);

303

param = new DBParameter();
param.DbType = SQLType.SQL_DECIMAL;
param.Precision = 5;
param.Value = new Decimal(30000);
cstmt.Parameters.Add(param);

// Execute update
DBRowReader rset = cstmt.ExecuteNonQuery();
cstmt.Close();

Prepare method public void Prepare()

Prepare the SQL statement stored in CommandText for execution.

ExecuteNonQuery()
method

public int ExecuteNonQuery()

Execute a non-query statement. Returns the number of rows in the database
affected by the SQL statement.

ExecuteReader() method public DBRowReader ExecuteReader()

Execute a query statement returning the result set. Returns a DBRowReader
for retrieving results returned by the SQL statement.

Close() method public void Close()

Close the current SQL statement or command.

CommandText property public string CommandText

The value is the SQL statement to be executed.

DBParameterCollection
Parameters property

public DBParameterCollection Parameters

Gets the iAnywhere.MobiLink.Script.DBParameterCollection for this
DBCommand.

DBConnection interface

public interface DBConnection
Member of iAnywhere.MobiLink.Script

Represents a MobiLink ODBC connection.

This interface allows user-written synchronization logic to access an ODBC
connection created by MobiLink.

Commit() method public void Commit()

Commit the current transaction.

Rollback() method public void Rollback()

304

Chapter 14. Writing Synchronization Scripts in .NET

Roll back the current transaction.

Close() method public void Close()

Close the current connection.

CreateCommand()
method

public DBCommand CreateCommand()

Create a SQL statement or command on this connection. Returns the newly
generated DBCommand.

DBConnectionContext interface

public interface DBConnectionContext
Member of iAnywhere.MobiLink.Script

Interface for obtaining and accessing information about the current database
connection. This is passed to the constructor of classes containing scripts. If
context is required for a background thread or beyond the lifetime of a
connection, use a ServerContext.

Caution:
A DBConnectionContext instance should not be used outside the thread
that calls into your .NET code.

Interface for obtaining information about the current database connection.
This is passed to the constructor of classes containing scripts.

GetConnection method public iAnywhere.MobiLink.Script.DBConnection GetConnection()
Member of iAnywhere.MobiLink.Script.DBConnectionContext

Returns the existing connection. The connection is the same connection that
MobiLink uses to execute SQL scripts.

This connection must not be committed, closed or altered in any way that
would affect the MobiLink server use of the connection. The connection
returned is only valid for the lifetime of the underlying MobiLink
connection. Do not use the connection after the end_connection event has
been called for the connection.

If a server connection with full access is required, use
ServerContext.makeConnection().

GetServerContext
method

public iAnywhere.MobiLink.Script.ServerContext.GetServerContext()
Member of iAnywhere.MobiLink.Script.DBConnectionContext

Returns the ServerContext for this MobiLink server.

getProperties method NameValueCollection getProperties()

305

Returns the properties for this connection, based on this connection’s script
version. Properties are stored in the ml_property table.

For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

getVersion method string getVersion()

Returns the name of the script version.

For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

DBParameter class

public class DBParameter
Member of iAnywhere.MobiLink.Script

Represents a bound ODBC parameter.

DBParameter is required to execute commands with parameters. All
parameters must be in place before the command is executed.

For example, the following C# code uses DBCommand to execute an update
with parameters:

DBCommand cstmt = conn.CreateCommand();

cstmt.CommandText = "call myProc(?,?,?)";

cstmt.Prepare();

DBParameter param = new DBParameter();
param.DbType = SQLType.SQL_CHAR;
param.Value = "10000";
cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_INTEGER;
param.Value = 20000;
cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_DECIMAL;
param.Precision = 5;
param.Value = new Decimal(30000);
cstmt.Parameters.Add(param);

// Execute update
DBRowReader rset = cstmt.ExecuteNonQuery();
cstmt.Close();

dbType property public SQLTYPE dbType

The value is the SQLType of this parameter.

306

Chapter 14. Writing Synchronization Scripts in .NET

Default: SQLType.SQL_TYPE_NULL.

Direction property public System.Data.ParameterDirection Direction

The value is the Input/Output direction of this parameter.

Default: ParameterDirection.Input.

IsNullable property public bool IsNullable

The value Indicates whether this parameter can be NULL.

Default: false.

ParameterName
property

public string ParameterName

The value is the name of this parameter.

Default: null.

Precision property public uint Precision

The value is the decimal precision of this parameter. Only used for
SQLType.SQL_NUMERIC and SQLType.SQL_DECIMAL parameters.

Default: 0.

Scale property public short Scale

The value is the resolvable digits of this parameter. Only used for
SQLType.SQL_NUMERIC and SQLType.SQL_DECIMAL parameters.

Default: 0.

Size property public uint Size

The value is the size in bytes of this parameter.

Default: Inferred from DbType.

Value property public object Value

The value is the value of this parameter.

Default: null.

DBParameterCollection class

public class DBParameterCollection
inherits from IDataParameterCollection , IList , ICollection , IEnumerable
Member of iAnywhere.MobiLink.Script

Collection of DBParameters. When DBCommand creates a

307

DBParamterCollection it is empty and must be filled with appropriate
parameters before the DBCommand executes.

DBParameterCollection(
) method

public DBParameterCollection()

Creates an empty list of DBParameters.

Contains(string
parameterName)
method

public bool Contains(string parameterName)

Returns true if the collection contains a parameter with the specified name.
Takes one parameter,parameterName, which is the name of the parameter.

IndexOf(string
parameterName)
method

public int IndexOf(string parameterName)

Returns index of the parameter, or -1 if there is no parameter with the given
name. Takes one parameter,parameterName, which is the name of the
parameter.

RemoveAt(string
parameterName)
method

public void RemoveAt(string parameterName)

Removes the parameter with the given name from the collection. Takes one
parameter,parameterName, which is the name of the parameter.

Add(object value)
method

public int Add(object value)

Adds the given parameter to the collection. Takes one parameter,value,
which is the iAnywhere.MobiLink.Script.DBParameter to add to the
collection. Returns the index of the added parameter in the collection.

Clear() method public void Clear()

Removes all parameters from the collection.

Contains(object value)
method

public bool Contains(object value)

Returns true if this collection contains the given
iAnywhere.MobiLink.Script.DBParameter. Takes one parameter,value,
which is the iAnywhere.MobiLink.Script.DBParameter.

IndexOf(object value)
method

public int IndexOf(object value)

Returns the index of the given iAnywhere.MobiLink.Script.DBParameter in
the collection. Takes one parameter,value, which is the
iAnywhere.MobiLink.Script.DBParameter.

Insert(int index, object
value) method

public void Insert(int index , object value)

Inserts the given iAnywhere.MobiLink.Script.DBParameter into the
collection at the specified index. Takes two parameters:value, which is the

308

Chapter 14. Writing Synchronization Scripts in .NET

iAnywhere.MobiLink.Script.DBParameter; andindex, which is the index to
insert at.

Remove(object value)
method

public void Remove(object value)

Removes the given iAnywhere.MobiLink.Script.DBParameter from the
collection. Takes one parameter,value, which is the
iAnywhere.MobiLink.Script.DBParameter.

RemoveAt(int index)
method

public int RemoveAt(int index)

Removes the iAnywhere.MobiLink.Script.DBParameter at the given index
in the collection. Takes one parameter,index, which is the index of the
iAnywhere.MobiLink.Script.DBParameter.

CopyTo(Array array, int
index) method

public void CopyTo(Array array , int index)

Copies the contents of the collection into the given array starting at the
specified index. Takes two parameters:array, which is the array to copy the
contents of the collection into; andindex, which is the index in the array to
begin copying the contents of the collection into.

GetEnumerator() method public IEnumerator GetEnumerator()

Returns an enumerator for the collection.

IsFixedSize property public bool IsFixedSize

Returns false.

IsReadOnly property public bool IsReadOnly

Returns false.

Count property public int Count

The number of parameters in the collection.

IsSynchronized property public bool IsSynchronized

Returns false.

SyncRoot property public object SyncRoot

Object that can be used to synchronize the collection.

this[string
parameterName]
property

public object this[string parameterName]

Gets or sets the iAnywhere.MobiLink.Script.DBParameter with the given
name in the collection. Takes one parameter,parameterName, which is the
name of the iAnywhere.MobiLink.Script.DBParameter to get or set.

309

this[int index] property public object this[int index]

Gets or sets the iAnywhere.MobiLink.Script.DBParameter at the given index
in the collection. Takes one parameter,index, which is the index of the
iAnywhere.MobiLink.Script.DBParameter to get or set.

DBRowReader interface

public interface DBRowReader
Member of iAnywhere.MobiLink.Script

Represents a set of rows being read from a database. Executing the method
DBCommand.executeReader() creates a DBRowReader.

The following example is a C# code fragment. It calls a function with the
rows in the result set represented by the given DBRowReader.

DBCommand stmt = conn.CreateCommand();

stmt.CommandText = "select intCol, strCol from table1 ";

DBRowReader rs = stmt.ExecuteReader();
object[] values = rset.NextRow();

while(values != null) {
handleRow((int)values[0], (String)values[1]);

values = rset.NextRow();
}
rset.Close();
stmt.Close();

NextRow() method public object[] NextRow()

Retrieves and returns the next row of values in the result set. If there are no
more rows in the result set, it returns NULL.

☞ See“SQLType enumeration” on page 314.

Close() method public void Close()

Cleans up resources used by this MLDBRowReader. After Close() is called,
this MLDBRowReader cannot be used again.

ColumnNames property public string[] ColumnNames

Gets the names of all columns in the result set. The value is an array of
strings corresponding to the column names in the result set.

ColumnTypes property public SQLType[] ColumnTypes

Gets the types of all columns in the result set. The value is an array of
SQLTypes corresponding to the column types in the result set.

310

Chapter 14. Writing Synchronization Scripts in .NET

LogCallback delegate

public delegate void LogCallback(
ServerContext sc
LogMessage message

)
Member of iAnywhere.MobiLink.Script

Called when the MobiLink synchronization server prints a message.

LogMessage class

public class LogMessage : iAnywhere.MobiLink.Script.LogMessage
Member of iAnywhere.MobiLink.Script

Contains information about a message printed to the log.

Type property public LogMessage.MessageType Type

The type of the log message that this instance represents.

User property public string User

The user for which this message is being logged. It may be null.

Text property public string Text

The main text of the message.

MessageType enumeration

public enum MessageType
Member of iAnywhere.MobiLink.Script.LogMessage

Enumeration of the possible types of LogMessage.

ERROR field public ERROR

A log error message.

WARNING field public WARNING

A log warning message.

ServerContext interface

public interface ServerContext
Member of iAnywhere.MobiLink.Script

311

An instantiation of all the context that is present for the duration of the
MobiLink server. This context can be held as static data and used in a
background thread. It is valid for the duration of the .NET CLR invoked by
MobiLink.

To access a ServerContext instance, use the
DBConnectionContext.getServerContext method.

GetStartClassInstances
method

public object[] GetStartClassInstances()
Member of iAnywhere.MobiLink.Script.ServerContext

Gets an array of the start classes that were constructed at server start time.
The array length is zero if there are no start classes.

☞ For more information about user-defined start classes, see“User-defined
start classes” on page 289.

Following is an example of getStartClassInstances():

void FindStartClass(ServerContext sc, string name)
{

object[] startClasses = sc.GetStartClassInstances();

foreach(object obj in startClasses) {
if(obj is MyClass) {

// Execute some code.....
}

}
}

LogCallback
ErrorListener event

This event is triggered when the MobiLink synchronization server prints an
error.

LogCallback
WarningListener event

This event is triggered when the MobiLink synchronization server prints a
warning.

MakeConnection method public iAnywhere.MobiLink.Script.DBConnection makeConnection()
Member of iAnywhere.MobiLink.Script.ServerContext

Creates a new server connection.

ShutDown method public void Shutdown()
Member of iAnywhere.MobiLink.Script.ServerContext

Forces the server to shut down.

ShutdownListener
method

public event iAnywhere.MobiLink.Script.ShutdownCallback
ShutdownListener(
iAnwyhere.MobiLink.Script.ServerContext sc)

Member of iAnywhere.MobiLink.Script.ServerContext

This event is triggered on shutdown. The following code is an example of
how to use this event:

312

Chapter 14. Writing Synchronization Scripts in .NET

ShutdownCallback callback = new ShutdownCallback(
shutdownHandler);

_sc.ShutdownListener += callback;

public void shutdownHandler(ServerContext sc)
//===
{
_test_out_file.WriteLine("shutdownPerformed");
}

getProperties method NameValueCollection getProperties(
string component_name
string prop_set_name)

Returns the set of properties associated with the script version. These are
stored in the MobiLink system table ml_property.

☞ For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

getPropertiesByVersion
method

NameValueCollection getPropertiesByVersion(string script_version)

Returns the set of properties associated with the script version. These are
stored in the MobiLink system table ml_property. The script version is
stored in the prop_set_name column when the component_name is
ScriptVersion.

☞ For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

getPropertySetNames
method

StringCollection getPropertySetNames(string component_name)

Returns the list of property set names for a given component. These are
stored in the MobiLink system table ml_property.

☞ For more information, see“ml_property” on page 511and
“ml_add_property” on page 486.

ServerException class

public class ServerException
Member of iAnywhere.MobiLink.Script

Used to signal MobiLink that an error has occurred with the server and it
should shut down immediately.

ServerException
constructors

public ServerException()
Member of iAnywhere.MobiLink.Script.ServerException

Constructs a ServerException with no detail message.

313

public ServerException(string message)
Member of iAnywhere.MobiLink.Script.ServerException

Creates a new ServerException with the given message. The parameter
messageis the message for this ServerException.

public ServerException(string message, SystemException ie)
Member of iAnywhere.MobiLink.Script.ServerException

Creates a new ServerException with the given message and containing the
given inner exception that caused this one. There are two parameters:
message, which is the message for this ServerException, andie, which is the
exception that caused this ServerException.

ShutdownCallback delegate

public sealed delegate ShutdownCallback : System.MulticastDelegate
Member of iAnywhere.MobiLink.Script

Called when the MobiLink synchronization server is shutting down.
Implementations of this delegate can be registered with the
ServerContext.ShutdownListener event to be called when the MobiLink
server shuts down.

SQLType enumeration

public enum SQLType
Member of iAnywhere.MobiLink.Script

Enumeration of all possible ODBC data types.

SQL_TYPE_NULL field public SQL_TYPE_NULL

Null data type.

SQL_UNKNOWN_TYPE
field

public SQL_UNKNOWN_TYPE

Unknown data type.

SQL_CHAR field public SQL_CHAR

UTF-8 character array of a set size. Has .NET type String.

SQL_NUMERIC field public SQL_NUMERIC

Numeric value of set size and precision. Has .NET type Decimal.

SQL_DECIMAL field public SQL_DECIMAL

Decimal number of set size and precision. Has .NET type Decimal.

314

Chapter 14. Writing Synchronization Scripts in .NET

SQL_INTEGER field public SQL_INTEGER

32-bit integer. Has .NET type Int32.

SQL_SMALLINT field public SQL_SMALLINT

16-bit integer. Has .NET type Int16.

SQL_FLOAT field public SQL_FLOAT

Floating point number with ODBC driver defined precision. Has .NET type
Double.

SQL_REAL field public SQL_REAL

Single precision floating-point number. Has .NET type Single.

SQL_DOUBLE field public SQL_DOUBLE

Double precision floating point number. Has .NET type Double.

SQL_DATE field public SQL_DATE

A date. Has .NET type DateTime.

SQL_DATETIME field public SQL_DATETIME

A date and time. Has .NET type DateTime.

SQL_TIME field public SQL_TIME

A time. Has .NET type DateTime.

SQL_INTERVAL field public SQL_INTERVAL

An interval of time. Has .NET type TimeSpan.

SQL_TIMESTAMP field public SQL_TIMESTAMP

A time stamp. Has .NET type DateTime.

SQL_VARCHAR field public SQL_VARCHAR

A null terminated UTF-8 string with a user set maximum length. Has .NET
type String.

SQL_TYPE_DATE field public SQL_TYPE_DATE

A date. Has .NET type DateTime.

SQL_TYPE_TIME field public SQL_TYPE_TIME

A time. Has .NET type DateTime.

315

SQL_TYPE_-
TIMESTAMP
field

public SQL_TYPE_TIMESTAMP

A timestamp. Has .NET type DateTime.

SQL_DEFAULT field public SQL_DEFAULT

A default type. Has no type.

SQL_ARD_TYPE field public SQL_ARD_TYPE

An ARD object. Has no type.

SQL_BIT field public SQL_BIT

A single bit. Has .NET type Boolean.

SQL_TINYINT field public SQL_TINYINT

An 8-bit integer. Has .NET type SByte.

SQL_BIGINT field public SQL_BIGINT

A 64-bit integer. Has .NET type Int64.

SQL_LONGVARBINARY
field

public SQL_LONGVARBINARY

Variable length binary data with a driver dependent maximum length. Has
.NET type byte[].

SQL_VARBINARY field public SQL_VARBINARY

Variable length binary data with a user specified maximum length. Has
.NET type byte[].

SQL_BINARY field public SQL_BINARY

Fixed length binary data. Has .NET type byte[].

SQL_LONGVARCHAR
field

public SQL_LONGVARCHAR

A null-terminated UTF-8 string with a driver-dependent maximum length.
Has .NET type String.

SQL_GUID field public SQL_GUID

A Global Unique ID (also called a UUID). Has .NET type Guid.

SQL_WCHAR field public SQL_WCHAR

Unicode character array of fixed size. Has .NET type String.

SQL_WVARCHAR field public SQL_WVARCHAR

316

Chapter 14. Writing Synchronization Scripts in .NET

Null-terminated Unicode string of user-defined maximum length. Has .NET
type String.

SQL_WLONGVARCHAR
field

public SQL_WLONGVARCHAR

Null-terminated Unicode string of driver-dependent maximum length. Has
.NET type String.

SynchronizationException class

public class SynchronizationException
Member of iAnywhere.MobiLink.Script

Used to signal that a synchronization exception has occurred and that the
current synchronization should be rolled back and restarted.

SynchronizationException
constructors

public SynchronizationException()
Member of iAnywhere.MobiLink.Script.SynchronizationException

Constructs a SynchronizationException with no details.

public SynchronizationException(string message)
Member of iAnywhere.MobiLink.Script.SynchronizationException

Creates a new SynchronizationException with the given message. The
parametermessageis the message for this ServerException.

public SynchronizationException(string message, SystemException ie)
Member of iAnywhere.MobiLink.Script.SynchronizationException

Creates a new SynchronizationException with the given message and
containing the given inner exception that caused this one. There are two
parameters:message, which is the message for this ServerException, andie,
which is the exception that caused this ServerException.

317

CHAPTER 15

Synchronization Events

About this chapter This chapter provides information about the MobiLink synchronization
events and the SQL scripts, Java methods, or .NET methods that handle
these events. You implement scripts to handle one or more of these events to
control the actions of the MobiLink synchronization server.

☞ For information about storing scripts, see“Adding and deleting scripts
in your consolidated database” on page 241.

Contents Topic: page

Overview of MobiLink events 322

authenticate_parameters connection event 334

authenticate_user connection event 336

authenticate_user_hashed connection event 340

begin_connection connection event 343

begin_connection_autocommit connection event 345

begin_download connection event 346

begin_download table event 348

begin_download_deletes table event 351

begin_download_rows table event 353

begin_publication connection event 356

begin_synchronization connection event 359

begin_synchronization table event 361

begin_upload connection event 363

begin_upload table event 365

begin_upload_deletes table event 367

begin_upload_rows table event 369

download_cursor table event 371

319

Topic: page

download_delete_cursor table event 375

download_statistics connection event 378

download_statistics table event 381

end_connection connection event 384

end_download connection event 386

end_download table event 388

end_download_deletes table event 390

end_download_rows table event 393

end_publication connection event 395

end_synchronization connection event 398

end_synchronization table event 400

end_upload connection event 402

end_upload table event 404

end_upload_deletes table event 407

end_upload_rows table event 409

example_upload_cursor table event 411

example_upload_delete table event 412

example_upload_insert table event 413

example_upload_update table event 414

handle_error connection event 415

handle_odbc_error connection event 419

modify_error_message connection event 422

modify_last_download_timestamp connection event 424

modify_next_last_download_timestamp connection event 427

modify_user connection event 429

new_row_cursor table event (deprecated) 431

old_row_cursor table event (deprecated) 434

prepare_for_download connection event 436

320

Chapter 15. Synchronization Events

Topic: page

report_error connection event 438

report_odbc_error connection event 440

resolve_conflict table event 442

synchronization_statistics connection event 445

synchronization_statistics table event 448

time_statistics connection event 450

time_statistics table event 453

upload_cursor table event (deprecated) 456

upload_delete table event 459

upload_fetch table event 461

upload_insert table event 463

upload_new_row_insert table event 465

upload_old_row_insert table event 467

upload_statistics connection event 469

upload_statistics table event 472

upload_update table event 475

321

Overview of MobiLink events
When a synchronization request occurs and MobiLink server decides that a
new connection must be created, the begin_connection event is fired and
synchronization starts.

begin_connection

do synchronization(s)

end_connection

Following the synchronization, the connection is placed in a connection
pool, and MobiLink again waits for a synchronization request for the current
script version. Before a connection is eventually dropped from the
connection pool, the end_connection event is fired. But if another
synchronization request for the same version is received, then MobiLink
handles the next synchronization request on the same connection. There are
a number of events that affect the current synchronization.

The primary phases of a synchronization are the upload and download
transactions. The events contained in the upload and download transactions
are outlined below.

The upload transaction The upload transaction applies changes uploaded from a remote database.

The begin_upload event marks the beginning of the upload transaction. The
upload transaction is a two-part process. First, inserts and updates are
uploaded for all remote tables, and second, deletes are uploaded for all
remote tables.

322

Chapter 15. Synchronization Events

insert and/or update
rows

last remote table?

Yes

delete rows

last remote table?

Yes

upload transaction

begin_upload
(per connection then

per table)

end_upload

(per table then per
connection)

No

No

The end_upload event marks the end of the upload transaction.

For more information about the events that happen during upload, see
“Writing scripts to upload rows” on page 244.

The download
transaction

The download transaction fetches rows from the consolidated database. It
begins with the begin_download event.

323

The download transaction is a two-part process. For each table, first deletes
are downloaded, and then update/insert rows (upserts) are downloaded. The
end_download event ends the download transaction.

download transaction

download_delete_cursor

download_cursor

last remote table?

begin_download
(per connection then per

table)

Yes

end_download
(per table then per

connection)

No

☞ For more information about the events that happen during download, see
“Writing scripts to download rows” on page 246.

The following pseudocode provides an overview of the sequence in which
events, and hence the script of the same name, are invoked.

Event overview in
pseudocode

The following pseudocode shows the complete MobiLink synchronization
event model. This model assumes a full synchronization (not upload-only or
download-only) with no errors.

Notes ♦ In most cases, if you have not defined a script for a given event, the
default action is to do nothing.

♦ The begin_connection and end_connection events areconnection-level

324

Chapter 15. Synchronization Events

events. They are independent of any single synchronization and have no
parameters.

♦ Some events are invoked once per synchronization for each table being
synchronized. Scripts associated with these events are calledtable-level
scripts.

While each table can have its own table scripts, you can also write
table-level scripts that are shared by several tables.

♦ Some events, such as begin_synchronization, occur at both the
connection level and the table level. You can supply both connection and
table scripts for these events.

♦ The COMMIT statements illustrate how the synchronization process is
broken up into distinct transactions.

♦ A database error can occur at any point within the synchronization
process. Database errors are handled using the handle_error or
handle_odbc_error scripts.

Warning
There should be no implicit or explicit commit or rollback in your syn-
chronization scripts or the procedures or triggers that are called from your
synchronization scripts. COMMIT or ROLLBACK statements within
scripts alter the transactional nature of the synchronization steps. If you
use them, you cannot guarantee the integrity of your data in the event of a
failure.

--
Synchronization events in pseudocode.

Legend:
- // This is a comment
- <name>

The pseudo code for <name> is listed separately
in a later section, under a banner:

name

- VariableName <- value
Assign the given value to the given variable name.
Variable names are in mixed case.

- event_name
If you have defined a script for the given event name,
it will be invoked.

--

325

CONNECT to consolidated database
begin_connection_autocommit
begin_connection
COMMIT
for each synchronization request with

the same script version {
<synchronize>

}
end_connection
COMMIT
DISCONNECT from consolidated database

--
synchronize
--

<authenticate>
<begin_synchronization>
<upload>
<prepare_for_download>
<download>
<end_synchronization>

--
authenticate
--

Status <- 1000
UseDefaultAuthentication <- TRUE
if(authenticate_user script is defined) {

UseDefaultAuthentication <- FALSE
TempStatus <- authenticate_user
if(TempStatus > Status) {

Status <- TempStatus
}

}

326

Chapter 15. Synchronization Events

if(authenticate_user_hashed script is defined) {
UseDefaultAuthentication <- FALSE
TempStatus <- authenticate_user_hashed
if(TempStatus > Status) {

Status <- TempStatus
}

}
if(UseDefaultAuthentication) {

if(the user exists in the ml_user table) {
if(ml_user.hashed_password column is not NULL) {

if(password matches ml_user.hashed_password) {
Status <- 1000

} else {
Status <- 4000

}
} else {

Status <- 1000
}

} else if(-zu+ was on the command line) {
Status <- 1000

} else {
Status <- 4000

}
}

if(Status <= 2000) {
if(authenticate_parameters script is defined)

{
TempStatus <- authenticate_parameters
if(TempStatus > Status) {

Status <- TempStatus
}

}
if(Status >= 3000) {

ROLLBACK
// Abort the synchronization.

} else {
// UserName defaults to MobiLink user name
// sent from the remote.
if(modify_user script is defined) {
UserName <- modify_user
// The new value of UserName is later passed to
// all scripts that expect the MobiLink user name.
}
COMMIT

}

327

--
begin_synchronization
--

begin_synchronization // conection event
for each table being synchronized {

begin_synchronization // call the table level script
}
for each publication being synchronized {

begin_publication
}
COMMIT

--
end_synchronization
--

for each publication being synchronized {
if(begin_publication script was called) {

end_publication
}

}
for each table being synchronized {

if(begin_synchronization table script was called) {
end_synchronization // table event

}
}
end_synchronization // connection event

for each table being synchronized {
synchronization_statistics // table event
}
synchronization_statistics // connection event
for each table being synchronized {
time_statistics // table event
}
time_statistics // connection event

COMMIT

☞ For the details of upload stream processing, see“Events during upload”
on page 328.

☞ For the details of download stream processing, see“Events during
download” on page 332.

Events during upload

The following pseudocode illustrates how upload events and upload scripts
are invoked.

These events take place at the upload location in the complete event model.
For more information, see“Overview of MobiLink events” on page 322.

328

Chapter 15. Synchronization Events

--
upload
--

begin_upload
for each table being synchronized {

begin_upload_rows
for each uploaded INSERT or UPDATE for this table {

if(INSERT) {
<upload_inserted_row>

}
if(UPDATE) {

<upload_updated_row>
}

}
end_upload_rows

}
for each table being synchronized IN REVERSE ORDER {

begin_upload_deletes
for each uploaded DELETE for this table {

<upload_deleted_row>
}
end_upload_deletes

}
end_upload

for each table being synchronized {
upload_statistics // table event

}
upload_statistics // connection event

COMMIT

--
<upload_inserted_row>
--
// NOTES:
// - Only table scripts for the current table are involved.
// - Cursor-based upload scripts, like upload_cursor,
// are deprecated, and so are not shown.

UploadUsingStatements <- (
upload_insert script is defined

or upload_update script is defined
or upload_delete script is defined
or upload_fetch script is defined
or upload_new_row_insert script is defined
or upload_old_row_insert script is defined)

329

if(UploadUsingStatements) {
ConflictsAreExpected <- (

upload_new_row_insert script is defined
or upload_old_row_insert script is defined
or resolve_conflict script is defined)

if(upload_insert script is defined) {
upload_insert

} else if(ConflictsAreExpected
and upload_update script is not defined
and upload_insert script is not defined
and upload_delete script is not defined) {
// Forced conflict.
upload_new_row_insert
resolve_conflict

} else {
// ignore the insert

}
} else {

// ignore the insert
}

--
upload_updated_row
--
// NOTES:
// - Only table scripts for the current table are involved.
// - Both the old (original) and new rows are uploaded for
// each update.
// - Cursor-based upload scripts, like upload_cursor,
// are deprecated, and so are not shown.

UploadUsingStatements <- (
upload_insert script is defined

or upload_update script is defined
or upload_delete script is defined
or upload_fetch script is defined
or upload_new_row_insert script is defined
or upload_old_row_insert script is defined)

330

Chapter 15. Synchronization Events

if(UploadUsingStatements) {
ConflictsAreExpected <- (

upload_new_row_insert script is defined
or upload_old_row_insert script is defined
or resolve_conflict script is defined)

Conflicted <- FALSE
if(upload_update script is defined) {

if(ConflictsAreExpected
and upload_fetch script is defined) {
FETCH using upload_fetch INTO current_row
if(current_row <> old row) {

Conflicted <- TRUE
}

}
if(not Conflicted) {

upload_update
}

} else if(upload_update script is not defined
and upload_insert script is not defined
and upload_delete script is not defined) {
// Forced conflict.
Conflicted <- TRUE

}
if(ConflictsAreExpected and Conflicted) {

upload_old_row_insert
upload_new_row_insert
resolve_conflict

}
} else {

// ignore the update
}

--
upload_deleted_row
--
// NOTES:
// - Only table scripts for the current table are involved.
// - Cursor-based upload scripts, like upload_cursor,
// are deprecated, and so are not shown.

UploadUsingStatements <- (
upload_insert script is defined

or upload_update script is defined
or upload_delete script is defined
or upload_fetch script is defined
or upload_new_row_insert script is defined
or upload_old_row_insert script is defined)

331

if(UploadUsingStatements) {
ConflictsAreExpected <- (

upload_new_row_insert script is defined
or upload_old_row_insert script is defined
or resolve_conflict script is defined)

if(upload_delete is defined) {
upload_delete

} else if(ConflictsAreExpected
and upload_update script is not defined
and upload_insert script is not defined
and upload_delete script is not defined) {
// Forced conflict.
upload_old_row_insert
resolve_conflict

} else {
// ignore this delete

}
} else {

// ignore this delete
}

Events during download

The following pseudocode provides an overview of the sequence in which
download events, and hence the script of the same name, are invoked.

These events take place at the download location in the complete event
model provided in“Overview of MobiLink events” on page 322.

--
prepare_for_download
--

prepare_for_download
modify_last_download_timestamp
if(prepare_for_download script is defined

or modify_last_download_timestamp script is defined) {
COMMIT

}

332

Chapter 15. Synchronization Events

--
download
--

begin_download
for each table being synchronized {

begin_download_deletes
for each row in download_delete_cursor {

if(all primary key columns are NULL) {
send TRUNCATE to remote

} else {
send DELETE to remote

}
}
end_download_deletes
begin_download_rows
for each row in download_cursor {

send INSERT ON EXISTING UPDATE to remote
}
end_download_rows

}
modify_next_download_timestamp
end_download

for each table being synchronized {
download_statistics // table event

}
download_statistics // connection event

COMMIT

Notes ♦ If an acknowledgement is expected, and if no confirmation of the
downloads is received from the client, the entire download transaction is
rolled back in the consolidated database.

☞ For more information, see“SendDownloadACK (sa) extended
option” [MobiLink Clients,page 131]for Adaptive Server Anywhere
remotes or“Send Download Acknowledgement synchronization
parameter”[MobiLink Clients,page 331]for UltraLite remotes.

♦ The download stream does not distinguish between inserts and updates.
The script associated with the download_cursor event is a SELECT
statement that defines the rows to be downloaded. The client detects
whether the row exists or not and carries out the appropriate insert or
update operation.

♦ At the end of the download processing, the client automatically deletes
rows that violate referential integrity.

☞ For more information, see“Referential integrity and
synchronization” on page 22.

333

authenticate_parameters connection event
Function Receives non-table data from the remote that can be used to authenticate

beyond a user ID or password. The non-table data can also be used to
arbitrarily customize each synchronization.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 auth_status INTEGER. This is an INOUT
parameter.

2 ml_username VARCHAR(128).

3... remote_parameters (one or
more)

VARCHAR(128).

Description You can send strings or parameters in the form of strings from both Adaptive
Server Anywhere and UltraLite remotes. This allows you to have
authentication beyond a user ID and password. It also means that you can
customize your synchronization based on the value of parameters, and do
this in a pre-synchronization phase, during authentication.

For UltraLite remote databases, pass the parameters using the
num_auth_parms and auth_parms fields in the ul_synch_info struct.
num_auth_parms is a count of the number of parameters, from 0 to 255.
auth_parms is a pointer to a list of strings. To prevent the strings being
viewed as plain text, the strings are sent in the same way as passwords. If
num_auth_parms is 0, set auth_parms to NULL.

Following is an example of passing parameters in UltraLite:

ul_char * Params[3] = { UL_TEXT("parm1"), UL_TEXT("parm2"
), UL_TEXT("parm3") };

...
info.num_auth_parms = 3;
info.auth_parms = Params;

For Adaptive Server Anywhere remote databases, you pass parameters using
the dbmlsync -ap option, in a comma-separated list. For example,

dbmlsync -ap "parm1,parm2,parm3"

The MobiLink synchronization server executes this event upon starting each

334

Chapter 15. Synchronization Events

synchronization. It is executed before, and in the same transaction as, the
begin_synchronization event.

You can use this event to replace the built-in MobiLink authentication
mechanism with a custom mechanism. You may want to call into the
authentication mechanism of your DBMS, or you may wish to implement
features not present in the MobiLink built-in mechanism.

The number of remote parameters must match the number expected or an
error will result. For example, if three parameters are sent, the event must
expect five, because there is auth_status and ml_username plus the three
parameters. An error will also occur if parameters are sent from the client
and there is no event.

If the authenticate_user or authenticate_user_hashed scripts are invoked and
return an error, this event is not called.

SQL scripts for the authenticate_parameters event must be implemented as
stored procedures.

See also ♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9]
♦ “Custom user authentication”[MobiLink Clients,page 21]
♦ “authenticate_user connection event” on page 336
♦ “authenticate_user_hashed connection event” on page 340
♦ “begin_synchronization connection event” on page 359
♦ “-ap option” [MobiLink Clients,page 100]
♦ “Authentication Parameters synchronization parameter”[MobiLink Clients,

page 316]

335

authenticate_user connection event
Function Implements custom user authentication.

Parameters In the following table, the description indicates the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 auth_status INTEGER. This is an INOUT
parameter.

2 ml_username VARCHAR(128).

3 user_password VARCHAR(128).

4 user_new_password VARCHAR(128).

Default action Use MobiLink built-in user authentication mechanism.

Description The MobiLink synchronization server executes this event upon starting each
synchronization. It is executed in a transaction before the
begin_synchronization transaction.

You can use this event to replace the built-in MobiLink authentication
mechanism with a custom mechanism. You may want to call into the
authentication mechanism of your DBMS, or you may wish to implement
features not present in the MobiLink built-in mechanism, such as password
expiry or a minimum password length.

The parameters used in an authenticate_user event are as follows:

1. auth_status This required parameter is an INOUT parameter: a
parameter that provides a value to the script, and could be given a new
value by the script. The auth_status parameter indicates the overall
success of the authentication, and can be set to one of the following
values:

336

Chapter 15. Synchronization Events

Returned Value Auth_status Description

V <= 1999 1000 Authentication succeeded.

1999< V <= 2999 2000 Authentication succeeded: pass-
word expiring soon.

2999< V <= 3999 3000 Authentication failed: password
expired.

3999< V <= 4999 4000 Authentication failed.

4999< V <= 5999 5000 Authentication failed as user is
already synchronizing.

5999< V 4000 If the returned value is greater than
5999, MobiLink interprets it as a
returned value of 4000.

2. ml_username This optional parameter is the MobiLink user name.

3. user_password This optional parameter indicates the password for
authentication purposes. If the user does not supply a password, this is
NULL.

4. user_new_password This optional parameter indicates a new
password. If the user does not change their password, this is NULL.

SQL scripts for the authenticate_user event must be implemented as stored
procedures.

When the two authentication scripts are both defined, and both scripts return
different auth_status codes, the higher value is used.

The authenticate_user script is executed in a transaction along with all
authentication scripts. This transaction always commits.

There are predefined scripts that you can use for the authenticate_user event
to simplify authentication using LDAP, IMAP and POP3 servers.

For more information, see“Authenticating to external servers”[MobiLink
Clients,page 22].

See also ♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9]
♦ “Custom user authentication”[MobiLink Clients,page 21]
♦ “Authenticating to external servers”[MobiLink Clients,page 22]
♦ “authenticate_user_hashed connection event” on page 340
♦ “authenticate_parameters connection event” on page 334
♦ “modify_user connection event” on page 429
♦ “begin_synchronization connection event” on page 359

337

SQL example A typical authenticate_user script is a call to a stored procedure. The order
of the parameters in the call must match the order above. The following
example uses ml_add_connection_script to assign the event to a stored
procedure called my_auth.

call ml_add_connection_script(
’ver1’, ’authenticate_user’, ’call my_auth (?, ?, ?, ?)’

)

The following Adaptive Server Anywhere stored procedure uses only the
user name to authenticate—it has no password check. The procedure ensures
only that the supplied user name is one of the employee IDs listed in the
ULEmployee table.

CREATE PROCEDURE my_auth(in @user_name varchar(128))
begin

if exists
(select * from ulemployee

where emp_id = @user_name)
then

message ’OK’ type info to client;
return 1000;

else
message ’Not OK’ type info to client;

return 4000;
end if

end

Java example The following stored procedure call registers a Java method called
authenticateUser as the script for the authenticate_user event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’, ’authenticate_user’,
’ExamplePackage.ExampleClass.authenticateUser’

)

Following is the sample Java method authenticateUser. It calls Java
functions that check and, if needed, change the user’s password.

338

Chapter 15. Synchronization Events

public String authenticateUser
(ianywhere.ml.script.InOutInteger authStatus,

String user, String pwd, String newPwd)
throws java.sql.SQLException

{ // in a real authenticate_user handler, we would
// handle more auth code states
_curUser = user;
if(checkPwd(user, pwd))
{ // auth successful

if(newPwd != null)
{ // pwd is being changed

if(changePwd(user, pwd, newPwd))
{ // auth ok and pwd change ok. Use custom code

authStatus.setValue(1001);
}
else { // authorization ok but password

// change failed. Use custom code.
java.lang.System.err.println("user: "
+ user + " pwd change failed!");
authStatus.setValue(1002); } }

else { authStatus.setValue(1000); } }
else { // auth failed

authStatus.setValue(4000); }
return(null); }

.NET example The following stored procedure call registers a .NET method called
AuthUser as the script for the authenticate_user connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’, ’authenticate_user’,
’TestScripts.Test.AuthUser’

)

Following is the C# signature for the method AuthUser.

public void AuthUser(ref int authStatus, string user, string
pwd, string newPwd)

☞ For a more detailed example of an authenticate_user script written in C#
in .NET, see“.NET synchronization example” on page 300.

339

authenticate_user_hashed connection event
Function Implements a custom user authentication mechanism.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 auth_status INTEGER. This is an INOUT param-
eter.

2 ml_username VARCHAR(128).

3 hashed_user_password BINARY(20). If the user does not
supply a password, this is NULL.

4 hashed_new_password BINARY(20). If the user does not
change their password, this is NULL.

Default action Use MobiLink built-in user authentication mechanism.

Description This event is identical to authenticate_user except for the passwords, which
are in the same hashed form as those stored in the ml_user.hashed_password
column. Passing the passwords in hashed form provides increased security.

A one-way hash is used. A one-way hash takes a password and converts it to
a byte sequence that is (essentially) unique to each possible password. The
one-way hash lets password authentication take place without having to
store the actual password in the consolidated database.

When authenticate_user and authenticate_user_hashed are both defined, and
both scripts return different auth_status codes, the higher value is used.

See also ♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9]
♦ “Custom user authentication”[MobiLink Clients,page 21]
♦ “authenticate_user connection event” on page 336
♦ “authenticate_parameters connection event” on page 334

SQL example A typical authenticate_user_hashed script is a call to a stored procedure. The
order of the parameters in the call must match the order above. The
following example calls ml_add_connection_script to assign the event to a
stored procedure called my_auth.

340

Chapter 15. Synchronization Events

call ml_add_connection_script(
’ver1’, ’authenticate_user_hashed’, ’call my_auth (?, ?, ?)’

)

The following Adaptive Server Anywhere stored procedure uses both the
user name and password to authenticate. The procedure ensures only that the
supplied user name is one of the employee IDs listed in the ULEmployee
table. The procedure assumes that the Employee table has a binary(20)
column called hashed_pwd.

CREATE PROCEDURE my_auth(
inout @auth_status integer,
in @user_name varchar(128),
in @hpwd binary(20))

begin
if exists
(select * from ulemployee

where emp_id = @user_name
and hashed_pwd = @hpwd)

then
message ’OK’ type info to client;
return 1000;

else
message ’Not OK’ type info to client;
return 4000;

end if
end

Java example The following stored procedure call registers a Java method called
authUserHashed as the script for the authenticate_user_hashed event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’, ’authenticate_user_hashed’,
’ExamplePackage.ExampleClass.authUserHashed’)

Following is the sample Java method authUserHashed. It calls Java
functions that check and, if needed, change the user’s password.

341

public String authUserHashed(
ianywhere.ml.script.InOutInteger authStatus,
String user, byte pwd[], byte newPwd[])

throws java.sql.SQLException
{ // in a real authenticate_user_hashed handler, we

// would handle more auth code states
_curUser = user;
if(checkPwdHashed(user, pwd)) {
// auth successful

if(newPwd != null)
{ // pwd is being changed

if(changePwdHashed(user, pwd, newPwd))
{ // auth ok and pwd change ok use custom code

authStatus.setValue(1001); }
else
{ // auth ok but pwd change failed.

// Use custom code
java.lang.System.err.println("user: " + user

+ " pwd change failed!");
authStatus.setValue(1002); } }

else { authStatus.setValue(1000); } }
else { // auth failed

authStatus.setValue(4000); }
return(null); }

.NET example The following stored procedure call registers a .NET method called
AuthUserHashed as the script for the authenticate_user_hashed connection
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’authenticate_user_hashed’,
’TestScripts.Test.AuthUserHashed’

)

Following is the C# signature for the call AuthUserHashed.

public void AuthUserHashed(
ref int authStatus,
string user,
byte[] pwd,
byte[] newPwd)

342

Chapter 15. Synchronization Events

begin_connection connection event
Function Invoked at the time the MobiLink synchronization server connects to the

consolidated database server.

Parameters None.

Default action None.

Description The MobiLink synchronization server executes this event upon opening each
worker-thread connection to the consolidated database server. The
MobiLink synchronization opens connections on demand as synchronization
requests come in. When an application forms or reforms a connection with
the MobiLink synchronization server, the MobiLink synchronization server
temporarily allocates one connection with the database server for the
duration of that synchronization.

See also ♦ “end_connection connection event” on page 384.

SQL example The following SQL script works with an Adaptive Server Anywhere
consolidated database. Two variables are created, one for the last_download
timestamp, and one for employee ID.

call ml_add_connection_script(
’custdb’,
’begin_connection’,
’create variable @LastDownload timestamp;
create variable @EmployeeID integer;’)

Java example Note: This script is not generally used in Java, because instead of database
variables you would use member variables in this class instance, and prepare
the members in the constructor.

The following stored procedure call registers a Java method called
beginConnection as the script for the begin_connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’begin_connection’,
’ExamplePackage.ExampleClass.beginConnection’)

Following is the sample Java method beginConnection. This returns SQL
that will create a connection level variable.

public String beginConnection()
{ return("create variable @LastDownload timestamp;"); }

.NET example The following stored procedure call registers a .NET method called

343

BeginConnection as the script for the begin_connection connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’begin_connection’,
’TestScripts.Test.BeginConnection’

)

Following is the signature for the call BeginConnection.

public string BeginConnection()
{ return("create variable @LastDownload timestamp;"); }

344

Chapter 15. Synchronization Events

begin_connection_autocommit connection event
Function Turns on autocommit.

Parameters None.

Default action Autocommit is off.

Description When the MobiLink synchronization server connects to the consolidated
database, it turns off autocommit so that it can roll back the upload and
download streams if an error occurs.

However, if you are using an Adaptive Server Enterprise consolidated
database, you cannot perform DDL functions such as creating temporary
tables unless autocommit is on. If you are using an Adaptive Server
Enterprise consolidated database, run your DDL commands in the
begin_connection_autocommit event. When the event is finished,
autocommit is turned off.

Begin_connection_autocommit scripts must be written so that they are
repeatable. This is because if an error or deadlock occurs, the MobiLink
synchronization server needs to be able to retry the script (since it can’t roll
it back).

345

begin_download connection event
Function Processes any statements just before the MobiLink synchronization server

commences preparing the download data stream.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this event as the first step in
the processing of downloaded information. Download information is
processed in a single transaction. The execution of this event is the first
action in this transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “end_download connection event” on page 386

SQL example The following example calls ml_add_connection_script to assign the event
to a stored procedure called SetDownloadParameters.

call ml_add_connection_script (
’Lab’,
’begin_download’,
’CALL SetDownloadParameters(?, ?)’)

Java example The following stored procedure call registers a Java method called
beginDownloadConnection as the script for the begin_download connection
event when synchronizing the script version ver1.

call ml_add_java_connection_script(
’example_ver’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadConnection’)

Following is the sample Java method beginDownloadConnection. It calls a

346

Chapter 15. Synchronization Events

Java function (prepDeleteTables) that will prepare the delete tables using a
JDBC synchronization that was set earlier.

public String beginDownloadConnection(
Timestamp ts, String user)

throws java.sql.SQLException
{ prepDeleteTables (_syncConn, ts, user);

return (null); }

.NET example The following stored procedure call registers a .NET method called
BeginDownload as the script for the begin_download connection event when
synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’begin_download’,
’TestScripts.Test.BeginDownload’

)

Following is the sample .NET method BeginDownload. It calls a .NET
function (prepDeleteTables) that will prepare the delete tables using a JDBC
synchronization that was set earlier.

public void BeginDownload(
DateTime timestamp,
string user)

{ prepDeleteTables (_syncConn, ts, user);
return (null); }

347

begin_download table event
Function Processes statements related to a specific table just before preparing the

download stream of inserts, updates, and deletions.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR (128)

Default action None.

Description The MobiLink synchronization server executes this event as the first step in
preparing download information for a specific table. The download
information is prepared in its own transaction. The execution of this event is
the first table-specific action in the transaction.

You can have one begin_download script for each table in the remote
database. The script is only invoked when that table is synchronized.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “end_download table event” on page 388

SQL example The following example can be used on an Adaptive Server Anywhere 9
database. The first piece of code calls the ml_add_table_script, and the
second creates a BeginTableDownload procedure.

348

Chapter 15. Synchronization Events

call ml_add_table_script(
’version1’,
’Leads’,
’begin_download’,
’call BeginTableDownLoad(?, ?, ?));

create procedure BeginTableDownload(
LastDownload timestamp,
MLUser varchar(128),
TableName varchar(128))

begin
execute immediate ’update ’ || TableName ||

’ set last_download_check = CURRENT TIMESTAMP
where Owner = ’ ||MLUser;

end

Java example The following stored procedure call registers a Java method called
beginDownloadTable as the script for the begin_download table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadTable’)

Following is the sample Java method beginDownloadTable. It saves the
name of the current table for use in a later member function call.

public String beginDownloadTable(
Timestamp ts,
String user,
String table)

{ _curTable = table;
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginTableDownload as the script for the begin_download table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_download’,
’TestScripts.Test.BeginTableDownload’

)

Following is the sample .NET method BeginTableDownload. It saves the
name of the current table for use in a later member function call.

349

public void BeginTableDownload(
DateTime timestamp,
string user,
string table)

{ _curTable = table;
return(null); }

350

Chapter 15. Synchronization Events

begin_download_deletes table event
Function Processes statements related to a specific table just before fetching a list of

rows to be deleted from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR (128)

3 table VARCHAR (128)

Default action None.

Description This event is executed immediately before fetching a list of rows to be
deleted from the named table in the remote database.

You can have one begin_download_deletes script for each table in the
remote database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “begin_download_rows table event” on page 353
♦ “end_download_rows table event” on page 393

SQL example To minimize the amount of data on remotes, you can use this event to flag
data that will be deleted when the download_delete_cursor is executed. The
following example flags for deletion sales leads from the remote device that
are over 10 weeks old. The example can be used on an Adaptive Server
Anywhere 9 database. The code calls the ml_add_table_script, and then
creates a beginDownloadDeletes procedure.

351

call ml_add_table_script (
’version1’,
’Leads’,
’begin_download_deletes’,
’call BeginDownloadDeletes (?, ?, ?)’);

create procedure BeginDownloadDeletes(
LastDownload timestamp,
MLUser varchar(128),
TableName varchar(128))

begin
execute immediate ’update ’ || TableName ||
’ set delete_flag = 1 where
days(creation_time, CURRENT DATE) > 70 and Owner = ’
|| MLUser;

end;

Java example The following stored procedure call registers a Java method called
beginDownloadDeletes as the script for the begin_download_deletes table
event when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_download_deletes’,
’ExamplePackage.ExampleClass.beginDownloadDeletes’)

Following is the sample Java method beginDownloadDeletes. It saves the
name of the current table for use in a later member function call.

public String beginDownloadDeletes(Timestamp ts,
String user, String table)
{ _curTable = table;

return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginDownloadDeletes as the script for the begin_download_deletes table
event when synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_download_deletes’,
’TestScripts.Test.BeginDownloadDeletes’

)

Following is the sample .NET method BeginDownloadDeletes. It saves the
name of the current table for use in a later member function call.

public void BeginDownloadDeletes(
DateTime timestamp,
string user,
string table)

{ _curTable = table;
return(null); }

352

Chapter 15. Synchronization Events

begin_download_rows table event
Function Processes statements related to a specific table just before fetching a list of

rows to be inserted or updated in the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR (128)

3 table VARCHAR (128)

Default action None.

Description This event is executed immediately before fetching the stream of rows to be
inserted or updated in the named table in the remote database.

You can have one begin_download_rows script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “begin_download_deletes table event” on page 351
♦ “end_download_deletes table event” on page 390

SQL example You can use the begin_download_rows table event to flag rows that you no
longer want to download for this table. The following example archives
sales leads that are over seven days old.

353

call ml_add_table_script(’version1’, ’Leads’,
’begin_download_rows’,
’call BeginDownloadRows (?, ?, ?)’);

create procedure BeginDownloadRows (
LastDownload timestamp, MLUser varchar(128),
TableName varchar(128))

begin
execute immediate ’update ’ || TableName ||
’ set download_flag = 0 where
days(creation_time, CURRENT DATE) > 7 and Owner = ’
|| MLUser;

end;

Java example The following stored procedure call registers a Java method called
beginDownloadRows as the script for the begin_download_rows table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_download_rows’,
’ExamplePackage.ExampleClass.beginDownloadRows’)

Following is the sample Java method beginDownloadRows. It generates an
UPDATE statement using the table and user. MobiLink will execute this
SQL statement.

public String beginDownloadRows(Timestamp ts,
String user, String table)
{ return("update " + table + " set download_flag = 0 "

+ " where days(creation_time, CURRENT DATE) > 7 " +
" and Owner = ’" + user + "’"); }

.NET example The following stored procedure call registers a .NET method called
BeginDownloadRows as the script for the begin_download_rows table event
when synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_download_rows’,
’TestScripts.Test.BeginDownloadRows’

)

Following is the sample .NET method BeginDownloadRows. It generates an
UPDATE statement using the table and user. MobiLink will execute this
SQL statement.

354

Chapter 15. Synchronization Events

public void BeginDownloadRows(
DateTime timestamp,
string user,
string table)

{ return("update " + table + " set download_flag = 0 "
+ " where days(creation_time, CURRENT DATE) > 7 " +
" and Owner = ’" + user + "’"); }

355

begin_publication connection event
Function Provides useful information about the publication(s) being synchronized.

This script may also be used to manage generation numbers for file-based
downloads.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 generation_number INTEGER. This is an INOUT pa-
rameter. If your deployment does
not use file-based downloads, this
parameter can be ignored. The
default is 1.

2 ml_username VARCHAR(128). If an UltraLite
remote is synchronizing with UL_-
SYNC_ALL, this event is invoked
once with the name ‘unknown’.

3 publication_name VARCHAR(128)

4 last_upload TIMESTAMP. Last successful up-
load.

5 last_download TIMESTAMP. Last successful
download.

Default action The default generation number is 1. If no script is defined for this event, the
generation number sent to the remote will always be 1.

Description This event lets you design synchronization logic based on the publications
currently being synchronized. This event is invoked in the same transaction
as the begin_synchronization event, and is invoked after the
begin_synchronization event. It is invoked once per publication being
synchronized.

One potential use for this event is to affect what is downloaded based on the
publication used. For example, consider a table that is part of both a priority
publication (PriorityPub) and a publication for all tables (AllTablesPub). A
script for the begin_publication event could store the publication names in a
Java class or a SQL variable or package. Download scripts could then
behave differently based on whether the publication being synchronized is
PriorityPub or AllTablesPub.

356

Chapter 15. Synchronization Events

Generation number The generation_number parameter is specifically for file-based downloads.
The output value of the generation number is passed from the
begin_synchronization script to the end_synchronization script. The
meaning of the generation_number depends on whether the current
synchronization is being used to create a download file, or whether the
current synchronization has an upload.

The output value of the generation number is passed from the
begin_publication script to the end_publication script. The meaning of the
generation_number depends on whether the current synchronization is being
used to create a download file, or whether the current synchronization has an
upload.

In file-based downloads, generation numbers are used to force an upload
before the download. The number is stored in the download file. During a
synchronization that has an upload, one generation number is output for
every subscription to a publication. They are sent to the remote database in
the upload acknowledgement, and stored in SYSSYNC.generation_number.

See also ♦ “end_publication connection event” on page 395.
♦ “File-Based Downloads” on page 85.
♦ “MobiLink generation numbers” on page 93.

SQL example You may want to record the information for each publication being
synchronized. The following example calls ml_add_connection_script to
assign the event to a stored procedure called RecordPubSync.

call ml_add_connection_script(
’version1’,
’begin_publication’,
’{call RecordPubSync(?, ?, ?, ?, ?)}’);

Java example The following stored procedure call registers a Java method called
beginPublication as the script for the begin_publication connection event
when synchronizing the script version ver1.

call ml_add_java_connection_script(’ver1’,
’begin_publication’,
’ExamplePackage.ExampleClass.beginPublication’)

Following is the sample Java method beginPublication. It saves the name of
each publication for later use.

357

public String beginPublication(
ianywhere.ml.script.InOutInteger generation_number,
String user,
String pub_name,
Timestamp last_upload,
Timestamp last_download)

{ _publicationNames[_numPublications++] = pub_name;
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginPub as the script for the begin_publication connection event when
synchronizing the script version ver1.

call ml_add_dnet_connection_script(’ver1’,
’begin_publication’,
’TestScripts.Test.BeginPub’

)

Following is the sample .NET method BeginPub. It saves the name of each
publication for later use.

public void BeginPub(
ref int generation_number,
string user,
string pub_name,
DateTime last_upload,
DateTime last_download)

{
_publicationNames[_numPublications++] = pub_name;

}

358

Chapter 15. Synchronization Events

begin_synchronization connection event
Function Processes any statements at the time an application connects to the

MobiLink synchronization server in preparation for the synchronization
process.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this event immediately after
an application preparing to synchronize has formed a connection with the
MobiLink synchronization server.

This event is executed within a separate transaction before the upload
transaction. It is useful for maintaining statistics.

See also ♦ “end_synchronization connection event” on page 398
♦ “begin_synchronization table event” on page 361

SQL example You may want to store the ml_username value in a temporary table or
variable if you will be referencing that value many times in subsequent
scripts.

Call ml_add_connection_script (
’version1’,
’begin_synchronization’,
’set @EmployeeID = ?’);

Java example The following stored procedure call registers a Java method called
beginSynchronizationConnection as the script for the begin_synchronization
connection event when synchronizing the script version ver1.

call ml_add_java_connection_script(’ver1’,
’begin_synchronization’,
’ExamplePackage.ExampleClass.beginSynchronizationConnection’

)

Following is the sample Java method beginSynchronizationConnection. It
saves the name of the synchronizing user for later use.

359

public String beginSynchronizationConnection(
String user)

{ _curUser = user;
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginSync as the script for the begin_synchronization connection event
when synchronizing the script version ver1.

call ml_add_dnet_connection_script(’ver1’,
’begin_synchronization’,
’TestScripts.Test.BeginSync’

)

Following is the sample Java method BeginSync. It saves the name of the
synchronizing user for later use.

public void BeginSync(string user)
{ _curUser = user;

return(null); }

360

Chapter 15. Synchronization Events

begin_synchronization table event
Function Processes statements related to a specific table at the time an application

connects to the MobiLink synchronization server in preparation for the
synchronization process.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR (128)

2 table VARCHAR (128)

Default action None.

Description The MobiLink synchronization server executes this event after an
application that is preparing to synchronize has formed a connection with
the MobiLink synchronization server, and after the begin_synchronization
connection-level event.

You can have one begin_synchronization script for each table in the remote
database. The event is only invoked when the table is synchronized.

See also ♦ “end_synchronization table event” on page 400
♦ “begin_synchronization connection event” on page 359

SQL example The begin_synchronization table event is used to set up the synchronization
of a particular table. The following Adaptive Server Anywhere SQL
procedure call registers a script that creates a temporary table for storing
rows during synchronization.

361

call ml_add_table_script(
’ver1’,
’sales_order’,
’begin_synchronization’,
’CREATE TABLE #sales_order

(
id integer NOT NULL default autoincrement,
cust_id integer NOT NULL,
order_date date NOT NULL,
fin_code_id char(2) NULL,
region char(7) NULL,
sales_rep integer NOT NULL,
PRIMARY KEY (id),

)’)

Java example The following stored procedure call registers a Java method called
beginSynchronizationTable as the script for the begin_synchronization table
event when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_synchronization’,
’ExamplePackage.ExampleClass.beginSynchronizationTable’)

Following is the sample Java method beginSynchronizationTable. It adds the
current table name to a list of table names contained in this instance.

public String beginSynchronizationTable(String user,
String table)
{ _tableList.add(table);

return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginTableSync as the script for the begin_synchronization table event
when synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’,

’begin_synchronization’,
’TestScripts.Test.BeginTableSync’

)

Following is the sample NET method BeginTableSync. It adds the current
table name to a list of table names contained in this instance.

public void BeginTableSync(string user, string table)
{ _tableList.Add(table);

return(null); }

362

Chapter 15. Synchronization Events

begin_upload connection event
Function Processes any statements just before the MobiLink synchronization server

commences processing the stream of uploaded inserts, updates, and deletes.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 ml_username VARCHAR (128)

Default action None.

Description The MobiLink synchronization server executes this event as the first step in
the processing of uploaded information. Upload information is processed in
a single transaction. The execution of this event is the first action in this
transaction.

See also ♦ “end_upload connection event” on page 402
♦ “begin_upload table event” on page 365

SQL example The begin_upload connection event is used to perform whatever steps you
need performed prior to uploading rows. The following Adaptive Server
Anywhere SQL script creates a temporary table for storing old and new row
values for conflict processing of the sales_order table.

call ml_add_connection_script(
’version1’,
’begin_upload’,
’CREATE TABLE #sales_order_conflicts

(
id integer NOT NULL default autoincrement,
cust_id integer NOT NULL,
order_date date NOT NULL,
fin_code_id char(2) NULL,
region char(7) NULL,
sales_rep integer NOT NULL,
new_value char(1) NOT NULL,
PRIMARY KEY (id),

)’)

Java example The following stored procedure call registers a Java method called
beginUploadConnection as the script for the begin_upload connection event
when synchronizing the script version ver1.

call ml_add_java_connection_script(’ver1’, ’begin_upload’,
’ExamplePackage.ExampleClass.beginUploadConnection ’)

363

Following is the sample Java method beginUploadConnection. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String beginUploadConnection(String user)
{ java.lang.System.out.println(

"Starting upload for user: " + user);
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginUpload as the script for the begin_upload connection event when
synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’begin_upload’,
’TestScripts.Test.BeginUpload’

)

Following is the C# signature for the call BeginUpload.

public void BeginUpload(string user)

The following C# example saves the current user name for use in a later
event.

public void BeginUpload(string curUser)
{

user = curUser;
}

364

Chapter 15. Synchronization Events

begin_upload table event
Function Processes statements related to a specific table just before the MobiLink

synchronization server commences processing the stream of uploaded
inserts, updates, and deletes.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this event as the first step in
the processing of uploaded information. Upload information is processed in
a separate transaction. The execution of this event is the first table-specific
action in this transaction.

You can have one begin_upload script for each table in the remote database.
The script is only invoked when the table is actually synchronized.

See also ♦ “end_upload table event” on page 404
♦ “begin_upload connection event” on page 363

SQL example When uploading rows from a remote you may want to place the changes in
an intermediate table and manually process changes yourself. You can
populate a global temporary table in this event.

call ml_add_table_script(
’version1’,
’Leads’,
’begin_upload’,
’insert into T_Leads SELECT *

FROM Leads WHERE Owner = @EmployeeID’)

Java example The following stored procedure call registers a Java method called
beginUploadTable as the script for the begin_upload table event when
synchronizing the script version ver1.

365

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_upload’,
’ExamplePackage.ExampleClass.beginUploadTable’

)

Following is the sample Java method beginUploadTable. It prints a message
to the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public String beginUploadTable(String user,
String table)
{ java.lang.System.out.println("Beginning to process upload

for: " + table);
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginTableUpload as the script for the begin_upload table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_upload’,
’TestScripts.Test.BeginTableUpload’

)

Following is the sample .NET method BeginTableUpload. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public void BeginTableUpload(
string user,
string table)

{ System.Console.WriteLine("Beginning to process upload for: "
+ table);

return(null); }

366

Chapter 15. Synchronization Events

begin_upload_deletes table event
Function Processes statements related to a specific table just before uploading deleted

rows from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description This event runs immediately before applying the changes that result from
rows deleted in the client table named in the second parameter.

You can have one begin_upload_deletes script for each table in the remote
database. The script is only invoked when the table is actually synchronized.

See also ♦ “end_upload_deletes table event” on page 407

SQL example The begin_upload_deletes connection event is used to perform whatever
steps you need performed after uploading inserts and updates for a particular
table, but before deletes are uploaded for that table. The following Adaptive
Server Anywhere SQL script creates a temporary table for storing deletes
temporarily during upload:

call ml_add_table_script(
’ver1’,
’sales_order’,
’begin_upload_deletes’,
’CREATE TABLE #sales_order_deletes

(
id integer NOT NULL default autoincrement,
cust_id integer NOT NULL,
order_date date NOT NULL,
fin_code_id char(2) NULL,
region char(7) NULL,
sales_rep integer NOT NULL,
PRIMARY KEY (id),

)’)

Java example The following stored procedure call registers a Java method called

367

beginUploadDeletes as the script for the begin_upload_deletes table event
when synchronizing the script version ver1.

call ml_add_java_table_script(’ver1’, ’table1’,
’begin_upload_deletes’,
’ExamplePackage.ExampleClass. beginUploadDeletes’)

Following is the sample Java method beginUploadDeletes. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String beginUploadDeletes(
String user,
String table)

throws java.sql.SQLException
{ java.lang.System.out.println("Starting upload

deletes for table: " + table);
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginUploadDeletes as the script for the begin_upload_deletes table event
when synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(’ver1’, ’table1’,
’begin_upload_deletes’,
’TestScripts.Test.BeginUploadDeletes’

)

Following is the sample .NET method BeginUploadDeletes. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public void BeginUploadDeletes(string user,
string table)

{ System.Console.WriteLine("Starting upload
deletes for table: " + table);

return(null); }

368

Chapter 15. Synchronization Events

begin_upload_rows table event
Function Processes statements related to a specific table just before uploading inserts

and updates from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description This event is run immediately prior to applying the changes that result from
inserts and deletes to the client table named in the second parameter.

You can have one begin_upload_rows script for each table in the remote
database. The script is only invoked when the table is actually synchronized.

See also ♦ “end_upload_rows table event” on page 409

SQL example The begin_upload_rows connection event is used to perform whatever steps
you need performed before uploading inserts and updates for a particular
table. The following script calls a stored procedure that prepares the
consolidated database for inserts and updates into the Inventory table:

call ml_add_table_script(
’MyCorp 1.0’,
’Inventory’,
’begin_upload_rows’,
’call PrepareForUpserts()’)

Java example The following stored procedure call registers a Java method called
beginUploadRows as the script for the begin_upload_rows table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_upload_rows’,
’ExamplePackage.ExampleClass.beginUploadRows’)

Following is the sample Java method beginUploadRows. It prints a message

369

to the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public String beginUploadRows(String user,
String table)

throws java.sql.SQLException
{ java.lang.System.out.println("Starting upload rows

for table: " + table + " and user: " + user);
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginUploadRows as the script for the begin_upload_rows table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_upload_rows’,
’TestScripts.Test.BeginUploadRows’

)

Following is the sample .NET method BeginUploadRows. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public void BeginUploadRows(
string user,
string table)

{ System.Console.WriteLine("Starting upload rows
for table: " + table + " and user: " + user);
return(null); }

370

Chapter 15. Synchronization Events

download_cursor table event
Function Defines a cursor to select rows that are to be downloaded and inserted or

updated in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

A default download_cursor SQL script can be generated using the MobiLink
synchronization server -za option. Also, the UltraLite analyzer generates a
SELECT statement based on your reference database that you can use to get
started.

Description The MobiLink synchronization server opens a read-only cursor with which
to fetch a list of rows to download to the remote database. This script should
contain a suitable SELECT statement.

The parameters are the last_download timestamp and the user name. You
can use these values if you choose by placing question marks in your SQL
statement.

You can have one download_cursor script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

To optimize performance of the download stage of synchronization to
UltraLite clients, when the range of primary key values is outside the current
rows on the device, you should order the rows in the download cursor by
primary key. Downloads of large reference tables, for example, can benefit
from this optimization.

Each download_cursor script must contain a SELECT statement or a call to

371

a procedure that contains a SELECT statement. The MobiLink
synchronization server uses this statement to define a cursor in the
consolidated database.

The script must select all columns that correspond to the columns in the
corresponding table in the remote database. The columns in the consolidated
database can have different names than the corresponding columns in the
remote database, but they must be of compatible types.

The columns must be selected in the order that the corresponding columns
are defined in the remote database. This order is identical to the order of the
columns in the reference database.

Note that download_cursor allows for cascading deletes. Thus, you can
delete records from a database.

For Java and .NET applications, this script must return valid SQL.

See also ♦ “Writing scripts to download rows” on page 246
♦ “Writing download_cursor scripts” on page 247
♦ “Partitioning rows among remote databases” on page 52
♦ “download_delete_cursor table event” on page 375

SQL example The following example comes from an Oracle installation, although the
statement is valid against all supported databases. The example downloads
all rows that have been changed since the last time the user downloaded
data, and which match the user name in the emp_name column.

call ml_add_table_script(
’Lab’,
’ULOrder’,
’download_cursor’,
’SELECT order_id, cust_id, prod_id, emp_id,

disc, quant, notes, status
FROM ULOrder
WHERE last_modified >= ? AND emp_name = ?’)

To write a download_cursor SQL script that does not use the first parameter
(the last_download timestamp), but does use the second parameter (the
MobiLink user name), add a dummy clause that affects no rows. For
example:

call ml_add_table_script(
’Lab’,
’ULOrder’,
’download_cursor’,
’SELECT order_id, cust_id, prod_id, emp_id, disc,

quant, notes, status
FROM ULOrder WHERE ? IS NOT NULL AND emp_name = ?’)

You must still use both parameters, but the first ? is a place holder that does

372

Chapter 15. Synchronization Events

nothing.

Java example The following stored procedure call registers a Java method called
downloadCursor as the script for the download_cursor table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’ULCustomer’,
’download_cursor’,
’ExamplePackage.ExampleClass.downloadCursor ’)

Following is the sample Java method downloadCursor. It returns an SQL
statement to download rows where the last_modified column is greater than
or equal to the last download time.

public String downloadCursor(java.sql.Timestamp ts,String user)
{

return("SELECT cust_id, cust_name FROM ULCustomer where last_
modified >= ’ " + ts + " ’ ");

}

.NET example The following stored procedure call registers a .NET method called
DownloadCursor as the script for the download_cursor table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’download_cursor’,
’TestScripts.Test.DownloadCursor’

)

Following is the sample .NET method DownloadCursor. It populates a
temporary table with the contents of a file calledrows.txt. It then returns a
cursor that causes MobiLink to send the rows in the temporary table to the
remote database. This syntax is for Adaptive Server Anywhere consolidated
databases.

373

public string DownloadCursor(
DateTime ts,
string user)

{
DBCommand stmt = curConn.CreateCommand();
StreamReader input = new StreamReader("rows.txt");
string sql = input.ReadLine();

stmt.CommandText = "DELETE FROM dnet_dl_temp";
stmt.ExecuteNonQuery();

while(sql != null){
stmt.CommandText = "INSERT INTO dnet_dl_temp VALUES " + sql;
stmt.ExecuteNonQuery();
sql = input.ReadLine();

}
return("SELECT * FROM dnet_dl_temp");

}

374

Chapter 15. Synchronization Events

download_delete_cursor table event
Function Defines a cursor to select rows that are to be deleted in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server opens a read-only cursor with which
to fetch a list of rows to download, and then insert or update in the remote
database. This script must contain a SELECT statement that returns the
primary key values of the rows to be deleted from the table in the remote
database.

The parameters are the last_download timestamp and the user name. You
can use these values by placing a question mark in your SQL statement.

You can have one download_delete_cursor script for each table in the remote
database.

If the download_delete_cursor has NULLs for the primary key columns for
one or more rows in a table, then MobiLink tells the remote to delete all the
data in the table. For a complete description of this behavior, see“Deleting
all the rows in a table” on page 249.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

Note that rows deleted from the consolidated database will not appear in a
result set defined by a download_delete_cursor event, and so are not
automatically deleted from the remote database. One technique for
identifying rows to be deleted from remote databases is to add a column to
the consolidated database table identifying a row as inactive.

For Java and .NET applications, this script must return valid SQL.

375

See also ♦ “download_cursor table event” on page 371
♦ “Writing scripts to download rows” on page 246
♦ “Partitioning rows among remote databases” on page 52
♦ “Writing download_delete_cursor scripts” on page 248

SQL example This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It deletes from the remote
database any customers who have been changed since the last time this user
downloaded data (Customer.last_modified >= ?), and either

♦ do not belong to the synchronizing user (SalesRep.ml_username !=

?), or

♦ are marked as inactive in the consolidated database (Customer.active

= 0).

call ml_add_table_script(
’ver1’,
’table1’,
’download_delete_cursor’,

’SELECT cust_id FROM Customer key join SalesRep
WHERE Customer.last_modified >= ? AND
(SalesRep.ml_username != ? OR Customer.active = 0)’)

Java example The following stored procedure call registers a Java method called
downloadDeleteCursor as the script for the download_delete_cursor event
when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’download_delete_cursor’,
’ExamplePackage.ExampleClass.downloadDeleteCursor’)

Following is the sample Java method downloadDeleteCursor. It calls a Java
method that generates the SQL for the download delete cursor.

public String downloadDeleteCursor(Timestamp ts,
String user)
{ return(getDownloadCursor(_curUser, _curTable)); }

.NET example The following stored procedure call registers a .NET method called
DownloadDeleteCursor as the script for the download_delete_cursor table
event when synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’download_delete_cursor’,
’TestScripts.Test.DownloadDeleteCursor’

)

376

Chapter 15. Synchronization Events

Following is the sample .NET method DownloadDeleteCursor. It calls a
.NET method that generates the SQL for the download delete cursor.

public string DownloadDeleteCursor(
DateTime timestamp,
string user)

{ return(getDownloadCursor(_curUser, _curTable)); }

377

download_statistics connection event
Function Tracks synchronization statistics for download operations.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128). The MobiLink user
name as specified in your SYNCHRO-
NIZATION USER definition.

2 warnings INTEGER. The number of warnings
issued.

3 errors INTEGER. The number of errors,
including handled errors, that occurred.

4 fetched_rows INTEGER. The number of rows
fetched by the download_cursor script.

5 deleted_rows INTEGER. The number of rows
fetched by the download_deletes
script.

6 filtered_rows INTEGER. The number of rows from
(5) actually sent to the remote. This
reflects download filtering of uploaded
values.

7 bytes INTEGER. The number of bytes sent
to the remote as the download.

Default action None.

Description The download_statistics event allows you to gather, for any user, statistics on
downloads. The download_statistics connection script is called just prior to
the commit at the end of the download transaction.

378

Chapter 15. Synchronization Events

Note:
Depending on the command line, not all warnings or errors are logged, so
the warnings and errors counts may be more than the number of warnings
or errors logged.

See also ♦ “download_statistics table event” on page 381
♦ “upload_statistics connection event” on page 469
♦ “upload_statistics table event” on page 472
♦ “synchronization_statistics connection event” on page 445
♦ “synchronization_statistics table event” on page 448
♦ “time_statistics connection event” on page 450
♦ “time_statistics table event” on page 453
♦ “MobiLink Monitor” on page 117

SQL example The following example inserts synchronization statistics into a table called
download_audit.

call ml_add_connection_script(
’ver1’, ’download_statistics’,

’INSERT INTO download_audit(
user_name, warnings, errors, deleted_rows,
fetched_rows, download_rows, bytes)

VALUES (?,?,?,?,?,?,?)’)

Once vital statistics are inserted into the audit table, you may use these
statistics to monitor your synchronizations and make optimizations where
applicable.

Java example The following stored procedure call registers a Java method called
downloadStatisticsConnection as the script for the download_statistics event
when synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’download_statistics’,
’ExamplePackage.ExampleClass.downloadStatisticsConnection’)

Following is the sample Java method downloadStatisticsConnection. It
prints the number of fetched rows to the MobiLink output log. (This might
be useful at development time but would slow down a production server.)

public String downloadStatisticsConnection(
String user,
int warnings,
int errors,
int fetchedRows,
int deletedRows,
int bytes)

{ java.lang.System.out.println("download connection
stats fetchedRows: " + fetchedRows);
return(null); }

379

.NET example The following stored procedure call registers a .NET method called
DownloadStats as the script for the download_statistics connection event
when synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’download_statistics’,
’TestScripts.Test.DownloadStats’

)

Following is the sample .NET method DownloadStats. It prints the number
of fetched rows to the MobiLink output log. (This might be useful at
development time but would slow down a production server.)

public void DownloadStats(
string user,
int warnings,
int errors,
int deletedRows,
int fetchedRows,
int downloadRows,
int bytes)

{ System.Console.WriteLine("download connection
stats fetchedRows: " + fetchedRows);
return(null); }

380

Chapter 15. Synchronization Events

download_statistics table event
Function Tracks synchronization statistics for download operations by table.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128). This is the MobiLink
user name as specified in your SYNCHRO-
NIZATION USER definition.

2 table VARCHAR(128). The table name.

3 warnings INTEGER. The number of warnings issued.

4 errors INTEGER. The number of errors, including
handled errors, that occurred.

5 fetched_rows INTEGER. The number of rows fetched by
the download_cursor script.

6 deleted_rows INTEGER. The number of rows fetched by
the download_deletes script.

7 filtered_rows INTEGER. The number of rows from (6)
actually sent to the remote. This reflects
download filtering of uploaded values.

8 bytes INTEGER. The number of bytes sent to the
remote as the download.

Default action None.

Description The download_statistics event allows you to gather, for any user and table,
statistics on downloads as they apply to that table. The download_statistics
table script is called just prior to the commit at the end of the download
transaction.

See also ♦ “download_statistics connection event” on page 378
♦ “upload_statistics connection event” on page 469

381

♦ “upload_statistics table event” on page 472
♦ “synchronization_statistics connection event” on page 445
♦ “synchronization_statistics table event” on page 448
♦ “time_statistics connection event” on page 450
♦ “time_statistics table event” on page 453
♦ “MobiLink Monitor” on page 117

SQL example The following example inserts synchronization statistics into a table called
download_audit. Once vital statistics are inserted into the audit table, you
may use these statistics to monitor your synchronizations and make
optimizations where applicable.

call ml_add_java_table_script(
’ver1’,
’table1’,
’download_statistics’,

’INSERT INTO download_audit (
user_name, table, warnings, errors,
deleted_rows, fetched_rows, download_rows, bytes)

VALUES (?,?,?,?,?,?,?,?)’)

Java example The following stored procedure call registers a Java method called
downloadStatisticsTable as the script for the download_statistics table event
when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’download_statistics’,
’ExamplePackage.ExampleClass.downloadStatisticsTable’)

Following is the sample Java method downloadStatisticsTable. It prints
some statistics for this table to the MobiLink output log. (This might be
useful at development time but would slow down a production server.)

public String downloadStatisticsTable(
String user,
String table,
int warnings,
int errors,
int fetchedRows,
int deletedRows,
int bytes)

{ java.lang.System.out.println("download table stats "
+ "table: " + table + "bytes: " + bytes);
return(null); }

.NET example The following stored procedure call registers a .NET method called
DownloadTableStats as the script for the download_statistics table event
when synchronizing the script version ver1 and the table table1.

382

Chapter 15. Synchronization Events

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’download_statistics’,
’TestScripts.Test.DownloadTableStats’

)

Following is the sample .NET method DownloadTableStats. It prints some
statistics for this table to the MobiLink output log. (This might be useful at
development time but would slow down a production server.)

public void DownloadTableStats(
string user,
string table,
int warnings,
int errors,
int deletedRows,
int fetchedRows,
int downloadRows,
int bytes)

{ System.Console.WriteLine("download table stats "
+ "table: " + table + "bytes: " + bytes);
return(null); }

383

end_connection connection event
Function Processes any statements just before the MobiLink synchronization server

closes a connection with the consolidated database server, either in
preparation to shut down or when a connection is removed from the
connection pool.

This script is normally used to complete any actions started by the
begin_connection script and free any resources acquired by it.

Parameters None.

Default action None.

Description You can use the end_connection script to perform an action of your choice
just prior to closing of a connection between the MobiLink synchronization
server and the consolidated database server.

See also ♦ “begin_connection connection event” on page 343

SQL example The following Adaptive Server Anywhere SQL script drops a temporary
table that was created by the begin_connection script. Strictly speaking, this
table doesn’t need to be dropped explicitly, since ASA will do this
automatically when the connection is destroyed. Whether or not a temporary
table needs to be dropped explicitly depends on your consolidated database
type.

call ml_add_connection_script(
’version 1.0’,
’end_connection’,
’drop table #sync_info’)

Java example The following stored procedure call registers a Java method called
endConnection as the script for the end_connection event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’end_connection’,
’ExamplePackage.ExampleClass.endConnection’)

Following is the sample Java method endConnection. It prints a message to
the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public String endConnection()
{ java.lang.System.out.println("ending connection");

return(null); }

.NET example The following stored procedure call registers a .NET method called

384

Chapter 15. Synchronization Events

EndConnection as the script for the end_connection connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’end_connection’,
’TestScripts.Test.EndConnection’

)

Following is the sample .NET method EndConnection. It prints a message to
the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public void EndConnection()
{ System.Console.WriteLine("ending connection");

return(null); }

385

end_download connection event
Function Processes any statements just after the MobiLink synchronization server

concludes preparation of the download data.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script after all rows have
been downloaded and, if expecting a download acknowledgement,
confirmation of receipt has been received. Download information is
processed in a single transaction. The execution of this script is the last non
statistical action in this transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “begin_download connection event” on page 346

SQL example The following example shows one possible use of an end_download
connection script. Each row in the ULEmpCust table has an action column.
The following script uses the value in this column to delete records from the
remote database.

all ml_add_java_connection_script(
’ver1’,
’end_download’,

’DELETE FROM ULEmpCust ec
WHERE ? IS NOT NULL

AND ec.emp_id = ? AND action = ’’D’’’)

Java example The following stored procedure call registers a Java method called
endDownloadConnection as the script for the end_download connection
event when synchronizing the script version ver1.

386

Chapter 15. Synchronization Events

call ml_add_java_connection_script(
’ver1’,
’end_download’,
’ExamplePackage.ExampleClass.endDownloadConnection’)

Following is the sample Java method endDownloadConnection. Each row in
the ULEmpCust table has an action column. The following script uses the
value in this column to delete records from the remote database. It also uses
the current MobiLink connection (saved earlier) to perform an update before
the download ends. This syntax is for Adaptive Server Anywhere
consolidated databases.

public String endDownloadConnection(
Timestamp ts,
String user)

throws java.sql.SQLException
{ String del_sql = "DELETE FROM ULEmpCust ec " +

"WHERE ec.emp_id = ’" + user + "’ " +
"AND action = ’D’ ";
execUpdate(_syncConn, del_sql);
return(null);

}

.NET example The following stored procedure call registers a .NET method called
EndDownload as the script for the end_download connection event when
synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’end_download’,
’TestScripts.Test.EndDownload’)

Following is the sample .NET method EndDownload. Each row in the
ULEmpCust table has an action column. The following script uses uses the
value in this column to delete records from the remote database. It also uses
the current MobiLink connection (saved earlier) to perform an update before
the download ends. This syntax is for Adaptive Server Anywhere
consolidated databases.

public void EndDownload(
DateTime timestamp,
string user)

{ string del_sql = "DELETE FROM ULEmpCust ec " +
"WHERE ec.emp_id = ’" + user + "’ " +
"AND action = ’D’ ";
execUpdate(_syncConn, del_sql);
return(null);

}

387

end_download table event
Function Processes statements related to a specific table just after the MobiLink

synchronization server concludes preparing the stream of downloaded
inserts, updates, and deletes.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script after all rows have
been downloaded and confirmation of receipt has been received. The
download information is prepared in a separate transaction. The execution of
this script is the last table-specific, non-statistical action in this transaction.

You can have one end_download script for each table in the remote database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “begin_download table event” on page 348
♦ “end_download connection event” on page 386

SQL example The end_download table event is used to perform whatever steps you need
performed after downloading a particular table. The following Adaptive
Server Anywhere SQL script drops a temporary table created by a
prepare_for_download script to hold download rows for the sales_summary
table.

call ml_add_table_script(
’MyCorp 1.0’,
’sales_summary’,
’end_download’,
’drop table #sales_summary_download’)

388

Chapter 15. Synchronization Events

Java example The following stored procedure call registers a Java method called
endDownloadTable as the script for the end_download table event when
synchronizing the script version ver1..

call ml_add_java_table_script (
’ver1’,
’table1’,
’end_download’,
’ExamplePackage.ExampleClass.endDownloadTable’)

Following is the sample Java method endDownloadTable. It resets the
current table member variable.

public String endDownloadTable(Timestamp ts,
String user, String table)
{ _curTable = null;

return(null); }

.NET example The following stored procedure call registers a .NET method called
EndTableDownload as the script for the end_download table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_download’,
’TestScripts.Test.EndTableDownload’

)

Following is the sample .NET method EndTableDownload. It resets the
current table member variable.

public void EndTableDownload
DateTime timestamp,
string user,
string table)

{ _curTable = null;
return(null); }

389

end_download_deletes table event
Function Processes statements related to a specific table just after preparing a list of

rows to be deleted from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

Default action None.

Description This script is executed immediately after preparing a list of rows to be
deleted from the named table in the remote database.

You can have one end_download_deletes script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “begin_download_deletes table event” on page 351
♦ “end_download connection event” on page 386
♦ “begin_download_rows table event” on page 353
♦ “end_download_rows table event” on page 393
♦ “download_delete_cursor table event” on page 375

SQL example You may want to mark a row as deleted on the remote database. The
following script updates a column in the consolidated database called
OnRemote.Note: The WHERE clause on the UPDATE matches the
WHERE clause used for your download_delete_cursor event script.

390

Chapter 15. Synchronization Events

Call ml_add_table_script(
’version1’,
’Leads’,
’end_download_deletes’,
’UPDATE Leads SET OnRemote = 0

WHERE LastModified >= ?
AND Owner = ? AND DeleteFlag=1’);

Java example The following stored procedure call registers a Java method called
endDownloadDeletes as the script for the end_download_deletes table event
when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_download_deletes’,
’ExamplePackage.ExampleClass.endDownloadDeletes’)

You may want to mark a row as deleted on the remote database. Following is
the sample Java method endDownloadDeletes. It updates a column in the
consolidated database called OnRemote to indicate the record no longer
resides on the remote database.Note: The WHERE clause on the UPDATE
matches the WHERE clause used for your download_delete_cursor event
script.

public String endDownloadDeletes(
Timestamp ts,
String user,
String table)

{ return("UPDATE Leads SET OnRemote = 0
WHERE LastModified >= ?
AND Owner = ? AND DeleteFlag=1"); }

.NET example The following stored procedure call registers a .NET method called
EndDownloadDeletes as the script for the end_download_deletes table event
when synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_download_deletes’,
’TestScripts.Test.EndDownloadDeletes’

)

You may want to mark a row as deleted on the remote database. Following is
the sample .NET method EndDownloadDeletes. It updates a consolidated
database column called OnRemote to indicate that the record no longer
resides on the remote database. The WHERE clause on the UPDATE
matches the WHERE clause used for your download_delete_cursor event
script.

391

public void EndDownloadDeletes(
DateTime timestamp, string user, string table)

{ return("UPDATE Leads SET OnRemote = 0
WHERE LastModified >= ?
AND Owner = ? AND DeleteFlag=1"); }

392

Chapter 15. Synchronization Events

end_download_rows table event
Function Processes statements related to a specific table just after preparing a list of

rows to be inserted or updated in the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

Default action None.

Description This script is executed immediately after preparing the stream of rows to be
inserted or updated in the named table in the remote database.

You can have one end_download_rows script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “begin_download_rows table event” on page 353
♦ “end_download connection event” on page 386
♦ “end_download_deletes table event” on page 390
♦ “begin_download_deletes table event” on page 351

SQL example You may want to mark a row as successfully downloaded to the remote
database. The following script updates a column in the consolidated database
called OnRemote.Note: The WHERE clause on the UPDATE matches the
WHERE clause used for your download_delete_cursor event script.

call ml_add_table_script(
’version1’,
’Leads’,
’end_download_rows’,
’UPDATE Leads SET OnRemote = 1 WHERE LastModified >= ?

AND Owner = ? AND DownloadFlag=1’);

393

Java example The following stored procedure call registers a Java method called
endDownloadRows as the script for the end_download_rows table event
when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_download_rows’,
’ExamplePackage.ExampleClass.endDownloadRows’)

Following is the sample Java method endDownloadRows. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String endDownloadRows(
Timestamp ts,
String user,
String table)

{ java.lang.System.out.println("Done downloading
inserts and updates for table " + table);
return(null); }

.NET example The following stored procedure call registers a .NET method called
EndDownloadRows as the script for the end_download_rows table event
when synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’end_download_rows’,

’TestScripts.Test.EndDownloadRows’
)

Following is the sample Java method endDownloadRows. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public void EndDownloadRows(
DateTime timestamp,
string user,
string table)

{ System.Console.WriteLine("Done downloading
inserts and updates for table " + table);
return(null); }

394

Chapter 15. Synchronization Events

end_publication connection event
Function Provides useful information about the publication(s) being synchronized.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 generation_number INTEGER. If your deployment does
not use file-based downloads, this
parameter can be ignored. The
default is 1.

2 ml_username VARCHAR(128). If an UltraLite
remote is synchronizing with UL_-
SYNC_ALL, this event is invoked
once with the name ‘unknown’.

3 publication_name VARCHAR(128)

4 last_upload TIMESTAMP. Last successful up-
load.

5 last_download TIMESTAMP. Last successful
download.

Default action None.

Description This event lets you design synchronization logic based on the publications
currently being synchronized. This event is invoked in the same transaction
as the end_synchronization event, and is invoked before the
end_synchronization event. It is invoked once per publication being
synchronized.

If the current synchronization successfully applied an upload, the
last_upload parameter will contain the time this latest upload was applied. If
the current synchronization has a successful download acknowledgement,
the last_download time will contain the time this latest download was
generated. This is the same value that was passed to the download scripts as
the last download timestamp.

Generation number The generation_number parameter is specifically for file-based downloads.

The output value of the generation number is passed from the
begin_publication script to the end_publication script. The meaning of the
generation_number depends on whether the current synchronization is being

395

used to create a download file, or whether the current synchronization has an
upload.

In file-based downloads, generation numbers are used to force an upload
before the download. The number is stored in the download file.

See also ♦ “begin_publication connection event” on page 356
♦ “File-Based Downloads” on page 85

SQL example You may want to record the information for each publication being
synchronized. The following example calls ml_add_connection_script to
assign the event to a stored procedure called RecordPubEndSync.

call ml_add_connection_script(
’version1’,
’end_publication’,
’call RecordPubEndSync(?, ?, ?, ?, ?)’);

Java example The following stored procedure call registers a Java method called
endPublication as the script for the begin_publication connection event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’end_publication’,
’ExamplePackage.ExampleClass.endPublication’)

Following is the sample Java method endPublication. It outputs a message to
the MobiLink log. (This might be useful at development time but would
slow down a production server.)

public String endPublication(
ianywhere.ml.script.InOutInteger generation_number,
String user,
String pub_name,
Timestamp last_upload,
Timestamp last_download)

{ System.out.println(
"Finished synchronizing publication " + pub_name);

return(null); }

.NET example The following stored procedure call registers a .NET method called EndPub
as the script for the end_publication connection event when synchronizing
the script version ver1.

call ml_add_dnet_connection_script(’ver1’,
’end_publication’,
’TestScripts.Test.EndPub’

)

Following is the sample Java method endPublication. It outputs a message to
the MobiLink log. (This might be useful at development time but would

396

Chapter 15. Synchronization Events

slow down a production server.)

public void EndPub(
ref int generation_number,
string user,
string pub_name,
DateTime last_upload,
DateTime last_download)

{
Console.Write(

"Finished synchronizing publication " + pub_name);
}

397

end_synchronization connection event
Function Processes any statements at the time an application disconnects from the

MobiLink synchronization server upon completion of the synchronization
process.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 ml_username VARCHAR(128)

2 sync_ok INTEGER. This value is 1 for
a successful synchronization
and 0 for an unsuccessful
synchronization.

Default action None.

Description The MobiLink synchronization server executes this script after
synchronization is complete and, if expecting a download acknowledgement,
the MobiLink client has returned confirmation of receipt of the download
stream.

This script is executed within a separate transaction after the download
transaction. It is useful for maintaining statistics.

See also ♦ “begin_synchronization connection event” on page 359
♦ “begin_synchronization table event” on page 361
♦ “end_synchronization table event” on page 400

SQL example The following Adaptive Server Anywhere SQL script calls a stored
procedure that records the end time of the synchronization attempt along
with its success or failure status.

call ml_add_connection_script(
’ver1’,
’end_synchronization’,
’call RecordEndOfSyncAttempt(?,?)’)

Java example The following stored procedure call registers a Java method called
endSynchronizationConnection as the script for the end_synchronization
event when synchronizing the script version ver1.

398

Chapter 15. Synchronization Events

call ml_add_java_connection_script(
’ver1’,
’end_synchronization’,
’ExamplePackage.ExampleClass.endSynchronizationConnection’

)

Following is the sample Java method endSynchronizationConnection. It uses
a JDBC connection to execute an update. This syntax is for Adaptive Server
Anywhere consolidated databases.

public String endSynchronizationConnection(
String user)

throws java.sql.SQLException
{ execUpdate(_syncConn, "UPDATE sync_count set cnt =

count + 1 where user_id = ’" + user + "’ ");
return(null); }

.NET example The following stored procedure call registers a .NET method called EndSync
as the script for the end_synchronization connection event when
synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’end_synchronization’,
’TestScripts.Test.EndSync’

)

Following is the sample .NET method EndSync. It updates the table
sync_count. This syntax is for Adaptive Server Anywhere consolidated
databases.

public void EndSync(string user)
{

return("UPDATE sync_count set cnt =
count + 1 where user_id = ’" + user + "’ ");

}

399

end_synchronization table event
Function Processes statements related to a specific table at the time an application

disconnects from the MobiLink synchronization server upon completion of
the synchronization process.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 sync_ok INTEGER. This value is 1 for
a successful synchronization
and 0 for an unsuccessful
synchronization.

Default action None.

Description The MobiLink synchronization server executes this script after an
application has synchronized and is about to disconnect from the MobiLink
synchronization server, and before the connection level script of the same
name.

You can have one end_synchronization script for each table in the remote
database.

See also ♦ “begin_synchronization table event” on page 361
♦ “end_synchronization connection event” on page 398
♦ “end_synchronization table event” on page 400

SQL example The following Adaptive Server Anywhere SQL script drops a temporary
table created by the begin_synchronization script.

call ml_add_table_script(
’ver1’,
’sales_order’,
’end_synchronization’,
’drop table #sales_order’)

Java example The following stored procedure call registers a Java method called

400

Chapter 15. Synchronization Events

endSynchronizationTable as the script for the end_synchronization table
event when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_synchronization’,
’ExamplePackage.ExampleClass.endSynchronizationTable’)

Following is the sample Java method endSynchronizationTable. It returns
SQL to drop a temporary table created by the begin_synchronization script.

public String endSynchronizationTable(String user,
String table)
{ return("drop table #sales_order"); }

.NET example The following stored procedure call registers a .NET method called
EndTableSync as the script for the end_synchronization table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’end_synchronization’,
’TestScripts.Test.EndTableSync’

)

Following is the sample Java method EndTableSync. It returns SQL to drop
a temporary table created by the begin_synchronization script.

public void EndTableSync(string user, string table)
{ return("drop table #sales_order"); }

401

end_upload connection event
Function Processes any statements just after the MobiLink synchronization server

concludes processing uploaded inserts, updates, and deletes.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script as the last step in
the processing of uploaded information. Upload information is processed in
a single transaction. The execution of this script is the last action in this
transaction before statistical scripts.

See also ♦ “begin_upload connection event” on page 363
♦ “end_upload table event” on page 404

Java example The following stored procedure call registers a Java method called
endUploadConnection as the script for the end_upload connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’end_upload’,
’ExamplePackage.ExampleClass.endUploadConnection’)

Following is the sample Java method endUploadConnection. It calls a
method to perform operations on the database.

public String endUploadConnection(String user)
{ // clean up new and old tables

Iterator two_iter = _tables_with_ops.iterator();
while(two_iter.hasNext())
{ TableInfo cur_table = (TableInfo)two_iter.next();

dumpTableOps(_sync_conn, cur_table); }
_tables_with_ops.clear(); }

.NET example The following stored procedure call registers a .NET method called
EndUpload as the script for the end_upload connection event when
synchronizing the script version ver1.

402

Chapter 15. Synchronization Events

call ml_add_dnet_connection_script(
’ver1’,
’end_upload’,
’TestScripts.Test.EndUpload’

)

Following is the C# signature for the call EndUpload.

public void EndUpload(string user)

403

end_upload table event
Function Processes statements related to a specific table just after the MobiLink

synchronization server concludes processing the stream of uploaded inserts,
updates, and deletions.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script as the last step in
the processing of uploaded information. Upload information is processed in
a separate transaction. The execution of this script is the last table-specific
action in this transaction.

You can have one end_upload script for each table in the remote database.

See also ♦ “begin_upload table event” on page 365
♦ “end_upload connection event” on page 402

SQL example The following statements define a stored procedure and an end_upload
script. The first piece of code calls the ml_add_table_script, and the second
creates the ULCustomerIDPool_maintain procedure.

ml_add_table_script(
’custdb’,
’ULCustomerIDPool’,
’end_upload’,

ULCustomerIDPool_maintain(?);)

CREATE OR REPLACE PROCEDURE ULCustomerIDPool_maintain(
SyncUserID IN integer)

AS
pool_count INTEGER;
pool_max INTEGER;

BEGIN
-- Determine how many ids to add to the pool

404

Chapter 15. Synchronization Events

SELECT COUNT(*)
INTO pool_count
FROM ULCustomerIDPool
WHERE pool_emp_id = SyncUserID;

-- Determine the current Customer id max

SELECT MAX(pool_cust_id)
INTO pool_max
FROM ULCustomerIDPool;

-- Top up the pool with new ids

WHILE pool_count < 20 LOOP
pool_max := pool_max + 1;

INSERT INTO ULCustomerIDPool(
pool_cust_id, pool_emp_id)

VALUES (pool_max, SyncUserID);
pool_count := pool_count + 1;

END LOOP;
END;

Java example The following stored procedure call registers a Java method called
endUploadTable as the script for the end_upload table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’
’end_upload’,
’ExamplePackage.ExampleClass.endUploadTable’)

Following is the sample Java method endUploadTable. It generates a delete
for a table with a name related to the passing-in table name. This syntax is
for Adaptive Server Anywhere consolidated databases.

public String endUploadTable(String user,
String table)
{ return("DELETE from ’" + table + "_temp’"); }

.NET example The following stored procedure call registers a .NET method called
EndTableUpload as the script for the end_upload table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_upload’,
’TestScripts.Test.EndTableUpload’

)

Following is the C# signature for the call EndTableUpload.

405

public void EndTableUpload(
string user, string table)

The following C# example moves rows inserted into a temporary table into
the table passed into the script.

public void EndUpload(string user, string table)
{

DBCommand stmt = curConn.CreateCommand();

// move the uploaded rows to the destination table
stmt.CommandText = "INSERT INTO "

+ table
+ " SELECT * FROM dnet_ul_temp";

stmt.ExecuteNonQuery();
stmt.Close();

}

406

Chapter 15. Synchronization Events

end_upload_deletes table event
Function Processes statements related to a specific table just after applying deletes

uploaded from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description This script is run immediately after applying the changes that result from
rows deleted in the remote table named in the second parameter.

You can have one end_upload_deletes script for each table in the remote
database.

See also ♦ “begin_upload_deletes table event” on page 367

SQL example You can use this event to process rows deleted during the upload stream on
an intermediate table. You can compare the rows in the base table with rows
in the intermediate table and decide what to do with the deleted row.

Call ml_add_table_script(
’version1’,
’Leads’,
’end_uploads_deletes’,
’call EndUploadDeletesLeads()’);

Create procedure EndUploadDeletesLeads ()
Begin

FOR names AS curs CURSOR FOR
SELECT LeadID

FROM Leads
WHERE LeadID NOT IN (SELECT LeadID FROM T_Leads);

DO
CALL decide_what_to_do(LeadID);

END FOR;
end

Java example The following stored procedure call registers a Java method called
endUploadDeletes as the script for the end_upload_deletes table event when
synchronizing the script version ver1.

407

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_upload_deletes’,
’ExamplePackage.ExampleClass.endUploadDeletes’)

Following is the sample Java method a endUploadDeletes. It calls a Java
method that manipulates the database.

public String endUploadDeletes(String user,
String table)

throws java.sql.SQLException
{ processUploadedDeletes(_syncConn, table);

return(null); }

.NET example The following stored procedure call registers a .NET method called
EndUploadDeletes as the script for the end_upload_deletes table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_upload_deletes’,
’TestScripts.Test.EndUploadDeletes’

)

Following is the sample .NET method a EndUploadDeletes. It calls a .NET
method that manipulates the database.

public void EndUploadDeletes(string user, string table)
{ processUploadedDeletes(_syncConn, table);

return(null); }

408

Chapter 15. Synchronization Events

end_upload_rows table event
Function Processes statements related to a specific table just after applying uploaded

inserts and updates from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description Uploaded information can require inserting or updating rows in the
consolidated database. This script is run immediately after applying the
changes that result from modifications to the remote table named in the
second parameter.

You can have one end_upload_rows script for each table in the remote
database.

See also ♦ “begin_upload_rows table event” on page 369

SQL example You use this event to process rows deleted during the upload stream on an
intermediate table. You can compare the rows in the base table with the rows
in the intermediate table and decide what to do with the deleted row as the
following example illustrates.

Call ml_add_table_script(
’version1’,
’Leads’,
’end_uploads_deletes’,
’call EndUploadDeletesLeads()’);

Create procedure EndUploadDeletesLeads ()
Begin

FOR names AS curs CURSOR FOR
SELECT LeadID FROM Leads

WHERE LeadID NOT IN (select LeadID from T_Leads);
DO

CALL decide_what_to_do(LeadID);
END FOR;

end

409

Java example The following stored procedure call registers a Java method called
endUploadRows as the script for the end_upload_rows table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_upload_rows’,
’ExamplePackage.ExampleClass.endUploadRows’)

Following is the sample Java method endUploadRows. It calls a Java
method that manipulates the database.

public String endUploadRows(String user,
String table)

throws java.sql.SQLException
{ processUploadedRows(_syncConn, table);

return(null); }

.NET example The following stored procedure call registers a .NET method called
EndUploadRows as the script for the end_upload_rows table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_upload_rows’,
’TestScripts.Test.EndUploadRows’

)

Following is the sample .NET method endUploadRows. It calls a .NET
method that manipulates the database.

public void EndUploadRows(
string user,
string table)

{ processUploadedRows(_syncConn, table);
return(null); }

410

Chapter 15. Synchronization Events

example_upload_cursor table event
Function Provides an event that the MobiLink synchronization server does not use

during processing of the upload stream to handle rows inserted into the
remote database. The event is not called.

Parameters

Item Parameter

1 column 1

2 column 2

.

Description The statement based example_upload_cursor script performs direct inserts
of column values identical to those specified in the example_upload_cursor
statement. The example_upload_cursor event is not called by MobiLink.

SQL example The script is not called. If it were called, it would insert the values into a
table named Customer in the consolidated database. The final column of the
table identifies the Customer as active. The final column does not appear in
the remote database.

SELECT cust_id, name, rep_id
FROM customer
WHERE cust_id=?

411

example_upload_delete table event
Function Processes the upload stream to handle rows deleted from the remote

database. The script is not called by MobiLink.

Parameters

Item Parameter

1 column 1

2 column 2

.

Description The statement based example_upload_delete script handles rows that are
deleted in the remote database. The action taken at the consolidated database
can be a DELETE statement, but need not be.

See also ♦ “upload_delete table event” on page 459

SQL example This example marks customers who are deleted from the remote database as
inactive.

UPDATE Customer
SET active = 0
WHERE cust_id=?

412

Chapter 15. Synchronization Events

example_upload_insert table event
Function Provides an event that the MobiLink synchronization server uses during

processing of the upload stream to handle rows inserted into the remote
database.

Parameters

Item Parameter

1 column 1

2 column 2

.

Description The statement-based example_upload_insert script performs direct inserts of
column values identical to those specified in the upload_insert statement.

The example_upload_insert event is not called.

See also ♦ “upload_insert table event” on page 463

SQL example The script is not called. If it were called, it would insert the values into a
table named Customer in the consolidated database. The final column of the
table identifies the Customer as active. The final column does not appear in
the remote database.

INSERT INTO Customer(cust_id, name, rep_id)
VALUES (?, ?, ?)

413

example_upload_update table event
Function An example event for the upload stream to handle rows updated at the

remote database. The example script is not called by MobiLink but is
identical in form to the upload_update event.

Parameters

Clause Parameters

SET column 1

column 2

. . .

WHERE primary key 1

primary key 2

. . .

Description You create an example_upload_update event script by using the option -za in
the dbmlsync command line.

See also ♦ “upload_update table event” on page 475

SQL example This example handles updates made to the Customer table in the remote
database. The script updates the values in a table named Customer in the
consolidated database. Note: The script is never called and is only an
example script.

UPDATE Customer
SET name=?, rep_id=?
WHERE cust_id=?

414

Chapter 15. Synchronization Events

handle_error connection event
Function Executed whenever the MobiLink synchronization server encounters a SQL

error.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 action_code INTEGER. This is an IN-
OUT parameter.

2 error_code INTEGER

3 error_message TEXT

4 ml_username VARCHAR(128)

5 table VARCHAR(128). If the
script is not a table script, the
table name is NULL.

Default action When no handle_error script is defined or this script causes an error, the
default action code is 3000: rollback the current transaction and cancel the
current synchronization.

Description The MobiLink synchronization server sends in the current action_code.
Initially, this is set to 3000 for each set of errors caused by a single SQL
operation. Usually, there is only one error per SQL operation, but there may
be more. This handle_error script is called once per error in the set. The
action code passed into the first error is 3000. Subsequent calls are passed in
the action code returned by the previous call. MobiLink will use the
numerically highest value returned from multiple calls.

You can modify the action code in the script, and return a value instructing
MobiLink how to proceed. The action code parameter takes one of the
following values:

♦ 1000 Skip the current row and continue processing.

♦ 3000 Rollback the current transaction and cancel the current
synchronization. This is the default action code, and is used when no

415

handle_error script is defined or this script causes an error.

♦ 4000 Rollback the current transaction, cancel the synchronization, and
shut down the MobiLink synchronization server.

SQL scripts for the handle_error event must be implemented as stored
procedures.

The MobiLink synchronization server executes this script whenever it
encounters an error during the synchronization process. The error codes and
message allow you to identify the nature of the error. If the error happened
as part of synchronization, the user name is supplied. Otherwise, this value
is NULL.

If the error happened while manipulating a particular table, the table name is
supplied. Otherwise, this value is NULL. The table name is the name of a
table in the client application. This name may or may not have a direct
counterpart in the consolidated database, depending upon the design of the
synchronization system.

The action code tells the MobiLink synchronization server what to do next.
Before it calls this script, the MobiLink synchronization server sets the
action code to a default value, which depends upon the severity of the error.
Your script may modify this value. Your script must return or set an action
code.

You can return a value from the handle_error script in two ways.

♦ Pass the action parameter to an OUTPUT parameter of a procedure:

CALL my_handle_error(?, ?, ?, ?, ?)

♦ Set the action code via a procedure or function return value:

? = CALL my_handle_error(?, ?, ?, ?)

Most DBMSs use the RETURN statement to set the return value from a
procedure or function.

The CustDB sample application contains error handlers for various
database-management systems.

See also ♦ “report_error connection event” on page 438
♦ “report_odbc_error connection event” on page 440
♦ “handle_odbc_error connection event” on page 419

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It allows your application to ignore redundant inserts.

416

Chapter 15. Synchronization Events

call ml_add_connection_script(
’ver1’,
’handle_error’,

’call ULHandleError(?,?,?,?,?)’)

CREATE PROCEDURE ULHandleError(
INOUT action integer,
IN error_code integer,
IN error_message varchar(1000),
IN user_name varchar(128),
IN table_name varchar(128))

BEGIN
-- -196 is SQLE_INDEX_NOT_UNIQUE
-- -194 is SQLE_INVALID_FOREIGN_KEY
if error_code = -196 or error_code = -194 then

-- ignore the error and keep going
SET action = 1000;

else
-- abort the synchronization
SET action = 3000;

end if;
END

Java example The following stored procedure call registers a Java method called
handleError as the script for the handle_error connection event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’handle_error’,
’ExamplePackage.ExampleClass.handleError’)

Following is the sample Java method handleError. It processes an error based
on the data that is passed in. It also determines the resulting error code.

public String handleError(
ianywhere.ml.script.InOutInteger actionCode,
int errorCode,
String errorMessage,
String user,
String table)

{ int new_ac;
if(user == null)
{ new_ac = handleNonSyncError(errorCode,

errorMessage); }
else if(table == null)

417

{ new_ac = handleConnectionError(errorCode,
errorMessage, user); }

else
{ new_ac = handleTableError(errorCode,

errorMessage, user, table); }
// keep the most serious action code
if(actionCode.getValue() < new_ac)
{ actionCode.setValue(new_ac); }
return(null); }

418

Chapter 15. Synchronization Events

handle_odbc_error connection event
Function Executed whenever the MobiLink synchronization server encounters an

error triggered by the ODBC Driver Manager.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 action_code INTEGER. This is an
INOUT parameter.

2 ODBC_state VARCHAR(5)

3 error_message TEXT

4 ml_username VARCHAR(128)

5 table VARCHAR(128)

Default action The MobiLink synchronization server selects a default action code. You can
modify the action code in the script, and return a value instructing MobiLink
how to proceed. The action code parameter takes one of the following
values:

♦ 1000 Skip the current row and continue processing.

♦ 3000 Rollback the current transaction and cancel the current
synchronization. This is the default action code, and is used when no
handle_error script is defined or this script causes an error.

♦ 4000 Rollback the current transaction, cancel the synchronization, and
shut down the MobiLink synchronization server.

Description The MobiLink synchronization server executes this script whenever it
encounters an error flagged by the ODBC Driver Manager during the
synchronization process. The error codes allow you to identify the nature of
the error.

The action code tells the MobiLink synchronization server what to do next.
Before it calls this script, the MobiLink synchronization server sets the
action code to a default value, which depends upon the severity of the error.

419

Your script may modify this value. Your script must return or set an action
code.

The handle_odbc_error script is called after the handle_error and
report_error scripts, and before the report_odbc_error script.

When only one, but not both, error-handling script is defined, the return
value from that script decides error behavior. When both error-handling
scripts are defined, the MobiLink synchronization server uses the
numerically highest action code. If both handle_error and
handle_ODBC_error are defined, MobiLink uses the numerically highest
action code returned from all calls.

See also ♦ “handle_error connection event” on page 415
♦ “report_error connection event” on page 438
♦ “report_odbc_error connection event” on page 440

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It allows your application to ignore ODBC integrity
constraint violations.

call ml_add_connection_script(
’ver1’,
’handle_odbc_error’,
’call HandleODBCError(?, ?, ?, ?, ?)’)

CREATE PROCEDURE HandleODBCError(INOUT action integer,
IN odbc_state varchar(5), IN error_message varchar(1000),
IN user_name varchar(128), IN table_name varchar(128))
BEGIN

if odbc_state = ’23000’ then
-- ignore the error and keep going
SET action = 1000;

else
-- abort the synchronization
SET action = 3000;

end if;
END

Java example The following stored procedure call registers a Java method called
handleODBCError as the script for the handle_odbc_error event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’, ’handle_odbc_error’,

’ExamplePackage.ExampleClass.handleODBCError’
)

Following is the sample Java method handleODBCError. It processes an
error based on the data that is passed in. It also determines the resulting error
code.

420

Chapter 15. Synchronization Events

public String handleODBCError(
ianywhere.ml.script.InOutInteger actionCode,
String ODBCState,
String errorMessage,
String user,
String table)

{ int new_ac;
if(user == null)
{ new_ac = handleNonSyncError(ODBCState,

errorMessage); }

else if(table == null)
{ new_ac = handleConnectionError(ODBCState,

errorMessage, user); }
else { new_ac = handleTableError(ODBCState,

errorMessage, user, table); }
// keep the most serious action code
if(actionCode.getValue() < new_ac)
{ actionCode.setValue(new_ac); }
return(null); }

421

modify_error_message connection event
Function The script can be used to customize the message text (error, warning, and

information) that is sent to remote databases.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 error_message VARBINARY(1024). This
is an INOUT parameter.

2 ml_username VARCHAR(128)

3 error_code INT

Default action None.

Description

SQL scripts for the modify_error_message event must be implemented as
stored procedures.

SQL example The following example downloads everything from one day ago, regardless
of whether the databases were synchronized since then.

First, create a procedure for your Adaptive Server Anywhere consolidated
database:

CREATE PROCEDURE ModifyLastDownloadTimestamp(
inout last_download_time TIMESTAMP,
in user_name VARCHAR(128))

BEGIN
SELECT dateadd(day, -1, last_download_time)
INTO last_download_time

END

Second, install the script into your Adaptive Server Anywhere consolidated
database:

call ml_add_connection_script(
’modify_ts_test’,
’modify_last_download_timestamp’,
’call ModifyLastDownloadTimestamp (?, ?)’)

Java example The following stored procedure call registers a Java method called

422

Chapter 15. Synchronization Events

modifyLastDownloadTimestamp as the script for the
modify_last_download_timestamp connection event when synchronizing the
script version ver1.

call ml_add_java_connection_script(
’ver1’,
’modify_last_download_timestamp’,
’ExamplePackage.ExampleClass.modifyLastDownloadTimestamp’)

Following is the sample Java method modifyLastDownloadTimestamp. It
prints the current and new timestamp and modifies the timestamp that is
passed in.

public String modifyLastDownloadTimestamp(
Timestamp last_download_time,
String user_name)

{ java.lang.System.out.println("old date: " +
last_download_time.toString());
last_download_time.setDate(
last_download_time.getDate() -1);
java.lang.System.out.println("new date: " +
last_download_time.toString());
return(null); }

423

modify_last_download_timestamp connection
event
Function The script can be used to modify the last_download timestamp for the

current synchronization.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download_timestamp TIMESTAMP. This is an
INOUT parameter.

2 ml_username VARCHAR(128)

Default action None.

Description Use this script when you want to modify the last download timestamp for the
current synchronization. If this script is defined, the MobiLink
synchronization server calls this script and uses the modified last_download
timestamp as the last_download timestamp passed to the download scripts.

SQL scripts for the modify_last_download_timestamp event must be
implemented as stored procedures. The MobiLink synchronization server
passes in the last_download_timestamp as the first parameter to the stored
procedure, and replaces the timestamp by the first value passed out by the
stored procedure.

For example, if you defined the following download_cursor script, the
MobiLink synchronization server would replace the ? with the value of the
modified last download timestamp before executing the SELECT statement:

SELECT pk, c2, c3 FROM test WHERE last_modified >= ?

This script is executed just before the prepare_for_download script, in the
same transaction.

SQL example First, create a procedure for your Adaptive Server Anywhere consolidated
database. In Oracle:

424

Chapter 15. Synchronization Events

CREATE PROCEDURE modify_nldts(
nldts OUT DATE,
ldts IN DATE,
user_name IN VARCHAR)

AS
BEGIN
-- N is max replication latency in consolidated cluster

nldts := nldts - N;
END;

In Adaptive Server Anywhere, Adaptive Server Enterprise, or Microsoft
SQL Server:

CREATE PROCEDURE modify_nldts
@nldts DATETIME OUTPUT,
@ldts DATETIME,
@t_name VARCHAR(128)

AS
BEGIN
-- N is max replication latency in consolidated cluster

SELECT @nldts = @nldts - N
END

Next, install the script into your consolidated database. For an Adaptive
Server Anywhere consolidated database:

ml_add_connection_script(
’my_version’,
’modify_last_download_timestamp’,
’{call modify_nldts(?,?,?)}’)

Java example The following stored procedure call registers a Java method called
modifyLastDownloadTimestamp as the script for the
modify_last_download_timestamp connection event when synchronizing the
script version ver1.

call ml_add_java_connection_script(
’ver1’,
’modify_last_download_timestamp’,
’ExamplePackage.ExampleClass.modifyLastDownloadTimestamp’)

Following is the sample Java method modifyLastDownloadTimestamp. It
prints the current and new timestamp and modifies the timestamp that is
passed in.

425

public String modifyLastDownloadTimestamp(
Timestamp last_download_time,
String user_name)

{ java.lang.System.out.println("old date: " +
last_download_time.toString());
last_download_time.setDate(
last_download_time.getDate() -1);
java.lang.System.out.println("new date: " +
last_download_time.toString());
return(null); }

426

Chapter 15. Synchronization Events

modify_next_last_download_timestamp
connection event
Function The script can be used to modify the last_download timestamp for the next

synchronization.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 download_timestamp TIMESTAMP. This is an
INOUT parameter.

2 last_download_timestamp TIMESTAMP

3 ml_username VARCHAR(128)

Default action None.

Description Use this script when you want to modify the last download timestamp for the
next synchronization. If this script is defined, the MobiLink synchronization
server calls this script and sends the next last download timestamp down to
the remote, which will send it as part of the next synchronization.

SQL scripts for the modify_next_last_download_timestamp event must be
implemented as stored procedures. The MobiLink synchronization server
passes in the download_timestamp as the first parameter to the stored
procedure, and replaces the timestamp by the first value passed out by the
stored procedure.

You can use this script to modify the download timestamp that the MobiLink
synchronization server sends to the MobiLink client. If the client is
dbmlsync, the timestamp is stored in the SYSSYNC system table.

This script is executed in the download transaction, after downloading user
tables.

SQL example The following example shows one application of this script. First, create a
procedure for your Adaptive Server Anywhere consolidated database:

427

CREATE PROCEDURE ModifyNextDownloadTimestamp(
inout download_timestamp TIMESTAMP ,
in last_download TIMESTAMP ,
in user_name VARCHAR(128))
BEGIN

SELECT dateadd(hour, -1, download_timestamp)
INTO download_timestamp

END

Second, install the script into your Adaptive Server Anywhere consolidated
database:

call ml_add_connection_script(
’modify_ts_test’,
’modify_next_last_download_timestamp’,
’call ModifyNextDownloadTimestamp (?, ?, ?)’)

Java example The following stored procedure call registers a Java method called
modifyNextDownloadTimestamp as the script for the
modify_next_last_download_timestamp connection event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’modify_next_last_download_timestamp’,
’ExamplePackage.ExampleClass.modifyNextDownloadTimestamp’)

Following is the sample Java method modifyNextDownloadTimestamp. It
sets the download timestamp back an hour.

public String modifyNextDownloadTimestamp(
Timestamp download_timestamp,
Timestamp last_download,
String user_name)

{ download_timestamp.setHours(
download_timestamp.getHours() -1);
return(null); }

428

Chapter 15. Synchronization Events

modify_user connection event
Function Provide the MobiLink user name.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 ml_username VARCHAR(128). This is an
INOUT parameter.

Default action None.

Description The MobiLink server provides the user name as a parameter when it calls
scripts; the user name is sent by the MobiLink client. In some cases, you
may want to have an alternate user name. This script allows you to modify
the user name used in calling MobiLink scripts.

The ml_username parameter must be long enough to hold the user name.

SQL scripts for the modify_user event must be implemented as stored
procedures.

See also ♦ “authenticate_user connection event” on page 336
♦ “authenticate_user_hashed connection event” on page 340

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It maps a remote database user name to the id of the
user using the device, by using a mapping table called user_device. This
technique can be used when the same person has multiple remotes (such as a
PDA and a laptop) requiring the same synchronization logic (based on the
user’s name or id).

call ml_add_connection_script(
’ver1’,
’modify_user’,
’call ModifyUser(?)’)

CREATE PROCEDURE ModifyUser(INOUT u_name varchar(128))
BEGIN

select user_name
into u_name
from user_device
where device_name = u_name

END

Java example The following stored procedure call registers a Java method called
modifyUser as the script for the modify_user connection event when

429

synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’modify_user’,
’ExamplePackage.ExampleClass.modifyUser’)

Following is the sample Java method modifyUser. It gets the user ID from
the database and then uses it to set the user name.

public void ModifyUser(InOutString io_user_name)
throws SQLException

{ Statement uid_select = curConn.createStatement();
ResultSet uid_result = uid_select.executeQuery(
"select rep_id from SalesRep where name = ’" +

io_user_name.getValue() + "’ ");
uid_result.next();
io_user_name.setValue(
java.lang.Integer.toString(uid_result.getInt(1))
uid_result.close();
uid_select.close();
return; }

.NET example The following stored procedure call registers a .NET method called
ModUser as the script for the modify_user connection event when
synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’modify_user’,
’TestScripts.Test.ModUser’

)

Following is the C# signature for the call ModUser.

public void ModUser(string user)

430

Chapter 15. Synchronization Events

new_row_cursor table event (deprecated)
Function Defines the insert cursor that the MobiLink synchronization server uses to

insert the new values of rows that were updated in the remote database, but
conflict with values presently in the consolidated database.

Use statement-based events for uploads
This script has been deprecated. Use the statement-based event upload_-
new_row_insert instead. Support for the new_row_cursor event is likely to
be removed from future releases.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 ml_username VARCHAR(128)

Default action None.

Description When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server. Also used to input an INSERT operation
in forced conflict mode.

When the MobiLink synchronization server receives an updated row, it
compares the original values with the present values in the consolidated
database, using the upload_cursor. If the old uploaded values do not match
the current value in the consolidated database, the row conflicts. Instead of
updating the row, the MobiLink synchronization server inserts both old and
new values into the consolidated database using the old_row_cursor and the
new_row_cursor, respectively.

The MobiLink synchronization server uses a cursor to insert the new
uploaded values from conflicting rows into the consolidated database. This
script contains the SELECT statement used to define this cursor.

It is common practice to use temporary tables to store the old and new
versions of conflicting rows. You can create these temporary tables in an
earlier script.

You can have one new_row_cursor script for each table in the remote
database.

Normally, the columns in the select list must match those in the client table
in both order and type. However, the MobiLink synchronization server

431

permits you to add one extra column. If you do so, the MobiLink
synchronization server automatically inserts the user name into the first
column, then proceeds to insert the new row values using the remaining
columns, as usual.

Note
The script is ignored if any of the following scripts are defined for the
same table: upload_insert, upload_update, upload_delete, upload_fetch,
upload_new_row_insert, upload_old_row_insert.

See also ♦ “upload_new_row_insert table event” on page 465
♦ “Handling conflicts” on page 64
♦ “resolve_conflict table event” on page 442

SQL example The following SELECT statement defines anew_row_cursorscript suited to
the CustDB sample application.

call ml_add_table_script(
’ver1’,
’table1’,
’new_row_cursor’,

’SELECT order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status

FROM ULNewOrder FOR update’)

The primary key of the ULOrder table is order_id.

The following SELECT statement could instead be used for the same client
table. This variation includes the permitted one extra row. The MobiLink
synchronization server automatically stores the user name in the first
column.

SELECT user_name, order_id, cust_id, prod_id,
emp_id, disc, quant, notes, status

FROM ULNewOrder FOR update

Java example This script must return valid SQL.

The following stored procedure call registers a Java method called
newRowCursor as the script for the new_row_cursor event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’new_row_cursor’,
’ExamplePackage.ExampleClass.newRowCursor’)

Following is the sample Java method newRowCursor. It dynamically
generates a new row cursor statement by calling a Java method.

432

Chapter 15. Synchronization Events

public String newRowCursor()
{ return(getRowCursor (_curTable)); }

433

old_row_cursor table event (deprecated)
Function Defines the cursor that the MobiLink synchronization server uses to insert

the old values of rows that were updated in the remote database, but that
conflict with values presently in the consolidated database. The event is also
used to insert the values of deleted rows when in forced conflict mode.

Use statement-based events for uploads
This script has been deprecated. Use the statement-based event upload_-
old_row_insert instead. Support for the old_row_cursor event is likely to
be removed from future releases.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Item Parameter Description

1 ml_username VARCHAR(128)

Default action None.

Description When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server.

When the MobiLink synchronization server receives an updated row, it
compares the original values with the present values in the consolidated
database, using the upload_cursor event. If the old uploaded values do not
match the current values in the consolidated database, the row conflicts.
Instead of updating the row, the MobiLink synchronization server inserts
both old and new values into the consolidated database using the
old_row_cursor event and the new_row_cursor event.

It is common practice to use temporary tables to store the old and new
versions of conflicting rows. In Adaptive Server Anywhere, you can create
these tables in an earlier script. Some non-ASA consolidated databases
support temporary tables, but they usually differ significantly from the
temporary tables offered by ASA. Consult your DBMS documentation for
details. An alternative to a temporary table is a base table with an extra
column for the MobiLink user name. This effectively partitions the rows of
the base table between concurrent synchronizations.

The MobiLink synchronization server uses a cursor to insert the old
uploaded values from conflicting rows into the consolidated database. This
script contains the SELECT statement used to define this cursor.

434

Chapter 15. Synchronization Events

You can have one old_row_cursor script for each table in the remote
database.

Normally, the columns in the SELECT list must match those in the client
table in both order and type. However, the MobiLink synchronization server
permits you to add one extra column. If you do so, the MobiLink
synchronization server automatically inserts the user name into the first
column, then proceeds to insert the old row values using the remaining
columns, as usual.

See also ♦ “upload_old_row_insert table event” on page 467
♦ “Handling conflicts” on page 64
♦ “resolve_conflict table event” on page 442

SQL example The following SELECT statement defines anold_row_cursorscript suited to
the CustDB sample application for an Oracle installation. The primary key
of the ULOrder table is order_id.

call ml_add_table_script(
’ver1’,
’table1’,
’old_row_cursor’,

’SELECT order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status

FROM ULOldOrder’)

The following SELECT statement could instead be used for the same client
table. This variation includes the permitted one extra row. The MobiLink
synchronization server automatically stores the user name in the first
column.

SELECT user_name, order_id, cust_id, prod_id,
emp_id, disc, quant, notes, status

FROM ULOldOrder

Java example This script must return valid SQL.

The following stored procedure call registers a Java method called
oldRowCursor as the script for the old_row_cursor event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’old_row_cursor’,
’ExamplePackage.ExampleClass.oldRowCursor’)

Following is the sample Java method oldRowCursor. It dynamically
generates an old row cursor statement by calling a Java method.

public String oldRowCursor()
{ return(getRowCursor(_curTable)); }

435

prepare_for_download connection event
Function Processes any required operations between the upload and download

transactions.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script as a separate
transaction, between the upload transaction and the start of the download
transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also ♦ “end_upload connection event” on page 402
♦ “begin_download connection event” on page 346

Java example The following stored procedure call registers a Java method called
prepareForDownload as the script for the prepare_for_download event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’prepare_for_download’,
’ExamplePackage.ExampleClass.prepareForDownload’)

Following is the sample Java method prepareForDownload. It calls a Java
method to modify some rows in the database.

public String prepareForDownload(Timestamp ts,
String user)
{ adjustUploadedRows(_syncConn, user);

return(null); }

.NET example The following stored procedure call registers a .NET method called

436

Chapter 15. Synchronization Events

PrepareForDownload as the script for the prepare_for_download connection
event when synchronizing the script version ver1.

call ml_add_dnet_connection_script(’ver1’,
’prepare_for_download’,
’TestScripts.Test.PrepareForDownload’

)

Following is the C# signature for the call PrepareForDownload.

public void PrepareForDownload(
DateTime timestamp,
string user)

437

report_error connection event
Function Allows you to log errors and to record the actions selected by the

handle_error script.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 action_code INTEGER. This parameter is mandatory.

2 error_code INTEGER. This parameter is optional
if none of the following parameters are
specified.

3 error_message TEXT. This parameter is optional if none
of the following parameters are specified.

4 ml_username VARCHAR(128). This parameter is op-
tional if none of the following parameters
are specified.

5 table VARCHAR(128). This parameter is
optional.

Default action None.

Description This script allows you to log errors and to record the actions selected by the
handle_error script. This script is executed after the handle_error event,
whether or not a handle_error script is defined. It is always executed in its
own transaction, on a different database connection than the synchronization
connection (the administrative/information connection).

The error code and error message allow you to identify the nature of the
error. The action code value is returned by the last call to an error handling
script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied.
Otherwise, this value is NULL.

If the error happened while manipulating a particular table, the table name is
supplied. Otherwise, this value is NULL. The table name is the name of a

438

Chapter 15. Synchronization Events

table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on the design of the
synchronization system.

See also ♦ “handle_error connection event” on page 415
♦ “handle_odbc_error connection event” on page 419
♦ “report_odbc_error connection event” on page 440

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It inserts a row into a table used to record
synchronization errors.

call ml_add_connection_script(
’ver1’,
’report_error’,
’insert into sync_error(

action_code,
error_code,
error_message,
user_name,
table_name)

values(?, ?, ?, ?, ?)’)

Java example The following stored procedure call registers a Java method called
reportError as the script for the report_error connection event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’report_error,
’ExamplePackage.ExampleClass.reportError’)

Following is the sample Java method reportError. It logs the error to a table
using the JDBC connection provided by MobiLink. It also sets the action
code.

public String reportError(
ianywhere.ml.script.InOutInteger actionCode,
int errorCode, String errorMessage, String user,
String table)

throws java.sql.SQLException
{ // insert error information in a table

JDBCLogError(_syncConn, errorCode, errorMessage,
user, table);
actionCode.setValue(getActionCode(errorCode));
return(null); }

439

report_odbc_error connection event
Function Allows you to log errors and to record the actions selected by the

handle_odbc_error script.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 action_code INTEGER. This parameter is manda-
tory.

2 ODBC_state VARCHAR(5). This parameter is
optional if none of the following pa-
rameters are specified.

3 error_message TEXT. This parameter is optional if
none of the following parameters are
specified.

4 ml_username VARCHAR(128). This parameter
is optional if none of the following
parameters are specified.

5 table VARCHAR(128). This parameter is
optional.

Default action None.

Description This script allows you to log errors and to record the actions selected by the
handle_odbc_error script. This script is executed after the
handle_odbc_error event, whether or not a handle_odbc_error script is
defined. It is always executed in its own transaction, on a different database
connection than the synchronization connection (the
administrative/information connection).

The error code and error message allow you to identify the nature of the
error. The action code value is returned by the last call to an error handling
script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied.
Otherwise, this value is NULL.

440

Chapter 15. Synchronization Events

If the error happened while manipulating a particular table, the table name is
supplied. Otherwise, this value is NULL. The table name is the name of a
table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on the design of the
synchronization system.

See also ♦ “handle_error connection event” on page 415
♦ “handle_odbc_error connection event” on page 419
♦ “report_error connection event” on page 438

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It inserts a row into a table used to record
synchronization errors.

call ml_add_connection_script(
’ver1’,
’report_odbc_error’,
’insert into sync_error(

action_code,
odbc_state,
error_message,
user_name,
table_name)

values(?, ?, ?, ?, ?)’)

Java example The following stored procedure call registers a Java method called
reportODBCError as the script for the report_odbc_error event when
synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’report_odbc_error’,
’ExamplePackage.ExampleClass.reportODBCError’)

Following is the sample Java method reportODBCError. It logs the error to a
table using the JDBC connection provided by MobiLink. It also sets the
action code.

public String reportODBCError(
ianywhere.ml.script.InOutInteger actionCode,
String ODBCState,
String errorMessage,
String user,
String table)

throws java.sql.SQLException
{ JDBCLogError(_syncConn, ODBCState, errorMessage,

user, table);
actionCode.setValue(getActionCode(ODBCState));
return(null); }

441

resolve_conflict table event
Function Defines a process for resolving a conflict in a specific table.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server.

When the MobiLink synchronization server receives an updated row, it
compares the original values with the present values in the consolidated
database. The comparison is carried out using the upload_fetch script.

If the old uploaded values do not match the current values in the
consolidated database, the row conflicts. Instead of updating the row, the
MobiLink synchronization server inserts both old and new values into the
consolidated database. The old and new rows are handled using the
upload_old_row_insert and upload_new_row_insert scripts, respectively. If
you are using cursor-based uploads the rows are handled using
old_row_cursor and new_row_cursor, respectively.

Once the values have been inserted, the MobiLink synchronization server
executes the resolve_conflict script. It provides the opportunity to resolve
the conflict. You can implement any scheme of your choosing.

This script is executed once per conflict.

Alternatively, instead of defining the resolve_conflict script, you can resolve
conflicts in a set-oriented fashion by putting conflict-resolution logic either
in your end_upload_rows script or in your end_upload table script.

You can have one resolve_conflict script for each table in the remote
database.

See also ♦ “upload_old_row_insert table event” on page 467

442

Chapter 15. Synchronization Events

♦ “upload_new_row_insert table event” on page 465
♦ “upload_update table event” on page 475
♦ “old_row_cursor table event (deprecated)” on page 434
♦ “new_row_cursor table event (deprecated)” on page 431
♦ “end_upload_rows table event” on page 409

SQL example The following statement defines aresolve_conflictscript suited to the
CustDB sample application for an Oracle installation. It calls a stored
procedureULResolveOrderConflict.

exec ml_add_table_script(
’custdb’, ’ULOrder’, ’resolve_conflict’,
’begin ULResolveOrderConflict();

end; ’)

CREATE OR REPLACE PROCEDURE ULResolveOrderConflict()
AS

new_order_id integer;
new_status varchar(20);
new_notes varchar(50);

BEGIN
-- approval overrides denial
SELECT order_id, status, notes

INTO new_order_id, new_status, new_notes
FROM ULNewOrder

WHERE syncuser_id = SyncUserID;
IF new_status = ’Approved’ THEN

UPDATE ULOrder o
SET o.status = new_status, o.notes =

new_notes
WHERE o.order_id = new_order_id;

END IF;
DELETE FROM ULOldOrder;
DELETE FROM ULNewOrder;

END;

Java example The following stored procedure call registers a Java method called
resolveConflict as the script for the resolve_conflict table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’resolve_conflict’,
’ExamplePackage.ExampleClass.resolveConflict’)

Following is the sample Java method resolveConflict. It calls a Java method
that will use the JDBC connection provided by MobiLink. It also sets the
action code.

443

public String resolveConflict(String user,
String table)

{ resolveRows(_syncConn, user); }

444

Chapter 15. Synchronization Events

synchronization_statistics connection event
Function Tracks synchronization statistics.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 warnings INTEGER

3 errors INTEGER

4 deadlocks INTEGER

5 synchronized_tables INTEGER

6 connection_retries INTEGER

Default action None.

Description The synchronization_statistics event allows you to gather, for any user and
connection, various statistics about the current synchronization. The
synchronization_statistics connection script is called just prior to the commit
at the end of the end synchronization transaction.

See also ♦ “download_statistics connection event” on page 378
♦ “download_statistics table event” on page 381
♦ “upload_statistics connection event” on page 469
♦ “upload_statistics table event” on page 472
♦ “synchronization_statistics table event” on page 448
♦ “time_statistics connection event” on page 450
♦ “time_statistics table event” on page 453
♦ “MobiLink Monitor” on page 117

SQL example The following example inserts synchronization statistics into the
sync_con_audit table.

445

call ml_add_connection_script(
’ver1’,
’synchronization_statistics’,

’INSERT INTO sync_con_audit(
ml_user, warnings, errors,
deadlocks, synchronized_tables,
connection_retries)

VALUES (?,?,?,?,?,?)’)

Once statistics are inserted into the audit table, you may use these statistics
to monitor your synchronizations and make optimizations where applicable.

Java example The following stored procedure call registers a Java method called
synchronizationStatisticsConnection as the script for the
synchronization_statistics connection event when synchronizing the script
version ver1.

call ml_add_java_connection_script(
’ver1’,
’synchronization_statistics’,
’ExamplePackage.ExampleClass.synchronizationStatisticsConnecti

on’
)

Following is the sample Java method synchronizationStatisticsConnection.
It logs some of the statistics to the MobiLink output log. (This might be
useful at development time but would slow down a production server.)

public String synchronizationStatisticsConnection(
String user, int warnings, int errors, int deadlocks,
int synchronizedTables, int connectionRetries)

{ java.lang.System.out.println("synch statistics
number of deadlocks: " + deadlocks ;
return(null); }

.NET example The following stored procedure call registers a .NET method called
SyncStats as the script for the synchronization_statistics connection event
when synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’synchronization_statistics’,
’TestScripts.Test.SyncStats’

)

Following is the sample .NET method SyncStats. It logs some of the
statistics to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

446

Chapter 15. Synchronization Events

public void SyncStats(
string user,
int warnings,
int errors,
int deadLocks,
int syncedTables,
int connRetries)

{ System.Console.WriteLine("synch statistics
number of deadlocks: " + deadlocks ;
return(null); }

447

synchronization_statistics table event
Function Tracks synchronization statistics.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 warnings INTEGER

4 errors INTEGER

Default action None.

Description The synchronization_statistics event allows you to gather, for any user and
table, the number of warnings and errors that occurred during
synchronization. The synchronization_statistics table script is called just
prior to the commit at the end of the end synchronization transaction.

See also ♦ “download_statistics connection event” on page 378
♦ “download_statistics table event” on page 381
♦ “upload_statistics connection event” on page 469
♦ “upload_statistics table event” on page 472
♦ “synchronization_statistics connection event” on page 445
♦ “time_statistics connection event” on page 450
♦ “time_statistics table event” on page 453
♦ “MobiLink Monitor” on page 117

SQL example The following example inserts synchronization statistics into the
sync_tab_audit table.

call ml_add_java_table_script(
’ver1’,
’table1’,

’INSERT INTO sync_tab_audit (ml_user, table,
warnings, errors) VALUES (?,?,?,?)’)

Once synchronization statistics are inserted into the audit table, you may use
these statistics to monitor your synchronizations and make optimizations

448

Chapter 15. Synchronization Events

where applicable.

Java example The following stored procedure call registers a Java method called
synchronizationStatisticsTable as the script for the synchronization_statistics
table event when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’synchronization_statistics’,
’ExamplePackage.ExampleClass.synchronizationStatisticsTable’

)

Following is the sample Java method synchronizationStatisticsTable. It logs
some of the statistics to the MobiLink output log. (This might be useful at
development time but would slow down a production server.)

public String synchronizationStatisticsTable(
String user, String table, int warnings, int errors)
{ java.lang.System.out.println("synch statistics for

table: " + table + " errors: " + errors);
return(null); }

.NET example The following stored procedure call registers a .NET method called
SyncTableStats as the script for the synchronization_statistics table event
when synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’synchronization_statistics’,
’TestScripts.Test.SyncTableStats’

)

Following is the sample .NET method SyncTableStats. It logs some of the
statistics to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public void SyncTableStats(
string user,
string table,
int warnings,
int errors)

{ System.Console.WriteLine("synch statistics for
table: " + table + " errors: " + errors);
return(null); }

449

time_statistics connection event
Function Tracks time statistics by user and event.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 event_name VARCHAR(128)

3 num_calls INTEGER

4 min_time INTEGER. Milliseconds.

5 max_time INTEGER. Milliseconds.

6 total_time INTEGER. Milliseconds.

Default action None.

Description The time_statistics event allows you to gather time statistics for any user
during synchronization. The statistics are gathered only for those events for
which there is a corresponding script. The script gathers aggregate data for
occasions where a single event occurs multiple times. The script can be
especially useful for time comparisons across users, events and tables.

See also ♦ “time_statistics table event” on page 453
♦ “download_statistics connection event” on page 378
♦ “download_statistics table event” on page 381
♦ “upload_statistics connection event” on page 469
♦ “upload_statistics table event” on page 472
♦ “synchronization_statistics connection event” on page 445
♦ “synchronization_statistics table event” on page 448
♦ “MobiLink Monitor” on page 117

SQL example The following example inserts statistical information into the time_statistics
table.

450

Chapter 15. Synchronization Events

call ml_add_connection_script(
’ver1’,
’time_statistics’,

’INSERT INTO time_statistics (id, ml_user, table,
event_name, num_calls, min_time, max_time, total_time)

VALUES (ts_id.nextval,?,?,?,?,?,?)’)

Java example The following stored procedure call registers a Java method called
timeStatisticsConnection as the script for the time_statistics connection
event when synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’time_statistics’,
’ExamplePackage.ExampleClass.timeStatisticsConnection’)

Following is the sample Java method timeStatisticsConnection. It prints
statistics for the prepare_for_download event. (This might be useful at
development time but would slow down a production server.)

public void timeStatisticsConnection(
String ml_username,
String table_name,
String event_name,

int num_calls, int min_time, int max_time,
int total_time)
{ if(event_name.equals("prepare_for_download")

{ java.lang.System.out.println(
"prepare_for_download num_calls: " + num_calls +
"total_time: " + total_time); } }

.NET example The following stored procedure call registers a .NET method called
TimeStats as the script for the time_statistics connection event when
synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’time_statistics’,
’TestScripts.Test.TimeStats’

)

Following is the sample Java method TimeStats. It prints statistics for the
prepare_for_download event. (This might be useful at development time but
would slow down a production server.)

451

public void TimeStats(
string user,
string eventName,
int numCalls,
int minTime,
int maxTime,
int totTime)

{ if(event_name=="prepare_for_download")
{ System.Console.WriteLine(

"prepare_for_download num_calls: " + num_calls +
"total_time: " + total_time); } }

452

Chapter 15. Synchronization Events

time_statistics table event
Function Tracks time statistics.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 event_name VARCHAR(128)

4 num_calls INTEGER

5 min_time INTEGER. Milliseconds.

6 max_time INTEGER. Milliseconds.

7 total_time INTEGER. Milliseconds.

Default action None.

Description The time_statistics table event allows you to gather time statistics for any
user and table during synchronization. The statistics are gathered only for
those events for which there is a corresponding script. The script gathers
aggregate data for occasions where a single event occurs multiple times. The
script can be especially useful for time comparisons across users, events and
tables.

See also ♦ “time_statistics connection event” on page 450
♦ “download_statistics connection event” on page 378
♦ “download_statistics table event” on page 381
♦ “upload_statistics connection event” on page 469
♦ “upload_statistics table event” on page 472
♦ “synchronization_statistics connection event” on page 445
♦ “synchronization_statistics table event” on page 448
♦ “MobiLink Monitor” on page 117

SQL example The following example inserts statistical information into the time_statistics
table.

453

INSERT INTO time_statistics(
ml_user, table, event_name, num_calls,
min_time, max_time, total_time)

VALUES (?,?,?,?,?,?,?)

Java example The following stored procedure call registers a Java method called
timeStatisticsTable as the script for the time_statistics table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’time_statistics’,
’ExamplePackage.ExampleClass.timeStatisticsTable’)

Following is the sample Java method timeStatisticsTable. It prints statistics
for the upload_old_row_insert event.

public void timeStatisticsConnection(
String ml_username,
String table_name,
String event_name,

int num_calls, int min_time, int max_time,
int total_time)
{ if(event_name.equals("upload_old_row_insert")

{ java.lang.System.out.println(
"upload_old_row_insert num_calls: " + num_calls +
"total_time: " + total_time); } }

.NET example The following stored procedure call registers a .NET method called
TimeTableStats as the script for the time_statistics table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’time_statistics’,
’TestScripts.Test.TimeTableStats’

)

Following is the sample .NET method TimeTableStats. It prints statistics for
the upload_old_row_insert event.

454

Chapter 15. Synchronization Events

public void TimeTableStats(
string user,
string table,
string eventName,
int numCalls,
int minTime,
int maxTime,
int totTime)

{ if(event_name == "upload_old_row_insert")
{ System.Console.WriteLine(

"upload_old_row_insert num_calls: " + num_calls +
"total_time: " + total_time); } }

455

upload_cursor table event (deprecated)
Function Defines a cursor that the MobiLink synchronization server uses to insert,

update, or delete rows during processing of the upload stream.

Use statement-based events for uploads
This script has been deprecated. Use the statement-based events upload_-
delete, upload_insert, and upload_update instead of the upload_cursor
event to process the upload stream. Support for the upload_cursor event is
likely to be removed from future releases.

Parameters

Item Parameter

1 primary key 1

2 primary key 2

.

Default action None.

Description The MobiLink synchronization server opens a cursor with which to insert,
update, or delete rows in the consolidated database based on rows uploaded
from a client application. This script should contain a suitable SELECT
statement or call a stored procedure that contains a suitable SELECT
statement.

The parameters are the values of each column included in the primary key of
the corresponding client table. You must use these in a WHERE clause, so
that the synchronization can identify a unique row based on these values.
The type and order of the parameters is as defined in the
example_upload_cursor script. This order is the same as that in the
corresponding table definition in the remote database, which in turn may
have been copied from your reference database.

You can have one upload_cursor script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also ♦ “Writing scripts to upload rows” on page 244
♦ “upload_delete table event” on page 459
♦ “upload_insert table event” on page 463
♦ “upload_update table event” on page 475

SQL example The following SELECT statement defines the upload cursor in the CustDB
sample application.

456

Chapter 15. Synchronization Events

call ml_add_table_script(
’ver1’,
’table1’,
’upload_cursor’,

’SELECT cust_id, cust_name
FROM ULCustomer
WHERE cust_id = ?’)

The primary key of the ULCustomer table in the CustDB sample application
is the column cust_id. If the corresponding table in the consolidated database
is, instead, named Customer, then change the above statement as follows.

SELECT cust_id, cust_name
FROM Customer
WHERE cust_id = ?

Java example The following stored procedure call registers a Java method called
uploadCursor as the script for the upload_cursor event when synchronizing
the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_cursor’,
’ExamplePackage.ExampleClass.uploadCursor’)

Following is the sample Java method uploadCursor. It calls
getUploadCursor to dynamically generate an upload cursor.

public String uploadCursor()
{ return(getUploadCursor(_curTable)); }

.NET example The following stored procedure call registers a .NET method called
UploadCursor as the script for the upload_cursor event when synchronizing
the script version ver1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_cursor’,
’TestScripts.Test.UploadCursor’)

The following C# example deletes the contents of a temporary table. It then
returns SQL that causes rows to be uploaded into the temporary table.

457

public string UploadCursor()
{

DBCommand stmt = curConn.CreateCommand();
stmt.CommandText = "DELETE FROM dnet_ul_temp";
stmt.ExecuteNonQuery();
stmt.Close();

return("SELECT * FROM dnet_ul_temp WHERE pk = ?");
}

458

Chapter 15. Synchronization Events

upload_delete table event
Function Provides an event that the MobiLink synchronization server uses during

processing of the upload stream to handle rows deleted from the remote
database.

Parameters

Item Parameter

1 primary key 1

2 primary key 2

.

Default action None.

Description The statement-based upload_delete script handles rows that are deleted on
the remote database. The action taken at the consolidated database can be a
DELETE statement, but need not be.

You can have one upload_delete script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also ♦ “upload_insert table event” on page 463
♦ “upload_update table event” on page 475

SQL example This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It marks customers that are
deleted from the remote database as inactive.

call ml_add_table_script(
’ver1’,
’table1’,
’upload_delete’,

’UPDATE Customer SET active = 0 WHERE cust_id=?’)

Java example The following stored procedure call registers a Java method called
uploadDeleteTable as the script for the upload_delete table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_delete’,
’ExamplePackage.ExampleClass.uploadDeleteTable’)

Following is the sample Java method uploadDeleteTable. It calls genUD
which dynamically generates an UPLOAD statement.

459

public string uploadDeleteTable()
{ return(genUD(_curTable)); }

.NET example The following stored procedure call registers a .NET method called
UploadDelete as the script for the upload_delete table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_delete’,
’TestScripts.Test.UploadDelete’

)

Following is the sample .NET method UploadDelete. It calls genUD which
dynamically generates an UPLOAD statement.

public string UploadDelete(object pk1)
{ return(genUD(_curTable)); }

460

Chapter 15. Synchronization Events

upload_fetch table event
Function Provides an event that the MobiLink synchronization server uses to identify

update conflicts during statement-based processing of the upload stream.

Parameters

Item Parameter

1 primary key 1

2 primary key 2

.

Default action None.

Description The statement-based upload_fetch script fetches rows from a synchronized
table for the purposes of conflict detection. It is a companion to the
upload_update event.

The columns of the result set must match the number of columns being
uploaded from the remote database for this table. If the values returned do
not match the pre-image in the uploaded row, a conflict is identified.

You can have one upload_fetch script for each table in the remote database.

This script may be ignored if none of the following scripts are defined:
upload_new_row_insert, upload_old_row_insert, and resolve_conflict.

See also ♦ “resolve_conflict table event” on page 442
♦ “upload_delete table event” on page 459
♦ “upload_insert table event” on page 463
♦ “upload_update table event” on page 475

SQL example The following SQL script is taken from the Contact sample and can be found
in Samples\MobiLink\Contact\build_consol.sqlin the SQL Anywhere
installation. It is used to identify conflicts that occur when rows updated in
the remote database Product table are uploaded. This script selects rows
from a table also named Product, but depending on your consolidated and
remote database schema, the two table names may not match.

call ml_add_table_script(
’ver1’,
’table1’,
’upload_fetch’,

’SELECT id, name, size, quantity, unit_price
FROM Product WHERE id=?’)

Java example This script must return valid SQL.

461

The following stored procedure call registers a Java method called
uploadFetchTable as the script for the upload_fetch table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_fetch’,
’ExamplePackage.ExampleClass.uploadFetchTable’)

Following is the sample Java method uploadFetchTable. It calls genUF to
dynamically generate an UPLOAD statement.

public string uploadFetchTable()
{ return(genUF(_curTable)); }

462

Chapter 15. Synchronization Events

upload_insert table event
Function Provides an event that the MobiLink synchronization server uses during

processing of the upload stream to handle rows inserted into the remote
database.

Parameters

Item Parameter

1 column 1

2 column 2

.

Default action None.

Description The statement based upload_insert script performs direct inserts of column
values.

You can have one upload_insert script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also ♦ “upload_delete table event” on page 459
♦ “upload_update table event” on page 475
♦ “upload_fetch table event” on page 461

SQL example This example handles inserts that were made on the Customer table in the
remote database. The script inserts the values into a table named Customer
in the consolidated database. The final column of the table identifies the
Customer as active. The final column does not appear in the remote
database.

call ml_add_table_script(
’ver1’,
’Customer’,
’upload_insert’,

’INSERT INTO Customer(cust_id, name, rep_id, active)
VALUES (?, ?, ?, 1)’)

Java example The following stored procedure call registers a Java method called
uploadInsertTable as the script for the upload_insert table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_insert’,
’ExamplePackage.ExampleClass.uploadInsertTable’)

463

Following is the sample Java method uploadInsertTable. It dynamically
generates an UPLOAD statement. This syntax is for Adaptive Server
Anywhere consolidated databases.

public string uploadInsertTable()
{ return("insert into" + _curTable + getCols(_curTable)

+ "values" + getQM(_curTable)); }

.NET example The following stored procedure call registers a .NET method called
UploadInsert as the script for the upload_insert table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_insert’,
’TestScripts.Test.UploadInsert’

)

Following is the sample .NET method UploadInsert. It returns an UPLOAD
statement for the ULCustomer table.

public static string UploadInsert()
{

return("INSERT INTO ULCustomer(cust_id,cust_name) values
(?,?)");

}

464

Chapter 15. Synchronization Events

upload_new_row_insert table event
Function Conflict resolution scripts for statement-based uploads commonly require

access to the old and new values of rows uploaded from the remote database.
This event allows you to handle the new, updated values of rows uploaded
from the remote database.

Parameters

Item Parameter

ml_username VARCHAR(128). This parameter is op-
tional.

1 column 1

2 column 2

.

Default action None.

Description When a MobiLink client sends an updated row to the MobiLink
synchronization server, it includes not only the new values (the post-image),
but also a copy of the old row values (the pre-image). When the pre-image
does not match the current values in the consolidated database, a conflict is
detected.

This event allows you to save post-image values to a table. You can use this
event to assist in developing conflict resolution procedures for
statement-based updates. The parameters for this event hold new row values
from the remote database before the update is carried out on the
corresponding consolidated database table. This event is also used to insert
rows in statement-based, forced-conflict mode.

The script for this event is usually an insert statement that inserts the new
row into a temporary table for use by a resolve_conflict script.

You can have one upload_new_row_insert script for each table in the remote
database.

For Java and .NET applications, this script must return valid SQL.

See also ♦ “Handling conflicts” on page 64
♦ “resolve_conflict table event” on page 442
♦ “upload_old_row_insert table event” on page 467
♦ “upload_update table event” on page 475
♦ “Storing the user name” on page 71

SQL example This example handles updates made on the product table in the remote

465

database. The script inserts the new value of the row into a global temporary
table named product_conflict. The final column of the table identifies the
row as a new row.

call ml_add_table_script(
’ver1’,
’table1’,
’upload_new_row_insert’,

’INSERT INTO DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)

VALUES(?, ?, ?, ?, ?, ’N’)’)

Java example The following stored procedure call registers a Java method called
uploadNewRowInsertTable as the script for the upload_new_row_insert
table event when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_new_row_insert’,
’ExamplePackage.ExampleClass.uploadNewRowInsertTable’

)

Following is the sample Java method uploadNewRowInsertTable. It
dynamically generates an UPLOAD statement. This syntax is for Adaptive
Server Anywhere consolidated databases.

public string uploadNewRowInsertTable()
{ return("insert into" + _curTable + "_new" +

getCols(_curTable) + "values" + getQM(_curTable)); }

466

Chapter 15. Synchronization Events

upload_old_row_insert table event
Function Conflict resolution scripts for statement-based uploads commonly require

access to the old and new values of rows uploaded from the remote database.
This event allows you to handle the old values of rows uploaded from the
remote database.

Parameters

Item Parameter

ml_username VARCHAR(128). This parameter is op-
tional.

1 column 1

2 column 2

.

Default action None.

Description When a MobiLink client sends an updated row to the MobiLink
synchronization server, it includes not only the new values (the post-image),
but also a copy of the old row values (the pre-image). When the pre-image
does not match the current values in the consolidated database, a conflict is
detected.

This event allows you to save pre-image values to a table. You can use this
event to assist in developing conflict resolution procedures for
statement-based updates. The parameters for this event hold old row values
from the remote database before the update is carried out on the
corresponding consolidated database table. This event is also used to insert
rows in statement-based, forced-conflict mode.

The script for this event is usually an insert statement that inserts the old row
into a temporary table for use by a resolve_conflict script.

You can have one upload_old_row_insert script for each table in the remote
database.

For Java and .NET applications, this script must return valid SQL.

See also ♦ “Handling conflicts” on page 64
♦ “resolve_conflict table event” on page 442
♦ “upload_new_row_insert table event” on page 465
♦ “upload_update table event” on page 475
♦ “Storing the user name” on page 71

SQL example This example handles updates made on the product table in the remote

467

database. The script inserts the old value of the row into a global temporary
table named product_conflict. The final column of the table identifies the
row as an old row.

call ml_add_table_script(
’ver1’,
’table1’,
’upload_old_row_insert’,

’insert into DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)
values(?, ?, ?, ?, ?, ’O’)’)

Java example The following stored procedure call registers a Java method called
uploadOldRowInsertTable as the script for the upload_old_row_insert table
event when synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_old_row_insert’,
’ExamplePackage.ExampleClass.uploadNewRowInsertTable’

)

Following is the sample Java method uploadOldRowInsertTable. It
dynamically generates an UPLOAD statement.

public string uploadOldRowInsertTable()
{ old" + getCols(_curTable) +

"values" + getQM(_curTable)); }

468

Chapter 15. Synchronization Events

upload_statistics connection event
Function Tracks synchronization statistics for upload operations.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 warnings INTEGER

3 errors INTEGER

4 inserted_rows INTEGER

5 deleted_rows INTEGER

6 updated_rows INTEGER

7 conflicted_inserts INTEGER

8 conflicted_deletes INTEGER

9 conflicted_updates INTEGER

10 ignored_inserts INTEGER

11 ignored_deletes INTEGER

12 ignored_updates INTEGER

13 bytes INTEGER

14 deadlocks INTEGER

Default action None.

Description The upload_statistics event allows you to gather, for any user, statistics on
uploads. The upload_statistics connection script is called just prior to the
commit at the end of the upload transaction.

See also ♦ “download_statistics connection event” on page 378
♦ “download_statistics table event” on page 381

469

♦ “upload_statistics table event” on page 472
♦ “synchronization_statistics connection event” on page 445
♦ “synchronization_statistics table event” on page 448
♦ “time_statistics connection event” on page 450
♦ “time_statistics table event” on page 453
♦ “MobiLink Monitor” on page 117

SQL example The following example inserts synchronization statistics for upload
operations into the table upload_summary_audit.

call ml_add_connection_script(
’ver1’,
’upload_statistics’,

’INSERT INTO upload_summary_audit (
ml_user, warnings, errors, inserted_rows,
deleted_rows, updated_rows, conflicted_inserts,
conflicted_deletes, conflicted_updates,
bytes, ignored_inserts, ignored deletes,
ignored_updates, bytes, deadlocks)

VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?)’

Once statistics are inserted into the audit table, you may use these statistics
to monitor your synchronizations and make optimizations where applicable.

Java example The following stored procedure call registers a Java method called
uploadStatisticsConnection as the script for the upload_statistics connection
event when synchronizing the script version ver1.

call ml_add_java_connection_script(
’ver1’,
’upload_statistics’,
’ExamplePackage.ExampleClass.uploadStatisticsConnection’)

Following is the sample Java method uploadStatisticsConnection. It logs
some statistics to the MobiLink output log. (This might be useful at
development time but would slow down a production server.)

470

Chapter 15. Synchronization Events

public String uploadStatisticsConnection(
String user,
int warnings,
int errors,
int insertedRows,
int deletedRows,
int updatedRows,
int conflictedInserts,
int conflictedDeletes,
int conflictedUpdates,
int ignoredInserts,
int ignoredDeletes,
int ignoredUpdates,
int bytes,
int deadlocks

)
{ java.lang.System.out.println("updated rows: " +

updatedRows); }

.NET example The following stored procedure call registers a .NET method called
UploadStats as the script for the upload_statistics connection event when
synchronizing the script version ver1.

call ml_add_dnet_connection_script(
’ver1’,
’upload_statistics’,
’TestScripts.Test.UploadStats’

)

Following is the sample .NET method UploadStats. It logs some statistics to
the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public void UploadStats(
string user,
int warnings,
int errors,
int insertedRows,
int deletedRows,
int updatedRows,
int conflictInserts,
int conflictDeletes,
int conflictUpdates,
int ignoredInserts,
int ignoredDeletes,
int ignoredUpdates,
int bytes,
int deadlocks)

{ System.Console.WriteLine("updated rows: " +
updatedRows); }

471

upload_statistics table event
Function Tracks synchronization statistics for upload operations for a specific table.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See“SQL-Java data types” on page 260and
“SQL-.NET data types” on page 287.

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 warnings INTEGER

4 errors INTEGER

5 inserted_rows INTEGER

6 deleted_rows INTEGER

7 updated_rows INTEGER

8 conflicted_inserts INTEGER

9 conflicted_deletes INTEGER

10 conflicted_updates INTEGER

11 ignored_inserts INTEGER

12 ignored_deletes INTEGER

13 ignored_updates INTEGER

14 bytes INTEGER

15 deadlocks INTEGER

Default action None.

Description The upload_statistics event allows you to gather, for any user, vital statistics
on synchronization happenings as they apply to any table. The
upload_statistics table script is called just prior to the commit at the end of
the upload transaction.

472

Chapter 15. Synchronization Events

See also ♦ “download_statistics connection event” on page 378
♦ “upload_statistics connection event” on page 469
♦ “upload_statistics table event” on page 472
♦ “synchronization_statistics connection event” on page 445
♦ “synchronization_statistics table event” on page 448
♦ “time_statistics connection event” on page 450
♦ “time_statistics table event” on page 453
♦ “MobiLink Monitor” on page 117

SQL Example The following example inserts a row into a table used to track upload
statistics.

call ml_add_connection_script(
’ver1’,
’upload_statistics’,
’INSERT INTO my_upload_statistics

(user_name, table_name, num_warnings, num_errors,
inserted_rows, deleted_rows, updated_rows,
conflicted_inserts, conflicted_deletes,
conflicted_updates, ignored_inserts,
ignored_deletes, ignored_updates, bytes,
deadlocks)

VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)’)

The following example works with an Oracle consolidated database.

INSERT INTO upload_tables_audit (
id, user_name, table, warnings, errors,
inserted_rows, deleted_rows, updated_rows,
conflicted_inserts, conflicted_deletes,
conflicted_updates, ignored_inserts, ignored_deletes,
ignored_updates, bytes, deadlocks)
VALUES (ut_audit.nextval,
?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)

Once statistics are inserted into the audit table, you may use these statistics
to monitor your synchronizations and make optimizations where applicable.

Java example The following stored procedure call registers a Java method called
uploadStatisticsTable as the script for the upload_statistics table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_statistics’,
’ExamplePackage.ExampleClass.uploadStatisticsTable’)

Following is the sample Java method uploadStatisticsTable. It logs some
statistics to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

473

public String uploadStatisticsTable(
String user,
int warnings,
int errors,
int insertedRows,
int deletedRows,
int updatedRows,
int conflictedInserts,
int conflictedDeletes,
int conflictedUpdates,
int ignoredInserts,
int ignoredDeletes,
int ignoredUpdates,
int bytes,

int deadlocks
)
{ java.lang.System.out.println("updated rows: " +

updatedRows); }

.NET example The following stored procedure call registers a .NET method called
UploadTableStats as the script for the upload_statistics table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_statistics’,
’TestScripts.Test.UploadTableStats’

)

Following is the sample .NET method uploadStatisticsTable. It logs some
statistics to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public void UploadTableStats(
string user,
string table,
int warnings,
int errors,
int insertedRows,
int deletedRows,
int updatedRows,
int conflictInserts,
int conflictDeletes,
int conflictUpdates,
int ignoredInserts,
int ignoredDeletes,
int ignoredUpdates,
int bytes,
int deadlocks)

{ System.Console.WriteLine("updated rows: " +
updatedRows); }

474

Chapter 15. Synchronization Events

upload_update table event
Function Provides an event that the MobiLink synchronization server uses during

processing of the upload stream to handle rows updated at the remote
database.

Parameters

Clause Parameters

SET non-primary key column 1

non-primary key column 2

. . .

WHERE primary key 1

primary key 2

. . .

Default action None.

Description The statement-based upload_update script may perform direct updates of
column values as specified in the UPLOAD statement.

The WHERE clause must include all of the primary key columns that are
being synchronized. The SET clause must contain all of the non-primary key
columns that are being synchronized.

You use as many non-primary key columns in your SET clause as exist in
the table, and MobiLink will send the correct number of column values.
Similarly, in the WHERE clause, you can have any number of primary keys,
but all must be specified here, and MobiLink will send the correct values.
MobiLink sends these column values and primary key values in the order the
columns or primary keys appear in a MobiLink report of your schema. You
can use the -vh option to determine the column ordering for this table
schema.

You can have one upload_update script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also ♦ “upload_delete table event” on page 459
♦ “upload_fetch table event” on page 461
♦ “upload_insert table event” on page 463

SQL example This example handles updates made to the Customer table in the remote
database. The script updates the values in a table named Customer in the
consolidated database.

475

call ml_add_table_script(
’ver1’,
’table1’,
’upload_update’,

’UPDATE Customer SET name=?, rep_id=? WHERE cust_id=?’)

Java example The following stored procedure call registers a Java method called
uploadUpdateTable as the script for the upload_update table event when
synchronizing the script version ver1.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_update’,
’ExamplePackage.ExampleClass.uploadUpdateTable’)

Following is the sample Java method uploadUpdateTable. It calls a method
called genUU to dynamically generate an UPLOAD statement.

public string uploadUpdateTable()
{ return(genUU(_curTable)); }

.NET example The following stored procedure call registers a .NET method called
UploadUpdate as the script for the upload_update table event when
synchronizing the script version ver1 and the table table1.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_update’,
’TestScripts.Test.UploadUpdate’

)

Following is the C# signature for the call UploadUpdate.

public string UploadUpdate()

476

PART III

MOBIL INK REFERENCE

This part contains MobiLink reference material.

CHAPTER 16

Stored Procedures

About this chapter This chapter provides information about the MobiLink predefined stored
procedures.

Contents Topic: page

Stored procedures to add or delete scripts 480

Stored procedures to add or delete properties 486

479

Stored procedures to add or delete scripts
You must add synchronization scripts to system tables in the consolidated
database before you can use them. The following stored procedures add
synchronization scripts to the consolidated database. They can also be used
to delete scripts.

Notes ♦ When you add a script using a stored procedure, the script is a string.
Any strings within the script need to be escaped. For Adaptive Server
Anywhere, each quotation mark (‘) needs to be doubled so as not to
terminate the string.

♦ You cannot use stored procedures to add scripts longer than 255 bytes to
Adaptive Server Enterprise 11.5 or earlier. Instead, use Sybase Central or
direct insertion to define longer scripts.

♦ IBM DB2 prior to version 6 only supports column names and other
identifiers of 18 characters or less, and so the names are truncated. For
example, ml_add_connection_script is shortened to ml_add_connection_.

ml_add_connection_script

Function Use this stored procedure to add or delete SQL connection scripts in the
consolidated database.

Parameters

Item Description Remarks

1 version name VARCHAR(128)

2 event name VARCHAR(128)

3 script contents For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script contents parameter to NULL.

When you add a script, the script is inserted into the ml_script table and the
appropriate references are defined to associate the script with the event and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also ♦ “Adding and deleting scripts in your consolidated database” on page 241
♦ “ml_add_table_script” on page 481

480

Chapter 16. Stored Procedures

♦ “ml_add_dnet_connection_script” on page 482
♦ “ml_add_dnet_table_script” on page 483
♦ “ml_add_java_connection_script” on page 483
♦ “ml_add_java_table_script” on page 484

Example The following statement adds a connection script associated with the
begin_synchronization event to the script version custdb in an Adaptive
Server Anywhere consolidated database. The script itself is the single
statement that sets the @EmployeeID variable.

call ml_add_connection_script(’custdb’,
’begin_synchronization’,
’set @EmployeeID = ?’)

ml_add_table_script

Function Use this stored procedure to add or delete SQL table scripts in the
consolidated database.

Parameters

Item Description Remarks

1 version name VARCHAR(128)

2 table name VARCHAR(128)

3 event name VARCHAR(128)

4 script contents For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this
is VARCHAR.

Description To delete a table script, set the script contents parameter to NULL.

When you add a script, the script is inserted into the ml_script table and the
appropriate references are defined to associate the script with the table, event
and script version that you specify. If the version name is new, it is
automatically inserted into the ml_version table.

See also ♦ “Adding and deleting scripts in your consolidated database” on page 241
♦ “ml_add_connection_script” on page 480
♦ “ml_add_dnet_connection_script” on page 482
♦ “ml_add_dnet_table_script” on page 483
♦ “ml_add_java_connection_script” on page 483
♦ “ml_add_java_table_script” on page 484

481

Example The following command adds a table script associated with the
upload_insert event on the Customer table.

call ml_add_table_script(’default’, ’Customer’, ’upload_
insert’,

’INSERT INTO Customer(cust_id, name, rep_id, active)
VALUES (?, ?, ?, 1)’)

ml_add_dnet_connection_script

Function Use this stored procedure to add or delete .NET connection scripts in the
consolidated database.

Parameters

Item Description Remarks

1 version name VARCHAR(128)

2 event name VARCHAR(128)

3 script contents For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script contents parameter to NULL.

Thescript value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the event and script
version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also ♦ “Adding and deleting scripts in your consolidated database” on page 241
♦ “ml_add_dnet_table_script” on page 483
♦ “ml_add_connection_script” on page 480
♦ “ml_add_table_script” on page 481
♦ “ml_add_java_table_script” on page 484
♦ “Methods” on page 261

Example The following example assigns the beginDownloadConnection method of
the ExampleClass class to the begin_download event.

call ml_add_dnet_connection_script(’ver1’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadConnection’)

482

Chapter 16. Stored Procedures

ml_add_dnet_table_script

Function Use this stored procedure to add or delete .NET table scripts in the
consolidated database.

Parameters

Item Description Remarks

1 version name VARCHAR(128)

2 table name VARCHAR(128)

3 event name VARCHAR(128)

4 script contents For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script contents parameter to NULL.

Thescript value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the table, event, and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also ♦ “Adding and deleting scripts in your consolidated database” on page 241
♦ “ml_add_dnet_connection_script” on page 482
♦ “ml_add_connection_script” on page 480
♦ “ml_add_table_script” on page 481
♦ “ml_add_java_connection_script” on page 483
♦ “Methods” on page 261

Example The following example assigns the empDownloadCursor method of the
EgClass class to the download_cursor event for the table emp.

call ml_add_dnet_table_script(’ver1’, ’emp’,
’download_cursor’,EgPackage.EgClass.empDownloadCursor’)

ml_add_java_connection_script

Function Use this stored procedure to add or delete Java connection scripts in the
consolidated database.

483

Parameters

Item Description Remarks

1 version name VARCHAR(128)

2 event name VARCHAR(128)

3 script contents For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script contents parameter to NULL.

Thescript value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the event and script
version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also ♦ “Adding and deleting scripts in your consolidated database” on page 241
♦ “ml_add_connection_script” on page 480
♦ “ml_add_table_script” on page 481
♦ “ml_add_dnet_connection_script” on page 482
♦ “ml_add_dnet_table_script” on page 483
♦ “ml_add_java_table_script” on page 484
♦ “Methods” on page 261

Example The following example is taken from the
Samples\MobiLink\JavaAuthenticationsample. It assigns the
endConnection method of the CustEmpScripts class to the end_connection
event.

call ml_add_java_connection_script(’ver1’,
’end_connection’,
’CustEmpScripts.endConnection’)

ml_add_java_table_script

Function Use this stored procedure to add or delete Java table scripts in the
consolidated database.

Parameters

484

Chapter 16. Stored Procedures

Item Description Remarks

1 version name VARCHAR(128)

2 table name VARCHAR(128)

3 event name VARCHAR(128)

4 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script parameter to NULL.

Thescript value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the table, event, and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also ♦ “Adding and deleting scripts in your consolidated database” on page 241
♦ “ml_add_connection_script” on page 480
♦ “ml_add_table_script” on page 481
♦ “ml_add_dnet_connection_script” on page 482
♦ “ml_add_dnet_table_script” on page 483
♦ “ml_add_java_connection_script” on page 483
♦ “Methods” on page 261

Example The following example is taken from the
Samples\MobiLink\JavaAuthenticationsample. It assigns the
empDownloadCursor method of the CustEmpScripts class to the
download_cursor event for the table emp.

call ml_add_java_table_script(’ver1’, ’emp’,
’download_cursor’,’CustEmpScripts.empDownloadCursor’)

485

Stored procedures to add or delete properties
The following stored procedure adds properties to the consolidated database.
It can also be used to delete properties.

ml_add_property

Function Use this stored procedure to add or delete MobiLink properties. This stored
procedure changes rows in the ml_property MobiLink system table.

Parameters

Item Description Remarks

1 component_name VARCHAR(128)

2 prop_set_name VARCHAR(128)

3 prop_name VARCHAR(128)

4 prop_value LONG VARCHAR

Description ♦ component_name You can create records for which this parameter is
ScriptVersion or SIS.

To save properties by script version, set this toScriptVersion.

For server-initiated synchronization properties, set this toSIS. For more
information, see“Setting properties”[MobiLink Server-Initiated
Synchronization User’s Guide,page 15].

♦ prop_set_name If the component_name isScriptVersion, then this is
the name of the script version.

If the component_name isSIS, then this is the name of the Notifier,
gateway, or carrier that you are setting a property for.

♦ prop_name This is the name of the property.

If the component_name isScriptVersion, then this is a property that you
define. You reference these properties using the following methods:

• from DBConnectionContext: getVersion and getProperties

• from ServerContext: getPropertiesByVersion, getProperties, and
getPropertySetNames

For more information, see“MobiLink Java API Reference” on page 273
and“MobiLink .NET API Reference” on page 303.

If the component_name isSIS, then this is a property of the Notifier,
gateway, or carrier. For a list of properties, see“MobiLink Notification
Properties”[MobiLink Server-Initiated Synchronization User’s Guide,page 55].

486

Chapter 16. Stored Procedures

♦ prop_value This is the value of the property.

To delete a property, set the prop_value parameter to NULL.

Server-initiated
synchronization

For server-initiated synchronization, the ml_add_property stored procedure
allows you to set properties for Notifiers, gateways, and carriers.

For example, to add the propertyserver=mailserver1 for an SMTP
gateway called x:

ml_add_property(’SIS’,’SMTP(x)’,’server’,’mailserver1’);

The verbosity property applies to all Notifiers and gateways, and so you
cannot specify a particular prop_set_name. To change the verbosity setting,
leave the prop_set_name blank:

ml_add_property(’SIS’,’’,’verbosity’,2);

☞ For more information about setting properties, see“Setting properties”
[MobiLink Server-Initiated Synchronization User’s Guide,page 15]. For a
complete list of server-initiated synchronization properties, see“MobiLink
Notification Properties”[MobiLink Server-Initiated Synchronization User’s Guide,
page 55].

Script Version For regular MobiLink synchronization, you can use this stored procedure to
associate properties with a script version. In this case, set the
component_name toScriptVersion. You can specify whatever properties
you like, and use Java and .NET classes to access them.

For example, to associate an LDAP server with a script version called
MyVersion:

ml_add_property(’ScriptVersion’,’MyVersion’,’ldap-
server’,’MyServer’)

☞ For more information, see the following methods in the“MobiLink Java
API Reference” on page 273and“MobiLink .NET API Reference” on
page 303:

♦ from DBConnectionContext: getVersion and getProperties

♦ from ServerContext: getPropertiesByVersion, getProperties, and
getPropertySetNames

See also “ml_property” on page 511

487

CHAPTER 17

Utilities

About this chapter This chapter describes MobiLink synchronization server utilities.

☞ For information about MobiLink client utilities, see“Utilities” [MobiLink
Clients,page 27].

☞ For information about other Adaptive Server Anywhere utilities, see
“Database Administration Utilities”[ASA Database Administration Guide,
page 493].

Contents Topic: page

MobiLink stop utility 490

MobiLink user authentication utility 492

Certificate reader utility 495

Certificate generation utility 496

489

MobiLink stop utility
Stops the MobiLink synchronization server on the local machine.

Syntax dbmlstop [options] [server-name]

Option Description

@data Reads options from the specified environment
variable or configuration file.

-f Forced shutdown. Use if a hard shutdown does
not work.

-h Hard shutdown. MobiLink stops all synchro-
nizations and exits. Some remotes may report
an error.

-q Quiet mode. Suppresses the banner.

-t time Soft shutdown, with a hard shutdown done
after the specified time.time is a number
followed by D, H, M, or S (for days, hours,
minutes and seconds). For example,-t 10m

specifies that the server should be shut down in
10 minutes or when current synchronizations
complete, whichever is sooner. D, H, M, and S
are not case sensitive.

-w Waits for the MobiLink synchronization server
to shut down before returning from the com-
mand.

Parameters @data Use this option to read in options from the specified environment
variable or configuration file. If both exist with the same name, the
environment variable is used.

☞ For more information about configuration files, see“Using configuration
files” [ASA Database Administration Guide,page 495].

If you want to protect passwords or other information in the configuration
file, you can use the File Hiding utility to obfuscate the contents of the
configuration file.

☞ See“Hiding the contents of files using the dbfhide command-line
utility” [ASA Database Administration Guide,page 524].

Server-name If the MobiLink synchronization server is started using the
-zs option, it must be shut down by specifying the same server name.

490

Chapter 17. Utilities

☞ For more information, see“-zs option” on page 221.

Description By default (if none of -f, -h or -t are specified), dbmlstop does a soft
shutdown.

♦ Soft shutdown means that the MobiLink synchronization server stops
accepting new connections and exits when the current synchronizations
are complete.

♦ Hard shutdown means that the MobiLink synchronization server stops
all synchronizations and exits. Some remotes may report an error.

491

MobiLink user authentication utility
Registers MobiLink users at the consolidated database. For Adaptive Server
Anywhere remotes, the users must have previously been created at the
remote databases with the CREATE SYNCHRONIZATION USER
statement.

Syntax dbmluser [options] -c " connection-string"
{ -f file | -u user [-p password] }

Option Description

@data Reads options from the specified environ-
ment variable or configuration file.

-c “keyword=value;. . . ” Supply database connection parameters.
The connection string must give the utility
permission to connect to the consolidated
database using an ODBC data source. This
parameter is required.

-d Deletes the user name(s) specified by -f or
-u.

-dl Display messages in the window or on the
command line and also in the log file, if
specified.

-f filename Read the user names and passwords from
the specified file. The file should be a text
file containing one user name and password
pair on each line, separated by white space.
You must specify either -f or -u.

-o filename Log output messages to the specified file.

-ossize Limit the size of the output file. Thesize
is the maximum file size for logging output
messages, specified in bytes. Use the suffix
k or m to specify units of kilobytes or
megabytes, respectively. By default, there
is no size limit. The minimum size limit is
10 kb.

-ot filename Truncate the log file and then append output
messages to it. The default is to send output
to the screen.

492

Chapter 17. Utilities

Option Description

-p password Password to associate with the user. This
option can only be used with -u.

-pc collation-id Supply a database collation ID for char-
acter set translation of the user name and
password. This should be one of the Adap-
tive Server Anywhere collation labels such
as those listed in“Initialization utility
options” [ASA Database Administration
Guide,page 532]. This option is required
when user names and passwords are read
from a file that is encoded in a different
character set than the default character set
determined by locale.

-u ml_username Specify the user name to add (or delete,
if used with -d). Only one user can be
specified on a single command line. This
option is used with -p if passwords are
being used. You must specify either -f or
-u.

Options @data Use this option to read in options from the specified environment
variable or configuration file. If both exist with the specified name, the
environment variable is used.

☞ For more information about configuration files, see“Using configuration
files” [ASA Database Administration Guide,page 495].

If you want to protect passwords or other information in the configuration
file, you can use the File Hiding utility to obfuscate the contents of the
configuration file.

☞ See“Hiding the contents of files using the dbfhide command-line
utility” [ASA Database Administration Guide,page 524].

Description Given a user/password pair, the dbmluser utility first attempts to add the
user. If the user has already been added to the consolidated database, it
attempts to update the password for that user.

There are alternative ways to register user names in the consolidated
database:

♦ Use Sybase Central.

493

♦ Specify the -zu+ command line option with dbmlsrv9. In this case, any
existing MobiLink users that have not been added to the consolidated
database are added when they first synchronize.

The MobiLink user must already exist in a remote database. To add users at
the remote, you have the following options:

♦ For Adaptive Server Anywhere remotes, set the name with CREATE
SYNCHRONIZATION USER and synchronize with that user name.

♦ For UltraLite remotes, you can either use the user_name field of the
ul_synch_info structure; or in Java, use the SetUserName() method of the
ULSynchInfo class before synchronizing.

See also ♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9]

494

Chapter 17. Utilities

Certificate reader utility
Use thereadcertutility to display values within a certificate and validate the
chain of certificates.

Syntax readcert certificate-name

Description The certificate you specify can be elliptic-curve or RSA.

When synchronization occurs through an ECC_TLS or RSA_TLS
synchronization stream, the MobiLink synchronization server sends its
certificate to the client, as well as the certificate of the entity that signed it,
and so on up to a self-signed root. The client checks that the chain is valid
and that it trusts the root certificate in the chain.

This utility scans an X509 authentication certificate and displays the field
values. It then checks that the chain of certificates is valid. A validation error
is reported if any of the certificates in the chain have expired, are in the
wrong order, or are missing.

See also ♦ “Certificate generation utility” on page 496

495

Certificate generation utility
Use the gencert utility to create new elliptic-curve or RSA certificates, or to
sign pre-generated certificate requests.

Syntax gencert [-c | -s] [-r | -q]

Option Description

-c Specifies a certificate you can use to sign
other certificates. If used with-r , generates
an enterprise root certificate.

-s Specifies a server identity certificate. The
server identity is a combination of a server’s
private key and public certificate. You ref-
erence the server identity certificate when
you start the MobiLink synchronization
server (for MobiLink transport-layer se-
curity) or database server (for Adaptive
Server Anywhere client-server transport-
layer security). If used with-r , generates a
self-signed server certificate.

-r Specifies a self-signed root certificate. If
used with-s, gencert creates a self-signed
server certificate. If used with-c, gencert
creates an enterprise root certificate you can
use to sign other certificates. If you specify
gencert -r with no additional options,
gencert creates a certificate you can use as a
server certificate or an enterprise root. This
option is not compatible with-q.

-q request-file Sign a pre-generated certificate request.
If used with -s, gencert creates a server
certificate. If used with-c, gencert creates
an enterprise root certificate you can use
to sign other certificates. If you specify
gencert -q with no additional options,
gencert creates a certificate you can use as a
server certificate or an enterprise root. The
-q option is not compatible with-r .

If you do not specify -s or -c , the certificate contains the functionality
provided by both options, so it can be used to sign other certificates or you

496

Chapter 17. Utilities

can use it directly as a server certificate.

Description You can use the gencert utility to generate trusted public certificates, private
keys, and server certificates used to secure MobiLink synchronizations or
Adaptive Server Anywhere client-server communication. This utility creates
X509 certificates (a standard certificate format) for various security
configurations.

Gencert prompts you for the following information:

♦ Cipher Gencert prompts you to choose an elliptic-curve or RSA cipher.
If you are generating an elliptic-curve certificate, gencert generates an
elliptic-curve key pair. If you are generating an RSA certificate, it
prompts for a key size between 512 and 2048, and then creates a
certificate using RSA. (In general, longer keys provide stronger
encryption but take longer to process.)

Whichever cipher you choose, you must specify that cipher when you
start the server and client. For ECC certificates, specify ecc_tls, and for
RSA certificates, you can specify rsa_tls or rsa_tls_fips.

♦ Country, State/Province, and Locality These values provide general
certificate identification. The locality fields are also required by
third-party Certificate Authorities if you plan to use globally-signed
certificates.

☞ For more information about using Certificate Authorities, see
“Globally-signed certificates” on page 173.

♦ Organization, Organizational Unit, and Common Name These fields
provide additional security that the client is authenticating the correct
certificate. On the client side, they correspond to the certificate_company,
certificate_unit, and certificate_name protocol options, respectively.

☞ See“Verifying certificate fields” on page 180.

♦ Serial number You are prompted to choose a serial number for the
certificate. The serial number must use alphanumeric characters.

♦ Certificate valid for how many years You are prompted for the period
(in years) that the enterprise root certificate remains valid. If the
enterprise root certificate expires, all signed server certificates will also
be invalid. Following the specified period, you will need to regenerate the
enterprise root, each server certificate, and the public certificates
distributed to clients.

♦ Enter password to protect private key This is the password you will
specify in the certificate_password protocol option.

497

♦ Enter file path to save certificate Choose a file name and location for
the certificate.

♦ Enter file path to save private key Choose a file name and location
for the private key.

♦ Enter file path to save server identity You will only be prompted for
this information if you are creating a self-signed root certificate. Choose
a file name and location for the server certificate.

See also ☞ For more information about using certificates to secure MobiLink
synchronizations, see“MobiLink Transport-Layer Security” on page 165.

☞ For more information about using certificates to secure Adaptive Server
Anywhere RDBMSs, see“Adaptive Server Anywhere Transport-Layer
Security” [SQL Anywhere Studio Security Guide,page 27].

♦ “Certificate reader utility” on page 495
♦ “-ec server option”[ASA Database Administration Guide,page 135]
♦ “Encryption connection parameter [ENC]”[ASA Database Administration

Guide,page 191]
♦ “FIPS 140-2 certification” on page 166

Examples ♦ The following example uses the gencert -r option to generate an RSA
self-signed server certificate.

> gencert -r
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): R
Enter key length (512-2048): 1024
Generating key pair...
Country: CA
State/Province: ON
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 123
Certificate valid for how many years: 12
Enter password to protect private key: mypwd123
Enter file path to save certificate: public_cert.crt
Enter file path to save private key: server_key.pri
Enter file path to save server identity: server_cert.crt

You distribute the self-signed public certificatepublic_cert.crtto clients.
The server certificateserver_cert.crtincludes the server certificate and
private key and is stored with the MobiLink synchronization server (for
MobiLink transport-layer security) or the database server (for Adaptive
Server Anywhere client-server transport-layer security).

♦ The following example uses the gencert -r and -c options to generate an
enterprise root certificate.

498

Chapter 17. Utilities

> gencert -r -c
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: ON
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 123
Certificate valid for how many years: 15
Enter password to protect private key: mypwd123
Enter file path to save certificate: public_root_cert.crt
Enter file path to save private key: root_key.pri

The public enterprise root certificatepublic_root_cert.crtis distributed to
clients. Store the enterprise private keyroot_key.priin a secure location.
You can use the generated files to sign server certificates.

♦ The following example uses the gencert -s option to create a signed
server certificate.

> gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: ON
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 123
Certificate valid for how many years: 7
Enter file path of signer’s certificate: public_root_

cert.crt
Enter file path of signer’s private key: root_key.pri
Enter password for signer’s private key: mypwd123
Enter password to protect private key: SERV1privatekeypwd
Enter file path to save server identity: serv1_cert.crt

The enterprise root certificate created in the previous example is used as
the signing certificate. You reference the server identityserv1_cert.crt
and the password SERV1privatekeypwd when you start the MobiLink
synchronization server or your database server.

♦ The following example uses the gencert option -q to sign a certificate
request calledcertreq.txt.

499

>gencert -s -q certreq.txt
Certificate Generation Tool
Serial Number: 01
Certificate valid for how many years: 10
Enter file path of signer’s certificate: rsaroot.crt
Enter file path of signer’s private key: rsaroot.key
Enter password for signer’s private key: test
Enter file path to save certificate: testcert.crt
Save entire chain (y/n): y

The certificate request is created using reqtool. For more information, see

• “Globally-signed certificates” on page 173for MobiLink
transport-layer security.

• “Globally-signed certificates”[SQL Anywhere Studio Security Guide,
page 35]for Adaptive Server Anywhere transport-layer security.

500

CHAPTER 18

MobiLink System Tables

About this chapter This chapter describes the MobiLink administration tables.

Contents Topic: page

Introduction 503

ml_connection_script 504

ml_device 505

ml_device_address 507

ml_listening 509

ml_property 511

ml_qa_delivery 512

ml_qa_delivery_client 513

ml_qa_global_props 514

ml_qa_global_props_client 515

ml_qa_notifications 516

ml_qa_repository 517

ml_qa_repository_client 518

ml_qa_repository_content_client 519

ml_qa_repository_props 520

ml_qa_repository_props_client 521

ml_qa_repository_staging 522

ml_qa_status_staging 524

ml_script 525

ml_script_version 526

ml_scripts_modified 527

ml_subscription 528

501

Topic: page

ml_table 529

ml_table_script 530

ml_user 531

502

Chapter 18. MobiLink System Tables

Introduction
The MobiLink system tables store information about MobiLink users,
subscriptions, tables, scripts, and script versions. They are created when you
run the MobiLink setup scripts for your consolidated database, and are
updated as you use MobiLink. They are not like RDBMS system tables in
that you can alter them directly.

☞ For more information about how to create these tables, see“Setting up a
consolidated database” on page 33.

The MobiLink system tables are stored in the consolidated database. Unlike
most system tables, you can modify them. However, except in rare
circumstances you should not alter them directly. You should never alter
MobiLink system tables starting with ml_qa.

Adaptive Server Anywhere remote databases also have system tables. For
more information, see“System Tables”[ASA SQL Reference,page 671].
UltraLite databases do not have system tables.

Notes ♦ This chapter provides data types for the MobiLink system tables in
Adaptive Server Anywhere consolidated databases. In some RDBMSs,
the data types are slightly different.

♦ IBM DB2 UDB version 5.2 only supports column names and other
identifiers of 18 characters or less. In a DB2 5.2 consolidated database,
MobiLink system tables are truncated where necessary.

503

ml_connection_script
For a given script version, associates a script with a given event.

Column Description

version_id INTEGER. Primary key. The version of the connection
script. The version_id column references the version_id
column of the ml_script_version table.

event VARCHAR(128). Primary key. The event column stores
the name of the event that triggers the connection script.

script_id INTEGER. Foreign key. The script_id column references
the script_id column of the ml_script system table. The text
of the connection script is stored in the ml_script system
table.

Remarks There is a view, ml_connection_scripts, that makes it easier to view the
contents of the ml_connection_script MobiLink system table.

504

Chapter 18. MobiLink System Tables

ml_device
This table is used only for server-initiated synchronization. It stores device
names that are required by device tracking.

Column Description

device_name VARCHAR(255). Primary key.

listener_-
version

VARCHAR(128). Not null.

listener_-
protocol

INTEGER. Not null.

info VARCHAR(255). Not null.

ignore_tracking CHAR(1). Not null.

source VARCHAR(255). Not null.

Description ♦ device_name A name given to the device. This name is extracted from
the operating system unless you specify a name using the dblsn -e option.

♦ listener_version This field contains the SQL Anywhere Studio version
number for the installed software on the device. Changing this value does
not affect the operation of the software, but may be useful for diagnostic
purposes.

♦ listener_protocol This value is0 for Listeners from versions of SQL
Anywhere Studio prior to 9.0.1, and Listeners started with the -s option;1
for post-9.0.0 Palm Listeners; and2 for post-9.0.0 Windows Listeners
started without -s.

♦ info Information about the device. This field is populated if you
provide information using the dblsn -f option.

♦ ignore_tracking If this is y, tracking information is not written to the
row. If it is n, tracking information is written to the row.

♦ source This is tracking if the row was created by automatic device
tracking. Otherwise, it is blank unless you change it using stored
procedures to add information about where the data in this row came
from. Unless it is set totracking , the value in this column does not affect
the operation of the software.

Remarks The MobiLink system tables ml_device, ml_device_address, and
ml_listening contain information about devices for server-initiated
synchronization. DeviceTracker gateways use this information to address
target devices by MobiLink user name.

505

In most cases, you should not need to alter these tables. However, if your
device does not support device tracking or if you want to override device
tracking for troubleshooting purposes, you can add or delete rows to this
system table using pre-defined stored procedures. For more information, see
“Using device tracking with Listeners that don’t support it”[MobiLink
Server-Initiated Synchronization User’s Guide,page 25].

If you want to stop automatic tracking, set override_tracking toy. In this
case, it is also recommended that you use a source name other than
tracking . For more information, see“ml_set_device”[MobiLink
Server-Initiated Synchronization User’s Guide,page 81].

See also ♦ “ml_set_device”[MobiLink Server-Initiated Synchronization User’s Guide,
page 81]

♦ “ml_delete_device”[MobiLink Server-Initiated Synchronization User’s Guide,
page 78]

506

Chapter 18. MobiLink System Tables

ml_device_address
This table is used only for server-initiated synchronization. It stores
addressing information that is required by device tracking.

Column Description

device_name VARCHAR(255). Primary key. Foreign key references
dbo.ml_device. Not null.

medium VARCHAR(255). Primary key. Not null.

address VARCHAR(255). Not null.

active CHAR(1). Not null.

last_modified Timestamp. Not null. Default timestamp.

ignore_tracking CHAR(1). Not null.

source VARCHAR(255). Not null.

Description ♦ device_name A name given to the device. This name is extracted from
the operating system unless you specify a name using the dblsn -e option.

♦ medium For UDP, this is_UDP_. Otherwise, it is the network provider
ID.

♦ address For UDP, this isip:port-number, whereip is an IP address or
host name. For SMTP, this is the phone number.

♦ active This isy for active, andn otherwise. A DeviceTracker gateway
may deactivate a UDP channel if it is unresponsive and there is a fallback
SMTP delivery path.

♦ last_modified This tells when this row was last modified.

♦ ignore_tracking If this is y, tracking information is not written to the
row. If it is n, tracking information is written to the row.

♦ source This is tracking if the row was created by automatic device
tracking. Otherwise, it is blank unless you change it using stored
procedures to add information about where the data in this row came
from. Unless it is set totracking , the value in this column does not affect
the operation of the software.

Remarks The MobiLink system tables ml_device, ml_device_address, and
ml_listening contain information about devices for server-initiated
synchronization. DeviceTracker gateways use this information to address
target devices by MobiLink user name.

507

In most cases, you should not need to alter these tables. However, if your
device does not support device tracking or if you want to override device
tracking for troubleshooting purposes, you can add or delete rows to this
system table using pre-defined stored procedures. For more information, see
“Using device tracking with Listeners that don’t support it”[MobiLink
Server-Initiated Synchronization User’s Guide,page 25].

If you want to stop automatic tracking, set override_tracking toy. In this
case, it is also recommended that you use a source name other than
tracking . For more information, see“ml_set_device_address”[MobiLink
Server-Initiated Synchronization User’s Guide,page 83].

See also ♦ “ml_set_device_address”[MobiLink Server-Initiated Synchronization User’s
Guide,page 83]

♦ “ml_delete_device_address”[MobiLink Server-Initiated Synchronization
User’s Guide,page 79]

508

Chapter 18. MobiLink System Tables

ml_listening
This table is used only for server-initiated synchronization. It maps a
MobiLink user name to a device name for use by device tracking.

Column Description

ml_user VARCHAR(128). Primary key. Not null.

device_name VARCHAR(255). Foreign key references dbo.ml_device.
Not null.

listening CHAR(1). Not null.

ignore_tracking CHAR(1). Not null.

source VARCHAR(255). Not null.

Description ♦ ml_user This is the MobiLink user name, which uniquely identifies a
remote database.

If you use the dblsn -t+ option, this is the alias that you have defined for
the ml_user. For more information, see“Listener options for device
tracking” [MobiLink Server-Initiated Synchronization User’s Guide,page 23].

♦ device_name A name given to the device. This name is extracted from
the operating system unless you specify a name using the dblsn -e option.

♦ listening This isy for an active Listener; otherwise it isn. This field is
set when you use the dblsn option -t, or you can manually set it with
stored procedures.

♦ ignore_tracking If this is y, tracking information is not written to the
row. If it is n, tracking information is written to the row.

♦ source This is tracking if the row was created by automatic device
tracking. Otherwise, it is blank unless you change it using stored
procedures to add information about where the data in this row came
from. The value in this column does not affect the operation of the
software.

Remarks The MobiLink system tables ml_device, ml_device_address, and
ml_listening contain tracked information about devices for server-initiated
synchronization. DeviceTracker gateways use this information to address
target devices by MobiLink user name.

In most cases, you should not need to alter these tables. However, if your
device does not support device tracking or if you want to override device
tracking for troubleshooting purposes, you can add or delete rows in this
table using pre-defined stored procedures. For more information, see“Using

509

device tracking with Listeners that don’t support it”[MobiLink Server-Initiated
Synchronization User’s Guide,page 25].

If you want to stop automatic tracking, set override_tracking to Yes. In this
case, it is also recommended that you use a source name other thantracking .

See also ♦ “ml_set_listening”[MobiLink Server-Initiated Synchronization User’s Guide,
page 85]

♦ “ml_delete_listening”[MobiLink Server-Initiated Synchronization User’s
Guide,page 80]

510

Chapter 18. MobiLink System Tables

ml_property
Stores some MobiLink properties.

Column Description

component_-
name

VARCHAR(128). First part of the composite primary key.

property_set_-
name

VARCHAR(128). Second part of the composite primary
key.

property_name VARCHAR(128). Third part of the composite primary key.

property_value LONG VARCHAR.

Description ♦ component_name For user-defined properties, this can be
ScriptVersion or SIS.

♦ prop_set_name If the component_name isScriptVersion, then this is
the name of the script version.

If the component_name isSIS, then this is the name of the Notifier,
gateway, or carrier that you are setting a property for.

♦ prop_name This is the name of the property.

If the component_name isScriptVersion, then this is a user-defined
property.

If the component_name isSIS, then this is a property of the Notifier,
gateway, or carrier. For a list of properties, see“MobiLink Notification
Properties”[MobiLink Server-Initiated Synchronization User’s Guide,page 55].

♦ prop_value This is the value of the property.

Remarks This table stores name-value pairs. Some of the properties in this table are
used internally by MobiLink. In addition, you can use the stored procedure
ml_add_property to add or delete rows in this table.

You can use the component_nameScriptVersion to store information on per
script version basis that can be accessed by Java or .NET scripting logic.

This table has a composite primary key made up of component_name,
property_set_name, and property_name.

See also ♦ “ml_add_property” on page 486

511

ml_qa_delivery
This table is used only for QAnywhere applications.

Column Description

msgid VARCHAR(255). Globally unique message identifier.

address VARCHAR(255). Address of the target recipient.

client VARCHAR(255).Client of the target recipient.

status INTEGER. The status of the message. Can be1 (pend-
ing), 10 (receiving),30 (expired),50 (receivable), or60
(received).

statustime TIMESTAMP. The time this status was achieved.

verbiage VARCHAR (32767). Localized description of the status (if
any).

syncstatus INTEGER. Indicates the state of the synchronization be-
tween the client and server with respect to this message Can
be0 (not in sync),1 (in sync), or2 (message should not be
synchronized).

receiverid VARCHAR(128). An identifier set by the receiver that
identifies the receiver of the message, if any.

last_modified TIMESTAMP. Indicates the last time the status was
changed.

Remarks The owner of this table is ml_qa_user_group.

512

Chapter 18. MobiLink System Tables

ml_qa_delivery_client

Column Description

msgid VARCHAR(255). Globally unique message identifier.

address VARCHAR(255). Address of the target recipient.

client VARCHAR(255).Client of the target recipient.

status INTEGER. The status of the message. Can be1 (pend-
ing), 10 (receiving),30 (expired),50 (receivable), or60
(received).

statustime TIMESTAMP. The time this status was achieved.

verbiage VARCHAR (32767). Localized description of the status (if
any).

syncstatus INTEGER. Indicates the state of the synchronization be-
tween the client and server with respect to this message Can
be0 (not in sync),1 (in sync), or2 (message should not be
synchronized).

receiverid VARCHAR(128). An identifier set by the receiver that
identifies the receiver of the message, if any.

Remarks The owner of this table is ml_qa_user_group.

513

ml_qa_global_props
This table is used only for QAnywhere applications. It contains global
name-valuepairs that are used in transmission rules.

Column Description

client VARCHAR(255). Primary key. The client associated with
the property. A client value of ‘ ‘ indicates a property that
is global to all clients.

name VARCHAR(255). Primary key. The name of the property.

modifiers INTEGER. Bitfields used to further describe the property.
Currently, only the first bit is used to indicate a property
that should not be synchronized. All other bit fields are
reserved for future use.

value VARCHAR(32767). The value of the property.

last_modified TIMESTAMP. Indicates the last time the value was
changed. This is necessary to indicate when a property
needs to be synchronized with the client.

Remarks This table has a composite primary key made up of client and name.

The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

514

Chapter 18. MobiLink System Tables

ml_qa_global_props_client
This table is used only for QAnywhere applications. It is identical to
ml_qa_global_props. This table is created on the remote database by the
QAnywhere Agent as needed.

Do not modify the contents of this table.

Column Description

name VARCHAR(255). Primary key. The name of the property.

modifiers INTEGER. Bitfields used to further describe the property.
Currently, only the first bit is used to indicate a property
that should not be synchronized. All other bit fields are
reserved for future use.

value VARCHAR(32767). The value of the property.

Remarks The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

See also ♦ “ml_qa_global_props” on page 514

515

ml_qa_notifications
This table is used only for QAnywhere applications. It is used by the Notifier
to determine which QAnywhere users to notify to initiate synchronization.

Column Description

user_id INTEGER. Primary key.

name VARCHAR(128). The MobiLink user name that uniquely
identifies a remote database.

Remarks The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

516

Chapter 18. MobiLink System Tables

ml_qa_repository
This table is used only for QAnywhere applications. It stores messages and
their properties.

Column Description

seqno BIGINT. Used to give a total ordering to the messages, this
is necessary for true queuing.

msgid VARCHAR(255). Primary key. Globally unique message
identifier.

originator VARCHAR(255). The name of the originating MobiLink
user.

priority INTEGER. A number from0 to 9. Messages with a higher
priority number are delivered before messages with a lower
priority. The default is4.

expires TIMESTAMP . Expiry time after which the message might
not be delivered.

kind INTEGER. Indicates whether the message is binary (1) or
text (2).

contentsize BIGINT. The size of the message. For binary messages,
this is the number of bytes. For text messages, this is the
number of characters.

props LONG BINARY. An encoding of the message prop-
erties. For information about the properties, see
“ml_qa_repository_props” on page 520.

content LONG BINARY. The content of the message. Text mes-
sages are encoded as UTF-8.

Remarks The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

517

ml_qa_repository_client
This table is used only for QAnywhere applications. It is identical to
ml_qa_repository. This table is created on the remote database by the
QAnywhere Agent as needed.

Column Description

seqno BIGINT. Used to give a total ordering to the messages, this
is necessary for true queuing.

msgid VARCHAR(255). Primary key. Globally unique message
identifier.

syncstatus INTEGER. Indicates the state of the synchronization
between the client and server with respect to this message.
0 means that they are not in sync;1 means that they are in
sync;2 means that a message should not be synchronized.

originator VARCHAR(255). The name of the originating MobiLink
user.

priority INTEGER. A number from0 to 9. Messages with a higher
priority number are delivered before messages with a lower
priority. The default is4.

expires TIMESTAMP . Expiry time after which the message might
not be delivered.

kind INTEGER. Indicates whether the message is binary (1) or
text (2).

contentsize BIGINT. The size of the message. For binary messages,
this is the number of bytes. For text messages, this is the
number of characters.

props LONG BINARY. An encoding of the message prop-
erties. For information about the properties, see
“ml_qa_repository_props” on page 520.

content LONG BINARY. The content of the message. Text mes-
sages are encoded as UTF-8.

Remarks The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

See also ♦ “ml_qa_repository” on page 517

518

Chapter 18. MobiLink System Tables

ml_qa_repository_content_client
This table is used only for QAnywhere applications. It is identical to
ml_qa_repository_content. This table is created on the remote database by
the QAnywhere Agent as needed.

The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

519

ml_qa_repository_props
This table is used only for QAnywhere applications. This is an expansion of
the props column in the ml_qa_repository table. Properties are only
expanded as needed by the transmission rules engine. If there are no
associated rules, a property is not expanded.

Column Description

msgid VARCHAR(255). Primary key. Globally unique message
identifier.

name VARCHAR(255). Primary key. The name of the prop-
erty. If the property name was provided in Unicode, it is
translated to the native character set of the database.

value VARCHAR(32767). The value of the property.

Remarks The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

This table has a composite primary key made up of msgid and name.

520

Chapter 18. MobiLink System Tables

ml_qa_repository_props_client
This table is used only for QAnywhere applications. It is identical to
ml_qa_repository_props. This table is created on the remote database by the
QAnywhere Agent as needed.

Do not modify the contents of this table.

Column Description

msgid VARCHAR(255). Primary key. Globally unique message
identifier.

name VARCHAR(255). Primary key. The name of the prop-
erty. If the property name was provided in Unicode, it is
translated to the native character set of the database.

value VARCHAR(32767). The value of the property.

Remarks The owner of this table is ml_qa_user_group.

See also ♦ “ml_qa_repository_props” on page 520

521

ml_qa_repository_staging
This table is used only for QAnywhere applications. It contains messages
that are to be sent to a QAnywhere client.

Column Description

seqno BIGINT. Used to give a total ordering to the messages, this
is necessary for true queuing.

msgid VARCHAR(255). Primary key. Globally unique message
identifier.

destination VARCHAR(255). The address of the message.

originator VARCHAR(255). The name of the originating MobiLink
user.

status VARCHAR(255). The status of the message. Can be
pending, receiving, received, unreceivable, expired, or
cancelled. The default ispending.

statustime TIMESTAMP. The last time the status was changed.

uploaded BIT. Indicates whether the sender and recipient are in sync
on the status of the message.0 means that they are not in
sync and1 indicates that they are in sync. The default is0.

expires TIMESTAMP. Expiry time after which the message will
not be delivered.

priority INTEGER. A number from0 to 9. Messages with a higher
priority number will always be delivered before messages
with a lower priority. The default is4.

props LONG BINARY. An encoding of the message properties.

kind INTEGER. Indicates whether the message is binary (1) or
text (2).

content LONG BINARY. The content of the message. Text mes-
sages are encoded as UTF-8.

contentsize BIGINT. The size of the message. For binary messages,
this is the number of bytes. For text messages, this is the
number of characters.

mluser VARCHAR(128). The MobiLink user name that uniquely
identifies a remote database.

522

Chapter 18. MobiLink System Tables

Remarks The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

523

ml_qa_status_staging
This table is used only for QAnywhere applications. It is a staging table that
is used when synchronizing status changes with the originating client.

Column Description

msgid VARCHAR(255). Primary key. Globally unique message
identifier.

status VARCHAR(255). The status of the message. Can be
pending, receiving, received, unreceivable, expired, or
cancelled. The default ispending.

statustime TIMESTAMP. The last time the status was changed.

mluser VARCHAR(128). The MobiLink user name that uniquely
identifies a remote database.

Remarks The owner of this table is ml_qa_user_group.

Do not modify the contents of this table.

524

Chapter 18. MobiLink System Tables

ml_script
Stores the text of all scripts.

Column Description

script_id INTEGER. Primary key. The script_id column stores a
unique integer that identifies the script.

script TEXT. The script column stores the text of the script.

script_-
language

VARCHAR(128). The script_language column stores
the scripting language used for the script. The scripting
language can besql, java, or dnet.

525

ml_script_version
Stores the name, ID and comment of script associated with each script
version.

Column Description

version_id INTEGER. Primary key. The version_id column stores a
unique integer that identifies the version.

name VARCHAR(128). The name column stores the arbitrary name
given to the version.

description TEXT. The description column stores the arbitrary description
given to the version. The description is not used by MobiLink,
but is useful for application-specific comments. For example,
you could describe the purpose of a given script version.

526

Chapter 18. MobiLink System Tables

ml_scripts_modified
Stores the last time script tables were changed. MobiLink server checks this
table to determine if it must load new scripts.

Column Description

last_modified DATETIME. Primary key. The last_modified column stores
the last time when the ml_script_version, ml_script or ml_-
connection_script system table was altered.

527

ml_subscription
Keeps track of the log offsets (or progress) per subscription for Adaptive
Server Anywhere remote databases.

Column Description

user_id INTEGER. Primary key. The user_id column refer-
ences the user_id column of the ml_user table. This is
the ID of a user who has subscribed to the publication.

subscription_id VARCHAR(128). Primary key. The subscription_-
id is a number that is generated by Adaptive Server
Anywhere on the remote.

publication_name VARCHAR(128). Primary key. The publication_name
stores the user-defined name for the publication.

progress NUMERIC(20,0). The progress, also called the offset
or state, refers to the point in the remote transaction
log up to which all operations for the subscription
have been uploaded. This column is used for version
8.0 and up databases. For version 7 databases, the
progress is stored in the ml_user table.

last_download_time TIMESTAMP. Indicates the last time a download
was applied to the consolidated for a given user or
subscription. The default is January 1, 1900, 00:00:00.

last_upload_time TIMESTAMP. Indicates the last time an upload was
applied to the consolidated for a given user or sub-
scription. The default is January 1, 1900, 00:00:00.

Remarks Theprogress, also called theoffsetor state, refers to a position in the
transaction log of the remote database. It indicates the point to which all
operations for the subscription have been uploaded and acknowledged.
Dbmlsync uses the offset to decide what data to upload.

On the remote database, the offset is stored in the progress column of the
SYS.SYSSYNC system table.

On the consolidated database, the offset is stored in the progress column of
the ml_user table for version 7.x databases, and in the progress column of
the ml_subscription table for version 8.0 and up databases.

528

Chapter 18. MobiLink System Tables

ml_table
Stores names of remote tables. This list includes any table marked as a
synchronized table in Sybase Central.

Column Description

table_id INTEGER. Primary key. The table_id column stores a unique
integer identifying the table.

name VARCHAR(128). The name column stores the arbitrary name
given to the table.

529

ml_table_script
For a given script version, associates a table script with a given table and
event.

Column Description

version_id INTEGER. Primary key. The version_id column references the
version_id column of the ml_script_version table.

table_id INTEGER. Primary key. The table_id column references the
table_id column of the ml_table system table.

event VARCHAR(128). Primary key. The event column stores the
name of the event.

script_id INTEGER. The script_id column references the script_id
column of the ml_script table. The script is stored in the
ml_script table.

Remarks There is a view, ml_table_scripts, that makes it easier to view the contents of
the ml_table_script MobiLink system table.

530

Chapter 18. MobiLink System Tables

ml_user
Stores all registered MobiLink users, including their password and their
synchronization state. The progress in this table is used only for UltraLite
remotes or version 7 Adaptive Server Anywhere remotes.

Column Description

user_id INTEGER. Primary key. The user_id column stores a
unique integer identifying the user. This value is only
used internally by MobiLink.

name VARCHAR(128). The name column stores the arbi-
trary name given to the user.

commit_state INTEGER. The commit_state column stores the state.

progress NUMERIC(20,0). The progress, also called the log
offset or state, refers to the point in the transaction log
up to which all operations for subscriptions have been
uploaded and acknowledged. This column is used for
version 7 databases. For version 8.0 and up databases,
the progress is stored in the ml_subscription table.

hashed_password BINARY(20). The hashed_password column stores
the MobiLink user’s password in obfuscated form. If
there is no password, this value is NULL. (This is not
recommended.)

last_download_time TIMESTAMP. Indicates the last time a download
was applied to the consolidated for a given user or
subscription. The default is January 1, 1900, 00:00:00.

last_upload_time TIMESTAMP. Indicates the last time an upload was
applied to the consolidated for a given user or sub-
scription. The default is January 1, 1900, 00:00:00.

Remarks Theprogess, also called thelog offsetor state, refers to a position in the
transaction log of the remote database. It indicates the point to which all
operations for the subscription have been uploaded and acknowledged.
dbmlsync uses the offset to decide what data to upload.

On the remote database, the offset is stored in the progress column of the
SYS.SYSSYNC system table.

On the consolidated database, the offset is stored in the progress column of
the ml_user table for version 7.x databases, and in the progress column of
the ml_subscription table for version 8.0 and up databases.

531

CHAPTER 19

DataType Conversions

About this chapter This chapter provides information about the conversion of data types that
must take place when a MobiLink synchronization server communicates
with a consolidated database that is not Adaptive Server Anywhere. The
following tables identify these conversions.

If you are writing synchronization scripts in .NET languages or in Java, you
may need to know how to map SQL data types to Java and .NET data types.
For more information, see“SQL-.NET data types” on page 287and
“SQL-Java data types” on page 260.

Note
Only supported data types are presented in this chapter.

Contents Topic: page

Adaptive Server Enterprise data mapping 534

IBM DB2 data mapping 536

Oracle data mapping 538

Microsoft SQL Server data mapping 540

533

Adaptive Server Enterprise data mapping
The following table identifies how Adaptive Server Anywhere or UltraLite
data types are mapped to Adaptive Server Enterprise data types.

Adaptive Server Anywhere or Ultra-

Lite data type

Adaptive Server Enterprise data

type

bit bit

tinyint tinyint

smallint smallint

int int

integer integer

decimal [defaults p=30, s=6] numeric(30,6)

numeric [defaults p=30 s=6] numeric(30,6)

float real

real real

double float

smallmoney numeric(10,4)

money numeric(19,4)

date datetime

time datetime

timestamp datetime

smalldatetime datetime

datetime datetime

char(n) varchar(n)

character(n) varchar(n)

varchar(n) varchar(n)

character varying(n) varchar(n)

long varchar text

text text

binary(n) binary(n)

534

Chapter 19. DataType Conversions

Adaptive Server Anywhere or Ultra-

Lite data type

Adaptive Server Enterprise data

type

long binary image

image image

bigint numeric(20,0)

uniqueidentifier varchar(n)1

1 n must be greater than 36.

535

IBM DB2 data mapping
The following table identifies how Adaptive Server Anywhere or UltraLite
data types are mapped to IBM DB2 data types.

Adaptive Server Anywhere or Ul-

traLite data type

IBM DB2 data type

bit smallint

tinyint smallint

smallint smallint

int int

integer int

bigint decimal(20,0)

char(1–4000) varchar(n)

char(4001–32767) long varchar

character(1–4000) varchar(n)

character(4001–32767) long varchar

varchar(1–4000) varchar(n)

varchar(4001–32767) long varchar

character varying(1–4000) varchar(n)

character varying(4001–32767) long varchar or CLOB(n)

long varchar long varchar or CLOB(n)

text long varchar

binary(1–4000) varchar for bit data or BLOB(n)

binary(4001–32767) long varchar for bit data or BLOB(n)

long binary long varchar for bit data or BLOB(n)

image long varchar for bit data or BLOB(n)

decimal [defaults p=30, s=6] decimal(30,6)

numeric [defaults p=30 s=6] decimal(30,6)

real real

float float

536

Chapter 19. DataType Conversions

Adaptive Server Anywhere or Ul-

traLite data type

IBM DB2 data type

double float

smallmoney decimal(10,4)

money decimal(19,4)

date date

time time

smalldatetime timestamp

datetime timestamp

timestamp timestamp

uniqueidentifier varchar(n)1

1 n must be greater than 36.

537

Oracle data mapping
The following table identifies how Adaptive Server Anywhere or UltraLite
data types are mapped to Oracle data types.

Adaptive Server Any-

where or UltraLite data

type

Oracle data type

bit number(1,0)

tinyint number(3,0)

smallint number(5,0)

int number(11,0)

integer number(11,0)

bigint number(20,0)

decimal(prec, scale) number(prec, scale)

numeric(prec, scale) number(prec, scale)

float float

real real

smallmoney numeric(10,4)

money number(19,4)

date date

time date

timestamp date

smalldatetime date

datetime date

char(n) varchar(n) or CLOB(n)

varchar(n) varchar(n) or CLOB(n)

long varchar CLOB

binary(n) raw(n) or BLOB(n)

varbinary(n) raw(n) or BLOB(n)

long binary BLOB

538

Chapter 19. DataType Conversions

Adaptive Server Any-

where or UltraLite data

type

Oracle data type

uniqueidentifier varchar2(n)1

1 n must be greater than 36.

The LONG data types are deprecated in Oracle 8, 8i and 9i.

For Oracle LONG data types to synchronize properly, you must check the
OracleForce Retrieval of Long ColumnsODBC option in the ODBC data
source configuration dialog.

539

Microsoft SQL Server data mapping
The following table identifies how Adaptive Server Anywhere or UltraLite
data types are mapped to Microsoft SQL Server data types.

Adaptive Server Anywhere or

UltraLite data type

Microsoft SQL Server data type

bit bit

tinyint tinyint

smallint smallint

int int

integer int

bigint numeric(20,0) or bigint (SQL Server
2000 only)

decimal [defaults p=30, s=6] decimal(30, 6)

numeric [defaults p=30 s=6] numeric(30, 6)

float float

real real

smallmoney smallmoney

money money

date datetime

time datetime

timestamp datetime

smalldatetime datetime

datetime datetime

char(n) varchar(n) or text

character(n) varchar(n)

varchar(n) varchar(n) or text

long varchar text

binary(n) binary(n) or image

long binary image

540

Chapter 19. DataType Conversions

Adaptive Server Anywhere or

UltraLite data type

Microsoft SQL Server data type

double float

uniqueidentifier uniqueidentifier

541

CHAPTER 20

Character Set Considerations

About this chapter This chapter describes how to handle international language issues in
MobiLink applications.

Contents Topic: page

Character set considerations 544

543

Character set considerations
Each character of text is represented in one or more bytes. The mapping
from characters to binary codes is called thecharacter set encoding. Some
character sets used for languages with small alphabets, such as European
languages, use a single-byte representation. Others, such as Unicode, use a
double-byte representation. Because they use twice the storage space for
each character, double-byte character sets can represent a much larger
number of characters.

Conversion errors can occur or data can be lost when text using one
character set must be translated to another character set. Not all characters
can be represented in all character sets. In particular, single-byte character
sets can represent a much smaller number of characters than multi-byte
systems because of the limited number of codes available.

When the character set of your MobiLink remote database is the same as
your consolidated database, character translation issues are avoided.

Text often needs to be sorted to build indexes and to prepare ordered result
sets, such as directory listings. Thesort order identifies the order of the
characters. For example, a sort order typically states that the letter “a” comes
before the letter “b” , which comes before the letter “c” .

Each database has acollation sequence. You set the collation sequence
when you create the database, although how you do so can differ between
database systems. The collation sequence defines both the character set and
the sort order for that database.

Tip
Whenever possible, define the collation sequence of your remote database
to be the same as that of your consolidated database. This arrangement
reduces the chance of erroneous translations.

☞ For more information, see“Character sets in UltraLite”[UltraLite
Database User’s Guide,page 43]and“International Languages and Character
Sets”[ASA Database Administration Guide,page 319].

Character set translation during synchronization: Windows

During synchronization, characters may need to be translated from one
character set to another. The following translations occur as characters are
passed between the remote application and the consolidated database.

Character set translation
during upload

The MobiLink client sends data to the MobiLink synchronization server
using the character set of the remote database.

544

Chapter 20. Character Set Considerations

1. The MobiLink synchronization server communicates with the
consolidated database using the Unicode ODBC API. To do so, the
MobiLink synchronization server translates all characters received from
the remote database into Unicode.

2. If necessary, the ODBC driver for the consolidated database server
translates the characters from Unicode into the character set of your
consolidated database. This translation is controlled solely by the ODBC
driver for your consolidated database system. Hence, behavior can differ
between two different database systems, particularly systems made by
different manufacturers. MobiLink synchronization works with a number
of database systems. Check the documentation of your particular
consolidated server and ODBC driver for details.

Character set translation
during download

1. The ODBC driver for the consolidated database system receives
characters in the coding of the consolidated database. It translates these
characters into Unicode to pass them through the Unicode API to the
MobiLink synchronization server. This translation is controlled solely by
the ODBC driver for your consolidated database system. Check the
documentation of your particular consolidated server and ODBC driver
for details.

2. The MobiLink synchronization server receives characters through the
Unicode ODBC API. If the remote database uses a different character set,
the MobiLink synchronization server translates the characters before
downloading them.

Examples ♦ UltraLite applications on Windows CE devices use the Unicode character
set.

When you synchronize a Windows CE application, no character
translation occurs within the MobiLink synchronization server. The
server finds that data arriving from the application is already in Unicode
and passes it directly to the ODBC driver. Similarly, no character set
translation is necessary when downloading data.

♦ All Adaptive Server Anywhere databases and all UltraLite applications
on platforms other than Windows CE use the character set determined by
the collating sequence of the remote database.

When you synchronize a remote database, the MobiLink synchronization
server performs character set translations between the character set of the
remote database and Unicode.

Controlling ODBC driver character set translation

Because most consolidated databases are unlikely to use Unicode, it is
important to understand how the ODBC driver for your consolidated

545

database system converts data to and from Unicode. Some ODBC drivers
use the language settings of the machine running MobiLink to determine
what character set to use. In these cases, it is best if the language and
code-page settings of the machine running the MobiLink synchronization
server match those of the consolidated database.

Other ODBC drivers, such as the driver for Sybase Adaptive Server
Enterprise, allow each connection to use a specific character set. To avoid
translation errors, the character set used by MobiLink should be set to match
that of the consolidated database.

☞ For a detailed description of how character set translations take place in
your consolidated database server’s ODBC driver, consult that product’s
ODBC driver documentation.

Character set translation during synchronization: non-Windows

The ODBC drivers that iAnywhere Solutions provides on non-Windows
platforms do not have a Unicode ODBC API. The MobiLink
synchronization server exchanges data with the ODBC driver using the
character set determined by the collating sequence of the remote database.

When the remote database is an UltraLite application running under
Windows CE, the MobiLink synchronization server performs character set
translation between Unicode and the character set being used with ODBC.

546

CHAPTER 21

iAnywhere Solutions ODBC Drivers

About this appendix This appendix describes the ODBC drivers available for use with MobiLink.

Contents Topic: page

ODBC drivers supported by MobiLink 548

547

ODBC drivers supported by MobiLink
The MobiLink synchronization server can work with a variety of
consolidated databases and ODBC drivers, as shown in the table below.
Some drivers, though compatible for use with MobiLink, may have
functional restrictions associated with their use.

☞ For updated information and complete functional specifications, see
http://www.ianywhere.com/developer/technotes/odbc_mobilink.html.

☞ For information about configuring ODBC drivers, see“Introduction to
iAnywhere Solutions ODBC Drivers”[ODBC Drivers for MobiLink and Remote
Data Access,page 1]. On UNIX, a standalone version of this book is installed
in thedriverssubdirectory of your SQL Anywhere Studio install directory.

Database ODBC Drivers

Oracle 8i iAnywhere Solutions 8 - Oracle 8, 8i & 9i
ODBC Driver

Merant DataDirect Connect ODBC Driver for
Oracle

Oracle 9i iAnywhere Solutions 8 - Oracle 8, 8i & 9i
ODBC Driver

Oracle 9i ODBC Driver

Microsoft SQL Server
7, Microsoft SQL Server
2000

Microsoft SQL Server ODBC Driver

Merant DataDirect SQL Server Wire Protocol
ODBC Driver

Sybase Adaptive Server
Enterprise 11.5 or later

iAnywhere Solutions 8 - Sybase ASE ODBC
Driver Sybase ASE ODBC Driver

Merant DataDirect Sybase Wire Protocol
ODBC Driver

Merant DataDirect Connect ODBC Driver for
Sybase ASE

Merant Connect ODBC Driver for Sybase ASE

IBM DB2 UDB 7.1, 7.2 IBM DB2 UDB 7.1 ODBC driver

IBM DB2 UDB 7.2 ODBC driver

Merant DataDirect DB2 Wire Protocol ODBC
Driver

Sybase Adaptive Server
Anywhere 9

Adaptive Server Anywhere 9.0 ODBC Driver

548

http://www.ianywhere.com/developer/technotes/odbc_mobilink.html

CHAPTER 22

Deploying MobiLink Applications

About this appendix This appendix describes how to deploy the MobiLink server and MobiLink
clients in a production environment. It identifies the files required for
deployment.

Check your license agreement
Redistribution of files is subject to your license agreement. No statements
in this document override anything in your license agreement. Please check
your license agreement before considering deployment.

Contents Topic: page

Deployment overview 550

Deploying the MobiLink server 551

Deploying Adaptive Server Anywhere MobiLink clients 557

Deploying UltraLite MobiLink clients 560

Deploying QAnywhere applications 561

549

Deployment overview
Deploying MobiLink applications involves the following activities:

♦ Deploy the MobiLink server into a production setting.

♦ Deploy any Adaptive Server Anywhere MobiLink clients.

♦ Deploy any UltraLite MobiLink clients.

This chapter describes the files you need to include in your application’s
install program for each of these items.

550

Chapter 22. Deploying MobiLink Applications

Deploying the MobiLink server
The simplest way to deploy a MobiLink synchronization server into a
production environment is to install a licensed copy of SQL Anywhere
Studio onto the production machine.

However, if you are redistributing a MobiLink synchronization server in a
separate install program (subject to your license agreement), you may want
to include only a subset of the files. In this case, you need to include the
following files in your installation.

Notes ♦ Test on a clean machine before redistributing.

♦ Files must be installed within the SQL Anywhere Studio install directory.

♦ The files should be in the same directory, unless otherwise mentioned.

♦ When a location is given, the files must be copied into a directory of the
same name.

♦ On UNIX, environment variables must be set for the system to be able to
locate SQL Anywhere applications and libraries. It is recommended that
you use the appropriate file for your shell, eitherasa_config.shor
asa_config.csh(located in the directory/opt/sybase/SYBSsa9/bin) as a
template for setting the required environment variables. Some of the
environment variables set by the asa_config files include PATH,
LD_LIBRARY_PATH, ASANY9, and ASANYSH9.

♦ To use Java synchronization logic, and to use the graphical administration
tools (Sybase Central and the MobiLink Monitor), you must have JRE
1.4.2 installed.

Windows applications

Description Windows files

MobiLink synchronization
server

charsets\unicode
win32\dbmlsv9.dll
win32\dbmlsrv9.exe
win32\dbmsql9.dll
win32\dbunic9.dll

Language library win32\dblgen9.dll1

551

Description Windows files

Windows Performance Moni-
tor support

win32\dbmlctr9.dll2

win32\dbmlctr9.h
win32\dbmlctr9.ini

Synchronization stream li-
braries (deploy the ones you
use)

win32\dbmlhttp9.dll
win32\dbmlsock9.dll

Java synchronization logic java\activation.jar3

java\imap.jar3

java\jodbc.jar
java\log4j.jar3

java\mailapi.jar3

java\mlscript.jar
java\mlsupport.jar
java\pop3.jar3

java\smtp.jar3

win32\dbmjava9.dll
win32\mljodbc9.dll

.NET synchronization logic MobiLink\setup\dnet\mlDomConfig.xml
win32\dbmdnet9.dll
win32\dnetodbc9.dll
win32\iAnywhere.MobiLink.dll
win32\iAnywhere.MobiLink.Script.dll
win32\iAnywhere.MobiLink.Script.xml
win32\mlDomConfig.xsd

Security option4 win32\dbmlhttps.dll
win32\dbmlhttpsfips9.dll
win32\dbmlrsafips9.dll
win32\dbmljrsa9.dll
win32\dbmljtls9.dll
win32\dbmlrsa9.dll
win32\dbmltls9.dll

Script files (deploy the ones for
your consolidated database)

MobiLink\setup
MobiLink\upgrade

iAnywhere Solutions ODBC
drivers

drivers

552

Chapter 22. Deploying MobiLink Applications

Description Windows files

dbmluser utility win32\dbmluser.exe

dbmlstop utility win32\dbmlstop.exe

Error names h\sserror.h

MobiLink Monitor java\mlmon.jar
shared\java\HelpManager11.jar
shared\java\JComponents142.jar
shared\java\jsyblib142.jar
shared\win32\jsyblib142.dll
ultralite\java\lib\ulrt.jar
win32\dbmlmon.exe

Online help for the MobiLink
plug-in and Monitor

java\dbmaen9.jar1

MobiLink Redirector MobiLink\redirector

Sybase Central shared\Sybase Central 4.3

Sybase Central plug-in win32\dbmlput9.dll

Notifier java\activation.jar3

java\jodbc.jar
java\log4j.jar
java\mailapi.jar3

java\mlnotif.jar
java\mlscript.jar
java\smtp.jar3

QAnywhere java\log4j.jar
java\qaconnector.jar

Note: Files may be located in thewin32 or ia64 directory, depending on
your version of the software.

553

1 For French, German, Japanese, and Chinese editions, substituteenwith fr ,
de, ja, andzh, respectively.

2 Your setup program must self-register this file.

3 If you are redistributing an application, you must obtain these files directly
from Sun.

4 Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.
To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

UNIX, Linux, and
Macintosh applications

Description UNIX files

MobiLink synchronization
server

bin/dbmlsrv9
charsets/unicode
lib/libdbodm9_r.so3

lib/libdbmsql9_r.so3

lib/libdbtasks9_r.so3

lib/libdbunic9_r.so3

Language library res/dblgen9.res1

Synchronization stream
libraries (deploy the ones
you use)

lib/libdbmlhttp9_r.so3

lib/libdbmlsock9_r.so3

Java synchronization logic java/activation.jar2

java/imap.jar2

java/jodbc.jar
java/log4j.jar2

java/mailapi.jar2

java/mlscript.jar
java/mlsupport.jar
java/pop3.jar2

java/smtp.jar2

lib/libdbmjava9_r.so3

lib/libmljodbc9.so3

.NET synchronization
logic

N/A

554

Chapter 22. Deploying MobiLink Applications

Description UNIX files

Security option4 lib/libdbmlhttps9_r.so3

lib/libdbmlrsa9_r.so3

lib/libdbmltls9_r.so3

Script files (deploy the
ones for your consolidated
database)

MobiLink/setup
MobiLink/upgrade

iAnywhere Solutions
ODBC drivers

drivers

dbmluser utility bin/dbmluser

dbmlstop utility bin/dbmlstop

Error names h/sserror.h

MobiLink Monitor bin/dbmlmon
java/mlmon.jar
shared/java/HelpManager11.jar
shared/java/JComponents142.jar
shared/java/jsyblib142.jar
ultralite/java/lib/ulrt.jar

MobiLink Redirector Mobilink/redirector/redirector.config
MobiLink/redirector/java

Online help for the Mo-
biLink plug-in and Mo-
biLink Monitor

java/dbmaen9.jar

Sybase Central shared/sybcentral43

Sybase Central plug-in lib/libdbmlput9_r.so3

555

Description UNIX files

Notifier java/activation.jar2

java/jodbc.jar
java/log4j.jar
java/mailapi.jar2

java/mlnotif.jar
java/mlscript.jar
java/smtp.jar2

QAnywhere java/log4j.jar
java/qaconnector.jar

1 For French, German, Japanese, and Chinese editions, substituteenwith fr ,
de, ja, andzh, respectively.

2 If you are redistributing an application, you must obtain these files directly
from Sun.

3For Solaris and Linux, the file extension is.so. For AIX, the file extension
is .a. For HP, the file extension is.sl. For the Macintosh, the file extension is
.dylib.

4 Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.
To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

556

Chapter 22. Deploying MobiLink Applications

Deploying Adaptive Server Anywhere MobiLink
clients

For Adaptive Server Anywhere clients, you need to deploy an Adaptive
Server Anywhere database server and the MobiLink client.

☞ For information about deploying Adaptive Server Anywhere databases,
see“Deploying Databases and Applications”[ASA Programming Guide,
page 519].

If you are redistributing MobiLink synchronization clients (subject to your
license agreement) you need to include the following files in your installation
in addition to those required for the Adaptive Server Anywhere database:

The files should be in the same directory, unless otherwise mentioned.

Windows applications

557

Description Windows files

MobiLink synchronization client win32\dblgen9.dll1

win32\dbmlsync.exe
win32\dbtool9.dll

Note: dbtool9.dll is not required on
Windows CE unless you are using the
dbtools interface.

Dbmlsync integration component MobiLink synchronization client
files
dbmlsynccomg.dll for the visual

component ordbmlsynccom.dll for
the non-visual component

Synchronization stream libraries
(deploy the ones you use)

win32\dbmlhttp9.dll
win32\dbmlsock9.dll

Security option2 dbmlhttps9.dll
dbmlhttpsfips9.dll3

dbmlrsafips9.dll3

dbmlrsa9.dll
dbmltls9.dll

ActiveSync and HotSync utilities win32\dbasinst.exe
win32\dbcon9.exe

Listener win32\dblgen9.dll1

win32\dblsn.exe
win32\lsn_udp.dll
win32\lsn_swi510.dll
win32\maac555.dll
win32\maac750.dll
win32\maac750r3.dll
win32\mabridge.dll

1 For French, German, Japanese, and Chinese editions, substituteenwith fr ,
de, ja, andzh, respectively.

2 Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.
To order this component, see“Separately-licensable components”

558

Chapter 22. Deploying MobiLink Applications

[Introducing SQL Anywhere Studio,page 5].

3 FIPS security does not apply to Windows CE.

UNIX, Linux, and
Macintosh applications

Description UNIX files

MobiLink synchronization client bin/dbmlsync
res/dblgen9.res
lib/libdbtool9.so1

lib/libdbtool9_r.so1

Synchronization stream libraries
(deploy the ones you use)

lib/libdbmlhttp9_r.so1

lib/libdbmlsock9_r.so1

Security option2 lib/libdbmlhttps9_r.so1

lib/libdbmlrsa9_r.so1

lib/libdbmltls9_r.so1

1For Solaris and Linux, the file extension is.so. For AIX, the file extension
is .a. For HP, the file extension is.sl. For the Macintosh, the file extension is
.dylib.

2 Transport-layer security requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is subject to export regulations.
To order this component, see“Separately-licensable components”
[Introducing SQL Anywhere Studio,page 5].

559

Deploying UltraLite MobiLink clients
For UltraLite clients, the UltraLite runtime library or the UltraLite
component includes the required synchronization stream functions. The
UltraLite runtime library is compiled into your application. Deployment is
subject to your license agreement.

☞ For more information, see the documentation for the UltraLite
component or development model you are using.

Palm applications

Description Palm files

Windows Listener configuration util-
ity

dblsncfg.exe

Listener for Treo 180 palm\Treo180\lsnT180.prc

Listener for Kyocera 6035 palm\Kyocera6035\lsnK6035.prc

560

Chapter 22. Deploying MobiLink Applications

Deploying QAnywhere applications
QAnywhere applications require client and server files.

The QAnywhere client requires all files used by dbmlsync, in addition to the
files listed below.

☞ For more information about dbmlsync, see“Deploying Adaptive Server
Anywhere MobiLink clients” on page 557.

Windows applications

Description Windows files

QAnywhere
client

qanywhere.db
win32\iAnywhere.QAnywhere.Client.dllorce\iAnywhere.-

QAnywhere.Client.dll(required for the C# interface only)
win32\qaagent.exe or ce\arm.30\qaagent.exe or

ce\x86.30\qaagent.exe
win32\qany9.dll or ce\arm.30\qany9.dll or

ce\x86.30\qany9.dll

Server side java\log4j.jar
java\qaconnector.jar

UNIX, Linux, and
Macintosh applications

Description UNIX files

Server side java/log4j.jar
java/qaconnector.jar

Registering the
QAnywhere .NET API dll

The QAnywhere .NET API dll (win32\iAnywhere.QAnywhere.Client.dll)
needs to be registered in the Global Assembly Cache on Windows (except
Windows̆aCE). The Global Assembly Cache lists all the registered programs
on your machine. When you install SQL Anywhere Studio, the installation
program registers it. On WindowsăCE you do not need to register the DLL.

If you are deploying QAnywhere, you must register the QAnywhere .NET
API dll (win32\iAnywhere.QAnywhere.Client.dll) using the gacutil utility
that is included with the .NET Framework.

561

562

Index

A
-a option

MobiLink [dbmlsrv9] 194
active

MobiLink synchronization property 130
Adaptive Server Anywhere

as MobiLink consolidated database 36
Adaptive Server Enterprise

as MobiLink consolidated database 37
begin_connection_autocommit event 345
conversion of data types in MobiLink 534
MobiLink synchronization 37
StaticCursorLongColBuffLen 37
using DDL in MobiLink 345

add connection script wizard
using 241

add service wizard
using 159

add synchronized table wizard
using 241

add table script wizard
using 242

add version wizard
using 240

adding
columns to remote MobiLink databases 81
elliptic-curve and RSA certificates 496
MobiLink Java connection scripts 483
MobiLink Java table scripts 484
MobiLink .NET connection scripts 482
MobiLink .NET table scripts 483
MobiLink properties 486
MobiLink SQL connection scripts 480
MobiLink SQL table scripts 481
synchronization scripts with Sybase Central 241
tables to remote MobiLink ASA databases 81
user names in MobiLink 492

adding a script version
MobiLink 240

adding and deleting scripts in your consolidated
database

MobiLink 241

adding or deleting scripts
MobiLink 241

adding synchronization scripts
using stored procedures 242

adding, modifying, and removing services
MobiLink 159

Apache
configuring for the Apache Redirector 150
configuring servlet Redirector for MobiLink 146

Apache Redirector
configuring 150

Apache Tomcat
servlet Redirector 146

Apache web servers
configuring the Apache Redirector 150

API reference
MobiLink Java API 273
MobiLink .NET API 303

APIs
MobiLink Java 273
MobiLink .NET 303

applications
deploying MobiLink applications 549
differentiating MobiLink scripts 239

assemblies
implementing in MobiLink 297
locating in MobiLink .NET synchronization logic

283
auth_status synchronization parameter

about 336
authenticate_parameters

connection event 334
authenticate_user

connection event 336
authenticate_user_hashed

connection event 340
authentication

MobiLink dbmluser utility 492
automatic synchronization script generation 230
automatic validation

MobiLink file-based downloads 91
automating scripts

563

Index

MobiLink synchronization 230
AvantGo seeM-Business Anywhere

B
-b option

MobiLink [dbmlsrv9] 195
backlog option

HTTP synchronization 217, 218
TCP/IP synchronization 215

-bc option
MobiLink [dbmlsrv9] 196

begin_connection
connection event 343

begin_connection_autocommit
connection event 345

begin_download
connection event 346
table event 348

begin_download_deletes
table event 351

begin_download_rows
table event 353

begin_publication
connection event 356

begin_sync
MobiLink synchronization property 130

begin_synchronization
connection event 359
table event 361

begin_upload
connection event 363
table event 365

begin_upload_deletes
table event 367

begin_upload_rows
table event 369

BLOB cache size
MobiLink performance 107

BLOBs
downloaded from ASE 37

-bn option
MobiLink [dbmlsrv9] 196

bottlenecks
MobiLink performance 110

broadcast download
file-based downloads in MobiLink 85

buffer_size option

HTTP synchronization 217
HTTPS synchronization 218

C
-c option

MobiLink [dbmlsrv9] 196
MobiLink [dbmluser] 492
MobiLink [gencert] 496

C++ programming language
MobiLink .NET support 282

C# programming language
MobiLink .NET support 282
MobiLink options 207

cache size
MobiLink BLOB performance 107
MobiLink download performance 107
MobiLink upload performance 107

cascading deletes
during MobiLink synchronization 22

certificate authorities
MobiLink transport-layer security 175

certificate chains
MobiLink transport-layer security 170

certificate generation utility [gencert]
syntax 496

certificate option
HTTPS synchronization 218

certificate reader utility [readcert]
syntax 495

certificate_password option
HTTPS synchronization 218

certificates
digital certificates in MobiLink transport-layer

security 169
generating elliptic-curve 496
generating RSA 496
reading elliptic-curve 495
reading RSA 495

changes at the consolidated database
MobiLink file-based downloads 87

CHAR data type
MobiLink and other DBMSs 35

character set considerations
MobiLink 543

character set translation
by ODBC drivers 545

564

Index

during MobiLink synchronization under
non-Windows platforms 546

during MobiLink synchronization under
Windows 544

character sets
MobiLink synchronization 544

chart pane
MobiLink Monitor 123

ciphers
MobiLink transport-layer security 165

class instances
Java synchronization logic 259
MobiLink .NET synchronization logic 286

-classic option
MobiLink [dbmlsrv9] -sl java 209

CLASSPATH environment variable
MobiLink Java synchronization logic 257

-classpath option
MobiLink [dbmlsrv9] -sl java 209

client event-hook procedures see alsoevent hooks
client security parameters

MobiLink transport-layer security 180
clients

configuring to trust a public certificate 175
MobiLink synchronization 14

CLR
MobiLink options 207

-clrConGC option
MobiLink [dbmlsrv9] -sl dnet 207

-clrFlavor option
MobiLink [dbmlsrv9] -sl dnet 207

-clrVersion option
MobiLink [dbmlsrv9] -sl dnet 207

-cn option
MobiLink [dbmlsrv9] 197

collation sequences
MobiLink synchronization 544

collisions
MobiLink conflict resolution 64

columns
adding to remote MobiLink databases 81

command line
starting dbmlsrv9 190

command line utilities
MobiLink certificate generator [gencert] 496
MobiLink stop utility [dbmlstop] 490
MobiLink user authentication [dbmluser] 492

readcert syntax 495
commercial certificate authorities

MobiLink transport-layer security 169
common language runtime

MobiLink options 207
common name

verifying in MobiLink transport-layer security180
communications

MobiLink synchronization server -x option 214
communications faults

MobiLink synchronization recovery 20
complete event model

MobiLink 322
completed

MobiLink synchronization property 130
concurrency

MobiLink performance 106
MobiLink upload-stream processing 21

configuring
Apache web servers 150
M-Business Anywhere 153
Microsoft web servers 144
MobiLink Adaptive Server Anywhere clients to

use transport-layer security 181
MobiLink consolidated databases 33
NSAPI web servers 141
Redirectors (all versions) 139
servlet Redirector for Apache web servers 146
Tomcat 146

configuring Adaptive Server Anywhere clients to
use TLS

MobiLink 181
configuring an Apache Redirector for Apache web

servers
about 150

configuring an ISAPI Redirector for Microsoft web
servers

about 144
configuring an NSAPI Redirector for Netscape/Sun

web servers
about 141

configuring MobiLink clients and servers for the
Redirector 137

configuring MobiLink clients to use transport-layer
security

about 179
configuring Redirector properties (all versions) 139

565

Index

configuring the servlet Redirector
Apache web servers 146

configuring the servlet Redirector for Apache
Tomcat servers 146

configuring UltraLite clients to use transport-layer
security

about 183
conflict detection

MobiLink 64
MobiLink statement-based uploads 64

conflict resolution
forcing in MobiLink 70
MobiLink 64
MobiLink conflict detection 64
MobiLink default behavior 64
MobiLink statement-based uploads 64
resolve_conflict script 66
upload_update script 68
user-specific logic 71

conflicted_deletes
MobiLink synchronization property 130

conflicted_inserts
MobiLink synchronization property 130

conflicted_updates
MobiLink synchronization property 130

conflicts
MobiLink 64
MobiLink default behavior 64
MobiLink statement-based uploads 64

connecting
MobiLink synchronization server -x option 214

connection parameters
MobiLink server -x option 214

connection properties
MobiLink server -x option 214

connection scripts
about 236
adding Java scripts 483
adding .NET scripts 482
adding SQL scripts 480
adding with Sybase Central 241
alphabetic list of MobiLink scripts 319
defined 236
deleting Java scripts 483
deleting .NET scripts 482
deleting SQL scripts 480

connection_retries

MobiLink synchronization property 130
connections

MobiLink synchronization server -x option 214
consolidated databases

adding synchronization scripts to 241
ASA as MobiLink 36
ASE as MobiLink 37
compatibility issues for MobiLink applications 41
conversion of data types in MobiLink 533
creating MobiLink 33
databases other than ASA 34
DBMS dependencies 34
IBM DB2 as MobiLink 40
MobiLink 10
MobiLink system tables 503
Oracle as MobiLink 39
relating tables to MobiLink remote tables 32
SQL Server as MobiLink 43

constraint errors seeconflicts
constructors

MobiLink Java synchronization logic 260
MobiLink .NET synchronization logic 287

contd_timeout option
HTTP synchronization 217
HTTPS synchronization 218

contd_timeout protocol option
MobiLink Redirector 137

contention
MobiLink performance 106
MobiLink performance explanation 111

conventions
documentation xii

conversion
MobiLink data types 533
to ASE data types in MobiLink 534
to IBM DB2 data types in MobiLink 536
to Microsoft SQL Server data types in MobiLink

540
to Oracle data types in MobiLink 538

-cp option
MobiLink [dbmlsrv9] -sl java 209

-cr option
MobiLink [dbmlsrv9] 197

create the file-definition database
MobiLink 87

create your java synchronization script
MobiLink Java synchronization logic example268

566

Index

creating
download file for MobiLink file-based downloads

88
file-definition database 87
MobiLink consolidated databases 33
new certificates 496

creating a consolidated database
about 33

creating enterprise root certificates
MobiLink transport-layer security 172

creating signed certificates
MobiLink transport-layer security 172

creating the download file
MobiLink file-based downloads 88

cryptography
MobiLink public key 165

-ct option
MobiLink [dbmlsrv9] 198

cursor scripts
defined 236

custom validation
MobiLink file-based downloads 93

customizing your statistics
MobiLink Monitor 128

D
-d option

MobiLink [dbmlsrv9] 198
MobiLink [dbmlsrv9] -sl java 209
MobiLink [dbmluser] 492

daemon
running MobiLink as a 157

data entry
synchronization techniques 72

data movement technologies
MobiLink synchronization 7

data type conversions
MobiLink 533
MobiLink consolidated databases 533

data types
conversion of in MobiLink 533
conversion to ASE in MobiLink 534
conversion to IBM DB2 in MobiLink 536
conversion to Microsoft SQL Server in MobiLink

540
conversion to Oracle in MobiLink 538
MobiLink consolidated database conversions 533

MobiLink Java and SQL 260
MobiLink .NET and SQL 287

database connections
MobiLink performance 108, 114

database schemas
relating consolidated tables to MobiLink remote

tables 32
databases

MobiLink consolidated databases 31
synchronizing with MobiLink 7

DB2
as MobiLink consolidated database 40
conversion of data types in MobiLink 536
maximum identifier length in IBM 503
session-wide variables 41

DBCommand
MobiLink .NET API 303

DBConnection
MobiLink .NET API 304

DBConnectionContext
constructors 287
MobiLink Java API 273
MobiLink .NET API 305

dbmlmon
starting 119

dbmlmon.exe
monitoring MobiLink 117

dbmlsrv9
automating script generation 230
Notifier 202
options 190
QAnywhere 201
reports error context in output log 203
starting 11

dbmlsrv9 options
alphabetical list 194

dbmlstop utility
options 490
syntax 490
using 12

dbmluser utility
options 492
syntax 492

DBMS-dependent synchronization scripts
MobiLink 34

DBParameter
MobiLink .NET API 306

567

Index

DBParameterCollection
MobiLink .NET API 307

DBRowReader
MobiLink .NET API 310

-dd option
MobiLink [dbmlsrv9] 198

DDL
remote MobiLink databases 81

deadlocks
MobiLink upload-stream processing 21

debugging
MobiLink connections 164
MobiLink synchronization server log 12
MobiLink synchronization using Java classes 262
.NET synchronization logic 292

debugging Java classes
MobiLink Java synchronization logic 262

debugging .NET synchronization logic
about 292

DECIMAL data type
MobiLink and ASE 37

declaring default global autoincrement
MobiLink 58

default global autoincrement
declaring 58

deleting
MobiLink Java connection scripts 483
MobiLink Java table scripts 484
MobiLink .NET connection scripts 482
MobiLink .NET table scripts 483
MobiLink properties 486
MobiLink SQL connection scripts 480
MobiLink SQL table scripts 481
rows in remote MobiLink databases 248

deleting rows
MobiLink remote databases 248
synchronization techniques 73

deleting rows with the download_delete_cursor
script 248

deploying
applications and databases 549
ASA MobiLink clients 557
MobiLink applications 549
MobiLink performance 105
MobiLink synchronization server 551
QAnywhere applications 561
UltraLite applications 560

deploying ASA MobiLink clients 557
deploying MobiLink applications

about 549
deploying QAnywhere clients 561
deploying remote databases

about 549
deploying the MobiLink server 551
deploying UltraLite MobiLink clients 560
deployment

MobiLink 549
deployment overview

MobiLink 550
details table pane

MobiLink Monitor 121
detecting conflicts

MobiLink statement-based uploads 64
development tips

MobiLink synchronization 47
digital certificates

MobiLink transport-layer security 169
digital signatures

MobiLink transport-layer security 179
direct inserts of scripts

MobiLink 242
disjoint partitioning

defined 52
synchronization 52

distributable download
file-based downloads in MobiLink 85

distributed databases
MobiLink synchronization 7

-dl option
MobiLink [dbmlsrv9] 199
MobiLink [dbmluser] 492

-DMLStartClasses
Java user-defined start classes 264
MobiLink [dbmlsrv9] -sl java 209

documentation
conventions xii
SQL Anywhere Studio x

domain configuration files
about 298

download
MobiLink synchronization property 130

download acknowledgement
MobiLink performance 107

download buffer

568

Index

MobiLink performance 107
download cache size

MobiLink performance 107
download events

MobiLink synchronization 332
download failure

MobiLink restartable downloads 74
download file

creating for MobiLink file-based downloads 88
download only synchronization

about 24
download stream

defined 15
events 246
failed downloads 74
MobiLink performance 109
MobiLink transactions 19

download_bytes
MobiLink synchronization property 130

download_cursor
disjoint partitioning 52
example using a stored procedure call 78
partitioning child tables 55
partitioning with overlaps 53
performance 109
table event 371
timestamp-based synchronization 49
using a stored procedure call 78

download_delete_cursor
about 248
disjoint partitioning 52
example using a stored procedure call 78
partitioning child tables 55
partitioning with overlaps 53
performance 109
table event 375
using a stored procedure call 78

download_delete_cursor timestamp-based
synchronization 49

download_deleted_rows
MobiLink synchronization property 130

download_errors
MobiLink synchronization property 130

download_fetched_rows
MobiLink synchronization property 130

download_filtered_rows
MobiLink synchronization property 130

download_statistics
connection event 378
table event 381

download_warnings
MobiLink synchronization property 130

downloading a result set from a stored procedure call
synchronization techniques 78

downloading data
file-based downloads in MobiLink 85

downloading rows
synchronization scripts 246

download-only synchronization
about 24

downloads
file-based MobiLink 85

drivers
supported by MobiLink 548

-ds option
MobiLink [dbmlsrv9] 199

duration
MobiLink synchronization property 130

E
-e option

MobiLink [dbmlsrv9] 199
ecc_tls

dbmlsrv9 -x 216
elliptic-curve certificates

generating 496
reading 495

encryption
MobiLink 165

end_connection
connection event 384

end_download
connection event 386
table event 388

end_download_deletes
table event 390

end_download_rows
table event 393

end_publication
connection event 395

end_sync
MobiLink synchronization property 130

end_synchronization
connection event 398

569

Index

table event 400
end_upload

connection event 402
table event 404

end_upload_deletes
table event 407

end_upload_rows
table event 409

enterprise root certificates
MobiLink transport-layer security 169, 170, 172

error handling
during MobiLink synchronization 252

error logs
MobiLink server [dbmlsrv9] 199

errors
handling during MobiLink synchronization 252
MobiLink modify_error_message connection

event 422
recording 252

-et option
MobiLink [dbmlsrv9] 200

events
about MobiLink 227
about MobiLink synchronization 322
introduction to MobiLink events 228
MobiLink 16, 319

events during download
about 332
writing scripts to download rows 246

events during upload
about 328
writing scripts to upload rows 244

example scripts
generating 231

example scripts for UltraLite
MobiLink 233

example synchronization script generation 231
example_download_cursor

about 233
example_upload_cursor

about 233
table event 411

example_upload_delete
table event 412

example_upload_insert
table event 413

example_upload_update

table event 414
examples

generating UltraLite synchronization scripts 233
MobiLink file-based downloads 95

F
-f option

MobiLink [dbmlsrv9] 200
MobiLink [dbmlstop] 490
MobiLink [dbmluser] 492

failed downloads
synchronization techniques 74

failover
MobiLink Redirector 134

faults
MobiLink synchronization recovery 20

feedback
documentation xvi
providing xvi

file-based downloads
about 85
examples 95

file-definition database
creating 87
defined 87

files
file-based downloads in MobiLink 85

FIPS
about 166
MobiLink synchronization server communication

217
MobiLink synchronization server -x option 215

FIPS 140-2 certification
about 166

firewalls
configuring MobiLink clients 137
configuring MobiLink synchronization server 137
routing MobiLink requests 134

forced conflict resolution
MobiLink 70

forcing conflicts
MobiLink 70

-fr option
MobiLink [dbmlsrv9] 200

fragmentation see alsopartitioning
fundamental rules

MobiLink 47

570

Index

G
gencert utility

options 496
syntax 496

generating
elliptic-curve certificates 496
RSA certificates 496

generating example scripts
MobiLink 231

generating scripts automatically
MobiLink synchronization 230

generation numbers
MobiLink file-based downloads 93

getServerContext method
DBConnectionContext class (MobiLink Java

API) 273
DBConnectionContext class (MobiLink .NET

API) 305
global assembly cache

implementing in MobiLink 297
global autoincrement

algorithm 59
declaring 58
generating unique values for MobiLink 57
setting GLOBAL_DATABASE_ID for MobiLink

58
global certificates

using as a server certificate for MobiLink
transport-layer security 174

using reqtool for MobiLink transport-layer
security 173

GLOBAL_DATABASE_ID option
setting in MobiLink 58

globally-signed certificates
MobiLink transport-layer security 173

GUIDs see alsoUUIDs

H
-h option

MobiLink [dbmlstop] 490
handle_error

connection event 415
synchronization scripts 252

handle_odbc_error
connection event 419

handling conflicts

MobiLink 64
handling deletes

synchronization techniques 73
handling failed downloads

synchronization techniques 74
handling MobiLink server errors in Java

MobiLink Java synchronization logic 263
handling MobiLink server errors with .NET

MobiLink .NET synchronization logic 291
handling multiple errors on a single SQL statement

MobiLink 253
high availability

MobiLink Redirector 134
hooks see alsoevent hooks
host option

HTTP synchronization 217
HTTPS synchronization 218
TCP/IP synchronization 215

host protocol option
MobiLink Redirector 137

-hotspot option
MobiLink [dbmlsrv9] -sl java 209

how conflicts are detected
MobiLink 64

how default values are chosen
MobiLink global autoincrement 59

how remote tables relate to consolidated tables 32
how synchronization failure is handled 20
how the upload stream is processed 21
HTTP

dbmlsrv9 -x command line option 216
MobiLink synchronization server 215

httpd.conf
Apache native Redirector 150

HTTPS
dbmlsrv9 -x command line option 217
MobiLink synchronization server 215
MobiLink TLS for UltraLite clients 184
MobiLink transport-layer security 181

HTTPS_FIPS
dbmlsrv9 -x command line option 217
MobiLink synchronization server 215

I
iAnywhere Solutions ODBC drivers

support 547
iaredirect.dll

571

Index

configuring the ISAPI Redirector 144
configuring the NSAPI Redirector 141

IBM DB2
as MobiLink consolidated database 40
conversion of data types in MobiLink 536
maximum identifier length in 503
session-wide variables 41

icons
used in manuals xiv

identifiers
maximum length in IBM DB2 503

ignore option
TCP/IP synchronization 215

ignored_deletes
MobiLink synchronization property 130

ignored_inserts
MobiLink synchronization property 130

ignored_updates
MobiLink synchronization property 130

IIS
configuring for ISAPI 144

indexes
MobiLink performance 109

InOutByteArray
MobiLink Java API 274

InOutInteger
MobiLink Java API 274

InOutString
MobiLink Java API 274

inserting
scripts in MobiLink 242

introducing MobiLink synchronization 3
introduction to synchronization scripts 227
iPlanet

configuring for the NSAPI Redirector 141
ISAPI Redirector

calling 144
configuring 144

J
Java

MobiLink data types 260
MobiLink Java API benefits 25
MobiLink Java API reference 273
synchronization logic 25
synchronization scripts for MobiLink 255

Java classes

instantiation for Java synchronization logic 259
Java MobiLink API

benefits 27
Java synchronization example

MobiLink Java synchronization logic 267
Java synchronization logic

about 25
API 273
DBConnectionContext 273
InOutByteArray 274
InOutInteger 274, 278
InOutString 274
Java class instantiations 259
LogListener 275
LogMessage 275
methods 261
MobiLink performance 108
sample 267
ServerContext 275
ServerException 278
setup 257
ShutdownListener 278
specifying in MobiLink server command line 258

Java VM
MobiLink options 209

Java vs. SQL synchronization logic
MobiLink performance 108

Javadoc
MobiLink 273

-jrepath option
MobiLink [dbmlsrv9] -sl java 209

K
keep partial download synchronization parameter

restartable downloads 75
key factors influencing MobiLink performance 110
key pools

MobiLink synchronization application 60

L
last download timestamp

about 48
modify_last_download_timestamp connection

event 424
modify_next_last_download_timestamp

connection event 427
script parameter 238

572

Index

last modified column
about 48

last_download_timestamp
script parameter 238

liveness_timeout option
TCP/IP synchronization 216

load balancing
MobiLink Redirector 134
Redirector example 140

loading assemblies
MobiLink .NET synchronization logic 297

log files
MobiLink synchronization server 12

LOG_LEVEL
Redirector property 139

LogCallback
MobiLink .NET API 311

logging
MobiLink performance 108
MobiLink synchronization server actions 12

logging MobiLink synchronization server actions
about 12

LogListener
MobiLink Java API 275

LogMessage
MobiLink Java API 275
MobiLink .NET API 311

LONG data type
Oracle synchronization 539

M
-m option

MobiLink [dbmlsrv9] 201
maintaining unique primary keys

MobiLink 56
maintaining unique primary keys using global

autoincrement
MobiLink 57

maintaining unique primary keys using key pools
MobiLink 60

maintaining unique primary keys using UUIDs
MobiLink 56

making a new self-signed certificate
MobiLink transport-layer security 169

many-to-many relationships
partitioning 53
synchronization 53

M-Business Anywhere
configuring for synchronization 153

M-Business Anywhere Redirector
configuring 153

message properties files
starting dbmlsrv9 witht the -m option for

QAnywhere 201
MessageType

MobiLink .NET API 311
messaging

MobiLink QAnywhere system tables 501
methods

MobiLink Java synchronization logic 261
MobiLink .NET synchronization logic 288

Microsoft SQL Server
as MobiLink consolidated database 43
conversion of data types in MobiLink 540

ML
Redirector property 139

ml_add_connection_script stored procedure
SQL syntax 480

ml_add_dnet_connection_script stored procedure
SQL syntax 482

ml_add_dnet_table_script stored procedure
SQL syntax 483

ml_add_java_connection_script stored procedure
SQL syntax 483

ml_add_java_table_script stored procedure
SQL syntax 484

ml_add_property stored procedure
SQL syntax 486

ml_add_table_script stored procedure
SQL syntax 481

ML_CLIENT_TIMEOUT
Redirector property 139

ml_connection_script
MobiLink system table 504

ml_device
MobiLink system table 505

ml_device_address
MobiLink system table 507

ml_listening
MobiLink system table 509

ml_property
MobiLink system table 511

ml_qa_delivery
MobiLink system table 512

573

Index

ml_qa_delivery_client
MobiLink system table 513

ml_qa_global_props
MobiLink system table 514

ml_qa_global_props_client
MobiLink system table 515

ml_qa_notifications
MobiLink system table 516

ml_qa_repository
MobiLink system table 517

ml_qa_repository_client
MobiLink system table 518

ml_qa_repository_content_client
MobiLink system table 519

ml_qa_repository_props
MobiLink system table 520

ml_qa_repository_props_client
MobiLink system table 521

ml_qa_repository_staging
MobiLink system table 522

ml_qa_status_staging
MobiLink system table 524

ml_script
MobiLink system table 525

ml_script_version
MobiLink system table 526

ml_scripts_modified
MobiLink system table 527

ml_subscription
MobiLink system table 528

ml_table
MobiLink system table 529

ml_table_script
MobiLink system table 530

ml_user
MobiLink system table 531
MobiLink user authentication [dbmluser] 492

ml_username
script parameter 238

-MLAutoLoadPath option
about 297
MobiLink [dbmlsrv9] -sl dnet 207

-MLDomConfigFile option
about 297
MobiLink [dbmlsrv9] -sl dnet 207

mlDomConfig.xml
about 298

mlMonitorSettings
MobiLink Monitor settings 124

mlscript.jar
MobiLink Java synchronization logic 257

-MLStartClasses
MobiLink [dbmlsrv9] -sl dnet 207
.NET user-defined start classes 289

MobiLink
alphabetic list of events 319
architecture 8
character set considerations 543
clients 14
connection parameters for dbmlsrv9 214
connection parameters for Monitor 119
consolidated databases 31
data types 533
dbmlsrv9 options 189
deploying applications 549
development tips 47
event overview 322
features 4
file-based downloads 85
handling conflicts 64
Java synchronization logic 255
Monitor 117
multiple synchronization servers 135
.NET synchronization logic 281
ODBC driver support 548
options for writing synchronization logic 25
performance 105
process overview 15
Redirector 133
running outside the current session 157
scripts 227
starting 11
stopping the MobiLink server 12
stored procedures 479
synchronization basics 7
synchronization techniques 45
system tables 501
transport-layer security 165
utilities 489
web server configuration 133

MobiLink certificate generation utility [gencert]
syntax 496

MobiLink certificate reader utility [readcert]
syntax 495

574

Index

MobiLink clients
about 14
deploying 557

MobiLink connections
debugging 164

MobiLink consolidated databases
about 31
ASA as 36
ASE as 37
IBM DB2 as 40
Oracle as 39
SQL Server as 43

MobiLink data types
Java and SQL 260
.NET and SQL 287

MobiLink download stream
defined 15

MobiLink events
about 16
listed 319

MobiLink features
about 4

MobiLink generation numbers
file-based downloads 93

MobiLink Java API reference
alphabetic listing 273

MobiLink Monitor
about 117
Chart pane 123
Details Table pane 121
options 124
Overview pane 124
Properties 124
restoring defaults 124
saving data 126
specifying watches 128
starting 119
statistical properties 130
user interface 121
using 121
viewing in MS Excel 126
Watch Manager 128

MobiLink .NET API reference
alphabetic listing 303

MobiLink performance
about 105
key factors 110

monitoring 115
MobiLink scripts

about 17
MobiLink security

custom user authentication 340
MobiLink statistical properties

MobiLink Monitor 130
MobiLink stop utility [dbmlstop]

syntax 490
MobiLink synchronization

clients 14
consolidated databases 31
file-based downloads 85
Java synchronization logic 255
.NET synchronization logic 281
overview of events 322
performance 105
restartable downloads 74
web server configuration 133
writing Java classes 261
writing .NET classes 288

MobiLink synchronization logic
alphabetic list of scripts 319
data types for Java and SQL 260
data types for .NET and SQL 287
Java 255
.NET 281
synchronization techniques 45
writing scripts 227

MobiLink synchronization process
about 4

MobiLink synchronization scripts
about 227
alphabetic list of scripts 319
constructing Java classes 260
constructing .NET classes 287
database transactions and Java classes 259
database transactions and .NET classes 287
debugging Java classes 262
preserving database transactions in Java 259
preserving database transactions in .NET 287
writing Java classes 261
writing .NET classes 288

MobiLink synchronization server
about 11
deploying 551
multiple instances 139

575

Index

options 190
starting 11
stop utility 490
syntax 190

MobiLink synchronization server options
about 189

MobiLink system tables
about 501
creating in consolidated database 33
ml_connection_script 504
ml_device 505
ml_device_address 507
ml_listening 509
ml_property 511
ml_qa_delivery 512
ml_qa_delivery_client 513
ml_qa_global_props 514
ml_qa_global_props_client 515
ml_qa_notifications 516
ml_qa_repository 517
ml_qa_repository_client 518
ml_qa_repository_content_client 519
ml_qa_repository_props 520
ml_qa_repository_props_client 521
ml_qa_repository_staging 522
ml_qa_status_staging 524
ml_script 525
ml_script_version 526
ml_scripts_modified 527
ml_subscription 528
ml_table 529
ml_table_script 530
ml_user 531

MobiLink transport-layer security
about 165
introduction 166

MobiLink upload stream
defined 15
processing 21

MobiLink user authentication utility [dbmluser]
syntax 492

MobiLink user name
script parameter 238

MobiLink users
MobiLink user authentication [dbmluser] 492

MobiLink utilities
MobiLink certificate generator [gencert] 496

MobiLink certificate reader [readcert] 495
MobiLink stop utility [dbmlstop] 490
MobiLink user authentication [dbmluser] 492

mod_iaredirect.dll
configuring the Apache Redirector 150
configuring the M-Business Anywhere Redirector

153
mod_iaredirect.so

configuring the M-Business Anywhere Redirector
153

modify_error_message
connection event 422

modify_last_download_timestamp
connection event 424

modify_next_last_download_timestamp
connection event 427

modify_user
connection event 429

monitor
MobiLink Monitor 117

monitoring
MobiLink performance 115
synchronizations in MobiLink 117

monitoring MobiLink performance
overview 115

multiple applications
differentiating MobiLink scripts 239

N
.NET

about MobiLink synchronization scripts 281
MobiLink API reference 303
MobiLink data types 287
MobiLink .NET API benefits 25

.NET classes
instantiation for .NET synchronization logic 286

.NET CLR
MobiLink options 207

.NET MobiLink API
API reference 303
benefits 28

.NET synchronization example
MobiLink .NET synchronization logic 300

.NET synchronization logic
about 25
API 303
DBCommand 303

576

Index

DBConnection 304
DBConnectionContext 305
DBParameter 306
DBParameterCollection 307
DBRowReader 310
debugging 292
InOutInteger 317
LogCallback 311
LogMessage 311
MessageType 311
methods 288
MobiLink performance 108
.NET class instantiations 286
sample 300
ServerContext 311
ServerException 313
setup 283
ShutdownCallback 314
SQLType 314
supported languages 282

.NET synchronization techniques
about 295

Netscape web servers
configuring the NSAPI Redirector 141

network parameters
MobiLink server -x option 214

network protocols
dbmlsrv9 using HTTP 216
dbmlsrv9 using HTTPS 217
dbmlsrv9 using HTTPS_FIPS 217
dbmlsrv9 using TCP/IP 215
MobiLink synchronization server 215

new_row_cursor
table event 431

newsgroups
technical support xvi

-notifier option
MobiLink [dbmlsrv9] 202

NSAPI Redirector
configuring 141

NUMERIC data type
MobiLink and ASE 37

O
-o option

MobiLink [dbmlsrv9] 203
MobiLink [dbmluser] 492

objects
MobiLink Java API 273
MobiLink .NET API 303

ODBC
multiple errors in MobiLink 253

ODBC drivers
MobiLink character set translation by 545
supported by MobiLink 548

old_row_cursor
table event 434

-on option
MobiLink [dbmlsrv9] 204

options
dbmlsrv9 190
MobiLink certificate generator [gencert] 496
MobiLink certificate reader [readcert] 495
MobiLink server [dbmlsrv9] 190
MobiLink stop utility [dbmlstop] 490
MobiLink user authentication [dbmluser] 492

options dialog
MobiLink Monitor 124

options for writing synchronization logic 25
options when using a web server

MobiLink 135
-oq option

MobiLink [dbmlsrv9] 205
Oracle

as MobiLink consolidated database 39
conversion of data types in MobiLink 538
data types 538
ODBC configuration 539
sequences in MobiLink synchronization 39
synchronizing LONG data 539

organization unit
verifying in MobiLink transport-layer security180

-os option
MobiLink [dbmlsrv9] 205
MobiLink [dbmluser] 492

-ot option
MobiLink [dbmlsrv9] 206
MobiLink [dbmluser] 492

overlaps
partitioning 52

overview of MobiLink events 322
overview pane

MobiLink Monitor 124

577

Index

P
-p option

MobiLink [dbmluser] 492
packaged download

file-based downloads in MobiLink 85
packages

session-wide information 41
parameters

last download timestamp 238
ml_username 238
MobiLink table name 238
MobiLink user name 238
synchronization scripts 238

partial download retained synchronization parameter
restartable downloads 75

partitioning
defined 52
disjoint 52

partitioning child tables
MobiLink 55

partitioning rows among remote databases 52
partitioning tables

example 52
partitioning with overlaps

MobiLink 53
parts of the synchronization system 8
passwords

MobiLink dbmluser utility 492
-pc option

MobiLink [dbmluser] 492
performance

downloads 109
MobiLink 105
MobiLink upload stream processing 21

performance tips
MobiLink 106

port option
HTTP synchronization 217
HTTPS synchronization 218
TCP/IP synchronization 216

port protocol option
MobiLink Redirector 137
synchronizing across firewalls 137

preload_upload
MobiLink synchronization property 130

prepare_for_download
connection event 436

MobiLink synchronization property 130
primary key pools

generating unique values using default global
autoincrement for MobiLink 57

MobiLink example 61
synchronization 60

primary keys
generating unique values for MobiLink 56
MobiLink and ASE 37
MobiLink primary key pools 60
Oracle sequences 39
uniqueness in synchronization 56

printing information from .NET
MobiLink .NET synchronization logic 291

priority synchronization
MobiLink performance 108

private assemblies
implementing in MobiLink 297

procedures
MobiLink 479

properties
QAnywhere server 201

protocols
dbmlsrv9 using HTTP 216
dbmlsrv9 using HTTPS 217
dbmlsrv9 using HTTPS_FIPS 217
dbmlsrv9 using TCP/IP 215
MobiLink synchronization 8
MobiLink synchronization server 215

proxy web servers
MobiLink 134

-ps option
MobiLink [dbmlsrv9] 206

pseudocode
MobiLink events 322

public key cryptography
MobiLink 165

Q
-q option

MobiLink [dbmlsrv9] 206
MobiLink [dbmlstop] 490
MobiLink [gencert] 496

QAnywhere
deploying 561
MobiLink system tables 501
properties 201

578

Index

R
-r option

MobiLink [dbmlsrv9] 206
MobiLink [gencert] 496

-rd option
MobiLink [dbmlsrv9] 207

readcert utility
options 495
syntax 495

reading
elliptic-curve certificates 495
RSA certificates 495

recording errors during synchronization 252
Redirector

about 133
Apache native 150
configuring (all versions) 139
configuring MobiLink clients and servers 137
configuring the servlet Redirector for Tomcat 146
ISAPI 144
load balancing example 140
M-Business Anywhere 153
Microsoft web servers 144
NSAPI version 141
servlet Redirector for Apache web servers 146
specifying the location 139
uses 134
when to use 135

redirector.config
configuring 139
example 140
location 139

referential integrity
during MobiLink synchronization 22

referential integrity and synchronization
MobiLink clients 22

remote databases
relating consolidated tables to MobiLink remote

tables 32
remote MobiLink databases

schema changes 81
remote tables

deleting rows in MobiLink 248
report_error

connection event 438
syntax 252

report_odbc_error

connection event 440
reporting errors

MobiLink synchronization 252
reqtool

MobiLink transport-layer security 173
using 173

requests
routing in MobiLink 133

resolution
MobiLink conflict resolution 64

resolve_conflict
table event 442
using 66

resolving
MobiLink conflicts 64

resolving conflicts
resolve_conflict script 66
upload_update script 68

restartable downloads
MobiLink 74

resume partial download synchronization parameter
restartable downloads 75

resuming failed downloads
MobiLink 74

return values
Java synchronization 261
.NET synchronization 288

reverse proxy
defined 134

root certificates
MobiLink transport-layer security 169
MobiLink transport-layer security client

verification 175
routing requests

MobiLink synchronization 133
rows

deleting on remote MobiLink databases 248
partitioning 52

RSA certificates
generating 496
reading 495

rsa_tls
dbmlsrv9 -x 216

rsa_tls_fips
dbmlsrv9 -x 216

running Java synchronization logic
about 257

579

Index

running MobiLink outside the current session
about 157

running more than one service at a time
MobiLink 162

running .NET synchronization logic
about 283

running the MobiLink synchronization server
about 11

running the UNIX MobiLink server as a daemon158
running the Windows MobiLink server as a service

159

S
-s option

MobiLink [dbmlsrv9] 207
MobiLink [gencert] 496

sample domain configuration file
about 298

samples
Java synchronization logic 267
.NET synchronization logic 300

saving Monitor data
MobiLink Monitor 126

schema changes
remote MobiLink databases 81

schema changes in remote databases
MobiLink 81

schemas
relating consolidated tables to MobiLink remote

tables 32
script parameters

about 238
script types

about 236
script versions

about MobiLink synchronization 239
adding 240

scripts
about MobiLink 16, 227
adding and deleting Java connection scripts 483
adding and deleting Java table scripts 484
adding and deleting .NET connection scripts 482
adding and deleting .NET table scripts 483
adding and deleting SQL connection scripts 480
adding and deleting SQL table scripts 481
adding to the consolidated database in MobiLink

241

automating MobiLink synchronization 230
common parameters 238
connection scripts 236
MobiLink events 319
supported DBMS scripting strategies 34
table scripts 236
versions 239
writing scripts to download rows 246
writing scripts to upload rows 244

scripts and the synchronization process 234
secure socket layers

MobiLink synchronization 165
security

FIPS 166
MobiLink 165
MobiLink custom user authentication 336
MobiLink overview 29

self-signed certificates
making for MobiLink transport-layer security 169
MobiLink transport-layer security 169

sequences
primary key uniqueness in MobiLink

synchronization 39
server authentication

MobiLink transport-layer security 179
server certificates

using global certificates in MobiLink
transport-layer security 174

-server option
MobiLink [dbmlsrv9] -sl java 209

server stored procedures
MobiLink 479

ServerContext
MobiLink Java API 275
MobiLink .NET API 311

ServerException
MobiLink Java API 278
MobiLink .NET API 313

servers
MobiLink synchronization [dbmlsrv9] 11

service dependencies
MobiLink 162

services
configuring 159
dependencies 162
removing 159
running MobiLink 157

580

Index

running MobiLink as a service 159
running multiple 162

servlet Redirector
Apache Tomcat 146
Apache web servers 146

servlets
installing the Redirector for Apache web servers

146
session properties

MobiLink Monitor 124
session-wide variables

IBM DB2 in MobiLink synchronization 41
Oracle packages 41

setting the GLOBAL_DATABASE_ID value
MobiLink 58

setting up a consolidated database
about 33

setting up a Microsoft SQL Server consolidated
database 43

setting up a Sybase ASE consolidated database 37
setting up an ASA consolidated database 36
setting up an IBM DB2 consolidated database 40
setting up an Oracle consolidated database 39
setting up clients to trust the public certificate

MobiLink transport-layer security 175
setting up file-based downloads

about 87
setting up Java synchronization logic

about 257
setting up .NET synchronization logic

about 283
setting up self-signed certificates

MobiLink transport-layer security 169
setting up the Redirector

overview 136
setting up transport-layer security

MobiLink 168
setup

MobiLink consolidated databases 33
MobiLink Java synchronization logic 257
MobiLink .NET synchronization logic 283

setup scripts
MobiLink consolidated databases 33

shared assemblies
implementing in MobiLink 297

ShutdownCallback
MobiLink .NET API 314

ShutdownListener
MobiLink Java API 278

shutting down
MobiLink stop utility [dbmlstop] 490

signed certificates
creating in MobiLink transport-layer security 172

signing
elliptic-curve and RSA certificates 496

simple synchronization script 229
-sl dnet option

MobiLink [dbmlsrv9] 207
user-defined start classes 289
using -MLAutoLoadPath 285
using -MLDomConfigFile 297

-sl java option
MobiLink [dbmlsrv9] 209
user-defined start classes 264

SLEEP
Redirector property 139

snapshot example
MobiLink file-based downloads 95

snapshot synchronization
about 50

sort order
characters and MobiLink synchronization 544

SQL Anywhere Studio
documentation x

SQL Server
as MobiLink consolidated database 43

SQL synchronization logic
alternatives 25
MobiLink 227
MobiLink performance 108

SQL syntax
MobiLink server [dbmlsrv9] 190

SQL-java data types
about 260

SQL-.NET data types
MobiLink .NET synchronization logic 287

SQLType
MobiLink .NET API 314

start classes
DMLStartClasses option for Java 209
MLStartClasses option for .NET 207
MobiLink Java synchronization logic 264
MobiLink .NET synchronization logic 289

start_time

581

Index

MobiLink synchronization property 130
starting

MobiLink Monitor [dbmlmon] 119
MobiLink synchronization server 11
Notifiers 202

starting the MobiLink Monitor
about 119

starting the MobiLink synchronization server with
transport-layer security

about 177
statement-based scripts

uploading rows 244
statement-based uploads

conflict detection 64
StaticCursorLongColBuffLen

ASE 37
statistical properties

MobiLink 130
statistics

MobiLink 130
stop

MobiLink synchronization server 12
STOP SYNCHRONIZATION DELETE statement

usage 248
stop utility [dbmlstop]

syntax 490
stopping

MobiLink stop utility [dbmlstop] 490
MobiLink synchronization server 12

stopping the MobiLink synchronization server 12
stored procedures

ml_add_connection_script SQL syntax 480
ml_add_dnet_connection_script SQL syntax 482
ml_add_dnet_table_script SQL syntax 483
ml_add_java_connection_script SQL syntax 483
ml_add_java_table_script SQL syntax 484
ml_add_property SQL syntax 486
ml_add_table_script SQL syntax 481
MobiLink 479
MobiLink stored procedure source code 242
using to add or delete synchronization scripts 242
using to download data 78

stored procedures to add or delete properties
MobiLink server 486

stored procedures to add or delete scripts
MobiLink server 480

storing the user name

during conflict resolution 71
strong encryption

MobiLink 165
Sun One

configuring for the NSAPI Redirector 141
Sun web servers

configuring the NSAPI Redirector 141
support

newsgroups xvi
supported DBMS scripting strategies 34

MobiLink 41
switches

MobiLink certificate generator [gencert] 496
MobiLink certificate reader [readcert] 495
MobiLink server [dbmlsrv9] 190
MobiLink user authentication [dbmluser] 492

Sybase Adaptive Server Enterprise
conversion of data types in MobiLink 534

sync
MobiLink synchronization property 130

sync_deadlocks
MobiLink synchronization property 130

sync_errors
MobiLink synchronization property 130

sync_tables
MobiLink synchronization property 130

sync_warnings
MobiLink synchronization property 130

syncasa.sql
about 36

syncase125.sql
about 37

syncase.sql
about 37

sync.conf
M-Business Anywhere Redirector 153

syncdb2long.sql
about 40

synchronization
about MobiLink 7
alphabetic list of scripts 319
architecture of the MobiLink system 8
conflict resolution 64
connection parameters for Monitor 119
consolidated databases 31
conversion to ASE data types in MobiLink 534

582

Index

conversion to IBM DB2 data types in MobiLink
536

conversion to Microsoft SQL Server data types in
MobiLink 540

conversion to Oracle data types in MobiLink 538
data type conversions in MobiLink 533
deleting rows 248
downloading rows 246
many-to-many relationships 53
MobiLink character set translation under

non-Windows platforms 546
MobiLink character set translation under

Windows 544
MobiLink character sets 544
MobiLink performance 21
MobiLink process overview 15
MobiLink stored procedures 479
MobiLink system tables 503
MobiLink transactions 19
MobiLink utilities 489
options for writing synchronization logic 25
performance tips 105
process 234
protocol options for dbmlsrv9 214
restartable downloads 74
running the MobiLink synchronization server 157
snapshot 50
techniques 45
timestamps in MobiLink 19
transport-layer security 165
web server configuration 133
writing MobiLink scripts in Java 255
writing MobiLink scripts in .NET 281
writing scripts 227

synchronization basics 7
about MobiLink 7

synchronization clients
ASA or UltraLite for MobiLink 14

synchronization errors
handling MobiLink 252
troubleshooting 199

synchronization events
about 319
about MobiLink synchronization 322
authenticate_parameters 334
authenticate_user 336
authenticate_user_hashed 340

begin_connection 343
begin_connection_autocommit 345
begin_download 346, 348
begin_download_deletes 351
begin_download_rows 353
begin_publication 356
begin_synchronization 359, 361
begin_upload 363, 365
begin_upload_deletes 367
begin_upload_rows 369
download_cursor 371
download_delete_cursor 375
download_statistics 378, 381
end_connection 384
end_download 386, 388
end_download_deletes 390
end_download_rows 393
end_publication 395
end_synchronization 398, 400
end_upload 402, 404
end_upload_deletes 407
end_upload_rows 409
example_upload_cursor 411
example_upload_delete 412
example_upload_insert 413
example_upload_update 414
handle_error 415
handle_odbc_error 419
MobiLink download 332
MobiLink upload 328
modify_error_message 422
modify_last_download_timestamp 424
modify_next_last_download_timestamp 427
modify_user 429
new_row_cursor 431
old_row_cursor 434
prepare_for_download 436
report_error 438
report_odbc_error 440
resolve_conflict 442
synchronization_statistics 445, 448
time_statistics 450, 453
upload_cursor 456
upload_delete 459
upload_fetch 461
upload_insert 463
upload_new_row_insert 465

583

Index

upload_old_row_insert 467
upload_statistics 469, 472
upload_update 475

synchronization logic
MobiLink 227
options for writing 25

synchronization parameters
HTTP synchronization 215
HTTPS synchronization 215
TCP/IP synchronization 215

synchronization process
about 15

synchronization properties
MobiLink Monitor 125

synchronization scripts
about 227
adding and deleting 241
adding or deleting with stored procedures 242
adding with Sybase Central 241
automatic generation 230
common parameters 238
connection scripts 236
DBMS dependencies 34
download_cursor 247
example 229
example generation 231
example scripts for UltraLite 233
execution during 234
handle_error event 252
implementing for Java 257
implementing for .NET 283
Java 255
Java methods 261
MobiLink events 319
.NET 281
.NET methods 288
report_error 252
supported DBMS scripting strategies 34
table scripts 236
testing 254
types 236
versions in MobiLink 239
writing scripts to download rows 246
writing scripts to upload rows 244

synchronization server
about MobiLink 11

synchronization subscriptionssee alsosubscriptions

synchronization system
components 8

synchronization techniques
about 45
data entry 72
deleting rows 73
failed downloads 74
partitioning 52
primary key pools 60
snapshot-based synchronization 50
stored procedures to download 78
timestamp-based synchronization 48
uploading rows 244

synchronization upload stream
MobiLink processing 21

synchronization users
MobiLink user authentication [dbmluser] 492

synchronization_statistics
connection event 445
table event 448

SynchronizationException
MobiLink Java API 278
MobiLink .NET API 317

synchronizing new remotes
MobiLink file-based downloads 88

synchronizing through a web server
MobiLink 133

syncmss.sql
about 43

syncora.sql
about 39

syntax
MobiLink certificate generator [gencert] 496
MobiLink certificate reader [readcert] 495
MobiLink scripts 319
MobiLink server [dbmlsrv9] 190
MobiLink stop utility [dbmlstop] 490
MobiLink stored procedures 479
MobiLink synchronization utilities 489
MobiLink user authentication [dbmluser] 492

system procedures
MobiLink stored procedures 479

system tables
creating in MobiLink consolidated database 33
MobiLink synchronization 503

584

Index

T
-t option

MobiLink [dbmlsrv9] 210
MobiLink [dbmlstop] 490

table
script parameter 238

table scripts
about 236
adding Java scripts 484
adding .NET scripts 483
adding SQL scripts 481
adding with Sybase Central 241
alphabetic list of MobiLink scripts 319
defined 229, 236
deleting Java scripts 484
deleting .NET scripts 483
deleting SQL scripts 481

tables
adding to remote MobiLink ASA databases 81
partitioning 52
relating consolidated tables to MobiLink remote

tables 32
TCP/IP

dbmlsrv9 -x command line option 215
MobiLink synchronization servers 215
MobiLink TLS for ASA clients 182
MobiLink TLS for UltraLite clients 186

technical support
newsgroups xvi

testing
synchronization scripts 254

testing script syntax
MobiLink 254

time_statistics
connection event 450
table event 453

timestamp-based example
MobiLink file-based downloads 99

timestamp-based synchronization
about 48
download_cursor script 49
download_delete_cursor script 49

tips
performance of MobiLink 105
synchronization techniques 47

TLS see alsotransport-layer security
MobiLink 165

Tomcat
configuring the servlet Redirector 146
Redirector supported versions 146

transaction-level uploads
MobiLink [dbmlsrv9] -us option 211

transactions
during MobiLink synchronization 19
MobiLink Java synchronization logic 259
MobiLink .NET synchronization logic 287

transactions in the synchronization process 19
translation

character set by ODBC drivers 545
translation between character sets

MobiLink synchronization under non-Windows
platforms 546

MobiLink synchronization under Windows 544
transport-layer security

efficiency in MobiLink 166
how it works in MobiLink 166
MobiLink 165
setting up for MobiLink 168
supported platforms for MobiLink 166

transport-layer security over HTTPS
MobiLink 181

transport-layer security over TCP/IP
MobiLink 182

troubleshooting
handling failed downloads 74
MobiLink restartable downloads 74
MobiLink server startup 164
MobiLink synchronization server log 12
synchronization errors 199

troubleshooting MobiLink server startup
about 164

trusted_certificates parameter
MobiLink transport-layer security 181

-tt option
MobiLink [dbmlsrv9] 210

tuning MobiLink for performance 110

U
-u option

MobiLink [dbmlsrv9] 211
MobiLink [dbmluser] 492

-ud option
MobiLink [dbmlsrv9] 211

UDB

585

Index

as MobiLink consolidated database 40
ULRollbackPartialDownload function

restartable downloads 75
UltraLite

deploying 560
MobiLink example scripts 233
MobiLink transport-layer security 183

unique primary keys
generating for MobiLink using UUIDs 56
generating using global autoincrement for

MobiLink 57
generating using key pools for MobiLink 60
MobiLink 56

unknown_timeout option
HTTPS synchronization 218

unknown_timeout protocol option
synchronizing across firewalls 137

UPDATE conflicts
MobiLink 64

upgrading
schemas in MobiLink remote databases 81

upgrading applications
using multiple MobiLink script versions 239

upload
MobiLink synchronization property 130

upload cache size
MobiLink performance 107

upload events
about 244
MobiLink synchronization 328

upload only synchronization
about 24

upload stream
defined 15
events 244
MobiLink transactions 19
processing of MobiLink 21

upload_bytes
MobiLink synchronization property 130

upload_cursor
table event 456

upload_deadlocks
MobiLink synchronization property 130

upload_delete
table event 459
using with .NET synchronization logic 295

upload_deleted_rows

MobiLink synchronization property 130
upload_errors

MobiLink synchronization property 130
upload_fetch

conflict detection 64
table event 461

upload_insert
table event 463
using with .NET synchronization logic 295

upload_inserted_rows
MobiLink synchronization property 130

upload_new_row_insert
storing user name 71
table event 465

upload_old_row_insert
storing user name 71
table event 467

upload_statistics
connection event 469
table event 472

upload_update
conflict detection 64
table event 475
using 68
using with .NET synchronization logic 295

upload_updated_rows
MobiLink synchronization property 130

upload_warnings
MobiLink synchronization property 130

uploading rows
MobiLink performance 109
.NET synchronization techniques 295
writing scripts 244

upload-only and download-only synchronization
about 24

upload-only synchronization
about 24

-urc option
MobiLink performance benefits 109

url_suffix option
HTTP synchronization 217
HTTPS synchronization 219

url_suffix protocol option
MobiLink Redirectors 137

-us option
MobiLink [dbmlsrv9] 211

user

586

Index

MobiLink synchronization property 130
user authentication utility [dbmluser]

syntax 492
user names

MobiLink user authentication utility [dbmluser]
492

user-defined start classes
MobiLink Java synchronization logic 264
MobiLink .NET synchronization logic 289

user-specific conflict resolution 71
using a global certificate as a server certificate

MobiLink transport-layer security 174
using certificate chains

MobiLink transport-layer security 170
using digital certificates

MobiLink transport-layer security 169
using stored procedures to add or delete

synchronization scripts 242
using the MobiLink Monitor 121
utilities

MobiLink certificate generator [gencert] 496
MobiLink certificate reader [readcert] 495
MobiLink Redirector 133
MobiLink server [dbmlsrv9] 190
MobiLink stop utility [dbmlstop] 490
MobiLink user authentication [dbmluser] 492

UUIDs
MobiLink synchronization application 56

V
-v option

MobiLink [dbmlsrv9] 211
MobiLink [dbmlsync] performance 108

validating
MobiLink file-based downloads 91

validation checks
MobiLink file-based downloads 91

VARCHAR data type
MobiLink and other DBMSs 35

-verbose option
MobiLink [dbmlsrv9] -sl java 209

verbosity
MobiLink [dbmlsrv9] -v option 211
MobiLink performance 108

verify_upload
MobiLink synchronization property 130

verifying certificate fields

MobiLink transport-layer security 180
verifying MobiLink synchronization servers

MobiLink transport-layer security 179
version

MobiLink synchronization property 130
version option

HTTP synchronization 217
HTTPS synchronization 219

versions
adding script versions 240
MobiLink synchronization scripts 239

Visual Basic
support in MobiLink .NET 282

W
-w option

MobiLink [dbmlsrv9] 212
MobiLink [dbmlstop] 490

web servers
configuration options for MobiLink 135
configuring Apache for synchronization 150
configuring for synchronization 139
configuring ISAPI Microsoft for synchronization

144
configuring M-Business Anywhere for

synchronization 153
configuring NSAPI for synchronization 141
MobiLink clients and 137
MobiLink Redirector 133

wizards
add connection script 241
add service 159
add synchronized table 241
add synchronizing table script 242
add version 240

worker
MobiLink synchronization property 130

worker threads
MobiLink 110
MobiLink performance 106

writing
Java synchronization logic 255
.NET synchronization logic 281

writing download_cursor scripts
MobiLink 247

writing download_delete_cursor scripts
MobiLink 248

587

Index

writing Java synchronization logic
about 259

writing .NET synchronization logic
about 286

writing scripts to download rows
MobiLink 246

writing scripts to handle errors
MobiLink 252

writing scripts to upload rows
MobiLink 244

writing synchronization scripts
SQL 227
supported DBMS scripting strategies 34

writing synchronization scripts in Java
about 255

writing synchronization scripts in .NET
about 281

writing upload_delete scripts
MobiLink 245

writing upload_fetch scripts
MobiLink 245

writing upload_insert scripts
MobiLink 244

writing upload_update scripts
MobiLink 244

-wu option
MobiLink [dbmlsrv9] 214

X
-x option

MobiLink [dbmlsrv9] 214
MobiLink [dbmlsrv9] -sl java 209

X509 certificates
generating 496
reading 495

Xusage.txt
location 209

Z
-za option

MobiLink [dbmlsrv9] 219
-ze option

MobiLink [dbmlsrv9] 220
-zp option

MobiLink [dbmlsrv9] 221
-zs option

MobiLink [dbmlsrv9] 221

-zt option
MobiLink [dbmlsrv9] 221

-zu option
MobiLink [dbmlsrv9] 222

-zw option
MobiLink [dbmlsrv9] 222

-zwd option
MobiLink [dbmlsrv9] 223

-zwe option
MobiLink [dbmlsrv9] 223

588

	MobiLink Administration Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Using MobiLink Technology
	Introducing MobiLink Synchronization
	The MobiLink synchronization process
	MobiLink features

	Synchronization Basics
	Parts of the synchronization system
	Consolidated database
	The MobiLink synchronization server
	Running the MobiLink synchronization server
	Stopping the MobiLink synchronization server
	Logging MobiLink synchronization server actions

	MobiLink clients
	The synchronization process
	MobiLink events
	MobiLink scripts

	Stored procedures
	Transactions in the synchronization process
	How synchronization failure is handled
	How the upload stream is processed
	Referential integrity and synchronization

	Upload-only and download-only synchronization
	Options for writing synchronization logic
	Security

	MobiLink Consolidated Databases
	Introduction
	How remote tables relate to consolidated tables

	Setting up a consolidated database
	DBMS-dependent synchronization scripts
	Adaptive Server Anywhere consolidated database
	Sybase Adaptive Server Enterprise consolidated database
	Oracle consolidated database
	IBM DB2 consolidated database
	Microsoft SQL Server consolidated database

	Synchronization Techniques
	Introduction
	Development tips
	Timestamp-based synchronization
	Snapshot synchronization
	Partitioning rows among remote databases
	Disjoint partitioning
	Partitioning with overlaps
	Partitioning child tables

	Maintaining unique primary keys
	Maintaining unique primary keys using UUIDs
	Maintaining unique primary keys using global autoincrement
	Declaring default global autoincrement
	Setting the GLOBAL_DATABASE_ID value
	How default values are chosen

	Maintaining unique primary keys using key pools

	Handling conflicts
	Detecting conflicts
	Resolving conflicts
	Resolving conflicts with resolve_conflict scripts
	Resolving conflicts with upload_update scripts

	Forced conflicts
	Storing the user name

	Data entry
	Handling deletes
	Handling failed downloads
	Resuming failed downloads

	Downloading a result set from a stored procedure call
	Schema changes in remote databases
	Adaptive Server Anywhere remote databases
	UltraLite remote databases

	File-Based Downloads
	Introduction
	Setting up file-based downloads
	Create the file-definition database
	Changes at the consolidated database
	Creating the download file
	Synchronizing new remotes

	Validation checks
	Automatic validation
	MobiLink generation numbers
	Custom validation

	Examples
	Snapshot example
	Timestamp-based example

	MobiLink Performance
	Performance tips
	Key factors influencing MobiLink performance
	Tuning MobiLink for performance

	Monitoring MobiLink performance

	MobiLink Monitor
	Introduction
	Starting the MobiLink Monitor
	Using the MobiLink Monitor
	Details Table pane
	Chart pane
	Overview pane
	Options dialog
	Session properties
	Synchronization properties

	Saving Monitor data
	Customizing your statistics
	MobiLink statistical properties

	Synchronizing Through a Web Server With the Redirector
	Introduction
	Options when using a web server

	Setting up the Redirector
	Configuring MobiLink clients and servers for the Redirector
	Configuring Redirector properties (all versions)
	NSAPI Redirector for Netscape/Sun web servers
	ISAPI Redirector for Microsoft web servers
	Servlet Redirector
	Apache Redirector
	M-Business Anywhere Redirector

	Running MobiLink Outside the Current Session
	Running the UNIX MobiLink server as a daemon
	Running the Windows MobiLink server as a service
	Adding, modifying, and removing services
	Running more than one service at a time

	Troubleshooting MobiLink server startup
	Ensure that network communication software is running
	Debugging network communications startup problems

	MobiLink Transport-Layer Security
	Introduction
	FIPS 140-2 certification

	Setting up transport-layer security
	Creating digital certificates
	Self-signed root certificates
	Certificate chains
	Enterprise root certificates
	Signed server certificates

	Globally-signed certificates
	Using reqtool to obtain global certificates
	Using a global certificate as a server certificate
	Setting up clients to trust the certificate authority's public certificate

	Starting the MobiLink synchronization server with transport-layer security
	Configuring MobiLink clients to use transport-layer security
	Server authentication
	Digital signatures
	Verifying certificate fields

	Client security options
	Configuring Adaptive Server Anywhere clients to use transport-layer security
	Transport-layer security over HTTPS
	Transport-layer security over TCP/IP

	Configuring UltraLite clients to use transport-layer security
	Transport-layer security over HTTPS
	Transport-layer security over TCP/IP

	MobiLink Synchronization Server Options
	MobiLink synchronization server
	dbmlsrv9 options
	@data option
	-a option
	-b option
	-bc option
	-bn option
	-c option
	-cn option
	-cr option
	-ct option
	-d option
	-dd option
	-dl option
	-ds option
	-e option
	-et option
	-f option
	-fr option
	-m option
	-notifier option
	-o option
	-on option
	-oq option
	-os option
	-ot option
	-ps option
	-q option
	-r option
	-rd option
	-s option
	-sl dnet option
	-sl java option
	-t option
	-tt option
	-u option
	-ud option
	-us option
	-v option
	-w option
	-wu option
	-x option
	-za option
	-ze option
	-zp option
	-zs option
	-zt option
	-zu option
	-zw option
	-zwd option
	-zwe option

	MobiLink Scripting Logic
	Writing Synchronization Scripts
	Introduction to synchronization scripts
	A simple synchronization script
	Generating scripts automatically
	Generating example scripts
	Example scripts for UltraLite

	Scripts and the synchronization process
	Script types
	Connection scripts
	Table scripts

	Script parameters
	Script versions
	Adding a script version

	Adding and deleting scripts in your consolidated database
	Adding or deleting scripts
	Direct inserts of scripts

	Writing scripts to upload rows
	Writing upload_insert scripts
	Writing upload_update scripts
	Writing upload_delete scripts
	Writing upload_fetch scripts

	Writing scripts to download rows
	Writing download_cursor scripts
	Writing download_delete_cursor scripts

	Writing scripts to handle errors
	Reporting errors
	Handling multiple errors on a single SQL statement

	Testing script syntax

	Writing Synchronization Scripts in Java
	Introduction
	Setting up Java synchronization logic
	Writing Java synchronization logic
	Class instances
	Transactions
	SQL-Java data types
	Constructors
	Methods
	Debugging Java classes
	Handling MobiLink server errors in Java
	User-defined start classes

	Java synchronization example
	Introduction
	Create your Java synchronization script

	MobiLink Java API Reference
	DBConnectionContext interface
	InOutByteArray interface
	InOutInteger interface
	InOutString interface
	LogListener interface
	LogMessage class
	ServerContext interface
	ServerException class
	ShutdownListener interface
	SynchronizationException class

	Writing Synchronization Scripts in .NET
	Introduction
	Setting up .NET synchronization logic
	Writing .NET synchronization logic
	Class instances
	Transactions
	SQL-.NET data types
	Constructors
	Methods
	User-defined start classes
	Printing information from .NET
	Handling MobiLink server errors with .NET
	Debugging .NET synchronization logic

	.NET synchronization techniques
	Uploading rows

	Loading Shared Assemblies
	Loading assemblies

	.NET synchronization example
	MobiLink .NET API Reference
	DBCommand interface
	DBConnection interface
	DBConnectionContext interface
	DBParameter class
	DBParameterCollection class
	DBRowReader interface
	LogCallback delegate
	LogMessage class
	MessageType enumeration
	ServerContext interface
	ServerException class
	ShutdownCallback delegate
	SQLType enumeration
	SynchronizationException class

	Synchronization Events
	Overview of MobiLink events
	Events during upload
	Events during download

	authenticate_parameters connection event
	authenticate_user connection event
	authenticate_user_hashed connection event
	begin_connection connection event
	begin_connection_autocommit connection event
	begin_download connection event
	begin_download table event
	begin_download_deletes table event
	begin_download_rows table event
	begin_publication connection event
	begin_synchronization connection event
	begin_synchronization table event
	begin_upload connection event
	begin_upload table event
	begin_upload_deletes table event
	begin_upload_rows table event
	download_cursor table event
	download_delete_cursor table event
	download_statistics connection event
	download_statistics table event
	end_connection connection event
	end_download connection event
	end_download table event
	end_download_deletes table event
	end_download_rows table event
	end_publication connection event
	end_synchronization connection event
	end_synchronization table event
	end_upload connection event
	end_upload table event
	end_upload_deletes table event
	end_upload_rows table event
	example_upload_cursor table event
	example_upload_delete table event
	example_upload_insert table event
	example_upload_update table event
	handle_error connection event
	handle_odbc_error connection event
	modify_error_message connection event
	modify_last_download_timestamp connection event
	modify_next_last_download_timestamp connection event
	modify_user connection event
	new_row_cursor table event (deprecated)
	old_row_cursor table event (deprecated)
	prepare_for_download connection event
	report_error connection event
	report_odbc_error connection event
	resolve_conflict table event
	synchronization_statistics connection event
	synchronization_statistics table event
	time_statistics connection event
	time_statistics table event
	upload_cursor table event (deprecated)
	upload_delete table event
	upload_fetch table event
	upload_insert table event
	upload_new_row_insert table event
	upload_old_row_insert table event
	upload_statistics connection event
	upload_statistics table event
	upload_update table event

	MobiLink Reference
	Stored Procedures
	Stored procedures to add or delete scripts
	ml_add_connection_script
	ml_add_table_script
	ml_add_dnet_connection_script
	ml_add_dnet_table_script
	ml_add_java_connection_script
	ml_add_java_table_script

	Stored procedures to add or delete properties
	ml_add_property

	Utilities
	MobiLink stop utility
	MobiLink user authentication utility
	Certificate reader utility
	Certificate generation utility

	MobiLink System Tables
	Introduction
	ml_connection_script
	ml_device
	ml_device_address
	ml_listening
	ml_property
	ml_qa_delivery
	ml_qa_delivery_client
	ml_qa_global_props
	ml_qa_global_props_client
	ml_qa_notifications
	ml_qa_repository
	ml_qa_repository_client
	ml_qa_repository_content_client
	ml_qa_repository_props
	ml_qa_repository_props_client
	ml_qa_repository_staging
	ml_qa_status_staging
	ml_script
	ml_script_version
	ml_scripts_modified
	ml_subscription
	ml_table
	ml_table_script
	ml_user

	DataType Conversions
	Adaptive Server Enterprise data mapping
	IBM DB2 data mapping
	Oracle data mapping
	Microsoft SQL Server data mapping

	Character Set Considerations
	Character set considerations
	Character set translation during synchronization: Windows
	Controlling ODBC driver character set translation

	Character set translation during synchronization: non-Windows

	iAnywhere Solutions ODBC Drivers
	ODBC drivers supported by MobiLink

	Deploying MobiLink Applications
	Deployment overview
	Deploying the MobiLink server
	Deploying Adaptive Server Anywhere MobiLink clients
	Deploying UltraLite MobiLink clients
	Deploying QAnywhere applications

	Index

