SYBASE

Resource Guide

PocketBuilder™
2.5

DOCUMENT ID: DC50061-01-0250-01
LAST REVISED: December 2007

Copyright © 2003-2007 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

PART 1

CHAPTER 1

CHAPTER 2

CHAPTER 3

Resource Guide

... xi
USING THE POWERSCRIPT LANGUAGE
Implementing Object-Oriented Programming Techniques 3
TErmMiNOIOGY FEVIEWvvieeiiiciiieiiie e e ettt e e e e st e e e s earrae e e e e 3
PocketBuilder teChNIQUES...........uuviieeeiiiiiiiiice e 5
Other tEChNIQUEScviei ittt a e e 8
Using Drag and Drop in @ WindOoWwcccccvviiiiieiiieieeee e 13
About drag and AroPoccevveeiieee i 13
Drag-and-drop properties, events, and functions..................cc....... 14
Identifying the dragged CONtrol............coccvvviieieeeiiciiee e, 15
Using the PowerScript Languagecoooviiiiiiiiiieeieeieeeeeeee s 17
DOt NOLALION ...t 17
Constant deClarationsc.covveieeiiieree e 21
Controlling access for instance variables..........cccccccooccviiieiieeniiinns 22
Resolving naming conflictS........ccccceeeviiiiiiiiiec e 23
Return values from ancestor SCriptS........cccovcveeeiiiiciiiieiee s sesiiieeens 24
Types of arguments for functions and eventscccoeccvvvveeeeenn. 26
Ancestor and descendent variablesccccco i, 27
Optimizing expressions for DataWindow and external objects 29
Printing at runtimeooviieei e 29
Sending mail from a device or emulator..........ccccceeviiiiiiiiiiee i, 30
Exception handling in PocketBuilder...........ccccccovviiiiieiiieniiiniiinnn, 31
Basics of exception handling..........cccvveevieeiiiiiiiiiee e, 31
Objects for exception handling SUPPOIt..........covvviiiiieeieenniiiinns 32
Handling eXCePLioNSccvvviiiiieeiieiiiiee e 33
Creating user-defined exception types........cccccuvvvcviieeiienniinnns 35
Adding flexibility and facilitating object reusecccccceeeeen. 37
Using the SystemError and Error events..........ccccceveeeeicevvnnnen. 38
Garbage COIECHION ... 39
iii

Contents

CHAPTER 4

PART 2

CHAPTER 5

CHAPTER 6

CHAPTER 7

Efficient compiling and performanceccccoceevviieiiniiee e, 40
Getting Information About PocketBuilder Class Definitions..... 41
Overview of class definition information............ccccocvveiiiniennnnnn. 41
TeIMINOIOGY . .vvviiiie it 42

Who uses PocketBuilder class definitions.............cccccvvcvveeenns 44
Examining a class definitioncccccoviiiiiieiiiiiee e, 45
Getting a class definition object............cccccceeiiiiiics 45

Getting detailed information about the classccccccoeuvneeen. 45

Getting information about a class’s SCripts.........cccccceeeviivvinen. 48

Getting information about variables...............cccccvvvvieei i, 50

IMPLEMENTING USER INTERFACE FEATURES

Using Tab Controls in @ WindOW...........cceiiiiiiiiiiiiiiiiiecceeeeen 55
ADOUL Tab CONTIOIS ... 55
Defining and managing tab pagescccccccceiiiniiiiii e, 57
Customizing the Tab controlcccccee i 60
Using Tab controls in SCHPLSvvvieeieeiiciiiiieee e 62

Referring to tab pages in SCrptS......cccccveeeeiiciiiiiiee e, 63
Referring to controls on tab pagesccccvvveeveeeiiiiciiienneennn, 65
Opening, closing, and hiding tab pages.........cccccccceeeeviiivinenn. 66
Keeping track of tab pages.........cccooueieiiiiiiiinie e 66
Events for the parts of the Tab controlcccccovveiiienenns 67

Using Lists and Tree Views in a WindOWccooecevvvvinvennnnn. 69
About presenting liStS........cocvviiiiiei e 69
UsSiNg LiStBOX CONIOIS......ccceiiiiiiieiiie e e i ciiiiieee e et e e e e e 70
Using DropDownLiStBOX CONLIOIS.........ccccvvviiiieeeeeiiiiiiieee e e e e 71
USINg LiStVIEW CONMIOIScceoiiiiiiiiiiie ettt 72

USING FEPOIM VIBW....vviiiiiiiiiiiieiiie ettt e s 77
USINg TreeVIeW CONLIOISoouvviiiiiiee it 78
Populating Tre@VIEWScoviiiiiiiiiiiieiiee ettt 81
Managing TreeVieW itemMS.........ovvviviiiieee i 86
Managing TreeView PICIUIES.........c.uuvveeeeeeiiiiiiiieee e 94
Using DataWindow information to populate a TreeView......... 97

Manipulating Graphs in WindOWsS ..., 101

USING Graphiscooooiiiii e 101
Working with graph controls in codecccccceeviiiiiiiiiennnnn, 101
Populating a graph with data...........cccccoovviiiiiiinieiiiiiiiee s 103
Modifying graph properties........ccccceeviiiciiiiiiie e 105
How parts of a graph are represented..........cccccceeevevvvvnennnnnn. 105

PocketBuilder

Contents

Referencing parts of a graph.........ccocccvvvieiieeiiiciiiieee e, 106
Accessing data PropertiesS.........uueeeeeeiiiciiieeeee e 107
Getting information about the data...........ccccccooecvviiieieeeniins 107
Saving graph datac..oovviiriiieiiee e 108
Modifying colors, fill patterns, and other data........................ 108
PART 3 PROGRAMMING DATAWINDOWS AND DATASTORES
CHAPTER 8 About DataWindow Technologyccoocviiiiiiiiieeiee s 111
About DataWindow objects and controlscccccceevvicviieennnnnn. 111
DataWindow ODJECES ...uvvveeeiiiiiiiiecee et 112
Presentation styles and data SOUICeScccceveveeeeiininnnnen. 112
BaSIC PrOCESS . ..uvvviiiieei ittt 113
DataWindow CONLIOIScccoiviiiiiiiieeieee e 114
CHAPTER 9 Using DataWindow ODJecCtScccuvviiiiiiiiiiieiee e 117
About using DataWindow 0bjJectsccccceeeeviiiiiiiieee e, 117
Putting a DataWindow object into a controlccccceeviiiiineenn. 118
Names for DataWindow controls and DataWindow objects.. 118
Working with the DataWindow control in PocketBuilder........ 119
Specifying the DataWindow object at runtime....................... 121
Accessing the databasecccccviiiiiiiiii 122
Setting the transaction object for the DataWindow control.... 123
Retrieving and updating datacccceereeeeviiiiiiiineee e 126
Importing data from an external SOUrCeccccccevveeeiiiciineeneenn. 128
Manipulating data in a DataWindow control............cccccceeevviinnneen. 128
How a DataWindow control manages dataccc.vvee.. 129
Accessing and manipulating the text in the edit control 131
Coding the ltemChanged event...........ccccccvveeeeiiiciiineeeee e 132
Coding the HeMEIOr eVentccccceeeviiciviieer e 132
Accessing the items in a DataWindowccccevvviiiiiienennn, 133
Using other DataWindow methods.............occuvvvviiieiniiniinnnen. 134
Accessing the properties of a DataWindow object....................... 135
Handling DataWindow €rT0rSccoeevuiiiiiiiieneeeniiiiieeee e e s 136
Retrieve and Update errors and the DBError event 136
Errors in property and data expressions and the Error event 139
Updating the databaseccccceveeeiiiiiiiiin e 141
How the DataWindow control updates the database 141
Changing row or column status programmatically 143
Creating FEPOMS ..vviiie e i cieie e e cet e e e e s e e e e e e s s e e e aaeesaannes 144
Planning and building the DataWindow object...................... 144
Printing the report.........oocciiiiiiee e 145

Resource Guide \%

Contents

CHAPTER 10

CHAPTER 11

CHAPTER 12

PART 4

CHAPTER 13

Vi

Dynamically Changing DataWindow Objectscccuvveeeeen. 147
About dynamic DataWindow processing.........ccccueeveeeriiniivneenenenn. 147
Modifying a DataWindow ObJeCt..........cocvuviiiiieiiiniiiiiiiee e 148
Creating a DataWindow ObjJecCt..........cceviiiiiiiiiiiieeiiiiiiiiieee e 149
Providing query ability t0 USEI'Sccccovviiiiiiiiiie i 151

How query mode WOTKSc.ooccviieiiieeesiiiiieee e e e esiiaeeeae e 151
USING QUETY MOAEcceeiiiiiiiieiee ettt e et a e e e 152

Using DataStore ObJeCtS.....uuviiiiieeiiiiii e 157
ADOUL DAtBSTOIESceeiiiiieeiiiiie ettt 157
Working with @ DataStorecccccoeccvvvveeieees e 159
Using a custom DataStore object............cccvvvvveeeeeiiiiiiiiieee e, 160
Accessing and manipulating data in a DataStorecc........ 162
Sharing informMation ... 164

Example: printing data from a DataStoreccccvvveeennnn. 165
Example: using two DataStores to process data................... 167

Manipulating Graphs in DataWindowscccccoevvvecvinvinnnennnnn. 171
USING Graphiscccooiiee e 171
Modifying graph properties........cccccceeeiieciiiieiie e 172

How parts of a graph are represented..........ccccccccovvvvvnnenennnn. 173
Referencing parts of a graph........ccccccceeeeiiiicciiieee e, 173
Accessing data PropertiesS ... iiiiiieiiee i 174
Getting information about the data...........cccccoovviiviiieiieniinns 174
Saving graph datacooovivviiieiieeeniie e 175
Modifying colors, fill patterns, and other data........................ 176
Using graph methods ... 176

CONNECTING TO A DATABASE

Database Connectivity in PocketBuilder........cccccccooiiiiiiiiinneen. 181
Accessing data in PocketBuilder...........cccccceviviiiiiiiiei i, 181
About database profilesccccccviiiiii 182
Creating database profiles ..o 183

Database Profiles dialog boX..........ccccceeeviiiiiiiiiiiiien, 184
Database Profile Setup dialog boX..........ccccveeveiiiiiiiiiiennennn, 185
Supplying information in the dialog boX...........ccccccceeviiiinnen. 186
Creating a database profilecccccevviciiiiie e 187
Specifying passwords in database profilescccuvveee. 188
Connecting to a databaseccvvvevieeii i 188
What happens when you Connectcccccvveeeeeeiiiiiiieeneeeenn, 189
Importing and exporting database profiles...........cccccccovviivieeneenn. 190
Maintaining database profilesccccoovviiiiiiiiiiniiiiie s 191

PocketBuilder

Contents

CHAPTER 14

CHAPTER 15

CHAPTER 16

Resource Guide

Sharing database profilescccooiiiiiii i 191
Using database interfacesccccoevvieviiiiiie e, 197
About database interfacesccoceeiiiieiniiee e 197
Working with the ODBC database interface..........cccccccoecvvvvennennn. 198
Connecting to a SQL Anywhere database on Windows CE.. 199
About SQL Anywhere data SOUrcescccccvveeeiiiiiiveneennnn. 200
Defining the SQL Anywhere data sourceccccccceeevvvneenn. 202
Defining multiple data sources for the same data 205
How PocketBuilder accesses the data source 206
Support for Transact-SQL special timestamp columns.......... 208
The PKODB25 initialization filecoccevvieiiiiiencieeee 209
Preparing remote databases...........cccvvvveeeeiiiiiiiiiieeee s 211
Starting SQL Anywhere on a devicCeccccccovvvvvvvieiieeniinns 212
Working with the UltraLite database interface..............ccccvveeeeenn. 213
Supported UltraLite datatypes..........occcvvvverieeesiiiiiiieeneees i 214
Running utilities for UltraLite databases.............cccccccoevuvvneenn. 214
Defining the UltraLite database interfaceccccccooevvneeen. 214
Migrating a SQL Anywhere application to UltraLite............... 216
Troubleshooting Your Connection........cccccccevvvveeeee e ccccciiieene, 219
About tracing database coONNECHiONSoccvvvvievieeesiiiiiiieneennn, 219
Using the Database Trace to0l..........cccoocuvvviveeeeeeiiiiiieee e 220
About the Database Trace to0l..........ccccovveiiiiiiiieniiieee e, 220
Starting the Database Trace tool...........cccccveeeviiiciiiieieee e, 222
Stopping the Database Trace tool...........ccccceevvvviiiiieiieeeiiinns 223
Specifying a nondefault Database Trace log..........ccccccceevueis 224
Deleting or clearing the Database Trace 10g.............coevvveeen. 225
Sample Database Trace OUtpUL.........cccvveeviee i 225
Using the ODBC Driver Manager Trace tool..........cccccccevvvivnnnenn. 226
About ODBC Driver Manager Trace.........ccccvveveeeeiiniivneeneeenns 226
Starting ODBC Driver Manager TracCe...........ccoeevvvveeeeeennnnns 227
Stopping ODBC Driver Manager Trace.........ccccovevvererrireeeennns 229
Sample ODBC Driver Manager Trace OUtpUt..............cceeennee 230
Using Transaction ODJectScccciuiiiiiiiiiiiie e 233
About Transaction ODJECES..........coevvviiiiiiiiie e, 233
Description of Transaction object properties...............ocvvveee.. 234
Working with Transaction objectscccccovvviiiiiiii e, 236
Transaction DASICSccvvveiiiiiieiiie e 236
The default Transaction object...........cccocccvviiivieeiiiiiciiiecee, 237
Assigning values to the Transaction object.............ccccceeee... 237
Reading values from an external filecccccevveeeiiiinnnnn, 238
Connecting to the databaseccccoccvvviveeieecciciiiiiee e, 239
vii

Contents

Using the Preview tab to connect in a PocketBuilder

APPHCALION ..o 239
Disconnecting from the database............ccccocceiiiiiiiiiienn, 240
Defining Transaction objects for multiple database

CONNECLIONSviiiiiiiee e ittt e e e e s et e e e e e s s e e e e e e e e aeanes 241
Error handling after a SQL statement..........cccccceeevvicvvineneennn. 244

Using Transaction objects to call stored procedures 245
Step 1: define the standard class user object 246
Step 2: declare the stored procedure as an external function 247
Step 3: save the user object.........cccccovvviiiiiiiiiiiii e 249
Step 4: specify the default global variable type for SQLCA... 249
Step 5: code your application to use the user object............. 250

Supported DBMS features when calling stored procedures 251

CHAPTER 17 Using MobiLink Synchronizationccccceeis 253

About MobiLink synchronizationcccccoviniiiiiiiii e, 253

Working with PocketBuilder synchronization objects.................... 259
Adding synchronization capabilities to your application 260
Using the synchronization objects in your application........... 261
Using the synchronization options WindoW.............ccccueeeeenn. 265
Preparing to use the wizard for remote SQL Anywhere

databaSsES ... 267

Preparing to use the wizard for remote UltraLite databases. 268

Preparing consolidated databases...........cccccccceevvviiiiiniee e, 269
CONNECHION BVENLS.....uviiieii ittt e e e s seciiiee e e e e e e ssirane e e e e ananes 270
Table EVENES.....ovviiii e 271
Working with scripts and users in Sybase Central 273
Creating remote databases............ccoceviiiiieiiiic e 276
Creating and modifying publicationscccovcvviinniieennns 277
Creating MODILINK USErS........ccviiiiiiiiiiiiic e 280
Adding subscriptions for remote SQL Anywhere databases. 281
Synchronization teChNIQUESccveiiiiiic i 283
CHAPTER 18 Setting Additional Connection ParametersS.......cccccccceeeviiniinns 285
Setting database parameters.........ccccvvveeeiiiiiiiieiee e 285
Setting database parameters in the development

ENVIFONMIENT. ...ttt 285
Setting database parameters in a PocketBuilder application

LT 1] o PP 286

Setting database preferenCescccccceveeeiiiciiiiieee e 288
Setting database preferences in the development

ENVIFONMENT.....uiiiiiiee ettt ee e e s e e e e s s e aa e e e ananes 289
Setting AutoCommit and Lock in a PocketBuilder application

LT 1 o) AR 294

Viii PocketBuilder

Contents

PART 5 MISCELLANEOUS TECHNIQUES
CHAPTER 19 Working with Unicode ..o 301
Working with Unicode in PocketBuildercccccceeiviiiiiiiennnenn, 301
Importing and exporting DataWindow data...........c..ccccoecvvvveerennn. 303
Reading and writing text or binary filescccccoecvieiee i, 304
CHAPTER 20 Using External Functions and Other Processing Extensions 307
Using external fUNCLIONSuvviviiiiiiie e 307
Declaring external funCtionSooocuvvvieiie i 307
Sample declarations...........cccvveeiiee i 308
Passing argumMeNtS.........ccvvvevieeei i 311
Using external functions in @ SCript......ccccccooeevvieeeieeesiicivnnnnn, 314
Sending WindoOWS MESSAQESuuvriiieeeiiiiiiiiiiiieeesisiiinneeaaaesaanes 315
Using utility functions to manage information...................cccvvveee.. 317
The MeSSage ODJEC........cuvviiiiie e 318
Message Object ProPertiesccoovvvvviiieeeeeeiniiiiieee e 318
CHAPTER 21 Managing Initialization Files and the Windows CE Registry .. 321
About preferences and default settings...........cccccvvveeeviiciineeneenn, 321
Managing information in initialization fileS............cccccccvee i, 322
Managing information in the Windows CE registrycc...... 323
CHAPTER 22 Using the Command Line.........ccccviiiiiiiiiie e 325
Starting PocketBuilder from a command line............cccccceveeeniines 325
100 L= PP PP PURRPPPRP 329

Resource Guide iX

Contents

X PocketBuilder

About This Book

Audience

How to use this book

Resource Guide

Thisguideisfor programmers building applications with
PocketBuilder™.

This guide assumes that you have a basic familiarity with Windows CE
(Windows Mabile) devices. Although your development work in
PocketBuilder is done on a desktop machine, you design applications for
use on Windows CE devices such as the Pocket PC or Smartphone.

For information about devel oping applications for Microsoft Windows
CE platforms, see the Microsoft Web site at http://msdn2.microsoft.com/en-
us/library/ms950422.aspx. You can also find helpful information at the
Pocket PC Developer Network Web site at http://www.pocketpcdn.com.

PocketBuilder is very similar to PowerBuilder®, the Sybase® 4GL
development tool for desktop applications and application server
components.

If you have never used PowerBuilder, use this book to learn some
concepts and principles of programming in PowerScript®, the language
used in both PowerBuilder and PocketBuilder, as well as programming
techniques you can use with controls in windows and DataWindow®
objects. This book also describes how to manage database connections
and provides areference to database connection parameters and
preferences.

If you are a PowerBuilder user, the following chapters are probably the
most useful:

e Chapter 13, “ Database Connectivity in PocketBuilder”
e Chapter 17, “Using MabiLink Synchronization”
e Chapter 19, “Working with Unicode’

e Chapter 20, “Using External Functions and Other Processing
Extensions”

Xi

Related documents

Xii

PocketBuilder documentation The PocketBuilder documentation set also
includes the following manuals:

* Introduction to PocketBuilder - Provides an overview of PocketBuilder
features and the PocketBuilder devel opment environment and a tutorial
that leadsthe new user through the basi ¢ process of creating and deploying
PocketBuilder applications.

e UsersGuide - Gives an overview of the PocketBuilder devel opment
environment and explains how to use the interface. Describes basic
techniques for building the objects in a PocketBuilder application,
including windows, menus, DatawWindow objects, and user-defined
objects. An appendix summarizes the differences between PocketBuilder
and PowerBuilder.

PocketBuilder reference set The PocketBuilder reference set is made up of
four manuals that are based on PowerBuilder documentation:

» Connection Reference - Describes the database parameters and
preferences you use to connect to a database in PocketBuilder.

» DataWindow Reference - Lists the DataWindow functions and properties
and includes the syntax for accessing properties and data in DatawWindow
objects.

» Objectsand Controls - Describes the system-defined objects and their
default properties, functions, and events.

» PowerScript Reference - Describes syntax and usage for the Power Script
language including variables, expressions, statements, events, and
functions.

Online Help Reference information for PowerScript properties, events, and
functionsis available in the online Help with annotations indicating which
objects and methods are applicable to PocketBuilder.

SQL Anywhere® documentation PocketBuilder istightly integrated with
SQL Anywhere (formerly Adaptive Server Anywhere), including its
UltraLite®, MobiLink™, and Sybase Central ™ components. You can install
these products from the PocketBuilder setup program. For an introduction to
these products, see Chapter 1 in the Introduction to PocketBuilder.
Documentation for SQL Anywhere is available on the iAnywhere Web site at
http://lwww.ianywhere.com/developer/product_manuals/sqglanywhere/.

PocketBuilder

About This Book

Sample applications

More applications on
the Web

Other sources of
information

Resource Guide

The PocketBuilder installation provides a Code Examples workspace with
targets that illustrate many of the product's features. Commented text inside
events of target objects hel ps explain the purpose of the sample code. The
example workspace is installed in the Code Exampl es subdirectory under the
main PocketBuilder directory.

You can find more sample PocketBuilder applications and techniquesin the
PocketBuilder project on the Sybase CodeXchange Web site at
http://pocketbuilder.codexchange.sybase.com/. Thereisalink to this page onthe
Windows Start menu at Program Files>Sybase>PocketBuilder 2.5>Code
Samples.

If you have not logged in to MySybase, you must log in to the Sybase Universal
Login page to access CodeX change. If you do not have a MySybase account,
you can sign up. MySybaseis afree servicethat provides a personalized portal
into the Sybase Web site.

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

e The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

e The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTM L -based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

e The Sybase Product Manuals Web siteisan online version of the SyBooks

CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Xiii

Sybase EBFs and
software
maintenance

O Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The formatting conventions used in this manual are:
Formatting example To indicate
Retrieve and Update When used in descriptive text, this font indicates:

e Command and function names
« Keywords such astrue, false, and null
« Datatypes such asinteger and char

« Database column names such asemp_id and
f_name

» User-defined objects such as dw_emp or w_main

variable or file name When used in descriptivetext and syntax descriptions,
oblique font indicates:

» Variables, such as myCounter

e Partsof input for which you must substitute text,
such as pkiname.pkd

» Fileand path names

Xiv PocketBuilder

About This Book

If you need help

Resource Guide

Formatting example To indicate

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how to
navigate menu selections. For example, File>Save
indicates “ select Save from the File menu.”

dw_1. Updat e() Monospace font indicates:

¢ Information that you enter in adialog box or on a
command line

¢ Sample script fragments
« Sample output fragments

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manualsor online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

XV

XVi PocketBuilder

PART 1

Using the PowerScript
Language

This part contains an overview of object-oriented features
in PocketBuilder, and presents programming techniques
for handling PowerScript language features such as
inheritance, exception handling, and class definition
objects.

CHAPTER 1

About this chapter

Contents

Implementing Object-Oriented
Programming Techniques

This chapter describes how to implement object-oriented programming
techniques in PocketBuilder.

Topic Page
Terminology review 3
PocketBuilder techniques 5
Other techniques 8

Terminology review

Classes, properties, and
methods

Fundamental principles

Resource Guide

In object-oriented programming, you create reusable classes to perform
application processing. These classes include properties and methods
that define the class's behavior. To perform application processing, you
create obj ects, which are instances of these classes. PocketBuilder
implements these concepts as follows:

» Classes PocketBuilder objects (such as windows, menus, window
controls, and user objects)

» Properties Object variables and instance variables
* Methods Eventsand functions
Therest of this chapter uses this PocketBuilder terminology.

Object-oriented programming tool s support three fundamental principles:
inheritance, encapsulation, and polymorphism.

Inheritance Objects can be derived from existing objects, with accessto
their visual component, data, and code. Inheritance saves coding time,
maximizes code reuse, and enhances consistency. An object derived from
an existing object is called adescendent aobject or asubclass.

Terminology review

Visual objects

Nonvisual objects

Encapsulation An object contains its own data and code, allowing outside
access as appropriate. This principle is also called information hiding.
PocketBuilder enables and supports encapsulation by giving you toolsthat can
enforce it, such as access and scope. However, PocketBuilder itself does not
require or automatically enforce encapsulation.

Polymorphism Functionswith the same name behave differently, depending
on the referenced object. Polymorphism enables you to provide a consi stent
interface throughout the application and within all objects.

Many current applications make heavy use of object-oriented features for
visual objects such as windows, menus, and visual user objects. Thisalowsan
application to present a consistent, unified look and fedl.

To fully benefit from PocketBuilder’s object-oriented capabilities, consider
implementing class user objects, aso known as nonvisual user objects:

Standard class user objects Inherit their definitions from built-in
PocketBuilder system objects, such as Transaction, Message, or Error.
Creating customized standard class user objects alows you to provide
powerful extensions to built-in PocketBuilder system objects.

Custom class user objects Inherit their definitions from the PocketBuilder
NonVisual Object class. Custom class user objects encapsul ate data and code.

Thistype of class user object allows you to define an object classfrom scratch.
To makethemost of PocketBuilder’s object-oriented capabilities, you must use
custom class user objects. Typical uses include;

* Global variable container The custom class user object contains
variables and functions for use across your application. You encapsulate
these variables as appropriate for your application, allowing access
directly or through object functions.

» Service object The custom class user object contains functions and
variables that are useful either in a specific context (such asa
Datawindow) or globally (such as a collection of string-handling
functions).

« Businessrules The custom class user object contains functions and
variables that implement business rules. You can either create one object
for all businessrules or create multiple objects for related groups of
businessrules.

PocketBuilder

CHAPTER 1 Implementing Object-Oriented Programming Techniques

PocketBuilder techniques

Implementing
inheritance

Resource Guide

PocketBuilder provides full support for inheritance, encapsulation, and
polymorphism in both visual and nonvisual objects.

Creating reusable objects)))
In most cases, the person devel oping reusable objects is not the same person

using the objects in applications. This discussion describes defining and
creating reusable objects. It does not discuss usage.

PocketBuilder makesit easy to create descendent objects. You implement
inheritance in PocketBuilder by using a painter to inherit from a specified
ancestor object.

Example of ancestor service object One example of using inheritancein
custom class user objectsis creating an ancestor service object that performs
basic services, and several descendent service objects. The descendent objects
perform specialized services and al so have access to the ancestor’s services:

Figure 1-1: Ancestor service object

u_base_sernvice

uf_rmodify
uf_describe
|
| |
u_selection_service u_update_sendice
uf_setmultiselect uf_update
uf_updateselected uf_updateall

Example of virtual function in ancestor object Another example of using
inheritance in custom class user objects is creating an ancestor object
containing functionsfor all platformsand then creating descendent objectsthat
perform platform-specific functions. In this case, the ancestor object contains
avirtual function (uf_change_dir in this example) so that devel opers can
create descendent objects using the ancestor’s datatype.

PocketBuilder techniques

Figure 1-2: Virtual function in ancestor object

u_platform
uf_change_dir
uf_file_read
uf_file_write
|
| |
u_platform_wince u_platform_win32
uf_change_dir uf_change_dir

For more on virtual functions, see“ Other techniques’ on page 8.

Implementing Encapsulation allows you to insulate your object’s data, restricting access by
encapsulation declaring instance variables as private or protected. You can then write object
functions to provide sel ective access to the instance variables.

One approach One approach to encapsulating processing and datais as
follows:

» Defineinstancevariablesaspublic, private, or protected, depending onthe
desired degree of outside access. To ensure compl ete encapsul ation, define
instance variables as either private or protected.

» Define object functions to perform processing and provide access to the

object’s data.

Table 1-1: Defining object functions

To do this Provide this function | Example

Perform processing uf_do_operation uf_do_retrieve (which retrieves
rows from the database)

Modify instance uf_set_variablename uf_set_style (which modifies

variables theis_style string variable)

Read instance uf_get_variablename uf_get_style (which returns the

variables is_style string variable)

(Optional) Read uf_is_variablename uf_is_protected (which returns

boolean instance theib_protected boolean

variables variable)

6 PocketBuilder

CHAPTER 1 Implementing Object-Oriented Programming Techniques

Implementing
polymorphism

Resource Guide

Another approach Another approach to encapsulating processing and data
isto provide asingle entry point, in which the devel oper specifiesthe action to
be performed:

« Defineinstancevariablesasprivate or protected, depending onthe desired
degree of outside access

« Define private or protected object functions to perform processing

« Define asingle public function whose arguments indicate the type of
processing to perform

Figure 1-3: Defining a public function for encapsulation

u_filelist
Instance variahles Arguments to
String is_list uf_master specify which
String is_style ofthe private functions
Private functions /] to perform
uf_init
uf_create
uf_set_style
uf_set_list
Public functions
uf_master

Polymorphism means that functions with the same name behave differently
depending on the referenced object. Although thereis some discussion over an
exact meaning for polymorphism, many people find it helpful to think of it as
follows:

Operational polymorphism Separate, unrelated objects define functions
with the same name. Each function performs the appropriate processing for its
object type:
Figure 1-4: Operational polymorphism
Both user objects contain

an of_GetParentindow
function

_em / \ _rmle

of_GetParentind o of_GetParentind o

Inclusional polymorphism Various objectsin an inheritance chain define
functions with the same name but different arguments.

Other techniques

With inclusional polymorphism PocketBuilder determines which version of a
function to execute, based on where the current object fits in the inheritance
hierarchy. When the object is a descendant, PocketBuilder executes the
descendent version of the function, overriding the ancestor version:

Figure 1-5: Inclusional polymorphism

u_saort
uf_sord
This function owerrides
u_sortuf_sort.
u_sort_dw
uf_sand

Other techniques

Using function
overloading

PocketBuilder allows you to implement awide variety of object-oriented
techniques. This section discusses sel ected techniques and relates them to
PocketBuilder.

In function overloading, the descendent function (or an identically named
function in the same object) has different arguments or argument datatypes.
PocketBuilder determineswhich version of afunction to execute, based on the
arguments and argument datatypes specified in the function call:

Figure 1-6: Function overloading

u_sort
uf_sort()
PocketBuilder executes
the appropriate function,
- based on the number of
passed parameters and
Overrides u_sort_dw their data types
u_sort.uf_sort 1= uf_sort()
Overloads -Uf_sort(Integer)
u_sort.uf_sort p- uf_sort(String)

PocketBuilder

CHAPTER 1 Implementing Object-Oriented Programming Techniques

Using dynamic versus
static lookup

Resource Guide

Global functions
Global functions cannot be overloaded.

Dynamic lookup In certain situations, such as when insulating your
application from platform dependencies, you create separate descendent
objects, each intended for a particular situation. Your application callsthe
platform-dependent functions dynamically.

In this example, u_platform has two descendent objects, u_platform_wince and
u_platform_win. Instantiate the appropriate object at runtime, as shown in the
following code example:

/1 This code works with both dynam c and
/1 static |ookup.

/1 Assume these instance variabl es

u platformiuo_platform

Envi ronnent ienv_env

Get Envi ronment (i env_env)
choose case ienv_env. ostype
case wi ndowsce!
i uo_platform = CREATE u_pl atformw nce
case el se
iuo_platform= CREATE u_platformw n
end choose

Although dynamic lookup provides flexibility, it also slows performance.

Static lookup To ensure fast performance, static lookup is a better option.
However, PocketBuilder enables object access using the reference variable's
datatype (not the datatype specified in a CREATE statement). Therefore, when
using static lookup, you must define default implementations for functionsin
the ancestor. These ancestor functions return an error value (for example, -1)
and are overridden in at least one of the descendent objects.

By defining default implementations for functions in the ancestor object, you
get platform independence as well as the performance benefit of static lookup.

Other techniques

Using delegation

10

For example, using the objects in the previous example, suppose
u_platform_wince has afunction of_get_this, and u_platform_win hasafunction
of_get_that. Both of_get_this and of_get_that have default implementationsin
u_platform. These implementations return -1 and are overridden in one of the
descendent objects. Then when you use the following statements to call
of_get_this, the of_get_this function in the descendant is called:

u platformiuo_platform
iuo_platform= CREATE u_pl atformw nce
u_pl atformw nce. of _get _this()

Delegation occurs when objects offload processing to other objects.

Aggregate relationship 1n an aggregate relationship (sometimes called a
whole-part relationship), an object (called an owner object) associates itself
with a service object designed specifically for that object type.

For example, you might create a service object that handles extended row
selection in Datawindow objects. In this case, your DatawWindow objects
contain code in the Clicked event to call the row selection object.

To use objects in an aggregate relationship:

1 Create aservice object (u_sort_dw in this example).

2 Create aninstance variable (also called areference variable) in the owner
(a Datawindow control in this example):

u_sort_dw iuo_sort
3 Add code in the owner object to create the service object:
iuo_sort = CREATE u_sort_dw

4 Addcodetothe owner’ssystem eventsor user eventsto call service object
events or functions. This example contains the code you might placein a
ue_sort user event in the DataWindow control:

IF IsvValid(iuo_sort) THEN
Return iuo_sort.uf_sort()
ELSE
Return -1
END I F

5 Add codeto call the owner object’s user events. For example, you might
create a CommandButton or Edit>Sort menu item that calls the ue_sort
user event on the DataWindow control.

PocketBuilder

CHAPTER 1 Implementing Object-Oriented Programming Techniques

Using user objects as
structures

Subclassing
DataStores

Resource Guide

6 Add code to the owner object’s Destructor event to destroy the service
object:
IF IsvValid(iuo_sort) THEN

DESTROY i uo_sort
END | F

Associative relationship |nan associative relationship, an object associates
itself with a service to perform a specific type of processing.

For example, you might create a string-handling servicethat can be enabled by
any of your application’s objects.

The steps you use to implement objects in an associative relationship are the
same as for aggregate relationships.

When you enable a user object’s Autol nstantiate property, PocketBuilder
instantiates the user object along with the object, event, or functionin which it
is declared. You can also declare instance variables for a user object. By
combining these two capabilities, you create user objects that function as
structures. The advantages of creating thistype of user object are that you can:

» Create descendent objects and extend them.
* Create functions to access the structure all at once.

* Use access modifiersto limit access to certain instance variables.

To create a user object to be used as a structure:

1 Createthe user object, defining instance variables only.

2 Enablethe user object’s Autol nstantiate property by checking
Autolnstantiate on the General property page.

3 Declare the user object as a variable in objects, functions, or events as
appropriate.

PocketBuilder creates the user object when the object, event, or function
is created and destroys it when the object is destroyed or the event or
function ends.

Many applicationsuse a DataWindow visual user object instead of the standard
Datawindow window control. This allows you to standardize error checking
and other, application-specific Datawindow behavior.

Since DataStores function as nonvisual DataWindow controls, many of the
same application and consistency requirements apply to DataStores asto
Datawindow controls. Consider creating aDataStore standard classuser object
to implement error checking and application-specific behavior for DataStores.

11

Other techniques

12 PocketBuilder

CHAPTER 2

About this chapter

Contents

Using Drag and Drop in a
Window

This chapter describes how to make applications graphical by dragging
and dropping controls.

Topic Page
About drag and drop 13
Drag-and-drop properties, events, and functions 14
I dentifying the dragged control 15

About drag and drop

Resource Guide

Drag and drop allows usersto initiate activities by dragging a control and
dropping it on another control. It provides a simple way to make
applications graphical and easy to use. For example, in a manufacturing
application you might allow the user to pick parts from abin for an
assembly by dragging a picture of the part and dropping it in the picture
of the finished assembly.

Drag and drop involves at |east two controls: the control that is being
dragged (the drag control) and the control to which it is being dragged
(the target). In PocketBuilder, all controls except drawing objects (lines,
ovals, rectangles, and rounded rectangles) can be dragged.

Platform notes
Actions that require an application user to drag a control should be

avoided since these actions are not very practical for users of handheld
devices. Although you can script callsto drag events on Smartphone
platforms, controls cannot be moved with amouse or stylus, and the user
has no direct way of dragging a control.

13

Drag-and-drop properties, events, and functions

Automatic drag mode When acontrol is being dragged, it isin drag mode. You can define a control
so that PocketBuilder putsit automatically in drag mode whenever a Clicked
event occurs in the control, or you can write a script to put a control into drag
mode when an event occurs in the window or the application.

Drag events Window objectsand all controls except drawing objects have eventsthat occur
when they are the drag target. When adragged control is within the target or
dropped on thetarget, these events can trigger scripts. The scripts determinethe
activity that is performed when the drag control enters, iswithin, leaves, or is
dropped on the target.

Drag-and-drop properties, events, and functions

Drag-and-drop Each PocketBuilder control has a boolean DragAuto property.
properties
Table 2-1: DragAuto property values
Value Meaning
true When the object is tapped, the control is placed automatically in drag
mode.
false When the object is tapped, the control is not placed automatically in
drag mode; you have to put the object in drag mode manually by using
the Drag function in a script.

O To specify automatic drag mode for a control in the Window painter:
1 Select the Other property page in the Properties view for the control.

2 Check the Drag Auto check box.

Drag-and-drop events The drag-and-drop events listed in Table 2-2 are supported in PocketBuilder.
Table 2-2: Drag-and-drop events

Event Occurs

BeginDrag When the user tapsin aListView or TreeView control and
begins dragging

DragDrop When the pointer is over atarget (a PocketBuilder control or
window to which you drag a control) and the user stops
dragging

DragEnter When the pointer enters the boundaries of atarget

DraglLeave When the pointer leaves the boundaries of atarget

DragWithin When the pointer moves within the boundaries of atarget

14 PocketBuilder

CHAPTER 2 Using Drag and Drop in a Window

ldentifying the dragged control

Toidentify thetype of control that was dropped, use the source argument of the
DragDrop event.

This script for the DragDrop event in a picture declares two variables, then
determines the type of object that was dropped:

ConmandButton | cb_button
StaticText Ist_info

| F source. TypeOf () = CommandButton! THEN

| cb_button = source

| cb_button. Text = "You dropped a Button!"
ELSEI F source. TypeOf () = StaticText! THEN

I st _info = source

| st_info.Text = "You dropped the text!"
END | F

Using CHOOSE CASE
If your window has a large number of controls that can be dropped, use a

CHOOSE CASE statement.

Resource Guide 15

Identifying the dragged control

16 PocketBuilder

CHAPTER 3

About this chapter

Contents

Dot notation

Qualifying a reference

Resource Guide

Using the PowerScript Language

This chapter describes how to use elements of the PowerScript language

in an application. For more complete information, see the Power Script

Reference.
Topic Page
Dot notation 17
Constant declarations 21
Controlling access for instance variables 22
Resolving naming conflicts 23
Return values from ancestor scripts 24
Types of arguments for functions and events 26
Ancestor and descendent variables 27
Optimizing expressions for DataWindow and external objects 29
Printing at runtime 29
Sending mail from a device or emulator 30
Exception handling in PocketBuilder 31
Garbage collection 39
Efficient compiling and performance 40

Dot notation lets you qualify the item you are referring to—instance

variable, property, event, or function—with the object that owns it.

Dot notation isfor objects. You do not use dot notation for global variables
and functions, because they are independent of any object. You do not use
dot notation for shared variables either, because they belong to an abject

class, not an object instance.

Dot notation names an object variable as a qualifier to the item you want

to access:

objectvariable.item

17

Dot notation

18

The object variable nameisaqualifier that identifiesthe owner of the property
or other item.

Adding a parent qualifier To fully identify an object, you can use additional
dot qualifiers to name the parent of an object, and its parent, and so on:

parent.objectvariable.item

A parent object contains the child abject. It is not an ancestor-descendent
relationship. For example, awindow isa control’s parent. A Tab control isthe
parent of the tab pagesit contains. A Menu object is the parent of the Menu
objects that are the items on that menu.

Many parent levels You can use parent qualifiers up to the level of the
application. You typically need qualifiers only up to the window level.

For example, if you want to call the Retrieve function for a DataWindow
control on atab page, you might qualify the name like this:

w_choi ce. tab_al pha. t abpage_a. dw_nanes. Retri eve()

Menu objects often need several qualifiers. Suppose awindow w_main hasa
menu object m_mymenu, and m_mymenu has a File menu with an Open item.
You can trigger the Open item’s Selected event like this:

w_mai n. m nynenu. m file. mopen. EVENT Sel ected()

Asyou can see, qualifying aname gets complex, particularly for menusand tab
pagesin aTab control.

How many qualifiers? You need to specify asmany qualifiersasrequired to
identify the object, function, event, or property.

A parent object knows about the objectsit contains. In awindow script, you do
not need to qualify the names of itscontrols. In scriptsfor the controls, you can
also refer to other controls in the window without a qualifier.

For example, if the window w_main contains a DataWindow control dw_data
and a CommandButton cb_close, a script for the CommandButton can refer to
the DataWindow control without a qualifier:

dw_dat a. Accept Text ()
dw_dat a. Updat e()

If ascript in another window or auser object refersto the DataWindow control
the DataWindow control needs to be qualified with the window name:

w_mai n. dw_dat a. Accept Text ()

PocketBuilder

CHAPTER 3 Using the PowerScript Language

Referencing objects

Resource Guide

There are three ways to qualify an element of an object in the object’s own
scripts:

e Unqualified:
Ii_index = Selectltem5)

Anunqualified nameisunclear and might result in ambiguitiesif thereare
local or global variables and functions with the same name.

e Qualified with the object’s name:
I'i _index = 1b_choices. Sel ectltem5)
Using the object name in the object’s own script is unnecessarily specific.
« Qualified with a generic reference to the object:
Ii _index = This.Selectlten(5)
The pronoun This shows that the item belongs to the owning object.

This pronoun Inascript for the object, you can use the pronoun This as a
generic reference to the owning object:

This.property
This.function

Although the property or function could stand alone in a script without a
qualifier, someone looking at the script might not recognize the property or
function as belonging to an object. A script that uses This is till valid if you
rename the object. The script can be reused with less editing.

You can also use This by itself asareferenceto the current object. For example,
suppose you want to pass a DataWindow control to afunction in another user
object:

uo_data. uf _retrieve(This)

Thisexamplein ascript for a DatawWindow control sets an instance variable of
type DataWindow so that other functions can useit to access the most recently
used Datawindow control:

i dw_currentdw = This

Parent pronoun The pronoun Parent refersto the parent of an object. When
you use Parent and you rename the parent object or reuse the script in other
contexts, it is still valid.

19

Dot notation

Objects in a container
object

20

For example, in a DataWindow control script, suppose you want to call the
Resize function for the window. The DatawWindow control aso has a Resize
function, so you must qualify it:

/1 Two ways to call the w ndow function
w_nmai n. Resi ze(240, 320)
Par ent . Resi ze(240, 320)

/1 Three ways to call the control's function
Resi ze(200, 200)

dw_dat a. Resi ze(200, 200)

Thi s. Resi ze(200, 200)

GetParent function The Parent pronoun works only within dot notation. If
you want to get areference to the parent of an object, use the GetParent
function. You might want to get areference to the parent of an object other than
the one that owns the script, or you might want to save the referencein a
variable:

wi ndow w_save

w_save = dw_data. Get Parent ()

For example, in another CommandButton’s Clicked event script, suppose you
wanted to pass areference to the control’s parent window to afunction defined
in auser object. Use GetParent in the function call:

uo_wi ngnt . uf _resi ze(This. Get Parent (), 400, 600)

ParentWindow property and function Other tools for getting the parent of
an object include:

» ParentWindow property —used in amenu script to refer to the window
that is the parent of the menu

» ParentWindow function —used in any script to get areference to the
window that isthe parent of a particular window

For more about these pronouns and functions, see the Power Script Reference.

Dot notation also allows you to reach inside an object to the objectsit contains.
To refer to an object inside a container, use the Object property in the dot
notation. The structure of the object in the container determines how many
levels are accessible:

control.Object.objectname.property

control.Object.objectname.Object.qualifier.qualifier.property

PocketBuilder

CHAPTER 3 Using the PowerScript Language

You can access DataWindow objectsin Datawindow controls using the Object
property.

These expressions refer to properties of the DataWindow object inside a
Datawindow control:

dw_dat a. Obj ect . enp_| nane. Bor der
dw_dat a. Obj ect. nestedrpt[1]. Obj ect. sal ary. Border

No compiler checking For objectsinside the container, the compiler cannot
be sure that the dot notation is valid. For example, the DataWindow object is
not bound to the control and can be changed at any time. Therefore, the names
and properties after the Object property are checked for validity during
execution only. Incorrect references cause an execution error.

For more information For more information about runtime checking, see
“Optimizing expressions for DataWindow and external objects’ on page 29.

For more information about dot notation for properties and data of
Datawindow objects and handling errors, see the DataWindow Reference.

Constant declarations

Advantages of
constants

Resource Guide

To declare a constant, add the keyword CONSTANT to a standard variable
declaration:

CONSTANT { access } datatype constname = value

Only adatatype that accepts an assignment in its declaration can be a constant.
For this reason, blobs cannot be constants.

Even though identifiersin PowerScript are not case sensitive, the declarations
shown here use uppercase as a convention for constant names:

CONSTANT i nteger G _CENTURY_YEARS = 100
CONSTANT string | S_ASCENDI NG = "a"

If you try to assign a value to the constant anywhere other than in the
declaration, you get a compiler error. A constant is away of ensuring that the
declaration is used the way you intend.

Constants are also efficient. Because the value is established during
compilation, the compiled code uses the value itself, rather than referring to a
variable that holds the value.

21

Controlling access for instance variables

Controlling access for instance variables

Private variables for
encapsulation

For more information

22

Instance variables have access settings that provide control over how other
objects' scripts access them.

You can specify that avariableis:

* Public Accessibleto any other object

* Protected Accessibleonly in scriptsfor the object and its descendants
« Private Accessiblein scriptsfor the object only

For example:

public integer ii_currentval ue
CONSTANT public integer WARPFACTOR = 1.2
protected string is_starship

/1 Private values used in internal calcul ations
private integer ii_maxrpm
private integer ii_mnrpm

You can further qualify accessto public and protected variables with the
modifiers PRIVATEREAD, PRIVATEWRITE, PROTECTEDREAD, or
PROTECTEDWRITE:

public privatewite ii_averagerpm

One use of access settingsis to keep other scripts from changing a variable
when they should not. You can use PRIVATE or PUBLIC PRIVATEWRITE to
keep the variable from being changed directly. You might write public
functions to provide validation before changing the variable.

Private variables allow you to encapsul ate an object’s functionality, which
means that an object’s data and code are part of the object itself and the object
determines the interface it presents to other objects.

For more about access settings, see the chapter about declarations in the
Power Script Reference.

For more about encapsulation, see Chapter 1, “1mplementing Object-Oriented
Programming Techniques.”

PocketBuilder

CHAPTER 3 Using the PowerScript Language

Resolving naming conflicts

Hidden instance
variables

Hidden global
variables

Resource Guide

There are two areas in which name conflicts occur:

* Variablesthat are defined within different scopes can have the same name.
For example, aglobal variable can have the same name asalocal or
instance variable. The compiler warns you of these conflicts, but you do
not have to change the names.

* A descendent object has functions and events that are inherited from the
ancestor and have the same names.

If you need to refer to ahidden variable or an ancestor’s event or function, you
can use dot notation qualifiers or the scope operator.

If aninstance variable hasthe same name asalocal, shared, or global variable,
qualify the instance variable with its object’s name:

objectname.instancevariable

If alocal variable and an instance variable of awindow are both named
birthdate, then qualify the instance variable:

w_mai n. bi rt hdat e

If awindow script defines alocal variable x, the name conflicts with the X
property of the window. Use aqualifier for the X property. This statement
compares the two:

I F x > w_rmain. X THEN

If aglobal variable has the same name as alocal or shared variable, you can
access the global variable with the scope operator (::) as follows:

::globalvariable

This expression compares alocal variable with a global variable, both named
total:

IF total < ::total THEN ...

Use prefixes to avoid naming conflicts
If your naming conventions include prefixes that identify the scope of the

variable, then variables of different scopes aways have different names and
there are no conflicts.

For more information about the search order that determines how name
conflictsareresolved, seethe chaptersabout declarationsand calling functions
and events in the Power Script Reference.

23

Return values from ancestor scripts

Overridden functions
and events

Overloaded functions

When you change the script for afunction that is inherited, you override the
ancestor version of the function. For events, you can choose to override or
extend the ancestor event script in the painter.

You can use the scope operator to call the ancestor version of an overridden
function or event. The ancestor class name, not avariable, precedes the colons:

result = w_ancestor:: FUNCTION of _func(argl, arg2)

You can use the Super pronoun instead of haming an ancestor class. Super
refers to the object’s immediate ancestor:

result = Super:: EVENT ue_process()

In good object-oriented design, you would not call ancestor scripts for other
objects. It is best to restrict this type of call to the current object’s immediate
ancestor using Super.

For how to capture the return value of an ancestor script, see “Return values
from ancestor scripts’ next.

When you have several functions of the same name for the same object, the
function nameisconsidered to be overloaded. PocketBuilder determineswhich
version of the function to call by comparing the signatures of the function
definitions with the signature of the function call. The signature includes the
function name, argument list, and return value.

Return values from ancestor scripts

24

If you want to perform some processing in an event in adescendent object, but
that processing depends on the return value of the ancestor event script, you
can use alocal variable called Ancestor ReturnVal ue that is automatically
declared and assigned the return value of the ancestor event.

Thefirst time the compiler encounters a CALL statement that calls the ancestor
event of a script, the compiler implicitly generates code that declares the
Ancestor ReturnValue variable and assignsto it the return val ue of the ancestor
event.

The datatype of the Ancestor ReturnValue variable is always the same as the
datatype defined for the return value of the event. The arguments passed to the
call come from the arguments that are passed to the event in the descendent
object.

PocketBuilder

CHAPTER 3 Using the PowerScript Language

Extending event
scripts

Overriding event
scripts

Example

Resource Guide

The Ancestor ReturnValue variable is always available in extended event
scripts. When you extend an event script, PocketBuilder generates the
following syntax and inserts it at the beginning of the event script:

CALL SUPER::event_name
You see the statement only if you export the syntax of the object.

The Ancestor ReturnValue variable is available only when you override an
event script after you call the ancestor event using the CALL syntax explicitly:

CALL SUPER::event_name
or
CALL ancestor_name::event_name

The compiler doesnot differenti ate between the keyword SUPER and the name
of the ancestor. The keyword is replaced with the name of the ancestor before
the script is compiled.

The Ancestor ReturnValue variable is declared and a value assigned only when
you use the CALL event syntax. It is not declared if you use the new event
syntax:

ancestor_name::EVENT event_name ()
You can put code like the following in an extended event script:

| F Ancestor ReturnValue = 1 THEN
/| execute sonme code
ELSE
/| execute sone ot her code
END | F

You can use the same code in a script that overrides its ancestor event script,
but you must insert a CALL statement before you use the Ancestor Retur nValue
variable:

/| execute code that does sone prelimnary processing
CALL SUPER: : ue_nyevent
| F Ancestor ReturnVal ue = 1 THEN

25

Types of arguments for functions and events

Types of arguments for functions and events

When you define a function or user event, you specify its arguments, their
datatypes, and how they are passed.

There are three ways to pass an argument:
« Byvalue Isthedefault

PocketBuilder passes a copy of a by-value argument. Any changes affect
the copy, and the original value is unaffected.

+ By reference TellsPocketBuilder to passapointer to the passed variable

The function script can change the value of the variable because the
argument points back to the original variable. An argument passed by
reference must be avariable, not aliteral or constant, so that it can be
changed.

+ Read-only Passesthe argument by value without making a copy of the
data

Read-only provides a performance advantage for some datatypes because
it does not create acopy of the data, aswith by value. Datatypesfor which
read-only provides a performance advantage are String, Blob, Date, Time,

and DateTime.

For other datatypes, read-only provides documentation for other
developers by indicating something about the purpose of the argument.

Matching argument If you define afunction in adescendant that overrides an ancestor function, the
ftyuﬁ‘zﬁ(;’;’ge“ overriding fynctjon signatures must match in every way: the function name, return value,
argument datatypes, and argument passing methods must be the same.

For example, thisfunction declaration hastwo long arguments passed by value
and one passed by reference:

uf _calc(long a_1, long a_2, ref long a_3) &
returns integer

If the overriding function does not match, then when you call the function,
PocketBuilder calculates which function matches more closely and calls that
one, which might give unexpected resullts.

26 PocketBuilder

CHAPTER 3 Using the PowerScript Language

Ancestor and descendent variables

As specific as
possible

When the application
requires flexibility

Resource Guide

All objectsin PocketBuilder are descendants of PowerScript system objects—
the objects you see listed on the System page in the Browser.

Therefore, whenever you declare an object instance, you are declaring a
descendant. You decide how specific you want your declarations to be.

If you define auser object class named uo_empdata, you can declare avariable
whose type isuo_empdata to hold the user object reference:

uo_enpdata uo_enpl
uo_enmpl = CREATE uo_enpdat a

You can refer to the variables and functions that are part of the definition of
uo_empdata because the type of uo_empl isuo_empdata.

Suppose the user object you want to create depends on the user’s choices. You
can declareauser abject variablewhose typeis UserObject or an ancestor class
for the user object. Then you can specify the object classyou want to instantiate
in astring variable and use it with CREATE:

uo_enpdata uo_enpl

string | s_objnanme

Is_objname = ... // Establish the user object to open
uo_enpl = CREATE USI NG | s_obj nane

This more general approach limits your access to the object’s variables and
functions. The compiler knows only the properties and functions of the
ancestor class uo_empdata (or the system class UserObject if that iswhat you
declared). It does not know which object you will actually create and cannot
allow referencesto properties defined on that unknown object.

Abstract ancestor object Inorder to address propertiesand functions of the
descendants you plan to instantiate, you can define the ancestor object classto
include the properties and functions that you will implement in the
descendants. In the ancestor, the functions do not need code other than areturn
value—they exist so that the compiler can recogni ze the function names. When
you declare a variable of the ancestor class, you can reference the functions.
During execution, you can instantiate the variable with a descendant, where
that descendant implements the functions as appropriate:

uo_enpdata uo_enpl

string | s_objnane

/1 Establish which descendant of uo_enpdata to open
| s_objname = ...

uo_enpl = CREATE USI NG | s_obj name

27

Ancestor and descendent variables

Dynamic object
selection for windows
and visual user
objects

28

/!l Function is declared in the ancestor class
result = uo_enpl. uf_special ()

Thistechnique is described in more detail in “Using dynamic versus static
lookup” on page 9.

Dynamic function calls Another way to handle functions that are not
defined for the declared class is to use dynamic function calls.

When you use the DYNAMIC keyword in afunction call, the compiler does not
check whether the function call is valid. The checking happens during
execution when the variable has been instantiated with the appropriate object:

/! Function not declared in the ancestor class
result = uo_enpl. DYNAM C uf _speci al ()

Performance and errors
You should avoid using the dynamic capabilities of PocketBuilder when your

application design does not require them. Runtime eval uation means that work
the compiler usually does must be done at runtime, making the application
slower when dynamic callsare used often or used within alarge loop. Skipping
compiler checking also meansthat errors that might be caught by the compiler
are not found until the user is executing the program.

A window or visual user object is opened with afunction call instead of the
CREATE statement. With the Open and OpenUserObject functions, you can
specify the class of the window or object to be opened, making it possible to
open a descendant different from the declaration’s object type.

Thisexampledisplaysauser object of thetype specifiedinthestrings_u_name
and stores the reference to the user object in the variable u_to_open. Variable
u_to_openisof type DragObject, which isthe ancestor of all user objects. It
can hold areference to any user object:

DragObj ect u_to_open

string s_u_nane

s_u_name = sl e_user. Text

w_i nf o. OpenUser Gbj ect (u_t o_open, s_u_nane, 100, 200)

For awindow, comparable code |ooks like this. The actual window opened
could be the classw_data_entry or any of its descendants:

w_data_entry w_data

string s_w ndow_nane

s_w ndow_nane = sl e_wi n. Text
Open(w_data, s_w ndow_nane)

PocketBuilder

CHAPTER 3 Using the PowerScript Language

Optimizing expressions for DataWindow and external

objects

No compiler validation
for container objects

Establishing partial
references

Handling errors

For information

When you use dot notation to refer to a DataWindow object in a Datawindow
control or DataStore, the compiler does not check the validity of the
expression:

dw_dat a. Obj ect. col um. property

Everything you specify after the Object property passes the compiler and is
checked during execution. Because of runtime syntax checking, using many
expressions like these can impact performance.

To improve efficiency when you refer repeatedly to the same DatawWindow
component object or external object, you can define avariable of the
appropriate type and assign a partial reference to the variable. The script
evaluates most of the reference only once and reusesiit.

The datatype of a DataWindow component object is DWObject:

DWhj ect dwo_col umm

dwo_col um = dw_dat a. Obj ect. col umm
dwo_col um. Sl i deLeft = ...
dwo_colum. SlideUp = ...

The Error event is triggered when errors occur in evaluating Datawindow
expressions. If you write a script for thisevent, you can catch an error beforeit
triggersthe SystemError event. Thisevent letsyouignore an error or substitute
an appropriate value. However, you must be careful to avoid setting up
conditionsthat cause another error. You can al so usetry-catch blocksto handle
exceptions, as described in “ Exception handling in PocketBuilder” next.

For information about DatawWindow data expressions and property expressions
and DWObiject variables, see the DataWindow Reference in the online Help.

Printing at runtime

Resource Guide

To print from a Pocket PC device or emulator, you must install the
FieldSoftware PrinterCE SDK, available from the FieldSoftware Web site at
http://lwww.fieldsoftware.com. After you install this software to the target
platform, you can use Datawindow and PowerScript methods to print
Datawindow or DataStore objects, visual abjects, or lines of text from runtime
applications.

29

Sending mail from a device or emulator

The graphs that you print from a Pocket PC device or emulator do not expand
to fill the print paper (asthey do when you print from the desktop). The size of
agraph that you print from these platformsis not modified from its screen

display size.

Using a registered copy of the FieldSoftware PrinterCE SDK
You must use the SetRegistrationCode System function to supply aregistration

code authorizing the use of the FieldSoftware printing software. If you do not
call this function, PocketBuilder assumes you are using an evaluation copy of
the FieldSoftware PrinterCE SDK and attempts to make subsequent print
function calls using the evaluation software.

For more information, see “ SetRegistrationCode’ in the online Help.

Sending mail from a device or emulator

30

You can send mail from a PocketBuilder application through a Microsoft
ActiveSync connection that is configured to synchronize mail fileswith a
desktop mail client. Microsoft Outlook can be configured to work with
ActiveSync. ActiveSync does not support synchronization with Microsoft
Outlook Express.

Configuring ActiveSync for mail synchronization with Microsoft Outlook
On your desktop machine, you configure ActiveSync to work with Outlook by

selecting Tools>Options from the ActiveSync menu bar. In the list box on the
Sync Options page of the Options dial og box, select Inbox for synchronization.
If you select the check box to enable synchronization with a server, you cannot
synchronize mail directly with Outlook.

To send mail in a PocketBuilder mail application, you must instantiate a

mail Session object and call the PowerScript mail functions mailLogon,
mailSend, and mailLogoff. You can use the mail Message and mail Recipient
system structure objects to hold content and destination information for the
messages you want to send by e-mail. The mail FileDescription object can be
used to describe mail attachments, although mail Attach! isthe only supported
value for an attachment’sfile type.

PocketBuilder

CHAPTER 3 Using the PowerScript Language

Mail that you send from a PocketBuilder application isimmediately placed in
the Outbox of the Microsoft Outlook account that is synchronized to your
Pocket PC through ActiveSync. The mail remainsin the Outbox until a preset
timefor mail transfer has elapsed, or until an action on the desktop triggersthe
sending of mail in the Outbox.

Exception handling in PocketBuilder

When aruntime error occurs in a PocketBuilder application, unless that error
istrapped, asingle application event (SystemError) firesto handle the error no
matter where in the application it occurred. Although some errors can be
handled in the system error event, catching the error closer to its source
increases the likelihood of recovery from the error condition.

You can use exception-handling classes and syntax to handle context-sensitive
errorsin PocketBuilder applications. This meansthat you can deal with errors
close to their source by embedding error-handling code anywhere in your
application. Well designed exception-handling code can give application users
abetter chanceto recover from error conditionsand run the application without
interruption.

Exception handling allows you to design an application that can recover from
exceptional conditionsand continue execution. Any exceptionsthat you do not
catch are handled by the runtime system and can result in thetermination of the
application.

Exception handling can be found in such object-oriented languages as Javaand
C++. The implementation of exception handling in PocketBuilder issimilar to
the implementation in Java. In PocketBuilder, the TRY, CATCH, FINALLY,

THROW, and THROWS reserved words are used for exception handling. There
are also several PocketBuilder objectsthat descend from the Throwabl e object.

Basics of exception handling

Resource Guide

Exceptions are objects that are thrown in the event of some exceptional (or
unexpected) condition or error and are used to describe the condition or error
encountered. Standard errors, such as null object references and division by
zero, are typically thrown by the runtime system. These types of errors could
occur anywhere in an application, and you can include catch clausesin any
executable script to try to recover from these errors.

31

Exception handling in PocketBuilder

User-defined
exceptions

Thereare also exceptional conditionsthat do not immediately result in runtime
errors. These exceptions typically occur during execution of afunction or a
user-event script. To signal these exceptions, you create user objects that
inherit from the PowerScript Exception class. You can associate a user-defined
exception with afunction or user event in the prototype for the method.

For example, a user-defined exception might be created to indicate that afile
cannot be found. You could declare this exception in the prototype for a
function that is supposed to open the file. To catch this condition, you must
instantiate the user-defined exception object and then throw the exception
instance in the method script.

Objects for exception handling support

Throwable object type

RuntimeError and its
descendants

Exception object type

32

Several system objects support exception handling within PocketBuilder.

The object type Throwable isthe root datatype for all user-defined exception
and system error types. Two other system object types, RuntimeError and
Exception, derive from Throwable.

PocketBuilder runtime errors are represented in the RuntimeError object
type. For morerobust error-handling capabilities, the RuntimeError type hasits
own system-defined descendants; but the RuntimeError type contains all
information required for dealing with PocketBuilder runtime errors.

One of the descendants of RuntimeError is the NullObjectError type that is
thrown by the system whenever a null object reference is encountered. This
allows you to handle null-object-reference errors explicitly without having to
differentiate them from other runtime errors that might occur.

Error typesthat derive from RuntimeError are typically used by the system to
indicate runtime errors. RuntimeErrors can be caught in a try-catch block, but
it is not necessary to declare where such an error condition might occur.
(PocketBuilder does that for you, since a system error can happen anywhere
anytime the application is running.) It is also not a requirement to catch these
types of errors.

The system object Exception also derives from Throwable and istypicaly
used as an ancestor object for user-defined exception types. It isthe root class
for al checked exceptions. Checked exceptions are user-defined exceptions
that must be caught in atry-catch block when thrown, or that must be declared
in the prototype of a method when thrown outside of atry-catch block.

PocketBuilder

CHAPTER 3 Using the PowerScript Language

The PowerScript compiler checks the local syntax where you throw checked
exceptions to make sure you either declare or catch these exception types.
Descendants of RuntimeError are not checked by the compiler, evenif they are
user defined or if they are thrown in a script rather than by the runtime system.

Handling exceptions

TRY-CATCH-FINALLY
block

Example

Resource Guide

Whether an exception is thrown by the runtime system or by a THROW
statement in an application script, you handle the exception by catching it. This
is done by surrounding the set of application logic that throws the exception
with code that indicates how the exception is to be dealt with.

To handle an exception in PowerScript, you must include some set of your
application logic inside atry-catch block. A try-catch block beginswithaTRY
clause and ends with the END TRY statement. It must also contain either a
CATCH clause or aFINALLY clause. A try-catch block normally contains a
FINALLY clause for error condition cleanup. In between the TRY and FINALLY
clauses you can add any number of CATCH clauses.

CATCH clauses are not obligatory, but if you do include them, you must follow
each CATCH statement with avariable declaration. In addition to following al
of the usual rulesfor local variable declarations inside a script, the variable
being defined must derive from the Throwable system type.

You can add a TRY-CATCH-FINALLY, TRY-CATCH, or TRY-FINALLY block
using the Script view Paste Special feature for PowerScript statements. If you
select the Statement Templ ates check box on the AutoScript tab of the Design
Options dialog box, you can also use the AutoScript feature to insert these
block structures.

Example catching a system error Thisisan example of a TRY-CATCH-
FINALLY block that catchesa system error when an arccosine argument, entered
by the application user in a SingleLineEdit, isnot in the required range. If you
do not catch this error, the application goes to the system error event, and
eventually terminates:

Doubl e | d_num
| d_num = Double (sle_1.text)
TRY
sle_2.text = string (acos (ld_num)
CATCH (runtinmeerror er)
MessageBox(" Runtime Error", er.Get Message())
FI NALLY

33

Exception handling in PocketBuilder

CATCH order

FINALLY clause

34

/1 Add cl eanup code here
of _cl eanup()
Return
END TRY
MessageBox("After”, "W have finished.")

The system runtime error message might be confusing to the end user, so for
production purposes, it would be better to catch a user-defined exception—see
the example in “ Creating user-defined exception types’ on page 35—and set
the message to something more understandable.

TheTRY reserved word signal sthe start of ablock of statementsto be executed
and can include more than one CATCH clause. If the execution of code in the
TRY block causes an exception to be thrown, then the exception is handled by
the first CATCH clause whose variable can be assigned the value of the
exception thrown. The variable declaration after a CATCH statement indicates
the type of exception being handled (a system runtime error, in this case).

It isimportant to order your CATCH clausesin such away that one clause does
not hide another. Thiswould occur if the first CATCH clause catches an
exception of type Exception and a subsegquent CATCH clause catches a
descendant of Exception. Since they are processed in order, any exception
thrown that is a descendant of Exception would be handled by the first CATCH
clause and never by the second. The PowerScript compiler can detect this
condition and signals an error if found.

If an exception is not dealt with in any of the CATCH clauses, it is thrown up
thecall stack for handling by other exception handlers (nested try-catch blocks)
or by the system error event. Before the exception is thrown up the stack,
however, the FINALLY clause is executed.

The FINALLY clause is generally used to clean up after execution of a TRY or
CATCH clause. The codeinthe FINALLY clause is guaranteed to execute if any
portion of the try-catch block is executed, regardless of how the code in the
try-catch block compl etes.

If no exceptions occur, the TRY clause compl etes, followed by the execution of
the statements contained in the FINALLY clause. Then execution continues on
the line following the END TRY statement.

In caseswherethere are no CATCH clauses but only aFINALLY clause, the code
inthe FINALLY clauseis executed even if areturn is encountered or an
exception isthrown in the TRY clause.

PocketBuilder

CHAPTER 3 Using the PowerScript Language

If an exception occurs within the context of the TRY clause and an applicable
CATCH clause exists, the CATCH clause is executed, followed by the FINALLY
clause. But even if no CATCH clause is applicable to the exception thrown, the
FINALLY clause still executes before the exception is thrown up the call stack.

If an exception or areturn is encountered within a CATCH clause, the FINALLY
clause is executed before execution is transferred to the new location.

Creating user-defined exception types

Inherit from Exception
object type

Throwing exceptions

Resource Guide

You can create your own user-defined exception typesfrom standard class user
objects that inherit from Exception or RuntimeError or that inherit from an
existing user object deriving from Exception or RuntimeError.

Normally, user-defined exception types should inherit from the Exception type
or adescendant, since the RuntimeError type is used to indicate system errors.
These user-defined objects are no different from any other nonvisual user
object in the system. They can contain events, functions, and instance
variables.

User-defined exception types are useful in cases where a specific condition,
such asthe failure of a businessrule, might cause application logic to fail. If
you create a user-defined exception type to describe such a condition and then
catch and handle the exception appropriately, you can prevent aruntime error.

Exceptions can be thrown by the runtime engine to indicate an error condition.
If you want to signal a potential exception condition manually, you must use
the THROW statement.

Typically, the THROW statement i s used in conjunction with some user-defined
exception type. Here is a simple example of the use of the THROW statement:

Exception | e_ex

|l e_ex = create Exception

Throw | e_ex

MessageBox ("Hmi, "We would never get here if" &
+ "the exception variable was not instantiated")

In this example, the code throws the instance of the exception le_ex. The
variablefollowing the THROW reserved word must point to avalid instance of
the exception object that derives from Throwable. If you attempt to throw an
uninstantiated Exception variable, a NullObjectError is thrown instead,
indicating anull object referencein thisroutine. That could only complicatethe
error handling for your application.

35

Exception handling in PocketBuilder

Declaring exceptions
thrown from functions

Example

36

If you signal an exception with the THROW statement inside amethod script—
and do not surround the statement with atry-catch block that can deal with that
type of exception—you must also declare the exception as an exception type
(or asadescendant of an exception type) thrown by that method. However, you
do not need to declare that a method can throw runtime errors, since
PocketBuilder does that for you.

The prototype window in the Script view of most PocketBuilder painters
allows you to declare what user-defined exceptions, if any, can be thrown by a
function or a user-defined event. You can drag and drop exception types from
the System Tree or a Library painter view to the Throws box in the prototype
window, or you can type in acomma-separated list of the exception types that
the method can throw.

Example catching a user-defined exception This code displaysa
user-defined error when an arccosine argument, entered by the application user,
isnot in the required range. The try-catch block calls a method, wf_acos, that
catches the system error and sets and throws the user-defined error:

TRY

wf _acos()
CATCH (uo_exception u_ex)

MessageBox(" Qut of Range", u_ex. Get Message())
END TRY

Thiscodein thewf_acos method catches the system error and sets and throws
the user-defined error:

uo_exception lu_error
Doubl e | d_num
I d_num = Double (sle_1.text)
TRY
sle_2.text = string (acos (ld_num)
CATCH (runtimeerror er)
lu_error = Create uo_exception
lu_error. Set Message(" Val ue nmust be between -1" &

+ "and 1")
Throw lu_error
END TRY

PocketBuilder

CHAPTER 3 Using the PowerScript Language

Adding flexibility and facilitating object reuse

Resource Guide

You can use exception handling to add flexibility to your PocketBuilder
applications and to help separate business rules from presentation logic. For
example, business rules can be stored in a non-visual object that has:

An instance variable to hold a reference to the presentation object:
power obj ect my_presenter

A function that registers the presentation object

The registration function could use the following syntax:
Set Obj ect (string my_purpose, powerobject nyobject)

Code to call adynamic function implemented by the presentation object,
with minimal assumptions about how the datais displayed

Thedynamic function call should be enclosed in atry-catch block, such as:

TRY

ny_presenter. Dynam ¢ nf _di spl ayScreen(" ")
CATCH (Throwabl e I'th_exception)

Throw | t h_exception
END TRY

This try-catch block catches al system and user-defined errors from the
presentation object and throws them back up the calling chain (to the
object that called the user object). In the above example, the thrown object
inthe CATCH statement isan object of type Throwable, but you could also
instantiate and throw a user exception object:

uo_exception | uo_exception

TRY

ny_present er. Dynam ¢ nf _di spl ayScreen(" ")
CATCH (Throwabl e I'th_exception)

l uo_exception = Create uo_exception

| uo_exception. Set Message & +

(lIth_exception. Get Message())

Throw | uo_exception

END TRY

Code for data processing could be added to the presentation object, to the
business rules user object, or to processing objects called by the user object.
The exact design depends on your business objectives, but this code should
also be surrounded by try-catch blocks. The actions to take and the error
messages to report (in case of code processing failure) should be as specific as
possible in the try-catch blocks that surround the processing code.

37

Exception handling in PocketBuilder

There are significant advantages to this type of approach, because the business
user object can be reused more easily and can be accessed by objects that
display the same business datain many different ways. The addition of
exception handling makes this approach much more robust, giving the
application user a chance to recover from an error condition.

Using the SystemError and Error events

Error event

SystemError event

Precedence of
exception handlers
and events

Error handling for new
applications

38

If aruntime error occurs, an error structure that describes the error is created.
An error can occur when an expression that uses dot notation to refer to data
and properties of a DataWindow object isinvalid under some runtime
conditions. The Datawindow error Event istriggered, with the information in
the error structure as arguments.

The error can be handled in this Error event by use of a special reference
argument that allows the error to be ignored. If the error does not occur in the
context described above, or if the error in that context isnot dealt with, then the
error structureinformation is used to popul ate the global error variable, and the
SystemError event on the Application object is triggered.

In the SystemError event, unexpected error conditions can be dealt with in a
limited way. In general, it isnot agood ideato continue running the application
after the SystemError event istriggered. However, error-handling code can and
should be added to this event. Typically you could use the SystemError event
to save data before the application terminates and to perform last-minute
cleanup (such as closing files or database connections).

If you write code in the Error event, then that code is executed first in the event
of athrown exception.

If the exception is not thrown in any of the described contexts, or the object’s
Error event does not handle the exception, or you do not code the Error event,
then the exception is handled by any active exception handlers (CATCH
clauses) that are applicable to that type of exception. Information from the
exception classiscopied tothe global error variable and the SystemError event
on the Application object isfired only if there are no exception handlers to
handl e the exception.

In PocketBuilder applications, you can handle errors by using try-catch blocks
or by coding the Error event. You should always have a SystemError event
coded in your Application object to handle any uncaught exceptions. The
SystemError event essentially becomes a global exception handler for a
PocketBuilder application.

PocketBuilder

CHAPTER 3 Using the PowerScript Language

Garbage collection

The PocketBuilder garbage collection mechanism checks memory
automatically for unreferenced and orphaned objects and removes any it finds,
thus taking care of most memory leaks. You can use garbage collection to
destroy objects instead of explicitly destroying them using the DESTROY
statement. Thislets you avoid runtime errors that occur when you destroy an
object that was being used by another process or had been passed by reference
to a posted event or function.

When garbage
collection occurs

Exceptions to garbage
collection

Resource Guide

Garbage collection occurs:

When areference is removed from an object A referenceto an object
is any variable whose value is the object. When the variable goes out of
scope, or when it is assigned a different value, PocketBuilder removes a
reference to the object, counts the remaining references, and destroys the
object if no references remain.

Posting events and functions
When you post an event or function and pass an object reference,

PocketBuilder adds an internal reference to the object to prevent its
memory from being reclaimed by the garbage collector between the time
of the post and the actual execution of the event or function. Thisreference
is removed when the event or function is executed.

When the garbage collection interval is exceeded When
PocketBuilder completes the execution of a system-triggered event, it
makes a garbage collection passif the set interval between garbage
collection passes has been exceeded. The default interval is 0.5 seconds.
The garbage collection pass removes any objects and classes that cannot
be referenced, including those containing circular references (otherwise
unreferenced objects that reference each other).

There are afew objects that are not collected:

Visual objects Any object that isvisible on your screenis not collected
because when the object is created and displayed on your screen, an
internal referenceis added to the object. When any visual object is closed,
itisexplicitly destroyed.

Shared objects Registered shared objects are not collected because the
SharedObjectRegister function adds an internal reference.
SharedObjectUnregister removes the internal reference.

39

Efficient compiling and performance

Controlling when
garbage collection
occurs

Garbage collection occurs automatically in PocketBuilder, but you can use
functions to force immediate garbage collection or to change the interval
between reference count checks. Three functions allow you to control when
garbage collection occurs: GarbageCollect, GarbageCollectGetTimeLimit, and
GarbageCollectSetTimeLimit.

For information about these functions, see the online Help.

Efficient compiling and performance

Short scripts for faster
compiling

Local variables for
faster performance

40

Theway you write functions and define variables affects your productivity and
your application’s performance.

Long scriptstake along timeto compile. Break scripts up so that instead of one
long script, you have ashorter script that makes callsto several other functions.
Consider defining functions in user objects so that other objects can call the
same functions.

The scope of variables affects performance. When you have achoice, uselocal
variables, which provide the fastest performance. Global variables have the
biggest negative impact on performance.

PocketBuilder

CHAPTER 4

About this chapter

Contents

Getting Information About
PocketBuilder Class Definitions

This chapter explains what class definition informationis and how it is
used, and presents some sample code. Developers of tools and object
frameworks can use class definition information for tasks such as
producing reports or defining objects with similar characteristics. You do
not need to use class definition information if you are building typical
business applications.

Topic Page
Overview of class definition information 41
Examining a class definition 45

Overview of class definition information

Resource Guide

A ClassDefinition object is a PocketBuilder object that provides
information about the class of another PocketBuilder object. You can
examine a classin a PocketBuilder library or the class of an instantiated
object. By examining the properties of its ClassDefinition object, you can
get details about how that class fits in the PocketBuilder object hierarchy.

Desktop only
ClassDefinition, ScriptDefinition, and other objects that descend from the

ClassDefinitionObject object can be used in the development
environment, but not in applications deployed to Windows CE devices or
emulators.

From the ClassDefinition object, you can discover:
* Thevariables, functions, and events defined for the class

* Theclass's ancestor

41

Overview of class definition information

Terminology

object instance

42

e Theclass's parent

e Theclass'schildren (nested classes)

Related objects
The ClassDefinition abject isamember of ahierarchy of objects, including the

TypeDefinition, VariableDefinition, and ScriptDefinition objects, that provide
information about datatypes or about the variables, properties, functions, and
event scripts associated with a class definition.

For more information, see the Browser or the online Help.

Definitions for instantiated objects For each object instance, a
ClassDefinition property makes available a ClassDefinition object to describe
its definition. The ClassDefinition object does not provide information about
the object instance, such asthe values of itsvariables. You get that information
by addressing the instance directly.

Definitions for objects in libraries An object does not have to be
instantiated to get class information. For an object in a PocketBuilder library,
you can call the FindClassDefinition function to get its ClassDefinition object.

Performance Classdefinition objects may seem to add alot of overhead, but
the overhead isincurred only when you refer to the ClassDefinition object. The
ClassDefinition object isinstantiated only when you call FindClassDefinition or
access the ClassDefinition property of a PocketBuilder object. Likewise, for
properties of the ClassDefinition object that are themselves ClassDefinition or
VariableDefinition objects, the objects are instantiated only when you refer to
those properties.

The class information includes information about the relationships between
objects. These definitions will help you understand what the information
means.

A realization of an object. The instance existsin memory and has values
assigned to its properties and variables. Object instances exist only when you
run an application.

PocketBuilder

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

class

system class

parent

child

ancestor

descendant

inheritance hierarchy

Resource Guide

A definition of an object, containing the source code for creating an object
instance. When you use PocketBuilder painters and save an object in a PKL,
you are creating class definitions for objects. When you run your application,
the classis the datatype of object instances based on that class. In
PocketBuilder, the term object usually refers to an instance of the object. It
sometimes refers to an object’s class.

A class defined by PocketBuilder. An object you definein apainter isa
descendant of a system class, even when you do not explicitly choose to use
inheritance for the object you define.

The object that containsthe current object or is connected to the object in away
other than inheritance. This table lists classes and the classes that can be the
parents of those classes:

Table 4-1: Classes and parents

Object Parent

Window The window that opened the window.
A window might not have a parent. The parent is
determined during execution and is not part of the
class definition.

Menu item The menu item on the prior level in the menu.

Theitem on the menu bar isthe parent of all theitems
on the associated drop-down menu.

Control on awindow The window.

Control on user object | The user object.

TabPage The Tab control in which it is defined or in which it
was opened.

ListViewltem or TheListView or TreeView control.

TreeViewltem
Visual user object

Thewindow or user object onwhich theuser objectis
placed.

A classthat is contained within another parent class. Also called anested class.
For the types of objects that have a parent and child relationship, see parent.

A class from whose definition another object isinherited. See al so descendant.

An object that is inherited from another object and that incorporates the
specifics of that object: its properties, functions, events, and variables. The
descendant can use these values or override them with new definitions. All
objects you define in painters and store in libraries are descendants of
PocketBuilder system classes.

An object and al its ancestors.

43

Overview of class definition information

collapsed hierarchy A view of an object class definition that includes information from all the
ancestors in the abject’s inheritance tree, not just items defined at the current
level of inheritance.

scalar A simple datatype that is not an object or an array. For example, Integer,
Boolean, Date, Any, and String.

instance variable and Built-in properties of PocketBuilder system objects are called properties, but

property they are treated as instance variables in the class definition information.

Who uses PocketBuilder class definitions

Most business applications do not need to use class definition information.
Code that uses class definition information iswritten by groupsthat write class
libraries, application frameworks, and productivity tools.

Although your application might not include any code that uses class definition
information, tools that you use for design, documentation, and class libraries
will. These tools examine class definitions for your objects so that they can
analyze your application and provide feedback to you.

Scenarios Class information might be used when developing:
e A custom object browser

e A tool that needs to know the objects of an application and their
relationships

The purpose might be to document the application or to provide alogical
way to select and work with the objects.

» A CASE tool that deconstructs PocketBuilder objects, allows the user to
redesign them, and reconstructs them

To do the reconstruction, the CASE tool needs both class definition
information and a knowledge of PocketBuilder object source code syntax.

e Aclasslibrary inwhich objects need to determinethe class associated with
an instantiated object, or a script needs to know the ancestor of an object
in order to make assumptions about available methods and variables

44 PocketBuilder

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

Examining a class definition

This section illustrates how to access a class definition object and how to
examine its properties to get information about the class, its scripts, and its
variables.

Getting a class definition object

For an instantiated
object in your
application

For an object stored in
a PKL

To work with classinformation, you need a class definition object. There are
two ways to get a ClassDefinition object containing class definition
information.

Use its ClassDefinition property.

For example, in ascript for a button, this code gets the class definition for the
parent window:

Cl assDefinition cd_w ndef
cd_wi ndef = Parent. d assDefinition

Call FindClassDefinition.

For example, in ascript for abutton, this code gets the class definition for the
window named w_genapp_frame from alibrary on the application’slibrary list:

Cl assDefinition cd_w ndef
cd_wi ndef = Findd assDefinition("w_genapp_frane")

Getting detailed information about the class

Library

Resource Guide

This section has code fragments illustrating how to get information from a
ClassDefinition object called cd_windef.

For examples of assigning avalueto cd_windef, see“ Getting a class definition
object.”

The LibraryName property reports the name of the library a class has been
loaded from:

s = cd_wi ndef. Li braryNane

45

Examining a class definition

Ancestor

Parent

46

The Ancestor property reports the name of the class from which thisclassis
inherited. All objects are inherited from PocketBuilder system objects, so the
Ancestor property can hold a ClassDefinition object for a PocketBuilder class.
The Ancestor property contains a null object reference when the
ClassDefinition is for PowerObject, which is the top of the inheritance
hierarchy.

This example gets a ClassDefinition object for the ancestor of the class
represented by cd_windef:

Cl assDefinition cd_ancest orw ndef
cd_ancest orwi ndef = cd_wi ndef. Ancest or

This example getsthe ancestor name. Note that this code would cause an error
if cd_windef held the definition of PowerObject because the Ancestor property
would be null:

I's_name = cd_wi ndef. Ancest or. Nane
Use the IsValid function to test that the object is not null.

This example walks back up the inheritance hierarchy for the window
w_genapp_frame and displays alist of its ancestorsin a MultiLineEdit:

string s, |lineend
Cl assDefinition cd
lineend = "~r~n"

cd = cd_w ndef
s = "Ancestor tree:" + |lineend

DO WHI LE I sValid(cd)
s = s + cd. Nane + |ineend
cd = cd. Ancest or

LOOP

me_ 1. Text = s
Thelist might look like this:

Ancestor tree:
w_genapp_frane
wi ndow

gr aphi cobj ect
power obj ect

The ParentClass property of the ClassDefinition object reports the parent (its
container) specified in the object’s definition:

Cl assDefinition cd_parentw ndef

PocketBuilder

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

cd_parentw ndef = cd_wi ndef. Parent d ass

If the class has no parent, ParentClassis anull object reference. Thisexample
tests that ParentClassis avalid object before checking its Name property:

I F IsValid(cd_w ndef. ParentC ass) THEN
I s_nanme = cd_wi ndef. Parent Cl ass. Nanme

END | F
Nested or child The ClassDefinition object’s NestedClassList array hol dsthe classesthe object
classes contains.

NestedClassList array includes ancestors and descendants
The NestedClassList array can include classes of ancestor objects. For

example, aCommandButton defined on an ancestor window and modifiedin a
descendent window appearstwiceinthearray for the descendent window, once
for the window and once for its ancestor.

Thisscript producesalist of the controls and structures defined for the window
represented in cd_windef.

string s, lineend
integer i
|lineend = "~r~n"

s = s + "Nested classes:" + |lineend

FOR Ii = 1 to UpperBound(cd_w ndef. Nest edC assLi st)
s = s + cd_w ndef. NestedC assList[li].Name &
+ i neend
NEXT

me 1.Text = s

This script searches the NestedClassList array in the ClassDefinition object
cd_windef to find a nested DropDownL istBox control:

i nteger Ii
Cl assDefinition nested_cd

FOR Ii = 1 to UpperBound(cd_w ndef. Nest edC assLi st)
I F cd_wi ndef . Nest edCl assList[li].DataTyped &
= "dropdownl i st box" THEN
nested_cd = cd_wi ndef. Nestedd assList[li]
EXIT
END | F
NEXT

Resource Guide 47

Examining a class definition

Class definitions for object instances versus object references
Getting a ClassDefinition object for an instantiated object, such as an ancestor

or nested object, does not give you areference to instances of the parent or
child classes. Use standard PocketBuilder programming techniquesto get and
store references to your instantiated objects.

Getting information about a class’s scripts

List of scripts

48

This section has code fragmentsillustrating how to get script information from
a ClassDefinition object called cd_windef.

For examples of assigning avalueto cd_windef, see“ Getting a class definition
object” on page 45.

The ScriptList array holds ScriptDefinition objects for al the functions and
eventsdefined for aclass. If afunctionisoverloaded, it will appear inthe array
more than once with different argument lists. If afunction or event has code at
more than one level in the hierarchy, it will appear in the array for each coded
version.

This example loops through the ScriptList array and builds alist of script
names. All objects have afew standard functions, such as ClassName and
PostEvent, because all abjects are inherited from PowerObject:

string s, |lineend

integer Ii

ScriptDefinition sd

lineend = "~r~n"

FOR Ii = 1 to UpperBound(cd_wi ndef. Scri ptList)
sd = cd_windef.ScriptList[li]
s =s + sd.Name +" " + |lineend

NEXT

me_ 1. Text = s

This example amplifiesthe previous one and accesses various propertiesin the
ScriptDefinition object. It reports whether the script is afunction or event,
whether it is scripted locally, what its return datatype and arguments are, and
how the arguments are passed:

string s, |lineend
integer li, lis, |li_bound
ScriptDefinition sd
lineend = "~r~n"

PocketBuilder

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

FOR Ii = 1 to UpperBound(cd_wi ndef. Scri ptList)
sd = cd_windef.ScriptList[li]
s = s + sd.Nane + " "

CHOOSE CASE sd. Ki nd
CASE Scri pt Event!
/1 Events have three relevant properties
/'l regardi ng where code is defined
s =s + "Event, "
I F sd.lsScripted = TRUE t hen
s =s + "scripted, "
END | f
I F sd.lsLocal lyScripted = TRUE THEN
s =s + "local, "
END | F
| F sd. | sLocal | yDefined = TRUE THEN
s =s + "local def,"
END | F

CASE Scri pt Functi on!
/1 Functions have one rel evant property
/1 regardi ng where code is defined
s =s + "Function, "
I F sd.lsLocal l yScripted = TRUE THEN
s =s + "local, "
END | F
END CHOOSE

S =s + "returns " + &
sd. Retur nType. Dat aTypeOf + "; "
s =s + "Args: "

I'i _bound = Upper Bound(sd. Argunent Li st)
IF li_bound = 0 THEN s = s + "None"
FORlis =1 to |i_bound
CHOOSE CASE sd. ArgunentList[lis]. &
Cal i ngConventi on
CASE ByRef er enceAr gunent!
s =s + "REF "
CASE ByVal ueAr gunent!
s =s + "VAL "
CASE ReadOnl yAr gunent !
S = s + "READONLY "
CASE ELSE
s =s + "BULTIN"
END CHOOSE

Resource Guide 49

Examining a class definition

Matching function
signatures

s = s + sd. ArgunentList[lis].Nane + ",
NEXT

s = s + |lineend
NEXT
mMe 1.text = s

Where the code is in the inheritance hierarchy You can check the
IsLocallyScripted property to find out whether a script has code at the class's
own level in the inheritance hierarchy. By walking back up the inheritance
hierarchy using the Ancestor property, you can find out where the codeisfor a
script.

This example looks at the scripts for the class associated with the
ClassDefinition cd_windef, and if ascript’'s code is defined at this level, the
script’s name is added to a drop-down list. It also savesthe script’s position in
the ScriptList array in the instance variable i _localscript_idx.

The DropDownListBox is not sorted, so the positionsin the list and the array
stay in sync:

integer li_pos, li
FOR Ii = 1 to UpperBound(cd_wi ndef. Scri ptList)
I F cd_windef.ScriptList[li].lsLocallyScripted &
= TRUE THEN

li_pos = ddl b_l ocal scripts. Addlten(&
cd_wi ndef. ScriptList[li].Nange)
ii_localscript_idx[li_pos] = li
END | F
NEXT

When a class has overloaded functions, you can call FindMatchingFunction to
find out what function is called for a particular argument list.

For an example, see FindMatchingFunction in the online Help.

Getting information about variables

50

This section has code fragments illustrating how to get information about
variables from a ClassDefinition object called cd_windef. For examples of
assigning avalue to cd_windef, see “ Getting a class definition object” on page
45.

PocketBuilder

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

Details about
variables

Resource Guide

List of variables Variables associated with a class are listed in the
VariableList array of the ClassDefinition object. When you examinethat array,
you find not only variables you have defined explicitly but also PocketBuilder
object properties and nested objects, which are instance variables.

This example loops through the VariableList array and builds alist of variable
names. PocketBuilder properties appear first, followed by nested objects and
your own instance and shared variables:

string s, lineend

i nteger Ii

Vari abl eDefinition vard

lineend = "~r~n"

FOR Ii = 1 to UpperBound(cd_wi ndef. Vari abl eLi st)

vard = cd_wi ndef. Variabl eList[li]
s = s + vard. Nanme + |ineend

NEXT

me 1.Text = s

This example looks at the properties of each variable in the VariableList array
and reports its datatype, cardinality, and whether it is global, shared, or
instance. It aso checks whether an instance variable overrides an ancestor
declaration:

string s

integer i

Vari abl eDefinition vard

lineend = "~r~n"

FOR Ii = 1 to UpperBound(cd_wi ndef. Vari abl eLi st)

vard = cd_wi ndef. VariableList[li]
+ vard. Nane + ",
+ vard. Typel nf o. Dat aTypeCf

s =s
s =s
CHOOSE CASE vard. Cardinality.Cardinality
CASE Scal ar Type!

s =s + ", scalar"

CASE UnboundedArray!, BoundedArray!
s =s +", array”

END CHOOSE

CHOOSE CASE vard. Ki nd
CASE Vari abl ed obal !

s =s + ", global"
CASE Vari abl eShar ed!
s =s + ", shared"

51

Examining a class definition

CASE Vari abl el nst ance!

s =s + ", instance"
I F vard. Overri desAncest or Val ue = TRUE THEN
s =s + ", override"
END | F
END CHOGCSE

s = s + |lineend
NEXT
me_ l.text = s

52 PocketBuilder

PART 2

Implementing User
Interface Features

This part describes how to implement user interface
features in the applications you develop with
PocketBuilder.

CHAPTER 5 Using Tab Controls in a Window

About this chapter This chapter describes how to use Tab controls in your application.

Contents Topic Page
About Tab controls 55
Defining and managing tab pages 57
Customizing the Tab control 60
Using Tab controlsin scripts 62

About Tab controls

Windows CE platforms
On the Pocket PC, you can use atab page approach to application design

as asubstitute for MDI windows, which are not supported on Windows
CE platforms. Tab controls are not supported on Smartphone devices or
emulators.

A Tab control isacontainer for tab pages that display other controls. One
page at atime fills the display area of the Tab control.

Resource Guide 55

About Tab controls

Tab terms

56

Each page has atab like an index card divider. The user can click the tab to
switch among the pages:

Figure 5-1: Tab control

Year Ouarter Code Amount -
2003 @ el 1M j
2003 @1 e 403
2003 @ 23 1437
2003 @1 ed 623
2003 @ =] 33
2003 @1 r 1023
2003 @ r2 234
2003 @2 el a3
|

DataVindow | Tree'iew | ListWiew |

The Tab control alows you to present many pieces of information in an
organized way. Thisis particularly useful when building an application for a
handheld device with alimited display area.

When sizing the tab control, remember that the height and width properties of
the control refer to the size of the control without the tabs. Therefore, if you are
sizing atab control with tabs at the bottom to fill the window, set the height to
about 1024 PBUs if your application uses the default window height of 1280

PBUs.

You add, resize, and move Tab controls just as you do any control. The Users
Guide describes how to add controls to awindow or custom visual user object.

You need to know these definitions:

Tab control A control that you placein awindow or user object that contains
tab pages. Part of the areain the Tab control isfor the tabs associated with the
tab pages. Any space that is left is occupied by the tab pages themselves.

Tab page A user object that contains other controls and is one of severa
pages within a Tab control. All the tab pagesin a Tab control occupy the same
area of the control, and only oneisvisible at atime. The active tab page covers
the other tab pages.

You can define tab pagesright in the Tab control, or you can definethemin the
User Object painter and insert them into the Tab control, either in the painter
or during execution.

PocketBuilder

CHAPTER 5 Using Tab Controls in a Window

Tab Thevisua handlefor atab page. Thetab displaysalabel for thetab page.
When atab page is hidden, the user clicksitstab to bring it to the front and
make the tab page active.

Defining and managing tab pages

Two methods

Creating tab pages

Resource Guide

A tab pageisauser object.
There are different ways to approach tab page definition. You can define;

 Anembedded tab page Inthe painter, insert tab pagesin the Tab
control and add controls to those pages. An embedded tab pageis of class
UserObject, but is not reusable.

+ Anindependent user object IntheUser Object painter, createacustom
visual user object and add the controls that will display on the tab page.
You can use the user object as atab pagein a Tab control, either in the
painter or by calling OpenTab in a script. A tab page defined as an
independent user object is reusable.

You can mix and match the two methods—one Tab control can contain both
embedded tab pages and independent user objects.

When you create anew Tab control, it has one embedded tab page. You can use
that tab page or delete it.

To create a new tab page within the Tab control:

1 Right-click in the tab area of the Tab control. Do not click atab page.
2 Select Insert TabPage from the pop-up menu.

3 Add controls to the new page.

To define a tab page that is independent of a Tab control:

1 Select Custom Visual on the Object tab in the New dialog box.

2 Inthe User Object painter, size the user object to match the size of the
display area of the Tab control in which you will useit.

3 Addthe controlsthat will appear on the tab page to the user object and
write scripts for their events.

4 Intheuser object’s Properties view, click the TabPage tab and fill in
information to be used by the tab page.

57

Defining and managing tab pages

Managing tab pages

58

To add a tab page that exists as an independent user object to a Tab
control:

1 Right-click in thetab area of the Tab control. Do not click atab page.
2 Select Insert User Object from the pop-up menu.
3 Select auser object.

The tab page isinherited from the user object you select. You can set tab
page properties and write scripts for the inherited user object just as you
do for tab pages defined within the Tab control.

Editing the controls on the tab page user object
You cannot edit the content of the user object within the Tab contral. If you

want to edit or write scripts for the controls, close the window or user
object containing the Tab control and go back to the User Object painter
to make changes.

You can view, reorder, and delete the tab pages on a Tab control.

To view a different tab page:
» Click the page's tab.

Thetab page comesto the front and becomes the active tab page. Thetabs
are rearranged according to the Tab position setting you have chosen.

To reorder the tabs within a Tab control:
1 Click the Page Order tab on the Tab control’s Properties view.

2 Drag the names of the tab pages to the desired order.

To delete a tab page from a Tab control:
1 Click the page'stab.

2 Right-click the tab page and select Cut or Clear from the pop-up menu.

PocketBuilder

CHAPTER 5 Using Tab Controls in a Window

Controls on tab pages

Resource Guide

Selecting tab controls and tab pages
Asyou click on various areas within atab control, you will notice the

Propertiesview changing to show the properties of thetab control itself, one of
the tab pages, or acontrol on atab page. Before you select an item such as Cut
from the pop-up menu, make sure that you have selected the right object.

Clicking anywherein thetab areaof atab control selectsthetab control. When
you click the tab for a specific page, that tab page becomes active, but the
selected object is still the tab control. To select the tab page, click itstab to
make it active and then click anywhere on the background of the page except
on the tab itself.

Therea purpose of a Tab control isto display other controls on its pages. You
can think of the tab page as a miniature window. You add controlsto it just as
you do to a window.

When you areworking on a Tab control, you can add controlsonly to atab page
created within the Tab control.

Adding controls to an independent user object tab page
To add controls to an independent user object tab page, open it in the User

Object painter.

To add a control to an embedded tab page:

¢ Choose acontrol from the toolbar or the Insert menu and click the tab
page, just as you do to add a control to a window.

When you click inside the tab page, the tab page becomes the control’s
parent.

To move a control from one tab page to another:
e Cut or copy the control and paste it on the destination tab page.

The source and destination tab pages must both be embedded tab pages, not
independent user objects.

To move a control between a tab page and the window containing the
Tab control:

e Cut or copy the control and paste it on the destination window or tab page.
You cannot drag the control out of the Tab control onto the window.

Moving the control between atab page and the window changes the control’s
parent, which affects scripts that refer to the control.

59

Customizing the Tab control

Customizing the Tab control

The Tab control has settingsfor controlling the position and appearance of the
tabs. Each tab can have its own label, picture, and background color.

Pop-up menus and
Properties views for
Tab controls and tab
pages

Position and size of
tabs

60

All tabs share the same font settings, which you set on the Tab control’s Font

property page.

A Tab control has severa elements, each with its own pop-up menu and
Properties view. To open the Properties view, double-click or select Properties

on the pop-up menu.

Where you click determines what element you access.

Table 5-1: Accessing Tab control elements
To access the pop-up menu

or Properties view for a Do this

Tab control Right-click or double-click in the tab area of the
Tab control

Tab page Click the tab to make the tab page active, then

right-click or double-click somewhere in the tab
page but not on a control on the page

Control on atab page Click the tab to make the tab page active and

right-click or double-click the control

The General tab in the Tab control’s Properties view has several settings for
controlling the position and size of the tabs. For example:

Table 5-2: Controlling size and position of tabs

To change

Change the value for

The side(s) of the Tab control on which the tabs
appear

Tab Position

The size of the tabsrelative to the size of the Tab
control

Ragged Right, MultiLine,
Fixed Width

The orientation of the text relative to the side of the
Tab control (use this setting with caution—only
TrueType fonts support perpendicular text)

Perpendicular Text

PocketBuilder

CHAPTER 5 Using Tab Controls in a Window

Fixed Width and Ragged Right
When Fixed Width is checked, the tabs are all the same size. Thisis different

from turning Ragged Right off, which stretches the tabs to fill the edge of the
Tab control, like justified text. The effect isthe sameiif al the tab labels are
short, but if you have amix of long and short labels, justified labels can be
different sizes unless Fixed Width is on.

The sample Tab control in Figure 5-2 is set up like an address book. It hastabs
that flip between the left and right sides. With the Bold Selected Text setting
on and the changing tab positions, it is easy to see which tab is selected.

Figure 5-2: Address book tab control

\ Employee List [_ (O] x|
Employees - alphabetically

A 902 Moira Kelly =
— 47 James Klobucher
D-F g88 Felicia Kuo
T~ 1643 Elizabeth Lambert
John Letiecq
Jennifer Litton

Kim Lull
Michael Lynch M- I
Diean Marghall R-T I
Ken Martel
Joze Martinez -7 |
Tab labels You can change the appearance of the tab using the Properties views of both

the Tab control and the Tab page.

Resource Guide 61

Using Tab controls in scripts

Changing tab
appearance in scripts

Table 5-3: Changing the appearance of a tab

Properties | Property

view page Setting Affects

Tab control General PictureOnRight, All tabs in the control
ShowPicture,
ShowText

Tab page General Text, The label on the tab and the
BackColor background color of the tab

page

Tab page TabPage PictureName, The color of the text and
TabTextColor, picture on the tab and the
TabBackCoalor, background color of the tab
PictureMaskColor itself (not the tab page)

If you areworking in the User Object painter on an object you will use asatab
page, you can make the same settings on the TabPage page of the user object’s
Properties view that you can make in the tab page’s Properties view.

This example has a picture and text assigned to each tab page. Each tab has a
different background color. The Show Picture and Show Text settings are both
on:

Figure 5-3: Tabs with pictures and text

=, Dizplay

All these settingsin the painter have equivalent propertiesthat you can setina
script, allowing you to dynamically change the appearance of the Tab control
during execution.

Using Tab controls in scripts

62

This section provides examples of tabs in scripts:
» Referring to tab pagesin scripts
» Referring to controls on tab pages

e Opening, closing, and hiding tab pages

PocketBuilder

CHAPTER 5 Using Tab Controls in a Window

« Keeping track of tab pages

e Eventsfor the parts of the Tab control

Referring to tab pages in scripts

Generic coding

Resource Guide

Dot notation allows you to refer to individual tab pages and controls on those
tab pages:

e Thewindow or user object containing the Tab control isits parent:
window.tabcontrol

e The Tab control isthe parent of the tab pages contained in it:
window.tabcontrol.tabpageuo

e Thetab pageisthe parent of the control contained in it:
window.tabcontrol.tabpageuo.controlonpage

For example, this statement refersto the PowerTips property of the Tab control
tab_1 within the window w_display:

w_di spl ay.tab_1. Power Ti ps = TRUE
This example sets the PowerTipText property of tab page tabpage_1:

w_di splay.tab_1.tabpage_1. Power Ti pText = &
"Font settings"

This example enables the CommandButton cb_OK on the tab page
tabpage_doit:

w_di splay.tab_1.tabpage_doit.cb_OK Enabl ed = TRUE

You can use the Parent pronoun and GetParent function to make a script more
general.

Parent pronoun Inascript for any tab page, you can use the Parent pronoun
to refer to the Tab control:

Par ent . Sel ect Tab(Thi s)

GetParent function If you arein an event script for atab page, you can call
the GetParent function to get a reference to the tab page’s parent, which isthe
Tab control, and assign the reference to a variable of type Tab.

In an event script for a user object that is used as atab page, you can use code
like the following to save areference to the parent Tab control in an instance
variable.

63

Using Tab controls in scripts

64

Thisisthe declaration of the instance variable. It can hold areference to any
Tab control:

tab itab_settings
This code saves a reference to the tab page's parent in the instance variable:()

/'l Get a reference to the Tab control
/1 "This" refers to the tab page user object
itab_settings = This. GetParent()

In event scripts for controls on the tab page, you can use GetParent twice to
refer to the tab page user object and its Tab control:

tab tab_nytab
userobj ect tabpage_generic

t abpage_generic = This. Get Parent ()
tab_mytab = tabpage_generic. Get Parent ()

t abpage_generi c. Power Ti pText = &
"I mportant property page"
tab_myt ab. Power Ti ps = TRUE

tab_myt ab. Sel ect Tab(t abpage_generi c)

Generic variables for controls have limitations The type of these
variablesisthe basic PocketBuilder object type—a variable of type Tab has no
knowledge of the tab pagesin a specific Tab control, and a variable of type
UserObject has no knowledge of the controls on the tab page.

In this script for atab page event, alocal variableis assigned areferenceto the
parent Tab control. You cannot refer to specific pages in the Tab control
because tab_settings does not know about them. You can call Tab control
functions and refer to Tab control properties:

tab tab_settings
tab_settings = This. GetParent()
tab_settings. Sel ect Tab(Thi s)

User object variables If thetab pageisan independent user object, you can
define a variable whose type is that specific user object. You can now refer to
controls defined on the user object, which isthe ancestor of the tab pagein the
control.

PocketBuilder

CHAPTER 5 Using Tab Controls in a Window

In this script for a Tab control’s event, the index argument refers to atab page
and is used to get areference to a user object from the Control property array.
The example assumes that all the tab pages are derived from the same user
object uo_emprpt_page:

uo_enpr pt _page tabpage_current

tabpage_current = This. Control [index]

tabpage_current.dw enp. Retri eve &
(tabpage_current. st _nane. Text)

The Tab control’s Control property
The Control property array contains references to all the tab pagesin the

control, including both embedded and independent user objects. New tab pages
are added to the array when you insert them in the painter and when you open
them in a script.

Referring to controls on tab pages

Resource Guide

If you arereferring to acontrol on atab pagein another window, you must fully
qualify the control’s name up to the window level.

Thefollowing example showsafully qualified reference to a static text control:

w_activity_nanager.tab_fyi.tabpage_today. &
st _currlogon_time. Text = |s_current_|l ogon_time

This example from the PocketBuilder Code Examples sets the size of a
Datawindow control on the tab page to match the size of another DataWindow
control in the window. Because all the tab pages were inserted in the painter,
the Control property array corresponds with the tab page index. All the pages
are based on the same user object u_tab_dir:

u_tab_dir luo_Tab

|l uo_Tab = This. Control [newi ndex]

| uo_Tab. dw dir. Hei ght = dw_|list. Hei ght
luo_Tab.dw dir. Wdth = dw_|list.Wdth

In scripts and functions for the tab page user object, the user object knows
about its own controls. You do not need to qualify references to the controls.
This examplein afunction for the u_tab_dir user object retrieves data for the
dw_dir Datawindow control:

IF NOT ib_Retrieved THEN
dw_di r. Set TransOhj ect (SQLCA)
dw dir.Retrieve(as_Parm

65

Using Tab controls in scripts

ib_Retrieved = TRUE
END | F

RETURN dw_di r. RowCount ()

Opening, closing, and hiding tab pages

You can open tab pagesin a script. You can close tab pages that you opened,
but you cannot close tab pages that were inserted in the painter. You can hide
any tab page.

This example opens a tab page of type tabpage_listbox and stores the object
reference in an instance variable i_tabpage. The value 0 specifies that the tab
page becomes the last page in the Tab control. You need to save the reference
for closing the tab later.

Thisisthe instance variable declaration for the tab page’s object reference:
userobj ect i_tabpage
This code opens the tab page:

li_rtn = tab_1. QpenTab &
(i _tabpage, "tabpage_listbox", 0)

This statement closes the tab page:
tab_1.C oseTab(i _t abpage)

Keeping track of tab pages

Control property for
tab pages

66

To refer to the controls on atab page, you need the user object reference, not
just theindex of the tab page. You can usethe tab page’s Control property array
to get references to all your tab pages.

The Control property of the Tab control isan array with areference to each tab
page defined in the painter and each tab page added in a script. The index
values that are passed to events match the array elements of the Control

property.
You can get an object reference for the selected tab using the SelectedTab
property:

userobj ect |uo_tabpage
luo_tabpage = tab_1. Control [tab_1. Sel ect edTab]

PocketBuilder

CHAPTER 5 Using Tab Controls in a Window

Adding a new tab
page

Closing a tab page

Moving a tab page

In an event for the Tab control, like SelectionChanged, you can use the index
value passed to the event to get areference from the Control property array:

userobj ect tabpage_generic
t abpage_generi ¢ = Thi s. Control [newi ndex]

When you call OpenTab, the control property array grows by one element. The
new element is areference to the newly opened tab page. For example, the
following statement adds a new tab in the second position in the Tab control:

tab_1. OpenTab(uo_newt ab, 2)

The second element in the control array for tab_1 now refersto uo_newtab, and
the index into the control array for all subsequent tab pages becomes one
greater.

When you call CloseTab, the size of the array is reduced by one and the
reference to the user object or page is destroyed. If the closed tab was not the
last element in the array, the index for all subsequent tab pagesis reduced by
one.

The MoveTab function changes the order of the pagesin a Tab control and also
reorders the elementsin the control array to match the new tab order.

Control property array for user objects
The Control property array for controlsin auser object worksin the same way.

Events for the parts of the Tab control

Resource Guide

With so many overlapping piecesin a Tab control, you need to know where to
code scripts for events.

Table 5-4: Coding scripts for Tab control events

To respond to actions in the Write a script for events belonging to

Tab area of the Tab control, including | The Tab control
clicks or drag actions on tabs

Tab page (but not the tab) The tab page (for embedded tab pages) or
the user object (for independent tab pages)
Control on atab page That control

For example, if the user dragsto atab and you want to do something to the tab
page associ ated with the tab, you need to code the DragDrop event for the Tab
control, not the tab page.

67

Using Tab controls in scripts

Examples This codeinthe DragDrop event of thetab_1 control selectsthe tab page when
the user drops something ontoitstab. Theindex of thetab that isthe drop target
isan argument for the DragDrop event:

Thi s. Sel ect Tab(i ndex)

Thefollowing codein the DragDrop event for the Tab control letsthe user drag
Datawindow information to atab and then inserts the dragged information in
alist on the tab page associated with the tab.

A user object of typetabpage_listbox that containsaListBox contral, Ib_list, has
been defined in the User Object painter. The Tab control contains several
independent tab pages of type tabpage_listbox.

You can use the index argument for the DragDrop event to get atab page
reference from the Tab control’s Control property array. The user object
reference lets the script access the controls on the tab page.

The Parent pronoun in this script for the Tab control refers to the window:

68

long Il _row

string | s_nane
t abpage_l i st box | uo_t abpage

I F TypeOF (source) = DataW ndow! THEN

| _row = Parent.dw_ 2. Get Rowm)
I s_name = Parent.dw 2. Object.|nane. Primary[l | _row

/Il Get a reference fromthe Control property array
| uo_tabpage = This. Control [index]

/1 Make the tab page the sel ected tab page
Thi s. Sel ect Tab(i ndex)

/1 Insert the dragged information
| uo_tabpage.lb_list.Insertlten(ls_nane, 0)

END | F

PocketBuilder

CHAPTER 6

About this chapter

Contents

Using Lists and Tree Views in a
Window

This chapter describes how to use lists to present information in an
application.

Topic Page
About presenting lists 69
Using ListBox controls 70
Using DropDownListBox controls 71
Using ListView controls 72
Using TreeView controls 78

About presenting lists

Resource Guide

You can choose a variety of ways to present listsin your application:

* ListBoxesdisplay available choices that can be used for invoking an

action or viewing and displaying data.

* DropDownListBoxes aso display available choicesto the user.
However, you can make them editable to the user.

« ListView controls present listsin a combination of graphics and text.
You can allow the user to add, delete, edit, and rearrange ListView

items, or you can use them to invoke an action.

* TreeView controls also combine graphics and text in lists. The
differenceisthat TreeView controls show the hierarchical

relationship among the TreeView items. Aswith ListView controls,
you can allow the user to add, delete, edit, and rearrange TreeView

items. You can also use them to invoke actions.

69

Using ListBox controls

Platform notes
Support is not available for picturesin list boxes on Windows CE platforms.

List boxes are automatically converted by PocketBuilder to spinner controls
when deployed to Smartphone platforms, and extended or multiple selections
for these controls are not supported. Arrow keys on a Smartphone allow the
user to navigate within list view or tree view controls, but you must program a
menu item to move the focus from one of these controls to a different control
in the same main window.

For more information on spinner controls, see the appendix on designing
applications for Windows CE platformsin the Users Guide.

Using ListBox controls

You can present information to the user in simple lists with scrollbars.
Depending on how you design your application, the user can select one or more
list items to perform an action, based on the list selection.

You add ListBox controls to windows in the same way you add other controls:
select ListBox from the Insert>Control menu and click the window.

Adding items to list In the painter To add new items, use the control’s Items property page.
controls

0 To add items to a ListBox:

1 Select the Itemstab in the Properties view for the control.
2 Enter the names of theitemsfor the ListBox.

In ascript Usethe Additem and Insertitem functions to dynamically add
itemsto aListBox at runtime. Additem adds items to the end of the list.
However, if thelist is sorted, the item will then be moved to its position in the
sort order. Use Insertlitem if you want to specify where in the list the item will
be inserted.

70 PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Table 6-1: Using the Insertltem and Addltem functions

Function You supply
Insertitem Item name

Position in which the item will be inserted
Addltem Item name

For example, this script adds itemsto a ListBox:

Thi s. Addl tem (" Vaporware")
This.Insertltem ("Software", 2)
This. I nsertltem ("Hardware", 2)
This.Insertltem (" Paperware", 2)

Using the Sort property
You can set the control’s sort property to true or check the Sorted check box on

the General property page to ensure that the itemsin the list are always
arranged in ascending alphabetical order.

Using DropDownListBox controls

Adding items to drop-
down list controls

Resource Guide

Drop-down lists are another way to present simple lists of information to the
user. You add DropDownListBox controlsto windowsin the sameway you add
other controls: select DropDownL istBox from the Insert>Control menu and
click the window.

In the painter Use the Items property page for the control to add items.

To add items to a DropDownListBox or DropDownPictureListBox:
1 Select the Itemstab in the Properties view for the control.
2 Enter the name of the itemsfor the ListBox.

In ascript Usethe Additem and Insertitem functions to dynamically add
items to a DropDownListBox at runtime.

Additem adds itemsto the end of thelist. However, if thelist is sorted, theitem
will then be moved to its position in the sort order. Use Insertitem if you want
to specify wherein thelist the item will be inserted.

71

Using ListView controls

Table 6-2: Using the Insertitem and Addltem functions
Function | You supply

Insertltem Item name
Position in which the item will be inserted
Additem Item name

Thisexampleinsertsthreeitemsinto a DropDownListBox in thefirst, second,
and third positions:

This.Insertltem ("Atropos", 1)
This.Insertltem ("d otho", 2)
This.Insertltem ("Lachesis", 3)

Using the Sort property . . .
You can set the control’s sort property to true to ensure that theitemsin thelist

are aways arranged in ascending sort order.

Using ListView controls

72

A ListView control allows you to display items and icons in a variety of
arrangements. You can display large icon or small icon freeform lists, or you
can display avertica static list. You can also display additional information
about each list item by associating additional columns with each list item:

Figure 6-1: ListView control with additional columns

Composition | Alburm | Artist
1 St. Thomas Saxophone Colassus Sonny Rolling
[1 So What Kind of Blue Miles Davis
[1 Goodhye, Porkpie Hat Mingus-ah-urm Charles Mingus
[Cristo Redentor Something Mew Danald Byrd
01 Coyote Hejira Jaoni Mitchell
[Train in Yain Londan Calling The Clash
01 Kingdom Hall Wavelength “an Marrison
[lt's Too Late Catholic Boy Jim Carroll
£1 Mmim M Mom Mmm God Shuffled His Feet Crash Test Dummies
[] Alabama Crescent John Coltrane

01 Category 11

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

ListView controlsconsist of ListView items, which arestoredinan array. Each
ListView item consists of &

Label The name of the ListView item

Index The position of the ListView item in the control

Picture index The number that associates the ListView item with an
image

Depending on the style of the presentation, an item can be associated with
alarge picture index and a small picture index.

Overlay picture index The number that associates the ListView item
with an overlay picture

State picture index The number that associates the ListView item with
a state picture

For more information about ListView items, pictureindexes, and presentation
style, see the Users Guide.

You add ListView controlsto windowsin the same way you add other controls:
select ListView from the Insert>Control menu and click the window.

Adding ListView items In the painter Use the Items property page for the control to add items.

0 To add items to a ListView:

1
2

Select the Itemstab in the Properties view for the control.

Enter a name and a picture index number for each of the items you want
to add to the ListView.

Note Setting the picture index for the first item to zero clears all the
settings on the tab page.

For more information about adding picturesto a ListView control, see
“Adding picturesto ListView controls’ on page 74.

In ascript Usethe Additem and Insertltem functions to add itemsto a
ListView dynamically at runtime. There are two levels of information you
supply when you add items to a ListView using Additem or Insertitem.

Resource Guide

73

Using ListView controls

Adding pictures to
ListView controls

74

You can add an item by supplying the picture index and label, as this example
shows:

Iv_1.Addltem ("lItem 1", 1)

or you caninsert anitem by supplying theitem’spositionin the ListView, label,
and picture index:

Iv_1.Insertltem(1,"Item2", 2)

You can add items by supplying the ListView item itself. This examplein the
ListView's DragDrop event inserts the dragged object into the ListView:

listviewitem|vi

This. Getlten(index, |vi)
lvi.label = "Test"
lvi.pictureindex =1
This. Addl tem (I vi)

You can insert an item by supplying the ListView position and ListView item:

listviewitem!| _|vi

//Obtain the information for the

//second listview tem

lv_list.Getltem(2, |_Ivi)

/1 Change the item | abel to Entropy

/llnsert the second iteminto the fifth position
lv_list.Insertltem (5, | _lvi)
lv_list.Deletelten(2)

PocketBuilder stores ListView imagesin four imagelists:
* Small picture index

» Large pictureindex

» Statepicture index

* Overlay picture index

You can associate a ListView item with these images when you create a
ListView in the painter, or you can use the Additem and Insertitem at runtime.

However, before you can associate pictures with ListView items, they must be
added to the ListView control.

In the painter To add pictures, use the control’s Pictures and Items property
pages.

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide

0 To add pictures to a ListView control:

1 SelecttheLargePicture, Small Picture, or Statetab in the Properties view
for the control.

Overlay images
You can add overlay images only to aListView control in a script.

2 Select animage from the stock image list, or use the Browse button to
select a bitmap, cursor, or icon image.

3 Select acolor from the PictureMaskCol or drop-down menu for the image.

The color selected for the picture mask appears transparent in the
ListView.

4 Select apicture height and width for your image.

This controls the size of theimagein the ListView.

Dynamically changing image size

Theimage size can be changed at runtime by setting the PictureHeight and
PictureWidth properties before you add any pictures when you create a
ListView. For more information about PictureHeight and PictureWidth,
see the online Help.

5 Repeat the procedure for the:

* Number of image types (large, small, and state) you plan to usein
your ListView

e Number of images for each type
In ascript Usethefunctionsin Table 6-3 to add picturesto a ListView
image.
Table 6-3: Functions that add pictures to a ListView image
Function Adds a picture to this list
AddLargePicture Largeimage

AddSmallPicture Small image
AddStatePicture State image

Adding large and small pictures Thisexamplesetsthe height and widthfor
large and small pictures and adds three images to the large picture image list
and the small pictureimage list:

/1Set large picture height and w dth

75

Using ListView controls

76

Iv_1. LargePi ctureHei ght =32
Iv_1.LargePi ctureWdt h=32

/1 Add | arge pictures

Iv_1. AddLargePi cture("c:\ArtGal \ bnmps\celtic. bmp")
lv_1. AddLargePicture("c:\ArtGl\bmps\list.ico")

I v_1. AddLar gePi ct ure(" Cust onD44! ")

/1Set small picture height and w dth
Iv_1. Smal | Pi ct ur eHei ght =16
lv_1. Smal | Pi ct ureW dt h=16

//Add smal | pictures

Iv_1. AddSmal | Picture("c:\ArtGal\bnps\celtic. bmp")
lv_1. AddSmal | Picture("c:\ArtGal\bmps\list.ico")
lv_1. AddSmal | Pi ct ure(" Cust omD44! ")

//Add itens to the ListView
lv_1. Addltem("lItem 1", 1)
lv_1. Addltem("ltem 2", 1)
lv_1.Addltem("ltem 3", 1)

Adding overlay pictures Use the SetOverLayPicture function to use alarge
picture or small picture as an overlay for an item. This example adds alarge
picture to a ListView, and then usesit for an overlay picture for aListView
item:

listviewiteml|lvi_1

int |i_index

//Add a large picture to a ListView
li_index = Iv_Ilist.AddLargePicture &
("c:\VArtGal \ bnps\dil 2.ico")

/1Set the overlay picture to the
/11 arge picture just added
lv_list.SetOverlayPicture (1, |i_index)

//Use the overlay picture with a ListViewtem
lv_ list.Getlten(lv_list.Selectedlndex (), lvi_1)
lvi_1.OverlayPicturelndex =1
lv_list.Setltenm(lv_list.Selectedl ndex (), lvi_1)

Adding state pictures Thisexample uses an item’s state picture index
property to set the state picture for the selected ListView item:

listviewitemI|lvi_1
Iv_list.Getlten{lv_list.Selectedlndex (), lvi_1)

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Deleting ListView
items and pictures

Ivi_1.StatePicturelndex = 2
Iv list.Setltem(Iv_list.Selectedl ndex (), Ivi_1)

You can delete items from a ListView one at atime with the Deleteltem
function, or you can use the Deleteltems function to purge all theitemsin a
ListView. Similarly, you can delete pictures one at atime with the
DeleteLargePicture, DeleteSmallPicture, and DeleteStatePicture functions, or
purge al pictures of a specific type by using the DeleteLargePictures,
DeleteSmallPictures, and DeleteStatePictures functions.

This example deletes one item and all the small picturesfrom aListView:

int |i_index

i _index = This. Sel ect edl ndex()
This. Del eteltem (li_index)

Thi s. Del eteSnal | Pi ctures ()

Using report view

Populating columns

Setting columns

Setting column items

Resource Guide

ListView report view requires moreinformation than thelargeicon, small icon,
and list view. To enable report view in aListView control, you must write a
script that establishes columns with the AddColumn and SetColumn functions,
and then populate the columns using the Setitem function.

Use AddColumn to create columnsin aListView. When you use the AddColumn
function, you specify the:

e Column label The name that will display in the column header

« Column alignment Whether the text will be left-aligned, right-aligned,
or centered

e Column size Thewidth of the column in PowerBuilder units
This example creates three columnsin aListView:

Thi s. AddCol um(" Nane", Left!, 1000)
Thi s. AddCol um(" Si ze", Left!, 400)
Thi s. AddCol um("Date", Left!, 300)

Use SetColumn to set the column number, name, alignment, and size:

Thi s. Set Col um (1, "Conposition", Left!, 860)
Thi s. Set Col um (2, "Al bunt, Left!, 610)
Thi s. Set Col um (3, "Artist", Left!, 710")

Use Setltem to populate the columns of a ListView:
This.Setltem (1, 1, "St.Thomas")

77

Using TreeView controls

This. Setltem (1, 2, "Saxophone Col ossus")
This. Setltem (1, 3, "Sonny Rollins")
This.Setltem (2, 1, "So Wat")

This.Setltem (2, 2, "Kind of Blue")
This.Setltem (2, 3, "Ml es Davis")

This. Setltem (3, 1, "Good-bye, Porkpie Hat")
This. Setltem (3, 2, "M ngus-ah-unt)

This. Setltem (3, 3, "Charles M ngus")

Using TreeView controls

When to use a
TreeView

78

TreeView controls provide away to represent hierarchical relationshipswithin
alist. The TreeView providesastandard interface for expanding and collapsing
branches of ahierarchy:

Figure 6-2: TreeView control with pictures

B2 Bach
-8 A Musical Offering
F Galdbery Variations

------ B The Art of the Fugue
E-Z¢* Bartok

E-2¢* Beethoven

2-4% Chamber Music

- C#m String Quartet, op. 131
-Z8 Diabelli Yariations

38 Kreutzer Sonata

=48 Overture

. 3 Leonore #1

You use TreeViews in windows and custom visual user objects. Choose a
TreeView instead of aListBox or ListView when your information is more
complex than alist of similar items and when levels of information have a
one-to-many relationship. Choose a TreeView instead of a DatawWindow
control when your user will want to expand and collapse the list using the
standard TreeView interface.

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Hierarchy of items

Number of levels in
each branch

Content sources for a
TreeView

Resource Guide

Although itemsin a TreeView can be asingle, flat list like the report view of a
ListView, you tap the power of a TreeView when items have a one-to-many
relationship two or more levels deep. For example, your list might have one or
several parent categories with child items within each category, or the list
might have several level s of subcategories before getting to the end of abranch
in the hierarchy:

Root
Category 1
Subcat egory 1la
Det ai |
Det ai |
Subcategory 1b
Det ai |
Det ai |
Cat egory 2
Subcat egory 2a
Det ai |

You do not have to have the same number of levelsin every branch of the
hierarchy if your datarequires morelevels of categorization in some branches.
However, programming for the TreeView issimpler if theitems at a particular
level arethe sametype of item, rather than subcategoriesin some branches and
detall itemsin others.

For example, in scripts you might test the level of an item to determine
appropriate actions. You can call the SetLevelPictures function to set pictures
for all theitems at a particular level.

For most of the list typesin PocketBuilder, you can add itemsin the painter or
in ascript, but for a TreeView, you have to write a script. Generally, you will
populatethefirst level (theroot level) of the TreeView when itswindow opens.
When the user wantsto view abranch, ascript for the TreeView's ItemPopul ate
event can add items at the next levels.

Thedatafor itemscan be hard-coded in the script, but it ismorelikely that you
will usethe user’sown input or adatabase for the TreeView's content. Because
of the one-to-many relationship of anitem to its child items, you might use
severa tablesin adatabase to populate the TreeView.

For an example using DataStores, see “ Using DatawWindow information to
populate a TreeView” on page 97.

79

Using TreeView controls

Pictures for items Pictures are associated with individual itemsin a TreeView. You identify
pictures you want to use in the control’s picture lists and then associate the
index of the picture with an item. Generally, pictures are not unique for each
item. Pictures provide away to categorize or mark itemswithinalevel. Tohelp
the user understand the data, you might:

e Useadifferent picture for each level

e Usesevera pictureswithin alevel to identify different types of items
e Usepictureson some levels only

e Change the picture after the user clicks on an item

Pictures are not required You do not have to use picturesif they do not
convey useful information to the user. Item labels and the levels of the
hierarchy might provide all the information the user needs.

Appearance of the You can control the appearance of the TreeView by setting property values.
TreeView Properties that affect the overall appearance are shown in Table 6-4.
Table 6-4: TreeView properties
Properties Effect when set
HasButtons Puts + and - buttons before items that have children, showing
the user whether the item is expanded or collapsed (use with
HasLines)
HasLines and Displays lines connecting items within a branch and
LinesAtRoot connecting items at the root level
SingleExpand Expands the selected item and collapses the previously
selected item automatically
Indent Sets the amount an item isindented
Font properties Specifies the font for al the labels
Various picture Controls the pictures and their size
properties

For more information about these properties, see the online Help.

User interaction Basic TreeView functionality allows users to edit labels, delete items, expand
and collapse branches, and sort alphabetically, without any scripting on your
part. For example, the user can click a second time on aselected item to edit it,
or press the Delete key to delete an item. If you do not want to allow these
actions, properties let you disable them.

You can customize any of these basic actions by writing scripts. Events
associated with the basic actions|l et you provide validation or prevent an action
from completing. You can also implement other features such as adding items,
dragging items, and performing customized sorting.

80 PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Populating TreeViews

You must writeascript to add itemsto aTreeView. You cannot add itemsin the
painter as with other list controls. Although you can populate all the levels of
the TreeView at once, TreeView events allow you to populate only branches
the user looks at, which saves unnecessary processing.

Typically, you populate the first level of the TreeView when the control is
displayed. Thiscode might bein awindow’s Open event, auser event triggered
from the Open event, or the TreeView's Constructor event. Then ascript for the
control’s ItemPopul ate event would insert an item’s children when the user
chooses to expand it.

The ItemPopul ate event is triggered when the user clicks on an item’s plus
button or double-clickstheitem, but only if theitem’s Children property istrue.
Therefore, when you insert an item that will have children, you must set its
Children property to true so that it can be populated with child items when the
user expandsiit.

You are not restricted to adding itemsin the ItemPopul ate event. For example,
you might let the user insert items by dragging from a ListBox or fillingin a
text box.

Functions for inserting items

Method 1: specifying
the label and picture
index only

Resource Guide

There are several functions for adding itemsto a TreeView control, as shown
in Table 6-5.

Table 6-5: Functions for adding items to TreeView control
This function | Adds an item here

Insertitem After asibling item for the specified parent. If no siblings exist,
you must use one of the other insertion functions.

InsertitemFirst | First child of the parent item.
InsertitemLast | Last child of the parent item.
InsertitemSort | Asachild of the parent item in alphabetic order, if possible.

For all the Insertitem functions, the SortType property can also affect the
position of the added item.

There are two ways to supply information about the item you add, depending
on the item properties that need to be set.

You can add an item by supplying the picture index and label. All the other
properties of the item will have default values. You can set additional
properties later as needed, using the item’s handle.

81

Using TreeView controls

Method 2: setting item
properties in a
TreeViewltem
structure

82

Example Thisexampleinsertsanew item after the currently selected itemon
the same level asthat item. First it gets the handles of the currently selected
item and its parent, and then it inserts an item labeled Hindemith after the
currently selected item. Theitem’s picture index is 2:

long Il _tvi,
Il
Il

I'l _tvparent
_tvi = tv_list.Findlten(CurrentTreelten, 0)

_tvparent tv_list.Findlten(ParentTreeltem, &
Il _tvi)
tv_list.Insertlitem(I| _tvparent, Il _tvi, &

"H ndenith", 2)

You can add items by supplying a TreeViewltem structure with properties set
to specific values. The only required property is alabel. Properties you might
set are shown in Table 6-6.

Table 6-6: TreeViewltem properties

Property Value

Label Thetext that is displayed for the item.

Picturel ndex A value from the regular picture list.

SelectedPicturelndex | A value from the regular picture list, specifying a picture
that is displayed only when the item is selected. If 0, no
pictureis displayed for the item when selected.

StatePicturel ndex A value from the State picture list. The picture is displayed
to the left of the regular picture.

Children Must be true if you want double-clicking to trigger the
ItemPopulate event. That event script caninsert child items.

Data An optional value of any datatype that you want to associate

with the item. You might use the value to control sorting or
to make a database query.

Example Thisexample setsall these propertiesin a TreeViewltem structure
before adding the item to the TreeView control. Theitem isinserted asa child

of the current item:

treeviewitemtvi
long h_item= 0, h_parent =0

h_parent = tv_1.Findltem(CurrentTreeltem , 0)

tvi.Label = "Choral"
tvi.Picturelndex =1
tvi.Sel ectedPi cturelndex = 2

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

tvi.Children = true
tvi.StatePicturelndex = 0

h_item=tv_1.InsertltenSort(h_parent, tvi)

Inserting items at the root level

Resource Guide

Thevery firstitem you insert does not have any sibling for specifying arelative
position, so you cannot usethe Insertitem function. You must use InsertitemFirst
or InsertitemLast. For an item inserted at the root level, you specify 0 asits
parent.

This sample codeisin a user event triggered from the Open event of the
window containing the TreeView. It assumes two instance variable arrays:

e A string array called item_label that contains labels for al the items that
will beinserted at the root level (here, composer names)

* Aninteger array that hasvaluesfor the Data property (the century for each
composer); the century valueis for user-defined sorting:

int ct
long h_item=0
treeviewitemtvi

FOR ct = 1 TO UpperBound(item | abel)
tvi.Label = itemlabel[ct]
tvi.Data = itemdatafct]
tvi.Picturelndex =1
tvi.Sel ectedPi cturel ndex = 2
tvi.Children = TRUE
tvi.StatePicturelndex = 0
tvi.DropHi ghlighted = TRUE

h_item=tv_1.InsertltenSort(0, tvi)
NEXT

After inserting all the items, this code scrollsthe TreeView back to the top and
makes the first item current:

/1 Scroll back to top

h_item= tv_1.Findlten{RootTreeltem , 0)
tv_1.SetFirstVisible(h_item
tv_1.Selectltemh_item

83

Using TreeView controls

Inserting items below the root level

84

Thefirst time a user tries to expand an item to see its children, PocketBuilder
triggers the ItemPopul ate event if and only if the value of theitem’s Children
property istrue. In the ItemPopul ate event, you can add child itemsfor theitem
being expanded.

Parent item’s Children property
If the ItemPopulate event does not occur when you expect, make sure the

Children property for the expanding item istrue. It should be set to true for any
item that will have children.

Inserting items not restricted to the ItemPopulate event The
ItemPopul ate event helps you design an efficient program. It will not popul ate
an item that the user never looks at. However, you do not have to wait until the
user wantsto view an item’s children. You can add children in any script, just
asyou added items at the root level.

For example, you might fully populate a small TreeView when its window
opens and use the ExpandAll function to display its items fully expanded.

Has an item been populated? You can check an item’s ExpandedOnce
property to find out if the user has looked at the item’s children. If the user is
currently looking at an item’s children, the Expanded property is also true.

Example ThisTreeView lists composers and their music organized into
categories. The script for itsItemPopul ate event checks whether theitem being
expanded is at level 1 (acomposer) or level 2 (acategory). Level 3itemsare
not expandable.

For alevel 1 item, the script adds three standard categories. For alevel 2 item,
it adds pieces of music to the category being expanded, in this pattern:

Mozart
Orchestral
Synphony No. 33
Overture to the Magic Flute
Chanber
Quintet in Eb for Horn and Strings
Ei ne Kl ei ne Nacht nusi k
Vocal
Don G ovanni
| doneneo

Thisisthe script for ItemPopul ate;

TreeViemtemtvi _current, tvi_child, tvi_root

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

| ong hdl _root
I nteger ct
string categ[]

/1 The current itemis the parent for the newitens
This. Getlten{handl e, tvi_current)

IF tvi_current.Level = 1 THEN
/1 Populate level 2 with sone standard categories

categ[1l] = "Orchestral"
categ[2] = "Chanber"
categ[3] = "Vocal "

tvi_child. StatePicturelndex = 0
tvi_child.Picturelndex = 3

tvi _child. Sel ect edPi cturel ndex = 4
tvi_child.OverlayPicturelndex = 0
tvi_child.Children = TRUE

FOR ct = 1 to Upper Bound(cat eg)
tvi _child. Label = categ[ct]
Thi s. InsertltenLast(handl e, tvi_child)
NEXT
END | F

/1 Populate level 3 with nmusic titles

IF tvi_current.Level = 2 THEN
/1 CGet parent of current item- it's the root of
/1 this branch and is part of the key for choosing
/1 the children

hdl _root = This.Findltenm ParentTreeltenl, handle)
This. Getltem(hdl _root, tvi_root)

FORct = 1to 4
/1 This statement constructs a |abel -
/1 it is nore realistic to look up data in a
/1 table or database or accept user input
This.InsertltenLast(handle, &
tvi_root.Label + " Misic " &
+ tvi_current. Label + String(ct), 3)

NEXT

END | F

Resource Guide 85

Using TreeView controls

Managing TreeView items

Procedure for items:
get, change, and set

86

AniteminaTreeView isa TreeViewltem structure. The preceding section
described how to set theitem’s propertiesin the structure and then insert it into
the TreeView.

This code declares a TreeViewltem structure and sets several properties:

TreeView tem tvi _defined

tvi _defined. Label = "Synphony No. 3 Eroica"
tvi _defined. StatePicturelndex = 0

tvi _defined. Picturelndex = 3

tvi _defined. Sel ect edPi cturel ndex = 4

tvi _defined. Overl ayPi cturel ndex = 0

tvi _defined. Children = TRUE

For information about Picture properties, see “Managing TreeView pictures”
on page 94.

When you insert an item, the inserting function returns a handle to that item.
The TreeViewltem structure is copied to the TreeView control, and you no
longer have access to the item’s properties:

itenmhandl e = This.InsertltenlLast(parenthandle, &
tvi _defi ned)

If you want to change the properties of an item in the TreeView, you:
1 Gettheitem, which assignsit to a TreeViewltem structure.

2 Make the changes, by setting TreeViewltem properties.

3 Settheitem, which copiesit back into the TreeView.

When you work with items that have been inserted in the TreeView, you work
with item handles. Most TreeView events pass one or two handles as
arguments. The handles identify the items the user is interacting with.

This code for the Clicked event uses the handle of the clicked item to copy it
into a TreeViewltem structure whose property values you can change:

treeviewitemtvi

This. Getltem handl e, tvi)
tvi.OverlayPicturelndex = 1
This. Setltem handl e, tvi)

Important
Remember to call the Setitem function after you change an item’s property

value. Otherwise, nothing happensin the TreeView.

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Items and the
hierarchy

Enabling TreeView
functionality in scripts

Deleting items

Example

Resource Guide

You can use item handles with the Findltem function to navigate the TreeView
and uncover itsstructure. Theitem'spropertiestell you what itslevel is, but not
which item isits parent. The Findltem function does:

| ong h_parent
h_parent = This.Findltem ParentTreeltem , handle)

You can use Finditem to find the children of an item or to navigate through
visible items regardless of level.

For more information, see the Finditem function in the online Help.

By setting TreeView properties, you can enable or disable user actions like
deleting or renaming items without writing any scripts. You can also enable
these actions by calling functions. You can:

* Deleteitems
* Renameitems
* Moveitemsusing drag and drop

 Sortitems

To alow the user to delete items, enable the TreeView’s Del eteltems property.
When the user presses the Delete key, the selected item is deleted and the
Deleteltem event is triggered. Any children are deleted too.

If you want more control over deleting, such as allowing deleting of detall
items only, you can call the Deleteltem function instead of setting the property.
The function also triggers the Deleteltem event.

Thisscriptisfor aTreeView user event. Itsevent ID ispbm_keydown anditis
triggered by key presses when the TreeView has focus. The script checks
whether the Delete key is pressed and whether the selected item is at the detail
level. If both aretrue, it deletes the item.

Thevalue of the TreeView's Deleteltems property isfalse. Otherwise, the user
can delete any item, despite this code:

TreeViewltemtvi
long h_item

| F KeyDown(KeyDel ete!') = TRUE THEN
h_item= This.Findlten(CurrentTreelten, O0)
This.Getltemh_item tvi)

87

Using TreeView controls

Renaming items

Events

EditLabel function

88

IF tvi.Level = 3 THEN
This.Deleteltemh_item
END | F
END | F
RETURN O

If you enable the TreeView’s EditL abels property, the user can edit an item
label by clicking twice on the text.

There are two events associated with editing labels.

The BeginLabel Edit event occurs after the second click when the EditL abels
property is set or when the EditLabel function is called. You can disallow
editing with areturn value of 1.

This script for BeginLabel Edit prevents changesto labels of level 2 items:

TreeView tem tvi

This. Getltem handl e, tvi)
IF tvi.Level = 2 THEN
RETURN 1
ELSE
RETURN O
END I F

The EndL abel Edit event occurs when the user finishes editing by pressing
ENTER, clicking on another item, or clicking in the text entry area of another
control. A script you writefor the EndL abel Edit event might validate the user’s
changes—for example, it could invoke a spelling checker.

For control over label editing, the BeginL abel Edit event can prohibit editing of
alabel, as shown above. Alternatively, you can set the EditL abels property to
false and call the EditLabel function when you want to allow alabel to be edited.

When you call the EditLabel function, the BeginL abel Edit event occurs when
editing begins and the EndL abel Edit event occurs when the user presses enter
or clicks another item.

This code for a CommandButton puts the current item into editing mode:

long h_tvi
h tvi =tv_1.findltemCurrentTreeltem,
tv_1. Edi tLabel (h_tvi)

0)

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Moving items using drag and drop

Example

Resource Guide

At the window level, PocketBuilder provides functions and properties for
dragging controlsonto other controls. Within the TreeView, you can also let the
user drag items onto other items. Users might drag items to sort them, move
them to another branch, or put child items under a parent.

Platform notes o]
Actions that require an application user to drag a control should be avoided

since these actions are not very practical for users of handheld devices.
Although you can script callsto drag events on Smartphone platforms, controls
cannot be moved with a mouse or stylus, and the user has no direct way of
dragging a control.

When you implement drag and drop as away to move items, you decide
whether the dragged item becomes a sibling or child of the target, whether the
dragged item is moved or copied, and whether its children get moved with it.

There are several properties and events that you need to coordinate to
implement drag and drop for items, as shown in Table 6-7.

Table 6-7: Drag-and-drop properties and events

Property or event | Setting or purpose

DragAuto property | True or false. If false, you must call the Drag function in the
BeginDrag event.

DisableDragDrop False.

property
Draglcon property An appropriateicon, or None!, which meansthe user dragsan
image of theitem.

BeginDrag event Script for saving the handle of the dragged item and
optionally preventing particular items from being dragged.

DragWithin event Script for highlighting drop targets.
DragDrop event Script for implementing the result of the drag operation.

The key to a successful drag-and-drop implementation isin the details. This
section illustrates one way of moving items. In the example, the dragged item
becomes a sibling of the drop target, inserted after it. All children of the item
are moved with it, and the original item is deleted.

A function called recursively moves the children, regardless of the number of
levels. To prevent an endless|oop, anitem cannot become achild of itself. This
means a drop target that is a child of the dragged item is not allowed.

89

Using TreeView controls

90

BeginDrag event The script saves the handle of the dragged itemin an
instance variable:

Il _dragged_tvi _handl e = handl e

If you want to prevent some items from being dragged—such asitemsat a
particular level—that code goes here too:

TreeView temtvi
This. Getltenm(handle, tvi)
IF tvi.Level = 3 THEN Thi s. Drag(Cancel!)

DragWithin event The script highlightstheitem under the cursor so the user
can see each potential drop target. If only some items are drop targets, your
script should check an item’s characteristics before highlighting it. In this
example, you can check whether an item is a parent of the dragged item and
highlight it only if it is not:

TreeView tem tvi

This. Getltem handl e, tvi)
tvi.DropHi ghlighted = TRUE
This. Setltem handl e, tvi)

DragDrop event Thisscript doesall thework. It checkswhether theitem can
be inserted at the selected location and inserts the dragged item in its new
position—asibling after the drop target. Then it callsafunction that movesthe
children of the dragged item too:

TreeViemtemtvi_src, tvi_child
Il ong h_parent, h_gparent, h_noved, h_child
integer rtn

/1l Get TreeViewitemfor dragged item
This. Getltem(I | _dragged_tvi_handl e, tvi_src)

// Don't allow noving an iteminto its own branch,
/!l that is, a child of itself
h_gparent = This.Findltenm ParentTreeltenl, handle)

DO WH LE h_gparent <> -1
| F h_gparent = Il _dragged_tvi _handl e THEN
MessageBox("No Drag", &
"Can't nmake an itema child of itself.")
RETURN O
END I F
h_gparent =Thi s. Fi ndl t em(Parent Treel teml , h_gparent)
LooP

/1l Get itemparent for inserting

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide

h_parent = This.Findltenm ParentTreeltem , handle)
/1l Use 0 if no parent because target is at level 1
IF h_parent = -1 THEN h_parent = 0

/1 Insert itemafter drop target
h_noved = This.Insertlten(h_parent, handle, tvi_src)
IF h_nmoved = -1 THEN
MessageBox(" No Draggi ng", "Could not nove item")
RETURN 0

ELSE
/1 Args: old parent, new parent
rtn = uf _novechildren(ll _dragged_tvi _handle, &
h_noved)

/ 1f all children are successfully noved,
/1 delete original item

IF rtn = 0 THEN
This. Del eteltem(l 1 _dragged_tvi _handl e)
END | F
END | F

The DragDrop event script shown above calls the function uf_movechildren.
Thefunction callsitself recursively so that all the levels of children below the
dragged item are moved:

/1 Function: uf_novechildren

/1 Argunents:

/1 ol dparent - Handle of itemwhose children are
/1 being noved. Initially, the dragged itemin its
/1 original position

I

/1 newparent - Handle of itemto whomchildren are
/1 being noved. Initially, the dragged itemin its
/1l new position.

I ong h_child, h_novedchild
TreeView tem tvi

/1 Return -1 if any Insert action fails
/1l Are there any children?
h_child = tv_2. Findlten(ChildTreeltem , ol dparent)

IF h_child <> -1 THEN
tv_2.Getltem(h_child, tvi)

91

Using TreeView controls

Sorting items

92

h_novedchild = tv_2.Insertltenlast (newparent, tvi)
I F h_nmovedchild = -1 THEN RETURN -1

/1 NMove the children of the child that was found
uf _novechi I dren(h_child, h_novedchil d)

/1 Check for nore children at the original |evel
h_child = tv_2. Findlten(NextTreeltem , h_child)
DO WHI LE h_child <> -1
tv_2.Getltenm(h_child, tvi)
h_nmovedchi | d= tv_2. I nsertltenlLast(newparent,tvi)
I F h_novedchild = -1 THEN RETURN -1
uf _novechil dren(h_child, h_novedchild)

/1 Any nore children at original |evel?
h_child = tv_2. FindltenmNext Treeltem , h_child)
LooP
END I F
RETURN O // Success, all children noved

A TreeView can sort items automatically, or you can control sorting manually.
Manual sorting can be aphabetic by label text, or you can implement a
user-defined sort to define your own criteria. The SortType property controls
the way items are sorted. Its values are of the enumerated datatype grSortType.

Automatic alphabetic sorting To enable sorting by the text label, set the
SortType property to Ascending! or Descending!. Inserted items are sorted
automatically.

Manual alphabetic sorting For more control over sorting, you can set
SortType to Unsorted! and sort by calling the functionsin Table 6-8.

Table 6-8: TreeView sorting functions

Use this function | To do this

InsertitemSort Insert an item at the correct alphabetic position, if possible
Sort Sort the immediate children of an item

SortAll Sort the whole branch below an item

If userswill drag items to organize the list, you should disable sorting.

Sorting by other criteria To sort items by criteria other than their labels,
implement a user-defined sort by setting the SortType property to
UserDefinedSort! and writing a script for the Sort event. The script specifies
how to sort items.

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Example of Sort event

Resource Guide

PocketBuilder triggers the Sort event for each pair of items it tries to reorder.
The Sort script returns a value reporting which item is greater than the other.
The script can have different rules for sorting, based on the type of item. For
example, level 2 items can be sorted differently from level 3. The TreeView is
sorted whenever you insert an item.

Thissample script for the Sort event sortsthefirst level by thevalue of the Data
property and other levels alphabetically by their labels. Thefirst level displays
composers chronologically, and the Data property contains an integer
identifying a composer’s century:

/'l Return val ues

/-1 Handl el is | ess than handl e2

/1 0 Handl el is equal to handl e2
/11 Handl el is greater than handl e2

TreeViewltemtvil, tvi2

Thi s. Getlten(handl el, tvil)
Thi s. Getlten{handl e2, tvi?2)

IF tvil. Level = 1 THEN
/1 Compare century values stored in Data property
IF tvil.data > tvi 2. Data THEN
RETURN 1
ELSEIF tvi l.data = tvi 2. Data THEN
RETURN 0
ELSE
RETURN -1
END | F
ELSE
/1 Sort other levels in al pha order
IF tvil. Label > tvi2.Label THEN
RETURN 1
ELSEIF tvil. Label = tvi2.Label THEN
RETURN 0
ELSE
RETURN -1
END | F
END | F

93

Using TreeView controls

Managing TreeView pictures

Pictures for items

94

PocketBuilder stores TreeView imagesin three image lists:
e Picturelist (called theregular picturelist here)

e Satepicturelist

e Overlay picturelist

You add pictures to these lists and associate them with items in the TreeView.

There are several waysto use picturesin a TreeView. You associate a picture
in one of the picture lists with an item by setting one of the item’s picture
properties, described in Table 6-9.

Table 6-9: TreeView picture properties

Property Purpose

Picturel ndex The primary picture associated with the item is displayed
just to the left of the item’s label.

StatePicturel ndex A state picture is displayed to theleft of the regular picture.

The item moves to the right to make room for the state
picture. If the Checkboxes property istrue, the state picture
isreplaced by apair of check boxes.

Because a state picture takes up room, items without state
pictureswill not align with items that have pictures. So that
al itemshave astate picture and stay aligned, you can use a
blank state picture for items that do not have a state to be
displayed.

A use for state pictures might be to display a check mark
beside items the user has chosen.

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Property Purpose
OverlayPicturelndex | Anoverlay pictureis displayed on top of an item’s regular
picture.

You set up the overlay picture list in ascript by designating
apicturein the regular picture list for the overlay picture
list.

An overlay pictureisthe same size asaregular picture, but
it often usesasmall portion of theimage space so that it only
partially coverstheregular picture. A typical use of overlay
picturesisthe arrow marking shortcut itemsin the Windows
Explorer.

SelectedPicturelndex | A picture from the regular picture list that isdisplayed in
place of the regular picture when the item is the current
item. When the user selects another item, the first item gets
itsregular picture and the new item displays its selected
picture.

If you do not want a different picture when anitemis
current, set SelectedPicturelndex to the same value as
Picturel ndex.

How to set pictures You can changethe picturesfor all itemsat a particular
level with the SetLevelPictures function, or you can set the picture properties
for an individual item.

If you do not want pictures Your TreeView doesnot haveto usepicturesfor
items. If an item’s picture indexes are 0, no pictures are displayed. However,
the TreeView always leaves room for the regular picture.

You can set the PictureWidth property to 0 to eliminate that space:

tv_2. Del et ePictures()
tv_2.PicturewWdth = 0

Setting up picture lists

Mask color

Resource Guide

You can add pictures to the regular and state picture lists in the painter or at
runtime. At runtime, you can assign pictures in the regular picture list to the
overlay list.

Themask color isacolor used in the picture that becomestransparent when the
pictureisdisplayed. Usually you should pick the picture’s background color so
that the picture blends with the color of the TreeView.

95

Using TreeView controls

Image size

Example

How picture deletion
affects existing items

96

Before you add apicture, inthe painter or in ascript, you can set the mask col or
to a color appropriate for that picture. This statement sets the mask color to
white, which isright for a picture with a white background:

tv_1. Pi ctureMaskCol or = RGB(255, 255, 255)

Each picture can have its own mask color. A picture uses the color that isin
effect when the picture isinserted. To change a picture’s mask color, you have
to delete the picture and add it again.

In the painter you can change the image size at any time by setting the Height
and Width properties on each picturetab. All the picturesin thelist are scaled
to the specified size.

At runtime, you can change the image size for a picture list only when that list
isempty. The DeletePictures and DeleteStatePictures functions et you clear the
lists.

This sample code illustrates how to change properties and add picturesto the
regular picturelist at runtime. Use similar code for state pictures:

tv_list.DeletePictures()
tv_list.PictureHeight = 32
tv_list.PicturewWdth = 32

tv_list.PictureMaskCol or = RGB(255, 255, 255)
tv_list.AddPicture("c:\apps_pb\kelly.bnmp")

tv_list.PictureMaskCol or = RGB(255,0, 0)
tv_list.AddPicture("CustonD78!")
tv_list.PictureMaskCol or = RGB(128, 128, 128)
tv_list.AddPicture("CustonD44!")

Deleting pictures from the picture lists can have an unintended effect on item
pictures being displayed. When you delete pictures, the remaining picturesin
thelist are shifted to remove gapsin the list. The remaining pictures get a

different index value. This means itemsthat use these indexes get new images.

Deleting picturesfrom the regular picturelist also affectsthe overlay list, since
the overlay list is not a separate list but points to the regular pictures.

To avoid unintentional changes to item pictures, it is best to avoid deleting
pictures after you have begun using picture indexes for items.

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Using overlay pictures

The picturesin the overlay list come from the regular picture list. First you
must add picturesto theregular list, either in the painter or at runtime. Then, at
runtime, you specify pictures for the overlay picture list. After that you can
assign an overlay pictureto items, either individually or with the
SetLevelPictures function.

This code adds a picture to the regular picture list and then assignsit to the
overlay list:

i nteger idx

idx = tv_1. AddPi cture("CustonD85!")

IF tv_1.SetOverlayPicture(l, idx) <> 1 THEN
sle_get. Text = "Setting overlay picture fail ed"

END I F

Thiscodefor the Clicked event turnsthe overlay picture on or off each timethe
user clicks an item:

treeview temtvi
This. Getlten(handl e, tvi)

I F tvi.OverlayPicturelndex = 0 THEN
tvi.OverlayPicturelndex =1

ELSE
tvi.OverlayPicturelndex = 0

END I F

Thi s. Setlten(handl e, tvi)

Using DataWindow information to populate a TreeView

Resource Guide

A useful implementation of the TreeView control isto populate it with
information that you retrieve from a Datawindow. To do this, your application
must:

e Declare and instantiate a DataStore and assign a Datawindow object
* Retrieveinformation as needed

e Usetheretrieved information to populate the TreeView

e Destroy the DataStore instance when you have finished

Because a TreeView can display different types of information at different
levels, you will probably define additional Datawindows, one for each level.
Those DatawWindows usually refer to different but related tables. When anitem
is expanded, the item becomes a retrieval argument for getting child items.

97

Using TreeView controls

Populating the first
level

Populating the second
level

98

This example populates a TreeView with alist of composers. The second level
of the TreeView displays music by each composer. In the database there are
two tables: composer names and music titles (with composer nameasaforeign
key).

This example declares two DataStore instance variables for the window
containing the TreeView control:
datastore ids_data, ids_info
This example uses the TreeView control’s Constructor event to:
* Instantiate the DataStore
» Associate it with a DataWindow and retrieve information
» Usetheretrieved data to populate the root level of the TreeView:

/1 Constructor event for tv_1
treeviewitemtvil, tvi2
long Il _levl, Il _lev2, Il _rowount, Il_row

//Create instance variable datastore
i ds_data = CREATE datastore

i ds_dat a. Dat aCbj ect = "d_conposers”

i ds_dat a. Set TransObj ect (SQLCA)

Il _rowcount = ids_data.Retrieve()

//Create the first |evel of the TreeView
tvil.Picturelndex =1
tvil.Children = TRUE

/1 Popul ate the TreeView with
//data retrieved fromthe datastore

FOR Il _row =1 to |l _rowcount
tvil.Label = ids_data.GetltenString(ll _row, &
' name')
This.InsertltenLast (0, tvil)

NEXT

When the user expands aroot level item, the ItemPopul ate event occurs. This
script for the event:

* |nstantiates a second DataStore

Its DataWindow uses the composer name as aretrieval argument for the
music titles table.

» Inserts music titles as child items for the selected composer

PocketBuilder

CHAPTER 6 Using Lists and Tree Views in a Window

Destroying DataStore

instances

Resource Guide

The handle argument of ItemPopulate will be the parent of the new items:

/11tenPopul ate event for tv_1
TreeViewtemtvil, tvi2
long Il _row, |l _rowcount

// Create instance variabl e datastore
i ds_i nfo = CREATE dat astore

i ds_i nfo. DataCbj ect = "d_nusic"

i ds_i nfo. Set TransObj ect (SQLCA)

/1 Use the | abel of the item being popul ated
/1 as the retrieval argument

This. Getlten(handl e, tvil)

Il _rowcount = ids_info.Retrieve(tvil.Label)

//Use information retrieved fromthe database

//to popul ate the expanded item

FOR Il _row =1 to |l _rowcount
Thi s.InsertltenLast(handle, &
ids_info.GetltenString(ll _row, &
music_title), 2)

LOOP

When the window containing the TreeView control closes, this example
destroys the DataStore instances:

/1 Close event for w_ treeview
DESTROY i ds_dat a
DESTROY ids_info

99

Using TreeView controls

100 PocketBuilder

CHAPTER 7

About this chapter

Contents

Using graphs

Manipulating Graphs in Windows

This chapter describes how to write code that allows you to access and
change a graph in your application at runtime.

Topic Page
Using graphs 101
Populating a graph with data 103
Modifying graph properties 105
Accessing data properties 107

In PocketBuilder, there are two ways to display graphs:

« InaDatawindow, using data retrieved from the DatawWindow data
source

« Inagraph control in awindow or user object, using data supplied by
your application code

This chapter discusses the graph control and describes how your
application code can supply data for the graph and manipulate its
appearance.

For information about graphs in DataWindows, see Chapter 12,
“Manipulating Graphs in Datawindows,” and the online Help.

To learn about designing graphs and setting graph propertiesin the
painters, see the Users Guide.

Working with graph controls in code

Resource Guide

Graph controlsin awindow can be enabled or disabled, visible or
invisible, and can be used in drag and drop. You can aso write code that
uses events of graph controls and additional graph functions.

101

Using graphs

Properties of graph

| You can access (and optionally modify) agraph by addressing its propertiesin
controls

code at runtime. There are two kinds of graph properties:

Events of graph
controls

Functions for graph

* Properties of the graph definition itself These properties are initially
set in the painter when you create a graph. They include a graph’s type,
title, axis |abels, whether axes have major divisions, and so on.

« Properties of the data These properties are relevant only at runtime,
when data has been loaded into the graph. They include the number of
seriesin agraph (series are created at runtime), colors of bars or columns
for a series, whether the seriesis an overlay, text that identifies the
categories (categories are created at runtime), and so on.

Graph controls have the eventslisted in Table 7-1.

Table 7-1: Graph control events

Clicked DraglL eave
Constructor DragWithin
Destructor GetFocus
DoubleClicked LoseFocus
DragDrop Other
DragEnter RButtonDown

So, for example, you can write a script that isinvoked when a user clicks a
graph or drags an object on a graph (as long as the graph is enabled).

You use the PowerScript graph functionsin Table 7-2 to manipulate datain a

controls graph.
Table 7-2: PowerScript graph functions
Function Action
AddCategory Adds a category
AddData Adds a data point
AddSeries Adds a series
DeleteCategory Deletes a category
DeleteData Deletes adata point
DeleteSeries Deletes a series
ImportClipboard Copies data from the clipboard to a graph
ImportFile Copiesthe datain atext file to agraph
ImportString Copies the contents of a string to agraph
InsertCategory Inserts a category before another category
InsertData Inserts a data point before another data point in a series
InsertSeries Inserts a series before another series
102 PocketBuilder

CHAPTER 7 Manipulating Graphs in Windows

Function Action
ModifyData Changes the value of adata point
Reset Resets the graph’s data

Populating a graph with data

Using AddSeries

Using AddData

An example

Resource Guide

This section shows how you can populate an empty graph with data.
You use AddSeries to create a series. AddSeries has this syntax:
graphName.AddSeries (seriesName)

AddSeries returnsan integer that identifiesthe seriesthat was created. Thefirst
seriesis numbered 1, the second is 2, and so on. Typically you use this number
asthe first argument in other graph functions that manipulate the series.

To create a series named Stellar, code:

int SNum
SNum = gr_1. AddSeries("Stellar")

You use AddData to add data points to a specified series. AddData has this
syntax:

graphName.AddData (seriesNumber, value, categorylLabel)

Thefirst argument to AddData isthe number assigned by PocketBuilder to the
series. To add two data points to the Stellar series, whose number is stored by
the variable SNum (as shown above), code:

gr_1. AddDat a(SNum 12, "Ql") // Category is Q
gr_1. AddDat a(SNum 14, "Q@") // Category is @

Getting a series number
You can use the FindSeries function to determine the number PocketBuilder

has assigned to a series. FindSeries returns the series number. Thisis useful
when you write general-purpose functions to manipulate graphs.

Suppose you want to graph quarterly printer sales. Here is a script that
populates the graph with data:

gr_1.Reset(All!) // Resets the graph.
/] Create first series and populate with data.

103

Populating a graph with data

int SNum

SNum = gr_1. AddSeries("Stellar")

gr _1. AddDat a(SNum
gr _1. AddDat a(SNum
gr _1. Adddat a(SNum
gr _1. AddDat a(SNum

12, "QL") // Category
14, "@@") // Category
18, "@") // Category
25, "Q4") /] Category

is
is
is
is

QL.
Q.
.
.

/1 Create second series and popul ate with data.
SNum = gr _1. AddSeries("Cosmic")

/1l Use the sanme categories as for series 1 so the data
/| appears next to the series 1 data.

gr _1. AddDat a(SNum
gr _1. AddDat a(SNum
gr _1. Adddat a(SNum
gr _1. AddDat a(SNum

18, "QU")
24, " @")
38, "@")
45, " Q")

/1l Create third series and popul ate with data.
SNum = gr_1. AddSeries("Gal actic")

gr _1. AddDat a(SNum
gr _1. AddDat a(SNum
gr _1. Adddat a(SNum
gr _1. AddDat a(SNum

44, "Q")
44, " Q")
58, " Q8")
65, "Q4")

Figure 7-1shows the resulting graph.

Figure 7-1: Quarterly printer sales

™
£
a0
g
£
-
"
i ol oz o1 =
(Hons)
| W cosmic O wlacde W srsilar |

You can add, modify, and delete data in a graph in awindow through graph
functions anytime during execution.

For more information For complete information about each graph function, see the online Help.

104

PocketBuilder

CHAPTER 7 Manipulating Graphs in Windows

Modifying graph properties

When you define agraph in the Window or User Object painter, you specify its
behavior and appearance. For example, you might define a graph as a column
graph with acertain title, divideits Value axisinto four major divisions, and so
on. Each of these entries correspondsto a property of agraph. For example, all
graphs have an enumerated attribute GraphType, which specifies the type of

graph.

When dynamically changing the graph type)
If you change the graph type, be sure to change other properties as needed to

define the new graph properly.

You can change these graph properties at runtime by assigning values to the
graph’s properties in scripts. For example, to change the type of the graph
gr_emp to Column, you could code:

gr _enp. GraphType = Col G aph!
To change the title of the graph at runtime, you could code:

gr_enp.Title = "New title"

How parts of a graph are represented

Resource Guide

Graphs consist of parts: atitle, alegend, and axes. Each of these parts has a set
of display properties. These display properties are themselves stored as
properties in a subobject (structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies thetitle's text.
Graphs also have a property TitleDispAttr, of type grDispAttr, which itself
contains properties that specify al the characteristics of thetitle text, such as
the font, size, whether the text isitalicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These
properties are stored in a subobject (structure) of Graph called grAxis. For
example, graphs have a property Values of type grAxis, which contains
properties that specify the properties of the Value axis, such as whether to use
autoscaling of values, the number of major and minor divisions, the axis|abel,
and so on.

105

Modifying graph properties

Here is arepresentation of the properties of a graph:

G aph
i nt Height
int Depth
gr G aphType G aphType
bool ean Bor der
string Title

grDi spAttr TitleDispAttr, LegendDi spAttr, PieDi spAttr
string FaceNane
int TextSize
bool ean Italic

grAxi s Val ues, Category, Series
bool ean Aut oScal e
i nt Maj orDi vi si ons
int MnorDivisions
string Label

Referencing parts of a graph

106

You use dot notation to reference these display properties. For example, one of
the properties of agraph’stitle is whether the text isitalicized or not. That
information is stored in the boolean Italic property in the TitleDispAttr
property of the graph.

For example, to italicize the title of graph gr_emp, code:
gr_enp. TitleDispAttr.Iltalic = TRUE

Similarly, to turn on autoscaling of a graph’s Values axis, code:
gr_enp. Val ues. Aut oscal e = TRUE

To change the label text for the Value axis, code:
gr_enp. Val ues. Label = "New | abel "

To change the alignment of text in the Value axis's label text, code:
gr_enp. Val ues. Label Di spAttr. Alignment = Left!

For a complete list of graph properties, see the online Help for the graph
control.

PocketBuilder

CHAPTER 7 Manipulating Graphs in Windows

Accessing data properties

To access properties related to a graph’s data during execution, you use
PowerScript graph functions. The graph functions related to data fall into
severa categories:

e Functions that provide information about a graph’s data
* Functions that save data from a graph

* Functionsthat changethe color, fill patterns, and other visual properties of
data

][—iow to use the To call functions for a graph in agraph control, use the following syntax:
unctions

graphControlName.FunctionName (Arguments)

For example, to get a count of the categoriesin the window graph gr_printer,
code:

Ccount = gr_printer. CategoryCount ()

Different syntax for graphs in DataWindows
The syntax for the same functions is more complex when the graph isin a

DatawWindow, like this:

DataWindowName.FunctionName ("graphName", otherArguments...)

For more information, see Chapter 12, “Manipulating Graphsin
Datawindows.”

Getting information about the data

The PowerScript functionsin Table 7-3 alow you to get information about data
in agraph at runtime.

Table 7-3: PowerScript functions for information at runtime

Function Information provided

CategoryCount The number of categoriesin agraph

CategoryName The name of a category, given its number

DataCount The number of data pointsin a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given itsname

GetData The value of adata point, given its series and position
(superseded by GetDataValue, which is more flexible)

Resource Guide 107

Accessing data properties

Function Information provided

GetDataPieExplode The percentage of the pi€'s radius that the pie sliceisto be
moved away from the center (exploded)

GetDataStyle Thecolor, fill pattern, or other visual property of aspecified
data point

GetDataValue The vaue of adata point, given its series and position

GetSeriesStyle Thecolor, fill pattern, or other visual property of aspecified
series

SeriesCount The number of seriesin agraph

SeriesName The name of a series, given its number

Saving graph data
The PowerScript functionsin Table 7-4 allow you to save data from the graph.

Table 7-4: PowerScript functions for saving graph data

Function Action

Clipboard Copies a bitmap image of the specified graph to the
clipboard

SaveAs Savesthe datain the underlying graph to the clipboard or to

afilein one of anumber of formats

Modifying colors, fill patterns, and other data
The Power Script functionsin Table 7-5 allow you to modify the appearance of

108

datain agraph.

Table 7-5: PowerScript functions for changing appearance of data

Function

Action

ResetDataColors

Resets the color for a specific data point

SetDataPieExplode Explodes adicein apie graph

SetDataStyle Setsthe color, fill pattern, or other visual property for a
specific data point

SetSeriesStyle Setsthe color, fill pattern, or other visual property for a

serles

PocketBuilder

PART 3

Programming
DatawWindows and
DataStores

This part describes techniques for using Datawindow
objects and DataStores to implement data access features
in the applications you develop with PocketBuilder.

CHAPTER 8 About DataWindow Technology

About this chapter This chapter describes what DataWindow objects are and the ways you
can use them in various application architectures and programming
environments.

Contents Topic Page

About Datawindow objects and controls m
DatawWindow objects 112
Datawindow controls 114

About DataWindow objects and controls

Datawindow technology isimplemented in two parts:

+ A DataWindow object The DatawWindow object defines the data
source and presentation style for the data.

e A Datawindow control The DataWindow control isavisual
container for a DataWindow object. You write code that calls
methods of the container to manipulate the Datawindow object.

You can also use a DataStore object as a nonvisual container for a
Datawindow object. DataStores provide DataWindow functionality for
retrieving and manipulating data without the onscreen display. For more
information about DataStore objects, see Chapter 11, “Using DataStore
Objects.”

Resource Guide 111

DataWindow objects

DataWindow objects

A DataWindow object is an abject that you use to retrieve, present, and
manipul ate data from arelational database or other data source (such as an
Excel worksheet or dBASE fil€). You can specify whether the DataWindow
object supports updating of data.

Datawindow objects have knowledge about the data they are retrieving. You
can specify display formats, presentation styles, and other data properties to
make the data meaningful to users.

You define DataWindow objects in the DataWindow painter.

Presentation styles and data sources

Presentation styles

Data sources

112

When you define a DataWindow object, you choose a presentation style and a
data source.

A presentation style defines atypical style of report and handles how rows are
grouped on the page. You can customize the way the datais displayed in each
presentation style. Table 8-1 lists the presentation styles available.

Table 8-1: DataWindow presentation styles

Presentation style | Description

Tabular Data columns across the page and headers above each
column. Several rows are viewable at once.

Freeform Data columns going down the page with labels next to each
column. One row displayed at atime.

Grid Row-and-column format like a spreadsheet with grid lines.
Users can move borders and columns.

Group A tabular style with rows grouped under headings. Each
group can have summary fields with computed statistics.

Graph Graphical presentation of data.

For examples of the presentation styles, see the Users Guide.

The data source specifies where the data in the Datawindow comes from and
what dataitems are displayed. Data can come from tablesin adatabase, or you
can import data from afile or specify the datain code. For databases, the data
specificationissaved in a SQL statement. In all cases, the DataWindow object
saves the names of the dataitemsto display, aswell astheir data types.

PocketBuilder

CHAPTER 8 About DataWindow Technology

Basic process

Resource Guide

Table 8-2: Data sources you can use for a DataWindow

Data source Description

Quick Select The data comes from one or more tablesin a SQL database.

The tables must be related through aforeign key. You need to
choose only columns, selection criteria, and sorting.

SQL Select You want more control over the select statement that is

generated for the data source. You can specify grouping,
computed columns, and so on.

Query The data has already been selected and the SQL statement is

saved in aquery object that you have defined in the Query
painter. When you define the DatawWindow object, the query
object isincorporated into the DataWindow and does not need
to be present when you run the application.

Stored Procedure The datais defined in a database stored procedure.

External The dataisnot stored in a database, but isimported from afile

(such as atab-separated or dBASE file) or populated from
code.

Using a Datawindow involves two main steps.

1

Use the Datawindow wizard to create a Datawindow object.

In the wizard, you define the data source, presentation style, and some
properties of the object, such as display formats, validation rules, sorting
and filtering criteria, and graphs.

Use the Datawindow painter to design a Datawindow object.

In the painter, you define other properties of the object, such as display
formats, validation rules, sorting and filtering criteria, and graphs.

Put a DataWindow control in awindow or visual user object and associate
a Datawindow object with it.

It isthrough this control that your application communicates with the
Datawindow object you designed in the DataWindow painter. You write
code to manipulate the Datawindow control and the DataWindow object
it contains. A complete set of events and methods programmed in
PowerScript provides control over all aspects of the Datawindow.
Typically, your coderetrieves and updates data, changes the appearance of
the data, handles errors, and shares data between DatawWindow controls.

113

DataWindow controls

DataWindow controls

Development
environment

Database connections

114

The Datawindow control isavisual container for DataWindow objectsin a
PocketBuilder application. You can useit in awindow to present an interactive
display of data. The user can view and change data and send changes to the
database.

The Datawindow supports data retrieval with retrieval arguments and data
update. You can use edit styles, display formats, and validation rules for
consistent data entry and display. The DataWindow provides many methods
for manipul ating the Datawindow, including Modify for changing Datawindow
object properties.

You can share aresult set between several Datawindow controls and update
databases on Windows CE devices or on the desktop. Using MobiLink—a
database synchronization tool that ships with Sybase SQL Anywhere—you
can synchronize data between a client database on a Windows CE device and
a server database on the desktop.

You add DataWindow controls to windows or visual user objectsin the
Window or Visual User Object painters. The Datawindow control isin a
drop-down palette of controls on the PainterBars for these painters. After you
add the control to the window or user object, you can associate a DataWindow
object with it in the painter.

You write scripts that control the DataWindow’s behavior and manipulate the
data it retrieves. The DataWindow object associated with the control
determines what datais retrieved and how it is displayed.

You can use the Browser to examine the properties, events, and methods of
Datawindow controls on the System tab page. If you have alibrary open that
contains DataWindow objects, you can examine the internal properties of the
Datawindow object on the Browser’s DatawWindow tab page.

The Datawindow uses an SQL Anywhere ODBC database driver or an
Ultral ite database driver for database connectivity. Users can connect to adata
source on their Windows CE devices and make updates to those sources.

To make a connection, you can use the internal Transaction object of the
Datawindow, or you can make the connection with a separate transaction
object.

PocketBuilder provides a default Transaction object, SQLCA; you can define
additional Transaction objectsif you need to make additional connections.
When you connect with a separate Transaction object, you can control when
SQL coOMMIT and ROLLBACK statements occur, and you can use the same
connection for multiple controls.

PocketBuilder

CHAPTER 8 About DataWindow Technology

Coding

Libraries and
applications

Resource Guide

For moreinformation about using a Transaction object with a DataWindow, see
Chapter 9, “Using DataWindow Objects.” For more information about
Transaction objects, see Chapter 16, “Using Transaction Objects.”

You write scripts in the Window or User Object painter to connect to the
database, retrieve data, process user input, and update data.

To take advantage of object inheritance, you can define a standard visual user
object inherited from a DataWindow control and add your own customizations.
You can reuse the customized DatawWindow control in multiple applications.

You can also create a customized version of a DataStore object. You create
DataStore objects—the nonvisual version of a DataWindow control— in
scripts. For more information, see Chapter 11, “Using DataStore Objects.”

You store Datawindow objects in PocketBuilder libraries (PKL files) during
development. When you build your application, you can include the
Datawindow objectsin the application executable or in PocketBuilder
dynamic libraries (PKD files).

For more information about designing DataWindow objects and building a
PocketBuilder application, see the Users Guide.

115

DataWindow controls

116 PocketBuilder

CHAPTER 9

About this chapter

Contents

Before you begin

Using DataWindow Objects

This chapter describes how to use DatawWindow objects in an application.

Topic Page
About using DataWindow objects 117
Putting a DataWindow object into a control 118
Accessing the database 122
Importing data from an external source 128
Manipulating datain a Datawindow control 128
Accessing the properties of a DataWindow object 135
Handling Datawindow errors 136
Updating the database 141
Creating reports 144

This chapter assumesthat you know how to build DataWindow objectsin
the DataWindow painter, as described in the Users Guide.

About using DataWindow objects

Building DataWindow
objects

Managing DataWindow
objects

Resource Guide

Before you can use a Datawindow object in an application, you need to
build it. PocketBuilder has separate painters for database management,
Datawindow definition, and library management.

You defineand edit aDatawWindow object in the Datawindow painter. You
specify its data source and presentation style, then enhance the object by
specifying display formats, edit styles, and more.

Several painters let you manage and package your DatawWindow objects
for use in applications.

In particular, you can maintain Datawindow objectsin one or more
libraries (PKL files). When you are ready to useyour DataWindow objects
in applications, you can package them in more compact runtime libraries
(PKD files).

117

Putting a DataWindow object into a control

Using DataWindow
objects

After you build a Datawindow object in the Datawindow painter, you can use
it to display and process information from the appropriate data source. The
sections that follow explore the details of how to do this.

Putting a DataWindow object into a control

The Datawindow control is a container for DataWindow objectsin an
application. It provides properties, methods, and events for manipulating the
data and appearance of the DataWindow object. The Datawindow control is
part of the user interface of your application.

You also use Datawindow objects in the nonvisual DataStore and in
drop-down Datawindows. For more information about DataStores, see
Chapter 11, “Using DataStore Objects.” For more information about
drop-down DataWindows, see the Users Guide.

This section has information about:
* Namesfor Datawindow controls and DataWindow objects

* Procedures for working with Datawindow controls at design time:

Inserting a DataWindow control
Specifying a DataWindow object
Editing the Datawindow object in the control

» Specifying the Datawindow object at runtime

Names for DataWindow controls and DataWindow objects

118

There are two names to be aware of when you are working with a
Datawindow:

e The name of the Datawindow control
e The name of the Datawindow object associated with the control

The DataWindow control name When you place a Datawindow control in
awindow or form, it gets a default name. You should change the name to be
something meaningful for your application.

It isuseful to give the name of the control a prefix of dw_. For example, if the
Datawindow contral lists customers, you might want to name it dw_customer.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

Using the name
In code, always refer to a Datawindow by the name of the control (such as

dw_customer). Do not refer to the DataWindow object that isin the control.

The DataWindow object name Toavoid confusion, you should usedifferent
prefixes for DataWindow abjects and Datawindow controls. The prefix d_is
commonly used for Datawindow objects. For example, if the name of the
Datawindow control is dw_customer, you might want to name the
corresponding DataWindow object d_customer.

Working with the DatawWindow control in PocketBuilder

Inserting a To use the Datawindow object in an application, you add a Datawindow
Datawindow control control to awindow, then associate that control with the DataWindow object.

Figure 9-1: DataWindow control before association with an object

= (Untitled) * (barcode_mk2) inherited from wrin... E‘@Jg|

—
=] Lavout [=]
; = A
v
< >
Lavout4opensEvent LizthFunction ListhDeclare Instance Yariables

0 To place a DatawWindow control in a window or custom visual user
object:

1 Openthewindow or user object that will contain the DataWindow control.

2 Select Insert>Control>DataWindow from the menu bar.

Resource Guide 119

Putting a DataWindow object into a control

Specifying a
DataWindow object

Defining reusable
DataWindow controls

Editing the
DataWindow object in
the control

120

3 Click where you want the control to display.
PocketBuilder places an empty Datawindow control in the window.

4 (Optional) Resize the Datawindow control by selecting it and dragging
one of the handles, or changing its position properties on the Other page
of the Properties view.

After placing the Datawindow control, you associate a Datawindow object
with the control.
To associate a Datawindow object with the control:

1 Inthe Datawindow Properties view, click the Browse button for the
DataObject property.

2 Select the Datawindow object that you want to place in the control and
click OK.

The name of the DataWindow object displaysin the DataObject box inthe
Datawindow Properties view.

3 (Optional) Change the properties of the DatawWindow control as needed.

Allowing users to move DataWindow controls)
If you want users to be able to move a DataWindow control at runtime,

giveit atitle and select the Title Bar check box. Then users can move the
control by dragging the title bar.

You might want all the DatawWindow controlsin your application to have
similar appearance and behavior. For example, you might want all of them to
do the same error handling.

To be able to define these behaviors once and reuse them in each window, you
create a standard visual user object based on the DataWindow control. Define
the user object's properties and write scripts that perform the generic
processing you want, such as error handling. Then place the user object
(instead of anew DataWindow control) in the window. The Datawindow user
object has all the desired functionality predefined. You do not need to specify
it again.

For more information about creating and using user objects, seethe User's
Guide.

Once you have associated a DataWindow object with a DataWindow control in
awindow, you can go directly to the DataWindow painter to edit the associated
Datawindow object.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

O To edit an associated DatawWindow object:

* Select Modify Datawindow from the DatawWindow control's pop-up
menu.

PocketBuilder opens the associated DatawWindow object in the
Datawindow painter.

Specifying the DataWindow object at runtime

Changing the
DataWindow at
runtime

Resource Guide

When you associate a Datawindow object with acontrol in awindow, you are
setting the initial value of the DatawWindow control's DataObject property. At
runtime, this tells your application to create an instance of the DataWindow
object specified in the control's DataObject property and useit in the control.

At runtime, you change the DataWindow object associated with a DataWindow
control by setting the DataObject property to one of the DataWindow objects
built into the application.

Creating a DataWindow object at runtime
You can also create a new DatawWindow object at runtime and associate it with

acontrol. For more information, see Chapter 10, “Dynamically Changing
Datawindow Objects.”

To display the DataWindow object d_emp_hist from the library emp.pkl in the
Datawindow control dw_emp, you can code:

dw_enp. Dat athj ect = "d_enp_hist"

The Datawindow object d_emp_hist was created in the DataWindow painter
and stored in alibrary on the application search path. The control dw_emp is
contained in the window and is saved as part of the window definition.

When you change the DatawWindow object at runtime, you may need to call
setTrans Or setTransObject again. For more information, see “ Setting the
transaction object for the Datawindow control” on page 123.

121

Accessing the database

Preventing redrawing
Use the SetRedraw method to turn off redrawing in order to avoid flicker and

reduce redrawing time when you are making several changes to the properties
of an object or control. Dynamically changing the DataWindow object at
runtime implicitly turns redrawing on. To turn redrawing off again, call the
SetRedraw method every time you change the DataWindow object:

dw_enp. Dat aCbj ect = "d_enp_hist"
dw_enp. Set Redr am FALSE)

Accessing the database

122

Before you can display datain a Datawindow control, you must get the data
stored in the data source into that control. The most common way to get the
datais to access a database.

An application must perform several stepsto access a database:
1 Settheappropriate values for the transaction object.

2 Connect to the database.

3 Set thetransaction object for the DataWindow control.

4 Retrieve and update data.

5 Disconnect from the database.

This section provides instructions for setting the transaction object for a
Datawindow control and for using the DataWindow object to retrieve and
update data.

To learn more about setting values for the transaction object, connecting to the
database, and disconnecting from the database, see Chapter 16, “Using
Transaction Objects.”

PocketBuilder

CHAPTER 9 Using DataWindow Objects

Setting the transaction object for the Datawindow control

There are two ways to handle database connections and transactions for the
Datawindow control. You can use:

e Internal transaction management
e Transaction management with a separate transaction object

Thetwo methods provide different levels of control over database transactions.

If you change the DataWindow object
If you change the Datawindow object associated with a Datawindow control

at runtime, you need to call the SetTrans or SetTransObject method again.

Internal transaction management

When to use it

Resource Guide

When the DatawWindow control uses internal transaction management, it
handles connecting, disconnecting, commits, and rollbacks. It automatically
performs connects and disconnects as needed; any errors that occur cause an
automatic rollback.

Whenever the DataWindow needs to access the database (such as when a
Retrieve or Update method is executed), the Datawindow issues an internal
CONNECT statement, does the appropriate data access, then issues an internal
DISCONNECT.

If the number of available connections at your site islimited, you might want
to useinternal transaction management because connections are not held open.

Internal transaction management is appropriate in simple situations when you
aredoing pureretrieval s (such asin reporting) and do not need to hold database
locks—when application control over committing or rolling back transactions
isnot an issue.

Do not useinternal transaction management when:
* Your application requires the best possible performance

Internal transaction management is slow and uses considerable system
resources because it must connect and disconnect for every database
access.

* You want control over when atransaction is committed or rolled back

Becauseinternal transaction management must disconnect after adatabase
access, any changes are always committed immediately.

123

Accessing the database

How it works

To use internal transaction management, you specify connection values for a
transaction object, which could be the automatically instantiated SQLCA.
Then you call the SetTrans method, which copies the values from a specified
transaction object to the DataWindow control'sinternal transaction object.

SQLCA. DBMS = ProfileString("nyapp.ini", &
"dat abase", "ODBC', " ")
/1 Set nmore connection paraneters
dw_enpl oyee. Set Tr ans(SQLCA)
dw_enpl oyee. Retri eve()

Connecting to the database o
When you use SetTrans, you do not need to explicitly code a CONNECT or

DISCONNECT statement in ascript. CONNECT and DISCONNECT statements
are automatically issued when needed.

For more information about transaction objects, see Chapter 16, “Using
Transaction Objects.”

Transaction management with a separate transaction object

When to use it

124

When you use a separate transaction object, you control the duration of the
database transaction. Your scriptsexplicitly connect to and disconnect fromthe
database. If the transaction object’s AutoCommit property is set to false, you
also program when an update is committed or rolled back.

Typicaly, ascript for dataretrieval or update involves these statements:

Connect
SetTransObject
Retrieve or Update
Commit or Rollback
Disconnect

In PocketBuilder, you use embedded SQL for connecting and committing.

The transaction object also stores error messages returned from the database in
its properties. You can use the error information to determine whether to
commit or roll back database changes.

When the DataWindow control uses a separate transaction object, you have
more control of the database processing and are responsible for managing the
database transaction.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

How it works

Resource Guide

There are several reasons to use a separate transaction object:

* You have several Datawindow controls that connect to the same database
and you want to make one database connection for all of them, saving the
overhead of multiple connections

e Youwant to control transaction processing

e You require the improved performance provided by keeping database
connections open

The SetTransObject method associates a transaction object with the
Datawindow control. PocketBuilder has a default transaction object called
SQLCA that is automatically instantiated. You can set its connection
properties, connect, and assign it to the Datawindow contral.

The following statement uses SetTransObject to associate the DatawWindow
control dw_emp with the default transaction object (SQLCA):

/1 Set connection paraneters in the transacti on object
SQLCA. DBMS = " ODBC'

SQLCA. dat abase = ...

CONNECT USI NG SQLCA;

dw_enp. Set TransOhj ect (SQLCA)

dw_enp. Retrieve()

Instead of or in addition to using the predefined SQL CA transaction object, you
can define your own transaction object in ascript. Thisis necessary if your
application needs to connect to more than one database at the same time.

The following statement uses SetTransObject to associate dw_customer with a
programmer-created transaction object (trans_customer):

transacti on trans_customer

trans_custoner = CREATE transaction

/1 Set connection paraneters in the transacti on object
trans_cust oner. DBVMS = " ODBC'

trans_cust oner. dat abase = ...

CONNECT USI NG trans_cust oner;

dw_cust oner. Set TransObj ect (trans_cust oner)

dw _custoner. Retrieve()

For more information about SetTrans and SetTransObject methods, see the
online Help.

125

Accessing the database

Retrieving and updating data

Basic data retrieval

You call the following two methods to access a database through a
Datawindow control:

Retrieve
Update

After you have set thetransaction object for your DataWindow control, you can
usethe Retrieve method to retrieve datafrom the database and insert it into that
control:

dw_enp. Retrieve()

Using retrieval arguments

About retrieval
arguments

Omitting retrieval
arguments

126

Retrieval arguments qualify the SELECT statement associated with the
Datawindow object, reducing the rows retrieved according to some criteria.
For example, inthefollowing SELECT statement, Salary isaretrieval argument
defined in the DataWindow painter:

SELECT Narme, enp.sal FROM Enpl oyee
WHERE enp.sal > :Salary

When you call the Retrieve method, you supply avalue for Salary. In
PocketBuilder, the code looks like this:

dw_enp. Retri eve(50000)

When coding Retrieve with arguments, specify them in the order in which they
aredefined inthe DataWindow object. Your Retrieve method can provide more
argumentsthan a particular DataWindow object expects. Any extra arguments
areignored. Thisallowsyou to write ageneric Retrieve that workswith several
different DataWindow objects. You can specify any number of retrieval
arguments.

If your Datawindow object takesretrieval arguments but you do not passthem
in the Retrieve method, the DatawWindow control prompts the user for them
when Retrieve is called.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

Updating data

Examples

Resource Guide

After users have made changes to datain a DataWindow control, you can use
the Update method to save those changesin the database.

In PocketBuilder, the code looks like this:
dw_enp. Updat e()

Update sends to the database all inserts, changes, and deletions made in the
Datawindow control sincethelast Update method call. When you are using an
external transaction object, you can then commit (or roll back) those database
updates with SQL statements.

For more specificson how a DatawWindow control updatesthe database (that is,
which SQL statements are sent in which situations), see “Updating the
database” on page 141.

The following exampl e shows code that connects, retrieves, updates, commits
or rolls back, and disconnects from the database.

Although the example shows all database operationsin asingle script or
function, most applications separate these operations. For example, an
application could connect to the database in the application Open event,
retrieve and update data in one or more window scripts, and disconnect from
the database in the application Close event.

Thefollowing statements retrieve and update data using the transaction object
EmpSQL and the Datawindow control dw_emp:

/1 Connect to the database specified in the
/1 transaction object EnpSQL
CONNECT USI NG EmpSQL;

/1 Set EnpSQL as the transaction object for dw_enp
dw_enp. Set Transhj ect (EnpSQL)

/1l Retrieve data fromthe database specified in
/1 EnpSQL into dw_enp

dw_enp. Retrieve()

/1 Make changes to the data...

/1 Update the database

| F dw_enp. Update() > 0 THEN
COW T USI NG EnmpSQL;

127

Importing data from an external source

Handling retrieval or
update errors

ELSE
ROLLBACK USI NG EmpSQL;
END | F

// Di sconnect fromthe database
DI SCONNECT USI NG EnpSQL;

A production application should include error tests after each database
operation. For more about checking for errors, see “Handling DatawWindow
errors’ on page 136.

Importing data from an external source

If the data for a Datawindow is not coming from a database (that is, the data
source was defined as External in the DataWindow wizard), you can use these
methods to import data into the Datawindow control:

ImportClipboard
ImportFile
ImportString

You can also get datainto the Datawindow by using the Setitem method or by
using a DataWindow expression.

For more information on the Setltem method and DatawWindow expressions,
see “Manipulating data in a Datawindow control” next.

Manipulating data in a DataWindow control

128

To handle user requests to add, modify, and delete datain a Datawindow, you
can write code to process that data, but first you need to understand how
Datawindow controls manage data.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

How a DataWindow control manages data

About the
DataWindow buffers

About the edit control

About items

Resource Guide

Asusers add or change data, the dataisfirst handled astext in an edit control.
If the datais accepted, it is then stored as an item in a buffer.

A DataWindow uses three buffers to store data:
Table 9-1: DataWindow buffers

Buffer Contents

Primary Datathat has not been deleted or filtered out (that is, the rowsthat are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or through code

Asthe user moves around the DataWindow control, the DataWindow placesan
edit control over the current cell (row and column):

Figure 9-2: Editing text in a DatawWindow control

"+ Maintain Customers

Customer First Hame Last Hame Company Hame ﬂ
1]
im Michaelz Drevlin The Power Group
102 Beth Fieizer AMF Corp.
ik Erin Miedringhaus Darling Associates
104 Meghan Mazon F5.C
105 Laura MeCarthy Amo & Sons
106 Paul Fhillipz Ralston Inc.
107 Kelly Colburn The Home Club LI
Customer ID: 103 Address: [1350 Windsar Strest 1
Frstame: B ciy
Last Name; state:
Company Name: [Darling Associates 1 Zip Code: [15301-
Phone Number: |(215] 555-6513

The contents of the edit control are called text. Text isdatathat has not yet been
accepted by the Datawindow control. Data entered in the edit control isnot in
a Datawindow buffer yet; it is simply text in the edit control.

When the user changes the contents of the edit control and presses Enter or
leaves the cell (by tabbing, using the stylus, or pressing Up arrow or Down
arrow from the soft input panel or other keyboard), the Datawindow processes
the data and either accepts or rejects it, depending on whether it meets the
reguirements specified for the column.

129

Manipulating data in a DataWindow control

If the datais accepted, the text is moved to the current row and column in the
Datawindow Primary buffer. The datain the Primary buffer for a particular
column isreferred to as an item.

Events for changing When datais changed in the edit control, several events occur.

text and items

Table 9-2: Events triggered by changing text and items

Event

Description

EditChanged

Occurs for each keystroke the user types in the edit control

ItemChanged

Occurs when a cell has been modified and loses focus

ItemError

Occurs when new datafails the validation rules for the
column

ItemFocusChanged

Occurs when the current item in the control changes

How text is processed When the datain a column in a Datawindow has been changed and the column

in the edit control

loses focus (for example, because the user tabs to the next column), the

following sequence of events occurs:

1 TheDatawindow control convertsthetext into the correct datatypefor the
column. For example, if the user isin anumeric column, the DataWindow
control converts the string that was entered into a number. If the data
cannot be converted, the ItemError event istriggered.

2 If the data converts successfully to the correct datatype, the DatawWindow
control applies any validation rule used by the column. If the datafails
validation, the ItemError event istriggered.

3 If the data passes validation, then the ltemChanged event is triggered. If
you set an action/return code of 1 in the ItemChanged event, the
Datawindow control rejects the data and does not allow the focusto
change. In this case, the ItemError event is triggered.

4 If the ItemChanged event accepts the data, the ItemFocusChanged event
istriggered next and the datais stored as an item in a buffer.

130

PocketBuilder

CHAPTER 9 Using DataWindow Objects

Action/return codes
for events

Figure 9-3: How text is processed in edit controls

User enters data
l Succeeds

Data converted Fails
l Succeeds

Diata validated Fails ltermError triggered
l Succeeds /

lterChanged trigoered ActionCode 1
l Succeeds
temFocusChanged triggered

You can affect the outcome of events by specifying numeric valuesin the
event’s program code. For example, step 3 above describes how you can force
datato be rejected by using a RETURN statement with a code of 1 in the
ItemChanged event.

For information about codes for individual events, see the DataWindow
Reference in the online Help.

Accessing and manipulating the text in the edit control

Using methods

In event code

Resource Guide

The following methods allow you to access the text in the edit control:
e GetText —obtainsthe text in the edit control.
e SetText —sets the text in the edit control.

In addition to these methods, the following events provide accessto thetext in
the edit control:

EditChanged
ItemChanged
ItemError

Usethe Data parameter, which is passed into the event, to accessthe text of the
edit control. In your code for these events, you can test the text value and
perform special processing depending on that value.

For an example, see “ Coding the ItemChanged event” next.

131

Manipulating data in a DataWindow control

Manipulating the text

When you want to further manipulate the contents of the edit control within
your Datawindow control, you can use any of these methods:

Clear Position SelectedStart
Copy ReplaceText SelectedText
Cut Scroll SelectText
LineCount SelectedLength TextLine
Paste SelectedLine

For more information about these methods, see the DataWindow Referencein
the online Help.

Coding the ItemChanged event

Example

If data passes conversion and validation, the ltemChanged event is triggered.
By default, the ItemChanged event accepts the data value and allows focus to
change. You can write code for the ItemChanged event to do some additional
processing. For example, you could perform sometests, set acode to reject the
data, have the column regain focus, and trigger the ItemError event.

The following sample code for the ItemChanged event for a DataWindow
control called dw_Employee setsthe return codein dw_Employee to reject data
that islessthan the employee's age, which is specified in a SingleLineEdit text
box control in the window.

int a, age
age = Integer(sle_age.text)
a = Integer(data)

/1 Set the return code to 1 in the |ItentChanged

/1l event to tell PocketBuilder to reject the data
/1 and not change the focus.

IF a < age THEN RETURN 1

Coding the ItemError event

132

The ltemError event istriggered if thereis aproblem with the data. By default,
it rejects the data val ue and displays a message box. You can write code for the
ItemError event to do some other processing. For example, you can set a code
to accept the data value, or reject the data value but allow focus to change.

For more information about the events of the DatawWindow control, see the
DataWindow Reference in the online Help.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

Accessing the items in a DataWindow

Using methods

Using expressions

Resource Guide

You can access data valuesin a DataWindow by using methods or
Datawindow data expressions. Both methods allow you to access datain any
buffer and to get original or current values.

The method you use depends on how much datayou are accessing and whether
you know the names of the DatawWindow columns when the script is compiled.

There are several methods for manipulating datain a Datawindow control.

Getltem methods You call Getltem methods to obtain the data that has been
accepted into a specific row and column. You can also use them to check the
datain a specific buffer before you update the database. You must use the
method appropriate for the column’s datatype.

These methods obtain the datain a specified row and column in a specified
buffer: GetltemDate, GetltemDateTime, GetltemDecimal, GetltemNumber,
GetltemString, GetltemTime.

For example, the following statement assigns the value from the empname
column of thefirst row to the variable Is Name:

Is_Name = dw_1.GetltenString (1, "enpnane")

Setltem method This method sets the value of a specified row and column:
Setltem.

This statement sets the value of the empname column in the first row to the
string “Waters':

dw 1. Setltem(1l, "enpnane", "Waters")
For more information about the methods listed above, see the online Help.

Datawindow data expressions refer to single items, columns, blocks of data,
selected data, or the whole DataWindow. You use dot notation to construct data
expressions in PocketBuilder.

The Object property of the Datawindow control lets you specify expressions
that refer directly to the data of the DataWindow object in the control. This
direct data manipulation allows you to access small and large amounts of data
in a single statement, without calling methods:

dw 1. Gbject.jobtitle[3] = "Programer"”

The next statement sets the value of the first columnin the first row in the
Datawindow to Smith:

dw 1. Object.Data[1,1] = "Snith"

133

Manipulating data in a DataWindow control

For complete instructions on how to construct DataWindow data expressions,
see the DataWindow Reference in the online Help.

Using other DataWindow methods

There are many more methods you can use to perform activitiesin
Datawindow controls. The more common ones are listed in Table 9-3.

134

Table 9-3: Common methods in DataWindow controls

Method Purpose

AcceptText Appliesthe contents of the edit control to the current item
in the DataWindow control.

DeleteRow Removes the specified row from the DataWindow
control, placing it in the Delete buffer; does not del ete the
row from the database.

Filter Displays rows in the DataWindow control based on the
current filter.

GetRow Returns the current row number.

InsertRow Inserts a new row.

Reset Clears dl rowsin the Datawindow control.

Retrieve Retrieves rows from the database.

RowsCopy, RowsMove

Copies or moves rows from one DataWindow control to
another.

ScrollToRow Scrollsto the specified row.

SelectRow Highlights a specified row.

ShareData Shares data among different Datawindow controls.
Update Sends to the database all inserts, changes, and deletions

that have been made in the Datawindow control.

You can see acomplete list of DataWindow methods in the PocketBuilder

Browser.

For complete information on DataWindow methods, see the DataWwindow
Referencein the online Help.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

Accessing the properties of a Datawindow object

About DataWindow
object properties

Using methods to
access object
properties

Resource Guide

Datawindow object properties store the information that controls the behavior
of a DataWindow object. They are not properties of the Datawindow control,
but of the Datawindow object displayed in the control. The Datawindow
object isitself made up of individual controls—column, text, graph, and
drawing controls—that have DataWindow object properties.

You establish initial values for DataWindow object propertiesin the
Datawindow painter. You can aso get and set property values at runtimein
your code.

You can access the properties of a DataWindow object by using the Describe
and Modify methods or DatawWindow property expressions. Which you use
depends on the type of error checking you want to provide and on whether you
know the names of the controls within the DataWindow object and properties
you want to access when the script is compiled.

For lists and descriptions of Datawindow object properties, see the
DataWindow Reference in the online Help.

You can use the following methods to work with the properties of a
Datawindow object:

* Describe — reports the values of properties of a DatawWindow object and
controls within the Datawindow object.

¢ Modify —modifies a DataWindow object by specifying alist of instructions
that change the Datawindow object's definition.

For example, the following statements assign the value of the Border property
for the empname column to a string variable:

string | s_border
| s_border = dw_1. Descri be("enpnane. Border")

The following statement changes the value of the Border property for the
empname columnto 1:

dw_enp. Modi fy(" enpnane. Bor der =1")

135

Handling DatawWindow errors

About dynamic DataWindow objects
Using Describe and Modify, you can provide an interface through which

application users can alter the DataWindow object at runtime. For example,
you can change the appearance of aDataWindow object or allow an application
user to create ad hoc reports.

For more information, see Chapter 10, “Dynamically Changing DataWindow
Objects.”

Using expressions Datawindow property expressions provide access to properties with fewer
nested strings. In PocketBuilder, you can handle problems with incorrect
object and property names in the Error event.

Use the Object property and dot notation. For example:

integer |i_border
Ii_border = Integer(dw_1. Object. enpnane. Border)
dw_1. Qbj ect. enpnane. Border = 1

Handling DataWindow errors

There are several types of errors that can occur during DataWindow
processing:

» Dataitemsthat areinvalid (discussed in “Manipulating datain a
DataWindow control” on page 128)

» Failureswhen retrieving or updating data
» Attemptsto accessinvalid or nonexistent properties or data

This section explains how to handle the last two types of errors.

Retrieve and Update errors and the DBError event

Retrieve and update When using the Retrieve or Update method in a Datawindow control, you
testing should test the method's return code to see whether the activity succeeded.

136 PocketBuilder

CHAPTER 9 Using DataWindow Objects

Example

Using the DBError
event

Resource Guide

Table 9-4: Return codes for the Retrieve and Update methods

Return
Method code Meaning
Retrieve >=1 Retrieval succeeded; returns the number of rows retrieved
-1 Retrieval failed; DBError event triggered
0 No data retrieved
Update 1 Update succeeded
-1 Update failed; DBError event triggered

Do not test the SQLCode attribute
After issuing a SQL statement (such as CONNECT, COMMIT, or

DISCONNECT) or the equivalent method of the transaction object, you should
always test the success/failure code (the SQL Code attribute in the transaction
object). However, you should not use this type of error checking following a
retrieval or update made in a Datawindow.

For more information about error handling after a SQL statement, see Chapter
16, “Using Transaction Objects.”

If you want to commit changes to the database only if an update succeeds, you
can code:

| F dw_enp. Update() > 0 THEN
COW T USI NG EmpSQ;
ELSE
ROLLBACK USI NG EmpSQL;
END I F

The Datawindow control triggersits DBError event whenever thereisan error
following aretrieval or update; that is, if the Retrieve or Update methodsreturn
—1. For example, if you try to insert arow that does not have values for all
columnsthat have been defined as not allowing null, the DBM S rejects the row
and the DBError event is triggered.

By default, the Datawindow control displays a message box describing the
error message from the DBMS.

137

Handling DatawWindow errors

Figure 9-4: Sample error message displayed from DBError event

Datawindow Error

[Sybaze][ODBLC Driver]integrity conztraint violation; column ‘lname’ in
table 'customer’ cannot be WULL

SOLSTATE = 23000 ﬂ

Ma changes made to databaze. LI

In many casesyou may want to codeyour own processing inthe DBError event
and suppress the default message box. Here are some tips for doing this:

Table 9-5: Tips for processing messages from DBError event

To Do this

Get the DBMS's error code Use the SQL DBCode argument of the DBError
event

Get the DBM S's message text Use the SQL ErrText argument of the DBError
event

Suppress the default message box | Specify an action/return code of 1

About DataWindow action/return codes
Some events for DataWindow controls have codes that you can set to override

the default action that occurs when the event is triggered. The codes and their
meaning depend on the event. You set the code with aRETURN statement.

Example Here is asample script for the DBError event:

/| Database error -195 neans that some of the
/1 required val ues are nissing
I F sql dbcode = -195 THEN
MessageBox("M ssing Information", &
"You have not supplied values for all " &
+"the required fields.")
END I F
/1 Return code suppresses default message box
RETURN 1

At runtime, the user would see the message box after the error.

138 PocketBuilder

CHAPTER 9 Using DataWindow Objects

Figure 9-5: Example of a user-defined message for the DBError event

Mizzing Information [<]

@ *f'ou have not supplied values for all the required fields.

Errors in property and data expressions and the Error event

PocketBuilder syntax
checking

Using a Try-Catch
block

Resource Guide

A Datawindow control's Error event is triggered whenever an error occursin
adata or property expression at runtime. These expressions that refer to data
and properties of a DataWindow object may be valid under some runtime
conditions but not others. The Error event allows you to respond with error
recovery logic when an expression is not valid.

When you use a data or property expression, the PowerScript compiler checks
the syntax only as far as the Object property. Everything following the Object
property isevaluated at runtime. For example, in thefollowing expression, the
column name emp_name and the property Visible are not checked until
runtime;

dw_1. Obj ect. enp_nane. Visible = "0"

If the emp_name column did not exist in the Datawindow, or if you had
misspelled the property name, the compiler would not detect the error.
However, at runtime, PocketBuilder would trigger the Datawindow control’s
Error event.

The Error event is triggered even if you have surrounded an error-producing
data or property expression in atry-catch block. The catch statement is
executed after the Error event istriggered, but only if you do not code the Error
event or do not change the default Error event action from ExceptionFail!. The
following example shows a property expression in atry-catch block:

TRY

dw_1. Obj ect. enp_nane. Visible = "0"
CATCH (dwruntimeerror dw_e)

MessageBox ("DWRuntimeError", dw_e.text)
END TRY

139

Handling DatawWindow errors

Determining the cause
of the error

Controlling the
outcome of the event

140

The Error event has several argumentsthat provide information about the error
condition. You can check the values of the argumentsto determine the cause of
the error. For example, you can obtain the internal error number and error text,
the name of the object whose script caused the error, and the full text of the
script where the error occurred. The information provided by the Error event’s
arguments can be hel pful in debugging expressionsthat are not checked by the
compiler.

If you catch a DWRuntimeError error, you can use the properties of that class
instead of the Error event arguments to provide information about the error
condition. Thefollowing table displaysthe correspondences between the Error
event arguments and the DWRuntimeError properties.

Table 9-6: Correspondence between Error event arguments and
DWRuntimeError properties

Error event argument | DWRuntimeError property
errornumber number

errorline line

errortext text

errorwindowmenu objectname

errorobject class

errorscript routinename

When the Error event istriggered, you can have the application ignore the error
and continue processing, substitute adifferent return value, or escalatetheerror
by triggering the SystemError event. In the Error event, you can set two
arguments passed by reference to control the outcome of the event.

Table 9-7: Setting arguments in the Error event
Argument Description

Action A vaueyou specify to control the application's course of action as
aresult of the error. Values are:

Exceptionlgnore!
ExceptionSubstituteReturnVal ue!
ExceptionFail! (default action)

ReturnValue A value whose datatype matches the expected value that the
Datawindow would have returned. This value is used when the
value of action is ExceptionSubstituteReturnValue! .

For a compl ete description of the arguments of the Error event, see the online
Help.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

When to substitute a return value
The ExceptionSubstituteReturnValue! action allows you to substitute a return

value when the last element of an expression causes an error. Do not use
ExceptionSubstituteReturnValue! to substitute areturn value when an element
in the middle of an expression causes an error.

The ExceptionSubstituteReturnValue! actionismost useful for handling errors
in data expressions.

Updating the database

After users have made changes to datain a DataWindow control, you can use
the Update method to save the changes in the database. Update sendsto the
database all inserts, changes, and del etions made in the Datawindow sincethe
last Update or Retrieve method was executed.

How the DataWindow control updates the database

How status is set

Resource Guide

For database updates, the Datawindow control determines what type of SQL
statements to generate by looking at the status of each of the rowsin the
DataWindow buffers.

There are four DataWindow item statuses, two of which apply only to rows.

Table 9-8: DataWindow item status for rows and columns

Status Name Numeric value | Applies to

New! 2 Rows

NewM odified! 3 Rows

NotM odified! 0 Rows and columns
DataM odified! 1 Rows and columns

The named values are values of the enumerated datatype dwltemStatus. You
must use the named values, which end in an exclamation point.

When data is retrieved When dataisretrieved into a Datawindow, all rows
and columnsiinitially have a status of NotModified!.

141

Updating the database

When Update is called

142

After data has changed in acolumn in aparticular row, either because the user
changed the data or the data was changed programmatically, such as through

the Setltem method, the column status for that column changes to

DataM odified!. Once the status for any column in aretrieved row changes to
DataM odified!, the row status also changesto DataModified!.

When rows are inserted When arow isinserted into a Datawindow, it
initially has arow status of New!, and al columnsin that row initially have a
column status of NotModified!. After data has changed in acolumnin the row,
either because the user changed the data or the data was changed
programmatically, such as through the Setitem method, the column status
changesto DataModified!. Once the status for any column in the inserted row
changes to DataM odified!, the row status changes to NewM odified!.

When aDatawindow column has a default val ue, the column'’s status does not
change to DataModified! until the user makes at least one actual changeto a
column in that row.

For rows in the Primary and Filter buffers When the Update method is
called, the Datawindow control generates SQL INSERT and UPDATE
statements for rows in the Primary and/or Filter buffers based upon the
following row statuses:

Table 9-9: Row status after INSERT and UPDATE statements
Row status SQL statement generated

NewM odified! INSERT
DataModified! UPDATE

A columnisincluded in an UPDATE statement only if the following two
conditions are met:

e The column is on the updatable column list maintained by the
Datawindow object

For more information about setting the update characteristics of the
Datawindow object, see the User's Guide.

e The column has a column status of DataM odified!

The Datawindow control includes all columnsin INSERT statements it
generates. If a column has no value, the Datawindow attemptsto insert anull.
This causes a database error if the database does not allow null valuesin that
column.

PocketBuilder

CHAPTER 9 Using DataWindow Objects

For rows in the Delete buffer The DataWindow control generates SQL
DELETE statements for any rows that were moved into the Delete buffer using
the DeleteRow method. However, if arow has arow status of New! or
NewM odified! before DeleteRow is called, no DELETE statement isissued for
that row.

Changing row or column status programmatically

Changing column
status

Changing row status

You might need to change the status of arow or column programmatically.
Typically, you do this to prevent the default behavior from taking place. For
example, you might copy arow from one DataWindow to another; and after the
user modifies the row, you might want to issue an UPDATE statement instead
of an INSERT statement.

You use the SetltemStatus method to programmatically change a
DataWindow's row or column status information. Use the GetltemStatus
method to determine the status of a specific row or column.

You use SetltemStatus to change the column status from DataM odified! to
NotModified!, or vice versa.

Change column status when you change row status
Changing the row status changes the status of all columnsin that row to

NotModified!, so if the Update method is called, no SQL update is produced.
You must change the status of columnsto be updated after you change the row
status.

Changing row status is a little more complicated. The following table
illustrates the effect of changing from one row status to another.

Table 9-10: Effects of changing from one row status to another

Original status Specified status

New! NewModified! DataModified! NotModified!
New! - Yes Yes No
NewM odified! No - Yes New!
DataModified! NewModified! Yes - Yes
NotModified! Yes Yes Yes -

Resource Guide

In the preceding table, Yes means the change is valid. For example, issuing
SetltemStatus on arow that hasthe status NotModified! to change the statusto
New! does change the status to New!. No means that the change is not valid
and the statusis not changed.

143

Creating reports

Issuing SetltemStatus to change a row status from NewModified! to
NotModified! actually changes the status to New!. Issuing SetltemStatus to
changearow statusfrom DataM odified! to New! actually changesthe statusto
NewModified!.

Changing arow's status to NotModified! or New! causes all columnsin that
row to be assigned a column status of NotModified!. Change the column’s
status to DataM odified! to ensure that an update results in a SQL Update.

Changing status indirectly
When you cannot change to the desired status directly, you can usually do it

indirectly. For example, change New! to DataM odified! to NotModified! .

Creating reports

You can use Datawindow objects to create standard business reports such as
financial statements, sales order reports, employee lists, or inventory reports.

To create a production report, you:

» Determine the type of report you want to produce

« Build aDatawindow object to display data for the report

e Place the Datawindow object in a Datawindow control on a window

» Write code to perform the processing required to populate the
Datawindow control and print the contents as a report

Planning and building the DataWindow object

144

To design the report, you create a DataWindow object. You select the data
source and presentation style and then:

e Sort thedata

e Create groupsin the DatawWindow object to organize the datain the report
and force page breaks when the group values change

» Enhance the DataWindow object to ook like areport (for example, you
might want to add atitle, column headers, and a computed field to number

the pages)

PocketBuilder

CHAPTER 9 Using DataWindow Objects

Using fonts
Printer fonts are usually shorter and fatter than screen fonts, so text might not

printinthereport exactly asit displaysinthe DataWindow painter. You can pad
the text fields to compensate for this discrepancy.

You should test the report format with asmall amount of data before you print
alarge report.

Printing the report

Separate DataWindow
controls in a single
print job

Resource Guide

After you build the Datawindow object and fill in print specifications, you can
placeit inaDataWindow control on awindow or form, asdescribedin“ Putting
a Datawindow object into a control” on page 118.

Toallow usersto print thereport, your application needs code that performsthe
printing logic. For example, you can place a button on the window or form,
then write code that is run when the user clicks the button.

To print the contents of a single DataWindow control or DataStore, call the
Print method. For example, this statement printsthe report in the Datawindow
control dw_Sales:

dw_Sal es. Pri nt (TRUE)
For information about the Print method, see the DataWindow Reference.

If the window has multiple DataWindow controls, you can use multiple
PrintDatawindow method calls in a script to print the contents of all the
Datawindow controlsin one print job.

These statements print the contents of three DataWindow controlsin asingle
print job:

int job

job = PrintOpen("Enpl oyee Reports")

/1 Each DataW ndow starts printing on a new page.

Pri nt Dat aW ndow(j ob, dw_EnpHeader)

Pri nt Dat aW ndow(j ob, dw_EnpDetail)

Pri nt Dat aW ndow(j ob, dw_EnpDpt Sum

Print Cl ose(j ob)

For information about PocketBuilder system functions for printing, see the
Power Script Reference.

145

Creating reports

146 PocketBuilder

CHAPTER 10

About this chapter

Contents

Dynamically Changing
DataWindow Objects

This chapter describes how to modify and create Datawindow objects at
runtime.

Topic Page
About dynamic DataWindow processing 147
Modifying a DataWindow object 148
Creating a Datawindow object 149
Providing query ability to users 151

About dynamic DataWindow processing

Basics

What you can do

Resource Guide

Datawindow objects and all entities in them (such as columns, text,
graphs, and pictures) each have a set of properties. You can look at and
change the values of these properties at runtime using DatawWindow
methods or property expressions. You can also create DataWindow
objects at runtime.

A Datawindow object that is modified or created at runtimeis called a
dynamic Datawindow object.

Using this dynamic capability, you can alow usersto change the
appearance of the DatawWindow abject (for example, change the color and
font of the text) or create ad hoc queries by redefining the data source.
After you create a dynamic DataWindow object and the user is satisfied
with the way it looks and the data that is displayed, the user can print the
contents as a report.

147

Modifying a DataWindow object

Modifying a DatawWindow object

Changing property
values

Using expressions in
property values

For more information

Adding and deleting
controls within the
DataWindow object

Tool for easier coding
of DataWindow syntax

148

At runtime, you can modify the appearance and behavior of a Datawindow
object by doing one of the following:

e Changing the values of its properties
» Adding or deleting controls from the DataWindow object

You can use the Modify method or a property expression to set property values.
Thisletsyou change settingsthat you ordinarily specify during development in
the DataWindow painter.

Before changing a property, you might want to get the current value and save
itinavariable, soyou canrestoretheoriginal valuelater. To obtaininformation
about the current properties of a DataWindow object or a control in a
Datawindow object, use the Describe method or a property expression.

With some DataWindow properties, you can assign a value through an
expression that the DatawWindow evaluates at runtime, instead of having to
assign avalue directly. For example, the following statement displays a salary
inredif it islessthan $12,000, and in black otherwise:

dw_1. Modi fy("sal ary. Col or &
='0 ~t if(salary <12000,255,0)" ")

The syntax is different for expressions in code versus expressions specified in
the DataWindow painter. For the correct syntax and information about which
properties can be assigned expressions, see the DataWindow Reference in the
online Help.

You can aso use the Modify method to:
» Create new objects in a DataWindow object

Thisletsyou add DataWindow control s (such astext, bitmaps, and graphic
controls) dynamically to the Datawindow object.

For how to get agood idea of the correct Create syntax, see “ Specifying
the DatawWindow object syntax” on page 149.

» Destroy controlsin a Datawindow object
Thislets you dynamically remove controls you no longer need.

Included with PocketBuilder is DW Syntax, atool that makes it easy to build
the correct syntax for property expressions, Describe, Modify, and
SyntaxFromSQL statements. You click buttons to specify which properties of
a Datawindow you want to use, and DW Syntax automatically builds the
appropriate syntax, which you can copy and paste into your application code.

PocketBuilder

CHAPTER 10 Dynamically Changing DataWindow Objects

Viewing DataWindow
object properties in
the Browser

To access DW Syntax, select File>New and select the Tool tab.

You can use the Browser to get alist of DataWindow properties: on the
Datawindow page, select a Datawindow object in the | eft pane and Properties
in the right pane. To see the properties for acontrol in a DataWindow object,
double-click the Datawindow object name, then select the control.

Creating a DataWindow object

Specifying the
DataWindow object
syntax

Resource Guide

This section describes how to create a DatawWindow object by calling the
Create method in an application.

DataWindow painter
You should use the techniques described here for creating a Datawindow from

syntax only if you cannot accomplish what you need to in the Datawindow
painter. The usual way of creating DatawWindow objectsisto use the
Datawindow painter.

To learn about creating DatawWindow objects in the Datawindow painter, see
the User's Guide.

You use the Create method to create a DataWindow object dynamically at
runtime. Create generates a DataWindow object using source code that you
specify. It replaces the DataWindow object currently in the specified
Datawindow control with the new DataWindow object.

Resetting the transaction object
The Create method destroys the association between the DatawWindow control

and the transaction object. As aresult, you need to reset the control's
transaction object by calling the SetTransObject or SetTrans method after you
cal Create.

To learn how to associate a Datawindow control with atransaction object, see
Chapter 9, “Using Datawindow Objects.”

Thereare several waysto specify or generate the syntax required for the Create
method:

* Usethe SyntaxFromSQL method of the transaction object

149

Creating a DataWindow object

150

e Usethe Datawindow.Syntax property of the DataWindow object
e Create the syntax yourself

Using SyntaxFromSQL You arelikely to use SyntaxFromSQL to create the
syntax for most dynamic DataWindow objects. If you use SyntaxFromSQL, all
you haveto do is provide the SELECT statement and the presentation style.

In PocketBuilder, SyntaxFromSQL is amethod of the transaction object. The
transaction object must be connected when you call the method.

SyntaxFromSQL has three required arguments:
e A string containing the SELECT statement for the Datawindow object
e A dtring identifying the presentation style and other settings

e The name of astring you want to fill with any error messages that might
be returned

SyntaxFromSQL returns the complete syntax for a DatawWindow object that is
built using the specified SELECT statement.

Using the Datawindow.Syntax property You can obtain the source code of
an existing DataWindow object to use asamodel or for making minor changes
to the syntax. Many valuesin the source code syntax correspond to properties
of the Datawindow object.

This example gets the syntax of the Datawindow object in the DataWindow
control, dw_1, and displaysit in the text box control, textb_dw_syntax:

var dwSynt ax
dwSynt ax = dw_1. Descri be("dat awi ndow. synt ax")
t ext b_dw_synt ax. val ue = dwSynt ax

Creating the syntax yourself You need to create the syntax yourself to use
some of the advanced dynamic DataWindow features, such as creating agroup
break.

The Datawindow source code syntax that you need to supply to the Create
method can be very complex. To see examples of DataWindow object syntax,
go to the Library painter and export a DataWindow object to atext file, then
view thefilein atext editor.

For moreinformation on Create and Describe methods, aswell as DataWindow
object properties and syntax, see the DataWindow Reference in the online
Help.

PocketBuilder

CHAPTER 10 Dynamically Changing DataWindow Objects

Providing query ability to users

When you call the Retrieve method for a DataWindow control, the rows
specifiedinthe Datawindow object'sSELECT statement areretrieved. You can
give usersthe ability to further specify which rows are retrieved at runtime by
putting the Datawindow into query mode. To do that, you use the Modify
method or a property expression (the examples here use Modify).

Limitations) .))
You cannot use query mode in a Datawindow object that contains the UNION

keyword or nested SELECT statements.

How query mode works

Resource Guide

Once the DataWindow isin query mode, users can specify selection criteria
using query by example—just as you do when you use Quick Select to define
adata source. When criteria have been defined, they are added to the WHERE
clause of the SELECT statement the next time data is retrieved.

The following three figures show what happens when query modeis used.
First, dataisretrieved into the DataWindow. There are 36 rowsin thisexample.

Figure 10-1: Example of data retrieved from a database table

Rep Quarter Product Units +
Simpson o Stellar 12
Jones o Stellar 18
Perez o Stellar 15
Simpson o Cosmic 33
Jones o Cosmic =3
Perez o Cosmic 26
Simpson o Galactic 53

Row count: 36

Next, query mode is turned on. The retrieved data disappears and users are
presented with empty rows where they can specify selection criteria. Here the
user wants to retrieve rows where Quarter = Q1 and Units > 15.

151

Providing query ability to users

Figure 10-2: Example of a DataWindow in Query mode

Rep Quarter Product Units +
a1 »15

Row count: 36

Next, Retrieveiscalled and query modeisturned off. The DataWindow control
addsthe criteriato the SELECT statement, retrievesthe three rowsthat meet the
criteria, and displays them to the user.

Figure 10-3: Example of a DataWindow with results from query

Rep Quarter Product Units

Jones o Stellar 18
Simpson o Cosmic 33
Perez o Cosmic 26

Row count: 3

You can turn query mode back on, allow the user to revise the selection criteria,
and retrieve again.

Using query mode
O To provide query mode to users at runtime:
1 Turn query mode on by coding:
dw_1. Modi f y(" dat awi ndow. quer ynode=yes")

All data displayed in the DataWindow is blanked out, though it is still in
the Datawindow control's Primary buffer, and the user can enter selection
criteriawhere the data had been.

152 PocketBuilder

CHAPTER 10 Dynamically Changing DataWindow Objects

How the criteria affect
the SELECT
statement

Resource Guide

The user specifies selection criteriain the DataWindow, just as you do
when using Quick Select to define a DatawWindow object's data source.

Criteriaentered in one row are joined together with the AND logical
operator; criteriain different rows are joined together with the OR logical
operator. Valid operators are =, <>, <, >, <=, >=, LIKE, IN, AND, and OR.

For more information about Quick Select, see the User's Guide.

Call AcceptText and Retrieve, then turn off query mode to display the
newly retrieved rows:

dw_1. Accept Text ()
dw_1. Mbdi f y(" dat awi ndow. quer ynode=no")
dw_1. Retrieve()

The Datawindow control adds the newly defined selection criteriato the
WHERE clause of the SELECT statement, then retrieves and displays the
specified rows.

Revised SELECT statement
You can look at the revised SELECT statement that is sent to the DBM S when

dataisretrieved with criteria. To do so, look at the sglsyntax argument in the
SQL Preview event of the Datawindow control.

Criteriaspecified by the user are added to the SELECT statement that originally
defined the Datawindow object.

For example, suppose the original SELECT statement for the printer table was:

SELECT printer.rep, printer.quarter, printer.product,
printer.units

FROM printer

WHERE printer.units < 70

Figure 10-4 displays a Datawindow with user-entered criteriafor the Q1
quarter for Stellar printers, and for the Q2 quarter for al printer products.

153

Providing query ability to users

Figure 10-4: Example of a DataWindow with a new user query

Rep Quarter Product Units +
o Stellar
[

Row count: 12

The SELECT statement generated from this user query is:

SELECT printer.rep, printer.quarter, printer.product,
printer.units

FROM printer

WHERE printer.units < 70

AND (printer.quarter = "'Ql'

AND printer.product = 'Stellar'

OR printer.quarter ='Q@")

Clearing selection criteria To clear the selection criteria, Use the
QueryClear property.

dw_1. Modi f y(" dat awi ndow. quer ycl ear =yes")
Sorting in query mode You can allow users to sort rowsin a Datawindow
while specifying criteriain query mode using the QuerySort property. The
following statement makes the first row in the DataWindow dedicated to sort
criteria (just asin Quick Select in the DataWindow wizard).

dw_1. Modi f y(" dat awi ndow. quer ysort =yes")

Overriding column By default, query mode uses edit styles and other definitions of the column,
Sﬂcé??rﬁ!%%gu”ng such as the number of allowable characters. If you want to override these

properties during query mode and provide a standard edit control for the
column, use the Criteria.Override_Edit property for each column:

dw_1. Modi fy("nycolum.criteria.override_edit=yes")

You can also specify thisin the DataWindow painter by checking Override Edit
on the General property page for the column. With properties overridden for
criteria, users can specify any number of charactersin acell (they are not
constrained by the number of characters allowed in the columnin the
database).

154 PocketBuilder

CHAPTER 10 Dynamically Changing DataWindow Objects

Forcing users to You can force users to specify criteriafor a column during query mode by
Spfc'fy criteria for a coding the following:
column

dw_1. Modi fy("nycolum. criteria.required=yes")

You can also specify thisin the Datawindow painter by checking Equality
Required on the General property page for the column. Doing this ensures that
the user specifies criteriafor the column and that the criteriafor the column use
the = operator rather than other operators, such as< or >=.

Resource Guide 155

Providing query ability to users

156 PocketBuilder

cuarTer 11 Using DataStore Objects

About this chapter This chapter describes how to use DataStore objects in an application.

Contents Topic Page
About DataStores 157
Working with a DataStore 159
Using a custom DataStore object 160
Accessing and manipulating datain a DataStore 162
Sharing information 164

Before you begin This chapter assumes you know how to build DataWindow objectsin the

Datawindow painter, as described in the Users Guide.

About DataStores

A DataStore is anonvisual Datawindow control. DataStores act just like
Datawindow controls except that they do not have many of the visual
characteristicsassoci ated with DataWindow controls. LikeaDataWindow
control, a DataStore has a DataWindow object associated with it.

When to use a DataStore DataStores are useful when you need to access data but do not need the
visual presentation of a Datawindow control. DataStores allow you to:

» Perform background processing against the database without having
to hide Datawindow controlsin a window

Suppose that the DataWindow object displayed in a Datawindow
control issuitablefor online display but not for savingto afile. Inthis
case, you could define a second DatawWindow object for saving that
has the same result set description and assign this object to a
DataStore. You could then share data between the DataStore and the
Datawindow control. Whenever the user asked to savethe datain the
window, you could save the contents of the DataStore.

Resource Guide 157

About DataStores

DataStore methods

Prompting for
information

158

e Hold data used to show multiple views of the same information

When awindow shows multiple views of the same information, you can
use aDataStoreto hold theresult set. By sharing databetween a DataStore
and one or more Datawindow controls, you can provide different views of
the same information without retrieving the data more than once.

e Manipulate table rows without using embedded SQL statements

In places where an application callsfor row manipulation without the need
for display, you can use DataStores instead of embedded SQL statements
to handle the database processing. DataStores typically perform faster at
runtime than embedded SQL statements. Also, because the SQL is stored
with the DataWindow object when you use a DataStore, you can easily
reuse the SQL.

Most of the methods and events available for DataWindows are also available
for DataStores. However, some of the methods that handle online interaction
with the user are not available. For example, DataStores support the Retrieve,
Update, InsertRow, and DeleteRow methods, but not GetClickedRow and
SetRowFocuslindicator.

When you are working with DataStores, you cannot prompt the user for more
information by using functionality that causes adial og box to display. Here are
some examples of ways to manage information entry with DataStores:

SetSort and SetFilter You can use the SetSort and SetFilter methods to
specify sort and filter criteria for a DataStore object, just as you would with a
Datawindow control. However, when you are working with a DataWindow
contral, if you pass anull valueto either SetSort or SetFilter, the Datawindow
prompts the user to enter information.

When you are working with a DataStore, you must supply avalid value with
the method call. You must also supply avalid value when you share data
between a DataStore and a Datawindow control; you can pass a null valueto
the DataWindow control, but not the DataStore.

Prompt for Criteria You can define your DataWindow objects so that the

user is prompted for retrieval criteria before the DataWindow retrieves data.
This feature works with DataWindow controls only. It is not supported with
DataStores.

SaveAs If you are working with a DataStore, you must supply the filename
argument when you use the SaveAs method. With a DataWindow object, you
can pass an empty string for the filename argument so that the user is prompted
for afile nameto saveto.

PocketBuilder

CHAPTER 11 Using DataStore Objects

DataStores have
some visual methods

DataStores require no
visual overhead

Prompt for Printing For Datawindow controls, you can specify that a print
setup dialog box display at execution time, either by checking the Prompt
Before Printing check box on the DatawWindow object’s Print Specifications
property page, or by setting the DatawWindow object’s Print.Prompt property in
ascript. Thisis not supported with DataStores.

Retrieval arguments If you call the Retrieve method for a DataWindow
control that has a DataWindow object that expects an argument, but do not
specify the argument in the method call, the DataWindow prompts the user for
aretrieval argument. This behavior is not supported with DataStores.

Many of the methods and events that pertain to the visual presentation of the
datain a Datawindow do not apply to DataStores. However, because you can
print the contents of a DataStore and also import datainto a DataStore,
DataStores have some visually oriented events and methods. For example,
DataStores support the SetBorder Styl e and SetSeriesStyle methods so that you
can control the presentation of the data at print time. Similarly, DataStores
support the ItemError event, because data imported from a string or file that
does not pass the validation rules for a column triggers this event.

For a complete list of the methods and events for the DataStore object and
information about each method, see the DataWindow Reference in the online
Help.

Unlike Datawindow controls, DataStores do not require any visual overhead
in awindow. Using a DataStore is therefore more efficient than hiding a
Datawindow control in a window.

Working with a DataStore

Resource Guide

To use aDataStore, you first need to create an instance of the DataStore object
in a script and assign the Datawindow object to the DataStore. Then, if the
DataStoreisintended to retrieve data, you need to set the transaction object for
the DataStore. Once these setup steps have been performed, you can retrieve
data into the DataStore, share data with another DataStore or DatawWindow
control, or perform other processing.

159

Using a custom DataStore object

Examples

The following script uses a DataStore to retrieve data from the database. First
it instantiates the DataStore object and assigns a DataWindow object to the
DataStore. Then it sets the transaction object and retrieves datainto the
DataStore:

datastore | ds_datastore

| ds_dat ast ore = CREATE datastore

| ds_dat ast ore. Dat aCbj ect = "d_cust _list"

| ds_dat ast or e. Set TransObj ect (SQLCA)

| ds_dat astore. Retrieve()

/* Perform sone processing on the data... */

Using a custom DataStore object

160

This section describes how to extend a DataStore in PocketBuilder by creating
auser object.

You may want to use a custom version of the DataStore object that performs
specialized processing. To define acustom DataStore, you use the User Object
painter. There you specify the DataWindow object for the DataStore, and you
canoptionally write scriptsfor eventsor define your own methods, user events,
and instance variables.

Using a custom DataStore involves two procedures:

1 Inthe User Object painter, define and save a standard class user object
inherited from the built-in DataStore object.

2 Usethe custom DataStore in your PocketBuilder application.

Once you have defined a custom DataStore in the User Object painter, you can
write code that uses the user object to perform the processing you want.

For instructions on using the User Object painter in PocketBuilder, see the
Users Guide.

O To define the standard class user object:

1 Select Standard Class User Object on the PB Objects page in the New
dialog box.

2 Select “datastore” asthe built-in system type that you want your user
object to inherit from, and click OK.

PocketBuilder

CHAPTER 11 Using DataStore Objects

The User Object painter workspace displays so that you can define the
custom object.

3 Specify the name of the DataWindow object in the DataObject box in the
Properties view and click OK.

4 Customize the DataStore by scripting the events for the object, or by
defining methods, user events, and instance variables.

5 Savethe object.

0 To use the user object in your application:

1 Select the object or control for which you want to write a script.

2 Open the Script view and select the event for which you want to write the
script.

3 Write code that uses the user object to do the necessary processing.

Here is asimple code example that shows how to use a custom DataStore
to retrieve data from the database. First it instantiates the custom
DataStore object, then it sets the transaction object and retrieves datainto
the DataStore:

uo_cust _dstore | ds_cust_dstore

| ds_cust _dstore = CREATE uo_cust _dstore

| ds_cust _dstore. Set TransChj ect (SQLCA)

| ds_cust _dstore. Retrieve()

/* Perform some processing on the data... */

Notice that this script does not assign the DataWindow object to the
DataStore. Thisis because the DataWindow object is specified in the user
object definition.

Changing the DataWindow object at runtime
When you associate a Datawindow object with a DataStore in the User

Object painter, you are setting the initial value of the DataStore's
DataObject property. At runtime, you can change the DatawWindow object
for the DataStore by changing the value of the DataObject property.

4 Compile the script and save your changes.

Resource Guide 161

Accessing and manipulating data in a DataStore

Accessing and manipulating data in a DataStore

If the data source is a
database

If the data source is
not a database

About the DataStore
buffers

About the Edit control

162

To accessdatausing aDataStore, you need to read the datafrom the data source
into the DataStore.

If the datafor the DataStore is coming from a database (that is, the data source
was defined as anything but External in the DataWindow painter), you need to
communicate with the database to get the data. The steps you perform to
communicate with the database are the same steps you use for a DataWindow
control.

For more information about communicating with the database, see“ Accessing
the database” on page 122.

If the data for the DatawWindow object does not come from a database (that is,
the data source was defined as External in the DataWindow painter), you can
use the following methods to import data into the DataStore:

ImportClipboard
ImportFile
ImportString

You can put datain the DataStore by using a Datawindow data expression, or
by using the Setltem method. You can use the same property and data
expressions as for a DataWindow control.

For more information on accessing data in a DataStore, see the DataWindow
Referencein the online Help.

Like a Datawindow control, a DataStore uses three buffers to manage data.
The buffers are described in Table 11-1.

Table 11-1: DataStore buffers

Buffer Contents

Primary Datathat has not been deleted or filtered out (that is, the rowsthat are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or in a script

The DataStore object has an Edit control. However, the Edit control for a
DataStore behavesin adlightly different manner from the Edit control for a
Datawindow. The Edit control for a Datawindow keeps track of text entered
by the user in the current cell (row and column); the Edit control for a
DataStore is used to manage data imported from an external source. The text
in the Edit control for a DataStore cannot be changed directly by the user. It
must be manipulated programmatically.

PocketBuilder

CHAPTER 11 Using DataStore Objects

Programming with

DataStores

Resource Guide

There are many methods for manipulating DataStore objects. Table 11-2 lists
some of the more commonly used.

Table 11-2: Common methods in DataStore objects

Method Purpose

DeleteRow Deletes the specified row from the DataStore.

Filter Filters rows in the DataStore based on the current filter criteria

InsertRow Inserts a new row.

Print Sends the contents of the DataStore to the current printer.

Reset Clears al rows in the DataStore.

Retrieve Retrieves rows from the database.

RowsCopy Copiesrows from one DataStore to ancther DataStore or
Datawindow control.

RowsMove Moves rows from one DataStore to another DataStore or
Datawindow control.

ShareData Shares data among different DataStores or DataWindow controls.
See “ Sharing information” on page 164.

Sort Sorts the rows of the DataStore based on the current sort criteria.

Update Sends to the database all inserts, changes, and deletions that have
been made since the last Update.

For information about DataStore methods, see the DataWindow Referencein
the online Help.

Dynamic Datawindow objects The methods in Table 11-2 manipul ate data
in the DataStore but do not change the definition of the underlying
Datawindow object. In addition, you can use the Modify and Describe methods
to access and manipulate the definition of a Datawindow object. Using these
methods, you can change the DataWindow object at runtime. For example, you
can change the appearance of a DataWindow or allow your user to create ad
hoc reports.

If you assign aDatawindow object to aDataStore dynamically, you must make
surethat the DataWindow object isavailableinaPKD fileor islistedinaPKR
file used to create the executable.

For more information, see Chapter 10, “Dynamically Changing DataWindow
Objects.”

Using DataStore properties and events This chapter mentions only afew
of the properties and events that you can use to manipulate DataStores. For
more information about DataStore properties and events, see the DataWindow
Reference in the online Help.

163

Sharing information

Sharing information

Result set
descriptions must
match

What is shared?

When you alter the
result set

Turning off sharing
data

164

The ShareData method allows you to share aresult set between two different
DataStoresor Datawindow controls. When you shareinformation, you remove
the need to retrieve the same data multiple times.

The ShareData method shares data retrieved by one Datawindow control or
DataStore (call ed the primary DataWindow) with another DatawWindow control
or DataStore (the secondary Datawindow).

When you share data, the result set descriptions for the DatawWindow objects
must be the same. However, the SELECT statements can be different. For
example, you could use the ShareData method to share data between
Datawindow objects that have the following SELECT statements, because the
result set descriptions are the same:

SELECT dept _id from dept
SELECT dept _id from dept where dept_id = 200
SELECT dept _id from enpl oyee

You can al so share data between two DataWindow objects where the source of
one is adatabase and the source of the other is external. Aslong asthelists of
columns and their datatypes match, you can share the data.

When you use the ShareData method, the following information is shared:

Primary buffer
Delete buffer
Filter buffer
Sort order

ShareData does not share the formatting characteristics of the DatawWindow
objects. That means you can use ShareData to apply different presentationsto
the same result set.

If you perform an operation that affects the result set for either the primary or
the secondary DataWindow, the change affects both of the objects sharing the
data. Operations that alter the buffers or the sort order of the secondary
Datawindows are rerouted to the primary Datawindow. For example, if you
call the Update method for the secondary DataWindow, the update operationis
applied to the primary DataWindow also.

To turn off the sharing of data, you use the ShareDataOff method. When you
call ShareDataOff for aprimary DataWindow, any secondary Datawindowsare
disassociated and no longer contain data. When you call ShareDataOff for a
secondary DataWindow, that DataWindow no longer contains data, but the
primary DataWindow and other secondary DataWindows are not affected.

PocketBuilder

CHAPTER 11 Using DataStore Objects

In most cases you do not need to turn off sharing, because the sharing of data
isturned off automatically when awindow is closed and any Datawindow
controls (or DataStores) associated with the window are destroyed.

Example: printing data from a DataStore

Resource Guide

Suppose you have awindow called w_employeesthat allows usersto retrieve,
update, and print employee data retrieved from the database:

! | Employe T il 4< ok
ID First Name Last Namg~|
10z Fran VWhitney [E]
105 Matthew Cobb
120 Philip Chin
148 Julie Jordan
160 Robert Breault
154 Melissa Espinoza
101 Jeannette Bertrand
195 Marc Dill |+]
<]] | [»

Update ‘ | Print

The Datawindow object displayed in the Datawindow control is suitable for
online display but not for printing. In this case, you could define a second
Datawindow object for printing that has the same result set description asthe
object used for display and assign the second object to a DataStore. You could
then share databetween the DataStore and the DataWindow control. Whenever
the user asked to print the data in the window, you could print the contents of
the DataStore.

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print

methods in PocketBuilder applications deployed to adevice or emulator. An
evauation version of this softwareis available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

165

Sharing information

When the window or
form opens

Code for the Update
button

Code for the Print
button

When the window or
form closes

166

The code you write begins by establishing the hand pointer as the current row
indicator for the dw_employees DataWindow control. Then the script sets the
transaction object for dw_employees and issues a Retrieve method to retrieve
some data. After retrieving data, the script creates a DataStore using the
instance variable or data member ids_datastore, and assigns the DataWindow
object d_employees to the DataStore. The final statement of the script shares
the result set for the dw_employees DataWindow control with the DataStore.

This codeisfor the window’s Open event:

dw_enpl oyees. Set RowFocusl| ndi cat or (Hand!)
dw_enpl oyees. Set Tr ansOhj ect (SQLCA)
dw_enpl oyees. Retri eve()

i ds_dat ast ore = CREATE dat astore
i ds_dat ast ore. Dat aCbj ect = "d_enpl oyees”
dw_enpl oyees. ShareDat a(i ds_dat ast ore)

Code for the cb_update button applies the update operation to the
dw_employees Datawindow control.

This codeisfor the Update button’s Clicked event:

I F dw_enpl oyees. Update() = 1 THEN

COW T usi ng SQ.CA;

MessageBox (" Save", " Save succeeded")
ELSE

ROLLBACK usi ng SQLCA;

MessageBox (" Save", "Save fail ed")
END | F

The Clicked event of the cb_print button prints the contents of ids_datastore.
Because the DatawWindow object for the DataStoreisd_employees, the printed
output uses the presentation specified for this object.

This codeisfor the Print button’s Clicked event:

i ds_datastore.Print()
When the window closes, the DataStore gets destroyed.
This codeis for the window’s Close event:

destroy ids_datastore

PocketBuilder

CHAPTER 11 Using DataStore Objects

Example: using two DataStores to process data

Suppose you have awindow called w_multi_view that shows multiple views of
the same result set. When the Employee List radio button is selected, the
window shows alist of employees retrieved from the database.

Figure 11-1: Displaying a list of employees in a DataWindow

‘.{E’j" Employet '6' W) ion £ 17:37 @
Options ———
(® Ernployee list
) Salary information

artrnent Mame Salary
18D Fran Whitney $4,570.0
18D Matthew Cobb $6,200.0
1aD Robert Breault £5,749.0
1aD Matasha Shishow $7,299.5
1aD Kurt Driscoll $4,802.3
1aD Rodrigo Guevara $4,299.80—

[T »

E|A

[«]

When the Employee Salary Information radio button is selected, the window
displays a graph that shows employee salary information by department.
Figure 11-2: Displaying a graph of employee salary information

Options
" Employee list
o

Average Salary by Department

Froma Mukarg | RZD) Stopng

Thiswindow has one Datawindow control called dw_display. It uses two
DataStores to process data retrieved from the database. The first DataStore
(ids_emp_list) sharesitsresult set with the second DataStore (ids_emp_graph).
The Datawindow objects associated with the two DataStores have the same
result set description.

Resource Guide 167

Sharing information

When the window or
form opens

Code for the
Employee List radio
button

Code for the
Employee Salary
Information radio
button

168

When the window opens, the application sets the pointer to the hourglass
shape. Then the code creates the two DataStores and sets the DatawWindow
objects for the DataStores. Next the code sets the transaction object for
ids_emp_list and issues a Retrieve method to retrieve some data.

After retrieving data, the code shares the result set for ids_emp_list with
ids_emp_graph. The next-to-last statement triggers the Clicked event for the
Employee List radio button. The final statement resets the pointer.

This codeisfor the window’s Open event:

Set Poi nt er (Hour d ass!)
ids_enp_list = Create DataStore
ids_enp_graph = Create DataStore

ids_enp_list.DataCbject = "d_enp_list"
i ds_enp_graph. Dat aCbj ect = "d_enp_graph”

ids_enmp_list.SetTransObj ect(sql ca)
ids_enp_list.Retrieve()
ids_enp_list.ShareData(ids_enp_graph)
rb_enmp_list. EVENT dicked()

Set Poi nt er (Arrow)

The code for the Employee List radio button (called rb_emp_list) setsthe
Datawindow object for the DataWindow control to be the same as the
Datawindow object for ids_emp_list. Then the script displays the data by
sharing the result set for the ids_emp_list DataStore with the Datawindow
control.

This codeis for the Employee List radio button’s Clicked event:

dw_di spl ay. Dat atbj ect = ids_enp_list. Data(j ect
i ds_enp_list. ShareDat a(dw_di spl ay)

The code for the Employee Salary Information radio button (called rb_graph)
issimilar to the code for the List radio button. It sets the DataWindow object
for the DataWindow control to be the same as the DatawWindow object for
ids_emp_graph. Then it displays the data by sharing the result set for the
ids_emp_graph DataStore with the Datawindow control.

This codeisfor the Employee Salary Information radio button’s Clicked event:

dw_di spl ay. Dat alhj ect = i ds_enp_graph. Dat athj ect
i ds_enp_gr aph. Shar eDat a(dw_di spl ay)

PocketBuilder

CHAPTER 11 Using DataStore Objects

When the window or
form closes

Resource Guide

When the window closes, the DataStores get destroyed.
This code is for the window’s Close event:

Destroy ids_enp_list
Destroy ids_enp_graph

Use garbage collection
Do not destroy the objectsif they might still bein use by another process. Rely
on garbage collection instead.

169

Sharing information

170 PocketBuilder

CHAPTER 12

About this chapter

Contents

Using graphs

Working with graphs in
your code

Resource Guide

Manipulating Graphs in
DataWindows

This chapter describes how to write code that allows you to access and
change agraph in your application at runtime.

Topic Page
Using graphs 171
Modifying graph properties 172
Accessing data properties 174

It iscommon for devel opers to design Datawindow objects that include
one or more graphs. When users need to understand and analyze data
quickly, abar, line, or pie graph can often be the most effective format to
display.

To learn about designing graphs, see the Users Guide.

The following sections describe how you can access (and optionally
modify) agraph by addressing its propertiesin code at runtime. There are
two kinds of graph properties:

« Properties of the graph definition itself These properties are
initially set inthe DatawWindow painter when you createagraph. They
include a graph’s type, title, axis labels, whether axes have major
divisions, and so on.

» Properties of the data These properties are relevant only at
runtime, when data has been loaded into the graph. They include the
number of seriesin agraph (series are created at runtime), colors of
bars or columnsfor aseries, whether the seriesis an overlay, text that
identifiesthe categories (categories are created at runtime), and so on.

171

Modifying graph properties

Using graphs in other controls
Although you will probably use graphs most often in DatawWindow objects, you

can also add graph controls to windows or visual user objects. Additional
PowerScript functions and events are available for use with graph controls.

For more information, see Chapter 7, “Manipulating Graphs in Windows.”

Modifying graph properties

Property expressions

Modify method

172

When you define agraph in the Datawindow painter, you specify its behavior
and appearance. For example, you might define agraph asacolumn graph with
acertain title, divide its Value axis into four major divisions, and so on. Each
of these entries corresponds to a property of agraph. For example, all graphs
have a property GraphType, which specifies the type of graph.

When dynamically changing the graph type
If you change the graph type, be sure also to change the other properties as

needed to define the new graph properly.

You can change these graph properties at runtime by assigning valuesto the
graph’s properties in code.

You can modify properties using property expressions. For example, to change
the type of the graph gr_emp to Column, you could code:

dw_enpi nf o. Obj ect. gr_enp. G aphType = Col Gr aph!
To change the title of the graph at runtime, you could code:
dw_enpinfo. bject.gr_emp.Title = "New title"

In any environment, you can use the Modify method to reference parts of a
graph.

For example, to change thetitle of graph gr_emp in Datawindow control
dw_empinfo, you could code:

dw_enpi nfo. Modi fy("gr_enp. Title = "New title ")

For a complete list of graph properties, see the DataWindow Reference in the
online Help.

PocketBuilder

CHAPTER 12 Manipulating Graphs in DataWindows

How parts of a graph are represented

Graphs consist of parts: atitle, alegend, and axes. Each of these parts has a set
of display properties. These display properties are themselves stored as
properties in a subobject (structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifiesthetext for thetitle.
Graphs aso have a property TitleDispAttr, of type grDispAttr, which itself
contains properties that specify al the characteristics of the title text, such as
the font, size, whether the text isitalicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These
properties are stored in a subobject (structure) of Graph called grAxis. For
example, graphs have a property Values, of type grAxis, which specifies the
properties of the Value axis, such as whether to use auto scaling of values, the
number of major and minor divisions, the axis label, and so on.

Here is a representation of the properties of a graph:

G aph
i nt Hei ght
int Depth
gr GraphType G aphType
bool ean Bor der
string Title

grDi spAttr Titl eDispAttr, LegendDi spAttr, PieDispAttr
string FaceNane
int TextSize
boolean Italic

gr Axi s Val ues, Category, Series
bool ean Aut oScal e
i nt Maj or Di vi si ons
int M norDivisions
string Label

Referencing parts of a graph

Resource Guide

You use dot notation or the Describe and Modify methods to reference the
display properties of the various parts of a graph. For example, one of the
properties of agraph’stitle is whether the text isitalicized or not. That
information is stored in the boolean Italic property in the TitleDispAttr
property of the graph.

173

Accessing data properties

This example changes the label text for the Value axis of graph gr_emp in the
Datawindow control dw_empinfo:

dw_enpi nf 0. Obj ect. gr _enp. Val ues. Label =" New | abel "

You can use the Browser to examine the properties of a DataWindow object
that containsagraph. For descriptions of graph properties, seethe DataWindow
Referencein the online Help.

Accessing data properties

How to use the
methods

To access properties related to a graph’s data at runtime, you use DataWindow
methods for graphs. There are three categories of these methods related to data:

* Methods that provide information about a graph’s data
* Methods that save data from a graph

» Methodsthat change the color, fill patterns, and other visual properties of
data

To call the methods for a graph in a DataWindow control, use the following
syntax:

DataWindowName.methodName ("graphName", otherArguments...)

For example, there is amethod CategoryCount, which returns the number of
categoriesin agraph. Soto get the category count in the graph gr_printer (which
isin the Datawindow control dw_sales), write:

Ccount = dw_sal es. Cat egoryCount ("gr_printer")

Getting information about the data

174

There are quite afew methods for getting information about datainagraphin
aDatawindow control at runtime. For all methods, you provide the name of
the graph within the Datawindow as the first argument. You can provide your
own name for graph controlswhen you insert them in the Datawindow painter.
If the presentation style is Graph, you do not need to name the graph.

These methods get information about the data and its display. For several of
them, an argument is passed by reference to hold the requested information:

PocketBuilder

CHAPTER 12 Manipulating Graphs in DataWindows

Table 12-1: Common methods for graph DataWindows

Method Information provided

CategoryCount The number of categoriesin agraph

CategoryName The name of a category, given its number

DataCount The number of datapointsin aseries

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

GetData The value of adata point, given its series and position
(superseded by GetDatavValue, which is more flexible)

GetDataPieExplode The percentage of the pie's radius that the pie dliceisto be
moved away from the center (exploded)

GetDataStyle Thecolor, fill pattern, or other visual property of aspecified
data point

GetDataValue The value of adata point, given its series and position

GetSeriesStyle Thecolor, fill pattern, or other visual property of aspecified
series

SeriesCount The number of seriesin agraph

SeriesName The name of a series, given its number

Saving graph data
The following methods allow you to save data from the graph:

Resource Guide

Table 12-2: Methods for saving data from a graph

Method Action

Clipboard Copies ahitmap image of the specified graph to the clipboard.

SaveAs Saves the datain the underlying graph to the clipboard or to a
filein one of a number of formats.

175

Accessing data properties

Modifying colors, fill patterns, and other data
The methods in Table 12-3 allow you to modify the appearance of datain a

graph.

Table 12-3: Methods for modifying the appearance of data

Method Action

ResetDataColors Resets the color for a specific data point

SetDataStyle Setsthe color, fill pattern, or other visual property for a
specific data point

SetSeriesStyle Setsthe color, fill pattern, or other visual property for a
series

Using graph methods

You call the data-access methods after a graph has been created and popul ated
with data. Some graphs, such as graphs that display datafor apage or group of
data, are destroyed and re-created internally asthe user pagesthrough the data.
Any changes you made to the display of agraph, such as changing the color of
aseries, are lost when the graph is re-created.

Event for graph To be sure that data-access methods are called whenever a graph has been

creation created and populated with data, you can call the methods in the code for an
event that is triggered when a graph is created. The graph-creation event is
triggered by the Datawindow control after it has created agraph and popul ated
it with data, but before it has displayed the graph.

By accessing the datain the graph in this event, you are assured that you are
accessing the current data and that the data displays the way you want it.

PocketBuilder providesan event | D, pbm_dwngraphcreate, that you can assign
to auser event for a Datawindow control.

Figure 12-1: Selecting a user event ID for graph creation

=

[®] Seript - graphereate for dw_1 returnz long [=1 E3
dwi_1 - graphcreate {3 returns long [pbr_dwn > = =
Access Return Type Event Mame -
Ipublic jl long jl GraphCreate

I External Event ID Ipbm_dwngraphcreate j =
< _>l_I

176 PocketBuilder

CHAPTER 12 Manipulating Graphs in DataWindows

0 To access data properties of a graph in a Datawindow control:

1 Placethe DataWindow control in awindow or user object and associateit
with the DataWindow object containing the graph.
Next you create a user event for the DataWindow control that istriggered
whenever a graph in the control is created or changed.

2 Select Insert>Event from the menu bar.
The Script view displays and includes prototype fields for adding a new
event.

3 Select the Datawindow control in thefirst drop-down list of the prototype
window.
If the second drop-down list also changes to display an existing
Datawindow event prototype, scroll to the top of the list to select New
Event or select Insert>Event once again from the menu bar.

4 Name the user event you are creating.
For example, you might call it GraphCreate.

5 Select ppm_dwngraphcreate for the event ID.

6 Click OK to save the new user event.

7 Writeascript for the new GraphCreate event that accesses the datain the
graph.
Calling data access methods in the GraphCreate event assures you that the
data access happens each time the graph has been created or changed in
the Datawindow.

Examples The following statement sets to black the foreground (fill) color of the Q1

seriesin the graph gr_quarter, which isin the DataWindow control dw_report.
The statement isin the GraphCreate event, which is associated with the event
ID pbm_dwngraphcreate in PocketBuilder:

Resource Guide

dw report. Set SeriesStyle("gr_quarter", "Ql", &
foreground!, 0)

177

Accessing data properties

The following statement changes the foreground (fill) color to red of the
second data point in the Stellar seriesin the graph gr_sale in awindow. The
statement can be in a script for any event:

int SeriesNum
/'l Get the nunmber of the series.
SeriesNum = gr_sale. FindSeries("Stell ar")

/1 Change col or of second data point to red
gr_sal e. Set Dat aStyl e(Seri esNum 2, foreground!, 255)

For more information For complete information about the data-access graph methods, see the
DataWindow Reference in the online Hel p. For more about user events, seethe
Users Guide.

178 PocketBuilder

PART 4

Connecting to a Database

This part describes how to connect to a database in the
development environment and in an application. It also
describes how to use MobilLink synchronization in an
application and how to set database parameters and
preferences.

CHAPTER 13

About this chapter

Contents

Database Connectivity in
PocketBuilder

This chapter describes how to access data in PocketBuilder and how to
create and manage database profiles.

Topic Page
Accessing data in PocketBuilder 181
About database profiles 182
Creating database profiles 183
Connecting to a database 188
Importing and exporting database profiles 190
Maintaining database profiles 191
Sharing database profiles 191

Accessing data in PocketBuilder

Resource Guide

When you build an application in PocketBuilder, you can accessdatain a
SQL Anywheredatabase or Ultralite databasein the Database painter and
the DataWindow painter. You can also write scripts that access these
databasesin the Application, Window, Menu, and User Object painters.

Proxy tables
SQL Anywhere allows you to create proxy tables that can map to other

databases, including databases managed by other database management
systems. For information on how to create proxy tables, see the SQL
Anywhere documentation. For information on identifying identity
columnsin the underlying database tables referenced by proxy tables, see
the technical note “ Techniques for Working with Identity Columnsin
ASA Proxy Tables’ on the Sybase Web site at
http://www.sybase.com/detail?id=1035056.

181

About database profiles

Connecting to a
database

Troubleshooting
connections

Synchronizing data

Setting parameters
and preferences

To work in the Database painter or build a Datawindow object in the
Datawindow painter, you need to create a database connection profile. This
chapter describes how to create and manage database profiles and how to use
them to connect to a database in PocketBuilder.

The connection profile has different options depending on which database
interface you use. Chapter 14, “Using database interfaces,” describes the
database interfaces provided with PocketBuilder.

In scripts, you use Transaction objects to connect to the database. Chapter 16,
“Using Transaction Objects,” describes how you connect to a database in a
script.

You can use two tools to trace your database connection in the development
environment: the PocketBuilder Database Trace tool and, for ODBC
connections, the ODBC Driver Manager Trace tool. Chapter 15,
“Troubleshooting Your Connection,” describes how to use the trace tools.

For many mobile applications, you do not have a constant network connection,
so having access to alocal database offline provides away to have the
application work with or without a network connection. You can use SQL
Anywhere or UltraLite as the local database and synchronize with your
back-end database using MaobiLink synchronization technology. MobiLink
allowsthelocal database to synchronize directly to many enterprise databases
including SQL Anywhere itself, Sybase Adaptive Server® Enterprise,
Microsoft SQL Server, IBM DB2, and Oracle.

Chapter 17, “Using MobiLink Synchronization,” provides an overview of
MobiLink synchronization and describes how you can launch synchronization
from PocketBuilder applications.

Chapter 18, “ Setting Additional Connection Parameters,” describeshow to set
database parameters and database preferences in PocketBuilder. Reference
information for database parameters and database preferencesisin the
Connection Reference.

About database profiles

182

PocketBuilder connects to a database when you:
» Open apainter that accesses the database

» Compile or save a PocketBuilder script containing embedded SQL
statements (such as a CONNECT statement)

PocketBuilder

CHAPTER 13 Database Connectivity in PocketBuilder

e Runan application that accesses the database

* Invoke a DatawWindow control function that accesses the database while
executing an application

PocketBuilder uses a database profile to connect to the database you used last
when you open a painter that accesses the database. It determines which
database you used last and how to connect to it by looking at database profile
settings in the registry.

A database profileisanamed set of parameters stored in your system registry.
Each profile defines a connection to a particular database in the PocketBuilder
development environment. You must create a database profile for each data
connection. You can:

e Select adatabase profile to establish or change database connections. You
can easily connect to another database at any time during a PocketBuilder
session. Thisis particularly useful if you often switch between different
database connections.

« Edit adatabase profile to modify or supply additional connection
parameters.

« Delete adatabase profileif you no longer need to access that data.
e Import and export profiles.

Because database profiles are created when you define your dataand are stored
in the registry, they have the following benefits:

e They are dways available to you in the development environment

e Connection parameters supplied in a database profile are saved until you
edit or delete the database profile

You can also use a database profile to generate the correct syntax to usein a
script for a database connection.

Creating database profiles

You work with two dialog boxes when you create a database profile in
PocketBuilder: the Database Profiles dialog box and the Database Profile
Setup dialog box.

Resource Guide 183

Creating database profiles

Using the Database painter to create database profiles
You can also create database profilesfrom the Database painter’s Objectsview.

Database Profiles dialog box

The Database Profiles dialog box uses an easy-to-navigate tree control format
to display your defined database profiles. You can create, edit, and delete
database profiles from this dialog box.

When you run the PocketBuilder Setup program, the program creates a
Vendorskey under the Sybase\PocketBuilder\2.5 section of the system registry
in HKEY_LOCAL MACHINE\SOFTWARE, and adds the following registry
string values: ODB for the ODBC interface, UL 10 for the UltraLite 10.x
interface, and UL9 for the UltraLite 9.x interface.

Most PocketBuilder examples use a standal one database called asademo.db
that isinstalled with Adaptive Server Anywhere 9. The PocketBuilder setup
program also installs the ASADemo_10 database in the Code
Examples\SADemoData\SA10 directory. Thisdatabaseisamigrated version of
asademo.db that you can usewith SQL Anywhere 10. Table and column names
in this database are different than the names in the SQL Anywhere 10 Demo
database that installs with SQL Anywhere 10.

The Database Profiles dialog box in Figure 13-1 displays profiles for SQL
Anywhere database (SA Demo and SalesDB_remote), aswell asan Ultral ite
database (UL Sync). The check mark on the SA Demo profile indicates that it
is currently connected. The figure also shows utilities you can use with these
interfaces.

184 PocketBuilder

CHAPTER 13 Database Connectivity in PocketBuilder

Figure 13-1: The Database Profiles dialog box

Database Profiles =
% Installed Database Interfaces - Cannech |
=-§5 ODB ODBC

[SalesDB_remate
El-E3 Utiities HEW. ..
% Create ASA Database Edit. .

@ Create ODBC Data Source
% Delete £5A Databass Delete
%7 MobiLink Synchronization Server
% QDBC Administrator Help
% sybase Central 4.3
%% Sybase Certral 5.0
-6 UL10 UltraLite 10

i

E-£3 Uiities
----- @ MobiLink Synchronization Server -
%2 Syhase Central 5.0

F-E ULG Ulkralite 9 =

Database Profile Setup dialog box

Each interface has a Database Profile Setup dialog box where you can set
interface-specific connection parameters. Figure 13-2 showsthedialog box for
ODBC.

Requirement for UltraLite 10 database profile
To create a database profile for an Ultral ite 10 database, you must copy the

ulrt10.dll file from the SQL Anywhere 10 ultralite\win32\386\lib\vs7
directory to the PocketBuilder 2.5 directory. To use an Ultral ite 10 database
with a PocketBuilder application on a handheld device, you must copy the
ulrt10.dll file from the SQL Anywhere 10 ultralite\cé\arm (Pocket PC) or
ultralite\ce\arm.50 directory (Windows Mobile) to the application or the
Windows directory of the device.

Resource Guide 185

Creating database profiles

Figure 13-2: The Database Profile Setup dialog box

Database Profile Setup - ODBC 53

Metwork, Options Preview
Connection System Transaction Synkax
Prafile Mamne: ASA demao
Connect Information
Data Source: ASA 9.0 Sample w

User I dba

Password: okl

Driver-Specific Parameters:

Cther
Isolation Level: |Read Committed v

[sutaCammit Mode [CIPrompt For Database Information
Comrmit on Disconnect H

[OF] [Cancel] [Apply] [Help]

The Database Profile Setup dialog box groups similar connection parameters
on each tab page and lets you set their values easily by using check boxes,
drop-down lists, and text boxes. Basic (required) connection parameters are on
the Connection tab page, and additional connection options, including
additional database parameters and SQL CA properties, are on the other tab

pages.

Asyou complete the Database Profile Setup dialog box in PocketBuilder, the
correct PowerScript connection syntax for each sel ected option isgenerated on
the Preview tab. You can copy the syntax you want from the Preview tab into
a PocketBuilder application script.

Supplying information in the dialog box

186

You do not need to supply values for al boxesin the Database Profile Setup
dialog box. If you supply the profile name and click OK, PocketBuilder
displaysaseriesof dialog boxesto prompt you for additional i nformation when
you connect to the database. For example, if you typein only the profile name
for an ODBC profile, when you attempt to connect, you are prompted for afile
or machine data source name.

PocketBuilder

CHAPTER 13 Database Connectivity in PocketBuilder

For more information about creating SQL Anywhere data source files, see
“About SQL Anywhere data sources’ on page 200.

Creating a database profile

Resource Guide

To create a new database profile, complete the Database Profile Setup dialog
box.

To create a database profile:
1 Click the Database Profile button in the PowerBar.

2 Highlight the database interface you want to use and click New.

Client software and interface must be installed
To display the Database Profile Setup dialog box, you must have the

required client software and database interface properly installed and
configured.

3 Onthe Connection tab page, type aname for the profile and supply values
for any other basic parameters your interface requires for connection.

4 On the other tab pages, supply values for any additional connection
options, such as database parameters and SQL CA properties.

For information about the valuesyou can supply for your connection, click
Help in the Database Profile Setup dialog box.

5 (Optional) Click the Preview tab if you want to see the PowerScript
connection syntax that PocketBuilder generates for each selected option.

You can copy the PowerScript connection syntax from the Preview tab
directly into a PocketBuilder application script. For more information, see
“Using the Preview tab to connect in a PocketBuilder application” on
page 239.

6 Click OK tosaveyour changesand closethe Database Profile Setup dialog
box. (To save your changes on a particular tab page without closing the
dialog box, click Apply.)

The Database Profiles dialog box displays, with the new profile name
highlighted under the appropriate interface. The database profile values
are saved in the system registry in the key HKEY CURRENT _USER\
Software\Sybase\PocketBuil der\2.0\DatabaseProfiles\Pocket PB.

187

Connecting to a database

Specifying passwords in database profiles

Suppressing display in
the profile registry
entry

Your password does not display when you specify it in the Database Profile
Setup dialog box. However, when PocketBuilder stores the values for this
profilein the registry, the actual password does display, in encrypted form, in
the DatabasePassword or LogPassword field.

To suppress password display in the profile registry entry, do the following
when you create a database profile.

To suppress password display in the profile registry entry:

1 Select the Prompt For Database Information check box on the Connection
tab in the Database Profile Setup dialog box.

Thistells PocketBuilder to prompt for any missing information when you
select this profile to connect to the database.

2 LeavethePassword box blank. Instead, specify the password in the dialog
box that displays to prompt you for additional information when you
connect to the database.

When you specify the password in response to a prompt instead of in the
Database Profile Setup dialog box, the password does not display in the
registry entry for this profile.

Connecting to a database

188

To establish or change a database connection in PocketBuilder in the Database
Profiles dialog box, select the database profile for the database you want to
access.

O To connect to a database using the Database Profiles dialog box:

1 Click the Database Profile button in the PowerBar, or select
Tools>Database Profile from the PowerBar.

2 Click the plussign (+) to theleft of the database interface you want to use
or double-click its name.

The list expands to display the database profiles defined for the interface.

PocketBuilder

CHAPTER 13 Database Connectivity in PocketBuilder

3 Select the name of the database profile you want to access and click
Connect.

PocketBuilder connects to the specified database and closes the dialog
box.

Using the Database painter to select a database profile
You can also select the database profile for the database you want to access

from the Database painter’s Objects view and select Connect from its pop-up
menu. However, this method uses more system resources than using the
Database Profiles dialog box.

What happens when you connect

When you connect to a database by selecting its database profile,
PocketBuilder writes the profile name to the MRUPrdfile (for “most recently
used” profile) string value in the following registry key:
HKEY_CURRENT_USER\Software\Sybase\PocketBuilder\2.0\
DatabaseProfiles\Pocket PB.

PocketBuilder also adds the profileto alist of recently-used profiles for the
current workspace under the Workspace subkey. These profiles display in the
Recent Connections list in the File menu for the workspace.

Each time you connect to a different database, PocketBuilder overwrites the
MRUProfile value in the registry with the name for the new database
connection.

When you open a painter that accesses the database, you are connected to the
database you used last. PocketBuilder determines which database thisis by
reading the registry.

Resource Guide 189

Importing and exporting database profiles

Importing and exporting database profiles

Each database interface provides an Import Profile(s) and an Export Profile(s)
option. You can use the Import option to import apreviously defined profilefor
use with an installed database interface. Conversely, you can use the Export
option to export a defined profile for use by another user.

190

Theability to import and export profiles providesaway to move profileseasily
between devel opers. It also meansyou no longer have to maintain ashared file
to maintain profiles, which isimportant if you cannot rely on connecting to a
network to share afile.

When you migrate to a new version of PocketBuilder, you can export the
profiles from the previous version and import them into the new version.

O To import a profile:

1

Highlight adatabaseinterface and select Import Profile(s) from the pop-up
menu. (In the Database painter, select Import Profile(s) from the File or
pop-up menu.)

From the Select Profile File dialog box, select the file whose profiles you
want to import and click Save.

Select the profile(s) you want to import from the Import Profile(s) dialog
box and click OK.

The profiles are copied into your registry. If aprofile with the same name
already exists, you are asked if you want to overwriteiit.

O To export a profile:

1

Highlight adatabaseinterface and select Export Profile(s) from the pop-up
menu. (In the Database painter, select Export Profile(s) from the File or
pop-up menu.)

Select the profile(s) you want to export from the Export Profile(s) dialog
box and click OK.
The Export Profile(s) dialog box lists all profiles defined in your registry.

From the Select Profile File dialog box, select a directory and afilein
which to save the exported profile(s) and click Save.

The exported profiles can be saved to anew or existing file. If saved to an
existing file, the profile(s) are added to the existing profiles. If aprofile
with the same name already exists, you are asked if you want to overwrite
it.

PocketBuilder

CHAPTER 13 Database Connectivity in PocketBuilder

Maintaining database profiles

You can edit a database profile to change one or more of its connection
parameters, and you can delete it when you no longer need to access its data.
You can also change a profile using either the Database Profile dialog box or
the Database painter.

When you edit a database profile, PocketBuilder updates the database profile
entry in the registry.

When you delete a database profile that connects to an ODBC data source,
PocketBuilder deletes the database profile entry in the registry, but it does not
delete the corresponding data source definition from the ODBC.INI registry
key. Thisletsyou recreate the database profilelater if necessary without having
to redefine the data source.

Sharing database profiles

About shared
database profiles

Resource Guide

When you work in PocketBuilder, you can share database profiles among
users. This section describes what you need to know to set up, use, and
maintain shared database profiles in PocketBuilder.

You can share database profiles in the PocketBuilder development
environment by specifying the location of afile containing the profiles you
want to share. You specify thislocation in the Database Preferences dial og box
in the Database painter.

To share database profiles among all PocketBuilder users at your site, store a
profile file on a network file server accessible to all users. This shared profile
file contains two profiles:

[DBMS_PROFI LES]

Profil es=Sal es, Orders

[Profile Sales]

DBMS=CDBC

DBPar m=Connect St ri ng=' DSN=Sal es; Ul D=dba; P\D=sql '
Pr ompt =FALSE

Aut oConmi t =FALSE

[Profile Orders]

DBMS=CDBC

DBPar m=Connect St ri ng=' DSN=Or der s; Ul D=; PWD=sql '
Pr ompt =FALSE

Aut oConmi t =FALSE

191

Sharing database profiles

Setting up shared
database profiles

192

When you share database profiles, PocketBuilder displays shared database
profiles from the file you specify as well as those from your registry.

Shared database profiles are read-only. You can select a shared profile to
connect to a database, but you cannot edit, save, or delete profilesthat are
shared. You can, however, make changesto a shared profile and saveit on your
computer, as described in “Making alocal copy of ashared database profile”
on page 194.

To set up shared database profilesin PocketBuilder, you specify thelocation of
the file containing shared profiles in the Database painter’s Database
Preferences dialog box.

O To set up shared database profiles:

1

In the Database painter, select Design>Options from the menu bar.

The Database Preferences dialog box displays. If necessary, click the
General tab to display the General property page.

In the Shared Database Profiles box, specify the location of the file
containing the database profiles you want to share. Do thisin either of the
following ways:

» Typethelocation (path name) in the Shared Database Profiles box

e Click the Browse button to navigate to the file location and display it
in the Shared Database Profiles box

In the following example, 1:\SHARE\dbprofs.ini is the name and location
of the file containing the database profiles to be shared:

PocketBuilder

CHAPTER 13 Database Connectivity in PocketBuilder

Resource Guide

Figure 13-3: Specifying shared database profiles

Database Preferences

General | Object Colors | Script || Font | Coloring
Application
Shared Database Profiles:

Ii{sharedbprofs,ini|

Painter Cptions

Connect ko Default Profile
Keep Connection Open
Use Extended Attributes

[read onky

Columns in Table Display: | &
SQL Terminator Character: |;

Refresh Table List: 1800 Seconds

X

[OF H Cancel][Apply

J

Help

]

Click OK to apply the Shared Database Profiles setting to the current

connection and all future connections and close the Database Preferences

dialog box.

PocketBuilder saves your Shared Database Profiles setting in the registry.

You select a shared database profile to connect to adatabase the same way you
select alocal profile. The Database Profiles dialog box lists both shared and
local profiles. Shared profiles are denoted by a network icon and the word

(Shared).

193

Sharing database profiles

Making a local copy of
a shared database
profile

Maintaining shared
database profiles

194

Figure 13-4: Shared database profiles in the Database Profiles dialog
box

Database Profiles §|

22 Installed Database Interfaces
=g ODB ODEC

m ASA demao
B2 Orders (Shared)
B2 Sales (Shared) Mew. ..
- (4] Utilities
e JULS Ultralite

Because shared database profiles can be accessed by multiple users running
PocketBuilder, you cannot make changes to these profiles. However, you can
modify and save a copy of a shared database profile for your own use.

Select the profile in the Database Profiles dialog box, click Edit, and modify

the praofile. When you click OK to save your changes, PocketBuilder pops up
aresponse window asking if you want to save acopy of the profileto your local
machine. When you click OK, PocketBuilder saves the modified copy in your
computer’s registry. Both profiles display in the Database Profiles dialog box.

If you maintain the database profiles for PocketBuilder at your site, you might
need to update shared database profiles from time to time and make these
changes available to your users.

Because shared database profiles can be accessed by multiple users running
PocketBuilder, it is not a good idea to make changes to the profiles over a
network. Instead, you should make any changes locally and then provide the
updated profilesto your users.

To maintain shared database profiles at your site:

1 Makeand save required changes to the shared profiles on your own
computer. These changes are saved in your registry.

2 Export the updated profile entries from your registry to the existing file
containing shared profiles.

For instructions, see “Importing and exporting database profiles’ next.

PocketBuilder

CHAPTER 13 Database Connectivity in PocketBuilder

3 Ifthey have not already done so, have users specify the location of the new
profilesfilein the Database Preferences dial og box so that they can access
the updated shared profiles on their computers.

Resource Guide 195

Sharing database profiles

196 PocketBuilder

CHAPTER 14

About this chapter

Contents

Using database interfaces

This chapter describes the database interfaces provided by PocketBuilder.

Topic Page
About database interfaces 197
Working with the ODBC database interface 198
Working with the UltraL ite database interface 213

About database interfaces

Standard database
interfaces

Native database interfaces

Resource Guide

There are two ways to access data in the PocketBuilder development
environment:

e Through a standard database interface
e Through anative database interface

A standard database interface communicates with a database through a
standard-compliant driver or data provider. The standard-compliant driver
or data provider translates the abstract function calls defined by the
standard’sAPI into callsthat are understood by a specific database. To use
astandard interface, you need to install the standard’s APl and a suitable
driver or data provider. Then, install the standard database interface you
want to use to access your DBMS by selecting the interfacein the
PocketBuilder Setup program.

PocketBuilder currently supports the Open Database Connectivity
(ODBC) standard driver.

A native databaseinterface communi cateswith adatabase through adirect
connection, using that database’ s native APl and aPocketBuilder database
interface DLL for that specific database.

PocketBuilder currently provides a native interface to UltraLite 10.x
databases through the file pkul 1025.dll, and to Ultralite 9.x databases
through the file pkul925.dIl. Thisfileisinstalled by default when you
install PocketBuilder.

197

Working with the ODBC database interface

Loading database
interface libraries

PocketBuilder loadsthe libraries used by a database interface when it connects
to the database. PocketBuilder does not automatically free the database
interface libraries when it disconnects.

Although memory use is somewhat increased by this technique (since the
loaded database interface libraries continue to be held in memory), the
technique improves performance and eliminates problems associated with the
freeing and subsequent reloading of libraries experienced by some database
connections.

If you want PocketBuilder to free database interface libraries on disconnecting
from the database, you can change its default behavior:

To change the default

behavior for Do this

Connectionsin the Select the Free Database Driver Libraries On

development Disconnect check box on the General tab of the System

environment Options dialog box.

Runtime connections Set the FreeDBL ibraries property of the Application
object to TRUE on the General tab of the Propertiesview
in the Application painter or in a script.

Working with the ODBC database interface

198

PocketBuilder is closely integrated with Sybase SQL Anywhere, which uses
the ODBC database interface. This section contains the following topics:

» Connecting to a SQL Anywhere database on Windows CE
* About SQL Anywhere data sources

» Defining the SQL Anywhere data source

» Defining multiple data sources for the same data

* How PocketBuilder accesses the data source

e Support for Transact-SQL special timestamp columns

* ThePKODB25 nitialization file

* Preparing remote databases

e Starting SQL Anywhere on adevice

PocketBuilder

CHAPTER 14 Using database interfaces

Connecting to a SQL Anywhere database on Windows CE

Using file DSNs

Using a different SQL
Anywhere ODBC
driver

In the development environment, the ODBC driver manager provides an
interface between the PocketBuilder ODB interface (pkodb25.dll) and the
Adaptive Server Anywhere 9 ODBC driver (dbodbc9.dll) or the SQL
Anywhere 10 ODBC driver (dbodbc10.dll). The driver manager can handle
threetypes of datasource name (DSN) files: system DSNs, user DSNs, and file
DSNs. You can create a database connection profile using any of these DSN
types.

In applications that you deploy to Windows CE, you must use afile DSN
because there isno ODBC driver manager.

Windows CE does not provide an ODBC driver manager or an ODBC
Administrator. On Windows CE, SQL Anywhere uses ODBC data sources
stored in ANSI format files. A file DSN has the same name as the data source,
with the extension .dsn, and is usually stored at the root level of the device.

Windows CE also searches for data source files in the following locations:

e Thedirectory from which the ODBC driver (dbodbc9.dll or dbodbc10)
was loaded. Thisis usually the Windows directory.

e Thedirectory specified in the Location key of the Adaptive Server
Anywhere or SQL Anywhere section of the registry. Thisis usualy the
same as the SQL Anywhere installation directory. The default installation
directory is: \Program Files\Sybase\ASA or \Program Files\SQLANy10.

You can specify either the DSN or the FILEDSN keyword to use file data source
definitionsin a script. On Windows CE, DSN and FILEDSN are synonyms.

Thedatasourcetypically specifiesthelocation of the database and the database
engine. For more information about defining data sources, see “ About SQL
Anywhere data sources” on page 200.

The default ODBC driver supplied with Adaptive Server Anywhere version 9
is dbodbc9.dll. You can specify adifferent ODBC driver by including
“driver=dbodbcX. dl | " inthe ConnectString parameter in the DBParm value
or inthefile datasource, where X isthe version number of the SQL Anywhere
ODBC driver.

For example, to use a SQL Anywhere 10 ODBC driver on the Windows CE
device, you can set the following DBParm value in a script:

SQLCA. DBPARME" Connect St ri ng=" DSN=nyDSN; dri ver =dbodbc10. dl | ; Ul D=dba; PM\D=sql ' "

CONNECT usi ng SQLCA;

Resource Guide

SQL CA isthe default connection object.

199

Working with the ODBC database interface

If you are running your PocketBuilder applications from the desktop, use the
actual name of the driver (for example, “SQL Anywhere 10”) in the
ConnectString parameter rather than the name of the DLL. Otherwise, the
driver you select in the connection string might be ignored.

For moreinformation about setting SQL CA parameters, see“ Assigning values
to the Transaction object” on page 237.

The DSN you assign must exist intheroot directory on the Windows CE device
or emulator, or inthe\Windows directory or thedirectory fromwhich the server
was started. You can include the driver name in the DSN instead of the
DBParm by adding an assignment for the driver in the DSN file:

[CoBC

engi nenane=asadeno

dat abasenane=asadeno

dat abasefi | e=\ Program Fi | es\ Sybase\ ASA\ asadeno. db
start=\Program Fi |l es\ Sybase\ ASA\ dbsrv9. exe

Dri ver =dbodbc9. dl |

About SQL Anywhere data sources

Basic software
components for SQL
Anywhere

200

SQL Anywhereincludestwo database servers—apersonal database server that
can be used on a single desktop, and a network database server that supports
communications across a network. The network database server, dbsrvXX.exe
isaways used on Windows CE systems, where XX is the version of the SQL
Anywhere database system. (The personal database server usesthe
dbengXX.exe engine.)

Figure 14-1 show the basi ¢ software components required to connect to a SQL
Anywhere data source in PocketBuilder.

PocketBuilder

CHAPTER 14 Using database interfaces

Resource Guide

Figure 14-1: Components of a SQL Anywhere connection

PocketBuilder development
environment

ODEC interface
DL PKODB25.DLL
ODBC Driver
Manager ODBC32.0LL
DBODBCXX.DLL
ODBC Driver where XX is database
system version number
v

Data source

SQL Anywhere

The PocketBuilder ODB interface (pkodb25.dll) calls ODBC functionsto
submit SQL statements, to catal og requests, and to retrieve results from adata
source.

The Microsoft ODBC driver manager (odbc32.dll) installs, loads, and unloads
driversfor an application.

No ODBC driver manager on Windows CE
Thereisno ODBC driver manager on Windows CE. For moreinformation, see

“Connecting to a SQL Anywhere database on Windows CE” on page 199.

The SQL Anywhere ODBC driver (dbodbc9.dll or dbodbc10.dll) processes
ODBC function calls, submits SQL requests to a particular data source, and
returns results to an application. The driver also translates an application’s
reguest so that it conformsto the SQL syntax supported by the SQL Anywhere
database.

201

Working with the ODBC database interface

Preparing to use the
data source

The SQL Anywhere data source stores and manages data for an application.

Before you define and connect to a SQL Anywhere data sourcein
PocketBuilder, follow these steps to prepare the data source.

O To prepare a SQL Anywhere data source:

1 Make sure the database file for the SQL Anywhere data source exists.

You can create a new database using SQL Anywhere outside of
PocketBuilder, or by launching the Create ASA Database utility from the
Utilitiesfolder in the Database Profiles dialog box. For more information,
see the chapter on managing databases in the Users Guide.

You can also convert an enterprise database for use with PocketBuilder.
For more information, see “ Preparing remote databases’ on page 211.

2 Make sure you have the log file associated with the SQL Anywhere
database so that you can fully recover the database if it becomes corrupted.

If thelog file for the SQL Anywhere database does not exist, the SQL
Anywhere database engine creates it. However, if you are copying or
moving a database from another computer or directory, you should copy
or movethelog filewithiit.

Defining the SQL Anywhere data source

Defining file data
sources

202

You can define user, system, or file data sources. If you want to use the data
source on a Pocket PC, define afile data source. Windows CE supports only
file data sources.

When you create alocal SQL Anywhere database in the Database painter,
PocketBuilder automatically creates a data source definition and database
profilefor you. Therefore, you do not need to define auser data source for use
on the desktop, but you do need to define a file data source if you want to
deploy the database to aremote device.

You can use the ODBC Data Source Administrator utility to create afile data
source, but in general it iseasier to use atext editor. The file should be saved
with ANSI encoding.

PocketBuilder

CHAPTER 14 Using database interfaces

Defining system and
user data sources

Resource Guide

The following example shows the format of the file. The database name and
engine name are usually the same as the name of the database file without the
.db extension. In the exampl g, the database fileis MyRemoteDB.db, and on the
deviceit will beinstalled in the same directory as the application, \Program
Files\AcmeTools:

[ODBC]

ui d=dba

pwd=sq|l

engi nename=MyRenot eDB

dat abasename=M/Renot eDB

dat abasefi |l e=\ Program Fi | es\ AcneTool s\ MyRenot eDB. db
start=\Program Fi | es\ Sybase\ ASA\ dbsrv9. exe

Use the following procedure to define a system or user data source for use on
adesktop or server:

0 To define a data source for the SQL Anywhere driver:

1 Launch the ODBC Data Source Administrator utility. From the User or
System DSN tab page, click the Add button.

The Create New Data Source dialog box displays.

2 Select adriver for the version of SQL Anywhere or Adaptive Server
Anywhere that your database uses and click Finish.

The ODBC configuration dial og box displays for the database versionyou
selected.

203

Working with the ODBC database interface

204

Figure 14-2: The ODBC Configuration dialog box

0DBC Configuration for, Adaptive Server An... @g|

ODeC l Login] Database] Network] Advanced]

D ata source name: |

Description: ||

Izolation level: %

™ Microzoft applications [Keys in SOLStatistics]
™ Delphi applications

™ Suppress fetch warmings

™ Prevent diver not capable erors

™ Delay AutoCommit until statement close

Describe Cursor Behavior
" Mever * |f required O Always

Translator: [N Translators

Select Translator...
Test Connection

QK | Cancel | Help |

You must supply the following values:

» Data source name on the ODBC page

» User ID and password on the Login page

» Database file on the Database page

Use the Help button to get information about boxes in the dial og box.

Using the Browse button
When you use the Browse button to supply the Database File name (for

example, the SQL Anywhere sample database demo.db), this name also
creates entries in both the Data Source Name and Database Name boxes.
This might change values you previously supplied in these boxes.

If you want to specify adifferent namefor the data source or database, you
can edit one or both of these boxes after using the Browse button.

Click OK to save the data source definition.

PocketBuilder

CHAPTER 14 Using database interfaces

Specifying a Start Line
value

Preventing the SQL
Anywhere log screen
from displaying

When the SQL Anywhere ODBC driver cannot find arunning database server
using the PATH variable and Database Name setting, it uses the commands
specified in the Start Line field to start the database server.

If you are creating a DSN for use on a Pocket PC device, specify the name of
the network database server and its location on the device, for example:
\Program Files\SQLAnyPath\dbsr\WXX.exe, where SQLAnyPath is typically
SQLANy10 for SQL Anywhere 10 and Sybase\ASA for Adaptive Server
Anywhere 9, and XX is the version of the database system.

If you are creating a DSN for use in the devel opment environment only, you
can specify the name and location of the personal database server. The default
location is C:\Program Files\Sybase\SQL Anywhere XX\win32\dbengXX.exe.

You can add a -q or -qw switch to the start line to prevent the SQL Anywhere
log screen from displaying when you connect to the database. The start linein
afile DSN for use on a Pocket PC device would look like this:

start=\Program Fi | es\ SQLAny10\ dbsrv10. exe -qw
The start line for Adaptive Server Anywhere 9 might look like this:
start=\Program Fi | es\ Sybase\ ASA\ dbsrv9. exe -q

Because the connection might take a few moments, you might want to call the
SetPointer function to display the Windows CE version of the hourglassicon
when using the -q or -qw switch. On Windows CE, you need to explicitly call
the SetPointer function to reset the default pointer when the script compl etes.

For more information on completing the ODBC Configuration For SQL
Anywhere dialog box, seethe SQL Anywhere Server Database Administration
book in the SQL Anywhere documentation set.

Defining multiple data sources for the same data

Resource Guide

When you define an ODBC data source in PocketBuilder, each data source
name must be unique. You can, however, define multiple data sources that
access the same data, as long as the data sources have unique names.

205

Working with the ODBC database interface

For example, assume that your data source is a SQL Anywhere database,
C:\SQLANWSALES.DB. Depending on your application, you might want to
specify different sets of connection parametersfor accessing the database, such
as different passwords and user 1Ds.

To do this, you can define two ODBC data sources named Salesl and Sales2
that specify the same database (C:\SQLANWSALES DB) but use different user
IDs and passwords. When you connect to the data source using a profile
created for either of these data sources, you are using different connection
parameters to access the same data.

How PocketBuilder accesses the data source

PKODB25
initialization file

ODBCINST registry
entries

206

When you access an ODBC data source in the PocketBuilder devel opment
environment, there are several initialization files and registry entries on your
computer that work with the ODBC interface and driver to make the
connection.

The PKODB25 initialization file maintains access to extended functionality in
the back-end DBMS, for which ODBC does not provide an API call. Examples
of extended functionality are SQL syntax or DBM S-specific function calls.

In most cases, you do not need to edit the PKODB25 initiaization file. In
certain situations, however, you may need to add functions to the PKODB25
initialization file for your DBMS.

For instructions, see “ The PKODB25 initialization file” on page 209.

The ODBCINST initialization information is located in the
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI registry key.
Whenyou install an ODBC-compliant driver, ODBCINST.INI isautomatically
updated with a description of the driver.

This description includes:
» The DBMS or data source associated with the driver

* Thedrive and directory of the driver and setup DLLs (for some data
sources, the driver and setup DLL s are the same)

» Other driver-specific connection parameters

You do not need to edit the registry key directly to modify connection
information.The key is automatically updated when you install the driver.

PocketBuilder

CHAPTER 14 Using database interfaces

ODBC registry entries

Database profiles
registry entry

Resource Guide

ODBC initialization information is located in the
HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI registry key. When
you define a data source, the driver writes the val ues you specify in the ODBC
setup dialog box to the ODBC.INI registry key.

The ODBC.INI key contains subkeys named for each defined data source. Each
subkey contains the values specified for that data source in the ODBC setup
dialog box. The values include the following:

» Databasefile

* Driver

e Optional description

e Connection parameters

Do not edit the ODBC subkey directly to modify connection information.
Instead, use atool designed to define ODBC data sources and the ODBC
configuration automatically, such as the ODBC Data Source Administrator.

Database profiles for al data sources are stored in the registry in
HKEY_CURRENT_USER\SOFTWARE\Sybase\PocketBuilder\2.0\
DatabaseProfiles.

You should not need to edit the profiles directly to modify connection
information. Thesefilesare updated automatically when PocketBuilder creates
the database profile as part of the ODBC data source definition.

You can also edit the profile in the Database Profile Setup dialog box or
complete the Database Preferences dialog box in PocketBuilder to specify
other connection parameters stored in the registry. (For instructions, see
Chapter 18, “ Setting Additional Connection Parameters.”)

The following example shows a portion of a database profile for the SQLAny
Demo data source:

DBVB=0DBC

Dat abase=SQL Anywhere Deno DB
User | d=dba

Dat abasePasswor d=
LogPasswor d=

Ser ver Nane=

Logl d=

Lock=

207

Working with the ODBC database interface

DbPar m=Connect St ri ng="' DSN=SQ_Any Denp; Ul D=dba; PWD=sql '
Prompt =0

Thisregistry entry example showsthe two most important valuesin a database
profile for an ODBC data source:

DBMS TheDBMSvalue(ODBC) indicatesthat you areusingthe ODBC
interface to connect to the data source.

DBParm The ConnectString DBParm parameter controls your ODBC
data source connection. The connect string must specify the DSN (data
source name) val ue, which tells ODBC which data source you want to
access. When you select a database profile to connect to a data source,
ODBC looksin the ODBC.INI registry key for a subkey that corresponds
to the data source name in your profile. ODBC then uses the information
in the subkey to load the required libraries to connect to the data source.
The connect string can also contain the UID (user ID) and PWD
(password) values needed to access the data source.

Support for Transact-SQL special timestamp columns

When you work with a SQL Anywhere table in the Database or DatawWindow
painter, the default behavior isto treat any column named timestamp as a SQL
Anywhere Transact-SQL special timestamp column.

Creating special
timestamp columns

208

You can create a Transact-SQL special timestamp columninaSQL Anywhere
table.

To create a Transact-SQL special timestamp column in a SQL Anywhere
table in PocketBuilder:

1 Givethe nametimestamp to any column having atimestamp datatype that

you want treated as a Transact-SQL special timestamp column. Do thisin
one of the following ways:

* Inthe painter — select timestamp as the column name. (For
instructions, see the Users Guide.)

* InaSQL CREATE TABLE statement —follow the “CREATE TABLE
example” next.

PocketBuilder

CHAPTER 14 Using database interfaces

CREATE TABLE
example

Not using special
timestamp columns

2 Specify ti mest anp asthe default value for the column. Do thisin one of
the following ways:

e Inthepainter—selectt i mest anp asthedefault value for the column.
(For instructions, see the Users Guide.)

* InaSQL CREATE TABLE statement —follow the “CREATE TABLE
example” next.

The following CREATE TABLE statement defines a SQL Anywhere table
named timesheet containing three columns: employee_ID (integer datatype),
hours (decimal datatype), and timestamp (timestamp datatype and timestamp
default value):

CREATE TABLE tinesheet (
enpl oyee_| D | NTECER,
hours DECI MAL,
ti mestanp TI MESTAMP default timestanp)

If you want to change the default behavior, you can specify that PocketBuilder
not treat SQL Anywhere columns named timestamp as Transact-SQL special
timestamp columns.

To specify that PocketBuilder not treat columns named timestamp as a

Transact-SQL special timestamp column:

e Editthe Adaptive Server Anywhere section of the PKODB25 initialization
file to change the value of SQL SrvrTSName from' Yes' to' No' .

After making changes in theinitialization file, you must reconnect to the
database to have them take effect. See “ Adding functions to the
initialization file” on page 210.

The PKODB25 initialization file

Function of the
initialization file

Editing the

initialization file

Resource Guide

The name of theinitialization file for ODBC connectionsis PKODB25.INI.

When you access data through the ODBC interface, PocketBuilder uses the
PKODB25 initialization file to maintain access to extended functionality inthe
back-end DBMS, for which ODBC does not provide an API call. Examples of
extended functionality are SQL syntax or function calls specific to aparticular
DBMS.

In most cases, you do not need to modify the PKODB25 initialization file.
Change the PKODB25 initiaization file only if you are asked to do so by a
Technical Support representative. Changes to this file can adversely affect
PocketBuilder.

209

Working with the ODBC database interface

Adding functions to
the initialization file

210

However, you can edit the PKODB25 initialization file if you need to add
functions for your back-end DBMS.

If you modify the PKODB25 initializationfile, first make acopy of theexisting
file, then keep arecord of all changesyou make. If you call Technical Support
after modifying the PKODB25 initialization file, tell the representative that
you changed the file and describe the changes you made.

The PKODB25 initialization file lists the functions for SQL Anywhere. If you
need to add afunction to the PKODB25 initiaization file for use with SQL
Anywhere, add the function to the ASA_FUNCTIONS section.

0 To add functions to an existing section in the PKODB25 initialization file:

1 Openthe PKODB25 initidization file in one of the following ways:

e UsetheFile editor in PocketBuilder. (For instructions, seethe Users
Guide))

» Useany text editor outside PocketBuilder.
2 Findthe[ASA_FUNCTIONS] section near the end of thefile:

[ASA_FUNCTI ONS]

Aggr Funcs=avg(x), avg(di stinct x), count(x),
count (di stinct x),count(*),list(x),
list(distinct x),max(x), max(distinct x),

m n(x), m n(di stinct x),sun(x),sun(distinct x)

Funct i ons=abs(x), acos(x), asi n(x), atan(x),
atan2(x,y), ceiling(x),cos(x),cot(x), degrees(x),
exp(x), floor(x),log(x),!lo0gl0(x),
nod(di vi dend, di vi sor), pi (*), power (X,Y),
radi ans(x), rand(), rand(x),

r emai nder (di vi dend, di vi sor), round(x,Yy),
sign(x),sin(x),sqgrt(x),tan(x),
"truncate"(x,y),ascii(x),byte_length(x),

byt e_substr(x,y, z), char(x), char_I engt h(x),
charindex(x,y),difference(x,y)insertstr(x,y, z),
| case(x),left(x,y),length(x), locate(x,y,z),
lower(x),ltrimx), patindex('x',y), repeat(x,y),
replicate(x,y),right(x,y),rtrimx),
simlar(x,y), soundex(x), space(x),str(x,y, z),
string(x,...),stuff(w x,y, z),substr(x,y, z),
trimx), ucase(x), upper(x), date(x),

dat ef or mat (x, y), dat enane(x, y), day(x),

daynane(x), days(x), dow(x), hour (x), hours(x),

m nut e(x), m nutes(x), m nutes(x,y), nont h(x),
nont hnane(x), mont hs(x), nont hs(x, y), now*),
quarter(x), second(x), seconds(x), seconds(x,Yy),

PocketBuilder

CHAPTER 14 Using database interfaces

today(*), weeks(x), weeks(x,y), year(x), years(x),
years(x,y),ynd(x,y, z), dateadd(x,y, z),

datedi ff(x,y, z), datenanme(x, y), datepart(x,y),
getdate(),cast(x as y),convert(x,y, z),

hext oi nt (x), i nttohex(x),
connection_property(x,...),datal ength(x),
db_i d(x), db_name(x), db_property(x),

next _connecti on(x), next _dat abase(x),
property(x), property_name(Xx),
property_nunber (x), property_description(x),
argn(x,y,...),coal esce(x,...),
estimate(x,y,z),estimte_source(x,y, z),
experience_estimate(x,y,z),ifnull(x,y, z),

i ndex_estimate(x,y, z),isnull(x,...),

nunber (*), pl an(x), traceback(*)

To add anew function, type acommafollowed by the function name at the
end of the appropriate function list, asfollows:

Aggregate functions — add aggregate functions to the end of the
AggrFuncslist.

All other functions — add all other functions to the end of the
Functions list.

Case sensitivity
If the back-end DBMS you are using is case sensitive, be sure to use the

required case when you add the function name.

Save your changes to the PKODB25 initialization file.

Preparing remote databases

Resource Guide

When you prepare a SQL Anywhere database to be used as a remote database
on adevice, you usually define a subset of the enterprise database that is
relevant to the needs of the maobile application. There are severa options
available for building a SQL Anywhere database from an enterprise database:

Use Sybase Central

Use PowerDesigner®

Use tools that come with your enterprise database

211

Working with the ODBC database interface

Sybase Central

PowerDesigner

Tools that come with
your enterprise
database

After you have built the SQL Anywhere database, you can copy it to the device
using Microsoft ActiveSync. You also need to create aDSN file and copy it to
the root directory on the device. For more information, see “ About SQL
Anywhere data sources’” on page 200.

Sybase Central isautility that allows developersto build a SQL Anywhere
database from another database management system. (Sybase Central can be
installed from the SQL Anywhere installation program.) For example, these
are the steps needed to start with an Oracle database and build a SQL
Anywhere database and use it with PocketBuilder:

1 Open Sybase Central.

Connect to an Oracle database.

Migrate required tables to SQL Anywhere.

Use MobiLink scripting capabilities to generate initial scripts.

Use the PocketBuilder Database painter to view the database schema.

o o1~ WN

Develop an application using the SQL Anywhere databasein
PocketBuilder.

7 Deploy the application to the Windows CE device or emulator.

PowerDesigner Physical DataModel allowsyou to reverse-engineer enterprise
databases and create corresponding SQL Anywhere databases. It also gives
you the ability to manipulate the database schema. The PowerDesigner
Physical Data Model is not provided with PocketBuilder.

You can use the tools that come with your enterprise database to view the
database schema. You can then create the SQL Anywhere database in the tool
of your choice, such as Sybase Central, PowerDesigner, or acommand-line
tool.

For information about preparing remote databases for use with MobiLink, see
Chapter 17, “Using MobiLink Synchronization.”

Starting SQL Anywhere on a device

212

To start a SQL Anywhere database on a Pocket PC device or emulator, usethe
File Explorer (in the Programs folder) to navigate to the location where SQL
Anywhereisinstaled, typically Program Files\SQLANny10 or Program
Files\Sybase\ASA. Tap dbsrv10 or dbsrv9, use the drop-down lists or the Soft
Input Panel to complete the Server Startup Options dialog box, and tap OK.

PocketBuilder

CHAPTER 14 Using database interfaces

Your application can start the database automatically by specifying the
properties of a Transaction object and issuing aCONNECT statement. For more
information, see Chapter 16, “Using Transaction Objects.”

Working with the UltraLite database interface

This section describes how to use the native Ultral ite database interface with
PocketBuilder. UltraLite is a deployment technology for SQL Anywhere
databasesthat allows applications on small devicesto use full-featured SQL to
accomplish data storage, retrieval, and manipulation.

Ultral ite supports referential integrity, transaction processing, multi-table
joins of all varieties, and most of the same datatypes, runtime functions, and
SQL data manipulation features as SQL Anywhere. It provides an ultra-small
footprint by generating a custom database engine for your application that
includes only the features required by your application.

PocketBuilder supports UltraLite 9.x and UltraL ite 10.x. The PocketBuilder
UL 9 (pkul925.dIl) and UL 10 interfaces (pkul 1025.dIl) use the UltraL ite C++
Component API to implement communication with the database.

Requirement for UltraLite 10 database profile
To create a database profile for an Ultralite 10 database, you must copy the

ulrt10.dil file from the SQL Anywhere 10 ultralite\win32\386\lib\vs7
directory to the PocketBuilder 2.5 directory. To use an Ultralite 10 database
with a PocketBuilder application on a handheld device, you must copy the
ulrt10.dll file from the SQL Anywhere 10 ultralite\cé\arm (Pocket PC) or
ultralite\ce\arm.50 directory (Windows Mobile) to the application or the
Windows directory of the device

Resource Guide 213

Working with the UltraLite database interface

Supported UltraLite datatypes
The UltraL ite interface supports the following Ultral ite datatypes:

BINARY LONGVARCHAR TIME
BIT NUMERIC TIMESTAMP
CHAR REAL TINY

DATE S BIG U_BIG
DOUBLE S LONG U_LONG
LONGBINARY S SHORT U_SHORT

Running utilities for UltraLite databases

Table 14-1 lists the database utilities you can access from the Database painter
and the Database Profiles dialog box in PocketBuilder.

Table 14-1: Utilities you can use with UltraLite databases

Utility

Purpose

Create UltralLite Database

(UltraLite 9 only) Provides a user interface to the
ulconv.exe command to create Ultral ite databases.
Use Sybase Central to create UltraLite 10 databases.

MobiLink Synchronization
Server

Allowsyouto launch aMobiLink server with options
for automatic script generation, automatic addition of
users, and generation of diagnostic log files.

Sybase Central

Allows you to connect to a consolidated database to
add publications, users, script versions, and
synchronized tables.

Ultralite Schema Painter

(UltraLite 9 only) Starts the schema painter that lets
you generate a USM file containing information
about tables and publications to be synchronized.

Defining the UltraLite database interface

To define a connection through the Ultral ite database interface, you must
create a database profile by supplying values for at least the basic connection
parametersin the Database Profile Setup dialog box for UltraL ite. You can then
select this profile at any time to connect to the Ultral ite database. For more
information, see “ Creating database profiles’ on page 183.

214

PocketBuilder

CHAPTER 14 Using database interfaces

Specifying the
database file

Connecting to an
encrypted UltraLite
database

Setting Autocommit
mode

Adding multiple users

Resource Guide

Each UltraLite application hasits own database, whichisheld in afile with the
extension .UDB. Each database contains a schema that includes information
about the database’s tables, indexes, column names, datatypes, primary and
foreign keys, and other metadata. The schema for an UltraLite database is
stored in a compact form.

You can create an Ultralite database in the Database painter. For more
information, see the chapter on managing databasesin the Users Guide. You
can aso create an Ultral ite database using a reference SQL Anywhere
database.

When you browseto select adatabase filein the Database Profile Setup dialog
box, PocketBuilder addsa DBF value to the ConnectString database parameter.

You can choose to specify the encryption key for an encrypted database by
typing it in the Additional ConnectionString Parameters box on the general
page of the Database Profile Setup dialog box for UltraLite. Use the following
syntax:

KEY=encryption_key

However, this practice is not recommended. If you |eave the Additional
ConnectionString Parameters box blank, you are prompted to enter the key
when you connect.

In your applications, you can code the encryption key in the ConnectString
value when you specify the DBParm property of the transaction object, but to
ensurethat only authorized users can access the database, provide adial og box
so that users can enter the key at runtime.

In the development environment, PocketBuilder always behaves as if
AutoCommit is set to true, whether you check the AutoCommit mode check
box or not. The setting in the Database Profile Setup dialog box affects the
behavior only when you run or debug the application. For more information,
see the description of the AutoCommit database preference in the Connection
Reference.

PocketBuilder allows you to add or edit multiple users of UltralL ite databases.
UltraL ite permits a maximum of four user IDs per database. For Ultralite

database profiles, you can use the pop-up menu for the new Usersitem in the
Objects view of the Database painter to add or edit users, and to delete users.

215

Working with the UltraLite database interface

When you select Add or Edit User from the User item pop-up menu for an
UltraL ite database, or when you select Delete User, you should already know
which user IDs exist in the database. If you select either of these menu items,
the Properties view displays. The Properties view has three text boxes (User,
New Password, and Confirm New Password) when you select Add or Edit
User; it hasasingletext box (UltraLite User to Delete) when you select Delete
User.

After you save changesin the Database painter involving user maintenance for
an Ultral ite database, the Output view displays a message with the type of
change you made.

Migrating a SQL Anywhere application to UltralLite

Table owners

Views

Cursors

216

Applicationsthat you create with a SQL Anywhere connection can be modified
to use an UltraL ite connection. This section describes the differences between
the two databases that require you to make some changesin your applications
before you can use them with an Ultral ite database.

Ultral ite does not support the concept of atable owner, therefore all table
names must be unique in the database, and any user who successfully signson
to the UltraL ite database has full access and update rightsto al tables.

Ultral ite does not support SQL statements that include owner-qualified table
names, but the pkul925.dIl and pkul1025.dll interfaces automatically process
fully-qualified SQL statements at runtime to remove the table owner
qualification before passing the statement to the Ultral ite SQL parser.
However, this does have implications for Datawindow objects that you create
while connected to the UltraLite driver. The SQL SELECT statement that is
generated contains unqualified SQL. This can limit the portability of a
Datawindow object if you want to reuseit in an application that connectsto a
SQL Anywhere database using ODBC.

UltraL ite does not support views. You must rework existing applications that
reference views so that they reference base tables instead.

If your application uses the Power Script DECLARE Cursor SQL statement, you
might need to modify the application for connectionsto an Ultral ite database.
The pkul925.dIl and pkul 1025.dII interfaces use the established connection to
implement the cursor, which means that you cannot nest one cursor within
another, and you cannot issue other SQL statements, other than FETCH Cursor
statements, while the cursor is open.

PocketBuilder

CHAPTER 14 Using database interfaces

Stored procedures

Database access
limits

Resource Guide

Asan dternative, you can instantiate a DataStore that retrieves the same result
set that the cursor returns, and rewrite your application to scroll through the
DataStore instead of performing a FETCH loop through the cursor.

UltraL ite does not support stored procedures. You must modify your
application if it uses stored proceduresin any of the following waysthat are
supported by SQL Anywhere but not by UltraL ite;

e Asthe data source for a Datawindow object
e In DataWindow update procedures
e InPowerScript DECLARE Procedure SQL statements

« Indeclarations of stored procedures as remote procedure calls using the
RPCFUNC {ALIAS FOR “spname” } syntax

If two or more PocketBuilder applications are running concurrently, only one
application can successfully connect to a specific Ultralite database at atime.
Whichever application connects first retains exclusive use of that Ultralite
database until the application closes all connections to the database.

A single PocketBuilder application can obtain two or more simultaneous
connections to the same Ultral ite database using different transaction objects.
A single PocketBuilder application can also connect to two or more UltraLite
databases concurrently by instantiating multiple transaction objects.

217

Working with the UltraLite database interface

218 PocketBuilder

CHAPTER 15

About this chapter

Contents

Troubleshooting Your
Connection

This chapter describes how to troubleshoot your database connection in
PocketBuilder by using the following tools:

o Database Trace
e ODBC Driver Manager Trace

Topic Page
About tracing database connections 219
Using the Database Trace tool 220
Using the ODBC Driver Manager Trace tool 226

About tracing database connections

In PocketBuilder

In a deployed application

Resource Guide

In the development environment, you can trace connections as you work
inthe Database painter or DatawWindow painter, and when you run and test
your applications. The trace information that is collected can help you
troubleshoot your applications before you deploy them. You can use two
tools to collect information: the PocketBuilder Database Trace tool and
the ODBC Driver Manager Trace tool.

Therest of this chapter describes these tools.

In your deployed application, SQL Anywhere provides several different
ways to create log files of database activity:

e To savethe server window output to afile, start the database engine
with the -o option for dbsrvXX, or dbengXX, where XX is the SQL
Anywhere version number. For example:

dbeng9 -c 8m -0 asadeno. out -n asadenp9
"D:\ Program Fi | es\ Sybase\ asadeno. db"

219

Using the Database Trace tool

e Tosave client error messages and debugging messagesin afile, use the
L ogfile connection parameter when you specify the ConnectString. For
example:

sql ca. dbpar me" Connect Stri ng=" DSN=ASA 9. 0 Sanpl e; LOGFI LE=D: \ | ogs\ asadeno. txt""

» Tosave alog when you run the MobiLink synchronization server
(dbmlsrv9 or misrv10) or client (dbmisync) to synchronize SQL Anywhere
remote databases with aconsolidated database, usethe-o option to specify
the name of the output file, the -v option to specify the level of message

logging, and the -dI option to display all logging messages on the screen.
For example:

dbm srv9 -c "dsn=consol db" -0 mserver.ms -v+ -dl
dbm sync -c "dsn=renptedb" -o dbm sync.out -v+ -dl

For more information about these tools, see the SQL Anywhere
documentation.

Using the Database Trace tool

This section describes how to use the Database Trace tool in the PocketBuilder
development environment.

About the Database Trace tool

The Database Trace tool records the internal commands that PocketBuilder
executes while accessing a database. PocketBuilder writes the output of
Database Trace to alog file named PKTRACE.LOG (by default) or to a
nondefault log file that you specify. For instructions, see “ Specifying a
nondefault Database Trace log” on page 224.

When you enable database tracing for the first time, PocketBuilder createsthe
log file on your computer. Tracing continues until you disconnect from the
database.

220 PocketBuilder

CHAPTER 15 Troubleshooting Your Connection

How you can use the Database Trace information

You can use information from the Database Trace tool to understand what
PocketBuilder is doing internally when you work with your database.
Examining the information in the log file can help you:

e Understand how PocketBuilder interacts with your database
e ldentify and resolve problems with your database connection

e Provide useful information to Technical Support if you call them for help
with your database connection

If you are familiar with PocketBuilder and your DBMS, you can use the
information in the log to help troubleshoot connection problems on your own.

If you areless experienced or need help, run the Database Trace tool beforeyou
call Technical Support. You can then report or send the results of the trace to
the Technical Support representative who takes your call.

You can view the log file using the built-in PocketBuilder file editor or any
other text editor. You can also add your own annotations as you examine the
file.

Contents of the Database Trace log

The Database Trace tool recordsthefollowing informationin the log file when
you trace a database connection:;

» Parameters used to connect to the database
e Timeto perform each database operation (in milliseconds)

e Theinternal commands executed to retrieve and display table and column
information from your database. Examples include;

e Preparing and executing SQL statements such as SELECT, INSERT,
UPDATE, and DELETE

e Getting column descriptions
e Fetching table rows

e Binding user-supplied values to columns (if your database supports
bind variables)

e Committing and rolling back database changes
« Disconnection from the database

¢ Shutdown of the database interface

Resource Guide 221

Using the Database Trace tool

Format of the Database Trace log

The specific content of the Database Tracelog fil e depends on the database you
are accessing and the operations you are performing. However, thelog usesthe
following basic format to display output:
COMMAND : (time)
{additional_information}

COMMAND istheinternal command that PocketBuilder executes to perform
the database operation.

time is the number of milliseconds it takes PocketBuilder to perform the
database operation. The precision used depends on your operating system’s
timing mechanism.

additional_information is additional information about the command. The
information provided, if any, depends on the database operation.

For an example of Database Trace output, see* Sample Database Trace output”
on page 225.

Starting the Database Trace tool

Running Database
Trace when you test
your application

222

By default, the Database Tracetool isturned off in PocketBuilder. You can start
it by editing a database profile or a script.

Turning tracing on and off
To turn tracing on or off, you must reconnect. Setting and resetting are not

sufficient.

In the script where you set the values of SQLCA parameters, add the word
TRACE to the value for the DBMS parameter. For example, if you are using
the default transaction object, type:

SQLCA. DBMS = " TRACE ODB"

Asan alternativeto setting the DBM S property directly inan application script,
you can use the PowerScript ProfileString function to read values from a
specified section of an external text file, such as an application-specific
initialization file.

Use the following Power Script syntax to specify the ProfileString function with
the DBMS property:

SQLCA.variable = ProfileString(file, section, variable, default_value)

PocketBuilder

CHAPTER 15 Troubleshooting Your Connection

Running Database
Trace when you work
in painters

For example, the following statement in a PocketBuilder script reads the
DBMS value from the [Database] section of the APRINI file:

SQLCA. dbnms =
ProfileString("APP.I N ", "Dat abase", "DBMS","")

To trace connection activity when you work in the Datawindow and Database
painters, you set a property in the connection profile you are using.

0 To start the Database Trace tool by editing a profile:

1 Open the Database Profile Setup dialog box for the connection you want
to trace.

2 Onthe Connection tab, select the Generate Trace check box and click OK
or Apply.
On the Preview tab, the setting that starts Database Traceis DBMS:
SQLCA. DBVS = " TRACE ODB"

3 Click Connect in the Database Profiles dialog box to connect to the
database.

A message box displays, stating that database tracing is enabled and
indicating where PocketBuilder will write the output.

4 Click OK.

PocketBuilder connects to the database and starts tracing the connection.

Stopping the Database Trace tool

Resource Guide

Once you start tracing a particular database connection, PocketBuilder
continues sending trace output to the log until you do one of the following:

« Reconnect to the same database with tracing stopped
e Connect to another database for which you have not enabled tracing

If you added theword TRACE in ascript, you cansimply deleteit. If you added
tracing in a connection profile, you need to edit the profile.

223

Using the Database Trace tool

O To stop the Database Trace tool by editing a profile:

1 Inthe Database Profile Setup dialog box for the database you are tracing,
clear the Generate Trace check box on the Connection tab.

2 Click OK in the Database Profile Setup dialog box.

The Database Profiles dialog box displays with the name of the edited
profile highlighted.

3 Right-click on the connected database and select Re-connect from the
drop-down menu in the Database Profiles dialog box.

PocketBuilder connects to the database and stops tracing the connection.

Specifying a nondefault Database Trace log

224

You can specify a nondefault name and location for the log file when you use
Database Trace. This lets you:

e Control where PocketBuilder writes the output of the Database Trace tool
» Givethelog file aname and location that best meets the development
needs at your site

O To specify a nondefault Database Trace log file:
1 Open the PocketBuilder initiaization file for editing.

You can use the File Editor (in PocketBuilder) or any text editor (outside
PocketBuilder).

2 Create an entry named DBTraceFile in the [Database] section of the
initialization file, using the following syntax to specify a nondefault log
file:

DBTraceFile=log_file_pathname
For example:

[Dat abase]

DBTr aceFi | e=c: \ | ogs\ nydbtrce. | og
3 Saveyour changesto theinitialization file.

The next time you use the Database Trace tool to trace a connection in the
development environment, PocketBuilder writes the output to the log file
you specified instead of to the default PK TRACE.LOG file.

PocketBuilder

CHAPTER 15 Troubleshooting Your Connection

Deleting or clearing the Database Trace log

Each time you connect to a database with tracing enabled, PocketBuilder
appendsthe trace output of your connection to the existing log. Asaresult, the
log file can become very large over time.

O To keep the size of the log file manageable:
e Do either of the following periodically:

e Openthelog file, clear its contents, and save the empty file.

Provided that you use the default PKTRACE.LOG or the same
nondefault file the next time you connect to a database with tracing
enabled, PocketBuilder will write to this empty file.

« Deletethelogfile.

PocketBuilder will automatically create a new log file the next time
you connect to a database with tracing enabled.

Sample Database Trace output

This section gives an example of Database Trace output that you might seein
thelogfile.

The example traces a connection to an ODBC database named ASA Sample.
The output was generated while running a PocketBuilder application that
displaysinformation about employees. The SELECT statement shown retrieves
information from the Employee tableto display the IDs, names, and birth dates
of employees. (In the trace output, each command lineis prefixed with a
hexadecimal string enclosed in parentheses and followed by a colon. This
prefix is omitted from the output shown here.)

X o o e e e e e e e e e e e e e iiiaaaoo- * [
I* 5/1/2004 09: 00 */
X o o e e e e e e e e e e e eiiiaaaoo- * [

LOGA N: (40 M I1i Seconds)

CONNECT TO trace odb:

DBPARM=Connect St ri ng=' DSN=ASA Sanpl e; Ul D=dba; PM\D=sql *
SERVER=asadeno (0 M IIi Seconds)

PREPARE: (0 M Ii Seconds)

BEG N TRANSACTION: (0 M I1i Seconds)

PREPARE:
sel ect "enployee"."enp_id" , "enpl oyee"."enp_fname" ,
"enpl oyee". "enp_| name" , "enpl oyee"."birth_date" from

"enpl oyee" (0 MIIi Seconds)

Resource Guide 225

Using the ODBC Driver Manager Trace tool

Bl ND SELECT OUTPUT BUFFER (Dat aW ndow): (0 M |1 i Seconds)
, 1 en=44, t ype=FLOAT, pbt =3, dbt =0, ct =0, pr ec=0, scal e=0
, 1 en=22, t ype=CHAR, pbt =1, dbt =0, ct =0, pr ec=0, scal e=0
, 1 en=22, t ype=CHAR, pbt =1, dbt =0, ct =0, pr ec=0, scal e=0
, 1 en=30, t ype=DATE, pbt =7, dbt =0, ct =0, pr ec=0, scal e=0
EXECUTE: (0 M I Ii Seconds)
FETCH NEXT: (0 M Ii Seconds)
COLUMNEO1COLUMNEFr anCOLUMNEWI t ney COLUMN=Q06- 05-
1958 255: 00: 00: 000000
FETCH NEXT: (0 M Ili Seconds)
COLUMN=02COLUMN=Mat t hewCOLUMN=CobbCOLUMN=12- 04-
1960 255: 00: 00: 000000
1.
/1 Additional FETCH NEXT statenments omitted
I
FETCH NEXT: (0 M Ili Seconds)
COW T: (10 MI1i Seconds)
DI SCONNECT: (10 M I Ii Seconds)
SHUTDOWN DATABASE | NTERFACE: (0 M1 1i Seconds)

Using the ODBC Driver Manager Trace tool

This section describes how to use the ODBC Driver Manager Trace tool.

About ODBC Driver Manager Trace

226

You can use the ODBC Driver Manager Tracetool to trace a connection to any
ODBC data source that you access in PocketBuilder through the ODBC
interface.

ODBC Driver Manager Trace records information about ODBC API calls
(such as SQLDriverConnect, SQLGetlInfo, and SQLFetch) that PocketBuilder
makes while connected to an ODBC data source. It writes this information to
adefault log file named SQL.LOG or to alog file that you specify. The default
location of SQL.LOG isin your root directory.

You can display the contents of the ODBC Driver Manager Tracelog fileat any
time during a PocketBuilder session, using the built-in file editor or any other
text editor.

PocketBuilder

CHAPTER 15 Troubleshooting Your Connection

Which tool to use

The information from ODBC Driver Manager Trace, like that from Database
Trace, can help you:

e Understand what PocketBuilder is doing internally while connected to an
ODBC data source

e ldentify and resolve problems with your ODBC connection

« Provide information useful to Technical Support if you call them for help
with your database connection

Use ODBC Driver Manager Trace instead of the Database Trace tool if you
want more detailed information about the ODBC API calls made by
PocketBuilder.

Performance considerations)
Turning on ODBC Driver Manager Trace can slow performance in

PocketBuilder. Therefore, use ODBC Driver Manager Trace for debugging
purposes only and keep it turned off when you are not debugging.

Starting ODBC Driver Manager Trace

By default, ODBC Driver Manager Trace is turned off in PocketBuilder. You
can start it in order to trace your ODBC connection in two ways.

e Edit ascript in an application to trace the connection when you test the
application

« Edit adatabase profile to trace actionsin the DataWindow or Database
painters

In both cases, you set values of the ConnectOption DBParm parameter.

The ConnectOption DBParm parameter

Resource Guide

ConnectOption includes several parameters, two of which control the
operation of ODBC Driver Manager Trace for any ODBC-compatible driver
you are using in PocketBuilder:

* SQL_OPT_TRACE starts or stops ODBC Driver Manager Trace. The
values you can specify are:

* SQL_OPT_TRACE_OFF (the default), which stops ODBC Driver
Manager Trace

227

Using the ODBC Driver Manager Trace tool

Starting ODBC Driver
Manager Trace in a
script

Starting ODBC Driver
Manager Trace in a
database profile

228

e SQL_OPT_TRACE_ON, which starts ODBC Driver Manager Trace

e SQL_OPT_TRACEFILE specifies the name of the trace file where you
want to send the output of ODBC Driver Manager Trace. PocketBuilder
appends the output to the trace file you specify until you stop the trace.

You can specify any file name for thetracefile. By default, if tracingison
and you have not specified atracefile, PocketBuilder sends ODBC Driver
Manager Trace output to afile named SQL.LOG in your root directory.

The most efficient way to specify the correct values for the ConnectOption
DBParm in ascript is to set the options in the Database Connection Profile
dialog box, as described in “ Starting ODBC Driver Manager Tracein a
database profile” next, and then copy them from the Preview pageto the script.
This example shows the settings for a data source named Employee. Note that
in this example, the first statement specifies that Database Traceis also on:;

SQ.CA. DBMS = "TRACE ODBC'

SQLCA. Aut oComit = Fal se

SQLCA. DBParm =

"Connect St ri ng=" DSN=Enpl oyee; U D=; PWD=" ,
Connect Opti on=" SQL_OPT_TRACE, SQ._OPT_TRACE_OCN,
SQL_OPT_TRACEFI LE, C:\ | ogs\ odbctrc. 1l og""

For moreinformation, see* Copying DBParm syntax from the Preview tab” on
page 286.

As an aternative to setting the DBParm property in an application script, you
can use the PowerScript ProfileString function to read DBParm values from a
specified section of an external text file, such as an application-specific
initialization file.

Use the following Power Script syntax to specify the ProfileString function with
the DBParm property:

SQLCA.dbParm = ProfileString(file, section, variable, default_value)

For example, the following statement in a PocketBuilder script reads the
DBParm values from the [Database] section of the APP.INI file:

SQLCA. dbParm =
ProfileString("APP.IN","Dat abase", "DBParni,"")

To start ODBC Driver Manager Trace to trace your connectionsin the
PocketBuilder development environment, edit the database profile for the
connection you want to trace, as described in the following procedure.

PocketBuilder

CHAPTER 15 Troubleshooting Your Connection

0 To start ODBC Driver Manager Trace by editing the database profile:
1 Openthe Database Profile Setup dialog box for the ODBC connection you

want to trace.
On the Options tab, select the Trace ODBC API Calls check box.

(Optional) Specify alog file where you want PocketBuilder to write the
output of ODBC Driver Manager Trace.

You can type the path name in the Trace File box, or click Browse to
browse to an existing log file.

By default, if the Trace ODBC API Calls check box is selected and no
tracefileis specified, PocketBuilder sends ODBC Driver Manager Trace
output to the default SQL.LOG file.

Click OK.

PocketBuilder saves your settings in the registry in the
HKEY_CURRENT_USER\Software\Sybase\PocketBuilder\2.0\Database
Profiles\Pocket PB key.

The following exampl e shows the DBParm string value from a database
profile entry for an ODBC data source named Employee. The settingsthat
start ODBC Driver Manager Trace are in the ConnectOption DBParm
parameter:

Connect Stri ng=" DSN=Enpl oyee; U D=; PWD=",
Connect Opti on=" SQL_OPT_TRACE, SQ._OPT_TRACE_ON,
SQL_OPT_TRACEFI LE, C:\ 1 ogs\ odbctrc. | og'

Right-click on the connected database and select Re-connect from the
drop-down menu in the Database Profiles dialog box.

PocketBuilder connects to the database, starts tracing the ODBC
connection, and writes output to the log file you specified.

Stopping ODBC Driver Manager Trace

Resource Guide

Once you start tracing an ODBC connection with ODBC Driver Manager
Trace, PocketBuilder continues sending trace output to the log file until you
stop tracing. After you stop tracing, you must reconnect to have the changes
take effect.

To stop tracing in a script, you can del ete the ConnectOption parameter if it
contains only trace parameters, or delete the SQL_OPT_TRACE options if
ConnectOption contains other parameters.

229

Using the ODBC Driver Manager Trace tool

You can also change the value of the SQL_OPT_TRACE parameter to
SSQL_OPT_TRACE_OFF, as shown in the following example. This makesit
easier to turn tracing on again later:

SQ.CA. DBMS = "TRACE ODBC'

SQLCA. Aut oComit = Fal se

SQ.CA. DBPar m =

"Connect St ri ng=" DSN=Enpl oyee; U D=; PWD=",
Connect Opti on=" SQL_OPT_TRACE, SQ._OPT_TRACE_CFF;
SQL_OPT_TRACEFI LE, C:\ | ogs\odbctrc.log""

To stop tracing in the development environment, you need to edit the database
profile.

O To stop ODBC Driver Manager Trace by editing the database profile:

1 Open the Database Profile Setup dialog box for the connection you are
tracing.

2 Onthe Optionstab, clear the Trace ODBC API Calls check box.

If you supplied the pathname of alog file in the Trace File box, you can
leave it specified in case you want to restart tracing later.

Click OK in the Database Profile Setup dialog box.

4 Right-click on the connected database and select Re-Connect from the
dropdown menu in the Database Profiles dialog box.

PocketBuilder connects to the database and stops tracing the connection.

Sample ODBC Driver Manager Trace output

PK20

PK20

230

This section shows a partial example of output from ODBC Driver Manager
Traceto giveyou anideaof theinformation it provides. The exampleis part of
the trace on an ODBC connection to the ASA Demo DB.

For more about a particular ODBC API call, see your ODBC documentation.

1d9-1bb EXIT SQ.Set Connect Opti onWwith return code 0 (SQ._SUCCESS)
HDBC 01643D08

UWORD 104 <SQL_OPT_TRACE>
SQ.ULEN 1

1d9- 1bb ENTER SQ.Set Connect Opti onW

HDBC 01643D08

UWORD 105 <SQL_OPT_TRACEFI LE>
SQLULEN 17654398

PocketBuilder

CHAPTER 15 Troubleshooting Your Connection

PK20 1d9-1bb EXIT SQ.Set Connect Opti onWwith return code 0 (SQ._SUCCESS)

HDBC 01643D08

UWORD 105 <SQL_OPT_TRACEFI LE>

SQLULEN 17654398
PK20 1d9- 1bb ENTER SQ.Dri ver Connect W

HDBC 01643D08

HW\D 01DBO4FE

WCHAR * 0x1F7F8B88 [-3] "EEEEEE\ Q"

SWORD -3

WCHAR * Ox1F7F8B88

SWORD 8

SWORD * 0x00000000

UWORD 1 <SQL_DRI VER_COWPLETE>
PK20 1d9-1bb EXIT SQ.UDriverConnectW with return code 0 (SQL_SUCCESS)

HDBC 01643D08

HW\D 01DBO4FE

WCHAR * Ox1F7F8B88 [-3] tEEEExx\ Q"

SWORD -3

WCHAR * 0x1F7F8B88

SWORD 8

SWORD * 0x00000000

UWORD 1 <SQL_DRI VER_COWPLETE>
PK20 1d9- 1bb ENTER SQLCet | nf oW

HDBC 01643D08

UWORD 6 <SQ._DRI VER_NAME>

PTR 0x001293CC

SWORD 258

SWORD * 0x001293CA

PK20 1d9-1bb EXIT SQCetlnfoW wth return code 0 (SQ._SUCCESS)

HDBC 01643008

UWORD 6 <SQL_DRI VER_NAVE>

PTR 0x001293CC | 22] " DBODBCO. DLL"
SWORD 258

SWORD * 0x001293CA (22)

Resource Guide 231

Using the ODBC Driver Manager Trace tool

232 PocketBuilder

ciarTER 16 Using Transaction Objects

About this chapter This chapter describes Transaction objects and how to use them in
PocketBuilder applications.
Contents Topic Page
About Transaction objects 233
Working with Transaction objects 236
Using Transaction objects to call stored procedures 245
Supported DBMS features when calling stored procedures 251

About Transaction objects

In a PocketBuilder database connection, a Transaction object is a special
nonvisual object that functions as the communications area between a
PocketBuilder application and the database. The Transaction object
specifies the parameters that PocketBuilder uses to connect to a database.
You must establish the Transaction object before you can access the
database from your application.

Communicating with the In order for a PocketBuilder application to display and manipulate data,
database the application must communicate with the database in which the data
resides.

0 To communicate with the database from your PocketBuilder application:

1

g b W N

Resource Guide

Assign the appropriate val ues to the Transaction object.

Connect to the database.

Assign the Transaction object to a Datawindow control or DataStore.
Perform the database processing.

Disconnect from the database.

233

About Transaction objects

Default Transaction

object

Transaction object

For information about setting the Transaction object for aDatawindow control
and using the DatawWindow to retrieve and update data, see “ Setting the
transaction object for the Datawindow control” on page 123.

When you start executing an application, PocketBuilder creates a global
default Transaction object named SQL CA (SQL Communications Area). You
can use this default Transaction object in your application or define additional
Transaction objects if your application has multiple database connections.

Each Transaction object has 15 properties, of which:

properties

e Tenare used to connect to the database (not all apply to the database
interfaces supported in PocketBuilder).

» Fiveare used to receive status information from the database about the
success or failure of each database operation. These error-checking
properties all begin with SQL.

Description of Transaction object properties

Table 16-1 describes each Transaction object property. For each of the

connection properties, the table also lists the equivalent field in the Database

Profile Setup dialog box that you complete to create a database profilein the

PocketBuilder devel opment environment.

Table 16-1: Transaction object properties
In a database
Property Datatype | Description profile
DBMS String Thethree- or four-letter DBMSidentifier for your connection. | Defined when
For SQL Anywhere, thisis ODB. For UltraLite 9.x, itisUL9. | you select a
For UltraLite 10.x, itis UL10. database
interface
UserID String The name or ID of the user who connects to the database. User ID
UserlD isoptional for ODBC. (Be careful specifying the
UserID property; it overrides the connection’s UserName
property returned by the ODBC SQLGetlInfo call.)
Lock String For DBM Ss that support the use of lock valuesand isolation | Isolation Level
levels, the isolation level to use when you connect to the
database. For information about the lock values you can set,
see Lock in the PocketBuilder Connection Reference.
LoglD String The name or ID of the user who logsin to the database server. | —
PocketBuilder uses the LoglD and LogPass properties only if
the ODBC driver does not support the SQL driver CONNECT
call.

234

PocketBuilder

CHAPTER 16 Using Transaction Objects

Property

Datatype

Description

In a database
profile

LogPass

String

The password used to log in to the database server.

AutoCommit

Boolean

Specifies whether PocketBuilder issues SQL statements
outside or inside the scope of atransaction. Values you can set
are:

* True — PocketBuilder issues SQL statements outside the
scope of atransaction; that is, the statements are not part of
alogical unit of work (LUW). If the SQL statement
succeeds, the DBM S updatesthe databaseimmediately asif
aCOMMIT statement had been issued.

* False (Default) — PocketBuilder issues SQL statements
inside the scope of atransaction. PocketBuilder issues a
BEGIN TRANSACTION statement at the start of the
connection. In addition, PocketBuilder issues another
BEGIN TRANSACTION statement after each COMMIT or
ROLLBACK statement isissued.

When you connect to an Ultral ite database in the development
environment, all processing in painters takes place as if
AutoCommit is set to true.

For more information, see AutoCommit in the Connection
Reference.

AutoCommit
Mode

DBParm

String

Contains connection parametersthat support particular DBMS
features. For adescription of each DBParm parameter that
PocketBuilder supports, see the Connection Reference.

Various

SQLReturnData

String

Contains DBM S-specific information.

SQLCode

Long

The success or failure code of the most recent SQL operation.
For details, see “Error handling after a SQL statement” on
page 244.

SQLNRows

Long

The number of rows affected by the most recent SQL
operation. The database vendor supplies this number, so the
meaning may be different for each DBMS.

SQLDBCode

Long

The database vendor’s error code. For details, see “Error
handling after a SQL statement” on page 244.

SQLErrText

Resource Guide

String

Thetext of the database vendor’s error message corresponding
to the error code. For details, see “Error handling after a SQL
statement” on page 244.

235

Working with Transaction objects

Working with Transaction objects

PocketBuilder uses a basic concept of database transaction processing called
logical unit of work (LUW). LUW is synonymous with transaction. A
transaction is a set of one or more SQL statements that forms an LUW. Within
atransaction, all SQL statements must succeed or fail as onelogical entity.

There are four PowerScript transaction management statements:
e COMMIT

* CONNECT

* DISCONNECT

* ROLLBACK

Transaction basics

CONNECT and
DISCONNECT

COMMIT and
ROLLBACK

AutoCommit setting

236

A successful CONNECT starts a transaction, and a DISCONNECT terminates
the transaction. All SQL statements that execute between the CONNECT and
the DISCONNECT occur within the transaction.

Before you issue a CONNECT statement, the Transaction object must exist and
you must assign valuesto all Transaction object properties required to connect
to your DBMS.

When a COMMIT executes, all changes to the database since the start of the
current transaction (or since the last COMMIT or ROLLBACK) are made
permanent, and a new transaction is started. When a ROLLBACK executes, all
changes since the start of the current transaction are undone and a new
transaction is started.

You can issue a COMMIT or ROLLBACK only if the AutoCommit property of
the Transaction object is set to False (the default) and you have not already
started a transaction using embedded SQL.

For more about AutoCommit, see “ Description of Transaction object
properties’ on page 234.

Automatic COMMIT when disconnected
When a transaction is disconnected, PocketBuilder issues a COMMIT

statement.

PocketBuilder

CHAPTER 16 Using Transaction Objects

The default Transaction object

SQLCA

Example

Since most applications communicate with only one database, PocketBuilder
provides a global default Transaction object called SQLCA (SQL
Communications Area).

PocketBuilder creates the Transaction object before the application’s Open
event script executes. You can use PowerScript dot notation to reference the
Transaction object in any script in your application.

You can create additional Transaction objects as you need them, such aswhen
you are using multiple database connections at the same time, but in most
cases, SQL CA isthe only Transaction object you need.

This simple exampl e uses the default Transaction object SQL CA to connect to
and disconnect from an ODBC data source named Sample:

/1 Set the default Transaction object properties.

SQLCA. DBVS=" CDB"

SQLCA. DBPar =" Connect Stri ng=' DSN=Sanpl e' "

/] Connect to the database.

CONNECT USI NG SQLCA;

IF SQLCA. SQ.Code < 0 THEN &
MessageBox (" Connect Error", SQ.CA. SQLErrText, &
Excl amati on!)

/1l Disconnect fromthe database.
DI SCONNECT USI NG SQLCA;
| F SQLCA. SQL.Code < 0 THEN &
MessageBox (" Di sconnect Error", SQLCA. SQLErrText, &
Excl amati on!)

Semicolons are SQL statement terminators
When you use embedded SQL in a PocketBuilder script, all SQL statements

must be terminated with a semicolon (;). You do not use a continuation
character for multiline SQL statements.

Assigning values to the Transaction object

Resource Guide

Before you can use a default (SQLCA) or nondefault (user-defined)
Transaction object, you must assign values to the Transaction object
connection properties. To assign the values, use PowerScript dot notation.

237

Working with Transaction objects

Example The following PowerScript statements assign val ues to the properties of
SQL CA required to connect to the SQL Anywhere demo database through the
PocketBuilder ODB database interface:

SQ.CA. DBMS = ' odb'
SQLCA. DBPar m = " Connect Stri ng=' DSN=SQLAny 10 Denvo; U D=dba; P\D=sql ' "

The following PowerScript statements assign val ues to the properties of
SQL CA required to connect to a Sybase Ultral ite 9.x database through the
PocketBuilder UL9 database interface:

SQ.CA. DBMs = "UL9"
SQLCA. DBPar m = " Connect Stri ng="DBF=\U tralLite\ul eq. udb; U D=dba; PWD=sql ' "

Reading values from an external file

Using external files You might want to set the Transaction object values from an external file. For
example, you might want to retrieve values from your PocketBuilder
initialization file when you are developing the application, or from an
application-specific initialization file when you distribute the application.

ProfileString function You can use the Power Script ProfileString function to retrieve valuesfrom atext
filethat is structured into sections containing variable assignments, like a
WindowsINI file. The PocketBuilder initialization fileissuch afile, consisting
of several sections including PB, Application, and Database:

[PB]
vari abl es and their val ues

[Application]
vari abl es and their val ues

[Dat abase]
vari abl es and their val ues

The ProfileString function has this syntax:
ProfileString (file, section, key, default)

238 PocketBuilder

CHAPTER 16 Using Transaction Objects

Example

This script reads values from an initialization file to set the Transaction object
to connect to a database. Conditional code sets the variable startupfile to an
appropriate value:

SQLCA.DBMS = ProfileString(startupfile, "database", &

"dbms", "")
SQLCA. DBParm= ProfileString(startupfile, "database", &
"dbparni, "")

Connecting to the database

Once you establish the connection parameters by assigning values to the
Transaction object properties, you can connect to the database using the SQL
CONNECT statement:

/1 Transaction object values have been set.
CONNECT;

Because CONNECT isa SQL statement, not a PowerScript statement, you need
to terminate it with a semicolon.

If you are using a Transaction object other than SQLCA, you must include the
USING TransactionObject clausein the SQL syntax:

CONNECT USING TransactionObject;
For example:
CONNECT USI NG MyTr ans;

Using the Preview tab to connect in a PocketBuilder application

Resource Guide

The Preview tab page in the Database Profile Setup dialog box makesit easy
to generate accurate Power Script connection syntax in the development
environment for use in your PocketBuilder application script.

As you complete the Database Profile Setup dialog box, the correct
PowerScript connection syntax for each selected option is generated on the
Preview tab. PocketBuilder assigns the corresponding DBParm parameter or
SQLCA property name to each option and inserts quotation marks, commas,
semicolons, and other characters where needed. You can copy the syntax you
want from the Preview tab directly into your script.

239

Working with Transaction objects

O To usethe Preview tab to connect in a PocketBuilder application:

In the Database Profile Setup dialog box for your connection, supply
values for basic options (on the Connection tab) and additional database
parameters and SQL CA properties (on the other tabbed pages) asrequired.

For information about connection parameters and the values you should
supply, click Help.

Click Apply to save your settings without closing the Database Profile
Setup dialog box.

Click the Preview tab.

The correct PowerScript connection syntax for each selected option
displaysin the Database Connection Syntax box on the Preview tab.

Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PocketBuilder copiesthe selected text to the clipboard. You can then paste
thissyntax into your script, modifying the default Transaction object name
(SQLCA) if necessary.

ODB or ODBC for DBMS value
An ODBC connection profile shows“ODBC” asthe value for the DBMS

parameter. Only the first three charactersin this string are used, so ODB
and ODBC both work correctly.

5 Click OK.

Disconnecting from the database

240

When your database processing is completed, you disconnect from the
database using the SQL DISCONNECT statement:

DI SCONNECT;

If you are using a Transaction object other than SQLCA, you must include the
USING TransactionObject clause in the SQL syntax:

DISCONNECT USING TransactionObject;

For example:

DI SCONNECT USI NG MyTr ans;

PocketBuilder

CHAPTER 16 Using Transaction Objects

Automatic COMMIT when disconnected
When atransaction is disconnected, PocketBuilder issuesaCOMMIT statement

by default.

Defining Transaction objects for multiple database connections

Use one Transaction
object per connection

Creating the
nondefault
Transaction object

Assigning property
values

Resource Guide

To perform operations in multiple databases at the same time, you need to use
multiple Transaction objects, one for each database connection. You must
declare and create the additional Transaction objects before referencing them,
and you must destroy these Transaction objects when they are no longer
needed.

Caution
PocketBuilder creates and destroys SQL CA automatically. Do not attempt to

create or destroy it.

To create a Transaction object other than SQLCA, you first declare avariable
of type transaction:

transaction TransactionObjectName
You then instantiate the object:
TransactionObjectName = CREATE transaction
For example, to create a Transaction object named DBTrans, code:

transaction DBTrans

DBTrans = CREATE transaction

/1 You can now assign property val ues to DBTrans.
DBTr ans. DBVM5 = " ODB"

When you assign values to properties of a Transaction object that you declare
and create in a PocketBuilder script, you must assign the values one property
at atime, like this:

/1 This code produces correct results.
transacti on SQLAnyTrans

SQLAnyTrans = CREATE TRANSACTI ON
SQLAnyTrans. DBMS = " Sybase”

SQLANnyTr ans. Dat abase = "Personnel "

241

Working with Transaction objects

Specifying the
Transaction object in
SQL statements

242

You cannot assign values by setting the nondefault Transaction object equal to
SQLCA, likethis:

/1 This code produces incorrect results.
transaction MTrans

MyTrans = CREATE TRANSACTI ON

MyTrans = SQLCA // ERROR

When a database statement requires a Transaction object, PocketBuilder
assumesthe Transaction object is SQL CA unlessyou specify otherwise. These
CONNECT statements are equivalent:

CONNECT;
CONNECT USI NG SQLCA;

However, when you use a Transaction object other than SQLCA, you must
specify the Transaction object in the SQL statementsin Table 16-2 with the
USING TransactionObject clause.

Table 16-2: SQL statements that require USING TransactionObject

COMMIT INSERT

CONNECT PREPARE (dynamic SQL)
DELETE ROLLBACK

DECLARE Cursor SELECT

DECLARE Procedure SELECTBLOB
DISCONNECT UPDATEBLOB

EXECUTE (dynamic SQL) UPDATE

O To specify a user-defined Transaction object in SQL statements:

e Add thefollowing clause to the end of any of the SQL statementsin the
preceding list:

USING TransactionObject

For example, this statement uses a Transaction object named MyTrans to
connect to the database:

CONNECT USI NG MyTr ans;

Always code the Transaction object
Although specifying the USING TransactionObject clausein SQL statementsis

optional when you use SQLCA and required when you define your own
Transaction object, it is good practice to code it for any Transaction object,
including SQLCA. This avoids confusion and ensures that you supply USING
TransactionObject when it is required.

PocketBuilder

CHAPTER 16 Using Transaction Objects

Example The following statements use the default Transaction object (SQLCA) to
communicate with an Ultral ite database and a nondefault Transaction object
named SQLAnyTrans to communicate with a SQL Anywhere database:

/1 Set the default Transaction object properties.
SQLCA. DBMS = "UL9"

SQLCA. DBPar m = " Connect St ri ng="' DBF=\ Test\test. uch""
/1 Connect to the UtraLite database.

CONNECT USI NG SQLCA;

/1 Declare a SQL Anywhere Transaction object.
transaction SQLAnyTrans

/1l Create the SQL Anywhere Transaction object.
SQLAnyTrans = CREATE TRANSACTI ON

/1 Set the SQ Anywhere Transaction object properties.
SQLAnyTr ans. DBMS = " ODB"

SQLANnyTr ans. DBPar m = " Connect Stri ng=" DSN=Wbr k' "

/1 Connect to the SQ. Anywhere dat abase.

CONNECT USI NG SQLAnyTr ans;

/1l Insert arowinto the first database.
I NSERT | NTO CUSTOMER

VALUES (' CUST789', 'BOSTON)

USI NG SQLCA;

/1l Insert arowinto the second database.
I NSERT | NTO EMPLOYEE

VALUES ('Peter Smith', 'New York')

USI NG SQLAnyTr ans;

/1l Disconnect fromthe first database

DI SCONNECT USI NG SQLCA;

/1 Disconnect fromthe second dat abase.

DI SCONNECT USI NG SQLAnyTr ans;

/1 Destroy the SQ Anywhere Transacti on object.
DESTROY SQLAnyTr ans

Using error checking
An actual script would include error checking after the CONNECT, INSERT,

and DISCONNECT statements. For details, see “Error handling after a SQL
statement” next.

Resource Guide 243

Working with Transaction objects

Error handling after a SQL statement

When to check for
errors

SQLCode return
values

Using SQLErrText and
SQLDBCode

244

You should always test the success or failure code (the SQL Code property of
the Transaction object) after issuing one of the following statementsin a script:

e Transaction management statement (such as CONNECT, COMMIT, and
DISCONNECT)

e Embedded or dynamic SQL

Not in a DataWindow
Do not do thistype of error checking following aretrieval or update madeina

Datawindow. For information about handling errors in Datawindow objects,
see “Handling Datawindow errors’ on page 136.

Table 16-3 shows the SQL Code return values.

Table 16-3: SQLCode return values
Value Meaning

0 Success
100 Fetched row not found
-1 Error (the statement failed)

Use SQLErrText or SQLDBCode to obtain the details.

The string SQLErrText in the Transaction object contains the database
vendor-supplied error message. The long named SQLDBCode in the
Transaction object contains the database vendor-supplied status code. You can
reference these variablesin your script.

Example To display amessage box containing the DBMS error number and
message if the connection fails, code the following:

CONNECT USI NG SQLCA;

I F SQLCA. SQ.Code = -1 THEN
MessageBox("SQ error " + String(SQ.CA SQLDBCode), &
SQLCA. SQLErr Text)

END | F

PocketBuilder

CHAPTER 16 Using Transaction Objects

Using Transaction objects to call stored procedures

Overview of the RPC
procedure

Resource Guide

SQLCA isabuilt-in global variable of type transaction that is used in all
PocketBuilder applications. In your application, you can define a specialized
version of SQLCA that performs certain processing or calculations on your
data.

Not supported in UltraLite))
Stored procedures are not supported in Ultral ite databases.

You might already have defined remote stored procedures to perform these
operations. You can use the remote procedure call (RPC) techniqueto definea
customized version of the Transaction object that calls these database stored
procedures in your application.

Result sets
You cannot use the RPC technique to access result sets returned by stored

procedures. If the stored procedure returns one or more result sets,
PocketBuilder ignores the values and returns the output parameters and return
value. If your stored procedure returns a result set, you can use the embedded
SQL DECLARE Procedure statement to call it.

For information about the DECLARE Procedure statement, see the chapter on
SQL statementsin the Power Script Reference or the online Help.

To call database stored procedures from within your PocketBuilder
application, you can use the remote procedure call technique and PowerScript
dot notation (object.function) to define acustomized version of the Transaction
object that callsthe stored procedures.

To call database stored procedures in your application:

1 From the Objectstab in the New dialog box, define a standard class user
object inherited from the built-in Transaction object.

2 Inthe Script view in the User Object painter, use the RPCFUNC keyword
to declarethe stored procedure asan external function or subroutinefor the
user object.

3 Savethe user object.

4 Inthe Application painter, specify the user object you defined asthe
default global variable type for SQLCA.

5 Code your PocketBuilder application to use the user object.

245

Using Transaction objects to call stored procedures

Understanding the
example

For instructions on using the User Object and Application painters and the
Script view in PocketBuilder, see the Users Guide.

u_trans_database user object The following sections give step-by-step
instructions for using a Transaction object to call stored proceduresin your
application. The example shows how to define and use a standard class user
object named u_trans_database.

The u_trans_database user object is a descendant of (inherited from) the
built-in Transaction object SQLCA. A descendant is an object that inherits
functionality (properties, variables, functions, and event scripts) from an
ancestor object. A descendent object is also called a subclass.

The example uses asimple stored procedure that takes a salary as an input and
returns the value of the salary after a5% raise:

CREATE FUNCTI ON DBA. "sp_rai se" (salary double)
RETURNS doubl e
BEG N
DECLARE sal ary doubl e;
SET salary = salary * 1.05;
RETURN sal ary;
END

Step 1: define the standard class user object

246

O To define the standard class user object:

1 Sart PocketBuilder.
2 Connect to the database.

3 Click the New button in the PowerBar, or select File>New from the menu
bar.

4 Onthe PB Object tab in the New dialog box, select the Standard Class
icon, and click OK to define a new standard class user object.

The Select Standard Class Type dialog box displays, listing all the
standard class types provided in PocketBuilder.

5 Select transaction as the built-in system type that you want your user
object to inherit from, and click OK.

The User Object painter workspace displays so that you can assign
properties (instance variables) and functions to your user object.

PocketBuilder

CHAPTER 16 Using Transaction Objects

Step 2: declare the stored procedure as an external function

FUNCTION or
SUBROUTINE
declaration

RPCFUNC and ALIAS
FOR keywords

Resource Guide

You can declare a non-result-set database stored procedure as an external
function or external subroutinein a PocketBuilder application. If the stored
procedure has areturn value, declare it as a function (using the FUNCTION
keyword). If the stored procedure returns nothing or returns VOID, declareit as
a subroutine (using the SUBROUTINE keyword).

You must usethe RPCFUNC keyword in the function or subroutine declaration
to indicate that thisis aremote procedure call (RPC) for a database stored
procedure rather than for an external function in adynamic library. Optionally,
you can use the ALIAS FOR "spname" expression to supply the name of the
stored procedure asit appearsin the database if this name differs from the one
you want to use in your script.

For complete information about the syntax for declaring stored procedures as
remote procedure calls, see the chapter on calling functions and eventsin the
Power Script Reference.

To declare stored procedures as external functions for the user object:

1 IntheScript view inthe User Object painter, select [Declare] from thefirst
list and Local External Functions from the second list.

2 Placeyour cursor in the Declare Local External Functions view. From the
pop-up menu or the Edit menu, select Paste Specia >SQL >Remote Stored
Procedures.

PocketBuilder loads the stored procedures from your database and
displays the Remote Stored Procedures dialog box. It lists the names of
stored procedures in the current database.

247

Using Transaction objects to call stored procedures

248

Remote S‘Rred Procedure(s] Ed |

Figure 16-1: Remote Stored Procedures dialog box

rs_systabgroup.rs_marker ;l K |
rs_systabgroup.rs_update_lastoon
rs_svstabgroup.rs_update_thread n
sp_conkacts
sp_cuskomer_list

sp_rustomer_productks Help |

sp_fullname

sp_give_raise
sp_giveraise

SE sru:u:luct info

sp_retrieve_contacks
sp_sales_order
sp_sales_order_items
sws,5a_setremoteuser

sys,5a_setsubscription -
1| | 3

3 Select thenamesof one or more stored proceduresthat you want to declare

as functions for the user object, and click OK.

PocketBuilder retrieves the stored procedure declarations from the
database and pastes each declaration into the view.

Here is the declaration that displays (on one line) when you select
sp_raise:

function double sp_rai se(doubl e salary) RPCFUNC
ALI AS FOR "~"dba~".~"sp_rai se~""

4 Edit the stored procedure declaration as needed for your application.

Use either of the following syntax formats to declare the database remote
procedure call (RPC) as an external function or external subroutine:

FUNCTION rtndatatype functionname ({ { REF } datatypel argl, ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

SUBROUTINE functionname ({ { REF } datatypel argl, ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

For details about the syntax, see the Power Script Reference or the online
Help.

PocketBuilder

CHAPTER 16 Using Transaction Objects

Step 3: save the user object

O To save the user object:

1

In the User Object painter, click the Save button, or select File>Save from
the menu bar.

The Save User Object dialog box displays.

Specify the name of the user object, comments that describe its purpose,
and the library in which to save the user object, and click OK.

PocketBuilder saves the user object with the name you specified in the
selected library.

Step 4: specify the default global variable type for SQLCA

This procedure assumes that your application uses the default Transaction
object SQLCA, but you can also declare and create an instance of your own
Transaction object and then write code that calls the user object as a property
of your Transaction object. For instructions, see the chapter on working with
user objects in the Users Guide.

Resource Guide

In the Application painter, you must specify the user object you defined asthe
default global variable type for SQLCA. When you execute your application,
thistells PocketBuilder to use your standard class user object instead of the
built-in system Transaction object.

O To specify the default global variable type for SQLCA:

1

Click the Open buttoninthe PowerBar, or select File>Open from themenu
bar.

In the Open dialog box, select Applications from the Object Type
drop-down list. Choose the application where you want to use your new
user object and click OK.

The Application painter workspace displays.

Select the General tab in the Properties view. Click the Additional
Properties button.

Inthe Additional Properties dialog box, click the Variable Typestab to
display the Variable Types property page.

In the SQL CA box, specify the name of the standard class user object you
defined in Steps 1 through 3.

249

Using Transaction objects to call stored procedures

Figure 16-2: Specifying a user-defined Transaction object as the default
global variable for SQLCA

Application E

Text Font | Column Font I Header Font I
Label Fant | Icon Yariable Types

SOLCA:

I u_trans_database]|

Error:

| error

Message:

| message

oK I Cancel | Apply Help

6 Click OK or Apply.

When you execute your application, PocketBuilder will use the specified
standard class user object instead of the built-in system object type it
inherits from.

Step 5: code your application to use the user object

250

What you have done so far Inthe previous steps, you defined a remote

stored procedure as an external function for the u_trans_database standard

class user object. You then specified u_trans_database as the default global
variable type for SQLCA. These steps give your PocketBuilder application
access to the properties and functions encapsulated in the user object.

What you do now You now need to write code that uses the user object to
perform the necessary processing.

In your application script, you can use PowerScript dot notation to call the
stored procedure functions you defined for the user object, just asyou do when
using SQLCA for all other PocketBuilder objects. The dot notation syntax is:

object.function (arguments)

PocketBuilder

CHAPTER 16 Using Transaction Objects

For example, you can call the sp_raise stored procedure with code similar to
the following:

double Id_result
doubl e I d_inputsalary
ld_result = sqlca.sp_raise(|d_inputsalary)

O To code your application to use the user object:

1 Openthe object or control for which you want to write the script.
2 Select the event for which you want to write the script.

3 Writecodethat usesthe user object to do the necessary processing for your
application.

4 Compile the script to save your changes.

Supported DBMS features when calling stored

procedures

Resource Guide

When you define and use a custom Transaction object to call remote stored
proceduresin your application, the features supported depend on the DBM Sto
which your application connects. Stored procedures are not supported in
Ultral ite databases.

Result sets
You cannot use the remote procedure call technique to access result sets

returned by stored procedures. If the stored procedure returns one or more
result sets, PocketBuilder ignores the values and returns the output parameters
and return value.

If your stored procedure returns aresult set, you can use the embedded SQL
DECLARE Procedure statement to call it. For information about the DECLARE
Procedure statement, see the chapter on SQL statements in the online Help.

If your application connects to an SQL Anywhere database, you can use the
following features:

e IN, OUT, and IN OUT parameters, as shown in Table 16-4.

251

Supported DBMS features when calling stored procedures

Table 16-4: SQL Anywhere IN, OUT, and IN OUT parameters
Parameter | What happens

IN AnIN variableis passed by value and indicates a value being passed
to the procedure.
ouT An OUT variableis passed by reference and indicates that the

procedure can modify the PowerScript variable that was passed. Use
the PowerScript REF keyword for this parameter type.

IN OUT AnIN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

» Blobsas parameters. You can use blobs that are up to 32,512 bytes long.

252 PocketBuilder

CHAPTER 17

About this chapter

Contents

Using MobiLink Synchronization

This chapter provides an introduction to MobiLink synchronization. It
also describes PocketBuilder wizards and utilities that help you control
database synchronization from a PocketBuilder application, how to
prepare to use the wizards, and how to use the objects created by the
wizards.

Topic Page
About MobiLink synchronization 253
Working with PocketBuilder synchronization objects 259
Preparing consolidated databases 269
Creating remote databases 276
Synchronization techniques 283

About MobiLink synchronization

Resource Guide

MobiLink is a session-based synchronization system that allows one- or
two-way synchronization between a central data source, typically a
consolidated database, and many remote databases. Administration and
resource requirements at the remote database sites are minimal, making
MobiLink well suited to a variety of maobile applications.

Where to find additional information
Detailed information about MobiLink synchronization is provided in the

MobiLink Getting Sarted, the MobiLink - Client Administration, and the
Mobilink - Server Administration books. These books are available online
on the SQL Anywhere Product Manuals Web site at
http://www.ianywhere.com/developer/product_manuals/sqglanywhere/.

If you are already familiar with MobiLink, go to “Working with
PocketBuilder synchronization objects” on page 259 to learn about
PocketBuilder integration with MobiLink.

253

About MobiLink synchronization

Data movement and
synchronization

Consolidated and
remote databases

The MobiLink
synchronization server

254

This section introduces some MobiLink terms and concepts.

Datamovement occurswhen shared datais distributed over multiple databases
on multiple nodes and changes to data in one database are applied to the
corresponding data in other databases. Data can be moved using replication or
synchronization.

Data replication moves al transactions from one database to another, whereas
data synchronization movesonly the net result of transactions. Both techniques
get their information by scanning transaction log files, but synchronization
useslog file segmentsinstead of the full log file, making data movement much
faster and more efficient.

With synchronization, datais available locally and can be modified without a
connection to a server. MobiLink synchronization uses aloose consistency
model, which meansthat all changes are synchronized with each site over time
in aconsistent manner, but different sites might have different copies of dataat
any instant. Only successful transactions are synchronized.

The consolidated database, which can be any ODBC-compliant database, such
as SQL Anywhere, Adaptive Server Enterprise, Oracle, IBM DB2 UDB, or
Microsoft SQL Server, holds the master copy of all the data. Optionally, in
MobiLink 10, you can store al or part of your central datain adata source such
as an application server, spreadsheet, Web server, Web service, or text file.

For information on using a central data source other than a consolidated
database, see the chapter on direct row handling in the MobiLink Server
Administration book.

The remote database contains a subset of the consolidated data. In
PocketBuilder, the remote database is a SQL Anywhere or Ultral ite database.

The MobiLink synchronization server, dbmisrv9 or misrv10, manages the
synchronization process and provides the interface between remote databases
and the consolidated database server. All communication between the
MobiLink synchronization server and the consolidated database occurs
through an ODBC connection.The consolidated database and synchronization
server often reside on the same machine, but that is not a requirement.

The MobiLink server must be running before a synchronization processis
launched.

Asyou build and test PocketBuilder applications, you can start the server from
the Utilities folder in the Objects view in the Database painter. For more
information, seethe chapter on managing databasesin the PocketBuilder Users
Guide.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

MobiLink hierarchy

Resource Guide

For information about starting the server from the command line, see“ misrv10”
in the index of the SQL Anywhere online books.

MobiLink typically uses a hierarchical configuration. The nodesin the
hierarchy canreside on servers, desktop computers, and handheld or embedded
devices. A ssimple hierarchy might consist of a consolidated database on a
server and multiple remote databases on mobile devices. A more complex
hierarchy might contain multiple levelsin which some sites act as both remote
and consolidated databases. Any consolidated database that also actsas a
remote database must be a SQL Anywhere database.

For example, suppose remote sites A1, A2, and A3 synchronize with a
consolidated database A on aloca server, and remote sites B1, B2, and B3
synchronize with aconsolidated database B on another local server. AandB in
turn act as remote sites and synchronize with a consolidated database C on a
master server. C can be any ODBC-compliant database, but A and B must both
be SQL Anywhere databases.

Figure 17-1: MobiLink hierarchy

Consolidated Database

MaebiLink Synchronization
Server

Consolidated/ S
Remote B
Databases - =
ODBC ODBC

Remote w
Databases

MobiLink
Synchronization
Servers
) 2

255

About MobiLink synchronization

Synchronization
scripts

The MobiLink
synchronization SQL
Anywhere client

The MobiLink
synchronization
UltraLite client

256

MobiLink synchronizationisan event-driven process. WhenaMobiLink client
initiates a synchronization, a number of synchronization events occur inside
the MobiLink server. When an event occurs, MobiLink looks for a script to
match the synchronization event. If you want the MobiLink server to take an
action, you must provide a script for the event.

You can write synchronization scripts for connection-level events and for
events for each table in the remote database. You save these scripts on the
consolidated database.

You can write scripts using SQL, Java, or .NET. For more information about
event scripts and writing them in the MobiLink Synchronization plug-inin
Sybase Central, see “ Preparing consolidated databases’ on page 2609.

SQL Anywhere clients at remote sites initiate synchronization by running a
command-line utility called dbmisync. This utility synchronizes one or more
subscriptions in aremote database with the MobiLink synchronization server.
Subscriptions are described in “ Publications, articles, and users’ on page 257.
For more information about the domisync utility and its options, see “dbmisync
utility” in the index of the SQL Anywhere online books.

In PocketBuilder, synchronization objects that you create with the MobiLink
Synchronization for ASA wizard manage the dbmlsync process. For more
information, see “Working with PocketBuilder synchronization objects’ on
page 259.

A different PocketBuilder wizard, the MobiLink Sync User and Subscription
Maintenance wizard, lets you provide application users with the ability to
create user names and subscriptions in aremote database. For more
information about this wizard, see the chapter on managing the database in the
PocketBuilder Users Guide.

One of the mgjor differencesin synchronizing an UltralL ite database instead of
a SQL Anywhere database is that there are no subscriptionsin an UltraLite
database. By default, all tablesin an Ultralite remote database are updated
during synchronization, although you can create publicationsin the database to
restrict the updates to specific tables. Another differenceisthat the MobiLink
synchronization call is made directly on the connection object to the remote
UltraL ite database, rather than through an outside call to a separate
synchronization utility.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Publications, articles,
and users

Resource Guide

MobiLink synchronization requires matching publications to be defined in
both the consolidated and remote databases, and synchronization scriptsto be
defined on the consolidated databases. “ Preparing to use the wizard for remote
UltraL ite databases’ on page 268 describes the steps you must take to prepare
the databases for synchronization using utilities you can run from the Database
painter. You can prepare the databases before or after running the UltraLite
Synchronization wizard that helps you integrate MobiLink synchronization
with your PocketBuilder applications.

For more information on the Ultralite Synchronization wizard, see the
Managing Databases chapter in the Users Guide.

A publication is a database object on the remote database that identifies tables
and columns to be synchronized. Each publication can contain one or more
articles. An articleis adatabase object that representsawholetable, or a subset
of the columns and rows in atable.

In MobiLink 9, aMobiLink user is a database object that uniquely identifiesa
remote database, and is also used to authenticate a person who synchronizes.
Thereis one MobiLink user name for each remote database in the MobiLink
system.

In MobiLink 10, aMobiLink user is used only to authenticate a person who
synchronizes. User namesdo not need to be unique. Instead, anidentifier called
aremote ID uniquely identifies a remote database. The remote ID is stored in
the remote database. MobiLink generates aremote ID the first time aremote
database synchronizes to a central data source, or any time it encounters a
NULL valuefor the remote ID. The remote ID is created automatically asa
GUID, but you can set it to any string that has meaning to you.

The remote ID makes it easier for the same MobiLink user to synchronize
different sets of datain different remote databases. For SQL Anywhere 10
remote databases, the MobiLink server tracks synchronization progress by
remote ID and subscription. In Ultralite 10 remote databases, theremoteID is
also useful for allowing multiple MobiLink users to synchronize the same
remote database. For these databases, the MobiLink server tracks
synchronization progress by remote ID and publication.

Every script that accepts the MobiLink user name as a parameter now also
accepts aremote_id parameter. The remote _id parameter is available only if
you use named parameters.

257

About MobiLink synchronization

Subscriptions

Create
Synchronization
Model wizard

The synchronization
process

258

In both versions 9 and 10, MobiLink users are created on the remote database
and registered on the consolidated database. You can register users with the
mluser utility, the mlsrv10 -zu option, or in other ways. Once registered,
MobiLink user names are stored in the ml_user system table on the
consolidated database.

A subscription associates a user with one or more publications. It specifiesthe
synchronization protocol (suchas TCP/IB, HTTP, or HTTPS), address (such as
myserver.acmetools.com), and additional optional connection and extended
options.

All of these objects are created in the remote database, although subscriptions
are not used with UltraL ite databases. In Sybase Central, you create
publications, users, and subscriptionsusing the SQL Anywhere plug-in, not the
MobiLink Synchronization plug-in. For more information, see “ Creating
remote databases’ on page 276.

The MobiLink Sync User and Subscription Maintenance wizard creates
objects that allow a PocketBuilder application user to create MobiLink users
and subscriptions in aremote database. For more information, see the chapter
on managing the database in the PocketBuilder Users Guide.

The MobiLink 10 plug-in for Sybase Central provides the Create
Synchronization Model wizard to help you set up synchronization between a
remote database and a consolidated database. You can use the wizard to create
scripts, publications, users, and so on. You can also usethe wizard to create the
remote database and all its objects based on the schema of a consolidated
database. You start the wizard by selecting the Tools>MobiLink 10>Setup
MobiLink Synchronization menu item or by clicking “Create a
Synchronization Model” in the Sybase Central Task view.

For remote SQL Anywhere databases Dbmisync connects to the remote
database using TCP/IR, HTTP, or HTTPS, and prepares a stream of data (the
upload stream) to be uploaded to the consolidated database. Dbmisync uses
information contained in the transaction log of the remote database to build the
upload stream. The upload stream contains the MobiLink user name and
password, the version of synchronization scriptsto use, the last

synchroni zation timestamp, the schema of tables and columnsin the
publication, and the net result of al inserts, updates, and deletes since the last
synchronization.

After building the upload stream, dbmisync uses information stored in the
specified publication and subscription to connect to the MobiLink
synchronization server and exchange data.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

For remote UltraLite databases The Synchronize call on the connection
object to the remote database usesthe sel ected communication stream (TCP/IP,
HTTPR, or HTTPS) and prepares a stream of data to be uploaded to the
consolidated database. Information passed in a structure object is used to
connect to the MobiLink synchronization server and exchange data.

For all remote databases When the MobiLink synchronization server
receives data, it updates the consolidated database, then builds a download
stream that contains all relevant changes and sends it back to the remote site.
At the end of each successful synchronization, the consolidated and remote
databases are consistent. Either awhol e transaction is synchronized, or none of
it is synchronized. This ensures transactional integrity at each database.

Working with PocketBuilder synchronization objects

Using SalesDB as a
sample remote SQL
Anywhere database

Resource Guide

When you run the MobiLink Synchronization for ASA or the UltraLite
Synchronization wizard from the Database page in the New dialog box, the
wizard generates objects that let you initiate and control MobiLink
synchronization requests from a PocketBuilder application. These objects let
you obtain feedback during the synchronization process, code Power Script
events at specific points during synchronization, and cancel the process
programmatically.

To get started, create anew workspace and a target application. You do not
need to create a SQL database connection, but you do need to create a project.

Before you use the MobiLink Synchronization for ASA wizard to generate
objectsfor an application, you need to set up aremote database and add at | east
one publication, user, and subscription to it, and create a PocketBuilder
database profilefor the remote database. To test the synchronization objects on
the Pocket PC device and emulator, you need to set up aconsolidated database.

You can create your own databases, as described in “ Preparing consolidated
databases’ on page 269 and “ Creating remote databases’ on page 276, or use
the databases provided for the SalesDB sample application.

You can set up the SalesDB consolidated and remote databases using the
MakeDB.cmd file located in the Code Exampl es\SalesDB\db directory in your
PocketBuilder installation. The remote database already has a publication
(salesapi), user (tutorial), and subscription.

259

Working with PocketBuilder synchronization objects

Instructions for running the command file and setting up a database profile are
in the SalesDB.html file in the SalesDB directory. Thereis also atutorial
version of the application in the Tutorial directory.

Adding synchronization capabilities to your application

Run the wizard

Call synchronization
objects from your
application

260

To test the synchronization objects generated by the MobiLink
Synchronization for ASA wizard or the Ultralite Synchronization wizard,
complete the following steps:

1 Runthewizard.

2 Cdll synchronization objects from your application.
3 Deploy the application and database files.

4 Start the MobiLink server.

5 Runtheapplication.

For remote SQL Anywhere databases The wizard promptsyou for a
database profile, afile DSN, and apublication. You can usethe SalesDB values
if you set up the databases and profile. Continue through the wizard, selecting
default values, and click Finish to generate the synchronization objects.

For remote UltraLite databases The wizard prompts you for a publication
and a script version. For testing purposes, you can leave the script version
blank and, for UltraLite 9, select the Send Column Names check box. In
UltraL ite 10, the column names are used by the MobiLink server for direct row
handling. You need to set this option only when using the row handling API to
refer to columns by name rather than by index.

Continue through the wizard, selecting default values, and click Finish to
generate the synchronization objects.

For all remote databases For information on the objects generated by the
wizards for remote SQL Anywhere or Ultral ite databases, see the chapter on
managing databases in the Users Guide. For help in wizard screens, place the
mouse pointer in any wizard field and press F1.

InaMenu object for your application, add two submenuitemsto the File menu,
called Synchronize and Sync Options. Alternatively, you can use these namesto
label two buttons on an application window.

For remote SQL Anywhere databases Add the following code to the
Clicked event of the Synchronize menu item or button (appnameisthe name of
your application):

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Deploy the application
and database files

Start the MobiLink
server

Run the application

gf _appnanme_sync("tutorial", "")

Add thefollowing code to the Clicked event of the Sync Options menu item or
button:

gf _appnane_opti ons_sync()

For remote UltraLite databases Add the following code to the Clicked
event of the Synchronize menu item or button (appname is the name of your
application):

gf _appnane_ul sync("dba", "sql", sqglca)

Add thefollowing code to the Clicked event of the Sync Options menu item or
button:

gf _appnane_opti ons_ul sync(sql ca)

Use the Project painter to deploy the application to the Pocket PC or emul ator.
For remote SQL Anywhere databases, you need to copy the file DSN for the
remote database to the root directory of the device or emulator, and copy the
remote database and its transaction log file to the directory on the device or
emulator specified in the DSN.

For more information about copying filesto devices or emulators, see the
Installation Guide.

Select MobiLink Synchronization Server from the Utilities folder in the
Database painter. In the dialog box, select the Automatic Addition of Users
check box. This ensures that the MobiLink names created in remote databases
areregistered for synchronization. Click OK to start the server.

Testing purposes only
Typically, you would not select the Automatic Addition of Users option for

applications that you create for production.

Run the application on the device or emulator and select the File>Synchronize
and File>Sync Options menu items or buttons to test their operation.

Using the synchronization objects in your application

Resource Guide

Before you use objects generated by one of the MobiLink synchronization
wizards, you should examine them in the PocketBuilder paintersto understand
how they interact. Many of the function and event scripts contain comments
that describe their purpose.

261

Working with PocketBuilder synchronization objects

Instance variables in
the user object

Launching
synchronization

262

All the source code is provided so that you have total control of how your
application manages synchronization. You can use the objects as they are,
modify them, or use them as templates for your own objects.

MobilLink Synchronization for SQL Anywhere The nvo_appname_sync
user object contains instance variables that represent specific domisync
arguments, including the publication name, the MobiLink server host name
and port, the DSN used on the desktop, and the file DSN created for
deployment to the Pocket PC.

UltraLite Synchronization The nvo_appname ulsync user object contains
instance variables that represent arguments passed to a structure object in the
Synchronize call. Publication names, ascript version, and the MobiL ink server
host name and port number are included in instance variables of the nonvisual
user object.

For all synchronization wizards When you run the wizard, the val ues that
you specify for theseinstance variables are set asdefault valuesin the script for
the constructor event of the user object. They are also set in the Windows
registry on the development computer in
HKEY_CURRENT_USER\Software\Sybase\PocketBuil der\2.0\appname\Mobi
Link, where appname is the name of your application.

At runtime, the constructor event script getsthe values of theinstance variables
from the Windows CE registry on the device. If they cannot be obtained from
theregistry, or if you override the registry settings, the default value supplied
in the script is used instead and is written to the registry.

You can change the default values in the event script, and you can let the user
change the registry values at runtime by providing a menu item that opensthe
w_appname_sync_options or the w_appname_ulsync_options window.

The user abject’s uf_runsync and uf_runsync_with_window functions use the
instance variables as arguments when they launch a dbmisync process or
Synchronize call.

To enable the user to launch a synchronization process, code a button or menu
event script to call the gf_appname_sync (SQL Anywhere) or
gf_appname_ulsync (UltraLite) global function. This function creates an
instance of the nvo_appname_sync or nvo_appname_ulsync user object, and
the user object’s constructor event script setsthe appname\MobiLink key inthe
Windows CE registry.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Supplying a MobiLink
user name and
password

Resource Guide

If you specified in the wizard that the status window should display, the global
function opens the status window, whose ue_postopen event calls the
uf_runsync_with_window function; otherwise, the global function calls the
uf_runsync function. Both uf_runsync functions launch domisync for remote
SQL Anywhere databases as an external processusing aspecial functioninthe
PocketBuilder VM. For UltralLite databases, both functions call Synchronize
on the connection object.

Thegf_appname_sync (SQL Anywhere) global function takesaMobiLink user
name and password as arguments. The gf_appname_ulsync (UltraLite) global
function also takes the name of the remote database connection object as an
argument. The wizard does not set any default values for these arguments, so
you generally need to provide them. If you pass valid arguments to the
function, it setsthe value of theis mluser and is_mlpassword instance
variables to the values supplied.

Example for a remote SQL Anywhere database You could code amenu
item to open a response window with two single-line edit boxes, and pass the
user-supplied values to the function in the script for an OK button:

i f gf_nyapp_sync (sle_usr.text, sle_pwd.text)<> 0 then
MessageBox("Error", "MbbiLink Error")
end if

If you pass null values or empty stringsto the global function, the uf_runsync
functions use MabiLink user name and password values stored in the registry
to provide arguments for the domisync utility. If each user of your application
typically usesagiven MobiLink user name, providing a mechanism that stores
valuesin the registry lets users start a synchronization without reentering the
information. The options window (described in “Using the synchronization
options window” on page 265) provides such a mechanism.

If no user name is supplied o
If there are no values in the registry and the publication has only one user

associated with it, you can supply empty argumentsto the global function, and
dbmisync will use the user name associated with the publication.

Example for a remote UltraLite database You could code a menu item to
open aresponse window with two single-line edit boxes, and pass the user-
supplied values to the function in the script for an OK button:

i f gf _nyapp_ul sync (sle_usr.text, sle_pwd.text, sqlca)&
<> 0 then
MessageBox("Error", "MbbiLink Error")

end if

263

Working with PocketBuilder synchronization objects

Retrieving data after
synchronization

Capturing dbmlsync
messages

264

If you pass null values or empty strings to the global function, the uf_runsync
functions use MobiLink user name and password values stored in the registry
to provide arguments to the structure object passed in the Synchronize call.

After synchronizing, you would typically test for synchronization errors, then
retrieve data from the newly synchronized database. For example, for
synchronization involving aremote SQL Anywhere database, you could code:

if gf _nyapp_sync("", "") <> 0 then
MessageBox("Error", "MbobiLink error")
el se
dw_ 1. Retrieve()
end if

For synchronization with remote SQL Anywhere databases, the PocketBuilder
VM traps messages from the domisync process and triggers eventsin the
nonvisual user object as the process runs. For remote Ultral ite databases,
synchroni zation messages are caught in a structure object, and the
synchronization directly triggers eventsin the nonvisual user object generated
by the Ultralite Synchronization wizard.

These events are triggered before synchronization begins as the upload stream
is prepared:
ue_begin_logscan (long rescan_log)
ue_progress_info (long progress_index, long progress_max)
ue_end_logscan ()

These events correspond to events on the synchronization server, as described
in “ Connection events’ on page 270:
ue_begin_sync (string user_name, string pub_names)
ue_connect_MobiLink ()
ue_begin_upload ()
ue_end_upload ()
ue_begin_download ()
ue_end_download (long upsert_rows, long delete_rows)
ue_disconnect_MobiLink()
ue_end_sync (long status_code)

Theseeventsaretriggered after ue_end_upload and before ue_begin_download:
ue_wait_for_upload_ack ()
ue_upload_ack (long upload_status)

These events are triggered when various messages are sent by the server:

ue_error_msg (string error_msg)
ue_warning_msg (string warning_msg)

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Cancelling
synchronization

ue_file_msg (string file_msg)
ue_display_msg (string display_msg)

The default event scripts created by a PocketBuilder synchronization wizard
trigger corresponding events in the optional status window, if it exists. The
window events write the status to the multiline edit control in the status
window. Some window events also update a static text control that displaysthe
phase of the synchronization operation that is currently running (log scan,
upload, or download) and control a horizontal progress bar showing what
percentage of the operation has completed.

You can also add code to the user object or window events that will execute at
the point in the synchronization process when the corresponding MobiLink
events are triggered. For synchronization with remote SQL Anywhere
databases, the domisync process sends the event messages to the controlling
PowerBuilder application and waits until PowerBuilder event processing is
completed before continuing. There is no external synchronization process
called by an application for synchronizing a remote UltraL ite database.

The Cancel button on the status window calls the uf_cancelsync user object
function to cancel the synchronization process. If your application does not use
the status window, you can call this function in an event script elsewherein
your application.

Using the synchronization options window

Resource Guide

To use the options window (w_appname_sync_options for applications using
remote SQL Anywhere databasesor w_appname_sync_options for applications
using remote Ultral ite databases), code a menu item or button clicked event to
call the gf_appname_configure_sync or the gf_appname_configure_ulsync
function. This function creates an instance of the s_appname_sync_parms or
s_appname_ulsync_parms structure and passes it to the options window.

The window’s Open event creates an instance of the nvo_appname_sync or
nvo_appname_ulsync user object, and its ue_postopen event retrieves values
from the registry to populate the text boxes in the window—unless you have
chosen to override registry settings. The user can verify or modify optionsin
the window and click either OK or Cancel.

If the user clicks OK, the gf_appname_configure_sync or
gf_appname_configure_ulsync function calls gf_appname_sync or
gf_appname_ulsync to launch synchronization using the MobiLink user name
and password returned from the window. The user’s changes are also written
to the registry.

265

Working with PocketBuilder synchronization objects

Subscriptions page

MobiLink Server page

266

The Close event of thewindow callsthewf_try_saving window function. If the
user clicks OK, the wf_savesettings window function is launched. If the user
clicks Cancel, no changes are made to the registry.

The options window has three pages: Subscriptions, MobiLink Server, and
Settings. Although Ultral ite databases do not have subscriptions, the
information associ ating publicationswith a script version and aMobiLink user
isthe sametype of information used to define subscriptionsin SQL Anywhere
databases.

When you used the MobiLink wizard, you selected one or more publications
fromthelist of available publications. By default, the sel ected publicationsthat
display on the Subscriptions page cannot be edited at runtimefor an application
using aremote SQL Anywhere database. You can enable the Publicationsfield
for user entry at runtime by opening the optionswindow in the Window painter,
selecting the Publications text box, and clicking the Enabled check box in the
Properties view.

Each remote user can supply a MobiLink synchronization user name on the
Subscriptions page. For remote SQL Anywhere databases, the name must be
associated in a subscription with the publications displayed on the page. If the
application is always used by the same MobiLink user, thisinformation never
needs to be supplied again. The name is saved in the registry and used by
default every time synchronization is launched from the application on this
device.

If the user checks the Remember Password check box, the password is
encrypted and saved in the registry. The uf_encrypt_pw and uf_decrypt_pw
functions use a simple agorithm to ensure that the password does not display
without encryption in the registry. You can replace this algorithm with amore
sophisticated encryption technique.

When you create a subscription, you specify a protocol, host, port, and other
connection options. For ease of testing, the default protocol is TCP/IP and the
default host islocalhost. The default port is 2439 for TCP/IP, 80 for HTTP, and
443 for HTTPS.

You might need to change these defaults when you are testing, and your users
might need to change them when your applicationisin useif the server is
moved to another host or the port changes. For remote Ultral ite database
connections, the application user can enter additional parametersin the
Additional text box in the format: keywor d1=val uel[; keywor dN=val ueN] ,
where keyword is the parameter name and value is the parameter value. For
remote SQL Anywhere databases, additional and extended parameters for the
MobiLink server can be set by the user on the Settings page.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Settings page

Modifying generated
objects

If the user does not make any changes to the MobiLink Server page of the
optionswindow, the synchronization process usesthe valuesyou entered in the
wizard, if any. For remote SQL Anywhere databases, if you did not enter values
in the wizard, dbmisync uses the values in the subscription.

For more information about subscriptions, see “ Adding subscriptions for
remote SQL Anywhere databases’ on page 281.

For remote SQL Anywhere databases The Settings page displaysthefile
DSN, logging options, and any other dbmisync options you specified in the
wizard. It also shows the three display options available to the user. This page
lets the user change any of these options.

Extended options
Extended options are added to the domisync command line with the -e switch.

You do not need to type the -e switch in the text box.

For remote UltraLite databases The Settings page lets the user choose to
display the generated status window, to send column names (for automatic
generation of synchronization scripts), and to add or change authentication
parameters.

If you want to give or restrict user access to synchronization options available
inthe optionswindow, modify thewindow at designtimeor useit asatemplate
for your own options window. At a minimum, you probably need to provide a
way for each user to enter aMobiLink user name and password.

If you want the user to be able to save options without launching a
synchronization, you could comment out the linesin
gf_appname_configure_sync or gf_appname_configure_ulsync that call the
global synchronization function (gf_appname_sync or gf_appname_ulsync), or
add a third button called Save Only that contains the same code as the OK
button, but returns a non-zero value.

Preparing to use the wizard for remote SQL Anywhere databases

Resource Guide

The previous sections described how to try out the wizard in atest application
and how to use the objects generated by the wizard. Before you use the
MobiLink Synchronization for ASA wizard in a production application, you
need to complete the following tasks:

e Set up aconsolidated database and write synchronization scripts as
described in “ Preparing consolidated databases’ on page 269

267

Working with PocketBuilder synchronization objects

» Create aremote database on the desktop and set up one or more
publications, users, and subscriptions as described in “ Creating remote
databases’ on page 276

e Createafile DSN for the remote database, as described in “ Defining the
SQL Anywhere data source” on page 202

e Create adatabase connection profile for the remote database, as described
in “ Creating database profiles’ on page 183

Preparing to use the wizard for remote UltraLite databases

Before you use the Ultral ite Synchronization wizard in a production
application, you need to compl ete the tasks listed in Table 17-1.

Table 17-1: Preparing databases for MobiLink synchronization

Preparation step

How to do this

Add tables and
publications to the
remote Ultralite
database

268

For UltraLite 10 you can create the database based onthe
schema of the consolidated database using the Create
Synchronization Model wizard of the MobiLink plug-in
to Sybase Central. You can also create an empty
database and add tables to it using the UltraLite plug-in
to Sybase Central..

For UltraLite 9, you can use the ulinit command line
utiltiy to create aremote database using the schemafrom
aconsolidated SQL Anywhere database. Alternatively,
you can start the Ultralite Schema Painter from the
PocketBuilder Database painter, select File>New>
UltraL ite Schema, type aname with aUSM extension
for the schema, and click OK. Then you can select the
Tablesand Synchroni zation nodes under the new schema
and click theitemsin the right pane of the painter to add
tables, and optionally, publications.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Preparation step How to do this

Add MobiLink users, Connect to the consolidated database using a MobiLink
script versions, and Synchronization connection in Sybase Central, add new
synchronized tablesin users under the Users node, add script versions under the

the consolidated database | Versionsnode, add tables under the Synchronized Tables
node, then add scripts for each synchronized table by
selecting each table sequentialy and clicking Add Table
Script in the right pane. The table script associates a
script version with a scripting event for each table.

The above description is for the Admin mode of the
MobiLink 10 plug-in to Sybase Central 5.0. Thisisthe
only mode available for MobiLink 9. For MobiLink 10,
you can use the plug-in Mode menu to switch between
Admin and Model modes.

Automatic addition of users and scripts
Adding users and script versionsis optional for

non-production databases, because you can add these
automatically using specia selectionsinthewizard or by
modifying objects created by the wizard.

For UltraLite 9, generate | Start the Create UltraLite 9.x Database utility in

the UltraLite schemaasa | PocketBuilder, browse to a USM file you created with
remote UltraLite the UltraLite 9 Schema Painter, enter aname for a new
database UltraLite database, and click the OK button.

Preparing consolidated databases

Resource Guide

Whether you are designing a new database or preparing an existing oneto be
used as a MobiLink consolidated database, you must install the MobiLink
system tablesin that database. MobiLink setup scripts for SQL Anywhere 10,
Adaptive Server Enterprise, Oracle 8 and 9, Microsoft SQL Server, and IBM
DB2 databases are located in the MobiLink\setup directory of your SQL
Anywhere installation. (Setup scripts are not required for Adaptive Server
Anywhere 9, but are required for SQL Anywhere 10 consolidated databases.)

MobiLink system tables store information for MobiLink users, tables, scripts,
and script versionsin the consolidated database. You will probably not directly
access these tables, but you alter them when you perform actions such as
adding synchronization scripts.

269

Preparing consolidated databases

ODBC connections
and drivers

Writing
synchronization
scripts

To carry out synchronization, the MobiLink synchronization server needs an
ODBC connection to the consolidated database. You must have an ODBC
driver for your server and you must create an ODBC data source for the
database on the machine on which your MobiLink synchronization server is
running. For alist of supported drivers, see Recommended ODBC Drivers for
MobiLink at http://www.sybase.com/detail?id=1011880.

There are two types of eventsthat occur during synchronization and for which
you need to write synchronization scripts:

e Connection events that perform global tasks required during every
synchronization

e Table eventsthat are associated with a specific table and perform tasks
related to modifying dataiin that table

Connection events

270

At the connection level, the sequence of mgjor eventsis as follows:
begi n_connecti on
begi n_synchr oni zati on
begi n_upl oad
end_upl oad
prepare_f or _downl oad
begi n_downl oad
end_downl oad
end_synchroni zati on
end_connection

When a synchronization request occurs, the begin_connection event is fired.
When all synchronization requests for the current script version have been
completed, the end_connection event isfired. Typically you placeinitialization
and cleanup code in the scripts for these events, such as variable declaration
and database cleanup.

Apart from begin_connection and end_connection, all of these events take the
MobiLink user name stored inthe mi_user tablein the consolidated database as
aparameter. You can use parametersin your scripts by placing question marks
where the parameter value should be substituted.

To make scriptsin SQL Anywhere databases easier to read, you might declare
avariableinthebegin_connection script, then set it to the value of ml_username
in the begin_synchronization script.

For example, in begin_connection:

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Table events

Resource Guide

CREATE VARI ABLE @ync_user VARCHAR(128);
In begin_synchronization:
SET @ync_user = ?

Thebegin_synchronization and end_synchronization events are fired before and
after changes are applied to the remote and consolidated databases.

The begin_upload event marks the beginning of the upload transaction.
Applicable inserts and updates to the consolidated database are performed for
all remotetables, thenrowsare deleted asapplicablefor all remotetables. After
end_upload, upload changes are committed.

If you do not want to delete rows from the consolidated database, do not write
scripts for the upload_delete event, or use the STOP SYNCHRONIZATION
DELETE statement in your PowerScript code. For more information, see
“Deleting rows from the remote database only” on page 284.

The begin_download event marks the beginning of the download transaction.
Applicabledeletes are performed for all remotetables, and then rows are added
asapplicablefor all remotetablesin the download_cursor. After end_download,
download changes are committed. These events have the date of the last
download as a parameter.

Other connection-level events can also occur, such as handle_error,
report_error, and synchronization_statistics. For a complete list of events and
examples of their use, see the chapter on synchronization eventsin the
MobiLink Administration Guide.

Many of the connection events that occur between the begin_synchronization
and end_synchronization events, such as begin_download and end_upload, also
have table equivalents. These and other overall table events might be used for
tasks such as creating an intermediate table to hold changes or printing
information to alog file.

You can also script table events that apply to each row in the table. For
row-level events, the order of the columnsin your scripts must match the order
in which they appear in the CREATE TABLE statement in the remote database,
and the column names in the scripts must refer to the column namesin the
consolidated database.

271

Preparing consolidated databases

Generating default
scripts

272

Although there are several row-level events, most tables need scripts for three
upload events (for INSERT, UPDATE, and DELETE) and one download event.
To speed up thetask of creating these four scripts for every table, you can
generate scripts for them automatically by running the “create a
synchronization model” task from the MobiLink 10 plug-inin Sybase Central.

For information on the MobiLink plug-in, see the online MobiLink Getting
Sarted book.

The MobiLink plug-in allows you to add more functionality to default scripts
than default scripts generated in earlier versions of MobiLink. However, if you
are using aremote Adaptive Server Anywhere 9 database (instead of aremote
SQL Anywhere 10 database), you can till generate default synchronization
scriptsby starting the MobiLink synchronization server with the -za switch and
setting the SendColumnNames extended option for domisync. For applications
using aremote UltraL ite 9.x database, you (or an application user) can select a
send Column Names check box.

Read-only remote databases
If the remote Adaptive Server Anywhere 9 database is read-only—that is, you

never want to upload any data—you should not implement the upload scripts.
You can use the -ze switch to generate sample scripts, and use the download
samples as templates for your download scripts.

O To generate synchronization scripts automatically in PocketBuilder:

1 Select the Automatic Script Generation check box in the MobiLink
Synchronize Server Options dialog box and click OK to start the server.

You open this dialog box from the Utilities folder in the Database painter
or the Database Profiles dialog box.

2 Inanapplication using aremote Adaptive Server Anywhere database,
enter SendCol utmNanes=0ONin the Extended text box on the Settings page
of thew_appname_sync_options window.
or
In an application using aremote UltralL ite database, select the Send
Column Names check box on the Settings page of the
w_appname_ulsync_options window.

You must have at least one publication and user defined in the remote
database. For aremote Adaptive Server Anywhere database, you must also
have at least one subscription defined in the database. If you have more
than one publication or user, you must use the -n and/or -u switches to
specify which subscription you want to work with.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Generated scripts

If there are existing scripts in the consolidated database, MobiLink does
nothing. If there are no existing scripts, MobiLink generates them for all
tables specified in the publication. The scripts control the upload and
download of datato and from your client and consolidated databases.

If the column names on the remote and consolidated database differ, the
generated scripts must be modified to match the names on the consolidated
database.

You can also generate synchronization scripts from a command prompt. Start
the server using the -za switch, then run dbmisync and set the
SendColumnNames extended option to on. For example:

dbm srv9 -c "dsn=masterdb" -za
dbm sync -c "dsn=renotedb"” -e SendCol utmNanes=0ON

Table 17-2 showsthe scriptsthat are generated for atable named emp with the
columns emp_id, emp_name, and dept_id. The primary key is emp_id.

Table 17-2: Sample default scripts generated by dbmlsrv9 -za

Script name Script

upload_insert I NSERT | NTO enp (enp_id, enp_nane, dept_id)
VALUES (?,7,7?)

upload_update UPDATE enp SET enp_nane = ?, dept_id = ?
VWHERE enp_i d=?

upload_delete DELETE FROM enp
VWHERE enp_i d=?

download_cursor SELECT enp_id, enp_nane, dept_id FROM enp

The scripts generated for downloading data perform “ snapshot”
synchronization. A complete image of the table is downloaded to the remote
database. Typically you need to edit these scriptsto limit the data transferred.
For more information, see “Limiting data downloads’ on page 283.

Before modifying any scripts, you should test the synchronization process to
make sure that the generated scripts behave as expected. Performing atest after
each modification will help you narrow down errors.

Working with scripts and users in Sybase Central

Resource Guide

You can view and modify existing scripts and write new onesin the MobiLink
Synchronization plug-in in Sybase Central. These procedures describe how to
connect to the plug-in and write scripts, and how to add a user to the
consolidated database.

273

Preparing consolidated databases

Script versions

274

O To connectto a consolidated database in Sybase Central:

1 Sart Sybase Central, select Tools>Connect from the menu bar, select
MobiLink Synchronization from the New Connection dialog box, and
click OK.

2 Onthe Identification page in the Connect dialog box, select ODBC
DataSource Name, browseto select the DSN of the consolidated database,
and click OK.

When you expand the node for a consolidated database in the MobiLink
Synchronization plug-in, you see five folders: Tables, Connection Scripts,
Synchronized Tables, Users, and Versions. All the proceduresin this section
begin by opening one of these folders.

Scripts are organized into groups called script versions. By specifying a
particular version, MobiLink clients can select which set of synchronization
scriptsis used to process the upload stream and prepare the download stream.
If you want to define different versions for scripts, you must add a script
version to the consolidated database before you add scripts for it.

If you create two different versions, make sure that you have scripts for all
required events in both versions.

Global script version
For MobiLink 10 and | ater, you can create a script version called ml_global that

isused differently from other script versions. If you create a script version
called ml_global, you define it once and then the connection scripts associated
withit are used by default in al synchronizations. You never explicitly specify
ml_global as a script version.

The ml_global script version can contain connection-level scripts only. For
more information, see the MobiLink Server Administration book.

0 To add a script version:

1 Select the Versions folder and double-click Add Version.

2 Inthe Add aNew Script Version dialog box, provide a name for the
version and optionally a description, and click Finish.

Sybase Central creates the new version and givesit a unique integer
identifier.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Adding scripts

Resource Guide

Scripts added for connection events are executed for every synchronization.
Scripts added for table events are executed when a specific table has been
modified. You must specify that atable is synchronized before you can add
scripts for it.

To add a synchronized table to a consolidated database:
1 Select the Tablesfolder and double-click DBA.

2 Right-click thetable you want to add to the list of synchronized tablesand
select Add to Synchronized Tables from its pop-up menu.

To add a script to a synchronized table:

1 Select the Synchronized Tablesfolder, select the table for which you want
to add a script, and double-click Add Table Script.

2 Fromthefirst drop-down list, select the version for which you want to add
a script.

3 From the second drop-down list, select the event for which you want to
add a script.

Eventsthat already have a script do not appear in the drop-down list.

4 From the third drop-down list, select the language in which you want to
write a script.

5 Make sure the Edit the Script of the New Event Immediately check box is
selected and click Finish.

6 Typeyour script in the editor that displays, then save and close thefile.

For example, if you want to remove rows that have been shipped from the
Order table in aremote database, you can place the following SELECT
statement in the download_delete_cursor event, where order_id isthe
primary key column. Thefirst parameter to thisevent isthelast_download
timestamp. It is used here to supply the value for alast_modified column:

SELECT order_id
FROM Or der

WHERE st atus = ' Shi pped’
AND | ast_nodified >= ?

For more information about using the download_delete_cursor event, see
the section on “Writing download_delete_cursor scripts’ in the MobiLink
Server Administration book.

275

Creating remote databases

Modifying scripts

Adding users

O To add a connection-level script:

1 Select the Connection Scripts folder and double-click Add Connection
Script.

2 Follow steps 2 to 6 in the previous procedure.

To modify an existing script, navigate to the script in Sybase Central as
described in the preceding procedures, then double-click the Edit icon to the
left of the version name.

You can add users directly to the mi_user table in the consolidated database,
then provide the user names and optional passwordsto your users. To add a
user, select the Users folder, double-click Add User, and complete the Add
User wizard.

You aso have to add at |east one user name to each remote database, as
described in “ Creating MobiLink users’ on page 280.

Creating remote databases

Creating a remote
SQL Anywhere
database

Creating a remote
UltraLite database

276

Any SQL Anywhere database can be converted for use asaremote databasein
aMobiLink installation. You can also create a new SQL Anywhere remote
database that uses all or part of the schema of the consolidated SQL Anywhere
database.

You create the database on your desktop using the Sybase Central SQL
Anywhere plug-in, the Create ASA Database utility in the Database painter, or
another tool. If your database uses an English character set, usethe 1252 Latinl
collation sequence. If Sybase Central detects that Microsoft ActiveSyncis
installed on your computer, it enables awizard page that lets you set up the
database for use on Windows CE.

You can create an Ultral ite 10 remote database on the desktop or on aremote
device. On the desktop, you can start Sybase Central from the Utilities folder
of the PocketBuilder Database Profile painter, then use the

Tools>Ultral ite>Create Database menu item of the Ultralite plug-in to create
the database.

For more information on creating UltraLite 10 databases, see the UltralLite
Database Management and Reference book.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Preparing and
deploying the remote
database

Remote database
schemas

You can create aremote Ultral ite 9 database by starting the Ultralite Schema
Painter from the Utilities folder in the PocketBuilder Database Profile painter.
After you create a USM database schema, you can start another utility in the
Utilitiesfolder that convertsthe schemainto an Ultral ite database. The Create
Ultralite Database utility consists of asingle dialog box that prompts you for
the USM name and the name of the database you want to create.

For more information on using the UltraLite Schema Painter, see the
Ultralite 9 Database User’s Guide or the online Help. For a description of
options in the Create UltraLite Database utility, see the dialog box Help.

To use a database as a remote database for MobiLink synchronization, you
need to create at least one publication and MobiLink user. For aremote SQL
Anywhere database, you must also add a subscription to the publication. See
“Creating and modifying publications’ on page 277, “ Creating MobiLink
users’ on page 280, and “ Adding subscriptions for remote SQL Anywhere
databases’ on page 281.

To copy the database to the Pocket PC or emulator, select the Explore buttonin
Microsoft ActiveSync, or use the Windows CE Remote File Viewer (cefilevw)
for older emulators. For more information about copying files to a Pocket PC
device or emulator, see the Installation Guide.

Tables in aremote database need not be identical to those in the consolidated
database, but you can often simplify your design by using atable structure in
the remote database that is a subset of the one in the consolidated database.
Using this method ensures that every tablein the remote database exists in the
consolidated database. Corresponding tables have the same structure and
foreign key relationships as those in the consolidated database.

Tables in the consolidated database frequently contain extra columns that are
not synchronized. Extra columns can even aid synchronization. For example, a
timestamp column can identify new or updated rows in the consolidated
database. In other cases, extra columns or tables in the consolidated database
might hold information that is not required at remote sites.

Creating and modifying publications

Resource Guide

You create publications using Sybase Central or the SQL CREATE
PUBLICATION statement. In Sybase Central, al publications and articles
appear in the Publications folder. This section describes how to create
publicationsin Sybase Central. For information about creating and modifying
publications using SQL, see the MobiLink - Client Administration book.

277

Creating remote databases

Connecting to Sybase
Central

Publishing all the rows
and columns in a table

Publishing only some
columns in a table

278

You use the SQL Anywhere plug-in in Sybase Central, not the MobiLink
Synchronization plug-in, to work with MobiLink clients and remote databases.
The SQL Anywhere plug-in has a MobiLink Synchronization Client folder
where you perform al actions rel ated to remote databases.

You must have DBA authority to create or modify publications, MobiLink
users, and subscriptions.

To connect to Sybase Central to work with MobiLink Synchronization
clients:

1 Sart Sybase Central, select Tools>Connect from the menu bar, select SQL
Anywhere from the New Connection dialog box, and click OK.

2 Onthe Identification page in the Connect dialog box, enter DBA asthe
user name and SQL as the password, select the ODBC DataSource Name
radio button, browse to select the DSN of the remote database, and click
OK.

3 Inthe SQL Anywhere plug-in, expand the node for the remote database
and open the MobiLink Synchronization Client folder.

The simplest publication you can make is a single article that consists of all
rows and columns of one or more tables. The tables must already exist.

To publish one or more entire tables in Sybase Central:

1 Connect to Sybase Central as described in “ Connecting to Sybase
Central” on page 278.

2 Open the Publications folder and double-click Add Publication.
Type aname for the new publication and click Next.

4 Onthe Tables page, select atable from the list of Matching Tables and
click Add.

The table appearsin the list of Selected Tables on the right.
5 Optionaly, add moretables. The order of the tables is not important.
6 Click Finish.

You can create a publication that contains all the rows but only some of the
columns of atable.

To publish only some columns in a table in Sybase Central:

1 Follow thefirst four steps of the procedurein “Publishing all therowsand
columnsin atable” on page 278.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Publishing only some
rows in a table

Adding articles

Modifying and
removing publications
and articles

Resource Guide

2 Onthe Columns page, double-click the tabl€e'sicon to expand the list of
available columns, select each column you want to publish, and click Add.

The selected columns appear on the right.
3 Click Finish.

You can create apublication that contains someor all of the columnsin atable,
but only some of the rows. You do so by writing a search condition that
matches only the rows you want to publish.

In MobiLink, you can use the WHERE clause to exclude the same set of rows
from all subscriptionsto a publication. All subscribers to the publication
upload any changes to the rows that satisfy the search condition.

To create a publication using a WHERE clause in Sybase Central:

1 Follow thefirst four steps of the procedurein “Publishing all therows and
columnsin atable” on page 278.

2 Onthe Where page, select the table and type the search condition in the
lower box.

Optionally, you can usethe Insert dialog box to help you format the search
condition.

3 Click Finish.
You can add articlesto existing publications.

To add articles in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “ Connecting to Sybase Central” on page 278.

2 Openthe Publicationsfolder and double-click the name of the publication
to which you want to add an article.

Double-click Add Article.
4 IntheArticle Creation wizard, select atable and click Next.

If you want only some columns to be synchronized, select the Selected
Columns radio button and select the columns.

6 If youwant to add aWHERE clause, click Next and enter the clause.
7 Click Finish.

You can modify or drop existing publications in Sybase Central by navigating
to thelocation of the publication and selecting Properties or Delete from its
pop-up menu. You can modify and remove articles in the same way.

279

Creating remote databases

Publications can be modified only by the DBA or the publication's owner. You
must have DBA authority to drop a publication. If you drop a publication, all
subscriptions to that publication are automatically deleted as well.

Avoid altering publications in a running MobiLink setup
Altering publicationsin arunning MobiLink setupislikely to causereplication

errors and can lead to loss of data unless carried out with care.

Creating MobiLink users

280

MobiLink users are not the same as database users. Each type of user resides
in adifferent namespace. MobiLink user |Ds can match the names of database
users, but there is no requirement that they match.

To add a MobiLink user to aremote database in Sybase Central:

1 Connect to Sybase Central and open the M obiLink Synchronization Client
folder as described in “ Connecting to Sybase Central” on page 278.

2 Openthe MobiLink Users folder and double-click Add MobiLink User.
3 Enter aname for the MobiLink user.

The name is supplied to the MobiLink synchronization server during
synchronization. In production databases, each user nameisusually added
to the consolidated database, then provided to the individual user.

4 Click Finish.

To configure MobiLink user properties in Sybase Central:

1 Connect to Sybase Central and open the M obiLink Synchronization Client
folder as described in “ Connecting to Sybase Central” on page 278.

2 OpentheMabiLink Usersfolder, right-click the MobiLink user, and select
Properties from the pop-up menu.

3 Change the properties as needed.

To drop a MobiLink user in Sybase Central:

1 Connect to Sybase Central and open the M obiLink Synchronization Client
folder as described in “ Connecting to Sybase Central” on page 278.

2 OpentheMabiLink Usersfolder, right-click the MobiLink user, and select
Delete from the pop-up menu.

PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

Adding MobiLink
users to the
consolidated database

Dropping MobiLink users
You must drop all subscriptions for aMobiLink user before you drop the user

from aremote database.

The consolidated database contains atable called ml_user that is used to
authenti cate the names of MobiLink userswhen asynchronization isrequested.
When you add a user to aremote database, you need to be sure that the user is
also added to the m|_user table.

You can add users automatically by selecting the Automatic Addition of Users
check box in the MobiLink Synchronization Server Options dialog box and
then starting the server. You open thisdialog box fromthe Utilitiesfolder in the
Database painter or Database Profiles dialog box. You can also start the server
from a command prompt, passing it the -zu+ switch.

Any users defined in the remote database are added to the mi_user tablein the
consolidated database, as long as the script for the authenticate_user
connection event is undefined. Usually the -zu+ switch should not beused ina
production environment. Names are usually added to the mi_user table in the
consolidated database, then added to each of the remote databases. Each user
is given a unique name and optional password.

Adding subscriptions for remote SQL Anywhere databases

Resource Guide

A synchronization subscription links a particular MobiLink user with a
publication. It can also carry other information needed for synchronization. For
example, you can specify the address of the MabiLink server and other
connection options. Values for a specific subscription override those set for
individual MobiLink users.

Overriding options in the wizard
You can override the MobiLink server name and port set for the subscription

and user in the MobiLink Synchronization for ASA wizard.

Synchronization subscriptions are required in MobiLink SQL Anywhere
remote databases. Server logic isimplemented through synchronization
scripts, stored in the MobiLink system tables in the consolidated database.

A single SQL Anywhere database can synchronize with more than one
MobiLink synchronization server. To allow synchronization with multiple
servers, create different subscriptions for each server.

281

Creating remote databases

O To add a subscription for a MobiLink user in Sybase Central:

1 Connect to Sybase Central and open the M obiLink Synchronization Client
folder as described in “ Connecting to Sybase Central” on page 278.

2 For Sybase Central 4.x, open the MobiLink Users folder, right-click the
user for whom you want to add a subscription, and select Properties from
the pop-up menu.

For Sybase Central 5.x, open the Publicationsfolder, select the publication
for which you want to enter a subscription, select the Synchronization
Subscriptions tab in the right pane of Sybase Central, then select
File>New>Synchronization Subscription from the menu bar.

3 For Sybase Central 4.x, click the Subscribe button on the Subscriptions
page, select the Publication for which you want to add a subscription, and
click OK.

For Sybase Central 5.x, in the Create Synchronization Subscription
wizard, select the user for whom you want to enter a subscription and click
Finish.

O To modify a subscription in Sybase Central:

1 Connect to Sybase Central and open the M obiLink Synchronization Client
folder as described in “ Connecting to Sybase Central” on page 278.

2 For Sybase Central 4.x, open the MobiLink Users folder, right-click the
MobiLink user, select Properties from the pop-up menu, then on the
Subscriptions page, select the subscription you want to change and click
Advanced.

For Sybase Central 5., open the MaobiLink Usersfolder, double-click the
name of the MobiLink user who owns the subscription you want to
modify, then on the Synchronization Subscriptions tab, right-click the
subscription you want to modify and select Properties from the pop-up
menul.

3 Change the properties as needed.

O To delete a synchronization subscription in Sybase Central:

1 Connect to Sybase Central and open the M obiLink Synchronization Client
folder as described in “ Connecting to Sybase Central” on page 278.

282 PocketBuilder

CHAPTER 17 Using MobiLink Synchronization

2 For Sybase Central 4.x, open the MobiLink Users folder, right-click the
MobiLink user, select Properties from the pop-up menu, the on the
Subscriptions page, select the subscription you want to delete and click
Unsubscribe.

For Sybase Central 5.x, open the MobiLink Usersfolder, double-click the
name of the MobiLink user who owns the subscription you want to delete,
then on the Synchroni zation Subscriptionstab, right-click the subscription
you want to delete and click Delete.

3 Click Yesin the Confirm Delete dialog box.

Synchronization techniques

Limiting data
downloads

Resource Guide

This section highlights some issues that you need to consider when designing
an application that uses MobiLink synchronization.

One of the major goals of synchronization is to increase the speed and
efficiency of data movement by restricting the amount of data moved. To limit
the datatransferred by the download_cursor script, you can partition data based
on its timestamp, the MaobiLink user name, or both.

Timestamp partitioning One way to limit downloads to data changed since
the last download isto add alast_modified column to each tablein the
consolidated database (or, if the table itself cannot be changed, to a shadow
table that holds the primary key and that isjoined to the original tablein the
download_cursor script). The last_modified column need only be added to the
consolidated database.

In SQL Anywhere, you can use built-in DEFAULT TIMESTAMP datatypes for
this column. In other DBM Ss, you need to provide an update trigger to set the
timestamp of the last_modified column.

The timestamp is generated on the consolidated database and downloaded
unmodified to the remote database during synchronization; thetime zone of the
remote database does not affect it.

User-based partitioning The download_cursor script hastwo parameters:
last_download, of datatype datetime, and ml_username, of type varchar(128).
You can use these parameters to restrict the download not only to rows that
have changed since the last synchronization, but also to rowsthat belong to the
current user.

283

Synchronization techniques

Primary key
uniqueness

Handling conflicts

Deleting rows from the
remote database only

284

In this sample download_cursor script, only those rows are downloaded that
have been modified since the last synchronization, and that apply to the sales
representative whose 1D matches the MobiLink user ID:

SELECT order_id, cust_id, order_date
FROM Sal es_Or der

WHERE | ast_nodified >= ?
AND sales_rep = ?

For thisto work correctly, the MobiLink user ID must match the sales_rep ID.
If thisis not the case, you might need to join atable that associates these two
IDs.

In a conventional client/server environment where clients are aways
connected, referential integrity is directly imposed. In a mobile environment,
you must ensure that primary keys are unique and that they are never updated.
There are several techniques for achieving this, such as using primary key
poals.

You need to handle conflicts that arise when, for example, two remote users
update the same rows but synchronize at different intervals, so that the latest
synchronization might not be the latest update. MobiLink provides
mechanisms to detect and resolve conflicts.

By default, when a user starts a synchronization, the net result of all the
changes made to the database since the last synchronization is uploaded to the
consolidated database. However, sometimes aremote user deletes certain rows
from the remote database to recapture space, perhaps because the dataisold or
acustomer has transferred to another sales agent. Usually, those deleted rows
should not be deleted from the consolidated database.

One way to handle thisisto use the command STOP SYNCHRONI ZATI ON
DELETE in ascript in your PocketBuilder application to hide the SQL DELETE
statements that follow it from the transaction log. None of the subsequent
DELETE operations on the connection will be synchronized until the START
SYNCHRONI ZATI ON DELETE statement is executed.

For example, you might provide a menu item called Delete Local where the
code that handles the delete is wrapped as in this example:

STOP SYNCHRONI ZATI ON DELETE;

/1 call code to performdel ete operation
START SYNCHRONI ZATI ON DELETE;

COW T;

There are other approaches to handling deletes. For more information, see the
chapter on synchronization techniquesinthe MobiLink - Server Administration
book.

PocketBuilder

CHAPTER 18

About this chapter

Contents

Setting Additional Connection
Parameters

This chapter describes how to set database parameters and database
preferences in PocketBuilder to fine-tune your database connection and
take advantage of DBM S-specific features.

Topic Page
Setting database parameters 285
Setting database preferences 288

Setting database parameters

In PocketBuilder, you can set database parameters by doing either of the
following:

e Editing the Database Profile Setup dialog box for your connectionin
the development environment
e Specifying connection parametersin an application script

For more information about the Database Profile Setup dialog box, see
“About database profiles’ on page 182. For descriptions of database
parameters, see the PocketBuilder Connection Reference.

Setting database parameters in the development environment

Editing database profiles

Resource Guide

To set database parametersfor adatabase connection in the PocketBuilder
development environment, you must edit the database profile for that
connection.

285

Setting database parameters

Character limit for
DBParm strings

Setting database

Strings containing database parametersthat you specify in the Database Profile
Setup dialog box for your connection can be up to 999 charactersin length. No
limit applies to DBParm strings that you specify in PocketBuilder scripts, as
properties of the Transaction object are not limited to a specified length.

parameters in a PocketBuilder application script

If you are devel oping a PocketBuilder application that connects to a database,
you must specify the required connection parameters in the appropriate script
as properties of the default Transaction object (SQLCA) or a Transaction
object that you create. For example, you might specify connection parameters
in the script that opens the application.

One of the connection parameters you might want to specify in ascript is
DBParm. You can do this by:

* (Recommended) Copying PowerScript DBParm syntax from the Preview
tab in the Database Profile Setup dialog box into your script

» Coding PowerScript to set values for the DBParm property of the
Transaction object

* Reading DBParm values from an external text file

Copying DBParm syntax from the Preview tab

O

286

The easiest way to specify database parametersin a PocketBuilder application
script isto copy the PowerScript DBParm syntax from the Preview tab in the
Database Profile Setup dialog box into your script, modifying the default
Transaction object name (SQLCA) if necessary.

Asyou set database parameters in the Database Profile Setup dialog box in the
development environment, PocketBuilder generates the correct connection
syntax on the Preview tab. Therefore, copying the syntax directly from the
Preview tab ensures that you use the correct PowerScript DBParm syntax in
your script.

To copy DBParm syntax from the Preview tab into your script:

1 Ononeor moretab pagesin the Database Profile Setup dial og box for your
connection, supply values for any database parameters you want to set.

2 Click Apply to save your changes to the current tab without closing the
Database Profile Setup dialog box.

PocketBuilder

CHAPTER 18 Setting Additional Connection Parameters

3 Click the Preview tab.

The correct PowerScript DBParm syntax for each selected option displays
in the Database Connection Syntax box.

4 Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PocketBuilder copies the selected text to the clipboard.
5 Click OK to close the Database Profile Setup dialog box.

6 Pastethe selected text from the Preview tab into your script, modifying the
default Transaction object name (SQLCA) if necessary.

Coding PowerScript to set values for the DBParm property

Resource Guide

Another way to specify connection parametersin ascript is by coding
PowerScript to assign values to properties of the Transaction object. As
explained in Chapter 16, “Using Transaction Objects,” PocketBuilder uses a
special nonvisual object called a Transaction object to communicate with the
database. The default Transaction object is named SQLCA, which stands for
SQL Communications Area.

SQLCA has 15 properties, 10 of which are used to connect to your database.
One of the 10 connection propertiesis DBParm. DBParm contains

DBM S-specific parameters that let your application take advantage of various
features supported by the database interface.

0 To set values for the DBParm property in a PocketBuilder script:

1 Open the application script in which you want to specify connection
parameters.

2 Usethefollowing PowerScript syntax to specify DBParm parameters.
Make sure you separate the DBParm parameters with commas, and
enclose the entire DBParm string in double quotes.

SQLCA.dbParm = "parameter_1, parameter_2, parameter_n"

For example, the following statement in a script setsthe DBParm property
for an ODBC data source named Sales. In this example, the DBParm
property consists of two parameters. ConnectString and Async.

SQLCA. dbPar =" Connect St ri ng=" DSN=Sal es; U D=PB;
PWD=xyz' , Async=1"

3 Compile the script to save your changes.

287

Setting database preferences

Reading DBParm values from an external text file

As an dternative to setting the DBParm property in a PocketBuilder
application script, you can use the PowerScript ProfileString function to read
DBParm values from a specified section of an external text file, such asan
application-specific initialization file.

0 To read DBParm values from an external text file:

1 Open the application script in which you want to specify connection
parameters.

2 Usethefollowing PowerScript syntax to specify the ProfileString function
with the SQLCA.DBParm property:

SQLCA.dbParm = ProfileString (file, section, key,
default)

For example, the following statement in a PocketBuilder script reads the
DBParm values from the [Database] section of the APR.INI file:

SQLCA. dbPar m=Profil eString("APP.I N ", " Dat abase",
"dbParni',"")

3 Compilethe script to save your changes.

Setting database preferences

288

The way you set connection-related database preferences in PocketBuilder
varies. AutoCommit and Lock are the only database preferences that you can
set in aPocketBuilder application script, and the only database preferencesthat
you set in the Database Profile Setup dialog box for your connection. All other
database preferences can be set only in the Database Preferences dial og box.

The following sections give the steps for setting database preferencesin the
development environment and (for AutoCommit and L ock) in a PocketBuilder
application script.

For information about using a specific database preference, see the chapter on
database preferences in the PocketBuilder Connection Reference.

PocketBuilder

CHAPTER 18 Setting Additional Connection Parameters

Setting database preferences in the development environment

There are two ways to set database preferences in the PocketBuilder
devel opment environment on all supported development platforms, depending
on the preference you want to set:

e Set AutoCommit and L ock (Isolation Level) in the Database Profile Setup
dialog box for your connection

e Setal other database preferences in the Database Preferences dialog box
in the Database painter

Setting AutoCommit and Lock in the database profile

Resource Guide

The AutoCommit and Lock (Isolation Level) preferences are properties of the
default Transaction object, SQLCA. For AutoCommit and L ock to take effect
in the PocketBuilder devel opment environment, you must specify them before
you connect to a database. Changes made to these preferences after the
connection occurs have no effect on the current connection.

To set AutoCommit and L ock before PocketBuilder connectsto your database,
you specify their values in the Database Profile Setup dialog box for your
connection.

0 To set AutoCommit and Lock (Isolation Level) in a database profile:

1 Display the Database Profiles dialog box.

2 Click the plus sign (+) to the left of the interface you are using, or
double-click the interface name.

Thelist expandsto display the database profiles defined for your interface.
3 Select the name of the profile you want and click Edit.
The Database Profile Setup dialog box for the selected profile displays.

4 On the Connection tab page, supply values for one or both of the
following:

« Isolation Level Select theisolation level you want to use for this
connection from the Isolation Level drop-down list. (The Isolation
Level drop-down list contains valid lock values for your interface.)

+ AutoCommit Mode The setting of AutoCommit controls whether
PocketBuilder issues SQL statements outside (True) or inside (False)
the scope of atransaction. Select the AutoCommit M ode check box to
set AutoCommit to True or clear the AutoCommit Mode check box
(the default) to set AutoCommit to False.

289

Setting database preferences

Figure 18-1: Connection page showing Isolation Level settings

Database Profile Setup - ODBC E

Mebwork | Options | Preview

Connection | System | Transaction | Synkax

Prafile Mamne: I asa

—Connect Information
Data Source: I ASA 8.0 Sample j

User ID: v I

Password: W I

Driver-Specific Parameters:

—Other
Isolation Lesel:

™ autoCornmit Frea Cmmltte

IV Cornmit on DigRead Uncommitted
Repeatable Read
Setislizable Transactions
Transackion Yersioning

OF I Cancel | Apply | Help |

5 (Optiona) Click the Preview tab if you want to see the PowerScript
connection syntax generated for Lock and AutoCommit.

PocketBuilder generates correct PowerScript connection syntax for each
option you set in the Database Profile Setup dialog box. You can copy this
syntax directly into a PocketBuilder application script.

For instructions, see “ Copying DBParm syntax from the Preview tab” on
page 286.

6 Click OK to close the Database Profile Setup dialog box.

PocketBuilder saves your settings in the database profile entry in the
registry.

Setting preferences in the Database Preferences dialog box

To set the following connection-related database preferences, complete the
Database Preferences dialog box in the PocketBuilder Database painter:

e Shared Database Profiles
* Connect to Default Profile
* Read Only

290 PocketBuilder

CHAPTER 18 Setting Additional Connection Parameters

Resource Guide

« Keep Connection Open
e Use Extended Attributes
* SQL Terminator Character

Other database preferences

The Database Preferences dialog box also lets you set other database
preferences that affect the behavior of the Database painter itself. For
information about the other preferences you can set in the Database

Preferences dialog box, see the Users Guide.

To set connection-related preferences in the Database Preferences

dialog box:
1 Open the Database painter.

2 Select Design>Options from the menu bar.

The Database Preferences dialog box displays. If necessary, click the
General tab to display the General property page.

Database Preferences E

General | Object Eolorsl Scriptl Fontl Eoloringl

— &pplication
Shared D atabase Profiles:

— Painter Option:
[V Connect to Default Profile ™ Read Only
¥ Keep Connection Dpen
¥ Use Extended Attibutes

LColumnz in Table Display: IS

S0L Terminatar Character: l_

Fiefrezh Table List: I'ISDD Seconds

Drefault |

QK I Cancel | Lpply |

Help

3 Specify values for one or more of the connection-related database

preferencesin the following table.

201

Setting database preferences

292

Table 18-1: Connection-related database preferences

Preference Description For details, see
Shared Database | Specifies the path name of the file “Sharing database
Profiles containing the database profiles you profiles’ on page 191
want to share. You can type the path and the Shared
name or click Browse to display it. Database Profiles
databasepreferencein
the PocketBuilder
Connection Reference
Connect to Controls whether the Database painter | The Connect to
Default Profile establishes a connection to adatabase | Default Profile
using adefault profilewhenthepainter | databasepreferencein
isinvoked. If not selected, the the PocketBuilder
Database painter opens without Connection Reference
establishing aconnection to adatabase.
Read Only Specifies whether PocketBuilder The Read Only

should update the extended attribute
system tables and any other tablesin
your database. Select or clear the Read
Only check box asfollows:

» Select the check box Doesnot
update the extended attribute
system tables or any other tablesin
your database. You cannot modify
(update) information in the
extended attribute system tables or
any other database tables from the
Datawindow painter whenthe Read
Only check box is selected.

« Clear the check box (Default)
Updates the extended attribute
systemtablesand any other tablesin
your database.

databasepreferencein
the PocketBuilder
Connection Reference

PocketBuilder

CHAPTER 18 Setting Additional Connection Parameters

Preference

Description

For details, see

Keep Connection
Open

When you connect to a database in
PocketBuilder without using a
database profile, specifies when
PocketBuilder closes the connection.
Select or clear the Keep Connection
Open check box asfollows:

« Select the check box (Default)
Stays connected to the database
throughout your session and closes
the connection when you exit.

« Clear the check box Opensthe
connection only when a painter
requestsit and closesthe connection
when you close a painter or finish
compiling a script.

Not used with profile
Thispreference hasno effect whenyou

connect using a database profile.

The Keep Connection
Open database
preferencein the
PocketBuilder
Connection Reference

Use Extended
Attributes

Specifies whether PocketBuilder
should create and use the extended
attribute system tables. Select or clear
the Use Extended Attributes check box
asfollows:

« Select the check box (Default)
Creates and uses the extended
attribute system tables.

» Clear the check box Does not
create the extended attribute system
tables.

The Use Extended
Attributes database
preferencein the
PocketBuilder
Connection Reference

SQL Terminator
Character

Resource Guide

Specifiesthe SQL statement terminator
character used in the ISQL view in the
Database painter in PocketBuilder.

The default terminator character isa
semicolon (;). If you are creating stored
procedures and triggersin the ISQL
view of the database painter, change
theterminator character to onethat you
do not expect to usein the stored
procedure or trigger syntax for your
DBMS. A good choiceisthe
backquote () character.

The SQL Terminator
Character database
preferencein the
PocketBuilder
Connection Reference

293

Setting database preferences

4 Do one of the following:

e Click Apply to apply the preference settingsto the current connection
without closing the Database Preferences dialog box

e Click OK to apply the preference settings to the current connection
and close the Database Preferences dial og box

PocketBuilder saves your preference settings in the database section of
PK.INI.

Setting AutoCommit and Lock in a PocketBuilder application script

If you are developing a PocketBuilder application that connects to a database,
you must specify the required connection parameters in the appropriate script
as properties of the default Transaction object (SQLCA) or a Transaction
object that you create. For example, you might specify connection parameters
in the script that opens the application.

AutoCommit and Lock are properties of SQLCA. Assuch, they are the only
database preferencesthat you can set in aPocketBuilder script. You can do this
by:

* (Recommended) Copying PowerScript syntax for AutoCommit and L ock

from the Preview tab in the Database Profile Setup dialog box into your
script

» Coding PowerScript to set valuesfor the AutoCommit and L ock properties
of the Transaction object

* Reading AutoCommit and Lock values from an external text file

For more about using Transaction objectsto communicate with adatabasein a
PocketBuilder application, see Chapter 16, “Using Transaction Objects.”

Copying AutoCommit and Lock syntax from the Preview tab

The easiest way to specify AutoCommit and Lock in a PocketBuilder
application script isto copy the PowerScript syntax from the Preview tab in the
Database Profile Setup dialog box into your script, modifying the default
Transaction object name (SQLCA) if necessary.

294 PocketBuilder

CHAPTER 18 Setting Additional Connection Parameters

As you complete the Database Profile Setup dialog box in the devel opment
environment, PocketBuilder generates the correct connection syntax on the
Preview tab for each selected option. Therefore, copying the syntax directly
from the Preview tab ensures that you use the correct PowerScript syntax in
your script.

To copy AutoCommit and Lock syntax from the Preview tab into your
script:

1

On the Connection tab in the Database Profile Setup dialog box for your
connection, supply values for AutoCommit and Lock (Isolation Level) as
reguired.

For instructions, see “ Setting AutoCommit and Lock in the database
profile” on page 289.

Click Apply to save your changes to the current tab without closing the
Database Profile Setup dialog box.

Click the Preview tab.

The correct PowerScript syntax for each selected option displaysin the
Database Connection Syntax box.

Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PocketBuilder copies the selected text to the clipboard.
Click OK to close the Database Profile Setup dialog box.

Pastethe sel ected text from the Preview tab into your script, modifying the
default Transaction object name (SQLCA) if necessary.

Coding PowerScript to set values for AutoCommit and Lock

Another way to specify the AutoCommit and L ock propertiesin ascript is by
coding PowerScript to assign values to the AutoCommit and Lock properties
of the Transaction object.

Resource Guide

1

0 To set the AutoCommit and Lock properties in a PocketBuilder script:

Open the application script in which you want to set connection properties.

For instructions, see the Users Guide.

295

Setting database preferences

2 Usethefollowing PowerScript syntax to set the AutoCommit and Lock
properties. (This syntax assumes you are using the default Transaction
object SQLCA, but you can also define your own Transaction object.)

SQLCA.AutoCommit = value
SQLCA.Lock = "value"
For more information, see AutoCommit or Lock in the online Help.
3 Compilethe script to save your changes.

For instructions, see the Users Guide.

Reading AutoCommit and Lock values from an external text file

As an dternative to setting the AutoCommit and Lock propertiesin a
PocketBuilder application script, you can use the PowerScript ProfileString
function to read the AutoCommit and Lock values from a specified section of
an external text file, such as an application-specific initialization file.

0 Toread AutoCommit and Lock values from an external text file:

1 Opentheapplication script in which you want to set connection properties.
For instructions, see the Users Guide.

2 Usethefollowing PowerScript syntax to specify the ProfileString function
with the SQLCA.Lock property:

SQLCA.Lock = ProfileString (file, section, key, default)

The AutoCommit property is a boolean, so you need to convert the string
returned by ProfileString to a boolean. For example, the following
statements in a PocketBuilder script read the AutoCommit and Lock
values from the [Database] section of the APRINI file;

string |Is_string

I's_string = Upper(ProfileString("APP.IN", &
" Dat abase", "Autocommit",""))

if Is_string = "TRUE" then
SQLCA. Autocommit = TRUE

el se
SQLCA. Aut ocomrit = FALSE

end if

SQLCA. Lock=ProfileString("APP.I N ", "Dat abase",
"Lock","")

3 Compilethe script to save your changes.

296 PocketBuilder

CHAPTER 18 Setting Additional Connection Parameters

Getting values from the registry

If the AutoCommit and L ock values are stored in an application settingskey in
the registry, use the RegistryGet function to obtain them. For example:

string |Is_string
Regi st ryGet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ MyApp", &
"Autocommit", RegString!, |s_string)

if Upper(ls_string) = "TRUE" then
SQLCA. Autocomit = TRUE

el se
SQLCA. Autocommit = FALSE

end if

Regi st ryGet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ MyApp", &
"Lock", RegString!, |s_string)

Resource Guide 297

Setting database preferences

298 PocketBuilder

PART 5

Miscellaneous Techniques

This part describes how to handle external functions, work
with the Message object, and interact with the Windows
registry. It also describes command-line arguments you
can use with the PocketBuilder executable file.

CHAPTER 19

About this chapter

Contents

Working with Unicode

PocketBuilder uses the Unicode character set. This chapter describes how
PocketBuilder handles Unicode and ANSI file formats.

Topic Page
Working with Unicode in PocketBuilder 301
Importing and exporting Datawindow data 303
Reading and writing text or binary files 304

Working with Unicode in PocketBuilder

Resource Guide

PocketBuilder supports the Unicode standard, a universal character set
that encodes the characters of over 650 of the world's languages. Using a
single character set to encode datain multiple languages allows you to
create a single multilingual application that can process datain different
languages rather than creating multiple monolingual applications.

Every application development tool encodes text in a particular character
set. PocketBuilder uses Unicode UTF-16, atwo-byte encoding format.
Therefore, any text you enter while developing your applicationisin
Unicode.

Working with ANSI and Unicode files outside PocketBuilder
In WordPad, you can open and savefilesas ANSI or Unicode. In TextPad,

you can open and save files as ANSI or Unicode, and you can determine
whether an open fileis ANSI or Unicode by viewing its properties.

This section describes how PocketBuilder handles Unicode in several
areas of the product. The next two sections, “Importing and exporting
Datawindow data” on page 303 and “ Reading and writing text or binary
files” on page 304, describe how you use these techniques with particular
reference to Unicode.

301

Working with Unicode in PocketBuilder

Fonts

External function calls

Converting
applications in
PocketBuilder

Importing and
exporting files

PocketBuilder
resource files

Target and Workspace
files

Script view and file
editor

Writing to initialization
files with
SetProfileString

302

Some fonts do not display Unicode characters correctly or do not work
appropriately on al platforms, and the number of fontsavailable on Pocket PC
devicesislimited. To ensure consistent display on al platforms, PocketBuilder
uses Tahoma asiits default font.

If you call external functionsin your application, the functions must be defined
and compiled with Unicode support. All strings must be passed as Unicode
strings. You can call Windows CE API functions. For more information, see
“Using external functions’ on page 307.

You can convert aPocketBuilder application to aPowerBuilder application and
vice versa. You must use PocketBuilder to perform both conversions. If you
convert a PocketBuilder application to PowerBuilder 10 or higher, you must
select the Create Unicode Libraries check box in the Export Pocket to Desktop
conversion tool. If you convert the PocketBuilder application to
PowerBuilder 9, you must clear the Create Unicode Libraries check box.
Unicode characters that are not supported in ANSI environments, however,
cannot be converted correctly for PowerBuilder 9 applications.

For more information about the conversion tools, see the Users Guide.

PocketBuilder allowsyou to import both ANSI and Unicodefilesin the System
Tree and Library painter, although you cannot import ANSI filesat runtime on
ahandheld device. Exported source (.sr*) files are alwaysin Unicode format.
To convert from ANSI to Unicode and from Unicode to ANSI in
PocketBuilder, use the FromANSI and ToANSI functions.

PocketBuilder resource (.pkr) files can bein either Unicode or ANSI file
format.

Target (.pkt) and workspace (.pkw) files are saved in ANSI format.

The Script view and thefile editor accept both Unicode and ANSI file formats.
New text files are saved in the Unicode file format.

Onthedesktop, the SetProfileString function writesto thetext filein the format,
either ANSI or Unicode, in which it was opened. On a handheld device, the
SetProfileString function writes to the text file in Unicode only. To write
Unicode characters to an initialization file, open and save the file as Unicode
before calling SetProfileString. The Profileint and ProfileString functions also
require references to valid Unicodefiles.

PocketBuilder

CHAPTER 19 Working with Unicode

Unicode two-byte flag

SQL Anywhere and
Unicode

Unicode files often have two extra bytes at the start of the file to indicate that
they use Unicode byte ordering. On the desktop, PocketBuilder does not
require that these two bytes be present in Unicodefiles. It determines whether
the file uses Unicode byte ordering using other methods. However,
PocketBuilder applications deployed to a handheld device do require the
Unicode byte order mark (BOM) at the beginning of thefile.

PocketBuilder also does not always add the two-byte flag to the beginning of
files saved with Unicode encoding. A Unicode file that you createin a
PocketBuilder application with the FileOpen command does not contain the
Unicode byte order mark (BOM) at the beginning of the file when you set the
filemode argument to StreamM ode!. Toincludethe BOM in afilethat you open
in stream mode, you can do one of the following:

e Createthefile by calling FileOpen in line mode, add an innocuous
character, such asasingle space, then closethefile and reopenit in stream
mode using the Append! value for the writemode argument.

e Cadl Filewrite or FilewriteEx and passthe 2 byte binary blob “ Char(65279)"
before the rest of the string that you want to write to the file in stream
mode.

The SQL Anywhere ODBC driver supports either ASCII (8-hit) strings or
Unicode code (wide character) strings. The UNICODE macro controlswhether
ODBC functions expect ASCII or Unicode strings. If your application must be
built with the UNICODE macro defined, but you want to usethe ASCII ODBC
functions, then the SQL_ NOUNICODEMA P macro must a so be defined. For
more information, see the SQL Anywhere documentation.

Importing and exporting DataWindow data

Resource Guide

PowerBuilder 9 formats not supported
In PowerBuilder 9, ImportFile was enhanced to support CSV and XML, and

SaveAs was enhanced to support PDF, XML, and XSL-FO. Except for CSV,
these formats are not supported in PocketBuilder.

You can use the ImportFile function to import datainto a Datawindow control
from atab-delimited text (.txt) file or acomma-separated values (.csv) file.

303

Reading and writing text or binary files

Table 19-1: Formats for ImportFile
File type | File format to be imported

xt On the desktop, both ANSI and Unicode files can be imported in
PocketBuilder, but only Unicode files can be imported on a deployment
device. Unicode files cannot be imported into PowerBuilder 9, but can
beimported into PowerBuilder 10 and higher.

.csv Files created using either PowerBuilder or PocketBuilder can be
imported into both versions.

You use the SaveAs function to save the contents of a Datawindow control to
one of several file formats. The following table summarizes whether the file
formats differ—specifically how character strings are handled and whether
they are saved in ANSI or Unicode format.

Table 19-2: Formats for SaveAs

File type Format of saved file

Csv! Comma-separated values saved as Unicode
strings

DIF!, Excel!, Excel5!, WKS! Character strings saved as ANSI strings

HTMLTable! HTML syntax saved as Unicode strings

SQL Insert! SQL syntax and data values saved as Unicode
strings

Text! Text saved as Unicode strings

Reading and writing text or binary files

304

You use PowerScript text file functions to read and write text in line mode or
stream mode, or to read and write binary filesin stream mode.

The FileOpen function can open Unicode and ANSI files. If the file does not
exist, FileOpen creates a Unicode file. The FileClose function savesthefilein
the format in which it was opened.

* Inline mode, the FileRead, FileReadEx, FileWrite, and FileWriteEx
functions can read and write to Unicode files.

You canread afilealine at atimeuntil either acarriagereturn or linefeed
(CR/LF) or the end-of-file (EOF) is encountered. When writing to thefile
after the specified string is written, PowerScript appends a CR/LF.

PocketBuilder

CHAPTER 19 Working with Unicode

Resource Guide

In stream mode, the FileRead, FileReadEx, FileWrite, and FileWriteEx
functions can read and write to Unicode and ANSI files. FileOpen and the
file read and write functions assume that any fileisabinary file. FileOpen
opensthefile asabinary file; FileWrite and FileWriteEx writesto it asa
binary file.

You can read the entire contents of the file, including any CR/LFs. When
writing to the file, you must write out the specified string (but not append
aCRI/LF).

Theformat in which Filewrite and FilewriteEx append datato afile depends
on the format of the data, not the format of thefile. If you append a string
entered in PocketBuilder to an ANSI file, it iswritten as a Unicode
character string. If you are reading from or writing to ANSI filesin stream
mode, use the FromANSI and ToANSI functions to convert ANSI blobs to
Unicode character strings, or Unicode charactersto ANSI blobs.

This code opens an ANSI filein stream mode, reads the data into a blob,
then converts the blob into a Unicode string:

long Il _fnum
integer |i_bytes
string |Is_unicode
blob |b_ansi

I'l _fnum = Fil eCpen("enpl oyee. dat", Streamvbde!,
Read!, LockWite!, Replace!)

li_bytes = FileRead(l| _fnum |b_ansi)
I s_uni code = FromANSI (I b_ansi)
Filed ose(ll _fnum

This code convertsaUnicode character string into an ANSI blob, opensan
ANSI filein stream mode, and writes the blob to thefile:

I b_ansi = ToANSI (| s_uni code)
I'l _fnum = Fil eCpen("enpl oyee. dat", Streamvbde!,
Wite!, LockWite!, Replace!)

li_bytes = FileWite(ll _fnum 1|b_ansi)
Filed ose(ll _fnum

If thefileisin Unicode format and has the two-byte flag, use the Mid
function to skip the leading bytes when the file is opened in stream mode:

bytes = fileread(ll_fnum |s_unicode)
I s_string = Md(ls_unicode, 2)

305

Reading and writing text or binary files

Understanding the
position pointer

File functions

306

Reading afile into a MultiLineEdit
You can use stream mode to read an entire file into aMultiLineEdit, and then

write it out after it has been modified.

When PocketBuilder opens afile, it assigns the file a unique integer and sets

the position pointer for the fileto the position you specify (the beginning or end
of thefile). You use the integer to identify the file when you want to read the
file, writeto it, or closeit. The position pointer defines where the next read or
write will begin. PocketBuilder advances the pointer automatically after each

read or write.

You can also set the position pointer with the FileSeek function.

Table 19-3 lists the built-in PowerScript functions that manipulate files.

Table 19-3: PowerScript functions that manipulate files

Datatype
Function returned Action
FileClose Integer Closes the specified file
FileDelete Boolean Deletes the specified file
FileExists Boolean Determines whether the specified file exists
FileLength Long Obtains the length of the specified file
FileOpen Integer Opens the specified file
FileRead and | Integer Read from the specified file
FileReadEx
FileSeek Long Seeks to a position in the specified file
Filewrite and | Integer Write to the specified file
FileWriteEx

PocketBuilder

CHAPTER 20

About this chapter

Contents

Using External Functions and
Other Processing Extensions

This chapter describes how to use external functions and other processing
extensionsin PocketBuilder.

Topic Page
Using externa functions 307
Sending Windows messages 315
Using utility functions to manage information 317
The Message object 318

Using external functions

External functions are functions that are written in languages other than
PowerScript and stored in dynamic link libraries (DLLS).

You can use external functions written in any language that supports the
standard calling sequence for Windows CE platforms.

If you are calling functionsin libraries that you have written yourself,
remember that you need to export the functions. Depending on your
compiler, you can do thisin the function prototype or in alinker definition
(DEF) file.

Declaring external functions

Resource Guide

Before you can use an external function in a script, you must declare it.

307

Using external functions

Two types

Datatypes for external
function arguments

Sample declarations

308

You can declare two types of external functions:

Global external functions, which are available anywhere in the
application

Local external functions, which are defined for a particular type of
window, menu, user object, or user-defined function

These functions are part of the object’s definition and can always be used
in scriptsfor the object itself. You can al so choose to make these functions
accessible to other scripts aswell.

When you declare an external function, the datatypes of the arguments must
correspond with the datatypes as declared in the function’s source definition.

For a comparison of datatypesin external functions and in PocketBuilder, see
the section on declaring and calling external functions in the Power Script
Reference.

O To declare an external function:

1

If you are declaring alocal external function, open the object for which
you want to declareiit.

In the Script view, select Declare in the first drop-down list and either
Global External Functions or Local External Functions from the second
list.

Enter the function declaration in the Script view.

For the syntax to use, see the Power Script Reference or the examples
below.

Save the object.

PocketBuilder compilesthe declaration. If there are syntax errors, an error
window opens, and you must correct the errors before PocketBuilder can
save the declaration.

Suppose you have created a C dynamic library, SMPLE.DLL, that contains a
function called SimpleFunc that accepts two parameters: a character string and
astructure. The following statement declares the function in PocketBuilder,
passing the arguments by reference:

FUNCTI ON i nt Si npl eFunc(REF string | astnanme, &
REF ny_str pbstr) LIBRARY "sinple.dl|"

PocketBuilder

CHAPTER 20 Using External Functions and Other Processing Extensions

Declaring Windows
CE functions

Resource Guide

The Windows CE API includes a subset of the functions in the Windows API.
TheWindows CE AP libraries have different names. The following examples
show sample declarations for functionsin the Windows CE library coredl|.dlIl.

On the desktop, these functions are in the Windows library user32.dll. To test
the function call on the desktop, substitute the desktop equivalent, shownin
comment lines after each call, for the Windows CE version.

FUNCTI ON ul ong Cr eat eW ndowex(ul ong dwExStyle, &
readonly string C assNanme, &
readonly string WndowNane, &
long dwStyle, &
I ong xPos, |ong yPos, |ong wwi dth, |ong wheight, &
ul ong hwndParent, ul ong hMenu, ulong hlnstance, &
ulong | Parans) &
library "Coredll.dl " alias for "CreateW ndoweExW
[l library "user32.dl 1" alias for "CreateW ndowExW

FUNCTI ON ul ong Bri ngW ndowToTop(ulong hwnd) &
library "Coredll.dlI"

/1 FUNCTI ON ul ong Bri ngW ndowToTop(ulong hwnd) &

I library "user32.dl 1"

FUNCTI ON ul ong SendMessageStr(ul ong hwnd, &

ul ong wiMsg, ul ong wParam &

readonly string | Param) &

library "Coredll.dl " alias for "SendMessageW
/1 library "user32.dll" alias for "SendMessageW

FUNCTI ON ul ong SendMessageLong(ul ong hwnd, &

ul ong wiMsg, ul ong wParam &

ulong | Param) &

library "Coredll.dl " alias for "SendMessageW
/1 library "user32.dll" alias for "SendMessageW

FUNCTI ON ul ong SendMessagePtr(ul ong hwnd, &

ul ong wMsg, ul ong wParam &

REF ulong | Parani]) &

library "Coredll.dl " alias for "SendMessageW
I library "user32.dl1" alias for "SendMVessageW

FUNCTI ON ul ong Set W ndowPos(ul ong hwnd, ul ong
hwndAfter, &
ul ong xPos, ulong yPos, ulong cX, ulong cY, &
ul ong wFl age) &
library "Coredll.dlI"
I library "user32.dl 1"

309

Using external functions

RAPI

310

The following statement declares the function that registers common controls
classes from the common control dynamic-link library commctrl.dll on
Windows CE:

FUNCTI ON ul ong I ni t CormonControl sEx (ulong &
plnitCrls[])library "comctrl.dll” // WnCE

Thisisthe equivalent statement on the desktop:

FUNCTI ON ul ong I ni t CormonControl sEx(REF ul ong &
plnitCrls[2]) library "conctl32.dll" // Wn32

For apartial examplethat uses some of these declarations, see“ Using external
functionsin a script” on page 314.

You can find a sample application that uses Windows CE API functionsin the
PocketBuilder project on the Sybase CodeXchange Web site at
http://pocketbuilder.codexchange.sybase.com.

For more information about coredll.dll, commctrl.dil, and other modules, see
the section on Windows CE modules in the Microsoft Windows CE 3.0 API
documentation at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcesdkr/html/wce30oriWindowsCE30APIReference.asp.

The following statement declares the function that |oads and initializes the
Microsoft Richlnk edit control:

FUNCTI ON ul ong I nitlnkX CE() &
library "inkx.dll" alias for "InitlnkX"

For moreinformation about using the Richink edit control, see“ Using Rich Ink
Technology in Microsoft Windows CE 3.0” in the MSDN library at
http://msdn2.microsoft.com/en-us/library/ms834457.aspx.

Remote API (RAPI) isa set of application programming interfaces that let
applications running on the desktop invoke functions directly on the Windows
CE based device. The set of functionsis similar to the Windows CE API, with
functions for managing the registry, file system, and databases, and for
querying the system configuration. There are additional functions for
initializing the RAPI subsystem and enhancing performance.

The following example shows declarations of the CeCloseHandle and
CeCreateFile RAPI functions:

Functi on Bool ean CeC oseHandl e (Long hCbject) Library
"rapi.dl 1"

PocketBuilder

CHAPTER 20 Using External Functions and Other Processing Extensions

Function Long CeCreateFile (&
String | pFil eNane, &
uLong dwDesi redAccess, &
uLong dwShar eMbde, &
REF SECURI TY_ATTRI BUTES | pSecurityAttributes, &
Long dwCreationDistribution, &
Long dwFl agsAndAttri butes, &
Long hTenpl at eFi |l e) Library "rapi.dl "

For more information about RAPI, see the MSDN library at
http://msdn2.microsoft.com/en-us/library/aal82819.aspx.

For a sample using RAPI, see the Sybase CodeXchange Web site at
http://pockettbuilder.codexchange.sybase.com.

Passing arguments

In PocketBuilder, you can define external functions that expect arguments to
be passed by reference or by value. When you pass an argument by reference,
the external function receives a pointer to the argument and can change the
contents of the argument and return the changed contents to PocketBuilder.
When you passthe argument by value, the external function receives a copy of
the argument and can change the contents of the copy of the argument. The
changes affect only the local copy; the contents of the original argument are
unchanged.

The syntax for an argument that is passed by referenceis:
REF datatype arg

The syntax for an argument that is passed by valueis:
datatype arg

Passing numeric datatypes

Thefollowing statement declaresthe external function TEMP in PocketBuilder.
This function returns an integer and expects an integer argument to be passed

by reference:
FUNCTI ON i nt TEMP(ref int degree) LI BRARY
"Li bNanme. DLL"

The same statement in C would be:

int _stdcall TEMP(int * degree)

Resource Guide 311

Using external functions

Passing strings

312

Sincethe argument is passed by reference, the function can change the contents
of the argument, and changes made to the argument within the function will
directly affect the value of the original variablein PocketBuilder. For example,
the C statement *degree = 75 would change the argument named degree to
75 and return 75 to PocketBuilder.

The following statement declares the external function TEMP2 in
PocketBuilder. This function returns an integer and expects an integer
argument to be passed by value:

FUNCTI ON i nt TEMP2(i nt degree) LIBRARY "LibName. DLL"
The same statement in C would be:
int _stdcall TEMP2(int degree)

Since the argument is passed by val ue, the function can change the contents of
the argument. All changes are made to the local copy of the argument; the
variable in PocketBuilder is not affected.

Passing by value Thefollowing statement declares the external C function
NAME in PocketBuilder. This function expects a string argument to be passed
by value:

FUNCTI ON st ring NAMVE(string CODE) LI BRARY "Li bNane. DLL"
The same statement in C would point to a buffer containing the string:
char * _stdcall NAME(char * CODE)

Since the string is passed by value, the C function can change the contents of
itslocal copy of CODE, but the original variable in PocketBuilder is not
affected.

Passing by reference PocketBuilder has access only to its own memory.
Therefore, an external function cannot return a pointer to a string. (It cannot
return a memory address.)

When you pass astring to an external function, either by value or by reference,
PocketBuilder passes a pointer to the string. If you pass by value, any changes
the function makesto the string are not accessible to PocketBuilder. If you pass
by reference, they are.

PocketBuilder

CHAPTER 20 Using External Functions and Other Processing Extensions

Resource Guide

The following statement declares the external C function NAME2 in
PocketBuilder. This function returns a string and expects a string argument to
be passed by reference:

FUNCTI ON string NAME2(ref string CODE) &
LI BRARY "Li bNane. DLL"

In C, the statement would be the same aswhen the argument is passed by value,
shown above:

char * _stdcall NAME2(char * CODE)

The string argument is passed by reference, and the C function can change the
contents of the argument and the original variable in PocketBuilder. For
example, st r cpy(CODE, STUMP) would change the contents of CODE to
STUMP and change the variable in the calling PocketBuilder script to the
contents of variable STUMP.

If the function NAME2 in the preceding exampletakesauser ID and replacesit
with the user’s name, the PowerScript string variable CODE must be long
enough to hold the returned value. To ensurethat thisistrue, declare the String
and then use the Space function to fill the String with blanks equal to the
maximum number of characters you expect the function to return.

If the maximum number of characters allowed for auser’'s nameis 40 and the
ID is awaysfive characters, you would fill the string CODE with 35 blanks
before calling the external function:

String CODE
CODE = I D + Space(35)
NAVE2 (CODE)
For information about the Space function, see the Power Script Reference.

Passing chars to C functions Char variablespassed to external C functions
are converted to the C char type before passing. Arrays of char variables are
converted to the equivalent C array of char variables.

An array of string variables embedded in a structure produces an embedded
array in the C structure. Thisis different from an embedded string, which
resultsin an embedded pointer to a string in the C structure.

Recommendation
Whenever possible, pass string variables back to PocketBuilder as areturn

value from the function.

313

Using external functions

Using external functions in a script

314

This section shows an example that uses some of the external function
declarationsfor Windows CE functionsin “ Sample declarations” on page 308.
The exampl e displays a Date Time Picker control from the Microsoft common
controls library commctrl.dll. For more information about the constant values
and other parameters to the external functions, see the Microsoft
documentation.

/'l First set instance variables

/1 ul ong g_hwndCal

/| CONSTANT ul ong | CC_DATE_CLASSES = 256 // 0x100

/1 CONSTANT ul ong W5_BORDER = 8388608 /] 0x0080 0000

/| CONSTANT ul ong Ws5_CHI LD = 1073741824 // 0x4000 0000

/| CONSTANT ul ong W5_VI SI BLE = 268435456 // 0x1000 0000

/| CONSTANT ul ong SWP_NCQZORDER = 4

/1 CONSTANT | ong HWND_TOP =0

/| CONSTANT ul ong MCM_GETM NREQRECT = 4105

/| CONSTANT ul ong MCM SETCOLOR = 4106 // 0x100A

/1 CONSTANT ul ong MCSC_MONTHBK = 4 /1 background

/1 of a nonth

/| CONSTANT ul ong COLOR_MONTH = 12648447 [/ OxCOffff

/1 (muted yell ow)

/1 Specify the class of the date picker control
string C assName = "SysDat eTi mePi ck32"

long lret
ul ong si zeRect[]
ul ong xPBUnits, yPBUnits

ulong HeightTitleBar = 0 /1 For PDA, set to O

/[l Initialize the Common Controls DLL
ulong alnitCrls[2]

alnitCrls[1] 8 [l structure size
alnitCrls[2] | CC_DATE_CLASSES

Iret = InitComonControl sex(alnitCrls) // external
if Iret =0 then

return O
end if

PocketBuilder

CHAPTER 20 Using External Functions and Other Processing Extensions

/1 make the cal endar control

g_hwndCal = CreateW ndowex(0, C assNane, "", &
W5_BORDER + W5 _CHI LD + W5_VI SI BLE, &
0,0,0,0, &

Handl e(this), 0, 0, 0)

/1 1f really created, initialize the control
if g hwndCal <> 0 then
/1 Set the cal endar col or
SendMessagelLong(g_hwndCal, MCM SETCOLOR, &
MCSC_MONTHBK, COLOR_MONTH)

/1 Set the size to what the control requests

sizeRect[1l] =0
sizeRect[2] =0
sizeRect[3] =0
sizeRect[4] =0

/1l Get the mininumsize required to display a

/1 full nonth in the control

SendMessagePtr (g_hwndCal, MCM GETM NREQRECT, 0, &
si zeRect)

// set the cal endar control size
Set W ndowPos(g_hwndCal, HMAD TOP, 0, 0, &
sizeRect[3], sizeRect[4], SWP_NOZORDER)

/1 Set the PARENT wi ndow (this) to that size
this.width = PixelsToUnits(sizeRect[3],
XPi xel sToUni ts!)
t hi s. hei ght = Pixel sToUnits
(sizeRect[4] + HeightTitleBar, YPixelsToUnits!)
end if

Sending Windows messages

To send Windows messages to a window that you created in PocketBuilder or
to an external window (such as awindow you created using an external
function), use the Post or Send function. To trigger a PocketBuilder event, use
the EVENT syntax or the TriggerEvent or PostEvent function.

Resource Guide 315

Sending Windows messages

Using Post and Send

Triggering
PocketBuilder events

316

You usually usethe Post and Send functionsto trigger Windows eventsthat are
not PocketBuilder-defined events. You can include these functions in a script
for the window in which the event will be triggered or in any script in the
application.

Post is asynchronous: the message is posted to the message queue for the
window or control. Send is synchronous: the window or control receives the
message immediately.

All events posted by PocketBuilder are processed by aqueue separate fromthe
Windows system queue. PocketBuilder posted messages are processed before
Windows posted messages.

Obtaining the window’s handle
To obtain the handle of the window, use the Handle function. To combine two

integers to form the long value of the message, use the Long function. Handle
and Long are utility functions, described in “ Using utility functions to manage
information” on page 317.

To trigger a PocketBuilder event, you can use the techniques that are listed in
Table 20-1.

Table 20-1: Triggering PocketBuilder events

Technique Description

TriggerEvent function A synchronous function that triggers the event
immediately in the window or control

PostEvent function An asynchronous function: the event is posted to the
event queue for the window or control

Event call syntax A method of calling eventsdirectly for acontrol using dot
notation

All three methods bypass the messaging queue and are easier to code than the
Send and Post functions.

Example All three statements shown below click the CommandButton
cbh_OK and are in scripts for the window that contains cb_OK.

The Send function uses the Handle utility function to obtain the handle of the
window that contains cb_OK, then uses the Long function to combine the
handle of cb_OK with O (BN_CLICK) to form along that identifies the object
and the event:

Send(Handl e(Parent), 273, 0, Long(Handl e(cb_OK), 0))
cb_OK. Trigger Event (i cked!)
cb_OK EVENT dicked()

PocketBuilder

CHAPTER 20 Using External Functions and Other Processing Extensions

The TriggerEvent function identifies the object in which the event will be
triggered and then uses the enumerated datatype Clicked! to specify the clicked
event.

The dot notation uses the EVENT keyword to trigger the Clicked event.
TRIGGER isthedefault when you call an event. If you were posting the clicked
event, you would use the POST keyword:

Cb_OK. EVENT POST d i cked()

Using utility functions to manage information

The utility functions provide away to obtain and pass Windows information to
external functions and can be used as arguments in the PowerScript Send
function. There are four utility functions.

Utility functions Table 20-2: Utility functions
Function | Return value | Purpose
Handle Unsignedint Returns the handle to a specified object.
IntHigh Unsignedint Returns the high word of the specified long value.

IntHigh isused to decode Windowsval uesreturned by
external functions or the LongParm attribute of the
Message object.

IntLow Unsignedint Returns the low word of the specified long value.

IntLow is used to decode Windows val ues returned by
external functions or the LongParm attribute of the

M essage object.
Long Long Combines the low word and high word into along.
The Long function is used to pass values to external
functions.
Example This script usesthe external function CreatewindowEx to create achild window

that displays a calendar. The Handle function is used to pass the handle to the
parent window of the window being created:

/'l Instance variable: ulong g_hwndCal

g_hwndCal = CreateW ndowex(0, C assNane, "", &
W5_BORDER + WS_CHI LD + W5 VI SIBLE, &
0,0,0,0, &

Handl e(this), 0, 0, 0)

Resource Guide 317

The Message object

The Message object

The Message object is a predefined PocketBuilder global object (like the
default Transaction object SQLCA and the Error object) that is used in scripts
to process Microsoft Windows events that are not PocketBuilder-defined
events.

When a Microsoft Windows event occurs that is not a PocketBuilder-defined
event, PocketBuilder popul ates the M essage object with information about the
event.

Other uses of the The Message object is also used:
Message object

» To communicate parameters between windows when you open and close
them

For more information, see the descriptions of OpenwithParm,
OpenSheetWithParm, and CloseWithReturn in the online Help.

» Topassinformation to an event if optional parameters were used in
TriggerEvent or PostEvent

For more information, see the online Help.

Customizing the You can customize the global Message object used in your application by

Message object defining astandard class user object inherited from the built-in M essage obj ect.
In the user object, you can add additional properties (instance variables) and
functions. You then popul ate the user-defined properties and call the functions
as needed in your application.

For more information about defining standard class user objects, seethe Users
Guide.

Message object properties

Table 20-3 lists the properties of the Message object and the datatype and uses
of each. Thefirst four properties of the Message object correspond to the first
four properties of the Microsoft Windows message structure.

Table 20-3: Message object properties

Property Datatype Use

Handle Integer The handle of the window or control.

Number Integer The number that identifies the event (this
number comes from Windows).

318 PocketBuilder

CHAPTER 20 Using External Functions and Other Processing Extensions

Resource Guide

Property Datatype Use

WordParm Unsignedint | The word parameter for the event (this
parameter comes from Windows). The
parameter’s val ue and meaning are determined
by the event.

LongParm Long The long parameter for the event (this number
comes from Windows). The parameter’s value
and meaning are determined by the event.

DoubleParm Double A numeric or numeric variable.

StringParm String A string or string variable.

PowerObjectParm | PowerObject | Any PocketBuilder object type, including
structures.

Processed Boolean A boolean value set in the script for the

user-defined event:

* true —the script processed the event. Do not
call the default window Proc
(DefWindowProc) after the event has been
processed.

« false (default) —call DefWindowProc after
the event has been processed.

ReturnVaue Long The value you want returned to Windowswhen
Message.Processed istrue.

When Message.Processed isfalse, thisattribute
isignored.

Use the values in the Message object in the event script that caused the

M essage object to be populated. For example, suppose the FileExists event
contains the following script. OpenwithParm displays a response window that
asksthe user if it isOK to overwrite the file. The return value from FileExists
determines whether the fileis saved:

OpenW t hParm(w_question, &
"The specified file already exists. " + &
"Do you want to overwite it?")
| F Message. StringParm = "Yes" THEN
RETURN O // File is saved
ELSE
RETURN -1 // Saving is cancel ed
END | F

When processing messages, Windows CE supports both system-defined
messages and application-defined messages. Windows CE does not support
hooking messages. For information on Microsoft messagetypes, seethe MSDN
library at http://msdn2.microsoft.com/en-us/library/aa452701.aspx.

319

The Message object

320 PocketBuilder

ciarTER 21 Managing Initialization Files and
the Windows CE Registry

About this chapter Thischapter describes how to manage preferences and default settingsfor
PocketBuilder applications.
Contents Topic Page
About preferences and default settings 321
Managing information in initialization files 322
Managing information in the Windows CE registry 323

About preferences and default settings

Many applications store user preferences and default settings across
sessions. For exampl e, applications can keep track of settingsthat control
the appearance and behavior of the application, or store default parameters
for connecting to the database. PocketBuilder applications can manage
this kind of information in initialization files or in the Windows CE
registry.

Database connection You might need to set the values of the Transaction object from an external

parameters file. For example, you might want to retrieve values from your
PocketBuilder initialization file when you are devel oping the application,
or from an application-specific initialization file when you distribute the
application.

For information about database connection parametersin an initialization
file, see “Reading values from an external file” on page 238.

For an example of how to save and restore database connection
parametersin the Windows CE registry, see“Managing informationinthe
Windows CE registry” on page 323.

Resource Guide 321

Managing information in initialization files

Custom Today item

parameters

Other settings you
might want to save

When you deploy a PocketBuilder application, you can add a custom Today
item to the Pocket PC Today screen. Information about the custom Today item
is entered in the Windows CE registry. You can aso remove Windows CE
registry information about custom Today items from the PocketBuilder IDE.

For information about custom Today items, see the chapter on “Working with
PowerScript Targets” in the Users Guide.

In addition to the database connection custom Today item parameters, you
might want to store avariety of other application-specific settings, such asuser
preferences for colors, fonts, and other display settings.

Managing information in initialization files

Functions for

accessing initialization

files

The format of APP.INI

Reading values

wi ncol or
brdcol or
bckcol or
t xt col or

322

PocketBuilder provides several functions you can use to manage application
settingsin initialization files.

Table 21-1: PocketBuilder initialization file functions

Function Description

Profilelnt Obtains theinteger value of asetting in aprofilefile
ProfileString Obtains the string value of a setting in aprofile file
SetProfileString Writesavaluein aprofilefile

For complete information about these functions, see the online Help.

The examples below manage application information in a profile file called
APP.INI. Thisfile keeps track of user preferences that control the appearance
of the application. It has a Preferences section that stores four color settings:

[Preferences]

W ndowCol or =Si | ver
Bor der Col or =Red
BackCol or =Bl ack
Text Col or=Wite

The following script retrieves color settings from the APP.INI file. Wincolor,
brdcolor, bckeolor, and txtcolor are string variables:

ProfileString("app.ini", "Preferences", "WndowColor", "")
ProfileString("app.ini", "Preferences", "BorderColor", "")
ProfileString("app.ini", "Preferences", "BackColor", "")
ProfileString("app.ini", "Preferences", "TextColor", "")

PocketBuilder

CHAPTER 21 Managing Initialization Files and the Windows CE Registry

Setting values The following script stores color settings in the APP.INI file:
SetProfileString("app.ini", "Preferences", "WndowCol or", w ncol or)
SetProfileString("app.ini", "Preferences", "BorderCol or", brdcolor)
SetProfileString("app.ini", "Preferences", "BackColor", bckcol or)
SetProfileString("app.ini", "Preferences", "TextColor", txtcolor)

Managing information in the Windows CE registry

Functions for PocketBuilder provides several functions you can use to manage application
g%%ei:tsrg‘g the settings in the Windows CE regjistry.

Table 21-2: PocketBuilder registry setting functions

Function Description

RegistryDelete Deletes akey or avauein akey in the Windows registry.

RegistryGet Gets a value from the Windows registry.

RegistryKeys Obtainsalist of the keysthat are child items (subkeys) one level
below akey in the Windows registry.

RegistrySet Setsthe value for akey and/or avalue name in the Windows
registry. If the key or value name does not exist, RegistrySet
creates anew key or value name.

RegistryValues Obtains alist of named values associated with a key.

For complete information about these functions, see the online Help.

To explore and edit the Windows CE registry on a Pocket PC, you can

download the PHM Registry Editor at http://www.phm.lu/Products/PocketPC/.

Reading values from The examplesthat follow use the registry to keep track of database connection
the registry parameters. The connection parameters are maintained in the registry in the
MyCo\MyApp\database branch under HKEY_CURRENT_USER\Software.

The following script retrieves values for the default Transaction object from

the registry.

Regi st ryCet (" HKEY_CURRENT_USER\
"dbns", sql ca. DBVB)

Regi st ryCet (" HKEY_CURRENT_USER\
"dat abase", sql ca. dat abase)

Regi st ryGet (" HKEY_CURRENT_USER\
"userid", sqglca.userid)

Regi st ryCet (" HKEY_CURRENT_USER\
"dbpass", sql ca. dbpass)

Resource Guide

Sof t war e\ MyCo\ MyApp\ dat abase",
Sof t war e\ MyCo\ MyApp\ dat abase",
Sof t war e\ MyCo\ MyApp\ dat abase",

Sof t war e\ MyCo\ MyApp\ dat abase",

&

323

Managing information in the Windows CE registry

Setting values in the

Regi
Regi
Regi

Regi

registry

324

Regi st rySet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ MyApp\ dat abase"

Regi
Regi
Regi
Regi
Regi
Regi

Regi

stryGCet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ My App\ dat abase"

"l ogi d", sqglca.logid)

stryGCet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ MyApp\ dat abase"

"l ogpass", sqlca.l ogpass)

stryGCet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ MyApp\ dat abase"

“servernane", sql ca.servernane)

stryGCet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ My App\ dat abase"

"dbparni', sql ca. dbparm

in the application) in the registry:

"dbms", sql ca. DBVB)

strySet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ MyApp\ dat abase"

"dat abase", sql ca. dat abase)

strySet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ My App\ dat abase"

"userid", sqlca.userid)

strySet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ My App\ dat abase"

"dbpass"”, sql ca. dbpass)

strySet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ MyApp\ dat abase"

"l ogid", sqglca.logid)

strySet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ My App\ dat abase"

"l ogpass", sqlca.l ogpass)

strySet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ My App\ dat abase"

"servernane", sql ca.servernane)

strySet (" HKEY_CURRENT_USER\ Sof t war e\ MyCo\ MyApp\ dat abase"

"dbparn', sql ca. dbparm

Thefollowing script storesthe values for the Transaction object (set el sewhere

PocketBuilder

CHAPTER 22

About this chapter

Using the Command Line

This chapter describes how to use command-line arguments to build

applications and start PocketBuilder.

Contents Topic

| Page

Starting PocketBuilder from a command line

| 325

Starting PocketBuilder from a command line

You can start the PocketBuilder executable from a command line to build
aworkspace without opening the devel opment environment, or to open
the development environment with a specific painter or object open. You
can also use the Windows Run dialog box to accomplish these tasks.

The general syntax is:

directory\pk25.exe {/workspace workspacepath} {deployoptions |
runoptions} {/output outputpath}

where directory is the fully qualified name of the directory containing

PocketBuilder.

Table 22-1: General command-line options for PocketBuilder

Option

Description

/W workspacepath

Opens the workspace workspacepath. This option is
required for deployment. To open PocketBuilder, the
default is the most recently used workspace if you have
selected the Reopen Workspace on Startup check box in
the System Options dialog box. If you have not selected
this check box, you must specify the /w option before
specifying any other options.

deployoptions

Options for deploying the workspace. See Table 22-2.

runoptions

Options for opening the devel opment environment. See
Table 22-3.

/OU outputpath

Resource Guide

L ogs the contents of the Output window to outputpath.

325

Starting PocketBuilder from a command line

Building workspaces
from a command line

Starting PocketBuilder
with command-line
arguments

326

Short option names
The syntax statementsin this chapter show the long form of option names. You

need only usetheinitial letter or letters of the option name aslong asthe option
isuniquely identified, as shown in Table 22-1.

The deploy options are deploy, fullbuild, and incrementalbuild. These options
must be used with the workspace option.

Table 22-2: Options for deploying a workspace

Option Description

/deploy Deploys the workspace and exits

fullbuild Fully builds the workspace and exits
/incrementalbuild Incrementally builds the workspace and exits

You need to create projects and specify build and deploy options for the
workspace in PocketBuilder before you start a build from the command line.
Deploy builds the projectsin the target in the order listed on the Deploy page
of the target properties dialog box.

When you deploy or build aworkspace from a command line, PocketBuilder
starts, completes the build, and exits as soon as the operation is completed. To
retain alog filefor the session, you can send the contents of the Output window
to afile.

This example assumes that the location of the PocketBuilder executablefileis
in your system path or in the directory from which you enter the command. It
opens the workspace called CDShop, builds and deploys the targets in the
workspace according to your specificationsin the workspace and target
properties, records the content of the Output window in thefile
D:\tmp\cdshop.out, and exits PocketBuilder:

pk25 /w D:\ CDShop\ CDShop. pkw /d /out D:\tnp\cdshop. out

When you start PocketBuilder from acommand line, you can optionally open
aworkspace, target, and/or painter. These are the painters and tools you can
open:

Application painter

Database painter

Datawindow painter

Debugger

File Editor

Function painter

Library painter

PocketBuilder

CHAPTER 22 Using the Command Line

Menu painter
Query painter
Structure painter
User Object painter
Window painter

You can also add options to the command line after /painter paintername to
open a specific object or create a new one:

{ltarget targetpath} {/painter paintername} {/library libraryname} {/object
objectname} {/inherit objectname} {/new} {/run} {/runonly} {/argument

arguments}

Table 22-3: Options for opening the development environment

Option

Description

[T targetpath

Opensthetarget in targetpath.

/P paintername

Opens the painter paintername. The default is the window
that displays when you begin a new PocketBuilder session.

The painter name must uniquely identify the painter. You do
not have to enter the entire name. For example, you can
enter g to open the Query painter and dat ab to open the
Database painter. If you enter the full name, omit any spaces
in the name (enter User Obj ect , for example).

The painter name is not case sensitive. To open the file
editor, you could set painternameto Fl orfil eeditor.
Except for the/w, /T, and /L switches, switches must follow
/P paintername on the command line, as shown in the
examples after the table.

/L libraryname

The library that contains the object you want to open.

Resource Guide

/O objectname The object, such as a DataWindow object or window, you

(or /OBJ objectname) | want to open.

/1 objectname The object you want to inherit from.

IN Creates a new DataWindow object.

/R Runs the DataWindow object specified with /O and allows
designing.

/RO Runsthe DataWindow object specified with /O but does not
allow designing.

/A arguments Arguments for the specified DatawWindow object.

327

Starting PocketBuilder from a command line

Examples

328

The following examples assume that the |ocation of the PocketBuilder
executable fileisin your system path.

This example starts a PocketBuilder session by opening a new window (a
window object is not specified) in the Window painter for the Client PKL in
the Math workspace. The output of the sessionis sent to afile called math.log.
The workspace file, the PKL, and the log file are all in the current directory:

pk25 /w Math. pkw /I dient.pkl /p w ndow /out math.log

Enter this command to start PocketBuilder and open the DataWindow object
called d_emp_report in the workspace Emp.pkw:

pk25 /w D:\ pkws\ Enp. pkw / P dataw / O d_enp_report

PocketBuilder

Index

A
accessing databases
ODBC datasources 206
troubleshooting any connection 220
action codes 138
Adaptive Server Anywhere. See SQL Anywhere
AddColumn function 77
AddDatafunction 103
adding items
toalistbox 70,71, 72
toalListView 73
adding picturesto aListView 74,75
Addltem function 70, 71, 72, 74
AddLargePicture function 75
AddSeriesfunction 103
AddSmallPicture function 75
AddStatePicture function 75, 76
aggregate relationships 10
ALIAS FOR keywords
about 247
coding 248
ancestor objects
about 27
caling functionsand events 24
AncestorReturnValue variable 24
Application painter
changing default global variabletypesin 249
Variable Types property page 249
applications
calling database stored procedures 245
coding to use stored procedure user objects 250
connecting to databasesfrom 294
reading Transaction object values from external
files 238
setting AutoCommit and Lock 296
setting database preferences 294
setting DBParm parameters 286, 288
storing preferences 321
tracing ODBC connectionsfrom 228

Resource Guide

using DataWindow objectsin 117
using Preview tab to copy connection
syntax 186, 286, 294
arguments, passing method 26
array management for tab pages 66
ASA. See SQL Anywhere
associativerelationships 11
audience for thisbook ~ xi
AutoCommit database preference
displayed on Preview tab 294
setting in database profiles 289
setting inscript 294
AutoCommit Transaction object property
about 234
issuing COMMIT and ROLLBACK 236
autoinstantiated objects 11

B

basic procedures
importing and exporting database profiles 190
selecting a database profile to connect 188
setting database preferences 288
setting DBParm parameters 285
sharing database profiles 191
starting ODBC Driver Manager Trace 228
stopping Database Trace 223
stopping ODBC Driver Manager Trace 229
binary files, reading and writing 304
bitmaps, dynamically adding and removing 148
buffers
DataStore 162
DataWindow 129, 141
build, from command-line 326

C

case sengitivity, ininitialization file 211

329

Index

chars, passing to C functions 313 DropDownPictureListBox 71
client synchronization 256 ListBox 70
colons (scope operator) 23 ListView 72,74, 75,77
columns ontabpages 60
statusin Datawindow controls 141 PictureListBox 70
timestamp, in SQL Anywheretables 208 TreeView 78
command line conventions xiv
building from 326 coredll.dll 310
starting from 326 create capability for Modify 148
COMMIT statement Crestemethod 149
about 236 creating nondefault Transaction objects 241
and AutoCommit setting 236 custom class user objects, typical uses 4
and SetTransObject 124 custom DataStore objects 160

automatically issued on disconnect 236, 241
error handling 244
for nondefault Transaction objects 242

communication with databases 122 D
compiling long scripts 40 data
Connect DB at Startup database preference 291 adding in graph inwindows 103
CONNECT statement associating with graphsin windows 102
about 236 retrieving and updating 126
and SetTransObject 124 saving ingraphs 108, 175
coding 239 sharing 163
error handling 244 synchronizing 253
for nondefault Transaction objects 242 updating 127
USING TransactionObject clause 239 data sources
connect strings, ODBC externa 128, 162
about 208 types 112
DSN (data source name) value 208 database connections, about 122
connecting to databases database errors 136
about 187, 189 database interfaces
and Transaction object 239 connecting to databases 188
by selecting adatabase profile 188 creating database profiles 183
during application execution 294 importing and exporting database profiles 190
troubleshooting any connection 220 sharing database profiles 191
using multiple databases 241 troubleshooting 220
ConnectOption DBParm parameter 228 database preferences
ConnectString DBParm parameter AutoCommit 289, 294
about 208 Keep Connection Open 291
DSN (data source name) value 208 Lock 289, 294
in ODBC connections 208 Read Only 291
consolidated databases 254 setting in Database Preferences dialog box 290
constants 21 setting in database profiles 186, 289
controls setting in scripts 294
draganddrop 13 Shared Database Profiles 192, 291
DropDownListBox 71 SQL Terminator Character 291

330 PocketBuilder

Use Extended Attributes 291
using ProfileString functiontoread 296
Database Preferences button 192
Database Preferencesdialogbox 192, 290
Database Profile button 188
Database Profile Setup dialog box
AutoCommit Mode check box 289
character limit for DBParm strings 286
Generate Trace check box 223
Isolation Level box 289
ODBC Driver Manager Trace, stopping 230
Preview tab 186, 286, 294
Trace Filebox 229
Trace ODBC API Callscheck box 229
database profiles
about 183
character limit for DBParm strings 286
connect string for ODBC data sources 208
creating 183
Database Profilesdidlog box 184
DBMS value for ODBC data sources 208
exporting 190
importing 190
importing and exporting 190
ODBC Driver Manager Trace, stopping 230
selecting in Database Profilesdialog box 188
setting database preferences 186
setting DBParm parameters 186
setting Isolation Level and AutoCommit Mode
289
shared 191
shared, maintaining 194
shared, saving in local initidization file 194
shared, selecting to connect 193
shared, settingup 192
suppressing password display 188
Database Profiles dia og box
about 184,188
displaying shared profiles 193
Database section in initialization files 189, 224
Database Trace
about 220
deleting or clearing thelog 225
log filecontents 221
log fileformat 222
sample output 225

Resource Guide

Index

specifying anondefault log file 224
Database Transaction object property 234
databases

accessing 206

calling stored proceduresin applications 245

communicating with 122

connecting automatically 123

connectingto 239

connecting to multiple 241

connecting with database profiles 188

datasource 112

disconnecting automatically 123

disconnecting from 240

profiles, connection propertiesin -~ 234

retrieving, presenting, and manipulating data 112,

126

snapshot connections 123

transaction management 124

updating 127
DataModified status 141
DataObject property of DataWindow controls 121
DataStore objects

about 111

accessing data 162

buffers 162

custom 160

importing data from external sources 162

methods 163

populating a TreeView 98

sharingdata 163
datatypes, specia timestamp for Transact-SQL 208
DataWindow controls

about 111, 113, 114, 118

accessing aspecified item 133

accessing the current text 131

action codes 138

and graphs 174

assigning transaction objectsto 149

associating with objects during execution 121

buffers 129, 141

column status 141

creating reportswith 144

data management in 129

DataObject property 121

DBError event 137

handling errors 136

331

Index

importing data from external sources 128

ItemChanged event 132

ItemError event 132

methods 134

names 118

naming incode 119

placing in windows 119

processing entries 130

row status 141

updating, use of row/column statuswhen 141

using graph methods 176
DataWindow expressions, optimizing 29
Datawindow objects

about 111

associating with controls 120, 121

basicuseof 117

creating dynamically 149

creating reportswith 144

datasources 112

defining 112

displaying data 122

dot notation 20

dynamicuseof 147

editing 120
graphsin 171
names 118

overview 112
preparingtouse 117
presentation styles 112
propertiesof 135
Datawindow painter
about 117
editing Datawindow object 120
workingin 117
DataWindow runtime errors 139
Datawindow technology 111, 113
DBError event 137
DBF value, in ConnectString parameter 215
domlsrv9 254

dbmlsync
about 256
process 258
DBMS

entriesininitiaization file 210
valuein database profiles 208

332

DBMS Transaction object property 234
DBParm parameters

character limit for stringsin database profiles 286

ConnectOption 228

ConnectString 208

displayed on Preview tab 186, 286

in ODBC connections 208

setting in database profiles 186

setting in scripts 286

using ProfileString functiontoread 288

DBParm Transaction object property 234, 287

DBPass Transaction object property 234
DBTraceFileentry ininitidization files 224
declarations

constants 21

externd functions 307

Transaction objects 241
default

global variabletypes 249

Transaction object (SQLCA) 234, 237
defining database interfaces

importing and exporting database profiles

sharing database profiles 191
defining ODBC data sources

multiple datasources 205

sharing database profiles 191

SQL Anywhere 203
delegation as object-oriented concept 10
Delete buffer

DataStore 162

DataWindow 129
Deletel argePicture function 77
Deletel argePictures function 77
DeleteSmallPictures function 77
DeleteStatePicture function 77
DeleteStatePictures function 77
deleting ListView pictures 77
descendent objects

about 27

defining 246
Describe method 135, 148, 149, 150
destroy capability for Modify 148
DISCONNECT statement

about 236

coding 240

PocketBuilder

190

error handling 244

for nondefault Transaction objects 242

USING TransactionObject clause 240
DISCONNECT statement and SetTransObject 124
disconnecting from databases 240
DLL files, executing functionsfrom 307
dot notation

about 17

PowerScript, using to call stored procedures 250
drag and drop

automatic drag mode 14

identifying drag controls 15

properties 14

using 14
DropDownListBox controls

about 71

addingitems 71
DSN (data source hame)

defining 202

using fileon Windows CE 199

value, in ODBC connect strings 208
dynamic DatawWindow objects

about 147

adding elements 148

creating 149

modifying 148

providing query mode 151

specifying create syntax 149, 150
dynamic function calls 28
dynamic lookup 9
dynamic SQL, handling errorsin 244

E

edit controls

in DataStore objects 162

in Datawindow controls 129, 131, 132
edit styles, overriding in query mode 154
EditChanged event 131
editing

initialization file 209

shared database profiles 191, 194
embedded SQL, handling errorsin 244
encapsulation 6, 22
Error event 139

Resource Guide

Index

errors
after SQL statements 244
exception handling 31
following database retrieval or update 136
events
action codes 138
caling 316
caling ancestor 24
DBError 137
draganddrop 14
Error 139
ItemChanged 132
ItemError 132
of graph controls 102
passing arguments 26
return value from ancestor 24
triggering 316
exceptions, handling 31
execution
accessing graphs 105, 172
associating DataWindow objects with
controls 121
modifying DataWindow objects 148
exporting adatabase profile 190
expressions, assigning Datawindow property
values 148
External data source, importing data 128, 162
external files, reading Transaction object values
from 238
external functions
declaring 307
using to call database stored procedures 247

F

FieldSoftware SDK 29
file pointer 306
files
asdatasource 112
external, reading Transaction object values
from 238
Filter buffer 129, 162
FindSeriesfunction 104
fonts, using inreports 145
FreeDBLibraries 198

333

Index

FUNCTION declaration
about 247
coding 248
functions
caling ancestor 24
dynamic 28
graph 102
overloading 8
overriding 26
passing arguments 26

functions, external
about 307
declaring 308
passing arguments 311
using to call database stored procedures 247

functions, PowerScript
AddColumn 77
Additem 70,71, 72,74
AddLargePicture 75
AddSmallPicture 75
AddStatePicture 75, 76
DeleteLargePicture 77
DeleteLargePictures 77
DeleteSmallPicture 77
DeleteSmallPictures 77
DeleteStatePicture 77
DeleteStatePictures 77
file manipulation 304
Insertitem 70, 71, 72, 74, 81
InsertitemFirst 81
InsertitemLast 81
InsertitemSort 81
SetColumn 77
Setltem 77
SetOverlayPicture 76
utility 317

functions, user-defined
overloading 8
overriding 8

G

garbage collection 39

334

Generate Trace check box in Database Profile Setup
dialog box 223
generic coding techniques 63
GetltemDate function 133
GetltemDateTime function 133
GetltemDecimal function 133
GetltemNumber function 133
GetltemTime function 133
GetParent function 20, 63
GetText function 131
global external functions 308
global variables
default types 249
name conflicts 23
graph functions
dataaccess 107
getting information about data 107
modifying display of data 108
saving data 108
graphics, adding to Datawindow objects 148
graphs
about 171
creating data pointsin windows 103
creating seriesinwindows 103
data properties 107, 174
getting information about 107, 174
internal representation 105, 173
modifying data properties in DataWindow
control 176
modifying display of data 108, 176
modifying during execution 105, 172
populating with datain windows 102
PowerScript functions 102
propertiesof 105, 173
savingdata 108, 175
grAXxis subobject of graphs 105, 173
grDispAttr subobject of graphs 105, 173

H

handling errors after SQL statements 244
help

Database Trace, using 221

ODBC Driver Manager Trace, using 227

PocketBuilder

importing a database profile 190
inclusional polymorphism 7
inheritance, virtual functionsin ancestor 5
initialization files
accessing 321
adding functionsto 209
DBMS_PROFILES section 194
in ODBC connections 206
locating when sharing database profiles 191
ODBC 207
ODBCINST 206
reading DBParm valuesfrom 222, 228, 288
reading Transaction object valuesfrom 238
specifying nondefault Database Tracelog 224
storing connection parameters 187, 189
suppressing password display 188
Insertltem function 70, 71, 72, 74, 81
InsertitemFirst function 81
InsertitemLast function 81
InsertitemSort function 81
instance variables
access 22
name conflicts 23
instantiating Transaction objects 241
Isolation Level box in Database Profile Setup dialog
box 289
isolation levels and lock values
setting in database profiles 289
ItemChanged event 131, 132
ItemError event 131, 132
itemsin Datawindow controls 130

K

Keep Connection Open check box in Database
Preferencesdialog box 291
Keep Connection Open database preference 291

L

libraries for DatawWindow objects 115, 117
linemode 304

Resource Guide

Index

ListBox controls
about 70
addingitems 70
ListView controls
about 72
adding columns 77
addingitems 73
adding pictures 74,75
deleting pictures 77
imagelist 74
items 73
populating columns 77
reportview 77
setting columns 77
ListView items
index 73
label 73
overlay pictureindex 73
pictureindex 73
state pictureindex 73
loca external functions 308
Lock database preference
displayed on Preview tab 294
setting in database profiles 289
setting inscript 294
Lock Transaction object property 234
lock values and isolation levels, setting in database
profiles 289
LOG files
PKTRACE.LOG 220
specifying nondefault for Database Trace 224
specifying nondefault for ODBC Driver Manager
Trace 229
SQL.LOG 226
logical unit of work (LUW) 236
LoglD Transaction object property 234
LogPass Transaction object property 234
LUW 236

M

mail, sending 30
maintaining shared database profiles 194
memory management 39

335

Index

Message object

about 318

properties 318
methods

DataStore 163
DataWindow 134

graph 174
MobiLink synchronization

about 253

articles 257,279

clients 256

connection events 270
consolidated 254
consolidated databases 269
domlsrv and misrv - 254
domlsync 256, 258
handling deletes 284
hierarchy 255
optionswindow 265
PocketBuilder objectsfor 259
publications 257, 277
remote 254

remote databases 276
scripts 256, 273

scripts, default 272
server 254

SQL Anywhereclient 256
subscriptions 258, 281
tableevents 271
techniques 283
UltraLiteclient 256
users 280

wizards 259

Modify method

basicusage 135, 148
using query mode 151
using with graphs 172
multiple databases, accessing 241
multiple ODBC data sources, defining 205

N

names
DatawWindow controls 118
Datawindow objects 119

336

New status 141
NewModified status 141
nondefault Transaction objects
about 241
assigning valuesto 241
creating 241
destroying 243
specifying in SQL statements 242
NotModified status 141

@)
Object property
about 29
dot notation 20
object-oriented programming 3
objects
caling ancestor functionsand events 24
instantiating descendants 27
name conflicts 23
pronounsfor 19
selecting type during execution 27
ODBC (Open Database Connectivity)
defining multiple data sources 205
ODBCiinitidization file 207
ODBCINST initidization file 206
ODBC connect strings
about 208
DSN (data source name) value 208
ODBC data sources
accessing 206
defining multiple 205
in ODBC initidization file 207
in ODBCINST initialization file 206
initialization file 209
sharing database profiles 191
troubleshooting 220
ODBC Driver Manager Trace
performance considerations 227
sample output 230
setting with ConnectOption DBParm 228
specifying anondefault log file 229
starting in database profiles 228
stopping in database profiles 230
viewing thelog 226

PocketBuilder

ODBC drivers
and ODBC initidization file 207
and ODBCINST initialization file 206
initialization file 209
troubleshooting 220

ODBC initidization file, about 207

ODBC interface
connecting to datasources 188
ConnectOption DBParm, using 228
initialization file 209
initialization filesrequired 206
ODBC initiadlization file 207
ODBCINST initialization file 206
troubleshooting 220

operational polymorphism 7

overloading user-defined functions 8

overriding user-defined functions 8, 26

P

painters 117
parent objects 17

Parent pronoun 19
passing arguments 26
passwords, suppressing display 188
performance

about 21,29

faster compiling 40

variable scope 40
pictureheight 74,75
picturemask 74,75
picturewidth 74,75

PK.INI file. See PocketBuilder initiaization file
PKL files 115

PKODB15u initialization file

about 209

case sensitivity 211

specia timestamp column support 209
PKTRACE.LOG file

about 221

contents 221

deleting or clearing 225
format 222

Resource Guide

Index

sample output 225
using nondefault log fileinstead 224
PocketBuilder events, triggering 316
PocketBuilder initialization file
about 191
locating when sharing database profiles 191
reading Transaction object valuesfrom 238
saving shared database profileslocally 194
setting Shared Database Profiles database preference
192
specifying nondefault Database Tracelog 224
suppressing password display 188
polymorphism 7
position pointer 306
Post function 316
PostEvent function 316
PowerScript dot notation, using to call stored
procedures 250
PowerScript syntax, on Preview tab 187
preparing SQL Anywhere datasources 202
presentation styles, list 112
Preview tab
about 186, 187, 286
copying AutoCommit and Lock properties 294
copying DBParm parameters 286
copying DBParm properties 186
Primary buffer 129, 162
Print method 145

printing
aruntime 29
reports 145

PRIVATE access 22
procedures, basic
importing and exporting database profiles 190
selecting a database profileto connectto 188
setting database preferences 288
setting DBParm parameters 285
sharing database profiles 191
stopping Database Trace 223
stopping ODBC Driver Manager Trace 229
profiles, database 234
See also database profiles
ProfileString function
about 238, 322
coding 239

337

Index

setting AutoCommit and Lock in scripts 296
setting DBParm parametersin scripts 288
starting ODBC Driver Manager Tracein
scripts 222, 228
programs, using DataWindow objectsin 117
Prompt for Database Information check box 188
pronouns 19
properties
Datawindow object 135
draganddrop 14
retrieving current valuesof 148, 149, 150
properties, Transaction object
about 234
assigning valuesto 237,241
calling stored procedures 250
descriptionsof 234
reading values from external files 238
PROTECTED access 22
PUBLIC access 22
publication 257, 277

Q

qualifying names 17
query mode

clearing 154
forcing equality 155
providing to users 151
sortingin 154

R

Read Only check box in Database Preferences dialog box
291
Read Only database preference 291
read-only, passing arguments 26
reference, passing argumentsby 26
registry, Windows
ODBC initialization file 207
ODBCINST initidization file 206
registry, Windows CE, storing informationin 321
RegistryGet function 323
RegistrySet function 324
remote databases 254

338

remote procedure call technique
about 245
and stored procedure result sets 245, 251
coding your application 250
declaring the stored procedure as an external function
247
defining the standard class user object 246
saving the user object 249
specifying the default global variable type for

SQLCA 249
Remote Stored Proceduresdialog box 247
reports
creating with DataWindow objects 144
printing 145

result sets, for stored procedures 245, 251
Retrieve method

handling errors 136

using 126
return values from ancestor scripts 24
ROLLBACK statement

about 236

and AutoCommit setting 236

and SetTransObject 124

for nondefault Transaction objects 242
rows

providing user-specified retrieval 151

status in DataWindow controls 141
RPCFUNC keyword

about 247

coding 248
runtimelibraries 117

S

Save User Object dialogbox 249

saving datain graphs 108, 175

scope operator 23

scripts
adding list box items 70, 71, 72
adding listbox items 71
adding ListView columns 77
adding ListView items 73
adding ListView pictures 75
deleting ListView items 77
deleting ListView pictures 77

PocketBuilder

modifying graphsin 105, 172
populating ListView columns 77
setting DBParm values 286
starting ODBC Driver Manager Trace 228
synchronization 256
using Preview tab to set connection options 186,
286, 294
using ProfileString functiontoread 288, 296
Select Standard Class Type dialog box 246
SELECT statements, modifying at execution
time 153
selection criteria. See query mode
semicolons, as SQL statement terminators 237, 239
Send function 316
sendingmail 30
series, graph
adding data pointsin windows 103
creating in window 103
identifyinginwindows 104
server, MobiLink synchronization 254
ServerName Transaction object property 234
SetColumn function 77
Setltem function 77, 133
SetOverLayPicture function 76
SetProfileString function 323
SetText function 131
setting database preferences 294
SetTransfunction 123
SetTransObject function 124
shared database profiles
maintaining 194
savinginlocal initidization file 194
selecting in Database Profilesdialog box 193
setting Shared Database Profiles database
preference 192
settingup 191, 192
Shared Database Profiles box in Database Preferences
dialog box 192, 291
Shared Database Profiles database preference 291
sorting in query mode 154
SQL Anywhere
and MobiLink synchronization 254
connection components 200
defining the data source 203
features supported when calling stored
procedures 251

Resource Guide

Index

LOGfiles 202
ODBC Configuration dialog box 203
preparingtouse 202
specia timestamp columns 208
SQL statements
error handling 244
for transaction processing 236
specifying Transaction objectin =~ 242
terminating with semicolons 237, 239
SQL terminator character
changing in Database painter 291
database preference 291
SQL.LOG file
leavingopen 226
performance considerations 227
sample output 230
using nondefault log fileinstead 229
viewing 226
SQL_OPT_TRACE parameter in ConnectOption
DBParm 228
SQL_OPT_TRACEFILE parameter in ConnectOption
DBParm 228
SQLCA
about 234, 237
caling stored procedure as property of 250
creating and destroying prohibited 241
customizing to call stored procedures 245
error handling 244
properties, assigning valuesto 237
properties, descriptionsof 234
setting DBParm property 287
setting in Application painter 249
specifying default global variabletypefor 249
user object inherited from 246, 249
SQL Code Transaction object property
about 234,244
coding 244
SQL DBCode Transaction object property
about 234,244
coding 244
SQLErrText Transaction object property
about 234,244
coding 244
SQLNRows Transaction object property 234
SQL ReturnData Transaction object property 234

339

Index

starting ODBC Driver Manager Trace in a PocketBuilder
application 228
static lookup 9
status of DataWindow rows or columns 141
stopping ODBC Driver Manager Trace in development
environment 230
stored procedures, calling in applications
about 245
basic steps 245
coding your application 250
declaring as external functions 247
defining the standard class user object 246
result sets, how PocketBuilder handles 245, 251
saving the user object 249
specifying the default global variable type for
SQLCA 249
stream mode 305
structure objects, using user objects as structures 11
SUBROUTINE declaration
about 247
coding 248
subroutines, using to call database stored procedures 247
subscriptions
about 258
synchronization with multiple servers 281
Super pronoun 24
synchronization server 254
synchronization. See MobiLink synchronization
SyntaxFromSQL method 150

T

Tab controls
about 55
appearance 60
Control property array 66
defined 55
dot notation 63
events 67
managing tab pages 58
parent 63
properties 60
property sheet 60
tablabels 62
types of tab pages 57

340

tab pages
closinginscript 66
controlsin scripts 65
defined 55
deleting 58
embedded 57
events 67
independent user objects 57
object references 66
openinginscript 66
parent 63
properties 60
reordering 58
target controls, drag and drop 14
text controlsin DatawWindow objects 148
text files
functions 304
reading and writing 304
text in DataWindow edit control 129
Thispronoun 19
timestamp, Transact-SQL special 208
Trace File box in Database Profile Setup dialog
box 229
Trace ODBC API Calls check box in Database Profile
Setup dialog box 229
tracing database connections
Database Trace 220
sample output, Database Trace 225
sample output, ODBC Driver Manager Trace 230
Transaction object
about 233
asbuilt-in systemtype 246
assigning valuesto 237
default 234, 237
error handling 244
for multiple database connections 241
nondefault, assigning valuesto 241
nondefault, creating 241
nondefault, destroying 243
nondefault, specifying in SQL statements 242
reading values from externa files 238
reassociating DataWindow controlswith 149
remote procedure call technique 245
specifying 242
SQLCA 234,237

PocketBuilder

Index

SQLCA, setting DBParm property 287 using as structures 11

using to call stored procedures 245 using to call database stored procedures 246
Transaction object properties user, MobiLink 280

about 234 UserlD Transaction object property 234

assigning valuesto 237,241 USING TransactionObject clause

calling stored procedures 250 about 242

decriptionsof 234 in CONNECT statement 239

reading values from external files 238 in DISCONNECT statement 240
transaction processing utility functions 317

about 236

error handling 244
SQL statementsfor 236

Transact-SQL specia timestamp in SQL Vv
Anywhere 208 value, passing argumentsby 26
TreeView controls Variable Types property page in Application
about 78 painter 249
example 97 variables
TriggerEvent function 316 declaring for Transaction objects 241
triggering events 316 default global 249
troubleshooting database connections performance impact 40

Database Trace 220
ODBC Driver Manager Trace 226
typographical conventions xiv

W
Window painter
U placing DataWindow controls 119
specifying drag mode for acontrol 14
UltraLite Windows APl 310
MobiLink client 256 Windows events
preparing the databases 268 processing 318
Unicode, working with 301 triggering 316
Update method Windows messages, sending 317
handling errors 136 windows, selecting type at runtime 28

using 127
Use Extended Attributes check box in Database
Preferencesdialog box 291
Use Extended Attributes database preference 291
user events, for graphsin DataWindow controls 176
User Object painter, using to define custom Transaction
objects 246
user objects
about 55
Control property array 67
inherited from DataStore objects 160
selecting type during execution 28

Resource Guide 341

Index

342 PocketBuilder

	Resource Guide
	About This Book
	PART 1 Using the PowerScript Language
	CHAPTER 1 Implementing Object-Oriented Programming Techniques
	Terminology review
	PocketBuilder techniques
	Other techniques

	CHAPTER 2 Using Drag and Drop in a Window
	About drag and drop
	Drag-and-drop properties, events, and functions
	Identifying the dragged control

	CHAPTER 3 Using the PowerScript Language
	Dot notation
	Constant declarations
	Controlling access for instance variables
	Resolving naming conflicts
	Return values from ancestor scripts
	Types of arguments for functions and events
	Ancestor and descendent variables
	Optimizing expressions for DataWindow and external objects
	Printing at runtime
	Sending mail from a device or emulator
	Exception handling in PocketBuilder
	Basics of exception handling
	Objects for exception handling support
	Handling exceptions
	Creating user-defined exception types
	Adding flexibility and facilitating object reuse
	Using the SystemError and Error events

	Garbage collection
	Efficient compiling and performance

	CHAPTER 4 Getting Information About PocketBuilder Class Definitions
	Overview of class definition information
	Terminology
	Who uses PocketBuilder class definitions

	Examining a class definition
	Getting a class definition object
	Getting detailed information about the class
	Getting information about a class’s scripts
	Getting information about variables

	PART 2 Implementing User Interface Features
	CHAPTER 5 Using Tab Controls in a Window
	About Tab controls
	Defining and managing tab pages
	Customizing the Tab control
	Using Tab controls in scripts
	Referring to tab pages in scripts
	Referring to controls on tab pages
	Opening, closing, and hiding tab pages
	Keeping track of tab pages
	Events for the parts of the Tab control

	CHAPTER 6 Using Lists and Tree Views in a Window
	About presenting lists
	Using ListBox controls
	Using DropDownListBox controls
	Using ListView controls
	Using report view

	Using TreeView controls
	Populating TreeViews
	Functions for inserting items
	Inserting items at the root level
	Inserting items below the root level

	Managing TreeView items
	Deleting items
	Renaming items
	Moving items using drag and drop
	Sorting items

	Managing TreeView pictures
	Pictures for items
	Setting up picture lists
	Using overlay pictures

	Using DataWindow information to populate a TreeView

	CHAPTER 7 Manipulating Graphs in Windows
	Using graphs
	Working with graph controls in code

	Populating a graph with data
	Modifying graph properties
	How parts of a graph are represented
	Referencing parts of a graph

	Accessing data properties
	Getting information about the data
	Saving graph data
	Modifying colors, fill patterns, and other data

	PART 3 Programming DataWindows and DataStores
	CHAPTER 8 About DataWindow Technology
	About DataWindow objects and controls
	DataWindow objects
	Presentation styles and data sources
	Basic process

	DataWindow controls

	CHAPTER 9 Using DataWindow Objects
	About using DataWindow objects
	Putting a DataWindow object into a control
	Names for DataWindow controls and DataWindow objects
	Working with the DataWindow control in PocketBuilder
	Specifying the DataWindow object at runtime

	Accessing the database
	Setting the transaction object for the DataWindow control
	Internal transaction management
	Transaction management with a separate transaction object

	Retrieving and updating data
	Basic data retrieval
	Using retrieval arguments
	Updating data

	Importing data from an external source
	Manipulating data in a DataWindow control
	How a DataWindow control manages data
	Accessing and manipulating the text in the edit control
	Coding the ItemChanged event
	Coding the ItemError event
	Accessing the items in a DataWindow
	Using other DataWindow methods

	Accessing the properties of a DataWindow object
	Handling DataWindow errors
	Retrieve and Update errors and the DBError event
	Errors in property and data expressions and the Error event

	Updating the database
	How the DataWindow control updates the database
	Changing row or column status programmatically

	Creating reports
	Planning and building the DataWindow object
	Printing the report

	CHAPTER 10 Dynamically Changing DataWindow Objects
	About dynamic DataWindow processing
	Modifying a DataWindow object
	Creating a DataWindow object
	Providing query ability to users
	How query mode works
	Using query mode

	CHAPTER 11 Using DataStore Objects
	About DataStores
	Working with a DataStore
	Using a custom DataStore object
	Accessing and manipulating data in a DataStore
	Sharing information
	Example: printing data from a DataStore
	Example: using two DataStores to process data

	CHAPTER 12 Manipulating Graphs in DataWindows
	Using graphs
	Modifying graph properties
	How parts of a graph are represented
	Referencing parts of a graph

	Accessing data properties
	Getting information about the data
	Saving graph data
	Modifying colors, fill patterns, and other data
	Using graph methods

	PART 4 Connecting to a Database
	CHAPTER 13 Database Connectivity in PocketBuilder
	Accessing data in PocketBuilder
	About database profiles
	Creating database profiles
	Database Profiles dialog box
	Database Profile Setup dialog box
	Supplying information in the dialog box
	Creating a database profile
	Specifying passwords in database profiles

	Connecting to a database
	What happens when you connect

	Importing and exporting database profiles
	Maintaining database profiles
	Sharing database profiles

	CHAPTER 14 Using database interfaces
	About database interfaces
	Working with the ODBC database interface
	Connecting to a SQL Anywhere database on Windows CE
	About SQL Anywhere data sources
	Defining the SQL Anywhere data source
	Defining multiple data sources for the same data
	How PocketBuilder accesses the data source
	Support for Transact-SQL special timestamp columns
	The PKODB25 initialization file
	Preparing remote databases
	Starting SQL Anywhere on a device

	Working with the UltraLite database interface
	Supported UltraLite datatypes
	Running utilities for UltraLite databases
	Defining the UltraLite database interface
	Migrating a SQL Anywhere application to UltraLite

	CHAPTER 15 Troubleshooting Your Connection
	About tracing database connections
	Using the Database Trace tool
	About the Database Trace tool
	How you can use the Database Trace information
	Contents of the Database Trace log
	Format of the Database Trace log

	Starting the Database Trace tool
	Stopping the Database Trace tool
	Specifying a nondefault Database Trace log
	Deleting or clearing the Database Trace log
	Sample Database Trace output

	Using the ODBC Driver Manager Trace tool
	About ODBC Driver Manager Trace
	Starting ODBC Driver Manager Trace
	The ConnectOption DBParm parameter

	Stopping ODBC Driver Manager Trace
	Sample ODBC Driver Manager Trace output

	CHAPTER 16 Using Transaction Objects
	About Transaction objects
	Description of Transaction object properties

	Working with Transaction objects
	Transaction basics
	The default Transaction object
	Assigning values to the Transaction object
	Reading values from an external file
	Connecting to the database
	Using the Preview tab to connect in a PocketBuilder application
	Disconnecting from the database
	Defining Transaction objects for multiple database connections
	Error handling after a SQL statement

	Using Transaction objects to call stored procedures
	Step 1: define the standard class user object
	Step 2: declare the stored procedure as an external function
	Step 3: save the user object
	Step 4: specify the default global variable type for SQLCA
	Step 5: code your application to use the user object

	Supported DBMS features when calling stored procedures

	CHAPTER 17 Using MobiLink Synchronization
	About MobiLink synchronization
	Working with PocketBuilder synchronization objects
	Adding synchronization capabilities to your application
	Using the synchronization objects in your application
	Using the synchronization options window
	Preparing to use the wizard for remote SQL Anywhere databases
	Preparing to use the wizard for remote UltraLite databases

	Preparing consolidated databases
	Connection events
	Table events
	Working with scripts and users in Sybase Central

	Creating remote databases
	Creating and modifying publications
	Creating MobiLink users
	Adding subscriptions for remote SQL Anywhere databases

	Synchronization techniques

	CHAPTER 18 Setting Additional Connection Parameters
	Setting database parameters
	Setting database parameters in the development environment
	Setting database parameters in a PocketBuilder application script
	Copying DBParm syntax from the Preview tab
	Coding PowerScript to set values for the DBParm property
	Reading DBParm values from an external text file

	Setting database preferences
	Setting database preferences in the development environment
	Setting AutoCommit and Lock in the database profile
	Setting preferences in the Database Preferences dialog box

	Setting AutoCommit and Lock in a PocketBuilder application script
	Copying AutoCommit and Lock syntax from the Preview tab
	Coding PowerScript to set values for AutoCommit and Lock
	Reading AutoCommit and Lock values from an external text file
	Getting values from the registry

	PART 5 Miscellaneous Techniques
	CHAPTER 19 Working with Unicode
	Working with Unicode in PocketBuilder
	Importing and exporting DataWindow data
	Reading and writing text or binary files

	CHAPTER 20 Using External Functions and Other Processing Extensions
	Using external functions
	Declaring external functions
	Sample declarations
	Passing arguments
	Passing numeric datatypes
	Passing strings

	Using external functions in a script

	Sending Windows messages
	Using utility functions to manage information
	The Message object
	Message object properties

	CHAPTER 21 Managing Initialization Files and the Windows CE Registry
	About preferences and default settings
	Managing information in initialization files
	Managing information in the Windows CE registry

	CHAPTER 22 Using the Command Line
	Starting PocketBuilder from a command line

	Index

