
Resource Guide

PocketBuilder™

2.1

DOCUMENT ID: DC50061-01-0210-01

LAST REVISED: July 2007

Copyright © 2003-2007 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Resource Guide iii

About This Book ... xi

PART 1 USING THE POWERSCRIPT LANGUAGE

CHAPTER 1 Implementing Object-Oriented Programming Techniques 3
Terminology review .. 3
PocketBuilder techniques... 5
Other techniques.. 8

CHAPTER 2 Using Drag and Drop in a Window .. 13
About drag and drop .. 13
Drag-and-drop properties, events, and functions........................... 14
Identifying the dragged control ... 15

CHAPTER 3 Using the PowerScript Language.. 17
Dot notation.. 17
Constant declarations .. 21
Controlling access for instance variables....................................... 22
Resolving naming conflicts... 23
Return values from ancestor scripts... 24
Types of arguments for functions and events 26
Ancestor and descendent variables ... 27
Optimizing expressions for DataWindow and external objects 29
Printing at runtime .. 29
Sending mail from a device or emulator... 30
Exception handling in PocketBuilder .. 31

Basics of exception handling... 31
Objects for exception handling support 32
Handling exceptions .. 33
Creating user-defined exception types.................................... 35
Adding flexibility and facilitating object reuse 37
Using the SystemError and Error events................................. 38

Contents

iv PocketBuilder

Garbage collection ... 39
Efficient compiling and performance .. 40

CHAPTER 4 Getting Information About PocketBuilder Class Definitions..... 41
Overview of class definition information... 41

Terminology... 42
Who uses PocketBuilder class definitions............................... 44

Examining a class definition... 45
Getting a class definition object... 45
Getting detailed information about the class 45
Getting information about a class’s scripts.............................. 48
Getting information about variables... 50

PART 2 IMPLEMENTING USER INTERFACE FEATURES

CHAPTER 5 Using Tab Controls in a Window.. 55
About Tab controls ... 55
Defining and managing tab pages ... 57
Customizing the Tab control .. 60
Using Tab controls in scripts .. 62

Referring to tab pages in scripts.. 63
Referring to controls on tab pages .. 65
Opening, closing, and hiding tab pages 66
Keeping track of tab pages.. 66
Events for the parts of the Tab control 67

CHAPTER 6 Using Lists and Tree Views in a Window 69
About presenting lists... 69
Using ListBox controls.. 70
Using DropDownListBox controls... 71
Using ListView controls .. 72

Using report view... 77
Using TreeView controls .. 78

Populating TreeViews ... 81
Managing TreeView items... 86
Managing TreeView pictures... 94
Using DataWindow information to populate a TreeView 97

CHAPTER 7 Manipulating Graphs in Windows .. 101
Using graphs .. 101

Working with graph controls in code 101
Populating a graph with data.. 103

Contents

Resource Guide v

Modifying graph properties... 105
How parts of a graph are represented................................... 105
Referencing parts of a graph... 106

Accessing data properties.. 107
Getting information about the data .. 107
Saving graph data ... 108
Modifying colors, fill patterns, and other data........................ 108

PART 3 PROGRAMMING DATAWINDOWS AND DATASTORES

CHAPTER 8 About DataWindow Technology.. 111
About DataWindow objects and controls 111
DataWindow objects .. 112

Presentation styles and data sources 112
Basic process .. 113

DataWindow controls ... 114

CHAPTER 9 Using DataWindow Objects ... 117
About using DataWindow objects .. 117
Putting a DataWindow object into a control 118

Names for DataWindow controls and DataWindow objects .. 118
Working with the DataWindow control in PocketBuilder........ 119
Specifying the DataWindow object at runtime....................... 121

Accessing the database ... 122
Setting the transaction object for the DataWindow control.... 123
Retrieving and updating data .. 126

Importing data from an external source 128
Manipulating data in a DataWindow control 128

How a DataWindow control manages data 129
Accessing and manipulating the text in the edit control 131
Coding the ItemChanged event... 132
Coding the ItemError event ... 132
Accessing the items in a DataWindow 133
Using other DataWindow methods.. 134

Accessing the properties of a DataWindow object....................... 135
Handling DataWindow errors ... 136

Retrieve and Update errors and the DBError event 136
Errors in property and data expressions and the Error event 139

Updating the database ... 141
How the DataWindow control updates the database 141
Changing row or column status programmatically 143

Contents

vi PocketBuilder

Creating reports ... 144
Planning and building the DataWindow object 144
Printing the report.. 145

CHAPTER 10 Dynamically Changing DataWindow Objects 147
About dynamic DataWindow processing...................................... 147
Modifying a DataWindow object ... 148
Creating a DataWindow object... 149
Providing query ability to users .. 151

How query mode works... 151
Using query mode ... 152

CHAPTER 11 Using DataStore Objects... 157
About DataStores... 157
Working with a DataStore .. 159
Using a custom DataStore object... 160
Accessing and manipulating data in a DataStore 162
Sharing information .. 164

Example: printing data from a DataStore 165
Example: using two DataStores to process data................... 167

CHAPTER 12 Manipulating Graphs in DataWindows 171
Using graphs .. 171
Modifying graph properties... 172

How parts of a graph are represented................................... 173
Referencing parts of a graph... 173

Accessing data properties.. 174
Getting information about the data .. 174
Saving graph data ... 175
Modifying colors, fill patterns, and other data........................ 176
Using graph methods .. 176

PART 4 CONNECTING TO A DATABASE

CHAPTER 13 Database Connectivity in PocketBuilder................................... 181
Accessing data in PocketBuilder.. 181
About database profiles ... 182
Creating database profiles ... 183

Database Profiles dialog box... 184
Database Profile Setup dialog box .. 185
Supplying information in the dialog box................................. 186
Creating a database profile ... 187
Specifying passwords in database profiles 188

Contents

Resource Guide vii

Connecting to a database .. 188
What happens when you connect ... 189

Importing and exporting database profiles 190
Maintaining database profiles .. 191
Sharing database profiles .. 191

CHAPTER 14 Using database interfaces ... 197
About database interfaces ... 197
Working with the ODBC database interface................................. 198

Connecting to a SQL Anywhere database on Windows CE.. 199
About SQL Anywhere data sources 200
Defining the SQL Anywhere data source 202
Defining multiple data sources for the same data 205
How PocketBuilder accesses the data source 206
Support for Transact-SQL special timestamp columns 208
The PKODB20 initialization file ... 209
Preparing remote databases ... 211
Starting SQL Anywhere on a device 212

Working with the UltraLite database interface.............................. 213
Supported UltraLite datatypes... 213
Running utilities for UltraLite databases................................ 214
Defining the UltraLite database interface 214
Migrating a SQL Anywhere application to UltraLite............... 216

CHAPTER 15 Troubleshooting Your Connection.. 219
About tracing database connections .. 219
Using the Database Trace tool... 220

About the Database Trace tool.. 220
Starting the Database Trace tool... 222
Stopping the Database Trace tool... 223
Specifying a nondefault Database Trace log......................... 224
Deleting or clearing the Database Trace log 225
Sample Database Trace output... 225

Using the ODBC Driver Manager Trace tool................................ 226
About ODBC Driver Manager Trace...................................... 226
Starting ODBC Driver Manager Trace................................... 227
Stopping ODBC Driver Manager Trace................................. 229
Sample ODBC Driver Manager Trace output 230

CHAPTER 16 Using Transaction Objects .. 233
About Transaction objects.. 233

Description of Transaction object properties 234
Working with Transaction objects .. 236

Transaction basics .. 236

Contents

viii PocketBuilder

The default Transaction object .. 237
Assigning values to the Transaction object 237
Reading values from an external file 238
Connecting to the database .. 239
Using the Preview tab to connect in a PocketBuilder

application .. 239
Disconnecting from the database.. 240
Defining Transaction objects for multiple database

connections .. 241
Error handling after a SQL statement.................................... 244

Using Transaction objects to call stored procedures 245
Step 1: define the standard class user object 246
Step 2: declare the stored procedure as an external function 247
Step 3: save the user object.. 249
Step 4: specify the default global variable type for SQLCA... 249
Step 5: code your application to use the user object............. 250

Supported DBMS features when calling stored procedures 251

CHAPTER 17 Using MobiLink Synchronization ... 253
About MobiLink synchronization .. 253
Working with PocketBuilder synchronization objects 260

Adding synchronization capabilities to your application 260
Using the synchronization objects in your application........... 262
Using the synchronization options window............................ 266
Preparing to use the wizard for remote SQL Anywhere

databases ... 268
Preparing to use the wizard for remote UltraLite databases . 268

Preparing consolidated databases... 270
Connection events... 270
Table events.. 272
Working with scripts and users in Sybase Central 274

Creating remote databases.. 277
Creating and modifying publications 278
Creating MobiLink users.. 280
Adding subscriptions for remote SQL Anywhere databases . 282

Synchronization techniques ... 283

CHAPTER 18 Setting Additional Connection Parameters............................... 287
Setting database parameters ... 287

Setting database parameters in the development
environment.. 287

Setting database parameters in a PocketBuilder application
script ... 288

Contents

Resource Guide ix

Setting database preferences .. 290
Setting database preferences in the development

environment.. 291
Setting AutoCommit and Lock in a PocketBuilder application

script ... 296

PART 5 MISCELLANEOUS TECHNIQUES

CHAPTER 19 Working with Unicode .. 303
Working with Unicode in PocketBuilder 303
Importing and exporting DataWindow data 305
Reading and writing text or binary files .. 306

CHAPTER 20 Using External Functions and Other Processing Extensions 309
Using external functions... 309

Declaring external functions .. 309
Sample declarations.. 310
Passing arguments.. 313
Using external functions in a script.. 316

Sending Windows messages ... 317
Using utility functions to manage information............................... 319
The Message object... 320

Message object properties .. 320

CHAPTER 21 Managing Initialization Files and the Windows CE Registry .. 323
About preferences and default settings.. 323
Managing information in initialization files.................................... 324
Managing information in the Windows CE registry 325

CHAPTER 22 Using the Command Line... 327
Starting PocketBuilder from a command line 327

Index ... 331

Contents

x PocketBuilder

Resource Guide xi

About This Book

Audience This guide is for programmers building applications with
PocketBuilder™.

This guide assumes that you have a basic familiarity with Windows CE
(Windows Mobile) devices. Although your development work in
PocketBuilder is done on a desktop machine, you design applications for
use on Windows CE devices such as the Pocket PC or Smartphone.

For information about developing applications for Microsoft Windows
CE platforms, see the Microsoft Web site at http://msdn2.microsoft.com/en-
us/library/ms950422.aspx. You can also find helpful information at the
Pocket PC Developer Network Web site at http://www.pocketpcdn.com.

How to use this book PocketBuilder is very similar to PowerBuilder®, the Sybase® 4GL
development tool for desktop applications and application server
components.

If you have never used PowerBuilder, use this book to learn some
concepts and principles of programming in PowerScript®, the language
used in both PowerBuilder and PocketBuilder, as well as programming
techniques you can use with controls in windows and DataWindow®
objects. This book also describes how to manage database connections
and provides a reference to database connection parameters and
preferences.

If you are a PowerBuilder user, the following chapters are probably the
most useful:

• Chapter 13, “Database Connectivity in PocketBuilder”

• Chapter 17, “Using MobiLink Synchronization”

• Chapter 19, “Working with Unicode”

• Chapter 20, “Using External Functions and Other Processing
Extensions”

xii PocketBuilder

Related documents PocketBuilder documentation The PocketBuilder documentation set also
includes the following manuals:

• Introduction to PocketBuilder - Provides an overview of PocketBuilder
features and the PocketBuilder development environment and a tutorial
that leads the new user through the basic process of creating and deploying
PocketBuilder applications.

• User’s Guide - Gives an overview of the PocketBuilder development
environment and explains how to use the interface. Describes basic
techniques for building the objects in a PocketBuilder application,
including windows, menus, DataWindow objects, and user-defined
objects. An appendix summarizes the differences between PocketBuilder
and PowerBuilder.

PocketBuilder reference set The PocketBuilder reference set is made up of
four manuals that are based on PowerBuilder documentation:

• Connection Reference - Describes the database parameters and
preferences you use to connect to a database in PocketBuilder.

• DataWindow Reference - Lists the DataWindow functions and properties
and includes the syntax for accessing properties and data in DataWindow
objects.

• Objects and Controls - Describes the system-defined objects and their
default properties, functions, and events.

• PowerScript Reference - Describes syntax and usage for the PowerScript
language including variables, expressions, statements, events, and
functions.

Online Help Reference information for PowerScript properties, events, and
functions is available in the online Help with annotations indicating which
objects and methods are applicable to PocketBuilder.

SQL Anywhere® Studio documentation PocketBuilder is tightly
integrated with SQL Anywhere (formerly Adaptive Server Anywhere),
UltraLite®, and MobiLink, which are components of SQL Anywhere Studio.
You can install these products from the PocketBuilder setup program. For an
introduction to these products, see Chapter 1 in the Introduction to
PocketBuilder.

Sample applications The PocketBuilder installation provides a Code Examples workspace with
targets that illustrate many of the product's features. Commented text inside
events of target objects helps explain the purpose of the sample code. The
example workspace is installed in the Code Examples subdirectory under the
main PocketBuilder directory.

 About This Book

Resource Guide xiii

More applications on
the Web

You can find more sample PocketBuilder applications and techniques in the
PocketBuilder project on the Sybase CodeXchange Web site at
http://pocketbuilder.codexchange.sybase.com/. There is a link to this page on the
Windows Start menu at Program Files>Sybase>PocketBuilder 2.0>Code
Samples.

If you have not logged in to MySybase, you must log in to the Sybase Universal
Login page to access CodeXchange. If you do not have a MySybase account,
you can sign up. MySybase is a free service that provides a personalized portal
into the Sybase Web site.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

xiv PocketBuilder

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The formatting conventions used in this manual are:

Formatting example To indicate

Retrieve and Update When used in descriptive text, this font indicates:

• Command and function names

• Keywords such as true, false, and null

• Datatypes such as integer and char

• Database column names such as emp_id and
f_name

• User-defined objects such as dw_emp or w_main

variable or file name When used in descriptive text and syntax descriptions,
oblique font indicates:

• Variables, such as myCounter

• Parts of input for which you must substitute text,
such as pklname.pkd

• File and path names

 About This Book

Resource Guide xv

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how to
navigate menu selections. For example, File>Save
indicates “select Save from the File menu.”

dw_1.Update() Monospace font indicates:

• Information that you enter in a dialog box or on a
command line

• Sample script fragments

• Sample output fragments

Formatting example To indicate

xvi PocketBuilder

P A R T 1 Using the PowerScript
Language

This part contains an overview of object-oriented features
in PocketBuilder, and presents programming techniques
for handling PowerScript language features such as
inheritance, exception handling, and class definition
objects.

Resource Guide 3

C H A P T E R 1 Implementing Object-Oriented
Programming Techniques

About this chapter This chapter describes how to implement object-oriented programming
techniques in PocketBuilder.

Contents

Terminology review
Classes, properties, and
methods

In object-oriented programming, you create reusable classes to perform
application processing. These classes include properties and methods
that define the class’s behavior. To perform application processing, you
create objects, which are instances of these classes. PocketBuilder
implements these concepts as follows:

• Classes PocketBuilder objects (such as windows, menus, window
controls, and user objects)

• Properties Object variables and instance variables

• Methods Events and functions

The rest of this chapter uses this PocketBuilder terminology.

Fundamental principles Object-oriented programming tools support three fundamental principles:
inheritance, encapsulation, and polymorphism.

Inheritance Objects can be derived from existing objects, with access to
their visual component, data, and code. Inheritance saves coding time,
maximizes code reuse, and enhances consistency. An object derived from
an existing object is called a descendent object or a subclass.

Topic Page

Terminology review 3

PocketBuilder techniques 5

Other techniques 8

Terminology review

4 PocketBuilder

Encapsulation An object contains its own data and code, allowing outside
access as appropriate. This principle is also called information hiding.
PocketBuilder enables and supports encapsulation by giving you tools that can
enforce it, such as access and scope. However, PocketBuilder itself does not
require or automatically enforce encapsulation.

Polymorphism Functions with the same name behave differently, depending
on the referenced object. Polymorphism enables you to provide a consistent
interface throughout the application and within all objects.

Visual objects Many current applications make heavy use of object-oriented features for
visual objects such as windows, menus, and visual user objects. This allows an
application to present a consistent, unified look and feel.

Nonvisual objects To fully benefit from PocketBuilder’s object-oriented capabilities, consider
implementing class user objects, also known as nonvisual user objects:

Standard class user objects Inherit their definitions from built-in
PocketBuilder system objects, such as Transaction, Message, or Error.
Creating customized standard class user objects allows you to provide
powerful extensions to built-in PocketBuilder system objects.

Custom class user objects Inherit their definitions from the PocketBuilder
NonVisualObject class. Custom class user objects encapsulate data and code.
This type of class user object allows you to define an object class from scratch.
To make the most of PocketBuilder’s object-oriented capabilities, you must use
custom class user objects. Typical uses include:

• Global variable container The custom class user object contains
variables and functions for use across your application. You encapsulate
these variables as appropriate for your application, allowing access
directly or through object functions.

• Service object The custom class user object contains functions and
variables that are useful either in a specific context (such as a
DataWindow) or globally (such as a collection of string-handling
functions).

• Business rules The custom class user object contains functions and
variables that implement business rules. You can either create one object
for all business rules or create multiple objects for related groups of
business rules.

CHAPTER 1 Implementing Object-Oriented Programming Techniques

Resource Guide 5

PocketBuilder techniques
PocketBuilder provides full support for inheritance, encapsulation, and
polymorphism in both visual and nonvisual objects.

Creating reusable objects
In most cases, the person developing reusable objects is not the same person
using the objects in applications. This discussion describes defining and
creating reusable objects. It does not discuss usage.

Implementing
inheritance

PocketBuilder makes it easy to create descendent objects. You implement
inheritance in PocketBuilder by using a painter to inherit from a specified
ancestor object.

Example of ancestor service object One example of using inheritance in
custom class user objects is creating an ancestor service object that performs
basic services, and several descendent service objects. The descendent objects
perform specialized services and also have access to the ancestor’s services:

Figure 1-1: Ancestor service object

Example of virtual function in ancestor object Another example of using
inheritance in custom class user objects is creating an ancestor object
containing functions for all platforms and then creating descendent objects that
perform platform-specific functions. In this case, the ancestor object contains
a virtual function (uf_change_dir in this example) so that developers can
create descendent objects using the ancestor’s datatype.

PocketBuilder techniques

6 PocketBuilder

Figure 1-2: Virtual function in ancestor object

For more on virtual functions, see “Other techniques” on page 8.

Implementing
encapsulation

Encapsulation allows you to insulate your object’s data, restricting access by
declaring instance variables as private or protected. You can then write object
functions to provide selective access to the instance variables.

One approach One approach to encapsulating processing and data is as
follows:

• Define instance variables as public, private, or protected, depending on the
desired degree of outside access. To ensure complete encapsulation, define
instance variables as either private or protected.

• Define object functions to perform processing and provide access to the
object’s data.

Table 1-1: Defining object functions

To do this Provide this function Example

Perform processing uf_do_operation uf_do_retrieve (which retrieves
rows from the database)

Modify instance
variables

uf_set_variablename uf_set_style (which modifies
the is_style string variable)

Read instance
variables

uf_get_variablename uf_get_style (which returns the
is_style string variable)

(Optional) Read
boolean instance
variables

uf_is_variablename uf_is_protected (which returns
the ib_protected boolean
variable)

CHAPTER 1 Implementing Object-Oriented Programming Techniques

Resource Guide 7

Another approach Another approach to encapsulating processing and data
is to provide a single entry point, in which the developer specifies the action to
be performed:

• Define instance variables as private or protected, depending on the desired
degree of outside access

• Define private or protected object functions to perform processing

• Define a single public function whose arguments indicate the type of
processing to perform

Figure 1-3: Defining a public function for encapsulation

Implementing
polymorphism

Polymorphism means that functions with the same name behave differently
depending on the referenced object. Although there is some discussion over an
exact meaning for polymorphism, many people find it helpful to think of it as
follows:

Operational polymorphism Separate, unrelated objects define functions
with the same name. Each function performs the appropriate processing for its
object type:

Figure 1-4: Operational polymorphism

Inclusional polymorphism Various objects in an inheritance chain define
functions with the same name but different arguments.

Other techniques

8 PocketBuilder

With inclusional polymorphism PocketBuilder determines which version of a
function to execute, based on where the current object fits in the inheritance
hierarchy. When the object is a descendant, PocketBuilder executes the
descendent version of the function, overriding the ancestor version:

Figure 1-5: Inclusional polymorphism

Other techniques
PocketBuilder allows you to implement a wide variety of object-oriented
techniques. This section discusses selected techniques and relates them to
PocketBuilder.

Using function
overloading

In function overloading, the descendent function (or an identically named
function in the same object) has different arguments or argument datatypes.
PocketBuilder determines which version of a function to execute, based on the
arguments and argument datatypes specified in the function call:

Figure 1-6: Function overloading

CHAPTER 1 Implementing Object-Oriented Programming Techniques

Resource Guide 9

Global functions
Global functions cannot be overloaded.

Using dynamic versus
static lookup

Dynamic lookup In certain situations, such as when insulating your
application from platform dependencies, you create separate descendent
objects, each intended for a particular situation. Your application calls the
platform-dependent functions dynamically.

In this example, u_platform has two descendent objects, u_platform_wince and
u_platform_win. Instantiate the appropriate object at runtime, as shown in the
following code example:

// This code works with both dynamic and
// static lookup.
// Assume these instance variables
u_platform iuo_platform
Environment ienv_env
...
GetEnvironment(ienv_env)
choose case ienv_env.ostype

case windowsce!
iuo_platform = CREATE u_platform_wince

case else
iuo_platform = CREATE u_platform_win

end choose

Although dynamic lookup provides flexibility, it also slows performance.

Static lookup To ensure fast performance, static lookup is a better option.
However, PocketBuilder enables object access using the reference variable’s
datatype (not the datatype specified in a CREATE statement). Therefore, when
using static lookup, you must define default implementations for functions in
the ancestor. These ancestor functions return an error value (for example, -1)
and are overridden in at least one of the descendent objects.

By defining default implementations for functions in the ancestor object, you
get platform independence as well as the performance benefit of static lookup.

Other techniques

10 PocketBuilder

For example, using the objects in the previous example, suppose
u_platform_wince has a function of_get_this, and u_platform_win has a function
of_get_that. Both of_get_this and of_get_that have default implementations in
u_platform. These implementations return -1 and are overridden in one of the
descendent objects. Then when you use the following statements to call
of_get_this, the of_get_this function in the descendant is called:

u_platform iuo_platform
iuo_platform = CREATE u_platform_wince
u_platform_wince.of_get_this()

Using delegation Delegation occurs when objects offload processing to other objects.

Aggregate relationship In an aggregate relationship (sometimes called a
whole-part relationship), an object (called an owner object) associates itself
with a service object designed specifically for that object type.

For example, you might create a service object that handles extended row
selection in DataWindow objects. In this case, your DataWindow objects
contain code in the Clicked event to call the row selection object.

❖ To use objects in an aggregate relationship:

1 Create a service object (u_sort_dw in this example).

2 Create an instance variable (also called a reference variable) in the owner
(a DataWindow control in this example):

u_sort_dw iuo_sort

3 Add code in the owner object to create the service object:

iuo_sort = CREATE u_sort_dw

4 Add code to the owner’s system events or user events to call service object
events or functions. This example contains the code you might place in a
ue_sort user event in the DataWindow control:

IF IsValid(iuo_sort) THEN
Return iuo_sort.uf_sort()

ELSE
Return -1

END IF

5 Add code to call the owner object’s user events. For example, you might
create a CommandButton or Edit>Sort menu item that calls the ue_sort
user event on the DataWindow control.

CHAPTER 1 Implementing Object-Oriented Programming Techniques

Resource Guide 11

6 Add code to the owner object’s Destructor event to destroy the service
object:

IF IsValid(iuo_sort) THEN
DESTROY iuo_sort

END IF

Associative relationship In an associative relationship, an object associates
itself with a service to perform a specific type of processing.

For example, you might create a string-handling service that can be enabled by
any of your application’s objects.

The steps you use to implement objects in an associative relationship are the
same as for aggregate relationships.

Using user objects as
structures

When you enable a user object’s AutoInstantiate property, PocketBuilder
instantiates the user object along with the object, event, or function in which it
is declared. You can also declare instance variables for a user object. By
combining these two capabilities, you create user objects that function as
structures. The advantages of creating this type of user object are that you can:

• Create descendent objects and extend them.

• Create functions to access the structure all at once.

• Use access modifiers to limit access to certain instance variables.

❖ To create a user object to be used as a structure:

1 Create the user object, defining instance variables only.

2 Enable the user object’s AutoInstantiate property by checking
AutoInstantiate on the General property page.

3 Declare the user object as a variable in objects, functions, or events as
appropriate.

PocketBuilder creates the user object when the object, event, or function
is created and destroys it when the object is destroyed or the event or
function ends.

Subclassing
DataStores

Many applications use a DataWindow visual user object instead of the standard
DataWindow window control. This allows you to standardize error checking
and other, application-specific DataWindow behavior.

Since DataStores function as nonvisual DataWindow controls, many of the
same application and consistency requirements apply to DataStores as to
DataWindow controls. Consider creating a DataStore standard class user object
to implement error checking and application-specific behavior for DataStores.

Other techniques

12 PocketBuilder

Resource Guide 13

C H A P T E R 2 Using Drag and Drop in a
Window

About this chapter This chapter describes how to make applications graphical by dragging
and dropping controls.

Contents

About drag and drop
Drag and drop allows users to initiate activities by dragging a control and
dropping it on another control. It provides a simple way to make
applications graphical and easy to use. For example, in a manufacturing
application you might allow the user to pick parts from a bin for an
assembly by dragging a picture of the part and dropping it in the picture
of the finished assembly.

Drag and drop involves at least two controls: the control that is being
dragged (the drag control) and the control to which it is being dragged
(the target). In PocketBuilder, all controls except drawing objects (lines,
ovals, rectangles, and rounded rectangles) can be dragged.

Platform notes
Actions that require an application user to drag a control should be
avoided since these actions are not very practical for users of handheld
devices. Although you can script calls to drag events on Smartphone
platforms, controls cannot be moved with a mouse or stylus, and the user
has no direct way of dragging a control.

Topic Page

About drag and drop 13

Drag-and-drop properties, events, and functions 14

Identifying the dragged control 15

Drag-and-drop properties, events, and functions

14 PocketBuilder

Automatic drag mode When a control is being dragged, it is in drag mode. You can define a control
so that PocketBuilder puts it automatically in drag mode whenever a Clicked
event occurs in the control, or you can write a script to put a control into drag
mode when an event occurs in the window or the application.

Drag events Window objects and all controls except drawing objects have events that occur
when they are the drag target. When a dragged control is within the target or
dropped on the target, these events can trigger scripts. The scripts determine the
activity that is performed when the drag control enters, is within, leaves, or is
dropped on the target.

Drag-and-drop properties, events, and functions
Drag-and-drop
properties

Each PocketBuilder control has a boolean DragAuto property.

Table 2-1: DragAuto property values

❖ To specify automatic drag mode for a control in the Window painter:

1 Select the Other property page in the Properties view for the control.

2 Check the Drag Auto check box.

Drag-and-drop events The drag-and-drop events listed in Table 2-2 are supported in PocketBuilder.

Table 2-2: Drag-and-drop events

Value Meaning

true When the object is tapped, the control is placed automatically in drag
mode.

false When the object is tapped, the control is not placed automatically in
drag mode; you have to put the object in drag mode manually by using
the Drag function in a script.

Event Occurs

BeginDrag When the user taps in a ListView or TreeView control and
begins dragging

DragDrop When the pointer is over a target (a PocketBuilder control or
window to which you drag a control) and the user stops
dragging

DragEnter When the pointer enters the boundaries of a target

DragLeave When the pointer leaves the boundaries of a target

DragWithin When the pointer moves within the boundaries of a target

CHAPTER 2 Using Drag and Drop in a Window

Resource Guide 15

Identifying the dragged control
To identify the type of control that was dropped, use the source argument of the
DragDrop event.

This script for the DragDrop event in a picture declares two variables, then
determines the type of object that was dropped:

CommandButton lcb_button
StaticText lst_info

IF source.TypeOf() = CommandButton! THEN
lcb_button = source
lcb_button.Text = "You dropped a Button!"

ELSEIF source.TypeOf() = StaticText! THEN
lst_info = source
lst_info.Text = "You dropped the text!"

END IF

Using CHOOSE CASE
If your window has a large number of controls that can be dropped, use a
CHOOSE CASE statement.

Identifying the dragged control

16 PocketBuilder

Resource Guide 17

C H A P T E R 3 Using the PowerScript Language

About this chapter This chapter describes how to use elements of the PowerScript language
in an application. For more complete information, see the PowerScript
Reference.

Contents

Dot notation
Dot notation lets you qualify the item you are referring to—instance
variable, property, event, or function—with the object that owns it.

Dot notation is for objects. You do not use dot notation for global variables
and functions, because they are independent of any object. You do not use
dot notation for shared variables either, because they belong to an object
class, not an object instance.

Qualifying a reference Dot notation names an object variable as a qualifier to the item you want
to access:

objectvariable.item

Topic Page

Dot notation 17

Constant declarations 21

Controlling access for instance variables 22

Resolving naming conflicts 23

Return values from ancestor scripts 24

Types of arguments for functions and events 26

Ancestor and descendent variables 27

Optimizing expressions for DataWindow and external objects 29

Printing at runtime 29

Sending mail from a device or emulator 30

Exception handling in PocketBuilder 31

Garbage collection 39

Efficient compiling and performance 40

Dot notation

18 PocketBuilder

The object variable name is a qualifier that identifies the owner of the property
or other item.

Adding a parent qualifier To fully identify an object, you can use additional
dot qualifiers to name the parent of an object, and its parent, and so on:

parent.objectvariable.item

A parent object contains the child object. It is not an ancestor-descendent
relationship. For example, a window is a control’s parent. A Tab control is the
parent of the tab pages it contains. A Menu object is the parent of the Menu
objects that are the items on that menu.

Many parent levels You can use parent qualifiers up to the level of the
application. You typically need qualifiers only up to the window level.

For example, if you want to call the Retrieve function for a DataWindow
control on a tab page, you might qualify the name like this:

w_choice.tab_alpha.tabpage_a.dw_names.Retrieve()

Menu objects often need several qualifiers. Suppose a window w_main has a
menu object m_mymenu, and m_mymenu has a File menu with an Open item.
You can trigger the Open item’s Selected event like this:

w_main.m_mymenu.m_file.m_open.EVENT Selected()

As you can see, qualifying a name gets complex, particularly for menus and tab
pages in a Tab control.

How many qualifiers? You need to specify as many qualifiers as required to
identify the object, function, event, or property.

A parent object knows about the objects it contains. In a window script, you do
not need to qualify the names of its controls. In scripts for the controls, you can
also refer to other controls in the window without a qualifier.

For example, if the window w_main contains a DataWindow control dw_data
and a CommandButton cb_close, a script for the CommandButton can refer to
the DataWindow control without a qualifier:

dw_data.AcceptText()
dw_data.Update()

If a script in another window or a user object refers to the DataWindow control,
the DataWindow control needs to be qualified with the window name:

w_main.dw_data.AcceptText()

CHAPTER 3 Using the PowerScript Language

Resource Guide 19

Referencing objects There are three ways to qualify an element of an object in the object’s own
scripts:

• Unqualified:

li_index = SelectItem(5)

An unqualified name is unclear and might result in ambiguities if there are
local or global variables and functions with the same name.

• Qualified with the object’s name:

li_index = lb_choices.SelectItem(5)

Using the object name in the object’s own script is unnecessarily specific.

• Qualified with a generic reference to the object:

li_index = This.SelectItem(5)

The pronoun This shows that the item belongs to the owning object.

This pronoun In a script for the object, you can use the pronoun This as a
generic reference to the owning object:

This.property

This.function

Although the property or function could stand alone in a script without a
qualifier, someone looking at the script might not recognize the property or
function as belonging to an object. A script that uses This is still valid if you
rename the object. The script can be reused with less editing.

You can also use This by itself as a reference to the current object. For example,
suppose you want to pass a DataWindow control to a function in another user
object:

uo_data.uf_retrieve(This)

This example in a script for a DataWindow control sets an instance variable of
type DataWindow so that other functions can use it to access the most recently
used DataWindow control:

idw_currentdw = This

Parent pronoun The pronoun Parent refers to the parent of an object. When
you use Parent and you rename the parent object or reuse the script in other
contexts, it is still valid.

Dot notation

20 PocketBuilder

For example, in a DataWindow control script, suppose you want to call the
Resize function for the window. The DataWindow control also has a Resize
function, so you must qualify it:

// Two ways to call the window function
w_main.Resize(240, 320)
Parent.Resize(240, 320)

// Three ways to call the control's function
Resize(200, 200)
dw_data.Resize(200, 200)
This.Resize(200, 200)

GetParent function The Parent pronoun works only within dot notation. If
you want to get a reference to the parent of an object, use the GetParent
function. You might want to get a reference to the parent of an object other than
the one that owns the script, or you might want to save the reference in a
variable:

window w_save
w_save = dw_data.GetParent()

For example, in another CommandButton’s Clicked event script, suppose you
wanted to pass a reference to the control’s parent window to a function defined
in a user object. Use GetParent in the function call:

uo_winmgmt.uf_resize(This.GetParent(), 400, 600)

ParentWindow property and function Other tools for getting the parent of
an object include:

• ParentWindow property – used in a menu script to refer to the window
that is the parent of the menu

• ParentWindow function – used in any script to get a reference to the
window that is the parent of a particular window

For more about these pronouns and functions, see the PowerScript Reference.

Objects in a container
object

Dot notation also allows you to reach inside an object to the objects it contains.
To refer to an object inside a container, use the Object property in the dot
notation. The structure of the object in the container determines how many
levels are accessible:

control.Object.objectname.property

control.Object.objectname.Object.qualifier.qualifier.property

CHAPTER 3 Using the PowerScript Language

Resource Guide 21

You can access DataWindow objects in DataWindow controls using the Object
property.

These expressions refer to properties of the DataWindow object inside a
DataWindow control:

dw_data.Object.emp_lname.Border
dw_data.Object.nestedrpt[1].Object.salary.Border

No compiler checking For objects inside the container, the compiler cannot
be sure that the dot notation is valid. For example, the DataWindow object is
not bound to the control and can be changed at any time. Therefore, the names
and properties after the Object property are checked for validity during
execution only. Incorrect references cause an execution error.

For more information For more information about runtime checking, see
“Optimizing expressions for DataWindow and external objects” on page 29.

For more information about dot notation for properties and data of
DataWindow objects and handling errors, see the DataWindow Reference.

Constant declarations
To declare a constant, add the keyword CONSTANT to a standard variable
declaration:

CONSTANT { access } datatype constname = value

Only a datatype that accepts an assignment in its declaration can be a constant.
For this reason, blobs cannot be constants.

Even though identifiers in PowerScript are not case sensitive, the declarations
shown here use uppercase as a convention for constant names:

CONSTANT integer GI_CENTURY_YEARS = 100
CONSTANT string IS_ASCENDING = "a"

Advantages of
constants

If you try to assign a value to the constant anywhere other than in the
declaration, you get a compiler error. A constant is a way of ensuring that the
declaration is used the way you intend.

Constants are also efficient. Because the value is established during
compilation, the compiled code uses the value itself, rather than referring to a
variable that holds the value.

Controlling access for instance variables

22 PocketBuilder

Controlling access for instance variables
Instance variables have access settings that provide control over how other
objects’ scripts access them.

You can specify that a variable is:

• Public Accessible to any other object

• Protected Accessible only in scripts for the object and its descendants

• Private Accessible in scripts for the object only

For example:

public integer ii_currentvalue
CONSTANT public integer WARPFACTOR = 1.2
protected string is_starship

// Private values used in internal calculations
private integer ii_maxrpm
private integer ii_minrpm

You can further qualify access to public and protected variables with the
modifiers PRIVATEREAD, PRIVATEWRITE, PROTECTEDREAD, or
PROTECTEDWRITE:

public privatewrite ii_averagerpm

Private variables for
encapsulation

One use of access settings is to keep other scripts from changing a variable
when they should not. You can use PRIVATE or PUBLIC PRIVATEWRITE to
keep the variable from being changed directly. You might write public
functions to provide validation before changing the variable.

Private variables allow you to encapsulate an object’s functionality, which
means that an object’s data and code are part of the object itself and the object
determines the interface it presents to other objects.

For more information For more about access settings, see the chapter about declarations in the
PowerScript Reference.

For more about encapsulation, see Chapter 1, “Implementing Object-Oriented
Programming Techniques.”

CHAPTER 3 Using the PowerScript Language

Resource Guide 23

Resolving naming conflicts
There are two areas in which name conflicts occur:

• Variables that are defined within different scopes can have the same name.
For example, a global variable can have the same name as a local or
instance variable. The compiler warns you of these conflicts, but you do
not have to change the names.

• A descendent object has functions and events that are inherited from the
ancestor and have the same names.

If you need to refer to a hidden variable or an ancestor’s event or function, you
can use dot notation qualifiers or the scope operator.

Hidden instance
variables

If an instance variable has the same name as a local, shared, or global variable,
qualify the instance variable with its object’s name:

objectname.instancevariable

If a local variable and an instance variable of a window are both named
birthdate, then qualify the instance variable:

w_main.birthdate

If a window script defines a local variable x, the name conflicts with the X
property of the window. Use a qualifier for the X property. This statement
compares the two:

IF x > w_main.X THEN

Hidden global
variables

If a global variable has the same name as a local or shared variable, you can
access the global variable with the scope operator (::) as follows:

::globalvariable

This expression compares a local variable with a global variable, both named
total:

IF total < ::total THEN ...

Use prefixes to avoid naming conflicts
If your naming conventions include prefixes that identify the scope of the
variable, then variables of different scopes always have different names and
there are no conflicts.

For more information about the search order that determines how name
conflicts are resolved, see the chapters about declarations and calling functions
and events in the PowerScript Reference.

Return values from ancestor scripts

24 PocketBuilder

Overridden functions
and events

When you change the script for a function that is inherited, you override the
ancestor version of the function. For events, you can choose to override or
extend the ancestor event script in the painter.

You can use the scope operator to call the ancestor version of an overridden
function or event. The ancestor class name, not a variable, precedes the colons:

result = w_ancestor:: FUNCTION of_func(arg1, arg2)

You can use the Super pronoun instead of naming an ancestor class. Super
refers to the object’s immediate ancestor:

result = Super:: EVENT ue_process()

In good object-oriented design, you would not call ancestor scripts for other
objects. It is best to restrict this type of call to the current object’s immediate
ancestor using Super.

For how to capture the return value of an ancestor script, see “Return values
from ancestor scripts” next.

Overloaded functions When you have several functions of the same name for the same object, the
function name is considered to be overloaded. PocketBuilder determines which
version of the function to call by comparing the signatures of the function
definitions with the signature of the function call. The signature includes the
function name, argument list, and return value.

Return values from ancestor scripts
If you want to perform some processing in an event in a descendent object, but
that processing depends on the return value of the ancestor event script, you
can use a local variable called AncestorReturnValue that is automatically
declared and assigned the return value of the ancestor event.

The first time the compiler encounters a CALL statement that calls the ancestor
event of a script, the compiler implicitly generates code that declares the
AncestorReturnValue variable and assigns to it the return value of the ancestor
event.

The datatype of the AncestorReturnValue variable is always the same as the
datatype defined for the return value of the event. The arguments passed to the
call come from the arguments that are passed to the event in the descendent
object.

CHAPTER 3 Using the PowerScript Language

Resource Guide 25

Extending event
scripts

The AncestorReturnValue variable is always available in extended event
scripts. When you extend an event script, PocketBuilder generates the
following syntax and inserts it at the beginning of the event script:

CALL SUPER::event_name

You see the statement only if you export the syntax of the object.

Overriding event
scripts

The AncestorReturnValue variable is available only when you override an
event script after you call the ancestor event using the CALL syntax explicitly:

CALL SUPER::event_name

or

CALL ancestor_name::event_name

The compiler does not differentiate between the keyword SUPER and the name
of the ancestor. The keyword is replaced with the name of the ancestor before
the script is compiled.

The AncestorReturnValue variable is declared and a value assigned only when
you use the CALL event syntax. It is not declared if you use the new event
syntax:

ancestor_name::EVENT event_name ()

Example You can put code like the following in an extended event script:

IF AncestorReturnValue = 1 THEN
 // execute some code
ELSE
 // execute some other code
END IF

You can use the same code in a script that overrides its ancestor event script,
but you must insert a CALL statement before you use the AncestorReturnValue
variable:

// execute code that does some preliminary processing
CALL SUPER::ue_myevent
IF AncestorReturnValue = 1 THEN
…

Types of arguments for functions and events

26 PocketBuilder

Types of arguments for functions and events
When you define a function or user event, you specify its arguments, their
datatypes, and how they are passed.

There are three ways to pass an argument:

• By value Is the default

PocketBuilder passes a copy of a by-value argument. Any changes affect
the copy, and the original value is unaffected.

• By reference Tells PocketBuilder to pass a pointer to the passed variable

The function script can change the value of the variable because the
argument points back to the original variable. An argument passed by
reference must be a variable, not a literal or constant, so that it can be
changed.

• Read-only Passes the argument by value without making a copy of the
data

Read-only provides a performance advantage for some datatypes because
it does not create a copy of the data, as with by value. Datatypes for which
read-only provides a performance advantage are String, Blob, Date, Time,
and DateTime.

For other datatypes, read-only provides documentation for other
developers by indicating something about the purpose of the argument.

Matching argument
types when overriding
functions

If you define a function in a descendant that overrides an ancestor function, the
function signatures must match in every way: the function name, return value,
argument datatypes, and argument passing methods must be the same.

For example, this function declaration has two long arguments passed by value
and one passed by reference:

uf_calc(long a_1, long a_2, ref long a_3) &
returns integer

If the overriding function does not match, then when you call the function,
PocketBuilder calculates which function matches more closely and calls that
one, which might give unexpected results.

CHAPTER 3 Using the PowerScript Language

Resource Guide 27

Ancestor and descendent variables
All objects in PocketBuilder are descendants of PowerScript system objects—
the objects you see listed on the System page in the Browser.

Therefore, whenever you declare an object instance, you are declaring a
descendant. You decide how specific you want your declarations to be.

As specific as
possible

If you define a user object class named uo_empdata, you can declare a variable
whose type is uo_empdata to hold the user object reference:

uo_empdata uo_emp1
uo_emp1 = CREATE uo_empdata

You can refer to the variables and functions that are part of the definition of
uo_empdata because the type of uo_emp1 is uo_empdata.

When the application
requires flexibility

Suppose the user object you want to create depends on the user’s choices. You
can declare a user object variable whose type is UserObject or an ancestor class
for the user object. Then you can specify the object class you want to instantiate
in a string variable and use it with CREATE:

uo_empdata uo_emp1
string ls_objname
ls_objname = ... // Establish the user object to open
uo_emp1 = CREATE USING ls_objname

This more general approach limits your access to the object’s variables and
functions. The compiler knows only the properties and functions of the
ancestor class uo_empdata (or the system class UserObject if that is what you
declared). It does not know which object you will actually create and cannot
allow references to properties defined on that unknown object.

Abstract ancestor object In order to address properties and functions of the
descendants you plan to instantiate, you can define the ancestor object class to
include the properties and functions that you will implement in the
descendants. In the ancestor, the functions do not need code other than a return
value—they exist so that the compiler can recognize the function names. When
you declare a variable of the ancestor class, you can reference the functions.
During execution, you can instantiate the variable with a descendant, where
that descendant implements the functions as appropriate:

uo_empdata uo_emp1
string ls_objname
// Establish which descendant of uo_empdata to open
ls_objname = ...
uo_emp1 = CREATE USING ls_objname

Ancestor and descendent variables

28 PocketBuilder

// Function is declared in the ancestor class
result = uo_emp1.uf_special()

This technique is described in more detail in “Using dynamic versus static
lookup” on page 9.

Dynamic function calls Another way to handle functions that are not
defined for the declared class is to use dynamic function calls.

When you use the DYNAMIC keyword in a function call, the compiler does not
check whether the function call is valid. The checking happens during
execution when the variable has been instantiated with the appropriate object:

// Function not declared in the ancestor class
result = uo_emp1.DYNAMIC uf_special()

Performance and errors
You should avoid using the dynamic capabilities of PocketBuilder when your
application design does not require them. Runtime evaluation means that work
the compiler usually does must be done at runtime, making the application
slower when dynamic calls are used often or used within a large loop. Skipping
compiler checking also means that errors that might be caught by the compiler
are not found until the user is executing the program.

Dynamic object
selection for windows
and visual user
objects

A window or visual user object is opened with a function call instead of the
CREATE statement. With the Open and OpenUserObject functions, you can
specify the class of the window or object to be opened, making it possible to
open a descendant different from the declaration’s object type.

This example displays a user object of the type specified in the string s_u_name
and stores the reference to the user object in the variable u_to_open. Variable
u_to_open is of type DragObject, which is the ancestor of all user objects. It
can hold a reference to any user object:

DragObject u_to_open
string s_u_name
s_u_name = sle_user.Text
w_info.OpenUserObject(u_to_open, s_u_name, 100, 200)

For a window, comparable code looks like this. The actual window opened
could be the class w_data_entry or any of its descendants:

w_data_entry w_data
string s_window_name
s_window_name = sle_win.Text
Open(w_data, s_window_name)

CHAPTER 3 Using the PowerScript Language

Resource Guide 29

Optimizing expressions for DataWindow and external
objects
No compiler validation
for container objects

When you use dot notation to refer to a DataWindow object in a DataWindow
control or DataStore, the compiler does not check the validity of the
expression:

dw_data.Object.column.property

Everything you specify after the Object property passes the compiler and is
checked during execution. Because of runtime syntax checking, using many
expressions like these can impact performance.

Establishing partial
references

To improve efficiency when you refer repeatedly to the same DataWindow
component object or external object, you can define a variable of the
appropriate type and assign a partial reference to the variable. The script
evaluates most of the reference only once and reuses it.

The datatype of a DataWindow component object is DWObject:

DWObject dwo_column
dwo_column = dw_data.Object.column
dwo_column.SlideLeft = ...
dwo_column.SlideUp = ...

Handling errors The Error event is triggered when errors occur in evaluating DataWindow
expressions. If you write a script for this event, you can catch an error before it
triggers the SystemError event. This event lets you ignore an error or substitute
an appropriate value. However, you must be careful to avoid setting up
conditions that cause another error. You can also use try-catch blocks to handle
exceptions, as described in “Exception handling in PocketBuilder” next.

For information For information about DataWindow data expressions and property expressions
and DWObject variables, see the DataWindow Reference in the online Help.

Printing at runtime
To print from a Pocket PC device or emulator, you must install the
FieldSoftware PrinterCE SDK, available from the FieldSoftware Web site at
http://www.fieldsoftware.com. After you install this software to the target
platform, you can use DataWindow and PowerScript methods to print
DataWindow or DataStore objects, visual objects, or lines of text from runtime
applications.

Sending mail from a device or emulator

30 PocketBuilder

The graphs that you print from a Pocket PC device or emulator do not expand
to fill the print paper (as they do when you print from the desktop). The size of
a graph that you print from these platforms is not modified from its screen
display size.

Using a registered copy of the FieldSoftware PrinterCE SDK
You must use the SetRegistrationCode system function to supply a registration
code authorizing the use of the FieldSoftware printing software. If you do not
call this function, PocketBuilder assumes you are using an evaluation copy of
the FieldSoftware PrinterCE SDK and attempts to make subsequent print
function calls using the evaluation software.

For more information, see “SetRegistrationCode” in the online Help.

Sending mail from a device or emulator
You can send mail from a PocketBuilder application through a Microsoft
ActiveSync connection that is configured to synchronize mail files with a
desktop mail client. Microsoft Outlook can be configured to work with
ActiveSync. ActiveSync does not support synchronization with Microsoft
Outlook Express.

Configuring ActiveSync for mail synchronization with Microsoft Outlook
On your desktop machine, you configure ActiveSync to work with Outlook by
selecting Tools>Options from the ActiveSync menu bar. In the list box on the
Sync Options page of the Options dialog box, select Inbox for synchronization.
If you select the check box to enable synchronization with a server, you cannot
synchronize mail directly with Outlook.

To send mail in a PocketBuilder mail application, you must instantiate a
mailSession object and call the PowerScript mail functions mailLogon,
mailSend, and mailLogoff. You can use the mail Message and mailRecipient
system structure objects to hold content and destination information for the
messages you want to send by e-mail. The mailFileDescription object can be
used to describe mail attachments, although mailAttach! is the only supported
value for an attachment’s file type.

CHAPTER 3 Using the PowerScript Language

Resource Guide 31

Mail that you send from a PocketBuilder application is immediately placed in
the Outbox of the Microsoft Outlook account that is synchronized to your
Pocket PC through ActiveSync. The mail remains in the Outbox until a preset
time for mail transfer has elapsed, or until an action on the desktop triggers the
sending of mail in the Outbox.

Exception handling in PocketBuilder
When a runtime error occurs in a PocketBuilder application, unless that error
is trapped, a single application event (SystemError) fires to handle the error no
matter where in the application it occurred. Although some errors can be
handled in the system error event, catching the error closer to its source
increases the likelihood of recovery from the error condition.

You can use exception-handling classes and syntax to handle context-sensitive
errors in PocketBuilder applications. This means that you can deal with errors
close to their source by embedding error-handling code anywhere in your
application. Well designed exception-handling code can give application users
a better chance to recover from error conditions and run the application without
interruption.

Exception handling allows you to design an application that can recover from
exceptional conditions and continue execution. Any exceptions that you do not
catch are handled by the runtime system and can result in the termination of the
application.

Exception handling can be found in such object-oriented languages as Java and
C++. The implementation of exception handling in PocketBuilder is similar to
the implementation in Java. In PocketBuilder, the TRY, CATCH, FINALLY,
THROW, and THROWS reserved words are used for exception handling. There
are also several PocketBuilder objects that descend from the Throwable object.

Basics of exception handling
Exceptions are objects that are thrown in the event of some exceptional (or
unexpected) condition or error and are used to describe the condition or error
encountered. Standard errors, such as null object references and division by
zero, are typically thrown by the runtime system. These types of errors could
occur anywhere in an application, and you can include catch clauses in any
executable script to try to recover from these errors.

Exception handling in PocketBuilder

32 PocketBuilder

User-defined
exceptions

There are also exceptional conditions that do not immediately result in runtime
errors. These exceptions typically occur during execution of a function or a
user-event script. To signal these exceptions, you create user objects that
inherit from the PowerScript Exception class. You can associate a user-defined
exception with a function or user event in the prototype for the method.

For example, a user-defined exception might be created to indicate that a file
cannot be found. You could declare this exception in the prototype for a
function that is supposed to open the file. To catch this condition, you must
instantiate the user-defined exception object and then throw the exception
instance in the method script.

Objects for exception handling support
Several system objects support exception handling within PocketBuilder.

Throwable object type The object type Throwable is the root datatype for all user-defined exception
and system error types. Two other system object types, RuntimeError and
Exception, derive from Throwable.

RuntimeError and its
descendants

PocketBuilder runtime errors are represented in the RuntimeError object
type. For more robust error-handling capabilities, the RuntimeError type has its
own system-defined descendants; but the RuntimeError type contains all
information required for dealing with PocketBuilder runtime errors.

One of the descendants of RuntimeError is the NullObjectError type that is
thrown by the system whenever a null object reference is encountered. This
allows you to handle null-object-reference errors explicitly without having to
differentiate them from other runtime errors that might occur.

Error types that derive from RuntimeError are typically used by the system to
indicate runtime errors. RuntimeErrors can be caught in a try-catch block, but
it is not necessary to declare where such an error condition might occur.
(PocketBuilder does that for you, since a system error can happen anywhere
anytime the application is running.) It is also not a requirement to catch these
types of errors.

Exception object type The system object Exception also derives from Throwable and is typically
used as an ancestor object for user-defined exception types. It is the root class
for all checked exceptions. Checked exceptions are user-defined exceptions
that must be caught in a try-catch block when thrown, or that must be declared
in the prototype of a method when thrown outside of a try-catch block.

CHAPTER 3 Using the PowerScript Language

Resource Guide 33

The PowerScript compiler checks the local syntax where you throw checked
exceptions to make sure you either declare or catch these exception types.
Descendants of RuntimeError are not checked by the compiler, even if they are
user defined or if they are thrown in a script rather than by the runtime system.

Handling exceptions
Whether an exception is thrown by the runtime system or by a THROW
statement in an application script, you handle the exception by catching it. This
is done by surrounding the set of application logic that throws the exception
with code that indicates how the exception is to be dealt with.

TRY-CATCH-FINALLY
block

To handle an exception in PowerScript, you must include some set of your
application logic inside a try-catch block. A try-catch block begins with a TRY
clause and ends with the END TRY statement. It must also contain either a
CATCH clause or a FINALLY clause. A try-catch block normally contains a
FINALLY clause for error condition cleanup. In between the TRY and FINALLY
clauses you can add any number of CATCH clauses.

CATCH clauses are not obligatory, but if you do include them, you must follow
each CATCH statement with a variable declaration. In addition to following all
of the usual rules for local variable declarations inside a script, the variable
being defined must derive from the Throwable system type.

You can add a TRY-CATCH-FINALLY, TRY-CATCH, or TRY-FINALLY block
using the Script view Paste Special feature for PowerScript statements. If you
select the Statement Templates check box on the AutoScript tab of the Design
Options dialog box, you can also use the AutoScript feature to insert these
block structures.

Example Example catching a system error This is an example of a TRY-CATCH-
FINALLY block that catches a system error when an arccosine argument, entered
by the application user in a SingleLineEdit, is not in the required range. If you
do not catch this error, the application goes to the system error event, and
eventually terminates:

Double ld_num
ld_num = Double (sle_1.text)
TRY

sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.GetMessage())
FINALLY

Exception handling in PocketBuilder

34 PocketBuilder

// Add cleanup code here
of_cleanup()
Return

END TRY
MessageBox("After", "We have finished.")

The system runtime error message might be confusing to the end user, so for
production purposes, it would be better to catch a user-defined exception—see
the example in “Creating user-defined exception types” on page 35—and set
the message to something more understandable.

The TRY reserved word signals the start of a block of statements to be executed
and can include more than one CATCH clause. If the execution of code in the
TRY block causes an exception to be thrown, then the exception is handled by
the first CATCH clause whose variable can be assigned the value of the
exception thrown. The variable declaration after a CATCH statement indicates
the type of exception being handled (a system runtime error, in this case).

CATCH order It is important to order your CATCH clauses in such a way that one clause does
not hide another. This would occur if the first CATCH clause catches an
exception of type Exception and a subsequent CATCH clause catches a
descendant of Exception. Since they are processed in order, any exception
thrown that is a descendant of Exception would be handled by the first CATCH
clause and never by the second. The PowerScript compiler can detect this
condition and signals an error if found.

If an exception is not dealt with in any of the CATCH clauses, it is thrown up
the call stack for handling by other exception handlers (nested try-catch blocks)
or by the system error event. Before the exception is thrown up the stack,
however, the FINALLY clause is executed.

FINALLY clause The FINALLY clause is generally used to clean up after execution of a TRY or
CATCH clause. The code in the FINALLY clause is guaranteed to execute if any
portion of the try-catch block is executed, regardless of how the code in the
try-catch block completes.

If no exceptions occur, the TRY clause completes, followed by the execution of
the statements contained in the FINALLY clause. Then execution continues on
the line following the END TRY statement.

In cases where there are no CATCH clauses but only a FINALLY clause, the code
in the FINALLY clause is executed even if a return is encountered or an
exception is thrown in the TRY clause.

CHAPTER 3 Using the PowerScript Language

Resource Guide 35

If an exception occurs within the context of the TRY clause and an applicable
CATCH clause exists, the CATCH clause is executed, followed by the FINALLY
clause. But even if no CATCH clause is applicable to the exception thrown, the
FINALLY clause still executes before the exception is thrown up the call stack.

If an exception or a return is encountered within a CATCH clause, the FINALLY
clause is executed before execution is transferred to the new location.

Creating user-defined exception types
You can create your own user-defined exception types from standard class user
objects that inherit from Exception or RuntimeError or that inherit from an
existing user object deriving from Exception or RuntimeError.

Inherit from Exception
object type

Normally, user-defined exception types should inherit from the Exception type
or a descendant, since the RuntimeError type is used to indicate system errors.
These user-defined objects are no different from any other nonvisual user
object in the system. They can contain events, functions, and instance
variables.

User-defined exception types are useful in cases where a specific condition,
such as the failure of a business rule, might cause application logic to fail. If
you create a user-defined exception type to describe such a condition and then
catch and handle the exception appropriately, you can prevent a runtime error.

Throwing exceptions Exceptions can be thrown by the runtime engine to indicate an error condition.
If you want to signal a potential exception condition manually, you must use
the THROW statement.

Typically, the THROW statement is used in conjunction with some user-defined
exception type. Here is a simple example of the use of the THROW statement:

Exception le_ex
le_ex = create Exception
Throw le_ex
MessageBox ("Hmm", "We would never get here if" &

+ "the exception variable was not instantiated")

In this example, the code throws the instance of the exception le_ex. The
variable following the THROW reserved word must point to a valid instance of
the exception object that derives from Throwable. If you attempt to throw an
uninstantiated Exception variable, a NullObjectError is thrown instead,
indicating a null object reference in this routine. That could only complicate the
error handling for your application.

Exception handling in PocketBuilder

36 PocketBuilder

Declaring exceptions
thrown from functions

If you signal an exception with the THROW statement inside a method script—
and do not surround the statement with a try-catch block that can deal with that
type of exception—you must also declare the exception as an exception type
(or as a descendant of an exception type) thrown by that method. However, you
do not need to declare that a method can throw runtime errors, since
PocketBuilder does that for you.

The prototype window in the Script view of most PocketBuilder painters
allows you to declare what user-defined exceptions, if any, can be thrown by a
function or a user-defined event. You can drag and drop exception types from
the System Tree or a Library painter view to the Throws box in the prototype
window, or you can type in a comma-separated list of the exception types that
the method can throw.

Example Example catching a user-defined exception This code displays a
user-defined error when an arccosine argument, entered by the application user,
is not in the required range. The try-catch block calls a method, wf_acos, that
catches the system error and sets and throws the user-defined error:

TRY
wf_acos()

CATCH (uo_exception u_ex)
MessageBox("Out of Range", u_ex.GetMessage())

END TRY

This code in the wf_acos method catches the system error and sets and throws
the user-defined error:

uo_exception lu_error
Double ld_num
ld_num = Double (sle_1.text)
TRY

sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

lu_error = Create uo_exception
lu_error.SetMessage("Value must be between -1" &

+ "and 1")
Throw lu_error

END TRY

CHAPTER 3 Using the PowerScript Language

Resource Guide 37

Adding flexibility and facilitating object reuse
You can use exception handling to add flexibility to your PocketBuilder
applications and to help separate business rules from presentation logic. For
example, business rules can be stored in a non-visual object that has:

• An instance variable to hold a reference to the presentation object:

powerobject my_presenter

• A function that registers the presentation object

The registration function could use the following syntax:

SetObject (string my_purpose, powerobject myobject)

• Code to call a dynamic function implemented by the presentation object,
with minimal assumptions about how the data is displayed

The dynamic function call should be enclosed in a try-catch block, such as:

TRY
my_presenter.Dynamic nf_displayScreen(" ")

CATCH (Throwable lth_exception)
Throw lth_exception

END TRY

This try-catch block catches all system and user-defined errors from the
presentation object and throws them back up the calling chain (to the
object that called the user object). In the above example, the thrown object
in the CATCH statement is an object of type Throwable, but you could also
instantiate and throw a user exception object:

uo_exception luo_exception

TRY
my_presenter.Dynamic nf_displayScreen(" ")

CATCH (Throwable lth_exception)
luo_exception = Create uo_exception
luo_exception.SetMessage & +
(lth_exception.GetMessage())

Throw luo_exception
END TRY

Code for data processing could be added to the presentation object, to the
business rules user object, or to processing objects called by the user object.
The exact design depends on your business objectives, but this code should
also be surrounded by try-catch blocks. The actions to take and the error
messages to report (in case of code processing failure) should be as specific as
possible in the try-catch blocks that surround the processing code.

Exception handling in PocketBuilder

38 PocketBuilder

There are significant advantages to this type of approach, because the business
user object can be reused more easily and can be accessed by objects that
display the same business data in many different ways. The addition of
exception handling makes this approach much more robust, giving the
application user a chance to recover from an error condition.

Using the SystemError and Error events
Error event If a runtime error occurs, an error structure that describes the error is created.

An error can occur when an expression that uses dot notation to refer to data
and properties of a DataWindow object is invalid under some runtime
conditions. The DataWindow error Event is triggered, with the information in
the error structure as arguments.

The error can be handled in this Error event by use of a special reference
argument that allows the error to be ignored. If the error does not occur in the
context described above, or if the error in that context is not dealt with, then the
error structure information is used to populate the global error variable, and the
SystemError event on the Application object is triggered.

SystemError event In the SystemError event, unexpected error conditions can be dealt with in a
limited way. In general, it is not a good idea to continue running the application
after the SystemError event is triggered. However, error-handling code can and
should be added to this event. Typically you could use the SystemError event
to save data before the application terminates and to perform last-minute
cleanup (such as closing files or database connections).

Precedence of
exception handlers
and events

If you write code in the Error event, then that code is executed first in the event
of a thrown exception.

If the exception is not thrown in any of the described contexts, or the object’s
Error event does not handle the exception, or you do not code the Error event,
then the exception is handled by any active exception handlers (CATCH
clauses) that are applicable to that type of exception. Information from the
exception class is copied to the global error variable and the SystemError event
on the Application object is fired only if there are no exception handlers to
handle the exception.

Error handling for new
applications

In PocketBuilder applications, you can handle errors by using try-catch blocks
or by coding the Error event. You should always have a SystemError event
coded in your Application object to handle any uncaught exceptions. The
SystemError event essentially becomes a global exception handler for a
PocketBuilder application.

CHAPTER 3 Using the PowerScript Language

Resource Guide 39

Garbage collection
The PocketBuilder garbage collection mechanism checks memory
automatically for unreferenced and orphaned objects and removes any it finds,
thus taking care of most memory leaks. You can use garbage collection to
destroy objects instead of explicitly destroying them using the DESTROY
statement. This lets you avoid runtime errors that occur when you destroy an
object that was being used by another process or had been passed by reference
to a posted event or function.

When garbage
collection occurs

Garbage collection occurs:

• When a reference is removed from an object A reference to an object
is any variable whose value is the object. When the variable goes out of
scope, or when it is assigned a different value, PocketBuilder removes a
reference to the object, counts the remaining references, and destroys the
object if no references remain.

Posting events and functions
When you post an event or function and pass an object reference,
PocketBuilder adds an internal reference to the object to prevent its
memory from being reclaimed by the garbage collector between the time
of the post and the actual execution of the event or function. This reference
is removed when the event or function is executed.

• When the garbage collection interval is exceeded When
PocketBuilder completes the execution of a system-triggered event, it
makes a garbage collection pass if the set interval between garbage
collection passes has been exceeded. The default interval is 0.5 seconds.
The garbage collection pass removes any objects and classes that cannot
be referenced, including those containing circular references (otherwise
unreferenced objects that reference each other).

Exceptions to garbage
collection

There are a few objects that are not collected:

• Visual objects Any object that is visible on your screen is not collected
because when the object is created and displayed on your screen, an
internal reference is added to the object. When any visual object is closed,
it is explicitly destroyed.

• Shared objects Registered shared objects are not collected because the
SharedObjectRegister function adds an internal reference.
SharedObjectUnregister removes the internal reference.

Efficient compiling and performance

40 PocketBuilder

Controlling when
garbage collection
occurs

Garbage collection occurs automatically in PocketBuilder, but you can use
functions to force immediate garbage collection or to change the interval
between reference count checks. Three functions allow you to control when
garbage collection occurs: GarbageCollect, GarbageCollectGetTimeLimit, and
GarbageCollectSetTimeLimit.

For information about these functions, see the online Help.

Efficient compiling and performance
The way you write functions and define variables affects your productivity and
your application’s performance.

Short scripts for faster
compiling

Long scripts take a long time to compile. Break scripts up so that instead of one
long script, you have a shorter script that makes calls to several other functions.
Consider defining functions in user objects so that other objects can call the
same functions.

Local variables for
faster performance

The scope of variables affects performance. When you have a choice, use local
variables, which provide the fastest performance. Global variables have the
biggest negative impact on performance.

Resource Guide 41

C H A P T E R 4 Getting Information About
PocketBuilder Class Definitions

About this chapter This chapter explains what class definition information is and how it is
used, and presents some sample code. Developers of tools and object
frameworks can use class definition information for tasks such as
producing reports or defining objects with similar characteristics. You do
not need to use class definition information if you are building typical
business applications.

Contents

Overview of class definition information
A ClassDefinition object is a PocketBuilder object that provides
information about the class of another PocketBuilder object. You can
examine a class in a PocketBuilder library or the class of an instantiated
object. By examining the properties of its ClassDefinition object, you can
get details about how that class fits in the PocketBuilder object hierarchy.

Desktop only
ClassDefinition, ScriptDefinition, and other objects that descend from the
ClassDefinitionObject object can be used in the development
environment, but not in applications deployed to Windows CE devices or
emulators.

From the ClassDefinition object, you can discover:

• The variables, functions, and events defined for the class

• The class’s ancestor

Topic Page

Overview of class definition information 41

Examining a class definition 45

Overview of class definition information

42 PocketBuilder

• The class’s parent

• The class’s children (nested classes)

Related objects
The ClassDefinition object is a member of a hierarchy of objects, including the
TypeDefinition, VariableDefinition, and ScriptDefinition objects, that provide
information about datatypes or about the variables, properties, functions, and
event scripts associated with a class definition.

For more information, see the Browser or the online Help.

Definitions for instantiated objects For each object instance, a
ClassDefinition property makes available a ClassDefinition object to describe
its definition. The ClassDefinition object does not provide information about
the object instance, such as the values of its variables. You get that information
by addressing the instance directly.

Definitions for objects in libraries An object does not have to be
instantiated to get class information. For an object in a PocketBuilder library,
you can call the FindClassDefinition function to get its ClassDefinition object.

Performance Class definition objects may seem to add a lot of overhead, but
the overhead is incurred only when you refer to the ClassDefinition object. The
ClassDefinition object is instantiated only when you call FindClassDefinition or
access the ClassDefinition property of a PocketBuilder object. Likewise, for
properties of the ClassDefinition object that are themselves ClassDefinition or
VariableDefinition objects, the objects are instantiated only when you refer to
those properties.

Terminology
The class information includes information about the relationships between
objects. These definitions will help you understand what the information
means.

object instance A realization of an object. The instance exists in memory and has values
assigned to its properties and variables. Object instances exist only when you
run an application.

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

Resource Guide 43

class A definition of an object, containing the source code for creating an object
instance. When you use PocketBuilder painters and save an object in a PKL,
you are creating class definitions for objects. When you run your application,
the class is the datatype of object instances based on that class. In
PocketBuilder, the term object usually refers to an instance of the object. It
sometimes refers to an object’s class.

system class A class defined by PocketBuilder. An object you define in a painter is a
descendant of a system class, even when you do not explicitly choose to use
inheritance for the object you define.

parent The object that contains the current object or is connected to the object in a way
other than inheritance. This table lists classes and the classes that can be the
parents of those classes:

Table 4-1: Classes and parents

child A class that is contained within another parent class. Also called a nested class.
For the types of objects that have a parent and child relationship, see parent.

ancestor A class from whose definition another object is inherited. See also descendant.

descendant An object that is inherited from another object and that incorporates the
specifics of that object: its properties, functions, events, and variables. The
descendant can use these values or override them with new definitions. All
objects you define in painters and store in libraries are descendants of
PocketBuilder system classes.

inheritance hierarchy An object and all its ancestors.

Object Parent

Window The window that opened the window.

A window might not have a parent. The parent is
determined during execution and is not part of the
class definition.

Menu item The menu item on the prior level in the menu.

The item on the menu bar is the parent of all the items
on the associated drop-down menu.

Control on a window The window.

Control on user object The user object.

TabPage The Tab control in which it is defined or in which it
was opened.

ListViewItem or
TreeViewItem

The ListView or TreeView control.

Visual user object The window or user object on which the user object is
placed.

Overview of class definition information

44 PocketBuilder

collapsed hierarchy A view of an object class definition that includes information from all the
ancestors in the object’s inheritance tree, not just items defined at the current
level of inheritance.

scalar A simple datatype that is not an object or an array. For example, Integer,
Boolean, Date, Any, and String.

instance variable and
property

Built-in properties of PocketBuilder system objects are called properties, but
they are treated as instance variables in the class definition information.

Who uses PocketBuilder class definitions
Most business applications do not need to use class definition information.
Code that uses class definition information is written by groups that write class
libraries, application frameworks, and productivity tools.

Although your application might not include any code that uses class definition
information, tools that you use for design, documentation, and class libraries
will. These tools examine class definitions for your objects so that they can
analyze your application and provide feedback to you.

Scenarios Class information might be used when developing:

• A custom object browser

• A tool that needs to know the objects of an application and their
relationships

The purpose might be to document the application or to provide a logical
way to select and work with the objects.

• A CASE tool that deconstructs PocketBuilder objects, allows the user to
redesign them, and reconstructs them

To do the reconstruction, the CASE tool needs both class definition
information and a knowledge of PocketBuilder object source code syntax.

• A class library in which objects need to determine the class associated with
an instantiated object, or a script needs to know the ancestor of an object
in order to make assumptions about available methods and variables

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

Resource Guide 45

Examining a class definition
This section illustrates how to access a class definition object and how to
examine its properties to get information about the class, its scripts, and its
variables.

Getting a class definition object
To work with class information, you need a class definition object. There are
two ways to get a ClassDefinition object containing class definition
information.

For an instantiated
object in your
application

Use its ClassDefinition property.

For example, in a script for a button, this code gets the class definition for the
parent window:

ClassDefinition cd_windef
cd_windef = Parent.ClassDefinition

For an object stored in
a PKL

Call FindClassDefinition.

For example, in a script for a button, this code gets the class definition for the
window named w_genapp_frame from a library on the application’s library list:

ClassDefinition cd_windef
cd_windef = FindClassDefinition("w_genapp_frame")

Getting detailed information about the class
This section has code fragments illustrating how to get information from a
ClassDefinition object called cd_windef.

For examples of assigning a value to cd_windef, see “Getting a class definition
object.”

Library The LibraryName property reports the name of the library a class has been
loaded from:

s = cd_windef.LibraryName

Examining a class definition

46 PocketBuilder

Ancestor The Ancestor property reports the name of the class from which this class is
inherited. All objects are inherited from PocketBuilder system objects, so the
Ancestor property can hold a ClassDefinition object for a PocketBuilder class.
The Ancestor property contains a null object reference when the
ClassDefinition is for PowerObject, which is the top of the inheritance
hierarchy.

This example gets a ClassDefinition object for the ancestor of the class
represented by cd_windef:

ClassDefinition cd_ancestorwindef
cd_ancestorwindef = cd_windef.Ancestor

This example gets the ancestor name. Note that this code would cause an error
if cd_windef held the definition of PowerObject because the Ancestor property
would be null:

ls_name = cd_windef.Ancestor.Name

Use the IsValid function to test that the object is not null.

This example walks back up the inheritance hierarchy for the window
w_genapp_frame and displays a list of its ancestors in a MultiLineEdit:

string s, lineend
ClassDefinition cd
lineend = "~r~n"

cd = cd_windef
s = "Ancestor tree:" + lineend

DO WHILE IsValid(cd)
s = s + cd.Name + lineend
cd = cd.Ancestor

LOOP

mle_1.Text = s

The list might look like this:

Ancestor tree:
w_genapp_frame
window
graphicobject
powerobject

Parent The ParentClass property of the ClassDefinition object reports the parent (its
container) specified in the object’s definition:

ClassDefinition cd_parentwindef

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

Resource Guide 47

cd_parentwindef = cd_windef.ParentClass

If the class has no parent, ParentClass is a null object reference. This example
tests that ParentClass is a valid object before checking its Name property:

IF IsValid(cd_windef.ParentClass) THEN
ls_name = cd_windef.ParentClass.Name

END IF

Nested or child
classes

The ClassDefinition object’s NestedClassList array holds the classes the object
contains.

NestedClassList array includes ancestors and descendants
The NestedClassList array can include classes of ancestor objects. For
example, a CommandButton defined on an ancestor window and modified in a
descendent window appears twice in the array for the descendent window, once
for the window and once for its ancestor.

This script produces a list of the controls and structures defined for the window
represented in cd_windef.

string s, lineend
integer li
lineend = "~r~n"

s = s + "Nested classes:" + lineend

FOR li = 1 to UpperBound(cd_windef.NestedClassList)
s = s + cd_windef.NestedClassList[li].Name &

+ lineend
NEXT
mle_1.Text = s

This script searches the NestedClassList array in the ClassDefinition object
cd_windef to find a nested DropDownListBox control:

integer li
ClassDefinition nested_cd

FOR li = 1 to UpperBound(cd_windef.NestedClassList)
IF cd_windef.NestedClassList[li].DataTypeOf &

= "dropdownlistbox" THEN
nested_cd = cd_windef.NestedClassList[li]
EXIT

END IF
NEXT

Examining a class definition

48 PocketBuilder

Class definitions for object instances versus object references
Getting a ClassDefinition object for an instantiated object, such as an ancestor
or nested object, does not give you a reference to instances of the parent or
child classes. Use standard PocketBuilder programming techniques to get and
store references to your instantiated objects.

Getting information about a class’s scripts
This section has code fragments illustrating how to get script information from
a ClassDefinition object called cd_windef.

For examples of assigning a value to cd_windef, see “Getting a class definition
object” on page 45.

List of scripts The ScriptList array holds ScriptDefinition objects for all the functions and
events defined for a class. If a function is overloaded, it will appear in the array
more than once with different argument lists. If a function or event has code at
more than one level in the hierarchy, it will appear in the array for each coded
version.

This example loops through the ScriptList array and builds a list of script
names. All objects have a few standard functions, such as ClassName and
PostEvent, because all objects are inherited from PowerObject:

string s, lineend
integer li
ScriptDefinition sd
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.ScriptList)
sd = cd_windef.ScriptList[li]
s = s + sd.Name + " " + lineend

NEXT
mle_1.Text = s

This example amplifies the previous one and accesses various properties in the
ScriptDefinition object. It reports whether the script is a function or event,
whether it is scripted locally, what its return datatype and arguments are, and
how the arguments are passed:

string s, lineend
integer li, lis, li_bound
ScriptDefinition sd
lineend = "~r~n"

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

Resource Guide 49

FOR li = 1 to UpperBound(cd_windef.ScriptList)
sd = cd_windef.ScriptList[li]
s = s + sd.Name + " "

CHOOSE CASE sd.Kind
CASE ScriptEvent!

// Events have three relevant properties
// regarding where code is defined
s = s + "Event, "
IF sd.IsScripted = TRUE then

s = s + "scripted, "
END If
IF sd.IsLocallyScripted = TRUE THEN

s = s + "local, "
END IF
IF sd.IsLocallyDefined = TRUE THEN

s = s + "local def,"
END IF

CASE ScriptFunction!
// Functions have one relevant property
// regarding where code is defined
s = s + "Function, "
IF sd.IsLocallyScripted = TRUE THEN

s = s + "local, "
END IF

END CHOOSE

s = s + "returns " + &
 sd.ReturnType.DataTypeOf + "; "
s = s + "Args: "

li_bound = UpperBound(sd.ArgumentList)
IF li_bound = 0 THEN s = s + "None"
FOR lis = 1 to li_bound
CHOOSE CASE sd.ArgumentList[lis]. &

CallingConvention
CASE ByReferenceArgument!
s = s + "REF "
CASE ByValueArgument!
s = s + "VAL "
CASE ReadOnlyArgument!
s = s + "READONLY "
CASE ELSE
s = s + "BUILTIN "

END CHOOSE

Examining a class definition

50 PocketBuilder

s = s + sd.ArgumentList[lis].Name + ", "
NEXT

s = s + lineend
NEXT
mle_1.text = s

Where the code is in the inheritance hierarchy You can check the
IsLocallyScripted property to find out whether a script has code at the class’s
own level in the inheritance hierarchy. By walking back up the inheritance
hierarchy using the Ancestor property, you can find out where the code is for a
script.

This example looks at the scripts for the class associated with the
ClassDefinition cd_windef, and if a script’s code is defined at this level, the
script’s name is added to a drop-down list. It also saves the script’s position in
the ScriptList array in the instance variable ii_localscript_idx.

The DropDownListBox is not sorted, so the positions in the list and the array
stay in sync:

integer li_pos, li

FOR li = 1 to UpperBound(cd_windef.ScriptList)
IF cd_windef.ScriptList[li].IsLocallyScripted &

= TRUE THEN
li_pos = ddlb_localscripts.AddItem(&

cd_windef.ScriptList[li].Name)
ii_localscript_idx[li_pos] = li

END IF
NEXT

Matching function
signatures

When a class has overloaded functions, you can call FindMatchingFunction to
find out what function is called for a particular argument list.

For an example, see FindMatchingFunction in the online Help.

Getting information about variables
This section has code fragments illustrating how to get information about
variables from a ClassDefinition object called cd_windef. For examples of
assigning a value to cd_windef, see “Getting a class definition object” on page
45.

CHAPTER 4 Getting Information About PocketBuilder Class Definitions

Resource Guide 51

List of variables Variables associated with a class are listed in the
VariableList array of the ClassDefinition object. When you examine that array,
you find not only variables you have defined explicitly but also PocketBuilder
object properties and nested objects, which are instance variables.

This example loops through the VariableList array and builds a list of variable
names. PocketBuilder properties appear first, followed by nested objects and
your own instance and shared variables:

string s, lineend
integer li
VariableDefinition vard
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.VariableList)
vard = cd_windef.VariableList[li]
s = s + vard.Name + lineend

NEXT
mle_1.Text = s

Details about
variables

This example looks at the properties of each variable in the VariableList array
and reports its datatype, cardinality, and whether it is global, shared, or
instance. It also checks whether an instance variable overrides an ancestor
declaration:

string s
integer li
VariableDefinition vard
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.VariableList)
vard = cd_windef.VariableList[li]
s = s + vard.Name + ", "
s = s + vard.TypeInfo.DataTypeOf

CHOOSE CASE vard.Cardinality.Cardinality
CASE ScalarType!

s = s + ", scalar"
CASE UnboundedArray!, BoundedArray!

s = s + ", array"
END CHOOSE

CHOOSE CASE vard.Kind
CASE VariableGlobal!

s = s + ", global"
CASE VariableShared!

s = s + ", shared"

Examining a class definition

52 PocketBuilder

CASE VariableInstance!
s = s + ", instance"
IF vard.OverridesAncestorValue = TRUE THEN

s = s + ", override"
END IF

END CHOOSE
s = s + lineend

NEXT
mle_1.text = s

P A R T 2 Implementing User
Interface Features

This part describes how to implement user interface
features in the applications you develop with
PocketBuilder.

Resource Guide 55

C H A P T E R 5 Using Tab Controls in a Window

About this chapter This chapter describes how to use Tab controls in your application.

Contents

About Tab controls

Windows CE platforms
On the Pocket PC, you can use a tab page approach to application design
as a substitute for MDI windows, which are not supported on Windows
CE platforms. Tab controls are not supported on Smartphone devices or
emulators.

A Tab control is a container for tab pages that display other controls. One
page at a time fills the display area of the Tab control.

Topic Page

About Tab controls 55

Defining and managing tab pages 57

Customizing the Tab control 60

Using Tab controls in scripts 62

About Tab controls

56 PocketBuilder

Each page has a tab like an index card divider. The user can click the tab to
switch among the pages:

Figure 5-1: Tab control

The Tab control allows you to present many pieces of information in an
organized way. This is particularly useful when building an application for a
handheld device with a limited display area.

When sizing the tab control, remember that the height and width properties of
the control refer to the size of the control without the tabs. Therefore, if you are
sizing a tab control with tabs at the bottom to fill the window, set the height to
about 1024 PBUs if your application uses the default window height of 1280
PBUs.

You add, resize, and move Tab controls just as you do any control. The User’s
Guide describes how to add controls to a window or custom visual user object.

Tab terms You need to know these definitions:

Tab control A control that you place in a window or user object that contains
tab pages. Part of the area in the Tab control is for the tabs associated with the
tab pages. Any space that is left is occupied by the tab pages themselves.

Tab page A user object that contains other controls and is one of several
pages within a Tab control. All the tab pages in a Tab control occupy the same
area of the control, and only one is visible at a time. The active tab page covers
the other tab pages.

You can define tab pages right in the Tab control, or you can define them in the
User Object painter and insert them into the Tab control, either in the painter
or during execution.

CHAPTER 5 Using Tab Controls in a Window

Resource Guide 57

Tab The visual handle for a tab page. The tab displays a label for the tab page.
When a tab page is hidden, the user clicks its tab to bring it to the front and
make the tab page active.

Defining and managing tab pages
A tab page is a user object.

Two methods There are different ways to approach tab page definition. You can define:

• An embedded tab page In the painter, insert tab pages in the Tab
control and add controls to those pages. An embedded tab page is of class
UserObject, but is not reusable.

• An independent user object In the User Object painter, create a custom
visual user object and add the controls that will display on the tab page.
You can use the user object as a tab page in a Tab control, either in the
painter or by calling OpenTab in a script. A tab page defined as an
independent user object is reusable.

You can mix and match the two methods—one Tab control can contain both
embedded tab pages and independent user objects.

Creating tab pages When you create a new Tab control, it has one embedded tab page. You can use
that tab page or delete it.

❖ To create a new tab page within the Tab control:

1 Right-click in the tab area of the Tab control. Do not click a tab page.

2 Select Insert TabPage from the pop-up menu.

3 Add controls to the new page.

❖ To define a tab page that is independent of a Tab control:

1 Select Custom Visual on the Object tab in the New dialog box.

2 In the User Object painter, size the user object to match the size of the
display area of the Tab control in which you will use it.

3 Add the controls that will appear on the tab page to the user object and
write scripts for their events.

4 In the user object’s Properties view, click the TabPage tab and fill in
information to be used by the tab page.

Defining and managing tab pages

58 PocketBuilder

❖ To add a tab page that exists as an independent user object to a Tab
control:

1 Right-click in the tab area of the Tab control. Do not click a tab page.

2 Select Insert User Object from the pop-up menu.

3 Select a user object.

The tab page is inherited from the user object you select. You can set tab
page properties and write scripts for the inherited user object just as you
do for tab pages defined within the Tab control.

Editing the controls on the tab page user object
You cannot edit the content of the user object within the Tab control. If you
want to edit or write scripts for the controls, close the window or user
object containing the Tab control and go back to the User Object painter
to make changes.

Managing tab pages You can view, reorder, and delete the tab pages on a Tab control.

❖ To view a different tab page:

• Click the page’s tab.

The tab page comes to the front and becomes the active tab page. The tabs
are rearranged according to the Tab position setting you have chosen.

❖ To reorder the tabs within a Tab control:

1 Click the Page Order tab on the Tab control’s Properties view.

2 Drag the names of the tab pages to the desired order.

❖ To delete a tab page from a Tab control:

1 Click the page’s tab.

2 Right-click the tab page and select Cut or Clear from the pop-up menu.

CHAPTER 5 Using Tab Controls in a Window

Resource Guide 59

Selecting tab controls and tab pages
As you click on various areas within a tab control, you will notice the
Properties view changing to show the properties of the tab control itself, one of
the tab pages, or a control on a tab page. Before you select an item such as Cut
from the pop-up menu, make sure that you have selected the right object.

Clicking anywhere in the tab area of a tab control selects the tab control. When
you click the tab for a specific page, that tab page becomes active, but the
selected object is still the tab control. To select the tab page, click its tab to
make it active and then click anywhere on the background of the page except
on the tab itself.

Controls on tab pages The real purpose of a Tab control is to display other controls on its pages. You
can think of the tab page as a miniature window. You add controls to it just as
you do to a window.

When you are working on a Tab control, you can add controls only to a tab page
created within the Tab control.

Adding controls to an independent user object tab page
To add controls to an independent user object tab page, open it in the User
Object painter.

❖ To add a control to an embedded tab page:

• Choose a control from the toolbar or the Insert menu and click the tab
page, just as you do to add a control to a window.

When you click inside the tab page, the tab page becomes the control’s
parent.

❖ To move a control from one tab page to another:

• Cut or copy the control and paste it on the destination tab page.

The source and destination tab pages must both be embedded tab pages, not
independent user objects.

❖ To move a control between a tab page and the window containing the
Tab control:

• Cut or copy the control and paste it on the destination window or tab page.

You cannot drag the control out of the Tab control onto the window.

Moving the control between a tab page and the window changes the control’s
parent, which affects scripts that refer to the control.

Customizing the Tab control

60 PocketBuilder

Customizing the Tab control
The Tab control has settings for controlling the position and appearance of the
tabs. Each tab can have its own label, picture, and background color.

All tabs share the same font settings, which you set on the Tab control’s Font
property page.

Pop-up menus and
Properties views for
Tab controls and tab
pages

A Tab control has several elements, each with its own pop-up menu and
Properties view. To open the Properties view, double-click or select Properties
on the pop-up menu.

Where you click determines what element you access.

Table 5-1: Accessing Tab control elements

Position and size of
tabs

The General tab in the Tab control’s Properties view has several settings for
controlling the position and size of the tabs. For example:

Table 5-2: Controlling size and position of tabs

To access the pop-up menu
or Properties view for a Do this

Tab control Right-click or double-click in the tab area of the
Tab control

Tab page Click the tab to make the tab page active, then
right-click or double-click somewhere in the tab
page but not on a control on the page

Control on a tab page Click the tab to make the tab page active and
right-click or double-click the control

To change Change the value for

The side(s) of the Tab control on which the tabs
appear

Tab Position

The size of the tabs relative to the size of the Tab
control

Ragged Right, MultiLine,
Fixed Width

The orientation of the text relative to the side of the
Tab control (use this setting with caution—only
TrueType fonts support perpendicular text)

Perpendicular Text

CHAPTER 5 Using Tab Controls in a Window

Resource Guide 61

Fixed Width and Ragged Right
When Fixed Width is checked, the tabs are all the same size. This is different
from turning Ragged Right off, which stretches the tabs to fill the edge of the
Tab control, like justified text. The effect is the same if all the tab labels are
short, but if you have a mix of long and short labels, justified labels can be
different sizes unless Fixed Width is on.

The sample Tab control in Figure 5-2 is set up like an address book. It has tabs
that flip between the left and right sides. With the Bold Selected Text setting
on and the changing tab positions, it is easy to see which tab is selected.

Figure 5-2: Address book tab control

Tab labels You can change the appearance of the tab using the Properties views of both
the Tab control and the Tab page.

Using Tab controls in scripts

62 PocketBuilder

Table 5-3: Changing the appearance of a tab

If you are working in the User Object painter on an object you will use as a tab
page, you can make the same settings on the TabPage page of the user object’s
Properties view that you can make in the tab page’s Properties view.

This example has a picture and text assigned to each tab page. Each tab has a
different background color. The Show Picture and Show Text settings are both
on:

Figure 5-3: Tabs with pictures and text

Changing tab
appearance in scripts

All these settings in the painter have equivalent properties that you can set in a
script, allowing you to dynamically change the appearance of the Tab control
during execution.

Using Tab controls in scripts
This section provides examples of tabs in scripts:

• Referring to tab pages in scripts

• Referring to controls on tab pages

• Opening, closing, and hiding tab pages

Properties
view

Property
page Setting Affects

Tab control General PictureOnRight,
ShowPicture,
ShowText

All tabs in the control

Tab page General Text,
BackColor

The label on the tab and the
background color of the tab
page

Tab page TabPage PictureName,
TabTextColor,
TabBackColor,
PictureMaskColor

The color of the text and
picture on the tab and the
background color of the tab
itself (not the tab page)

CHAPTER 5 Using Tab Controls in a Window

Resource Guide 63

• Keeping track of tab pages

• Events for the parts of the Tab control

Referring to tab pages in scripts
Dot notation allows you to refer to individual tab pages and controls on those
tab pages:

• The window or user object containing the Tab control is its parent:

window.tabcontrol

• The Tab control is the parent of the tab pages contained in it:

window.tabcontrol.tabpageuo

• The tab page is the parent of the control contained in it:

window.tabcontrol.tabpageuo.controlonpage

For example, this statement refers to the PowerTips property of the Tab control
tab_1 within the window w_display:

w_display.tab_1.PowerTips = TRUE

This example sets the PowerTipText property of tab page tabpage_1:

w_display.tab_1.tabpage_1.PowerTipText = &
"Font settings"

This example enables the CommandButton cb_OK on the tab page
tabpage_doit:

w_display.tab_1.tabpage_doit.cb_OK.Enabled = TRUE

Generic coding You can use the Parent pronoun and GetParent function to make a script more
general.

Parent pronoun In a script for any tab page, you can use the Parent pronoun
to refer to the Tab control:

Parent.SelectTab(This)

GetParent function If you are in an event script for a tab page, you can call
the GetParent function to get a reference to the tab page’s parent, which is the
Tab control, and assign the reference to a variable of type Tab.

In an event script for a user object that is used as a tab page, you can use code
like the following to save a reference to the parent Tab control in an instance
variable.

Using Tab controls in scripts

64 PocketBuilder

This is the declaration of the instance variable. It can hold a reference to any
Tab control:

tab itab_settings

This code saves a reference to the tab page’s parent in the instance variable:()

// Get a reference to the Tab control
// "This" refers to the tab page user object
itab_settings = This.GetParent()

In event scripts for controls on the tab page, you can use GetParent twice to
refer to the tab page user object and its Tab control:

tab tab_mytab
userobject tabpage_generic

tabpage_generic = This.GetParent()
tab_mytab = tabpage_generic.GetParent()

tabpage_generic.PowerTipText = &
"Important property page"

tab_mytab.PowerTips = TRUE

tab_mytab.SelectTab(tabpage_generic)

Generic variables for controls have limitations The type of these
variables is the basic PocketBuilder object type—a variable of type Tab has no
knowledge of the tab pages in a specific Tab control, and a variable of type
UserObject has no knowledge of the controls on the tab page.

In this script for a tab page event, a local variable is assigned a reference to the
parent Tab control. You cannot refer to specific pages in the Tab control
because tab_settings does not know about them. You can call Tab control
functions and refer to Tab control properties:

tab tab_settings
tab_settings = This.GetParent()
tab_settings.SelectTab(This)

User object variables If the tab page is an independent user object, you can
define a variable whose type is that specific user object. You can now refer to
controls defined on the user object, which is the ancestor of the tab page in the
control.

CHAPTER 5 Using Tab Controls in a Window

Resource Guide 65

In this script for a Tab control’s event, the index argument refers to a tab page
and is used to get a reference to a user object from the Control property array.
The example assumes that all the tab pages are derived from the same user
object uo_emprpt_page:

uo_emprpt_page tabpage_current
tabpage_current = This.Control[index]
tabpage_current.dw_emp.Retrieve &

(tabpage_current.st_name.Text)

The Tab control’s Control property
The Control property array contains references to all the tab pages in the
control, including both embedded and independent user objects. New tab pages
are added to the array when you insert them in the painter and when you open
them in a script.

Referring to controls on tab pages
If you are referring to a control on a tab page in another window, you must fully
qualify the control’s name up to the window level.

The following example shows a fully qualified reference to a static text control:

w_activity_manager.tab_fyi.tabpage_today. &
st_currlogon_time.Text = ls_current_logon_time

This example from the PocketBuilder Code Examples sets the size of a
DataWindow control on the tab page to match the size of another DataWindow
control in the window. Because all the tab pages were inserted in the painter,
the Control property array corresponds with the tab page index. All the pages
are based on the same user object u_tab_dir:

u_tab_dir luo_Tab
luo_Tab = This.Control[newindex]
luo_Tab.dw_dir.Height = dw_list.Height
luo_Tab.dw_dir.Width = dw_list.Width

In scripts and functions for the tab page user object, the user object knows
about its own controls. You do not need to qualify references to the controls.
This example in a function for the u_tab_dir user object retrieves data for the
dw_dir DataWindow control:

IF NOT ib_Retrieved THEN
dw_dir.SetTransObject(SQLCA)
dw_dir.Retrieve(as_Parm)

Using Tab controls in scripts

66 PocketBuilder

ib_Retrieved = TRUE
END IF

RETURN dw_dir.RowCount()

Opening, closing, and hiding tab pages
You can open tab pages in a script. You can close tab pages that you opened,
but you cannot close tab pages that were inserted in the painter. You can hide
any tab page.

This example opens a tab page of type tabpage_listbox and stores the object
reference in an instance variable i_tabpage. The value 0 specifies that the tab
page becomes the last page in the Tab control. You need to save the reference
for closing the tab later.

This is the instance variable declaration for the tab page’s object reference:

userobject i_tabpage

This code opens the tab page:

li_rtn = tab_1.OpenTab &
(i_tabpage, "tabpage_listbox", 0)

This statement closes the tab page:

tab_1.CloseTab(i_tabpage)

Keeping track of tab pages
To refer to the controls on a tab page, you need the user object reference, not
just the index of the tab page. You can use the tab page’s Control property array
to get references to all your tab pages.

Control property for
tab pages

The Control property of the Tab control is an array with a reference to each tab
page defined in the painter and each tab page added in a script. The index
values that are passed to events match the array elements of the Control
property.

You can get an object reference for the selected tab using the SelectedTab
property:

userobject luo_tabpage
luo_tabpage = tab_1.Control[tab_1.SelectedTab]

CHAPTER 5 Using Tab Controls in a Window

Resource Guide 67

In an event for the Tab control, like SelectionChanged, you can use the index
value passed to the event to get a reference from the Control property array:

userobject tabpage_generic
tabpage_generic = This.Control[newindex]

Adding a new tab
page

When you call OpenTab, the control property array grows by one element. The
new element is a reference to the newly opened tab page. For example, the
following statement adds a new tab in the second position in the Tab control:

tab_1.OpenTab(uo_newtab, 2)

The second element in the control array for tab_1 now refers to uo_newtab, and
the index into the control array for all subsequent tab pages becomes one
greater.

Closing a tab page When you call CloseTab, the size of the array is reduced by one and the
reference to the user object or page is destroyed. If the closed tab was not the
last element in the array, the index for all subsequent tab pages is reduced by
one.

Moving a tab page The MoveTab function changes the order of the pages in a Tab control and also
reorders the elements in the control array to match the new tab order.

Control property array for user objects
The Control property array for controls in a user object works in the same way.

Events for the parts of the Tab control
With so many overlapping pieces in a Tab control, you need to know where to
code scripts for events.

Table 5-4: Coding scripts for Tab control events

For example, if the user drags to a tab and you want to do something to the tab
page associated with the tab, you need to code the DragDrop event for the Tab
control, not the tab page.

To respond to actions in the Write a script for events belonging to

Tab area of the Tab control, including
clicks or drag actions on tabs

The Tab control

Tab page (but not the tab) The tab page (for embedded tab pages) or
the user object (for independent tab pages)

Control on a tab page That control

Using Tab controls in scripts

68 PocketBuilder

Examples This code in the DragDrop event of the tab_1 control selects the tab page when
the user drops something onto its tab. The index of the tab that is the drop target
is an argument for the DragDrop event:

This.SelectTab(index)

The following code in the DragDrop event for the Tab control lets the user drag
DataWindow information to a tab and then inserts the dragged information in
a list on the tab page associated with the tab.

A user object of type tabpage_listbox that contains a ListBox control, lb_list, has
been defined in the User Object painter. The Tab control contains several
independent tab pages of type tabpage_listbox.

You can use the index argument for the DragDrop event to get a tab page
reference from the Tab control’s Control property array. The user object
reference lets the script access the controls on the tab page.

The Parent pronoun in this script for the Tab control refers to the window:

long ll_row

string ls_name
tabpage_listbox luo_tabpage

IF TypeOf(source) = DataWindow! THEN
l_row = Parent.dw_2.GetRow()
ls_name = Parent.dw_2.Object.lname.Primary[ll_row]

// Get a reference from the Control property array
luo_tabpage = This.Control[index]

// Make the tab page the selected tab page
This.SelectTab(index)

// Insert the dragged information
luo_tabpage.lb_list.InsertItem(ls_name, 0)

END IF

Resource Guide 69

C H A P T E R 6 Using Lists and Tree Views in a
Window

About this chapter This chapter describes how to use lists to present information in an
application.

Contents

About presenting lists
You can choose a variety of ways to present lists in your application:

• ListBoxes display available choices that can be used for invoking an
action or viewing and displaying data.

• DropDownListBoxes also display available choices to the user.
However, you can make them editable to the user.

• ListView controls present lists in a combination of graphics and text.
You can allow the user to add, delete, edit, and rearrange ListView
items, or you can use them to invoke an action.

• TreeView controls also combine graphics and text in lists. The
difference is that TreeView controls show the hierarchical
relationship among the TreeView items. As with ListView controls,
you can allow the user to add, delete, edit, and rearrange TreeView
items. You can also use them to invoke actions.

Topic Page

About presenting lists 69

Using ListBox controls 70

Using DropDownListBox controls 71

Using ListView controls 72

Using TreeView controls 78

Using ListBox controls

70 PocketBuilder

Platform notes
Support is not available for pictures in list boxes on Windows CE platforms.

List boxes are automatically converted by PocketBuilder to spinner controls
when deployed to Smartphone platforms, and extended or multiple selections
for these controls are not supported. Arrow keys on a Smartphone allow the
user to navigate within list view or tree view controls, but you must program a
menu item to move the focus from one of these controls to a different control
in the same main window.

For more information on spinner controls, see the appendix on designing
applications for Windows CE platforms in the User’s Guide.

Using ListBox controls
You can present information to the user in simple lists with scrollbars.
Depending on how you design your application, the user can select one or more
list items to perform an action, based on the list selection.

You add ListBox controls to windows in the same way you add other controls:
select ListBox from the Insert>Control menu and click the window.

Adding items to list
controls

In the painter To add new items, use the control’s Items property page.

❖ To add items to a ListBox:

1 Select the Items tab in the Properties view for the control.

2 Enter the names of the items for the ListBox.

In a script Use the AddItem and InsertItem functions to dynamically add
items to a ListBox at runtime. AddItem adds items to the end of the list.
However, if the list is sorted, the item will then be moved to its position in the
sort order. Use InsertItem if you want to specify where in the list the item will
be inserted.

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 71

Table 6-1: Using the InsertItem and AddItem functions

For example, this script adds items to a ListBox:

This.AddItem ("Vaporware")
This.InsertItem ("Software",2)
This.InsertItem ("Hardware",2)
This.InsertItem ("Paperware",2)

Using the Sort property
You can set the control’s sort property to true or check the Sorted check box on
the General property page to ensure that the items in the list are always
arranged in ascending alphabetical order.

Using DropDownListBox controls
Drop-down lists are another way to present simple lists of information to the
user. You add DropDownListBox controls to windows in the same way you add
other controls: select DropDownListBox from the Insert>Control menu and
click the window.

Adding items to drop-
down list controls

In the painter Use the Items property page for the control to add items.

❖ To add items to a DropDownListBox or DropDownPictureListBox:

1 Select the Items tab in the Properties view for the control.

2 Enter the name of the items for the ListBox.

In a script Use the AddItem and InsertItem functions to dynamically add
items to a DropDownListBox at runtime.

AddItem adds items to the end of the list. However, if the list is sorted, the item
will then be moved to its position in the sort order. Use InsertItem if you want
to specify where in the list the item will be inserted.

Function You supply

InsertItem Item name

Position in which the item will be inserted

AddItem Item name

Using ListView controls

72 PocketBuilder

Table 6-2: Using the InsertItem and AddItem functions

This example inserts three items into a DropDownListBox in the first, second,
and third positions:

This.InsertItem ("Atropos", 1)
This.InsertItem ("Clotho", 2)
This.InsertItem ("Lachesis", 3)

Using the Sort property
You can set the control’s sort property to true to ensure that the items in the list
are always arranged in ascending sort order.

Using ListView controls
A ListView control allows you to display items and icons in a variety of
arrangements. You can display large icon or small icon freeform lists, or you
can display a vertical static list. You can also display additional information
about each list item by associating additional columns with each list item:

Figure 6-1: ListView control with additional columns

Function You supply

InsertItem Item name
Position in which the item will be inserted

AddItem Item name

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 73

ListView controls consist of ListView items, which are stored in an array. Each
ListView item consists of a:

• Label The name of the ListView item

• Index The position of the ListView item in the control

• Picture index The number that associates the ListView item with an
image

Depending on the style of the presentation, an item can be associated with
a large picture index and a small picture index.

• Overlay picture index The number that associates the ListView item
with an overlay picture

• State picture index The number that associates the ListView item with
a state picture

For more information about ListView items, picture indexes, and presentation
style, see the User’s Guide.

You add ListView controls to windows in the same way you add other controls:
select ListView from the Insert>Control menu and click the window.

Adding ListView items In the painter Use the Items property page for the control to add items.

❖ To add items to a ListView:

1 Select the Items tab in the Properties view for the control.

2 Enter a name and a picture index number for each of the items you want
to add to the ListView.

Note Setting the picture index for the first item to zero clears all the
settings on the tab page.

For more information about adding pictures to a ListView control, see
“Adding pictures to ListView controls” on page 74.

In a script Use the AddItem and InsertItem functions to add items to a
ListView dynamically at runtime. There are two levels of information you
supply when you add items to a ListView using AddItem or InsertItem.

Using ListView controls

74 PocketBuilder

You can add an item by supplying the picture index and label, as this example
shows:

lv_1.AddItem ("Item 1", 1)

or you can insert an item by supplying the item’s position in the ListView, label,
and picture index:

lv_1.InsertItem (1,"Item 2", 2)

You can add items by supplying the ListView item itself. This example in the
ListView’s DragDrop event inserts the dragged object into the ListView:

listviewitem lvi
This.GetItem(index, lvi)
lvi.label = "Test"
lvi.pictureindex = 1
This.AddItem (lvi)

You can insert an item by supplying the ListView position and ListView item:

listviewitem l_lvi
//Obtain the information for the
//second listviewitem
lv_list.GetItem(2, l_lvi)
//Change the item label to Entropy
//Insert the second item into the fifth position
lv_list.InsertItem (5, l_lvi)
lv_list.DeleteItem(2)

Adding pictures to
ListView controls

PocketBuilder stores ListView images in four image lists:

• Small picture index

• Large picture index

• State picture index

• Overlay picture index

You can associate a ListView item with these images when you create a
ListView in the painter, or you can use the AddItem and InsertItem at runtime.

However, before you can associate pictures with ListView items, they must be
added to the ListView control.

In the painter To add pictures, use the control’s Pictures and Items property
pages.

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 75

❖ To add pictures to a ListView control:

1 Select the Large Picture, Small Picture, or State tab in the Properties view
for the control.

Overlay images
You can add overlay images only to a ListView control in a script.

2 Select an image from the stock image list, or use the Browse button to
select a bitmap, cursor, or icon image.

3 Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask appears transparent in the
ListView.

4 Select a picture height and width for your image.

This controls the size of the image in the ListView.

Dynamically changing image size
The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties before you add any pictures when you create a
ListView. For more information about PictureHeight and PictureWidth,
see the online Help.

5 Repeat the procedure for the:

• Number of image types (large, small, and state) you plan to use in
your ListView

• Number of images for each type

In a script Use the functions in Table 6-3 to add pictures to a ListView
image.

Table 6-3: Functions that add pictures to a ListView image

Adding large and small pictures This example sets the height and width for
large and small pictures and adds three images to the large picture image list
and the small picture image list:

//Set large picture height and width

Function Adds a picture to this list

AddLargePicture Large image

AddSmallPicture Small image

AddStatePicture State image

Using ListView controls

76 PocketBuilder

lv_1.LargePictureHeight=32
lv_1.LargePictureWidth=32

//Add large pictures
lv_1.AddLargePicture("c:\ArtGal\bmps\celtic.bmp")
lv_1.AddLargePicture("c:\ArtGal\bmps\list.ico")
lv_1.AddLargePicture("Custom044!")

//Set small picture height and width
lv_1.SmallPictureHeight=16
lv_1.SmallPictureWidth=16

//Add small pictures
lv_1.AddSmallPicture("c:\ArtGal\bmps\celtic.bmp")
lv_1.AddSmallPicture("c:\ArtGal\bmps\list.ico")
lv_1.AddSmallPicture("Custom044!")

//Add items to the ListView
lv_1.AddItem("Item 1", 1)
lv_1.AddItem("Item 2", 1)
lv_1.AddItem("Item 3", 1)

Adding overlay pictures Use the SetOverLayPicture function to use a large
picture or small picture as an overlay for an item. This example adds a large
picture to a ListView, and then uses it for an overlay picture for a ListView
item:

listviewitem lvi_1
int li_index

//Add a large picture to a ListView
li_index = lv_list.AddLargePicture &

("c:\ArtGal\bmps\dil2.ico")

//Set the overlay picture to the
//large picture just added
lv_list.SetOverlayPicture (1, li_index)

//Use the overlay picture with a ListViewItem
lv_list.GetItem(lv_list.SelectedIndex (), lvi_1)
lvi_1.OverlayPictureIndex = 1
lv_list.SetItem(lv_list.SelectedIndex (), lvi_1)

Adding state pictures This example uses an item’s state picture index
property to set the state picture for the selected ListView item:

listviewitem lvi_1
lv_list.GetItem(lv_list.SelectedIndex (), lvi_1)

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 77

lvi_1.StatePictureIndex = 2
lv_list.SetItem(lv_list.SelectedIndex (), lvi_1)

Deleting ListView
items and pictures

You can delete items from a ListView one at a time with the DeleteItem
function, or you can use the DeleteItems function to purge all the items in a
ListView. Similarly, you can delete pictures one at a time with the
DeleteLargePicture, DeleteSmallPicture, and DeleteStatePicture functions, or
purge all pictures of a specific type by using the DeleteLargePictures,
DeleteSmallPictures, and DeleteStatePictures functions.

This example deletes one item and all the small pictures from a ListView:

int li_index
li_index = This.SelectedIndex()
This.DeleteItem (li_index)
This.DeleteSmallPictures ()

Using report view
ListView report view requires more information than the large icon, small icon,
and list view. To enable report view in a ListView control, you must write a
script that establishes columns with the AddColumn and SetColumn functions,
and then populate the columns using the SetItem function.

Populating columns Use AddColumn to create columns in a ListView. When you use the AddColumn
function, you specify the:

• Column label The name that will display in the column header

• Column alignment Whether the text will be left-aligned, right-aligned,
or centered

• Column size The width of the column in PowerBuilder units

This example creates three columns in a ListView:

This.AddColumn("Name", Left!, 1000)
This.AddColumn("Size", Left!, 400)
This.AddColumn("Date", Left!, 300)

Setting columns Use SetColumn to set the column number, name, alignment, and size:

This.SetColumn (1, "Composition", Left!, 860)
This.SetColumn (2, "Album", Left!, 610)
This.SetColumn (3, "Artist", Left!, 710")

Setting column items Use SetItem to populate the columns of a ListView:

This.SetItem (1, 1, "St.Thomas")

Using TreeView controls

78 PocketBuilder

This.SetItem (1, 2, "Saxophone Colossus")
This.SetItem (1, 3, "Sonny Rollins")
This.SetItem (2, 1, "So What")
This.SetItem (2, 2, "Kind of Blue")
This.SetItem (2, 3, "Miles Davis")
This.SetItem (3, 1, "Good-bye, Porkpie Hat")
This.SetItem (3, 2, "Mingus-ah-um")
This.SetItem (3, 3, "Charles Mingus")

Using TreeView controls
TreeView controls provide a way to represent hierarchical relationships within
a list. The TreeView provides a standard interface for expanding and collapsing
branches of a hierarchy:

Figure 6-2: TreeView control with pictures

When to use a
TreeView

You use TreeViews in windows and custom visual user objects. Choose a
TreeView instead of a ListBox or ListView when your information is more
complex than a list of similar items and when levels of information have a
one-to-many relationship. Choose a TreeView instead of a DataWindow
control when your user will want to expand and collapse the list using the
standard TreeView interface.

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 79

Hierarchy of items Although items in a TreeView can be a single, flat list like the report view of a
ListView, you tap the power of a TreeView when items have a one-to-many
relationship two or more levels deep. For example, your list might have one or
several parent categories with child items within each category, or the list
might have several levels of subcategories before getting to the end of a branch
in the hierarchy:

Root
Category 1

Subcategory 1a
Detail
Detail

Subcategory 1b
Detail
Detail

Category 2
Subcategory 2a

Detail

Number of levels in
each branch

You do not have to have the same number of levels in every branch of the
hierarchy if your data requires more levels of categorization in some branches.
However, programming for the TreeView is simpler if the items at a particular
level are the same type of item, rather than subcategories in some branches and
detail items in others.

For example, in scripts you might test the level of an item to determine
appropriate actions. You can call the SetLevelPictures function to set pictures
for all the items at a particular level.

Content sources for a
TreeView

For most of the list types in PocketBuilder, you can add items in the painter or
in a script, but for a TreeView, you have to write a script. Generally, you will
populate the first level (the root level) of the TreeView when its window opens.
When the user wants to view a branch, a script for the TreeView’s ItemPopulate
event can add items at the next levels.

The data for items can be hard-coded in the script, but it is more likely that you
will use the user’s own input or a database for the TreeView’s content. Because
of the one-to-many relationship of an item to its child items, you might use
several tables in a database to populate the TreeView.

For an example using DataStores, see “Using DataWindow information to
populate a TreeView” on page 97.

Using TreeView controls

80 PocketBuilder

Pictures for items Pictures are associated with individual items in a TreeView. You identify
pictures you want to use in the control’s picture lists and then associate the
index of the picture with an item. Generally, pictures are not unique for each
item. Pictures provide a way to categorize or mark items within a level. To help
the user understand the data, you might:

• Use a different picture for each level

• Use several pictures within a level to identify different types of items

• Use pictures on some levels only

• Change the picture after the user clicks on an item

Pictures are not required You do not have to use pictures if they do not
convey useful information to the user. Item labels and the levels of the
hierarchy might provide all the information the user needs.

Appearance of the
TreeView

You can control the appearance of the TreeView by setting property values.
Properties that affect the overall appearance are shown in Table 6-4.

Table 6-4: TreeView properties

For more information about these properties, see the online Help.

User interaction Basic TreeView functionality allows users to edit labels, delete items, expand
and collapse branches, and sort alphabetically, without any scripting on your
part. For example, the user can click a second time on a selected item to edit it,
or press the Delete key to delete an item. If you do not want to allow these
actions, properties let you disable them.

You can customize any of these basic actions by writing scripts. Events
associated with the basic actions let you provide validation or prevent an action
from completing. You can also implement other features such as adding items,
dragging items, and performing customized sorting.

Properties Effect when set

HasButtons Puts + and - buttons before items that have children, showing
the user whether the item is expanded or collapsed (use with
HasLines)

HasLines and
LinesAtRoot

Displays lines connecting items within a branch and
connecting items at the root level

SingleExpand Expands the selected item and collapses the previously
selected item automatically

Indent Sets the amount an item is indented

Font properties Specifies the font for all the labels

Various picture
properties

Controls the pictures and their size

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 81

Populating TreeViews
You must write a script to add items to a TreeView. You cannot add items in the
painter as with other list controls. Although you can populate all the levels of
the TreeView at once, TreeView events allow you to populate only branches
the user looks at, which saves unnecessary processing.

Typically, you populate the first level of the TreeView when the control is
displayed. This code might be in a window’s Open event, a user event triggered
from the Open event, or the TreeView’s Constructor event. Then a script for the
control’s ItemPopulate event would insert an item’s children when the user
chooses to expand it.

The ItemPopulate event is triggered when the user clicks on an item’s plus
button or double-clicks the item, but only if the item’s Children property is true.
Therefore, when you insert an item that will have children, you must set its
Children property to true so that it can be populated with child items when the
user expands it.

You are not restricted to adding items in the ItemPopulate event. For example,
you might let the user insert items by dragging from a ListBox or filling in a
text box.

Functions for inserting items

There are several functions for adding items to a TreeView control, as shown
in Table 6-5.

Table 6-5: Functions for adding items to TreeView control

For all the InsertItem functions, the SortType property can also affect the
position of the added item.

There are two ways to supply information about the item you add, depending
on the item properties that need to be set.

Method 1: specifying
the label and picture
index only

You can add an item by supplying the picture index and label. All the other
properties of the item will have default values. You can set additional
properties later as needed, using the item’s handle.

This function Adds an item here

InsertItem After a sibling item for the specified parent. If no siblings exist,
you must use one of the other insertion functions.

InsertItemFirst First child of the parent item.

InsertItemLast Last child of the parent item.

InsertItemSort As a child of the parent item in alphabetic order, if possible.

Using TreeView controls

82 PocketBuilder

Example This example inserts a new item after the currently selected item on
the same level as that item. First it gets the handles of the currently selected
item and its parent, and then it inserts an item labeled Hindemith after the
currently selected item. The item’s picture index is 2:

long ll_tvi, ll_tvparent
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
ll_tvparent = tv_list.FindItem(ParentTreeItem!, &

ll_tvi)
tv_list.InsertItem(ll_tvparent, ll_tvi, &

"Hindemith", 2)

Method 2: setting item
properties in a
TreeViewItem
structure

You can add items by supplying a TreeViewItem structure with properties set
to specific values. The only required property is a label. Properties you might
set are shown in Table 6-6.

Table 6-6: TreeViewItem properties

Example This example sets all these properties in a TreeViewItem structure
before adding the item to the TreeView control. The item is inserted as a child
of the current item:

treeviewitem tvi
long h_item = 0, h_parent = 0

h_parent = tv_1.FindItem(CurrentTreeItem!, 0)

tvi.Label = "Choral"
tvi.PictureIndex = 1
tvi.SelectedPictureIndex = 2

Property Value

Label The text that is displayed for the item.

PictureIndex A value from the regular picture list.

SelectedPictureIndex A value from the regular picture list, specifying a picture
that is displayed only when the item is selected. If 0, no
picture is displayed for the item when selected.

StatePictureIndex A value from the State picture list. The picture is displayed
to the left of the regular picture.

Children Must be true if you want double-clicking to trigger the
ItemPopulate event. That event script can insert child items.

Data An optional value of any datatype that you want to associate
with the item. You might use the value to control sorting or
to make a database query.

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 83

tvi.Children = true
tvi.StatePictureIndex = 0

h_item = tv_1.InsertItemSort(h_parent, tvi)

Inserting items at the root level

The very first item you insert does not have any sibling for specifying a relative
position, so you cannot use the InsertItem function. You must use InsertItemFirst
or InsertItemLast. For an item inserted at the root level, you specify 0 as its
parent.

This sample code is in a user event triggered from the Open event of the
window containing the TreeView. It assumes two instance variable arrays:

• A string array called item_label that contains labels for all the items that
will be inserted at the root level (here, composer names)

• An integer array that has values for the Data property (the century for each
composer); the century value is for user-defined sorting:

int ct
long h_item = 0
treeviewitem tvi

FOR ct = 1 TO UpperBound(item_label)
tvi.Label = item_label[ct]
tvi.Data = item_data[ct]
tvi.PictureIndex = 1
tvi.SelectedPictureIndex = 2
tvi.Children = TRUE
tvi.StatePictureIndex = 0
tvi.DropHighlighted = TRUE

h_item = tv_1.InsertItemSort(0, tvi)
NEXT

After inserting all the items, this code scrolls the TreeView back to the top and
makes the first item current:

// Scroll back to top
h_item = tv_1.FindItem(RootTreeItem!, 0)
tv_1.SetFirstVisible(h_item)
tv_1.SelectItem(h_item)

Using TreeView controls

84 PocketBuilder

Inserting items below the root level

The first time a user tries to expand an item to see its children, PocketBuilder
triggers the ItemPopulate event if and only if the value of the item’s Children
property is true. In the ItemPopulate event, you can add child items for the item
being expanded.

Parent item’s Children property
If the ItemPopulate event does not occur when you expect, make sure the
Children property for the expanding item is true. It should be set to true for any
item that will have children.

Inserting items not restricted to the ItemPopulate event The
ItemPopulate event helps you design an efficient program. It will not populate
an item that the user never looks at. However, you do not have to wait until the
user wants to view an item’s children. You can add children in any script, just
as you added items at the root level.

For example, you might fully populate a small TreeView when its window
opens and use the ExpandAll function to display its items fully expanded.

Has an item been populated? You can check an item’s ExpandedOnce
property to find out if the user has looked at the item’s children. If the user is
currently looking at an item’s children, the Expanded property is also true.

Example This TreeView lists composers and their music organized into
categories. The script for its ItemPopulate event checks whether the item being
expanded is at level 1 (a composer) or level 2 (a category). Level 3 items are
not expandable.

For a level 1 item, the script adds three standard categories. For a level 2 item,
it adds pieces of music to the category being expanded, in this pattern:

Mozart
Orchestral
Symphony No. 33
Overture to the Magic Flute
Chamber
Quintet in Eb for Horn and Strings
Eine Kleine Nachtmusik
Vocal
Don Giovanni
Idomeneo

This is the script for ItemPopulate:

TreeViewItem tvi_current, tvi_child, tvi_root

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 85

long hdl_root
Integer ct
string categ[]

// The current item is the parent for the new items
This.GetItem(handle, tvi_current)

IF tvi_current.Level = 1 THEN
// Populate level 2 with some standard categories
categ[1] = "Orchestral"
categ[2] = "Chamber"
categ[3] = "Vocal"

tvi_child.StatePictureIndex = 0
tvi_child.PictureIndex = 3
tvi_child.SelectedPictureIndex = 4
tvi_child.OverlayPictureIndex = 0
tvi_child.Children = TRUE

FOR ct = 1 to UpperBound(categ)
tvi_child.Label = categ[ct]
This.InsertItemLast(handle, tvi_child)

NEXT
END IF

// Populate level 3 with music titles
IF tvi_current.Level = 2 THEN

// Get parent of current item - it's the root of
// this branch and is part of the key for choosing
// the children

hdl_root = This.FindItem(ParentTreeItem!, handle)
This.GetItem(hdl_root, tvi_root)

FOR ct = 1 to 4
// This statement constructs a label -
// it is more realistic to look up data in a
// table or database or accept user input
This.InsertItemLast(handle, &
tvi_root.Label + " Music " &
+ tvi_current.Label + String(ct), 3)

NEXT
END IF

Using TreeView controls

86 PocketBuilder

Managing TreeView items
An item in a TreeView is a TreeViewItem structure. The preceding section
described how to set the item’s properties in the structure and then insert it into
the TreeView.

This code declares a TreeViewItem structure and sets several properties:

TreeViewItem tvi_defined
tvi_defined.Label = "Symphony No. 3 Eroica"
tvi_defined.StatePictureIndex = 0
tvi_defined.PictureIndex = 3
tvi_defined.SelectedPictureIndex = 4
tvi_defined.OverlayPictureIndex = 0
tvi_defined.Children = TRUE

For information about Picture properties, see “Managing TreeView pictures”
on page 94.

When you insert an item, the inserting function returns a handle to that item.
The TreeViewItem structure is copied to the TreeView control, and you no
longer have access to the item’s properties:

itemhandle = This.InsertItemLast(parenthandle, &
tvi_defined)

Procedure for items:
get, change, and set

If you want to change the properties of an item in the TreeView, you:

1 Get the item, which assigns it to a TreeViewItem structure.

2 Make the changes, by setting TreeViewItem properties.

3 Set the item, which copies it back into the TreeView.

When you work with items that have been inserted in the TreeView, you work
with item handles. Most TreeView events pass one or two handles as
arguments. The handles identify the items the user is interacting with.

This code for the Clicked event uses the handle of the clicked item to copy it
into a TreeViewItem structure whose property values you can change:

treeviewitem tvi
This.GetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
This.SetItem(handle, tvi)

Important
Remember to call the SetItem function after you change an item’s property
value. Otherwise, nothing happens in the TreeView.

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 87

Items and the
hierarchy

You can use item handles with the FindItem function to navigate the TreeView
and uncover its structure. The item’s properties tell you what its level is, but not
which item is its parent. The FindItem function does:

long h_parent
h_parent = This.FindItem(ParentTreeItem!, handle)

You can use FindItem to find the children of an item or to navigate through
visible items regardless of level.

For more information, see the FindItem function in the online Help.

Enabling TreeView
functionality in scripts

By setting TreeView properties, you can enable or disable user actions like
deleting or renaming items without writing any scripts. You can also enable
these actions by calling functions. You can:

• Delete items

• Rename items

• Move items using drag and drop

• Sort items

Deleting items

To allow the user to delete items, enable the TreeView’s DeleteItems property.
When the user presses the Delete key, the selected item is deleted and the
DeleteItem event is triggered. Any children are deleted too.

If you want more control over deleting, such as allowing deleting of detail
items only, you can call the DeleteItem function instead of setting the property.
The function also triggers the DeleteItem event.

Example This script is for a TreeView user event. Its event ID is pbm_keydown and it is
triggered by key presses when the TreeView has focus. The script checks
whether the Delete key is pressed and whether the selected item is at the detail
level. If both are true, it deletes the item.

The value of the TreeView’s DeleteItems property is false. Otherwise, the user
can delete any item, despite this code:

TreeViewItem tvi
long h_item

IF KeyDown(KeyDelete!) = TRUE THEN
h_item = This.FindItem(CurrentTreeItem!, 0)
This.GetItem(h_item, tvi)

Using TreeView controls

88 PocketBuilder

IF tvi.Level = 3 THEN
This.DeleteItem(h_item)

END IF
END IF
RETURN 0

Renaming items

If you enable the TreeView’s EditLabels property, the user can edit an item
label by clicking twice on the text.

Events There are two events associated with editing labels.

The BeginLabelEdit event occurs after the second click when the EditLabels
property is set or when the EditLabel function is called. You can disallow
editing with a return value of 1.

This script for BeginLabelEdit prevents changes to labels of level 2 items:

TreeViewItem tvi
This.GetItem(handle, tvi)
IF tvi.Level = 2 THEN

RETURN 1
ELSE

RETURN 0
END IF

The EndLabelEdit event occurs when the user finishes editing by pressing
ENTER, clicking on another item, or clicking in the text entry area of another
control. A script you write for the EndLabelEdit event might validate the user’s
changes—for example, it could invoke a spelling checker.

EditLabel function For control over label editing, the BeginLabelEdit event can prohibit editing of
a label, as shown above. Alternatively, you can set the EditLabels property to
false and call the EditLabel function when you want to allow a label to be edited.

When you call the EditLabel function, the BeginLabelEdit event occurs when
editing begins and the EndLabelEdit event occurs when the user presses enter
or clicks another item.

This code for a CommandButton puts the current item into editing mode:

long h_tvi
h_tvi = tv_1.findItem(CurrentTreeItem!, 0)
tv_1.EditLabel(h_tvi)

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 89

Moving items using drag and drop

At the window level, PocketBuilder provides functions and properties for
dragging controls onto other controls. Within the TreeView, you can also let the
user drag items onto other items. Users might drag items to sort them, move
them to another branch, or put child items under a parent.

Platform notes
Actions that require an application user to drag a control should be avoided
since these actions are not very practical for users of handheld devices.
Although you can script calls to drag events on Smartphone platforms, controls
cannot be moved with a mouse or stylus, and the user has no direct way of
dragging a control.

When you implement drag and drop as a way to move items, you decide
whether the dragged item becomes a sibling or child of the target, whether the
dragged item is moved or copied, and whether its children get moved with it.

There are several properties and events that you need to coordinate to
implement drag and drop for items, as shown in Table 6-7.

Table 6-7: Drag-and-drop properties and events

Example The key to a successful drag-and-drop implementation is in the details. This
section illustrates one way of moving items. In the example, the dragged item
becomes a sibling of the drop target, inserted after it. All children of the item
are moved with it, and the original item is deleted.

A function called recursively moves the children, regardless of the number of
levels. To prevent an endless loop, an item cannot become a child of itself. This
means a drop target that is a child of the dragged item is not allowed.

Property or event Setting or purpose

DragAuto property True or false. If false, you must call the Drag function in the
BeginDrag event.

DisableDragDrop
property

False.

DragIcon property An appropriate icon, or None!, which means the user drags an
image of the item.

BeginDrag event Script for saving the handle of the dragged item and
optionally preventing particular items from being dragged.

DragWithin event Script for highlighting drop targets.

DragDrop event Script for implementing the result of the drag operation.

Using TreeView controls

90 PocketBuilder

BeginDrag event The script saves the handle of the dragged item in an
instance variable:

ll_dragged_tvi_handle = handle

If you want to prevent some items from being dragged—such as items at a
particular level—that code goes here too:

TreeViewItem tvi
This.GetItem(handle, tvi)
IF tvi.Level = 3 THEN This.Drag(Cancel!)

DragWithin event The script highlights the item under the cursor so the user
can see each potential drop target. If only some items are drop targets, your
script should check an item’s characteristics before highlighting it. In this
example, you can check whether an item is a parent of the dragged item and
highlight it only if it is not:

TreeViewItem tvi
This.GetItem(handle, tvi)
tvi.DropHighlighted = TRUE
This.SetItem(handle, tvi)

DragDrop event This script does all the work. It checks whether the item can
be inserted at the selected location and inserts the dragged item in its new
position—a sibling after the drop target. Then it calls a function that moves the
children of the dragged item too:

TreeViewItem tvi_src, tvi_child
long h_parent, h_gparent, h_moved, h_child
integer rtn

// Get TreeViewItem for dragged item
This.GetItem(ll_dragged_tvi_handle, tvi_src)

// Don't allow moving an item into its own branch,
// that is, a child of itself
h_gparent = This.FindItem(ParentTreeItem!, handle)

DO WHILE h_gparent <> -1
IF h_gparent = ll_dragged_tvi_handle THEN

MessageBox("No Drag", &
"Can't make an item a child of itself.")
RETURN 0

END IF
h_gparent=This.FindItem(ParentTreeItem!, h_gparent)

LOOP

// Get item parent for inserting

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 91

h_parent = This.FindItem(ParentTreeItem!, handle)
// Use 0 if no parent because target is at level 1
IF h_parent = -1 THEN h_parent = 0

// Insert item after drop target
h_moved = This.InsertItem(h_parent, handle, tvi_src)
IF h_moved = -1 THEN

MessageBox("No Dragging", "Could not move item.")
RETURN 0

ELSE
// Args: old parent, new parent
rtn = uf_movechildren(ll_dragged_tvi_handle, &

h_moved)

/ If all children are successfully moved,
// delete original item

IF rtn = 0 THEN
This.DeleteItem(ll_dragged_tvi_handle)

END IF
END IF

The DragDrop event script shown above calls the function uf_movechildren.
The function calls itself recursively so that all the levels of children below the
dragged item are moved:

// Function: uf_movechildren
// Arguments:
// oldparent - Handle of item whose children are
// being moved. Initially, the dragged item in its
// original position
//
// newparent - Handle of item to whom children are
// being moved. Initially, the dragged item in its
// new position.

long h_child, h_movedchild
TreeViewItem tvi

// Return -1 if any Insert action fails

// Are there any children?
h_child = tv_2.FindItem(ChildTreeItem!, oldparent)
IF h_child <> -1 THEN

tv_2.GetItem(h_child, tvi)

Using TreeView controls

92 PocketBuilder

h_movedchild = tv_2.InsertItemLast(newparent, tvi)
IF h_movedchild = -1 THEN RETURN -1

// Move the children of the child that was found
uf_movechildren(h_child, h_movedchild)

// Check for more children at the original level
h_child = tv_2.FindItem(NextTreeItem!, h_child)
DO WHILE h_child <> -1

tv_2.GetItem(h_child, tvi)
h_movedchild= tv_2.InsertItemLast(newparent,tvi)
IF h_movedchild = -1 THEN RETURN -1
uf_movechildren(h_child, h_movedchild)

// Any more children at original level?
h_child = tv_2.FindItem(NextTreeItem!, h_child)

LOOP
END IF
RETURN 0 // Success, all children moved

Sorting items

A TreeView can sort items automatically, or you can control sorting manually.
Manual sorting can be alphabetic by label text, or you can implement a
user-defined sort to define your own criteria. The SortType property controls
the way items are sorted. Its values are of the enumerated datatype grSortType.

Automatic alphabetic sorting To enable sorting by the text label, set the
SortType property to Ascending! or Descending!. Inserted items are sorted
automatically.

Manual alphabetic sorting For more control over sorting, you can set
SortType to Unsorted! and sort by calling the functions in Table 6-8.

Table 6-8: TreeView sorting functions

If users will drag items to organize the list, you should disable sorting.

Sorting by other criteria To sort items by criteria other than their labels,
implement a user-defined sort by setting the SortType property to
UserDefinedSort! and writing a script for the Sort event. The script specifies
how to sort items.

Use this function To do this

InsertItemSort Insert an item at the correct alphabetic position, if possible

Sort Sort the immediate children of an item

SortAll Sort the whole branch below an item

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 93

PocketBuilder triggers the Sort event for each pair of items it tries to reorder.
The Sort script returns a value reporting which item is greater than the other.
The script can have different rules for sorting, based on the type of item. For
example, level 2 items can be sorted differently from level 3. The TreeView is
sorted whenever you insert an item.

Example of Sort event This sample script for the Sort event sorts the first level by the value of the Data
property and other levels alphabetically by their labels. The first level displays
composers chronologically, and the Data property contains an integer
identifying a composer’s century:

//Return values
//-1 Handle1 is less than handle2
// 0 Handle1 is equal to handle2
// 1 Handle1 is greater than handle2

TreeViewItem tvi1, tvi2

This.GetItem(handle1, tvi1)
This.GetItem(handle2, tvi2)

IF tvi1.Level = 1 THEN
// Compare century values stored in Data property
IF tvi1.data > tvi2.Data THEN

RETURN 1
ELSEIF tvi1.data = tvi2.Data THEN

RETURN 0
ELSE

RETURN -1
END IF
ELSE
// Sort other levels in alpha order
IF tvi1.Label > tvi2.Label THEN

RETURN 1
ELSEIF tvi1.Label = tvi2.Label THEN

RETURN 0
ELSE

RETURN -1
END IF

END IF

Using TreeView controls

94 PocketBuilder

Managing TreeView pictures
PocketBuilder stores TreeView images in three image lists:

• Picture list (called the regular picture list here)

• State picture list

• Overlay picture list

You add pictures to these lists and associate them with items in the TreeView.

Pictures for items

There are several ways to use pictures in a TreeView. You associate a picture
in one of the picture lists with an item by setting one of the item’s picture
properties, described in Table 6-9.

Table 6-9: TreeView picture properties

Property Purpose

PictureIndex The primary picture associated with the item is displayed
just to the left of the item’s label.

StatePictureIndex A state picture is displayed to the left of the regular picture.
The item moves to the right to make room for the state
picture. If the Checkboxes property is true, the state picture
is replaced by a pair of check boxes.

Because a state picture takes up room, items without state
pictures will not align with items that have pictures. So that
all items have a state picture and stay aligned, you can use a
blank state picture for items that do not have a state to be
displayed.

A use for state pictures might be to display a check mark
beside items the user has chosen.

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 95

How to set pictures You can change the pictures for all items at a particular
level with the SetLevelPictures function, or you can set the picture properties
for an individual item.

If you do not want pictures Your TreeView does not have to use pictures for
items. If an item’s picture indexes are 0, no pictures are displayed. However,
the TreeView always leaves room for the regular picture.

You can set the PictureWidth property to 0 to eliminate that space:

tv_2.DeletePictures()
tv_2.PictureWidth = 0

Setting up picture lists

You can add pictures to the regular and state picture lists in the painter or at
runtime. At runtime, you can assign pictures in the regular picture list to the
overlay list.

Mask color The mask color is a color used in the picture that becomes transparent when the
picture is displayed. Usually you should pick the picture’s background color so
that the picture blends with the color of the TreeView.

OverlayPictureIndex An overlay picture is displayed on top of an item’s regular
picture.

You set up the overlay picture list in a script by designating
a picture in the regular picture list for the overlay picture
list.

An overlay picture is the same size as a regular picture, but
it often uses a small portion of the image space so that it only
partially covers the regular picture. A typical use of overlay
pictures is the arrow marking shortcut items in the Windows
Explorer.

SelectedPictureIndex A picture from the regular picture list that is displayed in
place of the regular picture when the item is the current
item. When the user selects another item, the first item gets
its regular picture and the new item displays its selected
picture.

If you do not want a different picture when an item is
current, set SelectedPictureIndex to the same value as
PictureIndex.

Property Purpose

Using TreeView controls

96 PocketBuilder

Before you add a picture, in the painter or in a script, you can set the mask color
to a color appropriate for that picture. This statement sets the mask color to
white, which is right for a picture with a white background:

tv_1.PictureMaskColor = RGB(255, 255, 255)

Each picture can have its own mask color. A picture uses the color that is in
effect when the picture is inserted. To change a picture’s mask color, you have
to delete the picture and add it again.

Image size In the painter you can change the image size at any time by setting the Height
and Width properties on each picture tab. All the pictures in the list are scaled
to the specified size.

At runtime, you can change the image size for a picture list only when that list
is empty. The DeletePictures and DeleteStatePictures functions let you clear the
lists.

Example This sample code illustrates how to change properties and add pictures to the
regular picture list at runtime. Use similar code for state pictures:

tv_list.DeletePictures()
tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

tv_list.PictureMaskColor = RGB(255,255,255)
tv_list.AddPicture("c:\apps_pb\kelly.bmp")

tv_list.PictureMaskColor = RGB(255,0,0)
tv_list.AddPicture("Custom078!")
tv_list.PictureMaskColor = RGB(128,128,128)
tv_list.AddPicture("Custom044!")

How picture deletion
affects existing items

Deleting pictures from the picture lists can have an unintended effect on item
pictures being displayed. When you delete pictures, the remaining pictures in
the list are shifted to remove gaps in the list. The remaining pictures get a
different index value. This means items that use these indexes get new images.

Deleting pictures from the regular picture list also affects the overlay list, since
the overlay list is not a separate list but points to the regular pictures.

To avoid unintentional changes to item pictures, it is best to avoid deleting
pictures after you have begun using picture indexes for items.

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 97

Using overlay pictures

The pictures in the overlay list come from the regular picture list. First you
must add pictures to the regular list, either in the painter or at runtime. Then, at
runtime, you specify pictures for the overlay picture list. After that you can
assign an overlay picture to items, either individually or with the
SetLevelPictures function.

This code adds a picture to the regular picture list and then assigns it to the
overlay list:

integer idx
idx = tv_1.AddPicture("Custom085!")
IF tv_1.SetOverlayPicture(1, idx) <> 1 THEN

sle_get.Text = "Setting overlay picture failed"
END IF

This code for the Clicked event turns the overlay picture on or off each time the
user clicks an item:

treeviewitem tvi
This.GetItem(handle, tvi)
IF tvi.OverlayPictureIndex = 0 THEN

tvi.OverlayPictureIndex = 1
ELSE

tvi.OverlayPictureIndex = 0
END IF
This.SetItem(handle, tvi)

Using DataWindow information to populate a TreeView
A useful implementation of the TreeView control is to populate it with
information that you retrieve from a DataWindow. To do this, your application
must:

• Declare and instantiate a DataStore and assign a DataWindow object

• Retrieve information as needed

• Use the retrieved information to populate the TreeView

• Destroy the DataStore instance when you have finished

Because a TreeView can display different types of information at different
levels, you will probably define additional DataWindows, one for each level.
Those DataWindows usually refer to different but related tables. When an item
is expanded, the item becomes a retrieval argument for getting child items.

Using TreeView controls

98 PocketBuilder

Populating the first
level

This example populates a TreeView with a list of composers. The second level
of the TreeView displays music by each composer. In the database there are
two tables: composer names and music titles (with composer name as a foreign
key).

This example declares two DataStore instance variables for the window
containing the TreeView control:

datastore ids_data, ids_info

This example uses the TreeView control’s Constructor event to:

• Instantiate the DataStore

• Associate it with a DataWindow and retrieve information

• Use the retrieved data to populate the root level of the TreeView:

//Constructor event for tv_1
treeviewitem tvi1, tvi2
long ll_lev1, ll_lev2, ll_rowcount, ll_row

//Create instance variable datastore
ids_data = CREATE datastore
ids_data.DataObject = "d_composers"
ids_data.SetTransObject(SQLCA)
ll_rowcount = ids_data.Retrieve()

//Create the first level of the TreeView
tvi1.PictureIndex = 1
tvi1.Children = TRUE

//Populate the TreeView with
//data retrieved from the datastore
FOR ll_row = 1 to ll_rowcount

tvi1.Label = ids_data.GetItemString(ll_row, &
'name')
This.InsertItemLast(0, tvi1)

NEXT

Populating the second
level

When the user expands a root level item, the ItemPopulate event occurs. This
script for the event:

• Instantiates a second DataStore

Its DataWindow uses the composer name as a retrieval argument for the
music titles table.

• Inserts music titles as child items for the selected composer

CHAPTER 6 Using Lists and Tree Views in a Window

Resource Guide 99

The handle argument of ItemPopulate will be the parent of the new items:

//ItemPopulate event for tv_1
TreeViewItem tvi1, tvi2
long ll_row, ll_rowcount

//Create instance variable datastore
ids_info = CREATE datastore
ids_info.DataObject = "d_music"
ids_info.SetTransObject(SQLCA)

//Use the label of the item being populated
// as the retrieval argument
This.GetItem(handle, tvi1)
ll_rowcount = ids_info.Retrieve(tvi1.Label)

//Use information retrieved from the database
//to populate the expanded item
FOR ll_row = 1 to ll_rowcount

This.InsertItemLast(handle, &
ids_info.GetItemString(ll_row, &
music_title'), 2)

LOOP

Destroying DataStore
instances

When the window containing the TreeView control closes, this example
destroys the DataStore instances:

//Close event for w_treeview
DESTROY ids_data
DESTROY ids_info

Using TreeView controls

100 PocketBuilder

Resource Guide 101

C H A P T E R 7 Manipulating Graphs in Windows

About this chapter This chapter describes how to write code that allows you to access and
change a graph in your application at runtime.

Contents

Using graphs
In PocketBuilder, there are two ways to display graphs:

• In a DataWindow, using data retrieved from the DataWindow data
source

• In a graph control in a window or user object, using data supplied by
your application code

This chapter discusses the graph control and describes how your
application code can supply data for the graph and manipulate its
appearance.

For information about graphs in DataWindows, see Chapter 12,
“Manipulating Graphs in DataWindows,” and the online Help.

To learn about designing graphs and setting graph properties in the
painters, see the User’s Guide.

Working with graph controls in code
Graph controls in a window can be enabled or disabled, visible or
invisible, and can be used in drag and drop. You can also write code that
uses events of graph controls and additional graph functions.

Topic Page

Using graphs 101

Populating a graph with data 103

Modifying graph properties 105

Accessing data properties 107

Using graphs

102 PocketBuilder

Properties of graph
controls

You can access (and optionally modify) a graph by addressing its properties in
code at runtime. There are two kinds of graph properties:

• Properties of the graph definition itself These properties are initially
set in the painter when you create a graph. They include a graph’s type,
title, axis labels, whether axes have major divisions, and so on.

• Properties of the data These properties are relevant only at runtime,
when data has been loaded into the graph. They include the number of
series in a graph (series are created at runtime), colors of bars or columns
for a series, whether the series is an overlay, text that identifies the
categories (categories are created at runtime), and so on.

Events of graph
controls

Graph controls have the events listed in Table 7-1.

Table 7-1: Graph control events

So, for example, you can write a script that is invoked when a user clicks a
graph or drags an object on a graph (as long as the graph is enabled).

Functions for graph
controls

You use the PowerScript graph functions in Table 7-2 to manipulate data in a
graph.

Table 7-2: PowerScript graph functions

Clicked DragLeave

Constructor DragWithin

Destructor GetFocus

DoubleClicked LoseFocus

DragDrop Other

DragEnter RButtonDown

Function Action

AddCategory Adds a category

AddData Adds a data point

AddSeries Adds a series

DeleteCategory Deletes a category

DeleteData Deletes a data point

DeleteSeries Deletes a series

ImportClipboard Copies data from the clipboard to a graph

ImportFile Copies the data in a text file to a graph

ImportString Copies the contents of a string to a graph

InsertCategory Inserts a category before another category

InsertData Inserts a data point before another data point in a series

InsertSeries Inserts a series before another series

CHAPTER 7 Manipulating Graphs in Windows

Resource Guide 103

Populating a graph with data
This section shows how you can populate an empty graph with data.

Using AddSeries You use AddSeries to create a series. AddSeries has this syntax:

graphName.AddSeries (seriesName)

AddSeries returns an integer that identifies the series that was created. The first
series is numbered 1, the second is 2, and so on. Typically you use this number
as the first argument in other graph functions that manipulate the series.

To create a series named Stellar, code:

int SNum
SNum = gr_1.AddSeries("Stellar")

Using AddData You use AddData to add data points to a specified series. AddData has this
syntax:

graphName.AddData (seriesNumber, value, categoryLabel)

The first argument to AddData is the number assigned by PocketBuilder to the
series. To add two data points to the Stellar series, whose number is stored by
the variable SNum (as shown above), code:

gr_1.AddData(SNum, 12, "Q1") // Category is Q1
gr_1.AddData(SNum, 14, "Q2") // Category is Q2

Getting a series number
You can use the FindSeries function to determine the number PocketBuilder
has assigned to a series. FindSeries returns the series number. This is useful
when you write general-purpose functions to manipulate graphs.

An example Suppose you want to graph quarterly printer sales. Here is a script that
populates the graph with data:

gr_1.Reset(All!) // Resets the graph.
// Create first series and populate with data.

ModifyData Changes the value of a data point

Reset Resets the graph’s data

Function Action

Populating a graph with data

104 PocketBuilder

int SNum
SNum = gr_1.AddSeries("Stellar")
gr_1.AddData(SNum, 12, "Q1") // Category is Q1.
gr_1.AddData(SNum, 14, "Q2") // Category is Q2.
gr_1.Adddata(SNum, 18, "Q3") // Category is Q3.
gr_1.AddData(SNum, 25, "Q4") // Category is Q4.
// Create second series and populate with data.
SNum = gr_1.AddSeries("Cosmic")

// Use the same categories as for series 1 so the data
// appears next to the series 1 data.
gr_1.AddData(SNum, 18, "Q1")
gr_1.AddData(SNum, 24, "Q2")
gr_1.Adddata(SNum, 38, "Q3")
gr_1.AddData(SNum, 45, "Q4")

// Create third series and populate with data.
SNum = gr_1.AddSeries("Galactic")
gr_1.AddData(SNum, 44, "Q1")
gr_1.AddData(SNum, 44, "Q2")
gr_1.Adddata(SNum, 58, "Q3")
gr_1.AddData(SNum, 65, "Q4")

Figure 7-1shows the resulting graph.

Figure 7-1: Quarterly printer sales

You can add, modify, and delete data in a graph in a window through graph
functions anytime during execution.

For more information For complete information about each graph function, see the online Help.

CHAPTER 7 Manipulating Graphs in Windows

Resource Guide 105

Modifying graph properties
When you define a graph in the Window or User Object painter, you specify its
behavior and appearance. For example, you might define a graph as a column
graph with a certain title, divide its Value axis into four major divisions, and so
on. Each of these entries corresponds to a property of a graph. For example, all
graphs have an enumerated attribute GraphType, which specifies the type of
graph.

When dynamically changing the graph type
If you change the graph type, be sure to change other properties as needed to
define the new graph properly.

You can change these graph properties at runtime by assigning values to the
graph’s properties in scripts. For example, to change the type of the graph
gr_emp to Column, you could code:

gr_emp.GraphType = ColGraph!

To change the title of the graph at runtime, you could code:

gr_emp.Title = "New title"

How parts of a graph are represented
Graphs consist of parts: a title, a legend, and axes. Each of these parts has a set
of display properties. These display properties are themselves stored as
properties in a subobject (structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the title’s text.
Graphs also have a property TitleDispAttr, of type grDispAttr, which itself
contains properties that specify all the characteristics of the title text, such as
the font, size, whether the text is italicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These
properties are stored in a subobject (structure) of Graph called grAxis. For
example, graphs have a property Values of type grAxis, which contains
properties that specify the properties of the Value axis, such as whether to use
autoscaling of values, the number of major and minor divisions, the axis label,
and so on.

Modifying graph properties

106 PocketBuilder

Here is a representation of the properties of a graph:

Graph
int Height
int Depth
grGraphType GraphType
boolean Border
string Title
…

grDispAttr TitleDispAttr, LegendDispAttr, PieDispAttr
string FaceName
int TextSize
boolean Italic
…

grAxis Values, Category, Series
boolean AutoScale
int MajorDivisions
int MinorDivisions
string Label
…

Referencing parts of a graph
You use dot notation to reference these display properties. For example, one of
the properties of a graph’s title is whether the text is italicized or not. That
information is stored in the boolean Italic property in the TitleDispAttr
property of the graph.

For example, to italicize the title of graph gr_emp, code:

gr_emp.TitleDispAttr.Italic = TRUE

Similarly, to turn on autoscaling of a graph’s Values axis, code:

gr_emp.Values.Autoscale = TRUE

To change the label text for the Value axis, code:

gr_emp.Values.Label = "New label"

To change the alignment of text in the Value axis’s label text, code:

gr_emp.Values.LabelDispAttr.Alignment = Left!

For a complete list of graph properties, see the online Help for the graph
control.

CHAPTER 7 Manipulating Graphs in Windows

Resource Guide 107

Accessing data properties
To access properties related to a graph’s data during execution, you use
PowerScript graph functions. The graph functions related to data fall into
several categories:

• Functions that provide information about a graph’s data

• Functions that save data from a graph

• Functions that change the color, fill patterns, and other visual properties of
data

How to use the
functions

To call functions for a graph in a graph control, use the following syntax:

graphControlName.FunctionName (Arguments)

For example, to get a count of the categories in the window graph gr_printer,
code:

Ccount = gr_printer.CategoryCount()

Different syntax for graphs in DataWindows
The syntax for the same functions is more complex when the graph is in a
DataWindow, like this:

DataWindowName.FunctionName ("graphName", otherArguments…)

For more information, see Chapter 12, “Manipulating Graphs in
DataWindows.”

Getting information about the data
The PowerScript functions in Table 7-3 allow you to get information about data
in a graph at runtime.

Table 7-3: PowerScript functions for information at runtime

Function Information provided

CategoryCount The number of categories in a graph

CategoryName The name of a category, given its number

DataCount The number of data points in a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

GetData The value of a data point, given its series and position
(superseded by GetDataValue, which is more flexible)

Accessing data properties

108 PocketBuilder

Saving graph data
The PowerScript functions in Table 7-4 allow you to save data from the graph.

Table 7-4: PowerScript functions for saving graph data

Modifying colors, fill patterns, and other data
The PowerScript functions in Table 7-5 allow you to modify the appearance of
data in a graph.

Table 7-5: PowerScript functions for changing appearance of data

GetDataPieExplode The percentage of the pie's radius that the pie slice is to be
moved away from the center (exploded)

GetDataStyle The color, fill pattern, or other visual property of a specified
data point

GetDataValue The value of a data point, given its series and position

GetSeriesStyle The color, fill pattern, or other visual property of a specified
series

SeriesCount The number of series in a graph

SeriesName The name of a series, given its number

Function Information provided

Function Action

Clipboard Copies a bitmap image of the specified graph to the
clipboard

SaveAs Saves the data in the underlying graph to the clipboard or to
a file in one of a number of formats

Function Action

ResetDataColors Resets the color for a specific data point

SetDataPieExplode Explodes a slice in a pie graph

SetDataStyle Sets the color, fill pattern, or other visual property for a
specific data point

SetSeriesStyle Sets the color, fill pattern, or other visual property for a
series

P A R T 3 Programming
DataWindows and
DataStores

This part describes techniques for using DataWindow
objects and DataStores to implement data access features
in the applications you develop with PocketBuilder.

Resource Guide 111

C H A P T E R 8 About DataWindow Technology

About this chapter This chapter describes what DataWindow objects are and the ways you
can use them in various application architectures and programming
environments.

Contents

About DataWindow objects and controls
DataWindow technology is implemented in two parts:

• A DataWindow object The DataWindow object defines the data
source and presentation style for the data.

• A DataWindow control The DataWindow control is a visual
container for a DataWindow object. You write code that calls
methods of the container to manipulate the DataWindow object.

You can also use a DataStore object as a nonvisual container for a
DataWindow object. DataStores provide DataWindow functionality for
retrieving and manipulating data without the onscreen display. For more
information about DataStore objects, see Chapter 11, “Using DataStore
Objects.”

Topic Page

About DataWindow objects and controls 111

DataWindow objects 112

DataWindow controls 114

DataWindow objects

112 PocketBuilder

DataWindow objects
A DataWindow object is an object that you use to retrieve, present, and
manipulate data from a relational database or other data source (such as an
Excel worksheet or dBASE file). You can specify whether the DataWindow
object supports updating of data.

DataWindow objects have knowledge about the data they are retrieving. You
can specify display formats, presentation styles, and other data properties to
make the data meaningful to users.

You define DataWindow objects in the DataWindow painter.

Presentation styles and data sources
When you define a DataWindow object, you choose a presentation style and a
data source.

Presentation styles A presentation style defines a typical style of report and handles how rows are
grouped on the page. You can customize the way the data is displayed in each
presentation style. Table 8-1 lists the presentation styles available.

Table 8-1: DataWindow presentation styles

For examples of the presentation styles, see the User’s Guide.

Data sources The data source specifies where the data in the DataWindow comes from and
what data items are displayed. Data can come from tables in a database, or you
can import data from a file or specify the data in code. For databases, the data
specification is saved in a SQL statement. In all cases, the DataWindow object
saves the names of the data items to display, as well as their data types.

Presentation style Description

Tabular Data columns across the page and headers above each
column. Several rows are viewable at once.

Freeform Data columns going down the page with labels next to each
column. One row displayed at a time.

Grid Row-and-column format like a spreadsheet with grid lines.
Users can move borders and columns.

Group A tabular style with rows grouped under headings. Each
group can have summary fields with computed statistics.

Graph Graphical presentation of data.

CHAPTER 8 About DataWindow Technology

Resource Guide 113

Table 8-2: Data sources you can use for a DataWindow

Basic process
Using a DataWindow involves two main steps:

1 Use the DataWindow wizard to create a DataWindow object.

In the wizard, you define the data source, presentation style, and some
properties of the object, such as display formats, validation rules, sorting
and filtering criteria, and graphs.

2 Use the DataWindow painter to design a DataWindow object.

In the painter, you define other properties of the object, such as display
formats, validation rules, sorting and filtering criteria, and graphs.

3 Put a DataWindow control in a window or visual user object and associate
a DataWindow object with it.

It is through this control that your application communicates with the
DataWindow object you designed in the DataWindow painter. You write
code to manipulate the DataWindow control and the DataWindow object
it contains. A complete set of events and methods programmed in
PowerScript provides control over all aspects of the DataWindow.
Typically, your code retrieves and updates data, changes the appearance of
the data, handles errors, and shares data between DataWindow controls.

Data source Description

Quick Select The data comes from one or more tables in a SQL database.
The tables must be related through a foreign key. You need to
choose only columns, selection criteria, and sorting.

SQL Select You want more control over the select statement that is
generated for the data source. You can specify grouping,
computed columns, and so on.

Query The data has already been selected and the SQL statement is
saved in a query object that you have defined in the Query
painter. When you define the DataWindow object, the query
object is incorporated into the DataWindow and does not need
to be present when you run the application.

Stored Procedure The data is defined in a database stored procedure.

External The data is not stored in a database, but is imported from a file
(such as a tab-separated or dBASE file) or populated from
code.

DataWindow controls

114 PocketBuilder

DataWindow controls
The DataWindow control is a visual container for DataWindow objects in a
PocketBuilder application. You can use it in a window to present an interactive
display of data. The user can view and change data and send changes to the
database.

The DataWindow supports data retrieval with retrieval arguments and data
update. You can use edit styles, display formats, and validation rules for
consistent data entry and display. The DataWindow provides many methods
for manipulating the DataWindow, including Modify for changing DataWindow
object properties.

You can share a result set between several DataWindow controls and update
databases on Windows CE devices or on the desktop. Using Mobilink—a
database synchronization tool that comes with Sybase SQL Anywhere
Studio—you can synchronize data between a client database on a Windows CE
device and a server database on the desktop.

Development
environment

You add DataWindow controls to windows or visual user objects in the
Window or Visual User Object painters. The DataWindow control is in a
drop-down palette of controls on the PainterBars for these painters. After you
add the control to the window or user object, you can associate a DataWindow
object with it in the painter.

You write scripts that control the DataWindow’s behavior and manipulate the
data it retrieves. The DataWindow object associated with the control
determines what data is retrieved and how it is displayed.

You can use the Browser to examine the properties, events, and methods of
DataWindow controls on the System tab page. If you have a library open that
contains DataWindow objects, you can examine the internal properties of the
DataWindow object on the Browser’s DataWindow tab page.

Database connections The DataWindow uses an SQL Anywhere ODBC database driver or an
UltraLite database driver for database connectivity. Users can connect to a data
source on their Windows CE devices and make updates to those sources.

To make a connection, you can use the internal Transaction object of the
DataWindow, or you can make the connection with a separate transaction
object.

PocketBuilder provides a default Transaction object, SQLCA; you can define
additional Transaction objects if you need to make additional connections.
When you connect with a separate Transaction object, you can control when
SQL COMMIT and ROLLBACK statements occur, and you can use the same
connection for multiple controls.

CHAPTER 8 About DataWindow Technology

Resource Guide 115

For more information about using a Transaction object with a DataWindow, see
Chapter 9, “Using DataWindow Objects.” For more information about
Transaction objects, see Chapter 16, “Using Transaction Objects.”

Coding You write scripts in the Window or User Object painter to connect to the
database, retrieve data, process user input, and update data.

To take advantage of object inheritance, you can define a standard visual user
object inherited from a DataWindow control and add your own customizations.
You can reuse the customized DataWindow control in multiple applications.

You can also create a customized version of a DataStore object. You create
DataStore objects—the nonvisual version of a DataWindow control— in
scripts. For more information, see Chapter 11, “Using DataStore Objects.”

Libraries and
applications

You store DataWindow objects in PocketBuilder libraries (PKL files) during
development. When you build your application, you can include the
DataWindow objects in the application executable or in PocketBuilder
dynamic libraries (PKD files).

For more information about designing DataWindow objects and building a
PocketBuilder application, see the User’s Guide.

DataWindow controls

116 PocketBuilder

Resource Guide 117

C H A P T E R 9 Using DataWindow Objects

About this chapter This chapter describes how to use DataWindow objects in an application.

Contents

Before you begin This chapter assumes that you know how to build DataWindow objects in
the DataWindow painter, as described in the User’s Guide.

About using DataWindow objects
Building DataWindow
objects

Before you can use a DataWindow object in an application, you need to
build it. PocketBuilder has separate painters for database management,
DataWindow definition, and library management.

You define and edit a DataWindow object in the DataWindow painter. You
specify its data source and presentation style, then enhance the object by
specifying display formats, edit styles, and more.

Managing DataWindow
objects

Several painters let you manage and package your DataWindow objects
for use in applications.

In particular, you can maintain DataWindow objects in one or more
libraries (PKL files). When you are ready to use your DataWindow objects
in applications, you can package them in more compact runtime libraries
(PKD files).

Topic Page

About using DataWindow objects 117

Putting a DataWindow object into a control 118

Accessing the database 122

Importing data from an external source 128

Manipulating data in a DataWindow control 128

Accessing the properties of a DataWindow object 135

Handling DataWindow errors 136

Updating the database 141

Creating reports 144

Putting a DataWindow object into a control

118 PocketBuilder

Using DataWindow
objects

After you build a DataWindow object in the DataWindow painter, you can use
it to display and process information from the appropriate data source. The
sections that follow explore the details of how to do this.

Putting a DataWindow object into a control
The DataWindow control is a container for DataWindow objects in an
application. It provides properties, methods, and events for manipulating the
data and appearance of the DataWindow object. The DataWindow control is
part of the user interface of your application.

You also use DataWindow objects in the nonvisual DataStore and in
drop-down DataWindows. For more information about DataStores, see
Chapter 11, “Using DataStore Objects.” For more information about
drop-down DataWindows, see the User’s Guide.

This section has information about:

• Names for DataWindow controls and DataWindow objects

• Procedures for working with DataWindow controls at design time:

Inserting a DataWindow control
Specifying a DataWindow object
Editing the DataWindow object in the control

• Specifying the DataWindow object at runtime

Names for DataWindow controls and DataWindow objects
There are two names to be aware of when you are working with a
DataWindow:

• The name of the DataWindow control

• The name of the DataWindow object associated with the control

The DataWindow control name When you place a DataWindow control in
a window or form, it gets a default name. You should change the name to be
something meaningful for your application.

It is useful to give the name of the control a prefix of dw_. For example, if the
DataWindow control lists customers, you might want to name it dw_customer.

CHAPTER 9 Using DataWindow Objects

Resource Guide 119

Using the name
In code, always refer to a DataWindow by the name of the control (such as
dw_customer). Do not refer to the DataWindow object that is in the control.

The DataWindow object name To avoid confusion, you should use different
prefixes for DataWindow objects and DataWindow controls. The prefix d_ is
commonly used for DataWindow objects. For example, if the name of the
DataWindow control is dw_customer, you might want to name the
corresponding DataWindow object d_customer.

Working with the DataWindow control in PocketBuilder
Inserting a
DataWindow control

To use the DataWindow object in an application, you add a DataWindow
control to a window, then associate that control with the DataWindow object.

Figure 9-1: DataWindow control before association with an object

❖ To place a DataWindow control in a window or custom visual user
object:

1 Open the window or user object that will contain the DataWindow control.

2 Select Insert>Control>DataWindow from the menu bar.

Putting a DataWindow object into a control

120 PocketBuilder

3 Click where you want the control to display.

PocketBuilder places an empty DataWindow control in the window.

4 (Optional) Resize the DataWindow control by selecting it and dragging
one of the handles, or changing its position properties on the Other page
of the Properties view.

Specifying a
DataWindow object

After placing the DataWindow control, you associate a DataWindow object
with the control.

❖ To associate a DataWindow object with the control:

1 In the DataWindow Properties view, click the Browse button for the
DataObject property.

2 Select the DataWindow object that you want to place in the control and
click OK.

The name of the DataWindow object displays in the DataObject box in the
DataWindow Properties view.

3 (Optional) Change the properties of the DataWindow control as needed.

Allowing users to move DataWindow controls
If you want users to be able to move a DataWindow control at runtime,
give it a title and select the Title Bar check box. Then users can move the
control by dragging the title bar.

Defining reusable
DataWindow controls

You might want all the DataWindow controls in your application to have
similar appearance and behavior. For example, you might want all of them to
do the same error handling.

To be able to define these behaviors once and reuse them in each window, you
create a standard visual user object based on the DataWindow control. Define
the user object's properties and write scripts that perform the generic
processing you want, such as error handling. Then place the user object
(instead of a new DataWindow control) in the window. The DataWindow user
object has all the desired functionality predefined. You do not need to specify
it again.

For more information about creating and using user objects, see the User's
Guide.

Editing the
DataWindow object in
the control

Once you have associated a DataWindow object with a DataWindow control in
a window, you can go directly to the DataWindow painter to edit the associated
DataWindow object.

CHAPTER 9 Using DataWindow Objects

Resource Guide 121

❖ To edit an associated DataWindow object:

• Select Modify DataWindow from the DataWindow control's pop-up
menu.

PocketBuilder opens the associated DataWindow object in the
DataWindow painter.

Specifying the DataWindow object at runtime
Changing the
DataWindow at
runtime

When you associate a DataWindow object with a control in a window, you are
setting the initial value of the DataWindow control's DataObject property. At
runtime, this tells your application to create an instance of the DataWindow
object specified in the control's DataObject property and use it in the control.

At runtime, you change the DataWindow object associated with a DataWindow
control by setting the DataObject property to one of the DataWindow objects
built into the application.

Creating a DataWindow object at runtime
You can also create a new DataWindow object at runtime and associate it with
a control. For more information, see Chapter 10, “Dynamically Changing
DataWindow Objects.”

To display the DataWindow object d_emp_hist from the library emp.pkl in the
DataWindow control dw_emp, you can code:

dw_emp.DataObject = "d_emp_hist"

The DataWindow object d_emp_hist was created in the DataWindow painter
and stored in a library on the application search path. The control dw_emp is
contained in the window and is saved as part of the window definition.

When you change the DataWindow object at runtime, you may need to call
setTrans or setTransObject again. For more information, see “Setting the
transaction object for the DataWindow control” on page 123.

Accessing the database

122 PocketBuilder

Preventing redrawing
Use the SetRedraw method to turn off redrawing in order to avoid flicker and
reduce redrawing time when you are making several changes to the properties
of an object or control. Dynamically changing the DataWindow object at
runtime implicitly turns redrawing on. To turn redrawing off again, call the
SetRedraw method every time you change the DataWindow object:

dw_emp.DataObject = "d_emp_hist"
dw_emp.SetRedraw(FALSE)

Accessing the database
Before you can display data in a DataWindow control, you must get the data
stored in the data source into that control. The most common way to get the
data is to access a database.

An application must perform several steps to access a database:

1 Set the appropriate values for the transaction object.

2 Connect to the database.

3 Set the transaction object for the DataWindow control.

4 Retrieve and update data.

5 Disconnect from the database.

This section provides instructions for setting the transaction object for a
DataWindow control and for using the DataWindow object to retrieve and
update data.

To learn more about setting values for the transaction object, connecting to the
database, and disconnecting from the database, see Chapter 16, “Using
Transaction Objects.”

CHAPTER 9 Using DataWindow Objects

Resource Guide 123

Setting the transaction object for the DataWindow control
There are two ways to handle database connections and transactions for the
DataWindow control. You can use:

• Internal transaction management

• Transaction management with a separate transaction object

The two methods provide different levels of control over database transactions.

If you change the DataWindow object
If you change the DataWindow object associated with a DataWindow control
at runtime, you need to call the SetTrans or SetTransObject method again.

Internal transaction management

When the DataWindow control uses internal transaction management, it
handles connecting, disconnecting, commits, and rollbacks. It automatically
performs connects and disconnects as needed; any errors that occur cause an
automatic rollback.

Whenever the DataWindow needs to access the database (such as when a
Retrieve or Update method is executed), the DataWindow issues an internal
CONNECT statement, does the appropriate data access, then issues an internal
DISCONNECT.

When to use it If the number of available connections at your site is limited, you might want
to use internal transaction management because connections are not held open.

Internal transaction management is appropriate in simple situations when you
are doing pure retrievals (such as in reporting) and do not need to hold database
locks—when application control over committing or rolling back transactions
is not an issue.

Do not use internal transaction management when:

• Your application requires the best possible performance

Internal transaction management is slow and uses considerable system
resources because it must connect and disconnect for every database
access.

• You want control over when a transaction is committed or rolled back

Because internal transaction management must disconnect after a database
access, any changes are always committed immediately.

Accessing the database

124 PocketBuilder

How it works To use internal transaction management, you specify connection values for a
transaction object, which could be the automatically instantiated SQLCA.
Then you call the SetTrans method, which copies the values from a specified
transaction object to the DataWindow control's internal transaction object.

SQLCA.DBMS = ProfileString("myapp.ini", &
"database", "ODBC", " ")

... // Set more connection parameters
dw_employee.SetTrans(SQLCA)
dw_employee.Retrieve()

Connecting to the database
When you use SetTrans, you do not need to explicitly code a CONNECT or
DISCONNECT statement in a script. CONNECT and DISCONNECT statements
are automatically issued when needed.

For more information about transaction objects, see Chapter 16, “Using
Transaction Objects.”

Transaction management with a separate transaction object

When you use a separate transaction object, you control the duration of the
database transaction. Your scripts explicitly connect to and disconnect from the
database. If the transaction object’s AutoCommit property is set to false, you
also program when an update is committed or rolled back.

Typically, a script for data retrieval or update involves these statements:

Connect
SetTransObject
Retrieve or Update
Commit or Rollback
Disconnect

In PocketBuilder, you use embedded SQL for connecting and committing.

The transaction object also stores error messages returned from the database in
its properties. You can use the error information to determine whether to
commit or roll back database changes.

When to use it When the DataWindow control uses a separate transaction object, you have
more control of the database processing and are responsible for managing the
database transaction.

CHAPTER 9 Using DataWindow Objects

Resource Guide 125

There are several reasons to use a separate transaction object:

• You have several DataWindow controls that connect to the same database
and you want to make one database connection for all of them, saving the
overhead of multiple connections

• You want to control transaction processing

• You require the improved performance provided by keeping database
connections open

How it works The SetTransObject method associates a transaction object with the
DataWindow control. PocketBuilder has a default transaction object called
SQLCA that is automatically instantiated. You can set its connection
properties, connect, and assign it to the DataWindow control.

The following statement uses SetTransObject to associate the DataWindow
control dw_emp with the default transaction object (SQLCA):

// Set connection parameters in the transaction object
SQLCA.DBMS = "ODBC"
SQLCA.database = ...
CONNECT USING SQLCA;
dw_emp.SetTransObject(SQLCA)
dw_emp.Retrieve()

Instead of or in addition to using the predefined SQLCA transaction object, you
can define your own transaction object in a script. This is necessary if your
application needs to connect to more than one database at the same time.

The following statement uses SetTransObject to associate dw_customer with a
programmer-created transaction object (trans_customer):

transaction trans_customer
trans_customer = CREATE transaction
// Set connection parameters in the transaction object
trans_customer.DBMS = "ODBC"
trans_customer.database = ...
CONNECT USING trans_customer;
dw_customer.SetTransObject(trans_customer)
dw_customer.Retrieve()

For more information about SetTrans and SetTransObject methods, see the
online Help.

Accessing the database

126 PocketBuilder

Retrieving and updating data
You call the following two methods to access a database through a
DataWindow control:

Retrieve
Update

Basic data retrieval

After you have set the transaction object for your DataWindow control, you can
use the Retrieve method to retrieve data from the database and insert it into that
control:

dw_emp.Retrieve()

Using retrieval arguments
About retrieval
arguments

Retrieval arguments qualify the SELECT statement associated with the
DataWindow object, reducing the rows retrieved according to some criteria.
For example, in the following SELECT statement, Salary is a retrieval argument
defined in the DataWindow painter:

SELECT Name, emp.sal FROM Employee
WHERE emp.sal > :Salary

When you call the Retrieve method, you supply a value for Salary. In
PocketBuilder, the code looks like this:

dw_emp.Retrieve(50000)

When coding Retrieve with arguments, specify them in the order in which they
are defined in the DataWindow object. Your Retrieve method can provide more
arguments than a particular DataWindow object expects. Any extra arguments
are ignored. This allows you to write a generic Retrieve that works with several
different DataWindow objects. You can specify any number of retrieval
arguments.

Omitting retrieval
arguments

If your DataWindow object takes retrieval arguments but you do not pass them
in the Retrieve method, the DataWindow control prompts the user for them
when Retrieve is called.

CHAPTER 9 Using DataWindow Objects

Resource Guide 127

Updating data

After users have made changes to data in a DataWindow control, you can use
the Update method to save those changes in the database.

In PocketBuilder, the code looks like this:

dw_emp.Update()

Update sends to the database all inserts, changes, and deletions made in the
DataWindow control since the last Update method call. When you are using an
external transaction object, you can then commit (or roll back) those database
updates with SQL statements.

For more specifics on how a DataWindow control updates the database (that is,
which SQL statements are sent in which situations), see “Updating the
database” on page 141.

Examples The following example shows code that connects, retrieves, updates, commits
or rolls back, and disconnects from the database.

Although the example shows all database operations in a single script or
function, most applications separate these operations. For example, an
application could connect to the database in the application Open event,
retrieve and update data in one or more window scripts, and disconnect from
the database in the application Close event.

The following statements retrieve and update data using the transaction object
EmpSQL and the DataWindow control dw_emp:

// Connect to the database specified in the
// transaction object EmpSQL
CONNECT USING EmpSQL;

// Set EmpSQL as the transaction object for dw_emp
dw_emp.SetTransObject(EmpSQL)

// Retrieve data from the database specified in
// EmpSQL into dw_emp
dw_emp.Retrieve()

// Make changes to the data...
...

// Update the database
IF dw_emp.Update() > 0 THEN

COMMIT USING EmpSQL;

Importing data from an external source

128 PocketBuilder

ELSE
ROLLBACK USING EmpSQL;

END IF

// Disconnect from the database
DISCONNECT USING EmpSQL;

Handling retrieval or
update errors

A production application should include error tests after each database
operation. For more about checking for errors, see “Handling DataWindow
errors” on page 136.

Importing data from an external source
If the data for a DataWindow is not coming from a database (that is, the data
source was defined as External in the DataWindow wizard), you can use these
methods to import data into the DataWindow control:

ImportClipboard
ImportFile
ImportString

You can also get data into the DataWindow by using the SetItem method or by
using a DataWindow expression.

For more information on the SetItem method and DataWindow expressions,
see “Manipulating data in a DataWindow control” next.

Manipulating data in a DataWindow control
To handle user requests to add, modify, and delete data in a DataWindow, you
can write code to process that data, but first you need to understand how
DataWindow controls manage data.

CHAPTER 9 Using DataWindow Objects

Resource Guide 129

How a DataWindow control manages data
As users add or change data, the data is first handled as text in an edit control.
If the data is accepted, it is then stored as an item in a buffer.

About the
DataWindow buffers

A DataWindow uses three buffers to store data:

Table 9-1: DataWindow buffers

About the edit control As the user moves around the DataWindow control, the DataWindow places an
edit control over the current cell (row and column):

Figure 9-2: Editing text in a DataWindow control

The contents of the edit control are called text. Text is data that has not yet been
accepted by the DataWindow control. Data entered in the edit control is not in
a DataWindow buffer yet; it is simply text in the edit control.

About items When the user changes the contents of the edit control and presses Enter or
leaves the cell (by tabbing, using the stylus, or pressing Up arrow or Down
arrow from the soft input panel or other keyboard), the DataWindow processes
the data and either accepts or rejects it, depending on whether it meets the
requirements specified for the column.

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or through code

Manipulating data in a DataWindow control

130 PocketBuilder

If the data is accepted, the text is moved to the current row and column in the
DataWindow Primary buffer. The data in the Primary buffer for a particular
column is referred to as an item.

Events for changing
text and items

When data is changed in the edit control, several events occur.

Table 9-2: Events triggered by changing text and items

How text is processed
in the edit control

When the data in a column in a DataWindow has been changed and the column
loses focus (for example, because the user tabs to the next column), the
following sequence of events occurs:

1 The DataWindow control converts the text into the correct datatype for the
column. For example, if the user is in a numeric column, the DataWindow
control converts the string that was entered into a number. If the data
cannot be converted, the ItemError event is triggered.

2 If the data converts successfully to the correct datatype, the DataWindow
control applies any validation rule used by the column. If the data fails
validation, the ItemError event is triggered.

3 If the data passes validation, then the ItemChanged event is triggered. If
you set an action/return code of 1 in the ItemChanged event, the
DataWindow control rejects the data and does not allow the focus to
change. In this case, the ItemError event is triggered.

4 If the ItemChanged event accepts the data, the ItemFocusChanged event
is triggered next and the data is stored as an item in a buffer.

Event Description

EditChanged Occurs for each keystroke the user types in the edit control

ItemChanged Occurs when a cell has been modified and loses focus

ItemError Occurs when new data fails the validation rules for the
column

ItemFocusChanged Occurs when the current item in the control changes

CHAPTER 9 Using DataWindow Objects

Resource Guide 131

Figure 9-3: How text is processed in edit controls

Action/return codes
for events

You can affect the outcome of events by specifying numeric values in the
event’s program code. For example, step 3 above describes how you can force
data to be rejected by using a RETURN statement with a code of 1 in the
ItemChanged event.

For information about codes for individual events, see the DataWindow
Reference in the online Help.

Accessing and manipulating the text in the edit control
Using methods The following methods allow you to access the text in the edit control:

• GetText – obtains the text in the edit control.

• SetText – sets the text in the edit control.

In event code In addition to these methods, the following events provide access to the text in
the edit control:

EditChanged
ItemChanged
ItemError

Use the Data parameter, which is passed into the event, to access the text of the
edit control. In your code for these events, you can test the text value and
perform special processing depending on that value.

For an example, see “Coding the ItemChanged event” next.

Manipulating data in a DataWindow control

132 PocketBuilder

Manipulating the text When you want to further manipulate the contents of the edit control within
your DataWindow control, you can use any of these methods:

For more information about these methods, see the DataWindow Reference in
the online Help.

Coding the ItemChanged event
If data passes conversion and validation, the ItemChanged event is triggered.
By default, the ItemChanged event accepts the data value and allows focus to
change. You can write code for the ItemChanged event to do some additional
processing. For example, you could perform some tests, set a code to reject the
data, have the column regain focus, and trigger the ItemError event.

Example The following sample code for the ItemChanged event for a DataWindow
control called dw_Employee sets the return code in dw_Employee to reject data
that is less than the employee's age, which is specified in a SingleLineEdit text
box control in the window.

int a, age
age = Integer(sle_age.text)
a = Integer(data)

// Set the return code to 1 in the ItemChanged
// event to tell PocketBuilder to reject the data
// and not change the focus.
IF a < age THEN RETURN 1

Coding the ItemError event
The ItemError event is triggered if there is a problem with the data. By default,
it rejects the data value and displays a message box. You can write code for the
ItemError event to do some other processing. For example, you can set a code
to accept the data value, or reject the data value but allow focus to change.

For more information about the events of the DataWindow control, see the
DataWindow Reference in the online Help.

Clear
Copy
Cut
LineCount
Paste

Position
ReplaceText
Scroll
SelectedLength
SelectedLine

SelectedStart
SelectedText
SelectText
TextLine

CHAPTER 9 Using DataWindow Objects

Resource Guide 133

Accessing the items in a DataWindow
You can access data values in a DataWindow by using methods or
DataWindow data expressions. Both methods allow you to access data in any
buffer and to get original or current values.

The method you use depends on how much data you are accessing and whether
you know the names of the DataWindow columns when the script is compiled.

Using methods There are several methods for manipulating data in a DataWindow control.

GetItem methods You call GetItem methods to obtain the data that has been
accepted into a specific row and column. You can also use them to check the
data in a specific buffer before you update the database. You must use the
method appropriate for the column’s datatype.

These methods obtain the data in a specified row and column in a specified
buffer: GetItemDate, GetItemDateTime, GetItemDecimal, GetItemNumber,
GetItemString, GetItemTime.

For example, the following statement assigns the value from the empname
column of the first row to the variable ls_Name:

ls_Name = dw_1.GetItemString (1, "empname")

SetItem method This method sets the value of a specified row and column:
SetItem.

This statement sets the value of the empname column in the first row to the
string “Waters”:

dw_1.SetItem(1, "empname", "Waters")

For more information about the methods listed above, see the online Help.

Using expressions DataWindow data expressions refer to single items, columns, blocks of data,
selected data, or the whole DataWindow. You use dot notation to construct data
expressions in PocketBuilder.

The Object property of the DataWindow control lets you specify expressions
that refer directly to the data of the DataWindow object in the control. This
direct data manipulation allows you to access small and large amounts of data
in a single statement, without calling methods:

dw_1.Object.jobtitle[3] = "Programmer"

The next statement sets the value of the first column in the first row in the
DataWindow to Smith:

dw_1.Object.Data[1,1] = "Smith"

Manipulating data in a DataWindow control

134 PocketBuilder

For complete instructions on how to construct DataWindow data expressions,
see the DataWindow Reference in the online Help.

Using other DataWindow methods
There are many more methods you can use to perform activities in
DataWindow controls. The more common ones are listed in Table 9-3.

Table 9-3: Common methods in DataWindow controls

You can see a complete list of DataWindow methods in the PocketBuilder
Browser.

For complete information on DataWindow methods, see the DataWindow
Reference in the online Help.

Method Purpose

AcceptText Applies the contents of the edit control to the current item
in the DataWindow control.

DeleteRow Removes the specified row from the DataWindow
control, placing it in the Delete buffer; does not delete the
row from the database.

Filter Displays rows in the DataWindow control based on the
current filter.

GetRow Returns the current row number.

InsertRow Inserts a new row.

Reset Clears all rows in the DataWindow control.

Retrieve Retrieves rows from the database.

RowsCopy, RowsMove Copies or moves rows from one DataWindow control to
another.

ScrollToRow Scrolls to the specified row.

SelectRow Highlights a specified row.

ShareData Shares data among different DataWindow controls.

Update Sends to the database all inserts, changes, and deletions
that have been made in the DataWindow control.

CHAPTER 9 Using DataWindow Objects

Resource Guide 135

Accessing the properties of a DataWindow object
About DataWindow
object properties

DataWindow object properties store the information that controls the behavior
of a DataWindow object. They are not properties of the DataWindow control,
but of the DataWindow object displayed in the control. The DataWindow
object is itself made up of individual controls—column, text, graph, and
drawing controls—that have DataWindow object properties.

You establish initial values for DataWindow object properties in the
DataWindow painter. You can also get and set property values at runtime in
your code.

You can access the properties of a DataWindow object by using the Describe
and Modify methods or DataWindow property expressions. Which you use
depends on the type of error checking you want to provide and on whether you
know the names of the controls within the DataWindow object and properties
you want to access when the script is compiled.

For lists and descriptions of DataWindow object properties, see the
DataWindow Reference in the online Help.

Using methods to
access object
properties

You can use the following methods to work with the properties of a
DataWindow object:

• Describe – reports the values of properties of a DataWindow object and
controls within the DataWindow object.

• Modify – modifies a DataWindow object by specifying a list of instructions
that change the DataWindow object's definition.

For example, the following statements assign the value of the Border property
for the empname column to a string variable:

string ls_border
ls_border = dw_1.Describe("empname.Border")

The following statement changes the value of the Border property for the
empname column to 1:

dw_emp.Modify("empname.Border=1")

Handling DataWindow errors

136 PocketBuilder

About dynamic DataWindow objects
Using Describe and Modify, you can provide an interface through which
application users can alter the DataWindow object at runtime. For example,
you can change the appearance of a DataWindow object or allow an application
user to create ad hoc reports.

For more information, see Chapter 10, “Dynamically Changing DataWindow
Objects.”

Using expressions DataWindow property expressions provide access to properties with fewer
nested strings. In PocketBuilder, you can handle problems with incorrect
object and property names in the Error event.

Use the Object property and dot notation. For example:

integer li_border
li_border = Integer(dw_1.Object.empname.Border)
dw_1.Object.empname.Border = 1

Handling DataWindow errors
There are several types of errors that can occur during DataWindow
processing:

• Data items that are invalid (discussed in “Manipulating data in a
DataWindow control” on page 128)

• Failures when retrieving or updating data

• Attempts to access invalid or nonexistent properties or data

This section explains how to handle the last two types of errors.

Retrieve and Update errors and the DBError event
Retrieve and update
testing

When using the Retrieve or Update method in a DataWindow control, you
should test the method's return code to see whether the activity succeeded.

CHAPTER 9 Using DataWindow Objects

Resource Guide 137

Table 9-4: Return codes for the Retrieve and Update methods

Do not test the SQLCode attribute
After issuing a SQL statement (such as CONNECT, COMMIT, or
DISCONNECT) or the equivalent method of the transaction object, you should
always test the success/failure code (the SQLCode attribute in the transaction
object). However, you should not use this type of error checking following a
retrieval or update made in a DataWindow.

For more information about error handling after a SQL statement, see Chapter
16, “Using Transaction Objects.”

Example If you want to commit changes to the database only if an update succeeds, you
can code:

IF dw_emp.Update() > 0 THEN
COMMIT USING EmpSQL;

ELSE
ROLLBACK USING EmpSQL;

END IF

Using the DBError
event

The DataWindow control triggers its DBError event whenever there is an error
following a retrieval or update; that is, if the Retrieve or Update methods return
–1. For example, if you try to insert a row that does not have values for all
columns that have been defined as not allowing null, the DBMS rejects the row
and the DBError event is triggered.

By default, the DataWindow control displays a message box describing the
error message from the DBMS.

Method
Return
code Meaning

Retrieve >=1 Retrieval succeeded; returns the number of rows retrieved

-1 Retrieval failed; DBError event triggered

0 No data retrieved

Update 1 Update succeeded

-1 Update failed; DBError event triggered

Handling DataWindow errors

138 PocketBuilder

Figure 9-4: Sample error message displayed from DBError event

In many cases you may want to code your own processing in the DBError event
and suppress the default message box. Here are some tips for doing this:

Table 9-5: Tips for processing messages from DBError event

About DataWindow action/return codes
Some events for DataWindow controls have codes that you can set to override
the default action that occurs when the event is triggered. The codes and their
meaning depend on the event. You set the code with a RETURN statement.

Example Here is a sample script for the DBError event:

// Database error -195 means that some of the
// required values are missing
IF sqldbcode = -195 THEN

MessageBox("Missing Information", &
"You have not supplied values for all " &
+"the required fields.")

END IF
// Return code suppresses default message box
RETURN 1

At runtime, the user would see the message box after the error.

To Do this

Get the DBMS's error code Use the SQLDBCode argument of the DBError
event

Get the DBMS's message text Use the SQLErrText argument of the DBError
event

Suppress the default message box Specify an action/return code of 1

CHAPTER 9 Using DataWindow Objects

Resource Guide 139

Figure 9-5: Example of a user-defined message for the DBError event

Errors in property and data expressions and the Error event
A DataWindow control's Error event is triggered whenever an error occurs in
a data or property expression at runtime. These expressions that refer to data
and properties of a DataWindow object may be valid under some runtime
conditions but not others. The Error event allows you to respond with error
recovery logic when an expression is not valid.

PocketBuilder syntax
checking

When you use a data or property expression, the PowerScript compiler checks
the syntax only as far as the Object property. Everything following the Object
property is evaluated at runtime. For example, in the following expression, the
column name emp_name and the property Visible are not checked until
runtime:

dw_1.Object.emp_name.Visible = "0"

If the emp_name column did not exist in the DataWindow, or if you had
misspelled the property name, the compiler would not detect the error.
However, at runtime, PocketBuilder would trigger the DataWindow control’s
Error event.

Using a Try-Catch
block

The Error event is triggered even if you have surrounded an error-producing
data or property expression in a try-catch block. The catch statement is
executed after the Error event is triggered, but only if you do not code the Error
event or do not change the default Error event action from ExceptionFail!. The
following example shows a property expression in a try-catch block:

TRY
dw_1.Object.emp_name.Visible = "0"

CATCH (dwruntimeerror dw_e)
MessageBox ("DWRuntimeError", dw_e.text)

END TRY

Handling DataWindow errors

140 PocketBuilder

Determining the cause
of the error

The Error event has several arguments that provide information about the error
condition. You can check the values of the arguments to determine the cause of
the error. For example, you can obtain the internal error number and error text,
the name of the object whose script caused the error, and the full text of the
script where the error occurred. The information provided by the Error event’s
arguments can be helpful in debugging expressions that are not checked by the
compiler.

If you catch a DWRuntimeError error, you can use the properties of that class
instead of the Error event arguments to provide information about the error
condition. The following table displays the correspondences between the Error
event arguments and the DWRuntimeError properties.

Table 9-6: Correspondence between Error event arguments and
DWRuntimeError properties

Controlling the
outcome of the event

When the Error event is triggered, you can have the application ignore the error
and continue processing, substitute a different return value, or escalate the error
by triggering the SystemError event. In the Error event, you can set two
arguments passed by reference to control the outcome of the event.

Table 9-7: Setting arguments in the Error event

For a complete description of the arguments of the Error event, see the online
Help.

Error event argument DWRuntimeError property

errornumber number

errorline line

errortext text

errorwindowmenu objectname

errorobject class

errorscript routinename

Argument Description

Action A value you specify to control the application's course of action as
a result of the error. Values are:

ExceptionIgnore!
ExceptionSubstituteReturnValue!
ExceptionFail! (default action)

ReturnValue A value whose datatype matches the expected value that the
DataWindow would have returned. This value is used when the
value of action is ExceptionSubstituteReturnValue!.

CHAPTER 9 Using DataWindow Objects

Resource Guide 141

When to substitute a return value
The ExceptionSubstituteReturnValue! action allows you to substitute a return
value when the last element of an expression causes an error. Do not use
ExceptionSubstituteReturnValue! to substitute a return value when an element
in the middle of an expression causes an error.

The ExceptionSubstituteReturnValue! action is most useful for handling errors
in data expressions.

Updating the database
After users have made changes to data in a DataWindow control, you can use
the Update method to save the changes in the database. Update sends to the
database all inserts, changes, and deletions made in the DataWindow since the
last Update or Retrieve method was executed.

How the DataWindow control updates the database
For database updates, the DataWindow control determines what type of SQL
statements to generate by looking at the status of each of the rows in the
DataWindow buffers.

There are four DataWindow item statuses, two of which apply only to rows.

Table 9-8: DataWindow item status for rows and columns

The named values are values of the enumerated datatype dwItemStatus. You
must use the named values, which end in an exclamation point.

How status is set When data is retrieved When data is retrieved into a DataWindow, all rows
and columns initially have a status of NotModified!.

Status Name Numeric value Applies to

New! 2 Rows

NewModified! 3 Rows

NotModified! 0 Rows and columns

DataModified! 1 Rows and columns

Updating the database

142 PocketBuilder

After data has changed in a column in a particular row, either because the user
changed the data or the data was changed programmatically, such as through
the SetItem method, the column status for that column changes to
DataModified!. Once the status for any column in a retrieved row changes to
DataModified!, the row status also changes to DataModified!.

When rows are inserted When a row is inserted into a DataWindow, it
initially has a row status of New!, and all columns in that row initially have a
column status of NotModified!. After data has changed in a column in the row,
either because the user changed the data or the data was changed
programmatically, such as through the SetItem method, the column status
changes to DataModified!. Once the status for any column in the inserted row
changes to DataModified!, the row status changes to NewModified!.

When a DataWindow column has a default value, the column’s status does not
change to DataModified! until the user makes at least one actual change to a
column in that row.

When Update is called For rows in the Primary and Filter buffers When the Update method is
called, the DataWindow control generates SQL INSERT and UPDATE
statements for rows in the Primary and/or Filter buffers based upon the
following row statuses:

Table 9-9: Row status after INSERT and UPDATE statements

A column is included in an UPDATE statement only if the following two
conditions are met:

• The column is on the updatable column list maintained by the
DataWindow object

For more information about setting the update characteristics of the
DataWindow object, see the User's Guide.

• The column has a column status of DataModified!

The DataWindow control includes all columns in INSERT statements it
generates. If a column has no value, the DataWindow attempts to insert a null.
This causes a database error if the database does not allow null values in that
column.

Row status SQL statement generated

NewModified! INSERT

DataModified! UPDATE

CHAPTER 9 Using DataWindow Objects

Resource Guide 143

For rows in the Delete buffer The DataWindow control generates SQL
DELETE statements for any rows that were moved into the Delete buffer using
the DeleteRow method. However, if a row has a row status of New! or
NewModified! before DeleteRow is called, no DELETE statement is issued for
that row.

Changing row or column status programmatically
You might need to change the status of a row or column programmatically.
Typically, you do this to prevent the default behavior from taking place. For
example, you might copy a row from one DataWindow to another; and after the
user modifies the row, you might want to issue an UPDATE statement instead
of an INSERT statement.

You use the SetItemStatus method to programmatically change a
DataWindow's row or column status information. Use the GetItemStatus
method to determine the status of a specific row or column.

Changing column
status

You use SetItemStatus to change the column status from DataModified! to
NotModified!, or vice versa.

Change column status when you change row status
Changing the row status changes the status of all columns in that row to
NotModified!, so if the Update method is called, no SQL update is produced.
You must change the status of columns to be updated after you change the row
status.

Changing row status Changing row status is a little more complicated. The following table
illustrates the effect of changing from one row status to another.

Table 9-10: Effects of changing from one row status to another

In the preceding table, Yes means the change is valid. For example, issuing
SetItemStatus on a row that has the status NotModified! to change the status to
New! does change the status to New!. No means that the change is not valid
and the status is not changed.

Original status Specified status

 New! NewModified! DataModified! NotModified!

New! - Yes Yes No

NewModified! No - Yes New!

DataModified! NewModified! Yes - Yes

NotModified! Yes Yes Yes -

Creating reports

144 PocketBuilder

Issuing SetItemStatus to change a row status from NewModified! to
NotModified! actually changes the status to New!. Issuing SetItemStatus to
change a row status from DataModified! to New! actually changes the status to
NewModified!.

Changing a row's status to NotModified! or New! causes all columns in that
row to be assigned a column status of NotModified!. Change the column’s
status to DataModified! to ensure that an update results in a SQL Update.

Changing status indirectly
When you cannot change to the desired status directly, you can usually do it
indirectly. For example, change New! to DataModified! to NotModified!.

Creating reports
You can use DataWindow objects to create standard business reports such as
financial statements, sales order reports, employee lists, or inventory reports.

To create a production report, you:

• Determine the type of report you want to produce

• Build a DataWindow object to display data for the report

• Place the DataWindow object in a DataWindow control on a window

• Write code to perform the processing required to populate the
DataWindow control and print the contents as a report

Planning and building the DataWindow object
To design the report, you create a DataWindow object. You select the data
source and presentation style and then:

• Sort the data

• Create groups in the DataWindow object to organize the data in the report
and force page breaks when the group values change

• Enhance the DataWindow object to look like a report (for example, you
might want to add a title, column headers, and a computed field to number
the pages)

CHAPTER 9 Using DataWindow Objects

Resource Guide 145

Using fonts
Printer fonts are usually shorter and fatter than screen fonts, so text might not
print in the report exactly as it displays in the DataWindow painter. You can pad
the text fields to compensate for this discrepancy.

You should test the report format with a small amount of data before you print
a large report.

Printing the report
After you build the DataWindow object and fill in print specifications, you can
place it in a DataWindow control on a window or form, as described in “Putting
a DataWindow object into a control” on page 118.

To allow users to print the report, your application needs code that performs the
printing logic. For example, you can place a button on the window or form,
then write code that is run when the user clicks the button.

To print the contents of a single DataWindow control or DataStore, call the
Print method. For example, this statement prints the report in the DataWindow
control dw_Sales:

dw_Sales.Print(TRUE)

For information about the Print method, see the DataWindow Reference.

Separate DataWindow
controls in a single
print job

If the window has multiple DataWindow controls, you can use multiple
PrintDataWindow method calls in a script to print the contents of all the
DataWindow controls in one print job.

These statements print the contents of three DataWindow controls in a single
print job:

int job
job = PrintOpen("Employee Reports")
// Each DataWindow starts printing on a new page.
PrintDataWindow(job, dw_EmpHeader)
PrintDataWindow(job, dw_EmpDetail)
PrintDataWindow(job, dw_EmpDptSum)
PrintClose(job)

For information about PocketBuilder system functions for printing, see the
PowerScript Reference.

Creating reports

146 PocketBuilder

Resource Guide 147

C H A P T E R 1 0 Dynamically Changing
DataWindow Objects

About this chapter This chapter describes how to modify and create DataWindow objects at
runtime.

Contents

About dynamic DataWindow processing
Basics DataWindow objects and all entities in them (such as columns, text,

graphs, and pictures) each have a set of properties. You can look at and
change the values of these properties at runtime using DataWindow
methods or property expressions. You can also create DataWindow
objects at runtime.

A DataWindow object that is modified or created at runtime is called a
dynamic DataWindow object.

What you can do Using this dynamic capability, you can allow users to change the
appearance of the DataWindow object (for example, change the color and
font of the text) or create ad hoc queries by redefining the data source.
After you create a dynamic DataWindow object and the user is satisfied
with the way it looks and the data that is displayed, the user can print the
contents as a report.

Topic Page

About dynamic DataWindow processing 147

Modifying a DataWindow object 148

Creating a DataWindow object 149

Providing query ability to users 151

Modifying a DataWindow object

148 PocketBuilder

Modifying a DataWindow object
At runtime, you can modify the appearance and behavior of a DataWindow
object by doing one of the following:

• Changing the values of its properties

• Adding or deleting controls from the DataWindow object

Changing property
values

You can use the Modify method or a property expression to set property values.
This lets you change settings that you ordinarily specify during development in
the DataWindow painter.

Before changing a property, you might want to get the current value and save
it in a variable, so you can restore the original value later. To obtain information
about the current properties of a DataWindow object or a control in a
DataWindow object, use the Describe method or a property expression.

Using expressions in
property values

With some DataWindow properties, you can assign a value through an
expression that the DataWindow evaluates at runtime, instead of having to
assign a value directly. For example, the following statement displays a salary
in red if it is less than $12,000, and in black otherwise:

dw_1.Modify("salary.Color &
= '0 ~t if(salary <12000,255,0)' ")

For more information The syntax is different for expressions in code versus expressions specified in
the DataWindow painter. For the correct syntax and information about which
properties can be assigned expressions, see the DataWindow Reference in the
online Help.

Adding and deleting
controls within the
DataWindow object

You can also use the Modify method to:

• Create new objects in a DataWindow object

This lets you add DataWindow controls (such as text, bitmaps, and graphic
controls) dynamically to the DataWindow object.

For how to get a good idea of the correct Create syntax, see “Specifying
the DataWindow object syntax” on page 149.

• Destroy controls in a DataWindow object

This lets you dynamically remove controls you no longer need.

Tool for easier coding
of DataWindow syntax

Included with PocketBuilder is DW Syntax, a tool that makes it easy to build
the correct syntax for property expressions, Describe, Modify, and
SyntaxFromSQL statements. You click buttons to specify which properties of
a DataWindow you want to use, and DW Syntax automatically builds the
appropriate syntax, which you can copy and paste into your application code.

CHAPTER 10 Dynamically Changing DataWindow Objects

Resource Guide 149

To access DW Syntax, select File>New and select the Tool tab.

Viewing DataWindow
object properties in
the Browser

You can use the Browser to get a list of DataWindow properties: on the
DataWindow page, select a DataWindow object in the left pane and Properties
in the right pane. To see the properties for a control in a DataWindow object,
double-click the DataWindow object name, then select the control.

Creating a DataWindow object
This section describes how to create a DataWindow object by calling the
Create method in an application.

DataWindow painter
You should use the techniques described here for creating a DataWindow from
syntax only if you cannot accomplish what you need to in the DataWindow
painter. The usual way of creating DataWindow objects is to use the
DataWindow painter.

To learn about creating DataWindow objects in the DataWindow painter, see
the User's Guide.

You use the Create method to create a DataWindow object dynamically at
runtime. Create generates a DataWindow object using source code that you
specify. It replaces the DataWindow object currently in the specified
DataWindow control with the new DataWindow object.

Resetting the transaction object
The Create method destroys the association between the DataWindow control
and the transaction object. As a result, you need to reset the control's
transaction object by calling the SetTransObject or SetTrans method after you
call Create.

To learn how to associate a DataWindow control with a transaction object, see
Chapter 9, “Using DataWindow Objects.”

Specifying the
DataWindow object
syntax

There are several ways to specify or generate the syntax required for the Create
method:

• Use the SyntaxFromSQL method of the transaction object

• Use the DataWindow.Syntax property of the DataWindow object

Creating a DataWindow object

150 PocketBuilder

• Create the syntax yourself

Using SyntaxFromSQL You are likely to use SyntaxFromSQL to create the
syntax for most dynamic DataWindow objects. If you use SyntaxFromSQL, all
you have to do is provide the SELECT statement and the presentation style.

In PocketBuilder, SyntaxFromSQL is a method of the transaction object. The
transaction object must be connected when you call the method.

SyntaxFromSQL has three required arguments:

• A string containing the SELECT statement for the DataWindow object

• A string identifying the presentation style and other settings

• The name of a string you want to fill with any error messages that might
be returned

SyntaxFromSQL returns the complete syntax for a DataWindow object that is
built using the specified SELECT statement.

Using the DataWindow.Syntax property You can obtain the source code of
an existing DataWindow object to use as a model or for making minor changes
to the syntax. Many values in the source code syntax correspond to properties
of the DataWindow object.

This example gets the syntax of the DataWindow object in the DataWindow
control, dw_1, and displays it in the text box control, textb_dw_syntax:

var dwSyntax
dwSyntax = dw_1.Describe("datawindow.syntax")
textb_dw_syntax.value = dwSyntax

Creating the syntax yourself You need to create the syntax yourself to use
some of the advanced dynamic DataWindow features, such as creating a group
break.

The DataWindow source code syntax that you need to supply to the Create
method can be very complex. To see examples of DataWindow object syntax,
go to the Library painter and export a DataWindow object to a text file, then
view the file in a text editor.

For more information on Create and Describe methods, as well as DataWindow
object properties and syntax, see the DataWindow Reference in the online
Help.

CHAPTER 10 Dynamically Changing DataWindow Objects

Resource Guide 151

Providing query ability to users
When you call the Retrieve method for a DataWindow control, the rows
specified in the DataWindow object's SELECT statement are retrieved. You can
give users the ability to further specify which rows are retrieved at runtime by
putting the DataWindow into query mode. To do that, you use the Modify
method or a property expression (the examples here use Modify).

Limitations
You cannot use query mode in a DataWindow object that contains the UNION
keyword or nested SELECT statements.

How query mode works
Once the DataWindow is in query mode, users can specify selection criteria
using query by example—just as you do when you use Quick Select to define
a data source. When criteria have been defined, they are added to the WHERE
clause of the SELECT statement the next time data is retrieved.

The following three figures show what happens when query mode is used.
First, data is retrieved into the DataWindow. There are 36 rows in this example.

Figure 10-1: Example of data retrieved from a database table

Next, query mode is turned on. The retrieved data disappears and users are
presented with empty rows where they can specify selection criteria. Here the
user wants to retrieve rows where Quarter = Q1 and Units > 15.

Providing query ability to users

152 PocketBuilder

Figure 10-2: Example of a DataWindow in Query mode

Next, Retrieve is called and query mode is turned off. The DataWindow control
adds the criteria to the SELECT statement, retrieves the three rows that meet the
criteria, and displays them to the user.

Figure 10-3: Example of a DataWindow with results from query

You can turn query mode back on, allow the user to revise the selection criteria,
and retrieve again.

Using query mode

❖ To provide query mode to users at runtime:

1 Turn query mode on by coding:

dw_1.Modify("datawindow.querymode=yes")

All data displayed in the DataWindow is blanked out, though it is still in
the DataWindow control's Primary buffer, and the user can enter selection
criteria where the data had been.

CHAPTER 10 Dynamically Changing DataWindow Objects

Resource Guide 153

2 The user specifies selection criteria in the DataWindow, just as you do
when using Quick Select to define a DataWindow object's data source.

Criteria entered in one row are joined together with the AND logical
operator; criteria in different rows are joined together with the OR logical
operator. Valid operators are =, <>, <, >, <=, >=, LIKE, IN, AND, and OR.

For more information about Quick Select, see the User's Guide.

3 Call AcceptText and Retrieve, then turn off query mode to display the
newly retrieved rows:

dw_1.AcceptText()
dw_1.Modify("datawindow.querymode=no")
dw_1.Retrieve()

The DataWindow control adds the newly defined selection criteria to the
WHERE clause of the SELECT statement, then retrieves and displays the
specified rows.

Revised SELECT statement
You can look at the revised SELECT statement that is sent to the DBMS when
data is retrieved with criteria. To do so, look at the sqlsyntax argument in the
SQLPreview event of the DataWindow control.

How the criteria affect
the SELECT
statement

Criteria specified by the user are added to the SELECT statement that originally
defined the DataWindow object.

For example, suppose the original SELECT statement for the printer table was:

SELECT printer.rep, printer.quarter, printer.product,
printer.units
FROM printer
WHERE printer.units < 70

Figure 10-4 displays a DataWindow with user-entered criteria for the Q1
quarter for Stellar printers, and for the Q2 quarter for all printer products.

Providing query ability to users

154 PocketBuilder

Figure 10-4: Example of a DataWindow with a new user query

The SELECT statement generated from this user query is:

SELECT printer.rep, printer.quarter, printer.product,
printer.units
FROM printer
WHERE printer.units < 70
AND (printer.quarter = 'Q1'
AND printer.product = 'Stellar'
OR printer.quarter = 'Q2')

Clearing selection criteria To clear the selection criteria, Use the
QueryClear property.

dw_1.Modify("datawindow.queryclear=yes")

Sorting in query mode You can allow users to sort rows in a DataWindow
while specifying criteria in query mode using the QuerySort property. The
following statement makes the first row in the DataWindow dedicated to sort
criteria (just as in Quick Select in the DataWindow wizard).

dw_1.Modify("datawindow.querysort=yes")

Overriding column
properties during
query mode

By default, query mode uses edit styles and other definitions of the column,
such as the number of allowable characters. If you want to override these
properties during query mode and provide a standard edit control for the
column, use the Criteria.Override_Edit property for each column:

dw_1.Modify("mycolumn.criteria.override_edit=yes")

You can also specify this in the DataWindow painter by checking Override Edit
on the General property page for the column. With properties overridden for
criteria, users can specify any number of characters in a cell (they are not
constrained by the number of characters allowed in the column in the
database).

CHAPTER 10 Dynamically Changing DataWindow Objects

Resource Guide 155

Forcing users to
specify criteria for a
column

You can force users to specify criteria for a column during query mode by
coding the following:

dw_1.Modify("mycolumn.criteria.required=yes")

You can also specify this in the DataWindow painter by checking Equality
Required on the General property page for the column. Doing this ensures that
the user specifies criteria for the column and that the criteria for the column use
the = operator rather than other operators, such as < or >=.

Providing query ability to users

156 PocketBuilder

Resource Guide 157

C H A P T E R 1 1 Using DataStore Objects

About this chapter This chapter describes how to use DataStore objects in an application.

Contents

Before you begin This chapter assumes you know how to build DataWindow objects in the
DataWindow painter, as described in the User’s Guide.

About DataStores
A DataStore is a nonvisual DataWindow control. DataStores act just like
DataWindow controls except that they do not have many of the visual
characteristics associated with DataWindow controls. Like a DataWindow
control, a DataStore has a DataWindow object associated with it.

When to use a DataStore DataStores are useful when you need to access data but do not need the
visual presentation of a DataWindow control. DataStores allow you to:

• Perform background processing against the database without having
to hide DataWindow controls in a window

Suppose that the DataWindow object displayed in a DataWindow
control is suitable for online display but not for saving to a file. In this
case, you could define a second DataWindow object for saving that
has the same result set description and assign this object to a
DataStore. You could then share data between the DataStore and the
DataWindow control. Whenever the user asked to save the data in the
window, you could save the contents of the DataStore.

Topic Page

About DataStores 157

Working with a DataStore 159

Using a custom DataStore object 160

Accessing and manipulating data in a DataStore 162

Sharing information 164

About DataStores

158 PocketBuilder

• Hold data used to show multiple views of the same information

When a window shows multiple views of the same information, you can
use a DataStore to hold the result set. By sharing data between a DataStore
and one or more DataWindow controls, you can provide different views of
the same information without retrieving the data more than once.

• Manipulate table rows without using embedded SQL statements

In places where an application calls for row manipulation without the need
for display, you can use DataStores instead of embedded SQL statements
to handle the database processing. DataStores typically perform faster at
runtime than embedded SQL statements. Also, because the SQL is stored
with the DataWindow object when you use a DataStore, you can easily
reuse the SQL.

DataStore methods Most of the methods and events available for DataWindows are also available
for DataStores. However, some of the methods that handle online interaction
with the user are not available. For example, DataStores support the Retrieve,
Update, InsertRow, and DeleteRow methods, but not GetClickedRow and
SetRowFocusIndicator.

Prompting for
information

When you are working with DataStores, you cannot prompt the user for more
information by using functionality that causes a dialog box to display. Here are
some examples of ways to manage information entry with DataStores:

SetSort and SetFilter You can use the SetSort and SetFilter methods to
specify sort and filter criteria for a DataStore object, just as you would with a
DataWindow control. However, when you are working with a DataWindow
control, if you pass a null value to either SetSort or SetFilter, the DataWindow
prompts the user to enter information.

When you are working with a DataStore, you must supply a valid value with
the method call. You must also supply a valid value when you share data
between a DataStore and a DataWindow control; you can pass a null value to
the DataWindow control, but not the DataStore.

Prompt for Criteria You can define your DataWindow objects so that the
user is prompted for retrieval criteria before the DataWindow retrieves data.
This feature works with DataWindow controls only. It is not supported with
DataStores.

SaveAs If you are working with a DataStore, you must supply the filename
argument when you use the SaveAs method. With a DataWindow object, you
can pass an empty string for the filename argument so that the user is prompted
for a file name to save to.

CHAPTER 11 Using DataStore Objects

Resource Guide 159

Prompt for Printing For DataWindow controls, you can specify that a print
setup dialog box display at execution time, either by checking the Prompt
Before Printing check box on the DataWindow object’s Print Specifications
property page, or by setting the DataWindow object’s Print.Prompt property in
a script. This is not supported with DataStores.

Retrieval arguments If you call the Retrieve method for a DataWindow
control that has a DataWindow object that expects an argument, but do not
specify the argument in the method call, the DataWindow prompts the user for
a retrieval argument. This behavior is not supported with DataStores.

DataStores have
some visual methods

Many of the methods and events that pertain to the visual presentation of the
data in a DataWindow do not apply to DataStores. However, because you can
print the contents of a DataStore and also import data into a DataStore,
DataStores have some visually oriented events and methods. For example,
DataStores support the SetBorderStyle and SetSeriesStyle methods so that you
can control the presentation of the data at print time. Similarly, DataStores
support the ItemError event, because data imported from a string or file that
does not pass the validation rules for a column triggers this event.

For a complete list of the methods and events for the DataStore object and
information about each method, see the DataWindow Reference in the online
Help.

DataStores require no
visual overhead

Unlike DataWindow controls, DataStores do not require any visual overhead
in a window. Using a DataStore is therefore more efficient than hiding a
DataWindow control in a window.

Working with a DataStore
To use a DataStore, you first need to create an instance of the DataStore object
in a script and assign the DataWindow object to the DataStore. Then, if the
DataStore is intended to retrieve data, you need to set the transaction object for
the DataStore. Once these setup steps have been performed, you can retrieve
data into the DataStore, share data with another DataStore or DataWindow
control, or perform other processing.

Using a custom DataStore object

160 PocketBuilder

Examples The following script uses a DataStore to retrieve data from the database. First
it instantiates the DataStore object and assigns a DataWindow object to the
DataStore. Then it sets the transaction object and retrieves data into the
DataStore:

datastore lds_datastore
lds_datastore = CREATE datastore
lds_datastore.DataObject = "d_cust_list"
lds_datastore.SetTransObject (SQLCA)
lds_datastore.Retrieve()
/* Perform some processing on the data... */

Using a custom DataStore object
This section describes how to extend a DataStore in PocketBuilder by creating
a user object.

You may want to use a custom version of the DataStore object that performs
specialized processing. To define a custom DataStore, you use the User Object
painter. There you specify the DataWindow object for the DataStore, and you
can optionally write scripts for events or define your own methods, user events,
and instance variables.

Using a custom DataStore involves two procedures:

1 In the User Object painter, define and save a standard class user object
inherited from the built-in DataStore object.

2 Use the custom DataStore in your PocketBuilder application.

Once you have defined a custom DataStore in the User Object painter, you can
write code that uses the user object to perform the processing you want.

For instructions on using the User Object painter in PocketBuilder, see the
User’s Guide.

❖ To define the standard class user object:

1 Select Standard Class User Object on the PB Objects page in the New
dialog box.

2 Select “datastore” as the built-in system type that you want your user
object to inherit from, and click OK.

CHAPTER 11 Using DataStore Objects

Resource Guide 161

The User Object painter workspace displays so that you can define the
custom object.

3 Specify the name of the DataWindow object in the DataObject box in the
Properties view and click OK.

4 Customize the DataStore by scripting the events for the object, or by
defining methods, user events, and instance variables.

5 Save the object.

❖ To use the user object in your application:

1 Select the object or control for which you want to write a script.

2 Open the Script view and select the event for which you want to write the
script.

3 Write code that uses the user object to do the necessary processing.

Here is a simple code example that shows how to use a custom DataStore
to retrieve data from the database. First it instantiates the custom
DataStore object, then it sets the transaction object and retrieves data into
the DataStore:

uo_cust_dstore lds_cust_dstore
lds_cust_dstore = CREATE uo_cust_dstore
lds_cust_dstore.SetTransObject (SQLCA)
lds_cust_dstore.Retrieve()
/* Perform some processing on the data... */

Notice that this script does not assign the DataWindow object to the
DataStore. This is because the DataWindow object is specified in the user
object definition.

Changing the DataWindow object at runtime
When you associate a DataWindow object with a DataStore in the User
Object painter, you are setting the initial value of the DataStore’s
DataObject property. At runtime, you can change the DataWindow object
for the DataStore by changing the value of the DataObject property.

4 Compile the script and save your changes.

Accessing and manipulating data in a DataStore

162 PocketBuilder

Accessing and manipulating data in a DataStore
To access data using a DataStore, you need to read the data from the data source
into the DataStore.

If the data source is a
database

If the data for the DataStore is coming from a database (that is, the data source
was defined as anything but External in the DataWindow painter), you need to
communicate with the database to get the data. The steps you perform to
communicate with the database are the same steps you use for a DataWindow
control.

For more information about communicating with the database, see “Accessing
the database” on page 122.

If the data source is
not a database

If the data for the DataWindow object does not come from a database (that is,
the data source was defined as External in the DataWindow painter), you can
use the following methods to import data into the DataStore:

ImportClipboard
ImportFile
ImportString

You can put data in the DataStore by using a DataWindow data expression, or
by using the SetItem method. You can use the same property and data
expressions as for a DataWindow control.

For more information on accessing data in a DataStore, see the DataWindow
Reference in the online Help.

About the DataStore
buffers

Like a DataWindow control, a DataStore uses three buffers to manage data.
The buffers are described in Table 11-1.

Table 11-1: DataStore buffers

About the Edit control The DataStore object has an Edit control. However, the Edit control for a
DataStore behaves in a slightly different manner from the Edit control for a
DataWindow. The Edit control for a DataWindow keeps track of text entered
by the user in the current cell (row and column); the Edit control for a
DataStore is used to manage data imported from an external source. The text
in the Edit control for a DataStore cannot be changed directly by the user. It
must be manipulated programmatically.

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or in a script

CHAPTER 11 Using DataStore Objects

Resource Guide 163

Programming with
DataStores

There are many methods for manipulating DataStore objects. Table 11-2 lists
some of the more commonly used.

Table 11-2: Common methods in DataStore objects

For information about DataStore methods, see the DataWindow Reference in
the online Help.

Dynamic DataWindow objects The methods in Table 11-2 manipulate data
in the DataStore but do not change the definition of the underlying
DataWindow object. In addition, you can use the Modify and Describe methods
to access and manipulate the definition of a DataWindow object. Using these
methods, you can change the DataWindow object at runtime. For example, you
can change the appearance of a DataWindow or allow your user to create ad
hoc reports.

If you assign a DataWindow object to a DataStore dynamically, you must make
sure that the DataWindow object is available in a PKD file or is listed in a PKR
file used to create the executable.

For more information, see Chapter 10, “Dynamically Changing DataWindow
Objects.”

Using DataStore properties and events This chapter mentions only a few
of the properties and events that you can use to manipulate DataStores. For
more information about DataStore properties and events, see the DataWindow
Reference in the online Help.

Method Purpose

DeleteRow Deletes the specified row from the DataStore.

Filter Filters rows in the DataStore based on the current filter criteria.

InsertRow Inserts a new row.

Print Sends the contents of the DataStore to the current printer.

Reset Clears all rows in the DataStore.

Retrieve Retrieves rows from the database.

RowsCopy Copies rows from one DataStore to another DataStore or
DataWindow control.

RowsMove Moves rows from one DataStore to another DataStore or
DataWindow control.

ShareData Shares data among different DataStores or DataWindow controls.
See “Sharing information” on page 164.

Sort Sorts the rows of the DataStore based on the current sort criteria.

Update Sends to the database all inserts, changes, and deletions that have
been made since the last Update.

Sharing information

164 PocketBuilder

Sharing information
The ShareData method allows you to share a result set between two different
DataStores or DataWindow controls. When you share information, you remove
the need to retrieve the same data multiple times.

The ShareData method shares data retrieved by one DataWindow control or
DataStore (called the primary DataWindow) with another DataWindow control
or DataStore (the secondary DataWindow).

Result set
descriptions must
match

When you share data, the result set descriptions for the DataWindow objects
must be the same. However, the SELECT statements can be different. For
example, you could use the ShareData method to share data between
DataWindow objects that have the following SELECT statements, because the
result set descriptions are the same:

SELECT dept_id from dept
SELECT dept_id from dept where dept_id = 200
SELECT dept_id from employee

You can also share data between two DataWindow objects where the source of
one is a database and the source of the other is external. As long as the lists of
columns and their datatypes match, you can share the data.

What is shared? When you use the ShareData method, the following information is shared:

Primary buffer
Delete buffer
Filter buffer
Sort order

ShareData does not share the formatting characteristics of the DataWindow
objects. That means you can use ShareData to apply different presentations to
the same result set.

When you alter the
result set

If you perform an operation that affects the result set for either the primary or
the secondary DataWindow, the change affects both of the objects sharing the
data. Operations that alter the buffers or the sort order of the secondary
DataWindows are rerouted to the primary DataWindow. For example, if you
call the Update method for the secondary DataWindow, the update operation is
applied to the primary DataWindow also.

Turning off sharing
data

To turn off the sharing of data, you use the ShareDataOff method. When you
call ShareDataOff for a primary DataWindow, any secondary DataWindows are
disassociated and no longer contain data. When you call ShareDataOff for a
secondary DataWindow, that DataWindow no longer contains data, but the
primary DataWindow and other secondary DataWindows are not affected.

CHAPTER 11 Using DataStore Objects

Resource Guide 165

In most cases you do not need to turn off sharing, because the sharing of data
is turned off automatically when a window is closed and any DataWindow
controls (or DataStores) associated with the window are destroyed.

Example: printing data from a DataStore
Suppose you have a window called w_employees that allows users to retrieve,
update, and print employee data retrieved from the database:

The DataWindow object displayed in the DataWindow control is suitable for
online display but not for printing. In this case, you could define a second
DataWindow object for printing that has the same result set description as the
object used for display and assign the second object to a DataStore. You could
then share data between the DataStore and the DataWindow control. Whenever
the user asked to print the data in the window, you could print the contents of
the DataStore.

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a device or emulator. An
evaluation version of this software is available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

Sharing information

166 PocketBuilder

When the window or
form opens

The code you write begins by establishing the hand pointer as the current row
indicator for the dw_employees DataWindow control. Then the script sets the
transaction object for dw_employees and issues a Retrieve method to retrieve
some data. After retrieving data, the script creates a DataStore using the
instance variable or data member ids_datastore, and assigns the DataWindow
object d_employees to the DataStore. The final statement of the script shares
the result set for the dw_employees DataWindow control with the DataStore.

This code is for the window’s Open event:

dw_employees.SetRowFocusIndicator(Hand!)
dw_employees.SetTransObject(SQLCA)
dw_employees.Retrieve()

ids_datastore = CREATE datastore
ids_datastore.DataObject = "d_employees"
dw_employees.ShareData(ids_datastore)

Code for the Update
button

Code for the cb_update button applies the update operation to the
dw_employees DataWindow control.

This code is for the Update button’s Clicked event:

IF dw_employees.Update() = 1 THEN
COMMIT using SQLCA;
MessageBox("Save","Save succeeded")

ELSE
ROLLBACK using SQLCA;
MessageBox("Save","Save failed")

END IF

Code for the Print
button

The Clicked event of the cb_print button prints the contents of ids_datastore.
Because the DataWindow object for the DataStore is d_employees, the printed
output uses the presentation specified for this object.

This code is for the Print button’s Clicked event:

ids_datastore.Print()

When the window or
form closes

When the window closes, the DataStore gets destroyed.

This code is for the window’s Close event:

destroy ids_datastore

CHAPTER 11 Using DataStore Objects

Resource Guide 167

Example: using two DataStores to process data
Suppose you have a window called w_multi_view that shows multiple views of
the same result set. When the Employee List radio button is selected, the
window shows a list of employees retrieved from the database.

Figure 11-1: Displaying a list of employees in a DataWindow

When the Employee Salary Information radio button is selected, the window
displays a graph that shows employee salary information by department.

Figure 11-2: Displaying a graph of employee salary information

This window has one DataWindow control called dw_display. It uses two
DataStores to process data retrieved from the database. The first DataStore
(ids_emp_list) shares its result set with the second DataStore (ids_emp_graph).
The DataWindow objects associated with the two DataStores have the same
result set description.

Sharing information

168 PocketBuilder

When the window or
form opens

When the window opens, the application sets the pointer to the hourglass
shape. Then the code creates the two DataStores and sets the DataWindow
objects for the DataStores. Next the code sets the transaction object for
ids_emp_list and issues a Retrieve method to retrieve some data.

After retrieving data, the code shares the result set for ids_emp_list with
ids_emp_graph. The next-to-last statement triggers the Clicked event for the
Employee List radio button. The final statement resets the pointer.

This code is for the window’s Open event:

SetPointer(HourGlass!)
ids_emp_list = Create DataStore
ids_emp_graph = Create DataStore

ids_emp_list.DataObject = "d_emp_list"
ids_emp_graph.DataObject = "d_emp_graph"

ids_emp_list.SetTransObject(sqlca)
ids_emp_list.Retrieve()
ids_emp_list.ShareData(ids_emp_graph)
rb_emp_list.EVENT Clicked()
SetPointer(Arrow!)

Code for the
Employee List radio
button

The code for the Employee List radio button (called rb_emp_list) sets the
DataWindow object for the DataWindow control to be the same as the
DataWindow object for ids_emp_list. Then the script displays the data by
sharing the result set for the ids_emp_list DataStore with the DataWindow
control.

This code is for the Employee List radio button’s Clicked event:

dw_display.DataObject = ids_emp_list.DataObject
ids_emp_list.ShareData(dw_display)

Code for the
Employee Salary
Information radio
button

The code for the Employee Salary Information radio button (called rb_graph)
is similar to the code for the List radio button. It sets the DataWindow object
for the DataWindow control to be the same as the DataWindow object for
ids_emp_graph. Then it displays the data by sharing the result set for the
ids_emp_graph DataStore with the DataWindow control.

This code is for the Employee Salary Information radio button’s Clicked event:

dw_display.DataObject = ids_emp_graph.DataObject
ids_emp_graph.ShareData(dw_display)

CHAPTER 11 Using DataStore Objects

Resource Guide 169

When the window or
form closes

When the window closes, the DataStores get destroyed.

This code is for the window’s Close event:

Destroy ids_emp_list
Destroy ids_emp_graph

Use garbage collection
Do not destroy the objects if they might still be in use by another process. Rely
on garbage collection instead.

Sharing information

170 PocketBuilder

Resource Guide 171

C H A P T E R 1 2 Manipulating Graphs in
DataWindows

About this chapter This chapter describes how to write code that allows you to access and
change a graph in your application at runtime.

Contents

Using graphs
It is common for developers to design DataWindow objects that include
one or more graphs. When users need to understand and analyze data
quickly, a bar, line, or pie graph can often be the most effective format to
display.

To learn about designing graphs, see the User’s Guide.

Working with graphs in
your code

The following sections describe how you can access (and optionally
modify) a graph by addressing its properties in code at runtime. There are
two kinds of graph properties:

• Properties of the graph definition itself These properties are
initially set in the DataWindow painter when you create a graph. They
include a graph’s type, title, axis labels, whether axes have major
divisions, and so on.

• Properties of the data These properties are relevant only at
runtime, when data has been loaded into the graph. They include the
number of series in a graph (series are created at runtime), colors of
bars or columns for a series, whether the series is an overlay, text that
identifies the categories (categories are created at runtime), and so on.

Topic Page

Using graphs 171

Modifying graph properties 172

Accessing data properties 174

Modifying graph properties

172 PocketBuilder

Using graphs in other controls
Although you will probably use graphs most often in DataWindow objects, you
can also add graph controls to windows or visual user objects. Additional
PowerScript functions and events are available for use with graph controls.

For more information, see Chapter 7, “Manipulating Graphs in Windows.”

Modifying graph properties
When you define a graph in the DataWindow painter, you specify its behavior
and appearance. For example, you might define a graph as a column graph with
a certain title, divide its Value axis into four major divisions, and so on. Each
of these entries corresponds to a property of a graph. For example, all graphs
have a property GraphType, which specifies the type of graph.

When dynamically changing the graph type
If you change the graph type, be sure also to change the other properties as
needed to define the new graph properly.

You can change these graph properties at runtime by assigning values to the
graph’s properties in code.

Property expressions You can modify properties using property expressions. For example, to change
the type of the graph gr_emp to Column, you could code:

dw_empinfo.Object.gr_emp.GraphType = ColGraph!

To change the title of the graph at runtime, you could code:

dw_empinfo.Object.gr_emp.Title = "New title"

Modify method In any environment, you can use the Modify method to reference parts of a
graph.

For example, to change the title of graph gr_emp in DataWindow control
dw_empinfo, you could code:

dw_empinfo.Modify("gr_emp.Title = 'New title'")

For a complete list of graph properties, see the DataWindow Reference in the
online Help.

CHAPTER 12 Manipulating Graphs in DataWindows

Resource Guide 173

How parts of a graph are represented
Graphs consist of parts: a title, a legend, and axes. Each of these parts has a set
of display properties. These display properties are themselves stored as
properties in a subobject (structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the text for the title.
Graphs also have a property TitleDispAttr, of type grDispAttr, which itself
contains properties that specify all the characteristics of the title text, such as
the font, size, whether the text is italicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These
properties are stored in a subobject (structure) of Graph called grAxis. For
example, graphs have a property Values, of type grAxis, which specifies the
properties of the Value axis, such as whether to use auto scaling of values, the
number of major and minor divisions, the axis label, and so on.

Here is a representation of the properties of a graph:

Graph
int Height
int Depth
grGraphType GraphType
boolean Border
string Title
…

grDispAttr TitleDispAttr, LegendDispAttr, PieDispAttr
string FaceName
int TextSize
boolean Italic
…

grAxis Values, Category, Series
boolean AutoScale
int MajorDivisions
int MinorDivisions
string Label
…

Referencing parts of a graph
You use dot notation or the Describe and Modify methods to reference the
display properties of the various parts of a graph. For example, one of the
properties of a graph’s title is whether the text is italicized or not. That
information is stored in the boolean Italic property in the TitleDispAttr
property of the graph.

Accessing data properties

174 PocketBuilder

This example changes the label text for the Value axis of graph gr_emp in the
DataWindow control dw_empinfo:

dw_empinfo.Object.gr_emp.Values.Label="New label"

You can use the Browser to examine the properties of a DataWindow object
that contains a graph. For descriptions of graph properties, see the DataWindow
Reference in the online Help.

Accessing data properties
To access properties related to a graph’s data at runtime, you use DataWindow
methods for graphs. There are three categories of these methods related to data:

• Methods that provide information about a graph’s data

• Methods that save data from a graph

• Methods that change the color, fill patterns, and other visual properties of
data

How to use the
methods

To call the methods for a graph in a DataWindow control, use the following
syntax:

DataWindowName.methodName ("graphName", otherArguments…)

For example, there is a method CategoryCount, which returns the number of
categories in a graph. So to get the category count in the graph gr_printer (which
is in the DataWindow control dw_sales), write:

Ccount = dw_sales.CategoryCount("gr_printer")

Getting information about the data
There are quite a few methods for getting information about data in a graph in
a DataWindow control at runtime. For all methods, you provide the name of
the graph within the DataWindow as the first argument. You can provide your
own name for graph controls when you insert them in the DataWindow painter.
If the presentation style is Graph, you do not need to name the graph.

These methods get information about the data and its display. For several of
them, an argument is passed by reference to hold the requested information:

CHAPTER 12 Manipulating Graphs in DataWindows

Resource Guide 175

Table 12-1: Common methods for graph DataWindows

Saving graph data
The following methods allow you to save data from the graph:

Table 12-2: Methods for saving data from a graph

Method Information provided

CategoryCount The number of categories in a graph

CategoryName The name of a category, given its number

DataCount The number of data points in a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

GetData The value of a data point, given its series and position
(superseded by GetDataValue, which is more flexible)

GetDataPieExplode The percentage of the pie's radius that the pie slice is to be
moved away from the center (exploded)

GetDataStyle The color, fill pattern, or other visual property of a specified
data point

GetDataValue The value of a data point, given its series and position

GetSeriesStyle The color, fill pattern, or other visual property of a specified
series

SeriesCount The number of series in a graph

SeriesName The name of a series, given its number

Method Action

Clipboard Copies a bitmap image of the specified graph to the clipboard.

SaveAs Saves the data in the underlying graph to the clipboard or to a
file in one of a number of formats.

Accessing data properties

176 PocketBuilder

Modifying colors, fill patterns, and other data
The methods in Table 12-3 allow you to modify the appearance of data in a
graph.

Table 12-3: Methods for modifying the appearance of data

Using graph methods
You call the data-access methods after a graph has been created and populated
with data. Some graphs, such as graphs that display data for a page or group of
data, are destroyed and re-created internally as the user pages through the data.
Any changes you made to the display of a graph, such as changing the color of
a series, are lost when the graph is re-created.

Event for graph
creation

To be sure that data-access methods are called whenever a graph has been
created and populated with data, you can call the methods in the code for an
event that is triggered when a graph is created. The graph-creation event is
triggered by the DataWindow control after it has created a graph and populated
it with data, but before it has displayed the graph.

By accessing the data in the graph in this event, you are assured that you are
accessing the current data and that the data displays the way you want it.

PocketBuilder provides an event ID, pbm_dwngraphcreate, that you can assign
to a user event for a DataWindow control.

Figure 12-1: Selecting a user event ID for graph creation

Method Action

ResetDataColors Resets the color for a specific data point

SetDataStyle Sets the color, fill pattern, or other visual property for a
specific data point

SetSeriesStyle Sets the color, fill pattern, or other visual property for a
series

CHAPTER 12 Manipulating Graphs in DataWindows

Resource Guide 177

❖ To access data properties of a graph in a DataWindow control:

1 Place the DataWindow control in a window or user object and associate it
with the DataWindow object containing the graph.

Next you create a user event for the DataWindow control that is triggered
whenever a graph in the control is created or changed.

2 Select Insert>Event from the menu bar.

The Script view displays and includes prototype fields for adding a new
event.

3 Select the DataWindow control in the first drop-down list of the prototype
window.

If the second drop-down list also changes to display an existing
DataWindow event prototype, scroll to the top of the list to select New
Event or select Insert>Event once again from the menu bar.

4 Name the user event you are creating.

For example, you might call it GraphCreate.

5 Select pbm_dwngraphcreate for the event ID.

6 Click OK to save the new user event.

7 Write a script for the new GraphCreate event that accesses the data in the
graph.

Calling data access methods in the GraphCreate event assures you that the
data access happens each time the graph has been created or changed in
the DataWindow.

Examples The following statement sets to black the foreground (fill) color of the Q1
series in the graph gr_quarter, which is in the DataWindow control dw_report.
The statement is in the GraphCreate event, which is associated with the event
ID pbm_dwngraphcreate in PocketBuilder:

dw_report.SetSeriesStyle("gr_quarter", "Q1", &
foreground!, 0)

Accessing data properties

178 PocketBuilder

The following statement changes the foreground (fill) color to red of the
second data point in the Stellar series in the graph gr_sale in a window. The
statement can be in a script for any event:

int SeriesNum
// Get the number of the series.
SeriesNum = gr_sale.FindSeries("Stellar")

// Change color of second data point to red
gr_sale.SetDataStyle(SeriesNum, 2, foreground!, 255)

For more information For complete information about the data-access graph methods, see the
DataWindow Reference in the online Help. For more about user events, see the
User’s Guide.

P A R T 4 Connecting to a Database

This part describes how to connect to a database in the
development environment and in an application. It also
describes how to use MobiLink synchronization in an
application and how to set database parameters and
preferences.

Resource Guide 181

C H A P T E R 1 3 Database Connectivity in
PocketBuilder

About this chapter This chapter describes how to access data in PocketBuilder and how to
create and manage database profiles.

Contents

Accessing data in PocketBuilder
When you build an application in PocketBuilder, you can access data in a
SQL Anywhere database or UltraLite database in the Database painter and
the DataWindow painter. You can also write scripts that access these
databases in the Application, Window, Menu, and User Object painters.

Proxy tables
SQL Anywhere allows you to create proxy tables that can map to other
databases, including databases managed by other database management
systems. For information on how to create proxy tables, see the SQL
Anywhere documentation. For information on identifying identity
columns in the underlying database tables referenced by proxy tables, see
the technical note “Techniques for Working with Identity Columns in
ASA Proxy Tables” on the Sybase Web site at
http://www.sybase.com/detail?id=1035056.

Topic Page

Accessing data in PocketBuilder 181

About database profiles 182

Creating database profiles 183

Connecting to a database 188

Importing and exporting database profiles 190

Maintaining database profiles 191

Sharing database profiles 191

About database profiles

182 PocketBuilder

Connecting to a
database

To work in the Database painter or build a DataWindow object in the
DataWindow painter, you need to create a database connection profile. This
chapter describes how to create and manage database profiles and how to use
them to connect to a database in PocketBuilder.

The connection profile has different options depending on which database
interface you use. Chapter 14, “Using database interfaces,” describes the
database interfaces provided with PocketBuilder.

In scripts, you use Transaction objects to connect to the database. Chapter 16,
“Using Transaction Objects,” describes how you connect to a database in a
script.

Troubleshooting
connections

You can use two tools to trace your database connection in the development
environment: the PocketBuilder Database Trace tool and, for ODBC
connections, the ODBC Driver Manager Trace tool. Chapter 15,
“Troubleshooting Your Connection,” describes how to use the trace tools.

Synchronizing data For many mobile applications, you do not have a constant network connection,
so having access to a local database offline provides a way to have the
application work with or without a network connection. You can use SQL
Anywhere or UltraLite as the local database and synchronize with your
back-end database using MobiLink synchronization technology. MobiLink
allows the local database to synchronize directly to many enterprise databases
including SQL Anywhere itself, Sybase Adaptive Server® Enterprise,
Microsoft SQL Server, IBM DB2, and Oracle.

Chapter 17, “Using MobiLink Synchronization,” provides an overview of
MobiLink synchronization and describes how you can launch synchronization
from PocketBuilder applications.

Setting parameters
and preferences

Chapter 18, “Setting Additional Connection Parameters,” describes how to set
database parameters and database preferences in PocketBuilder. Reference
information for database parameters and database preferences is in the
Connection Reference.

About database profiles
PocketBuilder connects to a database when you:

• Open a painter that accesses the database

• Compile or save a PocketBuilder script containing embedded SQL
statements (such as a CONNECT statement)

CHAPTER 13 Database Connectivity in PocketBuilder

Resource Guide 183

• Run an application that accesses the database

• Invoke a DataWindow control function that accesses the database while
executing an application

PocketBuilder uses a database profile to connect to the database you used last
when you open a painter that accesses the database. It determines which
database you used last and how to connect to it by looking at database profile
settings in the registry.

A database profile is a named set of parameters stored in your system registry.
Each profile defines a connection to a particular database in the PocketBuilder
development environment. You must create a database profile for each data
connection. You can:

• Select a database profile to establish or change database connections. You
can easily connect to another database at any time during a PocketBuilder
session. This is particularly useful if you often switch between different
database connections.

• Edit a database profile to modify or supply additional connection
parameters.

• Delete a database profile if you no longer need to access that data.

• Import and export profiles.

Because database profiles are created when you define your data and are stored
in the registry, they have the following benefits:

• They are always available to you in the development environment

• Connection parameters supplied in a database profile are saved until you
edit or delete the database profile

You can also use a database profile to generate the correct syntax to use in a
script for a database connection.

Creating database profiles
You work with two dialog boxes when you create a database profile in
PocketBuilder: the Database Profiles dialog box and the Database Profile
Setup dialog box.

Creating database profiles

184 PocketBuilder

Using the Database painter to create database profiles
You can also create database profiles from the Database painter’s Objects view.

Database Profiles dialog box
The Database Profiles dialog box uses an easy-to-navigate tree control format
to display your defined database profiles. You can create, edit, and delete
database profiles from this dialog box.

When you run the PocketBuilder Setup program, the program creates a
Vendors key under the PocketBuilder section of the system registry in
HKEY_LOCAL_MACHINE\SOFTWARE, and adds the following registry
string values: ODB for the ODBC interface, UL 10 for the UltraLite 10.x
interface, and UL9 for the UltraLite 9.x interface.

Most PocketBuilder examples use a standalone database called asademo.db
that is installed with Adaptive Server Anywhere 9. The PocketBuilder setup
program also installs the ASADemo_10 database in the Code
Examples\SA10DemoData directory. This database is a migrated version of
asademo.db that you can use with SQL Anywhere 10. Table and column names
in this database are different than the names in the SQL Anywhere 10 Demo
database that installs with SQL Anywhere 10.

The Database Profiles dialog box in Figure 13-1 displays profiles for a SQL
Anywhere database (SA10) and an UltraLite database (ULSync). The check
mark on the SA10 profile indicates that it is currently connected. The figure
also shows utilities you can use with these interfaces.

CHAPTER 13 Database Connectivity in PocketBuilder

Resource Guide 185

Figure 13-1: The Database Profiles dialog box

Database Profile Setup dialog box
Each interface has a Database Profile Setup dialog box where you can set
interface-specific connection parameters. Figure 13-2 shows the dialog box for
ODBC.

Creating database profiles

186 PocketBuilder

Figure 13-2: The Database Profile Setup dialog box

The Database Profile Setup dialog box groups similar connection parameters
on each tab page and lets you set their values easily by using check boxes,
drop-down lists, and text boxes. Basic (required) connection parameters are on
the Connection tab page, and additional connection options, including
additional database parameters and SQLCA properties, are on the other tab
pages.

As you complete the Database Profile Setup dialog box in PocketBuilder, the
correct PowerScript connection syntax for each selected option is generated on
the Preview tab. You can copy the syntax you want from the Preview tab into
a PocketBuilder application script.

Supplying information in the dialog box
You do not need to supply values for all boxes in the Database Profile Setup
dialog box. If you supply the profile name and click OK, PocketBuilder
displays a series of dialog boxes to prompt you for additional information when
you connect to the database. For example, if you type in only the profile name
for an ODBC profile, when you attempt to connect, you are prompted for a file
or machine data source name.

CHAPTER 13 Database Connectivity in PocketBuilder

Resource Guide 187

For more information about creating SQL Anywhere data source files, see
“About SQL Anywhere data sources” on page 200.

Creating a database profile
To create a new database profile, complete the Database Profile Setup dialog
box.

❖ To create a database profile:

1 Click the Database Profile button in the PowerBar.

2 Highlight the database interface you want to use and click New.

Client software and interface must be installed
To display the Database Profile Setup dialog box, you must have the
required client software and database interface properly installed and
configured.

3 On the Connection tab page, type a name for the profile and supply values
for any other basic parameters your interface requires for connection.

4 On the other tab pages, supply values for any additional connection
options, such as database parameters and SQLCA properties.

For information about the values you can supply for your connection, click
Help in the Database Profile Setup dialog box.

5 (Optional) Click the Preview tab if you want to see the PowerScript
connection syntax that PocketBuilder generates for each selected option.

You can copy the PowerScript connection syntax from the Preview tab
directly into a PocketBuilder application script. For more information, see
“Using the Preview tab to connect in a PocketBuilder application” on
page 239.

6 Click OK to save your changes and close the Database Profile Setup dialog
box. (To save your changes on a particular tab page without closing the
dialog box, click Apply.)

The Database Profiles dialog box displays, with the new profile name
highlighted under the appropriate interface. The database profile values
are saved in the system registry in the key HKEY_CURRENT_USER\
Software\Sybase\PocketBuilder\2.0\DatabaseProfiles\Pocket PB.

Connecting to a database

188 PocketBuilder

Specifying passwords in database profiles
Your password does not display when you specify it in the Database Profile
Setup dialog box. However, when PocketBuilder stores the values for this
profile in the registry, the actual password does display, in encrypted form, in
the DatabasePassword or LogPassword field.

Suppressing display in
the profile registry
entry

To suppress password display in the profile registry entry, do the following
when you create a database profile.

❖ To suppress password display in the profile registry entry:

1 Select the Prompt For Database Information check box on the Connection
tab in the Database Profile Setup dialog box.

This tells PocketBuilder to prompt for any missing information when you
select this profile to connect to the database.

2 Leave the Password box blank. Instead, specify the password in the dialog
box that displays to prompt you for additional information when you
connect to the database.

When you specify the password in response to a prompt instead of in the
Database Profile Setup dialog box, the password does not display in the
registry entry for this profile.

Connecting to a database
To establish or change a database connection in PocketBuilder in the Database
Profiles dialog box, select the database profile for the database you want to
access.

❖ To connect to a database using the Database Profiles dialog box:

1 Click the Database Profile button in the PowerBar, or select
Tools>Database Profile from the PowerBar.

2 Click the plus sign (+) to the left of the database interface you want to use
or double-click its name.

The list expands to display the database profiles defined for the interface.

CHAPTER 13 Database Connectivity in PocketBuilder

Resource Guide 189

3 Select the name of the database profile you want to access and click
Connect.

PocketBuilder connects to the specified database and closes the dialog
box.

Using the Database painter to select a database profile
You can also select the database profile for the database you want to access
from the Database painter’s Objects view and select Connect from its pop-up
menu. However, this method uses more system resources than using the
Database Profiles dialog box.

What happens when you connect
When you connect to a database by selecting its database profile,
PocketBuilder writes the profile name to the MRUProfile (for “most recently
used” profile) string value in the following registry key:
HKEY_CURRENT_USER\Software\Sybase\PocketBuilder\2.0\
DatabaseProfiles\Pocket PB.

PocketBuilder also adds the profile to a list of recently-used profiles for the
current workspace under the Workspace subkey. These profiles display in the
Recent Connections list in the File menu for the workspace.

Each time you connect to a different database, PocketBuilder overwrites the
MRUProfile value in the registry with the name for the new database
connection.

When you open a painter that accesses the database, you are connected to the
database you used last. PocketBuilder determines which database this is by
reading the registry.

Importing and exporting database profiles

190 PocketBuilder

Importing and exporting database profiles
Each database interface provides an Import Profile(s) and an Export Profile(s)
option. You can use the Import option to import a previously defined profile for
use with an installed database interface. Conversely, you can use the Export
option to export a defined profile for use by another user.

The ability to import and export profiles provides a way to move profiles easily
between developers. It also means you no longer have to maintain a shared file
to maintain profiles, which is important if you cannot rely on connecting to a
network to share a file.

When you migrate to a new version of PocketBuilder, you can export the
profiles from the previous version and import them into the new version.

❖ To import a profile:

1 Highlight a database interface and select Import Profile(s) from the pop-up
menu. (In the Database painter, select Import Profile(s) from the File or
pop-up menu.)

2 From the Select Profile File dialog box, select the file whose profiles you
want to import and click Save.

3 Select the profile(s) you want to import from the Import Profile(s) dialog
box and click OK.

The profiles are copied into your registry. If a profile with the same name
already exists, you are asked if you want to overwrite it.

❖ To export a profile:

1 Highlight a database interface and select Export Profile(s) from the pop-up
menu. (In the Database painter, select Export Profile(s) from the File or
pop-up menu.)

2 Select the profile(s) you want to export from the Export Profile(s) dialog
box and click OK.

The Export Profile(s) dialog box lists all profiles defined in your registry.

3 From the Select Profile File dialog box, select a directory and a file in
which to save the exported profile(s) and click Save.

The exported profiles can be saved to a new or existing file. If saved to an
existing file, the profile(s) are added to the existing profiles. If a profile
with the same name already exists, you are asked if you want to overwrite
it.

CHAPTER 13 Database Connectivity in PocketBuilder

Resource Guide 191

Maintaining database profiles
You can edit a database profile to change one or more of its connection
parameters, and you can delete it when you no longer need to access its data.
You can also change a profile using either the Database Profile dialog box or
the Database painter.

When you edit a database profile, PocketBuilder updates the database profile
entry in the registry.

When you delete a database profile that connects to an ODBC data source,
PocketBuilder deletes the database profile entry in the registry, but it does not
delete the corresponding data source definition from the ODBC.INI registry
key. This lets you recreate the database profile later if necessary without having
to redefine the data source.

Sharing database profiles
When you work in PocketBuilder, you can share database profiles among
users. This section describes what you need to know to set up, use, and
maintain shared database profiles in PocketBuilder.

About shared
database profiles

You can share database profiles in the PocketBuilder development
environment by specifying the location of a file containing the profiles you
want to share. You specify this location in the Database Preferences dialog box
in the Database painter.

To share database profiles among all PocketBuilder users at your site, store a
profile file on a network file server accessible to all users. This shared profile
file contains two profiles:

[DBMS_PROFILES]
Profiles=Sales, Orders
[Profile Sales]
DBMS=ODBC
DBParm=ConnectString='DSN=Sales;UID=dba;PWD=sql'
Prompt=FALSE
AutoCommit=FALSE
[Profile Orders]
DBMS=ODBC
DBParm=ConnectString='DSN=Orders;UID=;PWD=sql'
Prompt=FALSE
AutoCommit=FALSE

Sharing database profiles

192 PocketBuilder

When you share database profiles, PocketBuilder displays shared database
profiles from the file you specify as well as those from your registry.

Shared database profiles are read-only. You can select a shared profile to
connect to a database, but you cannot edit, save, or delete profiles that are
shared. You can, however, make changes to a shared profile and save it on your
computer, as described in “Making a local copy of a shared database profile”
on page 194.

Setting up shared
database profiles

To set up shared database profiles in PocketBuilder, you specify the location of
the file containing shared profiles in the Database painter’s Database
Preferences dialog box.

❖ To set up shared database profiles:

1 In the Database painter, select Design>Options from the menu bar.

The Database Preferences dialog box displays. If necessary, click the
General tab to display the General property page.

2 In the Shared Database Profiles box, specify the location of the file
containing the database profiles you want to share. Do this in either of the
following ways:

• Type the location (path name) in the Shared Database Profiles box

• Click the Browse button to navigate to the file location and display it
in the Shared Database Profiles box

In the following example, I:\SHARE\dbprofs.ini is the name and location
of the file containing the database profiles to be shared:

CHAPTER 13 Database Connectivity in PocketBuilder

Resource Guide 193

Figure 13-3: Specifying shared database profiles

3 Click OK to apply the Shared Database Profiles setting to the current
connection and all future connections and close the Database Preferences
dialog box.

PocketBuilder saves your Shared Database Profiles setting in the registry.

You select a shared database profile to connect to a database the same way you
select a local profile. The Database Profiles dialog box lists both shared and
local profiles. Shared profiles are denoted by a network icon and the word
(Shared).

Sharing database profiles

194 PocketBuilder

Figure 13-4: Shared database profiles in the Database Profiles dialog
box

Making a local copy of
a shared database
profile

Because shared database profiles can be accessed by multiple users running
PocketBuilder, you cannot make changes to these profiles. However, you can
modify and save a copy of a shared database profile for your own use.

Select the profile in the Database Profiles dialog box, click Edit, and modify
the profile. When you click OK to save your changes, PocketBuilder pops up
a response window asking if you want to save a copy of the profile to your local
machine. When you click OK, PocketBuilder saves the modified copy in your
computer’s registry. Both profiles display in the Database Profiles dialog box.

Maintaining shared
database profiles

If you maintain the database profiles for PocketBuilder at your site, you might
need to update shared database profiles from time to time and make these
changes available to your users.

Because shared database profiles can be accessed by multiple users running
PocketBuilder, it is not a good idea to make changes to the profiles over a
network. Instead, you should make any changes locally and then provide the
updated profiles to your users.

❖ To maintain shared database profiles at your site:

1 Make and save required changes to the shared profiles on your own
computer. These changes are saved in your registry.

2 Export the updated profile entries from your registry to the existing file
containing shared profiles.

For instructions, see “Importing and exporting database profiles” next.

CHAPTER 13 Database Connectivity in PocketBuilder

Resource Guide 195

3 If they have not already done so, have users specify the location of the new
profiles file in the Database Preferences dialog box so that they can access
the updated shared profiles on their computers.

Sharing database profiles

196 PocketBuilder

Resource Guide 197

C H A P T E R 1 4 Using database interfaces

About this chapter This chapter describes the database interfaces provided by PocketBuilder.

Contents

About database interfaces
There are two ways to access data in the PocketBuilder development
environment:

• Through a standard database interface

• Through a native database interface

Standard database
interfaces

A standard database interface communicates with a database through a
standard-compliant driver or data provider. The standard-compliant driver
or data provider translates the abstract function calls defined by the
standard’s API into calls that are understood by a specific database. To use
a standard interface, you need to install the standard’s API and a suitable
driver or data provider. Then, install the standard database interface you
want to use to access your DBMS by selecting the interface in the
PocketBuilder Setup program.

PocketBuilder currently supports the Open Database Connectivity
(ODBC) standard driver.

Native database interfaces A native database interface communicates with a database through a direct
connection, using that database’s native API and a PocketBuilder database
interface DLL for that specific database.

PocketBuilder currently provides a native interface to UltraLite 9.x
databases through the file pkul920.dll. This file is installed by default
when you install PocketBuilder.

Topic Page

About database interfaces 197

Working with the ODBC database interface 198

Working with the UltraLite database interface 213

Working with the ODBC database interface

198 PocketBuilder

Loading database
interface libraries

PocketBuilder loads the libraries used by a database interface when it connects
to the database. PocketBuilder does not automatically free the database
interface libraries when it disconnects.

Although memory use is somewhat increased by this technique (since the
loaded database interface libraries continue to be held in memory), the
technique improves performance and eliminates problems associated with the
freeing and subsequent reloading of libraries experienced by some database
connections.

If you want PocketBuilder to free database interface libraries on disconnecting
from the database, you can change its default behavior:

Working with the ODBC database interface
PocketBuilder is closely integrated with Sybase SQL Anywhere, which uses
the ODBC database interface. This section contains the following topics:

• Connecting to a SQL Anywhere database on Windows CE

• About SQL Anywhere data sources

• Defining the SQL Anywhere data source

• Defining multiple data sources for the same data

• How PocketBuilder accesses the data source

• Support for Transact-SQL special timestamp columns

• The PKODB20 initialization file

• Preparing remote databases

• Starting SQL Anywhere on a device

To change the default
behavior for Do this

Connections in the
development
environment

Select the Free Database Driver Libraries On
Disconnect check box on the General tab of the System
Options dialog box.

Runtime connections Set the FreeDBLibraries property of the Application
object to TRUE on the General tab of the Properties view
in the Application painter or in a script.

CHAPTER 14 Using database interfaces

Resource Guide 199

Connecting to a SQL Anywhere database on Windows CE
In the development environment, the ODBC driver manager provides an
interface between the PocketBuilder ODB interface (pkodb20.dll) and the
Adaptive Server Anywhere 9 ODBC driver (dbodbc9.dll) or the SQL
Anywhere 10 ODBC driver (dbodbc10.dll). The driver manager can handle
three types of data source name (DSN) files: system DSNs, user DSNs, and file
DSNs. You can create a database connection profile using any of these DSN
types.

In applications that you deploy to Windows CE, you must use a file DSN
because there is no ODBC driver manager.

Using file DSNs Windows CE does not provide an ODBC driver manager or an ODBC
Administrator. On Windows CE, SQL Anywhere uses ODBC data sources
stored in ANSI format files. A file DSN has the same name as the data source,
with the extension .dsn, and is usually stored at the root level of the device.

Windows CE also searches for data source files in the following locations:

• The directory from which the ODBC driver (dbodbc9.dll or dbodbc10)
was loaded. This is usually the Windows directory.

• The directory specified in the Location key of the Adaptive Server
Anywhere or SQL Anywhere section of the registry. This is usually the
same as the SQL Anywhere installation directory. The default installation
directory is: \Program Files\Sybase\ASA or \Program Files\SQLAny10.

You can specify either the DSN or the FILEDSN keyword to use file data source
definitions in a script. On Windows CE, DSN and FILEDSN are synonyms.

The data source typically specifies the location of the database and the database
engine. For more information about defining data sources, see “About SQL
Anywhere data sources” on page 200.

Using a different SQL
Anywhere ODBC
driver

The default ODBC driver supplied with Adaptive Server Anywhere version 9
is dbodbc9.dll. You can specify a different ODBC driver by including
“driver=dbodbcX.dll” in the ConnectString parameter in the DBParm value
or in the file data source, where X is the version number of the SQL Anywhere
ODBC driver.

For example, to use a SQL Anywhere 10 ODBC driver on the Windows CE
device, you can set the following DBParm value in a script:

SQLCA.DBPARM="ConnectString='DSN=myDSN;driver=dbodbc10.dll;UID=dba;PWD=sql'"
CONNECT using SQLCA;

SQLCA is the default connection object.

Working with the ODBC database interface

200 PocketBuilder

If you are running your PocketBuilder applications from the desktop, use the
actual name of the driver (for example, “SQL Anywhere 10”) in the
ConnectString parameter rather than the name of the DLL. Otherwise, the
driver you select in the connection string might be ignored.

For more information about setting SQLCA parameters, see “Assigning values
to the Transaction object” on page 237.

The DSN you assign must exist in the root directory on the Windows CE device
or emulator, or in the \Windows directory or the directory from which the server
was started. You can include the driver name in the DSN instead of the
DBParm by adding an assignment for the driver in the DSN file:

[ODBC]
enginename=asademo
databasename=asademo
databasefile=\Program Files\Sybase\ASA\asademo.db
start=\Program Files\Sybase\ASA\dbsrv9.exe
Driver=dbodbc9.dll

About SQL Anywhere data sources
SQL Anywhere includes two database servers—a personal database server that
can be used on a single desktop, and a network database server that supports
communications across a network. The network database server, dbsrvXX.exe
is always used on Windows CE systems, where XX is the version of the SQL
Anywhere database system. (The personal database server uses the
dbengXX.exe engine.)

Basic software
components for SQL
Anywhere

Figure 14-1 show the basic software components required to connect to a SQL
Anywhere data source in PocketBuilder.

CHAPTER 14 Using database interfaces

Resource Guide 201

Figure 14-1: Components of a SQL Anywhere connection

The PocketBuilder ODB interface (pkodb20.dll) calls ODBC functions to
submit SQL statements, to catalog requests, and to retrieve results from a data
source.

The Microsoft ODBC driver manager (odbc32.dll) installs, loads, and unloads
drivers for an application.

No ODBC driver manager on Windows CE
There is no ODBC driver manager on Windows CE. For more information, see
“Connecting to a SQL Anywhere database on Windows CE” on page 199.

The SQL Anywhere ODBC driver (dbodbc9.dll or dbodbc10.dll) processes
ODBC function calls, submits SQL requests to a particular data source, and
returns results to an application. The driver also translates an application’s
request so that it conforms to the SQL syntax supported by the SQL Anywhere
database.

Working with the ODBC database interface

202 PocketBuilder

The SQL Anywhere data source stores and manages data for an application.

Preparing to use the
data source

Before you define and connect to a SQL Anywhere data source in
PocketBuilder, follow these steps to prepare the data source.

❖ To prepare a SQL Anywhere data source:

1 Make sure the database file for the SQL Anywhere data source exists.

You can create a new database using SQL Anywhere outside of
PocketBuilder, or by launching the Create ASA Database utility from the
Utilities folder in the Database Profiles dialog box. For more information,
see the chapter on managing databases in the User’s Guide.

You can also convert an enterprise database for use with PocketBuilder.
For more information, see “Preparing remote databases” on page 211.

2 Make sure you have the log file associated with the SQL Anywhere
database so that you can fully recover the database if it becomes corrupted.

If the log file for the SQL Anywhere database does not exist, the SQL
Anywhere database engine creates it. However, if you are copying or
moving a database from another computer or directory, you should copy
or move the log file with it.

Defining the SQL Anywhere data source
You can define user, system, or file data sources. If you want to use the data
source on a Pocket PC, define a file data source. Windows CE supports only
file data sources.

When you create a local SQL Anywhere database in the Database painter,
PocketBuilder automatically creates a data source definition and database
profile for you. Therefore, you do not need to define a user data source for use
on the desktop, but you do need to define a file data source if you want to
deploy the database to a remote device.

Defining file data
sources

You can use the ODBC Data Source Administrator utility to create a file data
source, but in general it is easier to use a text editor. The file should be saved
with ANSI encoding.

CHAPTER 14 Using database interfaces

Resource Guide 203

The following example shows the format of the file. The database name and
engine name are usually the same as the name of the database file without the
.db extension. In the example, the database file is MyRemoteDB.db, and on the
device it will be installed in the same directory as the application, \Program
Files\AcmeTools:

[ODBC]
uid=dba
pwd=sql
enginename=MyRemoteDB
databasename=MyRemoteDB
databasefile=\Program Files\AcmeTools\MyRemoteDB.db
start=\Program Files\Sybase\ASA\dbsrv9.exe

Defining system and
user data sources

Use the following procedure to define a system or user data source for use on
a desktop or server:

❖ To define a data source for the SQL Anywhere driver:

1 Launch the ODBC Data Source Administrator utility. From the User or
System DSN tab page, click the Add button.

The Create New Data Source dialog box displays.

2 Select a driver for the version of SQL Anywhere or Adaptive Server
Anywhere that your database uses and click Finish.

The ODBC configuration dialog box displays for the database version you
selected.

Working with the ODBC database interface

204 PocketBuilder

Figure 14-2: The ODBC Configuration dialog box

3 You must supply the following values:

• Data source name on the ODBC page

• User ID and password on the Login page

• Database file on the Database page

Use the Help button to get information about boxes in the dialog box.

Using the Browse button
When you use the Browse button to supply the Database File name (for
example, the SQL Anywhere sample database demo.db), this name also
creates entries in both the Data Source Name and Database Name boxes.
This might change values you previously supplied in these boxes.

If you want to specify a different name for the data source or database, you
can edit one or both of these boxes after using the Browse button.

4 Click OK to save the data source definition.

CHAPTER 14 Using database interfaces

Resource Guide 205

Specifying a Start Line
value

When the SQL Anywhere ODBC driver cannot find a running database server
using the PATH variable and Database Name setting, it uses the commands
specified in the Start Line field to start the database server.

If you are creating a DSN for use on a Pocket PC device, specify the name of
the network database server and its location on the device, for example:
\Program Files\SQLAnyPath\dbsrv\XX.exe, where SQLAnyPath is typically
SQLAny10 for SQL Anywhere 10 and Sybase\ASA for Adaptive Server
Anywhere 9, and XX is the version of the database system.

If you are creating a DSN for use in the development environment only, you
can specify the name and location of the personal database server. The default
location is C:\Program Files\Sybase\SQL Anywhere XX\win32\dbengXX.exe.

Preventing the SQL
Anywhere log screen
from displaying

You can add a -q or -qw switch to the start line to prevent the SQL Anywhere
log screen from displaying when you connect to the database. The start line in
a file DSN for use on a Pocket PC device would look like this:

start=\Program Files\SQLAny10\dbsrv10.exe -qw

The start line for Adaptive Server Anywhere 9 might look like this:

start=\Program Files\Sybase\ASA\dbsrv9.exe -q

Because the connection might take a few moments, you might want to call the
SetPointer function to display the Windows CE version of the hourglass icon
when using the -q or -qw switch. On Windows CE, you need to explicitly call
the SetPointer function to reset the default pointer when the script completes.

For more information on completing the ODBC Configuration For SQL
Anywhere dialog box, see the SQL Anywhere Server Database Administration
book in the SQL Anywhere documentation set.

Defining multiple data sources for the same data
When you define an ODBC data source in PocketBuilder, each data source
name must be unique. You can, however, define multiple data sources that
access the same data, as long as the data sources have unique names.

Working with the ODBC database interface

206 PocketBuilder

For example, assume that your data source is a SQL Anywhere database,
C:\SQLAny\SALES.DB. Depending on your application, you might want to
specify different sets of connection parameters for accessing the database, such
as different passwords and user IDs.

To do this, you can define two ODBC data sources named Sales1 and Sales2
that specify the same database (C:\SQLAny\SALES.DB) but use different user
IDs and passwords. When you connect to the data source using a profile
created for either of these data sources, you are using different connection
parameters to access the same data.

How PocketBuilder accesses the data source
When you access an ODBC data source in the PocketBuilder development
environment, there are several initialization files and registry entries on your
computer that work with the ODBC interface and driver to make the
connection.

PKODB20
initialization file

The PKODB20 initialization file maintains access to extended functionality in
the back-end DBMS, for which ODBC does not provide an API call. Examples
of extended functionality are SQL syntax or DBMS-specific function calls.

In most cases, you do not need to edit the PKODB20 initialization file. In
certain situations, however, you may need to add functions to the PKODB20
initialization file for your DBMS.

For instructions, see “The PKODB20 initialization file” on page 209.

ODBCINST registry
entries

The ODBCINST initialization information is located in the
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI registry key.
When you install an ODBC-compliant driver, ODBCINST.INI is automatically
updated with a description of the driver.

This description includes:

• The DBMS or data source associated with the driver

• The drive and directory of the driver and setup DLLs (for some data
sources, the driver and setup DLLs are the same)

• Other driver-specific connection parameters

You do not need to edit the registry key directly to modify connection
information.The key is automatically updated when you install the driver.

CHAPTER 14 Using database interfaces

Resource Guide 207

ODBC registry entries ODBC initialization information is located in the
HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI registry key. When
you define a data source, the driver writes the values you specify in the ODBC
setup dialog box to the ODBC.INI registry key.

The ODBC.INI key contains subkeys named for each defined data source. Each
subkey contains the values specified for that data source in the ODBC setup
dialog box. The values include the following:

• Database file

• Driver

• Optional description

• Connection parameters

Do not edit the ODBC subkey directly to modify connection information.
Instead, use a tool designed to define ODBC data sources and the ODBC
configuration automatically, such as the ODBC Data Source Administrator.

Database profiles
registry entry

Database profiles for all data sources are stored in the registry in
HKEY_CURRENT_USER\SOFTWARE\Sybase\PocketBuilder\2.0\
DatabaseProfiles.

You should not need to edit the profiles directly to modify connection
information. These files are updated automatically when PocketBuilder creates
the database profile as part of the ODBC data source definition.

You can also edit the profile in the Database Profile Setup dialog box or
complete the Database Preferences dialog box in PocketBuilder to specify
other connection parameters stored in the registry. (For instructions, see
Chapter 18, “Setting Additional Connection Parameters.”)

The following example shows a portion of a database profile for the SQLAny
Demo data source:

DBMS=ODBC
Database=SQL Anywhere Demo DB
UserId=dba
DatabasePassword=
LogPassword=
ServerName=
LogId=
Lock=

Working with the ODBC database interface

208 PocketBuilder

DbParm=ConnectString='DSN=SQLAny Demo;UID=dba;PWD=sql'
Prompt=0

This registry entry example shows the two most important values in a database
profile for an ODBC data source:

• DBMS The DBMS value (ODBC) indicates that you are using the ODBC
interface to connect to the data source.

• DBParm The ConnectString DBParm parameter controls your ODBC
data source connection. The connect string must specify the DSN (data
source name) value, which tells ODBC which data source you want to
access. When you select a database profile to connect to a data source,
ODBC looks in the ODBC.INI registry key for a subkey that corresponds
to the data source name in your profile. ODBC then uses the information
in the subkey to load the required libraries to connect to the data source.
The connect string can also contain the UID (user ID) and PWD
(password) values needed to access the data source.

Support for Transact-SQL special timestamp columns
When you work with a SQL Anywhere table in the Database or DataWindow
painter, the default behavior is to treat any column named timestamp as a SQL
Anywhere Transact-SQL special timestamp column.

Creating special
timestamp columns

You can create a Transact-SQL special timestamp column in a SQL Anywhere
table.

❖ To create a Transact-SQL special timestamp column in a SQL Anywhere
table in PocketBuilder:

1 Give the name timestamp to any column having a timestamp datatype that
you want treated as a Transact-SQL special timestamp column. Do this in
one of the following ways:

• In the painter – select timestamp as the column name. (For
instructions, see the User’s Guide.)

• In a SQL CREATE TABLE statement – follow the “CREATE TABLE
example” next.

CHAPTER 14 Using database interfaces

Resource Guide 209

2 Specify timestamp as the default value for the column. Do this in one of
the following ways:

• In the painter – select timestamp as the default value for the column.
(For instructions, see the User’s Guide.)

• In a SQL CREATE TABLE statement – follow the “CREATE TABLE
example” next.

CREATE TABLE
example

The following CREATE TABLE statement defines a SQL Anywhere table
named timesheet containing three columns: employee_ID (integer datatype),
hours (decimal datatype), and timestamp (timestamp datatype and timestamp
default value):

CREATE TABLE timesheet (
employee_ID INTEGER,
hours DECIMAL,
timestamp TIMESTAMP default timestamp)

Not using special
timestamp columns

If you want to change the default behavior, you can specify that PocketBuilder
not treat SQL Anywhere columns named timestamp as Transact-SQL special
timestamp columns.

❖ To specify that PocketBuilder not treat columns named timestamp as a
Transact-SQL special timestamp column:

• Edit the Adaptive Server Anywhere section of the PKODB20 initialization
file to change the value of SQLSrvrTSName from 'Yes' to 'No'.

After making changes in the initialization file, you must reconnect to the
database to have them take effect. See “Adding functions to the
PKODB20 initialization file” on page 210.

The PKODB20 initialization file
The name of the PKODB20 initialization file is PKODB20.INI.

Function of the
PKODB20
initialization file

When you access data through the ODBC interface, PocketBuilder uses the
PKODB20 initialization file to maintain access to extended functionality in the
back-end DBMS, for which ODBC does not provide an API call. Examples of
extended functionality are SQL syntax or function calls specific to a particular
DBMS.

Editing the PKODB20
initialization file

In most cases, you do not need to modify the PKODB20 initialization file.
Change the PKODB20 initialization file only if you are asked to do so by a
Technical Support representative. Changes to this file can adversely affect
PocketBuilder.

Working with the ODBC database interface

210 PocketBuilder

However, you can edit the PKODB20 initialization file if you need to add
functions for your back-end DBMS.

If you modify the PKODB20 initialization file, first make a copy of the existing
file, then keep a record of all changes you make. If you call Technical Support
after modifying the PKODB20 initialization file, tell the representative that
you changed the file and describe the changes you made.

Adding functions to
the PKODB20
initialization file

The PKODB20 initialization file lists the functions for SQL Anywhere. If you
need to add a function to the PKODB20 initialization file for use with SQL
Anywhere, add the function to the ASA_FUNCTIONS section.

❖ To add functions to an existing section in the PKODB20 initialization file:

1 Open the PKODB20 initialization file in one of the following ways:

• Use the File editor in PocketBuilder. (For instructions, see the User’s
Guide.)

• Use any text editor outside PocketBuilder.

2 Find the Functions section for SQL Anywhere (ASA_FUNCTIONS):

;***
;Functions
;***
[ASA_FUNCTIONS]
AggrFuncs=avg(x),avg(distinct x),count(x),

count(distinct x),count(*),list(x),
list(distinct x),max(x),max(distinct x),
min(x),min(distinct x),sum(x),sum(distinct x)

Functions=abs(x),acos(x),asin(x),atan(x),
atan2(x,y),ceiling(x),cos(x),cot(x),degrees(x),
exp(x),floor(x),log(x),log10(x),
mod(dividend,divisor),pi(*),power(x,y),
radians(x),rand(),rand(x),
remainder(dividend,divisor),round(x,y),
sign(x),sin(x),sqrt(x),tan(x),
"truncate"(x,y),ascii(x),byte_length(x),
byte_substr(x,y,z),char(x),char_length(x),
charindex(x,y),difference(x,y)insertstr(x,y,z),
lcase(x),left(x,y),length(x), locate(x,y,z),
lower(x),ltrim(x),patindex('x',y),repeat(x,y),
replicate(x,y),right(x,y),rtrim(x),
similar(x,y),soundex(x),space(x),str(x,y,z),
string(x,...),stuff(w,x,y,z),substr(x,y,z),
trim(x),ucase(x),upper(x),date(x),
dateformat(x,y),datename(x,y),day(x),
dayname(x),days(x),dow(x),hour(x),hours(x),

CHAPTER 14 Using database interfaces

Resource Guide 211

minute(x),minutes(x),minutes(x,y),month(x),
monthname(x),months(x),months(x,y),now(*),
quarter(x),second(x),seconds(x),seconds(x,y),
today(*),weeks(x),weeks(x,y),year(x),years(x),
years(x,y),ymd(x,y,z),dateadd(x,y,z),
datediff(x,y,z),datename(x,y),datepart(x,y),
getdate(),cast(x as y),convert(x,y,z),
hextoint(x),inttohex(x),
connection_property(x,...),datalength(x),
db_id(x),db_name(x),db_property(x),
next_connection(x),next_database(x),
property(x),property_name(x),
property_number(x),property_description(x),
argn(x,y,...),coalesce(x,...),
estimate(x,y,z),estimate_source(x,y,z),
experience_estimate(x,y,z),ifnull(x,y,z),
index_estimate(x,y,z),isnull(x,...),
number(*),plan(x),traceback(*)

3 To add a new function, type a comma followed by the function name at the
end of the appropriate function list, as follows:

• Aggregate functions – add aggregate functions to the end of the
AggrFuncs list.

• All other functions – add all other functions to the end of the
Functions list.

Case sensitivity
If the back-end DBMS you are using is case sensitive, be sure to use the
required case when you add the function name.

4 Save your changes to the PKODB20 initialization file.

Preparing remote databases
When you prepare a SQL Anywhere database to be used as a remote database
on a device, you usually define a subset of the enterprise database that is
relevant to the needs of the mobile application. There are several options
available for building a SQL Anywhere database from an enterprise database:

• Use Sybase Central

• Use PowerDesigner

• Use tools that come with your enterprise database

Working with the ODBC database interface

212 PocketBuilder

After you have built the SQL Anywhere database, you can copy it to the device
using Microsoft ActiveSync. You also need to create a DSN file and copy it to
the root directory on the device. For more information, see “About SQL
Anywhere data sources” on page 200.

Sybase Central Sybase Central is a utility that allows developers to build a SQL Anywhere
database from another database management system. (Sybase Central can be
installed from the SQL Anywhere installation program.) For example, these
are the steps needed to start with an Oracle database and build a SQL
Anywhere database and use it with PocketBuilder:

1 Open Sybase Central.

2 Connect to an Oracle database.

3 Migrate required tables to SQL Anywhere.

4 Use MobiLink scripting capabilities to generate initial scripts.

5 Use the PocketBuilder Database painter to view the database schema.

6 Develop an application using the SQL Anywhere database in
PocketBuilder.

7 Deploy the application to the Windows CE device or emulator.

PowerDesigner PowerDesigner Physical Data Model allows you to reverse-engineer enterprise
databases and create corresponding SQL Anywhere databases. It also gives
you the ability to manipulate the database schema. PowerDesigner Physical
Data Model is provided with the full version of SQL Anywhere Studio. It is not
provided with PocketBuilder.

Tools that come with
your enterprise
database

You can use the tools that come with your enterprise database to view the
database schema. You can then create the SQL Anywhere database in the tool
of your choice, such as Sybase Central, PowerDesigner, or a command-line
tool.

For information about preparing remote databases for use with MobiLink, see
Chapter 17, “Using MobiLink Synchronization.”

Starting SQL Anywhere on a device
To start a SQL Anywhere database on a Pocket PC device or emulator, use the
File Explorer (in the Programs folder) to navigate to the location where SQL
Anywhere is installed, typically Program Files\SQLAny10 or Program
Files\Sybase\ASA. Tap dbsrv10 or dbsrv9, use the drop-down lists or the Soft
Input Panel to complete the Server Startup Options dialog box, and tap OK.

CHAPTER 14 Using database interfaces

Resource Guide 213

Your application can start the database automatically by specifying the
properties of a Transaction object and issuing a CONNECT statement. For more
information, see Chapter 16, “Using Transaction Objects.”

Working with the UltraLite database interface
This section describes how to use the native UltraLite database interface with
PocketBuilder. UltraLite is a deployment technology for SQL Anywhere
databases that allows applications on small devices to use full-featured SQL to
accomplish data storage, retrieval, and manipulation.

UltraLite supports referential integrity, transaction processing, multi-table
joins of all varieties, and most of the same datatypes, runtime functions, and
SQL data manipulation features as SQL Anywhere. It provides an ultra-small
footprint by generating a custom database engine for your application that
includes only the features required by your application.

PocketBuilder supports UltraLite 9.x and UltraLite 10.x. The PocketBuilder
UL9 (pkul920.dll) and UL10 interfaces (pkul1020.dll) use the UltraLite C++
Component API to implement communication with the database.

Supported UltraLite datatypes
The UltraLite interface supports the following UltraLite datatypes:

BINARY S_BIG

BIT S_LONG

CHAR S_SHORT

DATE TIME

DOUBLE TIMESTAMP

LONGBINARY TINY

LONGVARCHAR U_BIG

NUMERIC U_LONG

REAL U_SHORT

Working with the UltraLite database interface

214 PocketBuilder

Running utilities for UltraLite databases
Table 14-1 lists the database utilities you can access from the Database painter
and the Database Profiles dialog box in PocketBuilder.

Table 14-1: Utilities you can use with UltraLite databases

Defining the UltraLite database interface
To define a connection through the UltraLite database interface, you must
create a database profile by supplying values for at least the basic connection
parameters in the Database Profile Setup dialog box for UltraLite. You can then
select this profile at any time to connect to the UltraLite database. For more
information, see “Creating database profiles” on page 183.

Specifying the
database file

Each UltraLite application has its own database, which is held in a file with the
extension .UDB. Each database contains a schema that includes information
about the database’s tables, indexes, column names, datatypes, primary and
foreign keys, and other metadata. The schema for an UltraLite database is
stored in a compact form.

You can create an UltraLite database in the Database painter. For more
information, see the chapter on managing databases in the User’s Guide. You
can also create an UltraLite database using a reference SQL Anywhere
database.

When you browse to select a database file in the Database Profile Setup dialog
box, PocketBuilder adds a DBF value to the ConnectString database parameter.

Utility Purpose

Create UltraLite Database Provides a user interface to the ulconv.exe command
to create UltraLite databases

MobiLink Synchronization
Server

Allows you to launch a MobiLink server with options
for automatic script generation, automatic addition of
users, and generation of diagnostic log files

Sybase Central Allows you to connect to a consolidated database to
add publications, users, script versions, and
synchronized tables

UltraLite Schema Painter Starts the schema painter that lets you generate a
USM file containing information about tables and
publications to be synchronized

CHAPTER 14 Using database interfaces

Resource Guide 215

Connecting to an
encrypted UltraLite
database

You can choose to specify the encryption key for an encrypted database by
typing it in the Additional ConnectionString Parameters box on the general
page of the Database Profile Setup dialog box for UltraLite. Use the following
syntax:

KEY=encryption_key

However, this practice is not recommended. If you leave the Additional
ConnectionString Parameters box blank, you are prompted to enter the key
when you connect.

In your applications, you can code the encryption key in the ConnectString
value when you specify the DBParm property of the transaction object, but to
ensure that only authorized users can access the database, provide a dialog box
so that users can enter the key at runtime.

Setting Autocommit
mode

In the development environment, PocketBuilder always behaves as if
AutoCommit is set to true, whether you check the AutoCommit mode check
box or not. The setting in the Database Profile Setup dialog box affects the
behavior only when you run or debug the application. For more information,
see the description of the AutoCommit database preference in the Connection
Reference.

Adding multiple users PocketBuilder allows you to add or edit multiple users of UltraLite databases.
UltraLite permits a maximum of four user IDs per database. For UltraLite
database profiles, you can use the pop-up menu for the new Users item in the
Objects view of the Database painter to add or edit users, and to delete users.

When you select Add or Edit User from the User item pop-up menu for an
UltraLite database, or when you select Delete User, you should already know
which user IDs exist in the database. If you select either of these menu items,
the Properties view displays. The Properties view has three text boxes (User,
New Password, and Confirm New Password) when you select Add or Edit
User; it has a single text box (UltraLite User to Delete) when you select Delete
User.

After you save changes in the Database painter involving user maintenance for
an UltraLite database, the Output view displays a message with the type of
change you made.

Working with the UltraLite database interface

216 PocketBuilder

Migrating a SQL Anywhere application to UltraLite
Applications that you create with a SQL Anywhere connection can be modified
to use an UltraLite connection. This section describes the differences between
the two databases that require you to make some changes in your applications
before you can use them with an UltraLite database.

Table owners UltraLite does not support the concept of a table owner, therefore all table
names must be unique in the database, and any user who successfully signs on
to the UltraLite database has full access and update rights to all tables.

UltraLite does not support SQL statements that include owner-qualified table
names, but the pkul920.dll and pkul1020.dll interfaces automatically process
fully-qualified SQL statements at runtime to remove the table owner
qualification before passing the statement to the UltraLite SQL parser.
However, this does have implications for DataWindow objects that you create
while connected to the UltraLite driver. The SQL SELECT statement that is
generated contains unqualified SQL. This can limit the portability of a
DataWindow object if you want to reuse it in an application that connects to a
SQL Anywhere database using ODBC.

Views UltraLite does not support views. You must rework existing applications that
reference views so that they reference base tables instead.

Cursors If your application uses the PowerScript DECLARE Cursor SQL statement, you
might need to modify the application for connections to an UltraLite database.
The pkul920.dll and pkul1020.dll interfaces use the established connection to
implement the cursor, which means that you cannot nest one cursor within
another, and you cannot issue other SQL statements, other than FETCH Cursor
statements, while the cursor is open.

As an alternative, you can instantiate a DataStore that retrieves the same result
set that the cursor returns, and rewrite your application to scroll through the
DataStore instead of performing a FETCH loop through the cursor.

Stored procedures UltraLite does not support stored procedures. You must modify your
application if it uses stored procedures in any of the following ways that are
supported by SQL Anywhere but not by UltraLite:

• As the data source for a DataWindow object

• In DataWindow update procedures

• In PowerScript DECLARE Procedure SQL statements

• In declarations of stored procedures as remote procedure calls using the
RPCFUNC {ALIAS FOR “spname” } syntax

CHAPTER 14 Using database interfaces

Resource Guide 217

Database access
limits

If two or more PocketBuilder applications are running concurrently, only one
application can successfully connect to a specific UltraLite database at a time.
Whichever application connects first retains exclusive use of that UltraLite
database until the application closes all connections to the database.

A single PocketBuilder application can obtain two or more simultaneous
connections to the same UltraLite database using different transaction objects.
A single PocketBuilder application can also connect to two or more UltraLite
databases concurrently by instantiating multiple transaction objects.

Working with the UltraLite database interface

218 PocketBuilder

Resource Guide 219

C H A P T E R 1 5 Troubleshooting Your
Connection

About this chapter This chapter describes how to troubleshoot your database connection in
PocketBuilder by using the following tools:

• Database Trace

• ODBC Driver Manager Trace

Contents

About tracing database connections
In PocketBuilder In the development environment, you can trace connections as you work

in the Database painter or DataWindow painter, and when you run and test
your applications. The trace information that is collected can help you
troubleshoot your applications before you deploy them. You can use two
tools to collect information: the PocketBuilder Database Trace tool and
the ODBC Driver Manager Trace tool.

The rest of this chapter describes these tools.

In a deployed application In your deployed application, SQL Anywhere provides several different
ways to create log files of database activity:

• To save the server window output to a file, start the database engine
with the -o option for dbsrvXX, or dbengXX, where XX is the SQL
Anywhere version number. For example:

dbeng9 -c 8m -o asademo.out -n asademo9
"D:\Program Files\Sybase\asademo.db"

Topic Page

About tracing database connections 219

Using the Database Trace tool 220

Using the ODBC Driver Manager Trace tool 226

Using the Database Trace tool

220 PocketBuilder

• To save client error messages and debugging messages in a file, use the
Logfile connection parameter when you specify the ConnectString. For
example:

sqlca.dbparm="ConnectString='DSN=ASA 9.0 Sample;LOGFILE=D:\logs\asademo.txt'"

• To save a log when you run the MobiLink synchronization server
(dbmlsrv9 or mlsrv10) or client (dbmlsync) to synchronize SQL Anywhere
remote databases with a consolidated database, use the -o option to specify
the name of the output file, the -v option to specify the level of message
logging, and the -dl option to display all logging messages on the screen.
For example:

dbmlsrv9 -c "dsn=consoldb" -o mlserver.mls -v+ -dl
dbmlsync -c "dsn=remotedb" -o dbmlsync.out -v+ -dl

For more information about these tools, see the SQL Anywhere
documentation.

Using the Database Trace tool
This section describes how to use the Database Trace tool in the PocketBuilder
development environment.

About the Database Trace tool
The Database Trace tool records the internal commands that PocketBuilder
executes while accessing a database. PocketBuilder writes the output of
Database Trace to a log file named PKTRACE.LOG (by default) or to a
nondefault log file that you specify. For instructions, see “Specifying a
nondefault Database Trace log” on page 224.

When you enable database tracing for the first time, PocketBuilder creates the
log file on your computer. Tracing continues until you disconnect from the
database.

CHAPTER 15 Troubleshooting Your Connection

Resource Guide 221

How you can use the Database Trace information

You can use information from the Database Trace tool to understand what
PocketBuilder is doing internally when you work with your database.
Examining the information in the log file can help you:

• Understand how PocketBuilder interacts with your database

• Identify and resolve problems with your database connection

• Provide useful information to Technical Support if you call them for help
with your database connection

If you are familiar with PocketBuilder and your DBMS, you can use the
information in the log to help troubleshoot connection problems on your own.

If you are less experienced or need help, run the Database Trace tool before you
call Technical Support. You can then report or send the results of the trace to
the Technical Support representative who takes your call.

You can view the log file using the built-in PocketBuilder file editor or any
other text editor. You can also add your own annotations as you examine the
file.

Contents of the Database Trace log

The Database Trace tool records the following information in the log file when
you trace a database connection:

• Parameters used to connect to the database

• Time to perform each database operation (in milliseconds)

• The internal commands executed to retrieve and display table and column
information from your database. Examples include:

• Preparing and executing SQL statements such as SELECT, INSERT,
UPDATE, and DELETE

• Getting column descriptions

• Fetching table rows

• Binding user-supplied values to columns (if your database supports
bind variables)

• Committing and rolling back database changes

• Disconnection from the database

• Shutdown of the database interface

Using the Database Trace tool

222 PocketBuilder

Format of the Database Trace log

The specific content of the Database Trace log file depends on the database you
are accessing and the operations you are performing. However, the log uses the
following basic format to display output:

COMMAND : (time)

{additional_information}

COMMAND is the internal command that PocketBuilder executes to perform
the database operation.

time is the number of milliseconds it takes PocketBuilder to perform the
database operation. The precision used depends on your operating system’s
timing mechanism.

additional_information is additional information about the command. The
information provided, if any, depends on the database operation.

For an example of Database Trace output, see “Sample Database Trace output”
on page 225.

Starting the Database Trace tool
By default, the Database Trace tool is turned off in PocketBuilder. You can start
it by editing a database profile or a script.

Turning tracing on and off
To turn tracing on or off, you must reconnect. Setting and resetting are not
sufficient.

Running Database
Trace when you test
your application

In the script where you set the values of SQLCA parameters, add the word
TRACE to the value for the DBMS parameter. For example, if you are using
the default transaction object, type:

SQLCA.DBMS = "TRACE ODB"

As an alternative to setting the DBMS property directly in an application script,
you can use the PowerScript ProfileString function to read values from a
specified section of an external text file, such as an application-specific
initialization file.

Use the following PowerScript syntax to specify the ProfileString function with
the DBMS property:

SQLCA.variable = ProfileString(file, section, variable, default_value)

CHAPTER 15 Troubleshooting Your Connection

Resource Guide 223

For example, the following statement in a PocketBuilder script reads the
DBMS value from the [Database] section of the APP.INI file:

SQLCA.dbms =
ProfileString("APP.INI","Database","DBMS","")

Running Database
Trace when you work
in painters

To trace connection activity when you work in the DataWindow and Database
painters, you set a property in the connection profile you are using.

❖ To start the Database Trace tool by editing a profile:

1 Open the Database Profile Setup dialog box for the connection you want
to trace.

2 On the Connection tab, select the Generate Trace check box and click OK
or Apply.

On the Preview tab, the setting that starts Database Trace is DBMS:

SQLCA.DBMS = "TRACE ODB"

3 Click Connect in the Database Profiles dialog box to connect to the
database.

A message box displays, stating that database tracing is enabled and
indicating where PocketBuilder will write the output.

4 Click OK.

PocketBuilder connects to the database and starts tracing the connection.

Stopping the Database Trace tool
Once you start tracing a particular database connection, PocketBuilder
continues sending trace output to the log until you do one of the following:

• Reconnect to the same database with tracing stopped

• Connect to another database for which you have not enabled tracing

If you added the word TRACE in a script, you can simply delete it. If you added
tracing in a connection profile, you need to edit the profile.

Using the Database Trace tool

224 PocketBuilder

❖ To stop the Database Trace tool by editing a profile:

1 In the Database Profile Setup dialog box for the database you are tracing,
clear the Generate Trace check box on the Connection tab.

2 Click OK in the Database Profile Setup dialog box.

The Database Profiles dialog box displays with the name of the edited
profile highlighted.

3 Right-click on the connected database and select Re-connect from the
drop-down menu in the Database Profiles dialog box.

PocketBuilder connects to the database and stops tracing the connection.

Specifying a nondefault Database Trace log
You can specify a nondefault name and location for the log file when you use
Database Trace. This lets you:

• Control where PocketBuilder writes the output of the Database Trace tool

• Give the log file a name and location that best meets the development
needs at your site

❖ To specify a nondefault Database Trace log file:

1 Open the PocketBuilder initialization file for editing.

You can use the File Editor (in PocketBuilder) or any text editor (outside
PocketBuilder).

2 Create an entry named DBTraceFile in the [Database] section of the
initialization file, using the following syntax to specify a nondefault log
file:

DBTraceFile=log_file_pathname

For example:

[Database]
...
DBTraceFile=c:\logs\mydbtrce.log

3 Save your changes to the initialization file.

The next time you use the Database Trace tool to trace a connection in the
development environment, PocketBuilder writes the output to the log file
you specified instead of to the default PKTRACE.LOG file.

CHAPTER 15 Troubleshooting Your Connection

Resource Guide 225

Deleting or clearing the Database Trace log
Each time you connect to a database with tracing enabled, PocketBuilder
appends the trace output of your connection to the existing log. As a result, the
log file can become very large over time.

❖ To keep the size of the log file manageable:

• Do either of the following periodically:

• Open the log file, clear its contents, and save the empty file.

Provided that you use the default PKTRACE.LOG or the same
nondefault file the next time you connect to a database with tracing
enabled, PocketBuilder will write to this empty file.

• Delete the log file.

PocketBuilder will automatically create a new log file the next time
you connect to a database with tracing enabled.

Sample Database Trace output
This section gives an example of Database Trace output that you might see in
the log file.

The example traces a connection to an ODBC database named ASA Sample.
The output was generated while running a PocketBuilder application that
displays information about employees. The SELECT statement shown retrieves
information from the Employee table to display the IDs, names, and birth dates
of employees. (In the trace output, each command line is prefixed with a
hexadecimal string enclosed in parentheses and followed by a colon. This
prefix is omitted from the output shown here.)

/*--*/
/* 5/1/2004 09:00 */
/*--*/
LOGIN: (40 MilliSeconds)
CONNECT TO trace odb:
DBPARM=ConnectString='DSN=ASA Sample;UID=dba;PWD=sql'
SERVER=asademo (0 MilliSeconds)
PREPARE: (0 MilliSeconds)
BEGIN TRANSACTION: (0 MilliSeconds)
PREPARE:
select "employee"."emp_id" , "employee"."emp_fname" ,
"employee"."emp_lname" , "employee"."birth_date" from
"employee" (0 MilliSeconds)

Using the ODBC Driver Manager Trace tool

226 PocketBuilder

BIND SELECT OUTPUT BUFFER (DataWindow):(0 MilliSeconds)
,len=44,type=FLOAT,pbt=3,dbt=0,ct=0,prec=0,scale=0
,len=22,type=CHAR,pbt=1,dbt=0,ct=0,prec=0,scale=0
,len=22,type=CHAR,pbt=1,dbt=0,ct=0,prec=0,scale=0
,len=30,type=DATE,pbt=7,dbt=0,ct=0,prec=0,scale=0
EXECUTE: (0 MilliSeconds)
FETCH NEXT: (0 MilliSeconds)

COLUMN=01COLUMN=FranCOLUMN=WhitneyCOLUMN=06-05-
1958 255:00:00:000000
FETCH NEXT: (0 MilliSeconds)

COLUMN=02COLUMN=MatthewCOLUMN=CobbCOLUMN=12-04-
1960 255:00:00:000000
// ...
// Additional FETCH NEXT statements omitted
// ...
FETCH NEXT: (0 MilliSeconds)
COMMIT: (10 MilliSeconds)
DISCONNECT: (10 MilliSeconds)
SHUTDOWN DATABASE INTERFACE: (0 MilliSeconds)

Using the ODBC Driver Manager Trace tool
This section describes how to use the ODBC Driver Manager Trace tool.

About ODBC Driver Manager Trace
You can use the ODBC Driver Manager Trace tool to trace a connection to any
ODBC data source that you access in PocketBuilder through the ODBC
interface.

ODBC Driver Manager Trace records information about ODBC API calls
(such as SQLDriverConnect, SQLGetInfo, and SQLFetch) that PocketBuilder
makes while connected to an ODBC data source. It writes this information to
a default log file named SQL.LOG or to a log file that you specify. The default
location of SQL.LOG is in your root directory.

You can display the contents of the ODBC Driver Manager Trace log file at any
time during a PocketBuilder session, using the built-in file editor or any other
text editor.

CHAPTER 15 Troubleshooting Your Connection

Resource Guide 227

Which tool to use The information from ODBC Driver Manager Trace, like that from Database
Trace, can help you:

• Understand what PocketBuilder is doing internally while connected to an
ODBC data source

• Identify and resolve problems with your ODBC connection

• Provide information useful to Technical Support if you call them for help
with your database connection

Use ODBC Driver Manager Trace instead of the Database Trace tool if you
want more detailed information about the ODBC API calls made by
PocketBuilder.

Performance considerations
Turning on ODBC Driver Manager Trace can slow performance in
PocketBuilder. Therefore, use ODBC Driver Manager Trace for debugging
purposes only and keep it turned off when you are not debugging.

Starting ODBC Driver Manager Trace
By default, ODBC Driver Manager Trace is turned off in PocketBuilder. You
can start it in order to trace your ODBC connection in two ways:

• Edit a script in an application to trace the connection when you test the
application

• Edit a database profile to trace actions in the DataWindow or Database
painters

In both cases, you set values of the ConnectOption DBParm parameter.

The ConnectOption DBParm parameter

ConnectOption includes several parameters, two of which control the
operation of ODBC Driver Manager Trace for any ODBC-compatible driver
you are using in PocketBuilder:

• SQL_OPT_TRACE starts or stops ODBC Driver Manager Trace. The
values you can specify are:

• SQL_OPT_TRACE_OFF (the default), which stops ODBC Driver
Manager Trace

Using the ODBC Driver Manager Trace tool

228 PocketBuilder

• SQL_OPT_TRACE_ON, which starts ODBC Driver Manager Trace

• SQL_OPT_TRACEFILE specifies the name of the trace file where you
want to send the output of ODBC Driver Manager Trace. PocketBuilder
appends the output to the trace file you specify until you stop the trace.

You can specify any file name for the trace file. By default, if tracing is on
and you have not specified a trace file, PocketBuilder sends ODBC Driver
Manager Trace output to a file named SQL.LOG in your root directory.

Starting ODBC Driver
Manager Trace in a
script

The most efficient way to specify the correct values for the ConnectOption
DBParm in a script is to set the options in the Database Connection Profile
dialog box, as described in “Starting ODBC Driver Manager Trace in a
database profile” next, and then copy them from the Preview page to the script.
This example shows the settings for a data source named Employee. Note that
in this example, the first statement specifies that Database Trace is also on:

SQLCA.DBMS = "TRACE ODBC"
SQLCA.AutoCommit = False
SQLCA.DBParm =
"ConnectString='DSN=Employee;UID=;PWD=',
ConnectOption='SQL_OPT_TRACE,SQL_OPT_TRACE_ON;
SQL_OPT_TRACEFILE,C:\logs\odbctrc.log'"

For more information, see “Copying DBParm syntax from the Preview tab” on
page 288.

As an alternative to setting the DBParm property in an application script, you
can use the PowerScript ProfileString function to read DBParm values from a
specified section of an external text file, such as an application-specific
initialization file.

Use the following PowerScript syntax to specify the ProfileString function with
the DBParm property:

SQLCA.dbParm = ProfileString(file, section, variable, default_value)

For example, the following statement in a PocketBuilder script reads the
DBParm values from the [Database] section of the APP.INI file:

SQLCA.dbParm =
ProfileString("APP.INI","Database","DBParm","")

Starting ODBC Driver
Manager Trace in a
database profile

To start ODBC Driver Manager Trace to trace your connections in the
PocketBuilder development environment, edit the database profile for the
connection you want to trace, as described in the following procedure.

CHAPTER 15 Troubleshooting Your Connection

Resource Guide 229

❖ To start ODBC Driver Manager Trace by editing the database profile:

1 Open the Database Profile Setup dialog box for the ODBC connection you
want to trace.

2 On the Options tab, select the Trace ODBC API Calls check box.

3 (Optional) Specify a log file where you want PocketBuilder to write the
output of ODBC Driver Manager Trace.

You can type the path name in the Trace File box, or click Browse to
browse to an existing log file.

By default, if the Trace ODBC API Calls check box is selected and no
trace file is specified, PocketBuilder sends ODBC Driver Manager Trace
output to the default SQL.LOG file.

4 Click OK.

PocketBuilder saves your settings in the registry in the
HKEY_CURRENT_USER\Software\Sybase\PocketBuilder\2.0\Database
Profiles\Pocket PB key.

The following example shows the DBParm string value from a database
profile entry for an ODBC data source named Employee. The settings that
start ODBC Driver Manager Trace are in the ConnectOption DBParm
parameter:

ConnectString='DSN=Employee;UID=;PWD=',
ConnectOption='SQL_OPT_TRACE,SQL_OPT_TRACE_ON;
SQL_OPT_TRACEFILE,C:\logs\odbctrc.log'

5 Right-click on the connected database and select Re-connect from the
drop-down menu in the Database Profiles dialog box.

PocketBuilder connects to the database, starts tracing the ODBC
connection, and writes output to the log file you specified.

Stopping ODBC Driver Manager Trace
Once you start tracing an ODBC connection with ODBC Driver Manager
Trace, PocketBuilder continues sending trace output to the log file until you
stop tracing. After you stop tracing, you must reconnect to have the changes
take effect.

To stop tracing in a script, you can delete the ConnectOption parameter if it
contains only trace parameters, or delete the SQL_OPT_TRACE options if
ConnectOption contains other parameters.

Using the ODBC Driver Manager Trace tool

230 PocketBuilder

You can also change the value of the SQL_OPT_TRACE parameter to
SSQL_OPT_TRACE_OFF, as shown in the following example. This makes it
easier to turn tracing on again later:

SQLCA.DBMS = "TRACE ODBC"
SQLCA.AutoCommit = False
SQLCA.DBParm =
"ConnectString='DSN=Employee;UID=;PWD=',
ConnectOption='SQL_OPT_TRACE,SQL_OPT_TRACE_OFF;
SQL_OPT_TRACEFILE,C:\logs\odbctrc.log'"

To stop tracing in the development environment, you need to edit the database
profile.

❖ To stop ODBC Driver Manager Trace by editing the database profile:

1 Open the Database Profile Setup dialog box for the connection you are
tracing.

2 On the Options tab, clear the Trace ODBC API Calls check box.

If you supplied the pathname of a log file in the Trace File box, you can
leave it specified in case you want to restart tracing later.

3 Click OK in the Database Profile Setup dialog box.

4 Right-click on the connected database and select Re-Connect from the
dropdown menu in the Database Profiles dialog box.

PocketBuilder connects to the database and stops tracing the connection.

Sample ODBC Driver Manager Trace output
This section shows a partial example of output from ODBC Driver Manager
Trace to give you an idea of the information it provides. The example is part of
the trace on an ODBC connection to the ASA Demo DB.

For more about a particular ODBC API call, see your ODBC documentation.

PK20 1d9-1bb EXIT SQLSetConnectOptionW with return code 0 (SQL_SUCCESS)
HDBC 01643D08
UWORD 104 <SQL_OPT_TRACE>
SQLULEN 1

PK20 1d9-1bb ENTER SQLSetConnectOptionW
HDBC 01643D08
UWORD 105 <SQL_OPT_TRACEFILE>
SQLULEN 17654398

CHAPTER 15 Troubleshooting Your Connection

Resource Guide 231

PK20 1d9-1bb EXIT SQLSetConnectOptionW with return code 0 (SQL_SUCCESS)
HDBC 01643D08
UWORD 105 <SQL_OPT_TRACEFILE>
SQLULEN 17654398

PK20 1d9-1bb ENTER SQLDriverConnectW
HDBC 01643D08
HWND 01DB04FE
WCHAR * 0x1F7F8B88 [-3] "******\ 0"
SWORD -3
WCHAR * 0x1F7F8B88
SWORD 8
SWORD * 0x00000000
UWORD 1 <SQL_DRIVER_COMPLETE>

PK20 1d9-1bb EXIT SQLDriverConnectW with return code 0 (SQL_SUCCESS)
HDBC 01643D08
HWND 01DB04FE
WCHAR * 0x1F7F8B88 [-3] "******\ 0"
SWORD -3
WCHAR * 0x1F7F8B88
SWORD 8
SWORD * 0x00000000
UWORD 1 <SQL_DRIVER_COMPLETE>

PK20 1d9-1bb ENTER SQLGetInfoW
HDBC 01643D08
UWORD 6 <SQL_DRIVER_NAME>
PTR 0x001293CC
SWORD 258
SWORD * 0x001293CA

PK20 1d9-1bb EXIT SQLGetInfoW with return code 0 (SQL_SUCCESS)
HDBC 01643D08
UWORD 6 <SQL_DRIVER_NAME>
PTR 0x001293CC [22] "DBODBC9.DLL"
SWORD 258
SWORD * 0x001293CA (22)

...

Using the ODBC Driver Manager Trace tool

232 PocketBuilder

Resource Guide 233

C H A P T E R 1 6 Using Transaction Objects

About this chapter This chapter describes Transaction objects and how to use them in
PocketBuilder applications.

Contents

About Transaction objects
In a PocketBuilder database connection, a Transaction object is a special
nonvisual object that functions as the communications area between a
PocketBuilder application and the database. The Transaction object
specifies the parameters that PocketBuilder uses to connect to a database.
You must establish the Transaction object before you can access the
database from your application.

Communicating with the
database

In order for a PocketBuilder application to display and manipulate data,
the application must communicate with the database in which the data
resides.

❖ To communicate with the database from your PocketBuilder application:

1 Assign the appropriate values to the Transaction object.

2 Connect to the database.

3 Assign the Transaction object to a DataWindow control or DataStore.

4 Perform the database processing.

5 Disconnect from the database.

Topic Page

About Transaction objects 233

Working with Transaction objects 236

Using Transaction objects to call stored procedures 245

Supported DBMS features when calling stored procedures 251

About Transaction objects

234 PocketBuilder

For information about setting the Transaction object for a DataWindow control
and using the DataWindow to retrieve and update data, see “Setting the
transaction object for the DataWindow control” on page 123.

Default Transaction
object

When you start executing an application, PocketBuilder creates a global
default Transaction object named SQLCA (SQL Communications Area). You
can use this default Transaction object in your application or define additional
Transaction objects if your application has multiple database connections.

Transaction object
properties

Each Transaction object has 15 properties, of which:

• Ten are used to connect to the database (not all apply to the database
interfaces supported in PocketBuilder).

• Five are used to receive status information from the database about the
success or failure of each database operation. These error-checking
properties all begin with SQL.

Description of Transaction object properties
Table 16-1 describes each Transaction object property. For each of the
connection properties, the table also lists the equivalent field in the Database
Profile Setup dialog box that you complete to create a database profile in the
PocketBuilder development environment.

Table 16-1: Transaction object properties

Property Datatype Description
In a database
profile

DBMS String The three- or four-letter DBMS identifier for your connection.
For SQL Anywhere, this is ODB. For UltraLite 9.x, it is UL9.
For UltraLite 10.x, it is UL10.

Defined when
you select a
database
interface

UserID String The name or ID of the user who connects to the database.
UserID is optional for ODBC. (Be careful specifying the
UserID property; it overrides the connection’s UserName
property returned by the ODBC SQLGetInfo call.)

User ID

Lock String For DBMSs that support the use of lock values and isolation
levels, the isolation level to use when you connect to the
database. For information about the lock values you can set,
see Lock in the PocketBuilder Connection Reference.

Isolation Level

LogID String The name or ID of the user who logs in to the database server.
PocketBuilder uses the LogID and LogPass properties only if
the ODBC driver does not support the SQL driver CONNECT
call.

—

CHAPTER 16 Using Transaction Objects

Resource Guide 235

LogPass String The password used to log in to the database server. —

AutoCommit Boolean Specifies whether PocketBuilder issues SQL statements
outside or inside the scope of a transaction. Values you can set
are:

• True – PocketBuilder issues SQL statements outside the
scope of a transaction; that is, the statements are not part of
a logical unit of work (LUW). If the SQL statement
succeeds, the DBMS updates the database immediately as if
a COMMIT statement had been issued.

• False (Default) – PocketBuilder issues SQL statements
inside the scope of a transaction. PocketBuilder issues a
BEGIN TRANSACTION statement at the start of the
connection. In addition, PocketBuilder issues another
BEGIN TRANSACTION statement after each COMMIT or
ROLLBACK statement is issued.

When you connect to an UltraLite database in the development
environment, all processing in painters takes place as if
AutoCommit is set to true.

For more information, see AutoCommit in the Connection
Reference.

AutoCommit
Mode

DBParm String Contains connection parameters that support particular DBMS
features. For a description of each DBParm parameter that
PocketBuilder supports, see the Connection Reference.

Various

SQLReturnData String Contains DBMS-specific information. —

SQLCode Long The success or failure code of the most recent SQL operation.
For details, see “Error handling after a SQL statement” on
page 244.

—

SQLNRows Long The number of rows affected by the most recent SQL
operation. The database vendor supplies this number, so the
meaning may be different for each DBMS.

—

SQLDBCode Long The database vendor’s error code. For details, see “Error
handling after a SQL statement” on page 244.

—

SQLErrText String The text of the database vendor’s error message corresponding
to the error code. For details, see “Error handling after a SQL
statement” on page 244.

—

Property Datatype Description
In a database
profile

Working with Transaction objects

236 PocketBuilder

Working with Transaction objects
PocketBuilder uses a basic concept of database transaction processing called
logical unit of work (LUW). LUW is synonymous with transaction. A
transaction is a set of one or more SQL statements that forms an LUW. Within
a transaction, all SQL statements must succeed or fail as one logical entity.

There are four PowerScript transaction management statements:

• COMMIT

• CONNECT

• DISCONNECT

• ROLLBACK

Transaction basics
CONNECT and
DISCONNECT

A successful CONNECT starts a transaction, and a DISCONNECT terminates
the transaction. All SQL statements that execute between the CONNECT and
the DISCONNECT occur within the transaction.

Before you issue a CONNECT statement, the Transaction object must exist and
you must assign values to all Transaction object properties required to connect
to your DBMS.

COMMIT and
ROLLBACK

When a COMMIT executes, all changes to the database since the start of the
current transaction (or since the last COMMIT or ROLLBACK) are made
permanent, and a new transaction is started. When a ROLLBACK executes, all
changes since the start of the current transaction are undone and a new
transaction is started.

AutoCommit setting You can issue a COMMIT or ROLLBACK only if the AutoCommit property of
the Transaction object is set to False (the default) and you have not already
started a transaction using embedded SQL.

For more about AutoCommit, see “Description of Transaction object
properties” on page 234.

Automatic COMMIT when disconnected
When a transaction is disconnected, PocketBuilder issues a COMMIT
statement.

CHAPTER 16 Using Transaction Objects

Resource Guide 237

The default Transaction object
SQLCA Since most applications communicate with only one database, PocketBuilder

provides a global default Transaction object called SQLCA (SQL
Communications Area).

PocketBuilder creates the Transaction object before the application’s Open
event script executes. You can use PowerScript dot notation to reference the
Transaction object in any script in your application.

You can create additional Transaction objects as you need them, such as when
you are using multiple database connections at the same time, but in most
cases, SQLCA is the only Transaction object you need.

Example This simple example uses the default Transaction object SQLCA to connect to
and disconnect from an ODBC data source named Sample:

// Set the default Transaction object properties.
SQLCA.DBMS="ODB"
SQLCA.DBParm="ConnectString='DSN=Sample'"
// Connect to the database.
CONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN &

MessageBox("Connect Error", SQLCA.SQLErrText,&
Exclamation!)

...
// Disconnect from the database.
DISCONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN &

MessageBox("Disconnect Error", SQLCA.SQLErrText,&
Exclamation!)

Semicolons are SQL statement terminators
When you use embedded SQL in a PocketBuilder script, all SQL statements
must be terminated with a semicolon (;). You do not use a continuation
character for multiline SQL statements.

Assigning values to the Transaction object
Before you can use a default (SQLCA) or nondefault (user-defined)
Transaction object, you must assign values to the Transaction object
connection properties. To assign the values, use PowerScript dot notation.

Working with Transaction objects

238 PocketBuilder

Example The following PowerScript statements assign values to the properties of
SQLCA required to connect to the SQL Anywhere demo database through the
PocketBuilder ODB database interface:

SQLCA.DBMS = 'odb'
SQLCA.DBParm = "ConnectString='DSN=SQLAny 10 Demo;UID=dba;PWD=sql'"

The following PowerScript statements assign values to the properties of
SQLCA required to connect to a Sybase UltraLite 9.x database through the
PocketBuilder UL9 database interface:

SQLCA.DBMS = "UL9"
SQLCA.DBParm = "ConnectString='DBF=\UltraLite\uleq.udb;UID=dba;PWD=sql'"

Reading values from an external file
Using external files You might want to set the Transaction object values from an external file. For

example, you might want to retrieve values from your PocketBuilder
initialization file when you are developing the application, or from an
application-specific initialization file when you distribute the application.

ProfileString function You can use the PowerScript ProfileString function to retrieve values from a text
file that is structured into sections containing variable assignments, like a
Windows INI file. The PocketBuilder initialization file is such a file, consisting
of several sections including PB, Application, and Database:

[PB]
variables and their values
...
[Application]
variables and their values
...
[Database]
variables and their values
...

The ProfileString function has this syntax:

ProfileString (file, section, key, default)

CHAPTER 16 Using Transaction Objects

Resource Guide 239

Example This script reads values from an initialization file to set the Transaction object
to connect to a database. Conditional code sets the variable startupfile to an
appropriate value:

SQLCA.DBMS = ProfileString(startupfile, "database", &
"dbms", "")

SQLCA.DBParm = ProfileString(startupfile, "database", &
"dbparm", "")

Connecting to the database
Once you establish the connection parameters by assigning values to the
Transaction object properties, you can connect to the database using the SQL
CONNECT statement:

// Transaction object values have been set.
CONNECT;

Because CONNECT is a SQL statement, not a PowerScript statement, you need
to terminate it with a semicolon.

If you are using a Transaction object other than SQLCA, you must include the
USING TransactionObject clause in the SQL syntax:

CONNECT USING TransactionObject;

For example:

CONNECT USING MyTrans;

Using the Preview tab to connect in a PocketBuilder application
The Preview tab page in the Database Profile Setup dialog box makes it easy
to generate accurate PowerScript connection syntax in the development
environment for use in your PocketBuilder application script.

As you complete the Database Profile Setup dialog box, the correct
PowerScript connection syntax for each selected option is generated on the
Preview tab. PocketBuilder assigns the corresponding DBParm parameter or
SQLCA property name to each option and inserts quotation marks, commas,
semicolons, and other characters where needed. You can copy the syntax you
want from the Preview tab directly into your script.

Working with Transaction objects

240 PocketBuilder

❖ To use the Preview tab to connect in a PocketBuilder application:

1 In the Database Profile Setup dialog box for your connection, supply
values for basic options (on the Connection tab) and additional database
parameters and SQLCA properties (on the other tabbed pages) as required.

For information about connection parameters and the values you should
supply, click Help.

2 Click Apply to save your settings without closing the Database Profile
Setup dialog box.

3 Click the Preview tab.

The correct PowerScript connection syntax for each selected option
displays in the Database Connection Syntax box on the Preview tab.

4 Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PocketBuilder copies the selected text to the clipboard. You can then paste
this syntax into your script, modifying the default Transaction object name
(SQLCA) if necessary.

ODB or ODBC for DBMS value
An ODBC connection profile shows “ODBC” as the value for the DBMS
parameter. Only the first three characters in this string are used, so ODB
and ODBC both work correctly.

5 Click OK.

Disconnecting from the database
When your database processing is completed, you disconnect from the
database using the SQL DISCONNECT statement:

DISCONNECT;

If you are using a Transaction object other than SQLCA, you must include the
USING TransactionObject clause in the SQL syntax:

DISCONNECT USING TransactionObject;

For example:

DISCONNECT USING MyTrans;

CHAPTER 16 Using Transaction Objects

Resource Guide 241

Automatic COMMIT when disconnected
When a transaction is disconnected, PocketBuilder issues a COMMIT statement
by default.

Defining Transaction objects for multiple database connections
Use one Transaction
object per connection

To perform operations in multiple databases at the same time, you need to use
multiple Transaction objects, one for each database connection. You must
declare and create the additional Transaction objects before referencing them,
and you must destroy these Transaction objects when they are no longer
needed.

Caution
PocketBuilder creates and destroys SQLCA automatically. Do not attempt to
create or destroy it.

Creating the
nondefault
Transaction object

To create a Transaction object other than SQLCA, you first declare a variable
of type transaction:

transaction TransactionObjectName

You then instantiate the object:

TransactionObjectName = CREATE transaction

For example, to create a Transaction object named DBTrans, code:

transaction DBTrans
DBTrans = CREATE transaction
// You can now assign property values to DBTrans.
DBTrans.DBMS = "ODB"
...

Assigning property
values

When you assign values to properties of a Transaction object that you declare
and create in a PocketBuilder script, you must assign the values one property
at a time, like this:

// This code produces correct results.
transaction SQLAnyTrans
SQLAnyTrans = CREATE TRANSACTION
SQLAnyTrans.DBMS = "Sybase"
SQLAnyTrans.Database = "Personnel"

Working with Transaction objects

242 PocketBuilder

You cannot assign values by setting the nondefault Transaction object equal to
SQLCA, like this:

// This code produces incorrect results.
transaction MyTrans
MyTrans = CREATE TRANSACTION
MyTrans = SQLCA // ERROR!

Specifying the
Transaction object in
SQL statements

When a database statement requires a Transaction object, PocketBuilder
assumes the Transaction object is SQLCA unless you specify otherwise. These
CONNECT statements are equivalent:

CONNECT;
CONNECT USING SQLCA;

However, when you use a Transaction object other than SQLCA, you must
specify the Transaction object in the SQL statements in Table 16-2 with the
USING TransactionObject clause.

Table 16-2: SQL statements that require USING TransactionObject

❖ To specify a user-defined Transaction object in SQL statements:

• Add the following clause to the end of any of the SQL statements in the
preceding list:

USING TransactionObject

For example, this statement uses a Transaction object named MyTrans to
connect to the database:

CONNECT USING MyTrans;

Always code the Transaction object
Although specifying the USING TransactionObject clause in SQL statements is
optional when you use SQLCA and required when you define your own
Transaction object, it is good practice to code it for any Transaction object,
including SQLCA. This avoids confusion and ensures that you supply USING
TransactionObject when it is required.

COMMIT INSERT

CONNECT PREPARE (dynamic SQL)

DELETE ROLLBACK

DECLARE Cursor SELECT

DECLARE Procedure SELECTBLOB

DISCONNECT UPDATEBLOB

EXECUTE (dynamic SQL) UPDATE

CHAPTER 16 Using Transaction Objects

Resource Guide 243

Example The following statements use the default Transaction object (SQLCA) to
communicate with an UltraLite database and a nondefault Transaction object
named SQLAnyTrans to communicate with a SQL Anywhere database:

// Set the default Transaction object properties.
SQLCA.DBMS = "UL9"
SQLCA.DBParm = "ConnectString='DBF=\Test\test.ucb'"
// Connect to the UltraLite database.
CONNECT USING SQLCA;

// Declare a SQL Anywhere Transaction object.
transaction SQLAnyTrans
// Create the SQL Anywhere Transaction object.
SQLAnyTrans = CREATE TRANSACTION
// Set the SQL Anywhere Transaction object properties.
SQLAnyTrans.DBMS = "ODB"
SQLAnyTrans.DBParm = "ConnectString='DSN=Work'"
// Connect to the SQL Anywhere database.
CONNECT USING SQLAnyTrans;

// Insert a row into the first database.
INSERT INTO CUSTOMER
VALUES ('CUST789', 'BOSTON')
USING SQLCA;
// Insert a row into the second database.
INSERT INTO EMPLOYEE
VALUES ('Peter Smith', 'New York')
USING SQLAnyTrans;

// Disconnect from the first database
DISCONNECT USING SQLCA;
// Disconnect from the second database.
DISCONNECT USING SQLAnyTrans;
// Destroy the SQL Anywhere Transaction object.
DESTROY SQLAnyTrans

Using error checking
An actual script would include error checking after the CONNECT, INSERT,
and DISCONNECT statements. For details, see “Error handling after a SQL
statement” next.

Working with Transaction objects

244 PocketBuilder

Error handling after a SQL statement
When to check for
errors

You should always test the success or failure code (the SQLCode property of
the Transaction object) after issuing one of the following statements in a script:

• Transaction management statement (such as CONNECT, COMMIT, and
DISCONNECT)

• Embedded or dynamic SQL

Not in a DataWindow
Do not do this type of error checking following a retrieval or update made in a
DataWindow. For information about handling errors in DataWindow objects,
see “Handling DataWindow errors” on page 136.

SQLCode return
values

Table 16-3 shows the SQLCode return values.

Table 16-3: SQLCode return values

Using SQLErrText and
SQLDBCode

The string SQLErrText in the Transaction object contains the database
vendor-supplied error message. The long named SQLDBCode in the
Transaction object contains the database vendor-supplied status code. You can
reference these variables in your script.

Example To display a message box containing the DBMS error number and
message if the connection fails, code the following:

CONNECT USING SQLCA;
IF SQLCA.SQLCode = -1 THEN

MessageBox("SQL error " + String(SQLCA.SQLDBCode),&
SQLCA.SQLErrText)

END IF

Value Meaning

0 Success

100 Fetched row not found

-1 Error (the statement failed)

Use SQLErrText or SQLDBCode to obtain the details.

CHAPTER 16 Using Transaction Objects

Resource Guide 245

Using Transaction objects to call stored procedures
SQLCA is a built-in global variable of type transaction that is used in all
PocketBuilder applications. In your application, you can define a specialized
version of SQLCA that performs certain processing or calculations on your
data.

Not supported in UltraLite
Stored procedures are not supported in UltraLite databases.

You might already have defined remote stored procedures to perform these
operations. You can use the remote procedure call (RPC) technique to define a
customized version of the Transaction object that calls these database stored
procedures in your application.

Result sets
You cannot use the RPC technique to access result sets returned by stored
procedures. If the stored procedure returns one or more result sets,
PocketBuilder ignores the values and returns the output parameters and return
value. If your stored procedure returns a result set, you can use the embedded
SQL DECLARE Procedure statement to call it.

For information about the DECLARE Procedure statement, see the chapter on
SQL statements in the PowerScript Reference or the online Help.

Overview of the RPC
procedure

To call database stored procedures from within your PocketBuilder
application, you can use the remote procedure call technique and PowerScript
dot notation (object.function) to define a customized version of the Transaction
object that calls the stored procedures.

❖ To call database stored procedures in your application:

1 From the Objects tab in the New dialog box, define a standard class user
object inherited from the built-in Transaction object.

2 In the Script view in the User Object painter, use the RPCFUNC keyword
to declare the stored procedure as an external function or subroutine for the
user object.

3 Save the user object.

4 In the Application painter, specify the user object you defined as the
default global variable type for SQLCA.

5 Code your PocketBuilder application to use the user object.

Using Transaction objects to call stored procedures

246 PocketBuilder

For instructions on using the User Object and Application painters and the
Script view in PocketBuilder, see the User’s Guide.

Understanding the
example

u_trans_database user object The following sections give step-by-step
instructions for using a Transaction object to call stored procedures in your
application. The example shows how to define and use a standard class user
object named u_trans_database.

The u_trans_database user object is a descendant of (inherited from) the
built-in Transaction object SQLCA. A descendant is an object that inherits
functionality (properties, variables, functions, and event scripts) from an
ancestor object. A descendent object is also called a subclass.

The example uses a simple stored procedure that takes a salary as an input and
returns the value of the salary after a 5% raise:

CREATE FUNCTION DBA."sp_raise" (salary double)
RETURNS double
BEGIN

DECLARE salary double;
SET salary = salary * 1.05;
RETURN salary;

END

Step 1: define the standard class user object

❖ To define the standard class user object:

1 Start PocketBuilder.

2 Connect to the database.

3 Click the New button in the PowerBar, or select File>New from the menu
bar.

4 On the PB Object tab in the New dialog box, select the Standard Class
icon, and click OK to define a new standard class user object.

The Select Standard Class Type dialog box displays, listing all the
standard class types provided in PocketBuilder.

5 Select transaction as the built-in system type that you want your user
object to inherit from, and click OK.

The User Object painter workspace displays so that you can assign
properties (instance variables) and functions to your user object.

CHAPTER 16 Using Transaction Objects

Resource Guide 247

Step 2: declare the stored procedure as an external function
FUNCTION or
SUBROUTINE
declaration

You can declare a non-result-set database stored procedure as an external
function or external subroutine in a PocketBuilder application. If the stored
procedure has a return value, declare it as a function (using the FUNCTION
keyword). If the stored procedure returns nothing or returns VOID, declare it as
a subroutine (using the SUBROUTINE keyword).

RPCFUNC and ALIAS
FOR keywords

You must use the RPCFUNC keyword in the function or subroutine declaration
to indicate that this is a remote procedure call (RPC) for a database stored
procedure rather than for an external function in a dynamic library. Optionally,
you can use the ALIAS FOR "spname" expression to supply the name of the
stored procedure as it appears in the database if this name differs from the one
you want to use in your script.

For complete information about the syntax for declaring stored procedures as
remote procedure calls, see the chapter on calling functions and events in the
PowerScript Reference.

❖ To declare stored procedures as external functions for the user object:

1 In the Script view in the User Object painter, select [Declare] from the first
list and Local External Functions from the second list.

2 Place your cursor in the Declare Local External Functions view. From the
pop-up menu or the Edit menu, select Paste Special>SQL>Remote Stored
Procedures.

PocketBuilder loads the stored procedures from your database and
displays the Remote Stored Procedures dialog box. It lists the names of
stored procedures in the current database.

Using Transaction objects to call stored procedures

248 PocketBuilder

Figure 16-1: Remote Stored Procedures dialog box

3 Select the names of one or more stored procedures that you want to declare
as functions for the user object, and click OK.

PocketBuilder retrieves the stored procedure declarations from the
database and pastes each declaration into the view.

Here is the declaration that displays (on one line) when you select
sp_raise:

function double sp_raise(double salary) RPCFUNC
ALIAS FOR "~"dba~".~"sp_raise~""

4 Edit the stored procedure declaration as needed for your application.

Use either of the following syntax formats to declare the database remote
procedure call (RPC) as an external function or external subroutine:

FUNCTION rtndatatype functionname ({ { REF } datatype1 arg1, ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

SUBROUTINE functionname ({ { REF } datatype1 arg1 , ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

For details about the syntax, see the PowerScript Reference or the online
Help.

CHAPTER 16 Using Transaction Objects

Resource Guide 249

Step 3: save the user object

❖ To save the user object:

1 In the User Object painter, click the Save button, or select File>Save from
the menu bar.

The Save User Object dialog box displays.

2 Specify the name of the user object, comments that describe its purpose,
and the library in which to save the user object, and click OK.

PocketBuilder saves the user object with the name you specified in the
selected library.

Step 4: specify the default global variable type for SQLCA
This procedure assumes that your application uses the default Transaction
object SQLCA, but you can also declare and create an instance of your own
Transaction object and then write code that calls the user object as a property
of your Transaction object. For instructions, see the chapter on working with
user objects in the User’s Guide.

In the Application painter, you must specify the user object you defined as the
default global variable type for SQLCA. When you execute your application,
this tells PocketBuilder to use your standard class user object instead of the
built-in system Transaction object.

❖ To specify the default global variable type for SQLCA:

1 Click the Open button in the PowerBar, or select File>Open from the menu
bar.

2 In the Open dialog box, select Applications from the Object Type
drop-down list. Choose the application where you want to use your new
user object and click OK.

The Application painter workspace displays.

3 Select the General tab in the Properties view. Click the Additional
Properties button.

4 In the Additional Properties dialog box, click the Variable Types tab to
display the Variable Types property page.

5 In the SQLCA box, specify the name of the standard class user object you
defined in Steps 1 through 3.

Using Transaction objects to call stored procedures

250 PocketBuilder

Figure 16-2: Specifying a user-defined Transaction object as the default
global variable for SQLCA

6 Click OK or Apply.

When you execute your application, PocketBuilder will use the specified
standard class user object instead of the built-in system object type it
inherits from.

Step 5: code your application to use the user object
What you have done so far In the previous steps, you defined a remote
stored procedure as an external function for the u_trans_database standard
class user object. You then specified u_trans_database as the default global
variable type for SQLCA. These steps give your PocketBuilder application
access to the properties and functions encapsulated in the user object.

What you do now You now need to write code that uses the user object to
perform the necessary processing.

In your application script, you can use PowerScript dot notation to call the
stored procedure functions you defined for the user object, just as you do when
using SQLCA for all other PocketBuilder objects. The dot notation syntax is:

object.function (arguments)

CHAPTER 16 Using Transaction Objects

Resource Guide 251

For example, you can call the sp_raise stored procedure with code similar to
the following:

double ld_result
double ld_inputsalary
ld_result = sqlca.sp_raise(ld_inputsalary)

❖ To code your application to use the user object:

1 Open the object or control for which you want to write the script.

2 Select the event for which you want to write the script.

3 Write code that uses the user object to do the necessary processing for your
application.

4 Compile the script to save your changes.

Supported DBMS features when calling stored
procedures

When you define and use a custom Transaction object to call remote stored
procedures in your application, the features supported depend on the DBMS to
which your application connects. Stored procedures are not supported in
UltraLite databases.

Result sets
You cannot use the remote procedure call technique to access result sets
returned by stored procedures. If the stored procedure returns one or more
result sets, PocketBuilder ignores the values and returns the output parameters
and return value.

If your stored procedure returns a result set, you can use the embedded SQL
DECLARE Procedure statement to call it. For information about the DECLARE
Procedure statement, see the chapter on SQL statements in the online Help.

If your application connects to an SQL Anywhere database, you can use the
following features:

• IN, OUT, and IN OUT parameters, as shown in Table 16-4.

Supported DBMS features when calling stored procedures

252 PocketBuilder

Table 16-4: SQL Anywhere IN, OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

Parameter What happens

IN An IN variable is passed by value and indicates a value being passed
to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed. Use
the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

Resource Guide 253

C H A P T E R 1 7 Using MobiLink Synchronization

About this chapter This chapter provides an introduction to MobiLink synchronization. It
also describes PocketBuilder wizards and utilities that help you control
database synchronization from a PocketBuilder application, how to
prepare to use the wizards, and how to use the objects created by the
wizards.

Contents

About MobiLink synchronization
MobiLink is a session-based synchronization system that allows one- or
two-way synchronization between a central data source, typically a
consolidated database, and many remote databases. Administration and
resource requirements at the remote database sites are minimal, making
MobiLink well suited to a variety of mobile applications.

Where to find additional information
Detailed information about MobiLink synchronization is provided in the
MobiLink Getting Started, the MobiLink - Client Administration, and the
Mobilink - Server Administration books. These books are available online
on the SQL Anywhere Product Manuals Web site at
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/.

If you are already familiar with MobiLink, go to “Working with
PocketBuilder synchronization objects” on page 260 to learn about
PocketBuilder integration with MobiLink.

Topic Page

About MobiLink synchronization 253

Working with PocketBuilder synchronization objects 260

Preparing consolidated databases 270

Creating remote databases 277

Synchronization techniques 283

About MobiLink synchronization

254 PocketBuilder

This section introduces some MobiLink terms and concepts.

Data movement and
synchronization

Data movement occurs when shared data is distributed over multiple databases
on multiple nodes and changes to data in one database are applied to the
corresponding data in other databases. Data can be moved using replication or
synchronization.

Data replication moves all transactions from one database to another, whereas
data synchronization moves only the net result of transactions. Both techniques
get their information by scanning transaction log files, but synchronization
uses log file segments instead of the full log file, making data movement much
faster and more efficient.

With synchronization, data is available locally and can be modified without a
connection to a server. MobiLink synchronization uses a loose consistency
model, which means that all changes are synchronized with each site over time
in a consistent manner, but different sites might have different copies of data at
any instant. Only successful transactions are synchronized.

Consolidated and
remote databases

The consolidated database, which can be any ODBC-compliant database, such
as SQL Anywhere, Adaptive Server Enterprise, Oracle, IBM DB2 UDB, or
Microsoft SQL Server, holds the master copy of all the data. Optionally, in
MobiLink 10, you can store all or part of your central data in a data source such
as an application server, spreadsheet, Web server, Web service, or text file.

For information on using a central data source other than a consolidated
database, see the chapter on direct row handling in the MobiLink Server
Administration book.

The remote database contains a subset of the consolidated data. In
PocketBuilder, the remote database is a SQL Anywhere or UltraLite database.

The MobiLink
synchronization server

The MobiLink synchronization server, dbmlsrv9 or mlsrv10, manages the
synchronization process and provides the interface between remote databases
and the consolidated database server. All communication between the
MobiLink synchronization server and the consolidated database occurs
through an ODBC connection.The consolidated database and synchronization
server often reside on the same machine, but that is not a requirement.

The MobiLink server must be running before a synchronization process is
launched.

As you build and test PocketBuilder applications, you can start the server from
the Utilities folder in the Objects view in the Database painter. For more
information, see the chapter on managing databases in the PocketBuilder
User’s Guide.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 255

For information about starting the server from the command line, see “mlsrv10”
in the index of the SQL Anywhere Studio online books.

MobiLink hierarchy MobiLink typically uses a hierarchical configuration. The nodes in the
hierarchy can reside on servers, desktop computers, and handheld or embedded
devices. A simple hierarchy might consist of a consolidated database on a
server and multiple remote databases on mobile devices. A more complex
hierarchy might contain multiple levels in which some sites act as both remote
and consolidated databases. Any consolidated database that also acts as a
remote database must be a SQL Anywhere database.

For example, suppose remote sites A1, A2, and A3 synchronize with a
consolidated database A on a local server, and remote sites B1, B2, and B3
synchronize with a consolidated database B on another local server. A and B in
turn act as remote sites and synchronize with a consolidated database C on a
master server. C can be any ODBC-compliant database, but A and B must both
be SQL Anywhere databases.

About MobiLink synchronization

256 PocketBuilder

Figure 17-1: MobiLink hierarchy

Synchronization
scripts

MobiLink synchronization is an event-driven process. When a MobiLink client
initiates a synchronization, a number of synchronization events occur inside
the MobiLink server. When an event occurs, MobiLink looks for a script to
match the synchronization event. If you want the MobiLink server to take an
action, you must provide a script for the event.

You can write synchronization scripts for connection-level events and for
events for each table in the remote database. You save these scripts on the
consolidated database.

You can write scripts using SQL, Java, or .NET. For more information about
event scripts and writing them in the MobiLink Synchronization plug-in in
Sybase Central, see “Preparing consolidated databases” on page 270.

The MobiLink
synchronization SQL
Anywhere client

SQL Anywhere clients at remote sites initiate synchronization by running a
command-line utility called dbmlsync. This utility synchronizes one or more
subscriptions in a remote database with the MobiLink synchronization server.
Subscriptions are described in “Publications, articles, and users” on page 257.
For more information about the dbmlsync utility and its options, see “dbmlsync
utility” in the index of the SQL Anywhere online books.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 257

In PocketBuilder, synchronization objects that you create with the MobiLink
Synchronization for ASA wizard manage the dbmlsync process. For more
information, see “Working with PocketBuilder synchronization objects” on
page 260.

A different PocketBuilder wizard, the MobiLink Sync User and Subscription
Maintenance wizard, lets you provide application users with the ability to
create user names and subscriptions in a remote database. For more
information about this wizard, see the chapter on managing the database in the
PocketBuilder User’s Guide.

The MobiLink
synchronization
UltraLite client

One of the major differences in synchronizing an UltraLite database instead of
a SQL Anywhere database is that there are no subscriptions in an UltraLite
database. By default, all tables in an UltraLite remote database are updated
during synchronization, although you can create publications in the database to
restrict the updates to specific tables. Another difference is that the MobiLink
synchronization call is made directly on the connection object to the remote
UltraLite database, rather than through an outside call to a separate
synchronization utility.

MobiLink synchronization requires matching publications to be defined in
both the consolidated and remote databases, and synchronization scripts to be
defined on the consolidated databases. “Preparing to use the wizard for remote
UltraLite databases” on page 268 describes the steps you must take to prepare
the databases for synchronization using utilities you can run from the Database
painter. You can prepare the databases before or after running the UltraLite
Synchronization wizard that helps you integrate MobiLink synchronization
with your PocketBuilder applications.

For more information on the UltraLite Synchronization wizard, see the
Managing Databases chapter in the User’s Guide.

Publications, articles,
and users

A publication is a database object on the remote database that identifies tables
and columns to be synchronized. Each publication can contain one or more
articles. An article is a database object that represents a whole table, or a subset
of the columns and rows in a table.

In MobiLink 9, a MobiLink user is a database object that uniquely identifies a
remote database, and is also used to authenticate a person who synchronizes.
There is one MobiLink user name for each remote database in the MobiLink
system.

About MobiLink synchronization

258 PocketBuilder

In MobiLink 10, a MobiLink user is used only to authenticate a person who
synchronizes. User names do not need to be unique. Instead, an identifier called
a remote ID uniquely identifies a remote database. The remote ID is stored in
the remote database. MobiLink generates a remote ID the first time a remote
database synchronizes to a central data source, or any time it encounters a
NULL value for the remote ID. The remote ID is created automatically as a
GUID, but you can set it to any string that has meaning to you.

The remote ID makes it easier for the same MobiLink user to synchronize
different sets of data in different remote databases. For SQL Anywhere 10
remote databases, the MobiLink server tracks synchronization progress by
remote ID and subscription. In UltraLite 10 remote databases, the remote ID is
also useful for allowing multiple MobiLink users to synchronize the same
remote database. For these databases, the MobiLink server tracks
synchronization progress by remote ID and publication.

Every script that accepts the MobiLink user name as a parameter now also
accepts a remote_id parameter. The remote_id parameter is available only if
you use named parameters.

In both versions 9 and 10, MobiLink users are created on the remote database
and registered on the consolidated database. You can register users with the
mluser utility, the mlsrv10 -zu option, or in other ways. Once registered,
MobiLink user names are stored in the ml_user system table on the
consolidated database.

Subscriptions A subscription associates a user with one or more publications. It specifies the
synchronization protocol (such as TCP/IP, HTTP, or HTTPS), address (such as
myserver.acmetools.com), and additional optional connection and extended
options.

All of these objects are created in the remote database, although subscriptions
are not used with UltraLite databases. In Sybase Central, you create
publications, users, and subscriptions using the SQL Anywhere plug-in, not the
MobiLink Synchronization plug-in. For more information, see “Creating
remote databases” on page 277.

The MobiLink Sync User and Subscription Maintenance wizard creates
objects that allow a PocketBuilder application user to create MobiLink users
and subscriptions in a remote database. For more information, see the chapter
on managing the database in the PocketBuilder User’s Guide.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 259

Create
Synchronization
Model wizard

The MobiLink 10 plug-in for Sybase Central provides the Create
Synchronization Model wizard to help you set up synchronization between a
remote database and a consolidated database. You can use the wizard to create
scripts, publications, users, and so on. You can also use the wizard to create the
remote database and all its objects based on the schema of a consolidated
database. You start the wizard by selecting the Tools>MobiLink 10>Setup
MobiLink Synchronization menu item or by clicking “Create a
Synchronization Model” in the Sybase Central Task view.

The synchronization
process

For remote SQL Anywhere databases Dbmlsync connects to the remote
database using TCP/IP, HTTP, or HTTPS, and prepares a stream of data (the
upload stream) to be uploaded to the consolidated database. Dbmlsync uses
information contained in the transaction log of the remote database to build the
upload stream. The upload stream contains the MobiLink user name and
password, the version of synchronization scripts to use, the last
synchronization timestamp, the schema of tables and columns in the
publication, and the net result of all inserts, updates, and deletes since the last
synchronization.

After building the upload stream, dbmlsync uses information stored in the
specified publication and subscription to connect to the MobiLink
synchronization server and exchange data.

For remote UltraLite databases The Synchronize call on the connection
object to the remote database uses the selected communication stream (TCP/IP,
HTTP, or HTTPS) and prepares a stream of data to be uploaded to the
consolidated database. Information passed in a structure object is used to
connect to the MobiLink synchronization server and exchange data.

For all remote databases When the MobiLink synchronization server
receives data, it updates the consolidated database, then builds a download
stream that contains all relevant changes and sends it back to the remote site.
At the end of each successful synchronization, the consolidated and remote
databases are consistent. Either a whole transaction is synchronized, or none of
it is synchronized. This ensures transactional integrity at each database.

Working with PocketBuilder synchronization objects

260 PocketBuilder

Working with PocketBuilder synchronization objects
When you run the MobiLink Synchronization for ASA or the UltraLite
Synchronization wizard from the Database page in the New dialog box, the
wizard generates objects that let you initiate and control MobiLink
synchronization requests from a PocketBuilder application. These objects let
you obtain feedback during the synchronization process, code PowerScript
events at specific points during synchronization, and cancel the process
programmatically.

To get started, create a new workspace and a target application. You do not
need to create a SQL database connection, but you do need to create a project.

Using SalesDB as a
sample remote SQL
Anywhere database

Before you use the MobiLink Synchronization for ASA wizard to generate
objects for an application, you need to set up a remote database and add at least
one publication, user, and subscription to it, and create a PocketBuilder
database profile for the remote database. To test the synchronization objects on
the Pocket PC device and emulator, you need to set up a consolidated database.

You can create your own databases, as described in “Preparing consolidated
databases” on page 270 and “Creating remote databases” on page 277, or use
the databases provided for the SalesDB sample application.

You can set up the SalesDB consolidated and remote databases using the
MakeDB.cmd file located in the Code Examples\SalesDB\db directory in your
PocketBuilder installation. The remote database already has a publication
(salesapi), user (tutorial), and subscription.

Instructions for running the command file and setting up a database profile are
in the SalesDB.html file in the SalesDB directory. There is also a tutorial
version of the application in the Tutorial directory.

Adding synchronization capabilities to your application
To test the synchronization objects generated by the MobiLink
Synchronization for ASA wizard or the UltraLite Synchronization wizard,
complete the following steps:

1 Run the wizard.

2 Call synchronization objects from your application.

3 Deploy the application and database files.

4 Start the MobiLink server.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 261

5 Run the application.

Run the wizard For remote SQL Anywhere databases The wizard prompts you for a
database profile, a file DSN, and a publication. You can use the SalesDB values
if you set up the databases and profile. Continue through the wizard, selecting
default values, and click Finish to generate the synchronization objects.

For remote UltraLite databases The wizard prompts you for a publication
and a script version. For testing purposes, you can leave the script version
blank and, for UltraLite 9, select the Send Column Names check box. In
UltraLite 10, the column names are used by the MobiLink server for direct row
handling. You need to set this option only when using the row handling API to
refer to columns by name rather than by index.

Continue through the wizard, selecting default values, and click Finish to
generate the synchronization objects.

For all remote databases For information on the objects generated by the
wizards for remote SQL Anywhere or UltraLite databases, see the chapter on
managing databases in the User’s Guide. For help in wizard screens, place the
mouse pointer in any wizard field and press F1.

Call synchronization
objects from your
application

In a Menu object for your application, add two submenu items to the File menu,
called Synchronize and Sync Options. Alternatively, you can use these names to
label two buttons on an application window.

For remote SQL Anywhere databases Add the following code to the
Clicked event of the Synchronize menu item or button (appname is the name of
your application):

gf_appname_sync("tutorial", "")

Add the following code to the Clicked event of the Sync Options menu item or
button:

gf_appname_options_sync()

For remote UltraLite databases Add the following code to the Clicked
event of the Synchronize menu item or button (appname is the name of your
application):

gf_appname_ulsync("dba", "sql", sqlca)

Add the following code to the Clicked event of the Sync Options menu item or
button:

gf_appname_options_ulsync(sqlca)

Working with PocketBuilder synchronization objects

262 PocketBuilder

Deploy the application
and database files

Use the Project painter to deploy the application to the Pocket PC or emulator.
For remote SQL Anywhere databases, you need to copy the file DSN for the
remote database to the root directory of the device or emulator, and copy the
remote database and its transaction log file to the directory on the device or
emulator specified in the DSN.

For more information about copying files to devices or emulators, see the
Installation Guide.

Start the MobiLink
server

Select MobiLink Synchronization Server from the Utilities folder in the
Database painter. In the dialog box, select the Automatic Addition of Users
check box. This ensures that the MobiLink names created in remote databases
are registered for synchronization. Click OK to start the server.

Testing purposes only
Typically, you would not select the Automatic Addition of Users option for
applications that you create for production.

Run the application Run the application on the device or emulator and select the File>Synchronize
and File>Sync Options menu items or buttons to test their operation.

Using the synchronization objects in your application
Before you use objects generated by one of the MobiLink synchronization
wizards, you should examine them in the PocketBuilder painters to understand
how they interact. Many of the function and event scripts contain comments
that describe their purpose.

All the source code is provided so that you have total control of how your
application manages synchronization. You can use the objects as they are,
modify them, or use them as templates for your own objects.

Instance variables in
the user object

MobiLink Synchronization for SQL Anywhere The nvo_appname_sync
user object contains instance variables that represent specific dbmlsync
arguments, including the publication name, the MobiLink server host name
and port, the DSN used on the desktop, and the file DSN created for
deployment to the Pocket PC.

UltraLite Synchronization The nvo_appname_ulsync user object contains
instance variables that represent arguments passed to a structure object in the
Synchronize call. Publication names, a script version, and the MobiLink server
host name and port number are included in instance variables of the nonvisual
user object.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 263

For all synchronization wizards When you run the wizard, the values that
you specify for these instance variables are set as default values in the script for
the constructor event of the user object. They are also set in the Windows
registry on the development computer in
HKEY_CURRENT_USER\Software\Sybase\PocketBuilder\2.0\appname\Mobi
Link, where appname is the name of your application.

At runtime, the constructor event script gets the values of the instance variables
from the Windows CE registry on the device. If they cannot be obtained from
the registry, or if you override the registry settings, the default value supplied
in the script is used instead and is written to the registry.

You can change the default values in the event script, and you can let the user
change the registry values at runtime by providing a menu item that opens the
w_appname_sync_options or the w_appname_ulsync_options window.

The user object’s uf_runsync and uf_runsync_with_window functions use the
instance variables as arguments when they launch a dbmlsync process or
Synchronize call.

Launching
synchronization

To enable the user to launch a synchronization process, code a button or menu
event script to call the gf_appname_sync (SQL Anywhere) or
gf_appname_ulsync (UltraLite) global function. This function creates an
instance of the nvo_appname_sync or nvo_appname_ulsync user object, and
the user object’s constructor event script sets the appname\MobiLink key in the
Windows CE registry.

If you specified in the wizard that the status window should display, the global
function opens the status window, whose ue_postopen event calls the
uf_runsync_with_window function; otherwise, the global function calls the
uf_runsync function. Both uf_runsync functions launch dbmlsync for remote
SQL Anywhere databases as an external process using a special function in the
PocketBuilder VM. For UltraLite databases, both functions call Synchronize
on the connection object.

Supplying a MobiLink
user name and
password

The gf_appname_sync (SQL Anywhere) global function takes a MobiLink user
name and password as arguments. The gf_appname_ulsync (UltraLite) global
function also takes the name of the remote database connection object as an
argument. The wizard does not set any default values for these arguments, so
you generally need to provide them. If you pass valid arguments to the
function, it sets the value of the is_mluser and is_mlpassword instance
variables to the values supplied.

Example for a remote SQL Anywhere database You could code a menu
item to open a response window with two single-line edit boxes, and pass the
user-supplied values to the function in the script for an OK button:

Working with PocketBuilder synchronization objects

264 PocketBuilder

if gf_myapp_sync (sle_usr.text, sle_pwd.text)<> 0 then
MessageBox("Error", "MobiLink Error")

end if

If you pass null values or empty strings to the global function, the uf_runsync
functions use MobiLink user name and password values stored in the registry
to provide arguments for the dbmlsync utility. If each user of your application
typically uses a given MobiLink user name, providing a mechanism that stores
values in the registry lets users start a synchronization without reentering the
information. The options window (described in “Using the synchronization
options window” on page 266) provides such a mechanism.

If no user name is supplied
If there are no values in the registry and the publication has only one user
associated with it, you can supply empty arguments to the global function, and
dbmlsync will use the user name associated with the publication.

Example for a remote UltraLite database You could code a menu item to
open a response window with two single-line edit boxes, and pass the user-
supplied values to the function in the script for an OK button:

if gf_myapp_ulsync (sle_usr.text, sle_pwd.text, sqlca)&
<> 0 then
MessageBox("Error", "MobiLink Error")

end if

If you pass null values or empty strings to the global function, the uf_runsync
functions use MobiLink user name and password values stored in the registry
to provide arguments to the structure object passed in the Synchronize call.

Retrieving data after
synchronization

After synchronizing, you would typically test for synchronization errors, then
retrieve data from the newly synchronized database. For example, for
synchronization involving a remote SQL Anywhere database, you could code:

if gf_myapp_sync("", "") <> 0 then
MessageBox("Error", "MobiLink error")

else
dw_1.Retrieve()

end if

Capturing dbmlsync
messages

For synchronization with remote SQL Anywhere databases, the PocketBuilder
VM traps messages from the dbmlsync process and triggers events in the
nonvisual user object as the process runs. For remote UltraLite databases,
synchronization messages are caught in a structure object, and the
synchronization directly triggers events in the nonvisual user object generated
by the UltraLite Synchronization wizard.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 265

These events are triggered before synchronization begins as the upload stream
is prepared:

ue_begin_logscan (long rescan_log)
ue_progress_info (long progress_index, long progress_max)
ue_end_logscan ()

These events correspond to events on the synchronization server, as described
in “Connection events” on page 270:

ue_begin_sync (string user_name, string pub_names)
ue_connect_MobiLink ()
ue_begin_upload ()
ue_end_upload ()
ue_begin_download ()
ue_end_download (long upsert_rows, long delete_rows)
ue_disconnect_MobiLink()
ue_end_sync (long status_code)

These events are triggered after ue_end_upload and before ue_begin_download:

ue_wait_for_upload_ack ()
ue_upload_ack (long upload_status)

These events are triggered when various messages are sent by the server:

ue_error_msg (string error_msg)
ue_warning_msg (string warning_msg)
ue_file_msg (string file_msg)
ue_display_msg (string display_msg)

The default event scripts created by a PocketBuilder synchronization wizard
trigger corresponding events in the optional status window, if it exists. The
window events write the status to the multiline edit control in the status
window. Some window events also update a static text control that displays the
phase of the synchronization operation that is currently running (log scan,
upload, or download) and control a horizontal progress bar showing what
percentage of the operation has completed.

You can also add code to the user object or window events that will execute at
the point in the synchronization process when the corresponding MobiLink
events are triggered. For synchronization with remote SQL Anywhere
databases, the dbmlsync process sends the event messages to the controlling
PowerBuilder application and waits until PowerBuilder event processing is
completed before continuing. There is no external synchronization process
called by an application for synchronizing a remote UltraLite database.

Working with PocketBuilder synchronization objects

266 PocketBuilder

Cancelling
synchronization

The Cancel button on the status window calls the uf_cancelsync user object
function to cancel the synchronization process. If your application does not use
the status window, you can call this function in an event script elsewhere in
your application.

Using the synchronization options window
To use the options window (w_appname_sync_options for applications using
remote SQL Anywhere databases or w_appname_sync_options for applications
using remote UltraLite databases), code a menu item or button clicked event to
call the gf_appname_configure_sync or the gf_appname_configure_ulsync
function. This function creates an instance of the s_appname_sync_parms or
s_appname_ulsync_parms structure and passes it to the options window.

The window’s Open event creates an instance of the nvo_appname_sync or
nvo_appname_ulsync user object, and its ue_postopen event retrieves values
from the registry to populate the text boxes in the window—unless you have
chosen to override registry settings. The user can verify or modify options in
the window and click either OK or Cancel.

If the user clicks OK, the gf_appname_configure_sync or
gf_appname_configure_ulsync function calls gf_appname_sync or
gf_appname_ulsync to launch synchronization using the MobiLink user name
and password returned from the window. The user’s changes are also written
to the registry.

The Close event of the window calls the wf_try_saving window function. If the
user clicks OK, the wf_savesettings window function is launched. If the user
clicks Cancel, no changes are made to the registry.

The options window has three pages: Subscriptions, MobiLink Server, and
Settings. Although UltraLite databases do not have subscriptions, the
information associating publications with a script version and a MobiLink user
is the same type of information used to define subscriptions in SQL Anywhere
databases.

Subscriptions page When you used the MobiLink wizard, you selected one or more publications
from the list of available publications. By default, the selected publications that
display on the Subscriptions page cannot be edited at runtime for an application
using a remote SQL Anywhere database. You can enable the Publications field
for user entry at runtime by opening the options window in the Window painter,
selecting the Publications text box, and clicking the Enabled check box in the
Properties view.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 267

Each remote user can supply a MobiLink synchronization user name on the
Subscriptions page. For remote SQL Anywhere databases, the name must be
associated in a subscription with the publications displayed on the page. If the
application is always used by the same MobiLink user, this information never
needs to be supplied again. The name is saved in the registry and used by
default every time synchronization is launched from the application on this
device.

If the user checks the Remember Password check box, the password is
encrypted and saved in the registry. The uf_encrypt_pw and uf_decrypt_pw
functions use a simple algorithm to ensure that the password does not display
without encryption in the registry. You can replace this algorithm with a more
sophisticated encryption technique.

MobiLink Server page When you create a subscription, you specify a protocol, host, port, and other
connection options. For ease of testing, the default protocol is TCP/IP and the
default host is localhost. The default port is 2439 for TCP/IP, 80 for HTTP, and
443 for HTTPS.

You might need to change these defaults when you are testing, and your users
might need to change them when your application is in use if the server is
moved to another host or the port changes. For remote UltraLite database
connections, the application user can enter additional parameters in the
Additional text box in the format: keyword1=value1[;keywordN=valueN],
where keyword is the parameter name and value is the parameter value. For
remote SQL Anywhere databases, additional and extended parameters for the
MobiLink server can be set by the user on the Settings page.

If the user does not make any changes to the MobiLink Server page of the
options window, the synchronization process uses the values you entered in the
wizard, if any. For remote SQL Anywhere databases, if you did not enter values
in the wizard, dbmlsync uses the values in the subscription.

For more information about subscriptions, see “Adding subscriptions for
remote SQL Anywhere databases” on page 282.

Settings page For remote SQL Anywhere databases The Settings page displays the file
DSN, logging options, and any other dbmlsync options you specified in the
wizard. It also shows the three display options available to the user. This page
lets the user change any of these options.

Extended options
Extended options are added to the dbmlsync command line with the -e switch.
You do not need to type the -e switch in the text box.

Working with PocketBuilder synchronization objects

268 PocketBuilder

For remote UltraLite databases The Settings page lets the user choose to
display the generated status window, to send column names (for automatic
generation of synchronization scripts), and to add or change authentication
parameters.

Modifying generated
objects

If you want to give or restrict user access to synchronization options available
in the options window, modify the window at design time or use it as a template
for your own options window. At a minimum, you probably need to provide a
way for each user to enter a MobiLink user name and password.

If you want the user to be able to save options without launching a
synchronization, you could comment out the lines in
gf_appname_configure_sync or gf_appname_configure_ulsync that call the
global synchronization function (gf_appname_sync or gf_appname_ulsync), or
add a third button called Save Only that contains the same code as the OK
button, but returns a non-zero value.

Preparing to use the wizard for remote SQL Anywhere databases
The previous sections described how to try out the wizard in a test application
and how to use the objects generated by the wizard. Before you use the
MobiLink Synchronization for ASA wizard in a production application, you
need to complete the following tasks:

• Set up a consolidated database and write synchronization scripts as
described in “Preparing consolidated databases” on page 270

• Create a remote database on the desktop and set up one or more
publications, users, and subscriptions as described in “Creating remote
databases” on page 277

• Create a file DSN for the remote database, as described in “Defining the
SQL Anywhere data source” on page 202

• Create a database connection profile for the remote database, as described
in “Creating database profiles” on page 183

Preparing to use the wizard for remote UltraLite databases
Before you use the UltraLite Synchronization wizard in a production
application, you need to complete the tasks listed in Table 17-1.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 269

Table 17-1: Preparing databases for MobiLink synchronization

Preparation step How to do this

Add tables and
publications to the
remote UltraLite
database

For UltraLite 9, you can use the ulinit command line
utiltiy to create a remote database using the schema from
a consolidated SQL Anywhere database. Alternatively,
you can start the UltraLite Schema Painter from the
PocketBuilder Database painter, select File>New>
UltraLite Schema, type a name with a USM extension
for the schema, and click OK. Then you can select the
Tables and Synchronization nodes under the new schema
and click the items in the right pane of the painter to add
tables, and optionally, publications.

For UltraLite 10 you can create the database based on the
schema of the consolidated database using the Create
Synchronization Model wizard of the MobiLink plug-in
to Sybase Central. You can also create an empty
database and add tables to it using the UltraLite plug-in
to Sybase Central..

Add MobiLink users,
script versions, and
synchronized tables in
the consolidated database

Connect to the consolidated database using a MobiLink
Synchronization connection in Sybase Central, add new
users under the Users node, add script versions under the
Versions node, add tables under the Synchronized Tables
node, then add scripts for each synchronized table by
selecting each table sequentially and clicking Add Table
Script in the right pane. The table script associates a
script version with a scripting event for each table.

The above description is for the Admin mode of the
MobiLink 10 plug-in to Sybase Central 5.0. This is the
only mode available for MobiLink 9. For MobiLink 10,
you can use the plug-in Mode menu to switch between
Admin and Model modes.

Automatic addition of users and scripts
Adding users and script versions is optional for
non-production databases, because you can add these
automatically using special selections in the wizard or by
modifying objects created by the wizard.

For UltraLite 9, generate
the UltraLite schema as a
remote UltraLite
database

Start the Create UltraLite 9.x Database utility in
PocketBuilder, browse to a USM file you created with
the UltraLite 9 Schema Painter, enter a name for a new
UltraLite database, and click the OK button.

Preparing consolidated databases

270 PocketBuilder

Preparing consolidated databases
Whether you are designing a new database or preparing an existing one to be
used as a MobiLink consolidated database, you must install the MobiLink
system tables in that database. MobiLink setup scripts for SQL Anywhere 10,
Adaptive Server Enterprise, Oracle 8 and 9, Microsoft SQL Server, and IBM
DB2 databases are located in the MobiLink\setup directory of your SQL
Anywhere installation. (Setup scripts are not required for Adaptive Server
Anywhere 9, but are required for SQL Anywhere 10 consolidated databases.)

MobiLink system tables store information for MobiLink users, tables, scripts,
and script versions in the consolidated database. You will probably not directly
access these tables, but you alter them when you perform actions such as
adding synchronization scripts.

ODBC connections
and drivers

To carry out synchronization, the MobiLink synchronization server needs an
ODBC connection to the consolidated database. You must have an ODBC
driver for your server and you must create an ODBC data source for the
database on the machine on which your MobiLink synchronization server is
running. For a list of supported drivers, see Recommended ODBC Drivers for
MobiLink at http://www.sybase.com/detail?id=1011880.

Writing
synchronization
scripts

There are two types of events that occur during synchronization and for which
you need to write synchronization scripts:

• Connection events that perform global tasks required during every
synchronization

• Table events that are associated with a specific table and perform tasks
related to modifying data in that table

Connection events
At the connection level, the sequence of major events is as follows:

begin_connection
begin_synchronization

begin_upload
end_upload
prepare_for_download
begin_download
end_download

end_synchronization
end_connection

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 271

When a synchronization request occurs, the begin_connection event is fired.
When all synchronization requests for the current script version have been
completed, the end_connection event is fired. Typically you place initialization
and cleanup code in the scripts for these events, such as variable declaration
and database cleanup.

Apart from begin_connection and end_connection, all of these events take the
MobiLink user name stored in the ml_user table in the consolidated database as
a parameter. You can use parameters in your scripts by placing question marks
where the parameter value should be substituted.

To make scripts in SQL Anywhere databases easier to read, you might declare
a variable in the begin_connection script, then set it to the value of ml_username
in the begin_synchronization script.

For example, in begin_connection:

CREATE VARIABLE @sync_user VARCHAR(128);

In begin_synchronization:

SET @sync_user = ?

The begin_synchronization and end_synchronization events are fired before and
after changes are applied to the remote and consolidated databases.

The begin_upload event marks the beginning of the upload transaction.
Applicable inserts and updates to the consolidated database are performed for
all remote tables, then rows are deleted as applicable for all remote tables. After
end_upload, upload changes are committed.

If you do not want to delete rows from the consolidated database, do not write
scripts for the upload_delete event, or use the STOP SYNCHRONIZATION
DELETE statement in your PowerScript code. For more information, see
“Deleting rows from the remote database only” on page 285.

The begin_download event marks the beginning of the download transaction.
Applicable deletes are performed for all remote tables, and then rows are added
as applicable for all remote tables in the download_cursor. After end_download,
download changes are committed. These events have the date of the last
download as a parameter.

Other connection-level events can also occur, such as handle_error,
report_error, and synchronization_statistics. For a complete list of events and
examples of their use, see the chapter on synchronization events in the
MobiLink Administration Guide.

Preparing consolidated databases

272 PocketBuilder

Table events
Many of the connection events that occur between the begin_synchronization
and end_synchronization events, such as begin_download and end_upload, also
have table equivalents. These and other overall table events might be used for
tasks such as creating an intermediate table to hold changes or printing
information to a log file.

You can also script table events that apply to each row in the table. For
row-level events, the order of the columns in your scripts must match the order
in which they appear in the CREATE TABLE statement in the remote database,
and the column names in the scripts must refer to the column names in the
consolidated database.

Generating default
scripts

Although there are several row-level events, most tables need scripts for three
upload events (for INSERT, UPDATE, and DELETE) and one download event.
To speed up the task of creating these four scripts for every table, you can
generate scripts for them automatically by running the “create a
synchronization model” task from the MobiLink 10 plug-in in Sybase Central.

For information on the MobiLink plug-in, see the online MobiLink Getting
Started book.

The MobiLink plug-in allows you to add more functionality to default scripts
than default scripts generated in earlier versions of MobiLink. However, if you
are using a remote Adaptive Server Anywhere 9 database (instead of a remote
SQL Anywhere 10 database), you can still generate default synchronization
scripts by starting the MobiLink synchronization server with the -za switch and
setting the SendColumnNames extended option for dbmlsync. For applications
using a remote UltraLite 9.x database, you (or an application user) can select a
send Column Names check box.

Read-only remote databases
If the remote Adaptive Server Anywhere 9 database is read-only—that is, you
never want to upload any data—you should not implement the upload scripts.
You can use the -ze switch to generate sample scripts, and use the download
samples as templates for your download scripts.

❖ To generate synchronization scripts automatically in PocketBuilder:

1 Select the Automatic Script Generation check box in the MobiLink
Synchronize Server Options dialog box and click OK to start the server.

You open this dialog box from the Utilities folder in the Database painter
or the Database Profiles dialog box.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 273

2 In an application using a remote Adaptive Server Anywhere database,
enter SendColumnNames=ON in the Extended text box on the Settings page
of the w_appname_sync_options window.
or
In an application using a remote UltraLite database, select the Send
Column Names check box on the Settings page of the
w_appname_ulsync_options window.

You must have at least one publication and user defined in the remote
database. For a remote Adaptive Server Anywhere database, you must also
have at least one subscription defined in the database. If you have more
than one publication or user, you must use the -n and/or -u switches to
specify which subscription you want to work with.

If there are existing scripts in the consolidated database, MobiLink does
nothing. If there are no existing scripts, MobiLink generates them for all
tables specified in the publication. The scripts control the upload and
download of data to and from your client and consolidated databases.

If the column names on the remote and consolidated database differ, the
generated scripts must be modified to match the names on the consolidated
database.

You can also generate synchronization scripts from a command prompt. Start
the server using the -za switch, then run dbmlsync and set the
SendColumnNames extended option to on. For example:

dbmlsrv9 -c "dsn=masterdb" -za
dbmlsync -c "dsn=remotedb" -e SendColumnNames=ON

Generated scripts Table 17-2 shows the scripts that are generated for a table named emp with the
columns emp_id, emp_name, and dept_id. The primary key is emp_id.

Preparing consolidated databases

274 PocketBuilder

Table 17-2: Sample default scripts generated by dbmlsrv9 -za

The scripts generated for downloading data perform “snapshot”
synchronization. A complete image of the table is downloaded to the remote
database. Typically you need to edit these scripts to limit the data transferred.
For more information, see “Limiting data downloads” on page 283.

Before modifying any scripts, you should test the synchronization process to
make sure that the generated scripts behave as expected. Performing a test after
each modification will help you narrow down errors.

Working with scripts and users in Sybase Central
You can view and modify existing scripts and write new ones in the MobiLink
Synchronization plug-in in Sybase Central. These procedures describe how to
connect to the plug-in and write scripts, and how to add a user to the
consolidated database.

❖ To connect to a consolidated database in Sybase Central:

1 Start Sybase Central, select Tools>Connect from the menu bar, select
MobiLink Synchronization from the New Connection dialog box, and
click OK.

2 On the Identification page in the Connect dialog box, select ODBC
DataSource Name, browse to select the DSN of the consolidated database,
and click OK.

When you expand the node for a consolidated database in the MobiLink
Synchronization plug-in, you see five folders: Tables, Connection Scripts,
Synchronized Tables, Users, and Versions. All the procedures in this section
begin by opening one of these folders.

Script name Script

upload_insert INSERT INTO emp (emp_id, emp_name, dept_id)
VALUES (?,?,?)

upload_update UPDATE emp SET emp_name = ?, dept_id = ?
WHERE emp_id=?

upload_delete DELETE FROM emp
WHERE emp_id=?

download_cursor SELECT emp_id, emp_name, dept_id FROM emp

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 275

Script versions Scripts are organized into groups called script versions. By specifying a
particular version, MobiLink clients can select which set of synchronization
scripts is used to process the upload stream and prepare the download stream.
If you want to define different versions for scripts, you must add a script
version to the consolidated database before you add scripts for it.

If you create two different versions, make sure that you have scripts for all
required events in both versions.

Global script version
For MobiLink 10 and later, you can create a script version called ml_global that
is used differently from other script versions. If you create a script version
called ml_global, you define it once and then the connection scripts associated
with it are used by default in all synchronizations. You never explicitly specify
ml_global as a script version.

The ml_global script version can contain connection-level scripts only. For
more information, see the MobiLink Server Administration book.

❖ To add a script version:

1 Select the Versions folder and double-click Add Version.

2 In the Add a New Script Version dialog box, provide a name for the
version and optionally a description, and click Finish.

Sybase Central creates the new version and gives it a unique integer
identifier.

Adding scripts Scripts added for connection events are executed for every synchronization.
Scripts added for table events are executed when a specific table has been
modified. You must specify that a table is synchronized before you can add
scripts for it.

❖ To add a synchronized table to a consolidated database:

1 Select the Tables folder and double-click DBA.

2 Right-click the table you want to add to the list of synchronized tables and
select Add to Synchronized Tables from its pop-up menu.

❖ To add a script to a synchronized table:

1 Select the Synchronized Tables folder, select the table for which you want
to add a script, and double-click Add Table Script.

2 From the first drop-down list, select the version for which you want to add
a script.

Preparing consolidated databases

276 PocketBuilder

3 From the second drop-down list, select the event for which you want to
add a script.

Events that already have a script do not appear in the drop-down list.

4 From the third drop-down list, select the language in which you want to
write a script.

5 Make sure the Edit the Script of the New Event Immediately check box is
selected and click Finish.

6 Type your script in the editor that displays, then save and close the file.

For example, if you want to remove rows that have been shipped from the
Order table in a remote database, you can place the following SELECT
statement in the download_delete_cursor event, where order_id is the
primary key column. The first parameter to this event is the last_download
timestamp. It is used here to supply the value for a last_modified column:

SELECT order_id
FROM Order

WHERE status = 'Shipped'
AND last_modified >= ?

For more information about using the download_delete_cursor event, see
the section on “Writing download_delete_cursor scripts” in the MobiLink
Server Administration book.

❖ To add a connection-level script:

1 Select the Connection Scripts folder and double-click Add Connection
Script.

2 Follow steps 2 to 6 in the previous procedure.

Modifying scripts To modify an existing script, navigate to the script in Sybase Central as
described in the preceding procedures, then double-click the Edit icon to the
left of the version name.

Adding users You can add users directly to the ml_user table in the consolidated database,
then provide the user names and optional passwords to your users. To add a
user, select the Users folder, double-click Add User, and complete the Add
User wizard.

You also have to add at least one user name to each remote database, as
described in “Creating MobiLink users” on page 280.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 277

Creating remote databases
Creating a remote
SQL Anywhere
database

Any SQL Anywhere database can be converted for use as a remote database in
a MobiLink installation. You can also create a new SQL Anywhere remote
database that uses all or part of the schema of the consolidated SQL Anywhere
database.

You create the database on your desktop using the Sybase Central SQL
Anywhere plug-in, the Create ASA Database utility in the Database painter, or
another tool. If your database uses an English character set, use the 1252 Latin1
collation sequence. If Sybase Central detects that Microsoft ActiveSync is
installed on your computer, it enables a wizard page that lets you set up the
database for use on Windows CE.

Creating a remote
UltraLite database

You can create a remote UltraLite database by starting the UltraLite Schema
Painter from the Utilities folder in the PocketBuilder Database Profile painter.
After you create a USM database schema, you can start another utility in the
Utilities folder that converts the schema into an UltraLite database. The Create
UltraLite Database utility consists of a single dialog box that prompts you for
the USM name and the name of the database you want to create.

For more information on using the UltraLite Schema Painter, see the UltraLite
Database User’s Guide or the online Help. For a description of options in the
Create UltraLite Database utility, see the dialog box Help.

Preparing and
deploying the remote
database

To use a database as a remote database for MobiLink synchronization, you
need to create at least one publication and MobiLink user. For a remote SQL
Anywhere database, you must also add a subscription to the publication. See
“Creating and modifying publications” on page 278, “Creating MobiLink
users” on page 280, and “Adding subscriptions for remote SQL Anywhere
databases” on page 282.

To copy the database to the Pocket PC or emulator, select the Explore button in
Microsoft ActiveSync, or use the Windows CE Remote File Viewer (cefilevw)
for older emulators. For more information about copying files to a Pocket PC
device or emulator, see the Installation Guide.

Remote database
schemas

Tables in a remote database need not be identical to those in the consolidated
database, but you can often simplify your design by using a table structure in
the remote database that is a subset of the one in the consolidated database.
Using this method ensures that every table in the remote database exists in the
consolidated database. Corresponding tables have the same structure and
foreign key relationships as those in the consolidated database.

Creating remote databases

278 PocketBuilder

Tables in the consolidated database frequently contain extra columns that are
not synchronized. Extra columns can even aid synchronization. For example, a
timestamp column can identify new or updated rows in the consolidated
database. In other cases, extra columns or tables in the consolidated database
might hold information that is not required at remote sites.

Creating and modifying publications
You create publications using Sybase Central or the SQL CREATE
PUBLICATION statement. In Sybase Central, all publications and articles
appear in the Publications folder. This section describes how to create
publications in Sybase Central. For information about creating and modifying
publications using SQL, see the MobiLink - Client Administration book.

Connecting to Sybase
Central

You use the SQL Anywhere plug-in in Sybase Central, not the MobiLink
Synchronization plug-in, to work with MobiLink clients and remote databases.
The SQL Anywhere plug-in has a MobiLink Synchronization Client folder
where you perform all actions related to remote databases.

You must have DBA authority to create or modify publications, MobiLink
users, and subscriptions.

❖ To connect to Sybase Central to work with MobiLink Synchronization
clients:

1 Start Sybase Central, select Tools>Connect from the menu bar, select SQL
Anywhere from the New Connection dialog box, and click OK.

2 On the Identification page in the Connect dialog box, enter DBA as the
user name and SQL as the password, select the ODBC DataSource Name
radio button, browse to select the DSN of the remote database, and click
OK.

3 In the SQL Anywhere plug-in, expand the node for the remote database
and open the MobiLink Synchronization Client folder.

Publishing all the rows
and columns in a table

The simplest publication you can make is a single article that consists of all
rows and columns of one or more tables. The tables must already exist.

❖ To publish one or more entire tables in Sybase Central:

1 Connect to Sybase Central as described in “Connecting to Sybase
Central” on page 278.

2 Open the Publications folder and double-click Add Publication.

3 Type a name for the new publication and click Next.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 279

4 On the Tables page, select a table from the list of Matching Tables and
click Add.

The table appears in the list of Selected Tables on the right.

5 Optionally, add more tables. The order of the tables is not important.

6 Click Finish.

Publishing only some
columns in a table

You can create a publication that contains all the rows but only some of the
columns of a table.

❖ To publish only some columns in a table in Sybase Central:

1 Follow the first four steps of the procedure in “Publishing all the rows and
columns in a table” on page 278.

2 On the Columns page, double-click the table's icon to expand the list of
available columns, select each column you want to publish, and click Add.

The selected columns appear on the right.

3 Click Finish.

Publishing only some
rows in a table

You can create a publication that contains some or all of the columns in a table,
but only some of the rows. You do so by writing a search condition that
matches only the rows you want to publish.

In MobiLink, you can use the WHERE clause to exclude the same set of rows
from all subscriptions to a publication. All subscribers to the publication
upload any changes to the rows that satisfy the search condition.

❖ To create a publication using a WHERE clause in Sybase Central:

1 Follow the first four steps of the procedure in “Publishing all the rows and
columns in a table” on page 278.

2 On the Where page, select the table and type the search condition in the
lower box.

Optionally, you can use the Insert dialog box to help you format the search
condition.

3 Click Finish.

Adding articles You can add articles to existing publications.

❖ To add articles in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 278.

Creating remote databases

280 PocketBuilder

2 Open the Publications folder and double-click the name of the publication
to which you want to add an article.

3 Double-click Add Article.

4 In the Article Creation wizard, select a table and click Next.

5 If you want only some columns to be synchronized, select the Selected
Columns radio button and select the columns.

6 If you want to add a WHERE clause, click Next and enter the clause.

7 Click Finish.

Modifying and
removing publications
and articles

You can modify or drop existing publications in Sybase Central by navigating
to the location of the publication and selecting Properties or Delete from its
pop-up menu. You can modify and remove articles in the same way.

Publications can be modified only by the DBA or the publication's owner. You
must have DBA authority to drop a publication. If you drop a publication, all
subscriptions to that publication are automatically deleted as well.

Avoid altering publications in a running MobiLink setup
Altering publications in a running MobiLink setup is likely to cause replication
errors and can lead to loss of data unless carried out with care.

Creating MobiLink users
MobiLink users are not the same as database users. Each type of user resides
in a different namespace. MobiLink user IDs can match the names of database
users, but there is no requirement that they match.

❖ To add a MobiLink user to a remote database in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 278.

2 Open the MobiLink Users folder and double-click Add MobiLink User.

3 Enter a name for the MobiLink user.

The name is supplied to the MobiLink synchronization server during
synchronization. In production databases, each user name is usually added
to the consolidated database, then provided to the individual user.

4 Click Finish.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 281

❖ To configure MobiLink user properties in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 278.

2 Open the MobiLink Users folder, right-click the MobiLink user, and select
Properties from the pop-up menu.

3 Change the properties as needed.

❖ To drop a MobiLink user in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 278.

2 Open the MobiLink Users folder, right-click the MobiLink user, and select
Delete from the pop-up menu.

Dropping MobiLink users
You must drop all subscriptions for a MobiLink user before you drop the user
from a remote database.

Adding MobiLink
users to the
consolidated database

The consolidated database contains a table called ml_user that is used to
authenticate the names of MobiLink users when a synchronization is requested.
When you add a user to a remote database, you need to be sure that the user is
also added to the ml_user table.

You can add users automatically by selecting the Automatic Addition of Users
check box in the MobiLink Synchronization Server Options dialog box and
then starting the server. You open this dialog box from the Utilities folder in the
Database painter or Database Profiles dialog box. You can also start the server
from a command prompt, passing it the -zu+ switch.

Any users defined in the remote database are added to the ml_user table in the
consolidated database, as long as the script for the authenticate_user
connection event is undefined. Usually the -zu+ switch should not be used in a
production environment. Names are usually added to the ml_user table in the
consolidated database, then added to each of the remote databases. Each user
is given a unique name and optional password.

Creating remote databases

282 PocketBuilder

Adding subscriptions for remote SQL Anywhere databases
A synchronization subscription links a particular MobiLink user with a
publication. It can also carry other information needed for synchronization. For
example, you can specify the address of the MobiLink server and other
connection options. Values for a specific subscription override those set for
individual MobiLink users.

Overriding options in the wizard
You can override the MobiLink server name and port set for the subscription
and user in the MobiLink Synchronization for ASA wizard.

Synchronization subscriptions are required in MobiLink SQL Anywhere
remote databases. Server logic is implemented through synchronization
scripts, stored in the MobiLink system tables in the consolidated database.

A single SQL Anywhere database can synchronize with more than one
MobiLink synchronization server. To allow synchronization with multiple
servers, create different subscriptions for each server.

❖ To add a subscription for a MobiLink user in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 278.

2 For Sybase Central 4.x, open the MobiLink Users folder, right-click the
user for whom you want to add a subscription, and select Properties from
the pop-up menu.

For Sybase Central 5.x, open the Publications folder, select the publication
for which you want to enter a subscription, select the Synchronization
Subscriptions tab in the right pane of Sybase Central, then select
File>New>Synchronization Subscription from the menu bar.

3 For Sybase Central 4.x, click the Subscribe button on the Subscriptions
page, select the Publication for which you want to add a subscription, and
click OK.

For Sybase Central 5.x, in the Create Synchronization Subscription
wizard, select the user for whom you want to enter a subscription and click
Finish.

❖ To modify a subscription in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 278.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 283

2 For Sybase Central 4.x, open the MobiLink Users folder, right-click the
MobiLink user, select Properties from the pop-up menu, then on the
Subscriptions page, select the subscription you want to change and click
Advanced.

For Sybase Central 5.x, open the MobiLink Users folder, double-click the
name of the MobiLink user who owns the subscription you want to
modify, then on the Synchronization Subscriptions tab, right-click the
subscription you want to modify and select Properties from the pop-up
menu.

3 Change the properties as needed.

❖ To delete a synchronization subscription in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 278.

2 For Sybase Central 4.x, open the MobiLink Users folder, right-click the
MobiLink user, select Properties from the pop-up menu, the on the
Subscriptions page, select the subscription you want to delete and click
Unsubscribe.

For Sybase Central 5.x, open the MobiLink Users folder, double-click the
name of the MobiLink user who owns the subscription you want to delete,
then on the Synchronization Subscriptions tab, right-click the subscription
you want to delete and click Delete.

3 Click Yes in the Confirm Delete dialog box.

Synchronization techniques
This section highlights some issues that you need to consider when designing
an application that uses MobiLink synchronization.

Limiting data
downloads

One of the major goals of synchronization is to increase the speed and
efficiency of data movement by restricting the amount of data moved. To limit
the data transferred by the download_cursor script, you can partition data based
on its timestamp, the MobiLink user name, or both.

Synchronization techniques

284 PocketBuilder

Timestamp partitioning One way to limit downloads to data changed since
the last download is to add a last_modified column to each table in the
consolidated database (or, if the table itself cannot be changed, to a shadow
table that holds the primary key and that is joined to the original table in the
download_cursor script). The last_modified column need only be added to the
consolidated database.

In SQL Anywhere, you can use built-in DEFAULT TIMESTAMP datatypes for
this column. In other DBMSs, you need to provide an update trigger to set the
timestamp of the last_modified column.

The timestamp is generated on the consolidated database and downloaded
unmodified to the remote database during synchronization; the time zone of the
remote database does not affect it.

User-based partitioning The download_cursor script has two parameters:
last_download, of datatype datetime, and ml_username, of type varchar(128).
You can use these parameters to restrict the download not only to rows that
have changed since the last synchronization, but also to rows that belong to the
current user.

In this sample download_cursor script, only those rows are downloaded that
have been modified since the last synchronization, and that apply to the sales
representative whose ID matches the MobiLink user ID:

SELECT order_id, cust_id, order_date
FROM Sales_Order

WHERE last_modified >= ?
AND sales_rep = ?

For this to work correctly, the MobiLink user ID must match the sales_rep ID.
If this is not the case, you might need to join a table that associates these two
IDs.

Primary key
uniqueness

In a conventional client/server environment where clients are always
connected, referential integrity is directly imposed. In a mobile environment,
you must ensure that primary keys are unique and that they are never updated.
There are several techniques for achieving this, such as using primary key
pools.

Handling conflicts You need to handle conflicts that arise when, for example, two remote users
update the same rows but synchronize at different intervals, so that the latest
synchronization might not be the latest update. MobiLink provides
mechanisms to detect and resolve conflicts.

CHAPTER 17 Using MobiLink Synchronization

Resource Guide 285

Deleting rows from the
remote database only

By default, when a user starts a synchronization, the net result of all the
changes made to the database since the last synchronization is uploaded to the
consolidated database. However, sometimes a remote user deletes certain rows
from the remote database to recapture space, perhaps because the data is old or
a customer has transferred to another sales agent. Usually, those deleted rows
should not be deleted from the consolidated database.

One way to handle this is to use the command STOP SYNCHRONIZATION
DELETE in a script in your PocketBuilder application to hide the SQL DELETE
statements that follow it from the transaction log. None of the subsequent
DELETE operations on the connection will be synchronized until the START
SYNCHRONIZATION DELETE statement is executed.

For example, you might provide a menu item called Delete Local where the
code that handles the delete is wrapped as in this example:

STOP SYNCHRONIZATION DELETE;
// call code to perform delete operation
START SYNCHRONIZATION DELETE;
COMMIT;

There are other approaches to handling deletes. For more information, see the
chapter on synchronization techniques in the MobiLink - Server Administration
book.

Synchronization techniques

286 PocketBuilder

Resource Guide 287

C H A P T E R 1 8 Setting Additional Connection
Parameters

About this chapter This chapter describes how to set database parameters and database
preferences in PocketBuilder to fine-tune your database connection and
take advantage of DBMS-specific features.

Contents

Setting database parameters
In PocketBuilder, you can set database parameters by doing either of the
following:

• Editing the Database Profile Setup dialog box for your connection in
the development environment

• Specifying connection parameters in an application script

For more information about the Database Profile Setup dialog box, see
“About database profiles” on page 182. For descriptions of database
parameters, see the PocketBuilder Connection Reference.

Setting database parameters in the development environment
Editing database profiles To set database parameters for a database connection in the PocketBuilder

development environment, you must edit the database profile for that
connection.

Topic Page

Setting database parameters 287

Setting database preferences 290

Setting database parameters

288 PocketBuilder

Character limit for
DBParm strings

Strings containing database parameters that you specify in the Database Profile
Setup dialog box for your connection can be up to 999 characters in length. No
limit applies to DBParm strings that you specify in PocketBuilder scripts, as
properties of the Transaction object are not limited to a specified length.

Setting database parameters in a PocketBuilder application script
If you are developing a PocketBuilder application that connects to a database,
you must specify the required connection parameters in the appropriate script
as properties of the default Transaction object (SQLCA) or a Transaction
object that you create. For example, you might specify connection parameters
in the script that opens the application.

One of the connection parameters you might want to specify in a script is
DBParm. You can do this by:

• (Recommended) Copying PowerScript DBParm syntax from the Preview
tab in the Database Profile Setup dialog box into your script

• Coding PowerScript to set values for the DBParm property of the
Transaction object

• Reading DBParm values from an external text file

Copying DBParm syntax from the Preview tab

The easiest way to specify database parameters in a PocketBuilder application
script is to copy the PowerScript DBParm syntax from the Preview tab in the
Database Profile Setup dialog box into your script, modifying the default
Transaction object name (SQLCA) if necessary.

As you set database parameters in the Database Profile Setup dialog box in the
development environment, PocketBuilder generates the correct connection
syntax on the Preview tab. Therefore, copying the syntax directly from the
Preview tab ensures that you use the correct PowerScript DBParm syntax in
your script.

❖ To copy DBParm syntax from the Preview tab into your script:

1 On one or more tab pages in the Database Profile Setup dialog box for your
connection, supply values for any database parameters you want to set.

2 Click Apply to save your changes to the current tab without closing the
Database Profile Setup dialog box.

CHAPTER 18 Setting Additional Connection Parameters

Resource Guide 289

3 Click the Preview tab.

The correct PowerScript DBParm syntax for each selected option displays
in the Database Connection Syntax box.

4 Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PocketBuilder copies the selected text to the clipboard.

5 Click OK to close the Database Profile Setup dialog box.

6 Paste the selected text from the Preview tab into your script, modifying the
default Transaction object name (SQLCA) if necessary.

Coding PowerScript to set values for the DBParm property

Another way to specify connection parameters in a script is by coding
PowerScript to assign values to properties of the Transaction object. As
explained in Chapter 16, “Using Transaction Objects,” PocketBuilder uses a
special nonvisual object called a Transaction object to communicate with the
database. The default Transaction object is named SQLCA, which stands for
SQL Communications Area.

SQLCA has 15 properties, 10 of which are used to connect to your database.
One of the 10 connection properties is DBParm. DBParm contains
DBMS-specific parameters that let your application take advantage of various
features supported by the database interface.

❖ To set values for the DBParm property in a PocketBuilder script:

1 Open the application script in which you want to specify connection
parameters.

2 Use the following PowerScript syntax to specify DBParm parameters.
Make sure you separate the DBParm parameters with commas, and
enclose the entire DBParm string in double quotes.

SQLCA.dbParm = "parameter_1, parameter_2, parameter_n"

For example, the following statement in a script sets the DBParm property
for an ODBC data source named Sales. In this example, the DBParm
property consists of two parameters: ConnectString and Async.

SQLCA.dbParm="ConnectString='DSN=Sales;UID=PB;
PWD=xyz',Async=1"

3 Compile the script to save your changes.

Setting database preferences

290 PocketBuilder

Reading DBParm values from an external text file

As an alternative to setting the DBParm property in a PocketBuilder
application script, you can use the PowerScript ProfileString function to read
DBParm values from a specified section of an external text file, such as an
application-specific initialization file.

❖ To read DBParm values from an external text file:

1 Open the application script in which you want to specify connection
parameters.

2 Use the following PowerScript syntax to specify the ProfileString function
with the SQLCA.DBParm property:

SQLCA.dbParm = ProfileString (file, section, key,
default)

For example, the following statement in a PocketBuilder script reads the
DBParm values from the [Database] section of the APP.INI file:

SQLCA.dbParm=ProfileString("APP.INI","Database",
"dbParm","")

3 Compile the script to save your changes.

Setting database preferences
The way you set connection-related database preferences in PocketBuilder
varies. AutoCommit and Lock are the only database preferences that you can
set in a PocketBuilder application script, and the only database preferences that
you set in the Database Profile Setup dialog box for your connection. All other
database preferences can be set only in the Database Preferences dialog box.

The following sections give the steps for setting database preferences in the
development environment and (for AutoCommit and Lock) in a PocketBuilder
application script.

For information about using a specific database preference, see the chapter on
database preferences in the PocketBuilder Connection Reference.

CHAPTER 18 Setting Additional Connection Parameters

Resource Guide 291

Setting database preferences in the development environment
There are two ways to set database preferences in the PocketBuilder
development environment on all supported development platforms, depending
on the preference you want to set:

• Set AutoCommit and Lock (Isolation Level) in the Database Profile Setup
dialog box for your connection

• Set all other database preferences in the Database Preferences dialog box
in the Database painter

Setting AutoCommit and Lock in the database profile

The AutoCommit and Lock (Isolation Level) preferences are properties of the
default Transaction object, SQLCA. For AutoCommit and Lock to take effect
in the PocketBuilder development environment, you must specify them before
you connect to a database. Changes made to these preferences after the
connection occurs have no effect on the current connection.

To set AutoCommit and Lock before PocketBuilder connects to your database,
you specify their values in the Database Profile Setup dialog box for your
connection.

❖ To set AutoCommit and Lock (Isolation Level) in a database profile:

1 Display the Database Profiles dialog box.

2 Click the plus sign (+) to the left of the interface you are using, or
double-click the interface name.

The list expands to display the database profiles defined for your interface.

3 Select the name of the profile you want and click Edit.

The Database Profile Setup dialog box for the selected profile displays.

4 On the Connection tab page, supply values for one or both of the
following:

• Isolation Level Select the isolation level you want to use for this
connection from the Isolation Level drop-down list. (The Isolation
Level drop-down list contains valid lock values for your interface.)

• AutoCommit Mode The setting of AutoCommit controls whether
PocketBuilder issues SQL statements outside (True) or inside (False)
the scope of a transaction. Select the AutoCommit Mode check box to
set AutoCommit to True or clear the AutoCommit Mode check box
(the default) to set AutoCommit to False.

Setting database preferences

292 PocketBuilder

Figure 18-1: Connection page showing Isolation Level settings

5 (Optional) Click the Preview tab if you want to see the PowerScript
connection syntax generated for Lock and AutoCommit.

PocketBuilder generates correct PowerScript connection syntax for each
option you set in the Database Profile Setup dialog box. You can copy this
syntax directly into a PocketBuilder application script.

For instructions, see “Copying DBParm syntax from the Preview tab” on
page 288.

6 Click OK to close the Database Profile Setup dialog box.

PocketBuilder saves your settings in the database profile entry in the
registry.

Setting preferences in the Database Preferences dialog box

To set the following connection-related database preferences, complete the
Database Preferences dialog box in the PocketBuilder Database painter:

• Shared Database Profiles

• Connect to Default Profile

• Read Only

CHAPTER 18 Setting Additional Connection Parameters

Resource Guide 293

• Keep Connection Open

• Use Extended Attributes

• SQL Terminator Character

Other database preferences
The Database Preferences dialog box also lets you set other database
preferences that affect the behavior of the Database painter itself. For
information about the other preferences you can set in the Database
Preferences dialog box, see the User’s Guide.

❖ To set connection-related preferences in the Database Preferences
dialog box:

1 Open the Database painter.

2 Select Design>Options from the menu bar.

The Database Preferences dialog box displays. If necessary, click the
General tab to display the General property page.

3 Specify values for one or more of the connection-related database
preferences in the following table.

Setting database preferences

294 PocketBuilder

Table 18-1: Connection-related database preferences

Preference Description For details, see

Shared Database
Profiles

Specifies the path name of the file
containing the database profiles you
want to share. You can type the path
name or click Browse to display it.

“Sharing database
profiles” on page 191
and the Shared
Database Profiles
database preference in
the PocketBuilder
Connection Reference

Connect to
Default Profile

Controls whether the Database painter
establishes a connection to a database
using a default profile when the painter
is invoked. If not selected, the
Database painter opens without
establishing a connection to a database.

The Connect to
Default Profile
database preference in
the PocketBuilder
Connection Reference

Read Only Specifies whether PocketBuilder
should update the extended attribute
system tables and any other tables in
your database. Select or clear the Read
Only check box as follows:

• Select the check box Does not
update the extended attribute
system tables or any other tables in
your database. You cannot modify
(update) information in the
extended attribute system tables or
any other database tables from the
DataWindow painter when the Read
Only check box is selected.

• Clear the check box (Default)
Updates the extended attribute
system tables and any other tables in
your database.

The Read Only
database preference in
the PocketBuilder
Connection Reference

CHAPTER 18 Setting Additional Connection Parameters

Resource Guide 295

Keep Connection
Open

When you connect to a database in
PocketBuilder without using a
database profile, specifies when
PocketBuilder closes the connection.
Select or clear the Keep Connection
Open check box as follows:

• Select the check box (Default)
Stays connected to the database
throughout your session and closes
the connection when you exit.

• Clear the check box Opens the
connection only when a painter
requests it and closes the connection
when you close a painter or finish
compiling a script.

Not used with profile
This preference has no effect when you
connect using a database profile.

The Keep Connection
Open database
preference in the
PocketBuilder
Connection Reference

Use Extended
Attributes

Specifies whether PocketBuilder
should create and use the extended
attribute system tables. Select or clear
the Use Extended Attributes check box
as follows:

• Select the check box (Default)
Creates and uses the extended
attribute system tables.

• Clear the check box Does not
create the extended attribute system
tables.

The Use Extended
Attributes database
preference in the
PocketBuilder
Connection Reference

SQL Terminator
Character

Specifies the SQL statement terminator
character used in the ISQL view in the
Database painter in PocketBuilder.

The default terminator character is a
semicolon (;). If you are creating stored
procedures and triggers in the ISQL
view of the database painter, change
the terminator character to one that you
do not expect to use in the stored
procedure or trigger syntax for your
DBMS. A good choice is the
backquote (`) character.

The SQL Terminator
Character database
preference in the
PocketBuilder
Connection Reference

Preference Description For details, see

Setting database preferences

296 PocketBuilder

4 Do one of the following:

• Click Apply to apply the preference settings to the current connection
without closing the Database Preferences dialog box

• Click OK to apply the preference settings to the current connection
and close the Database Preferences dialog box

PocketBuilder saves your preference settings in the database section of
PK.INI.

Setting AutoCommit and Lock in a PocketBuilder application script
If you are developing a PocketBuilder application that connects to a database,
you must specify the required connection parameters in the appropriate script
as properties of the default Transaction object (SQLCA) or a Transaction
object that you create. For example, you might specify connection parameters
in the script that opens the application.

AutoCommit and Lock are properties of SQLCA. As such, they are the only
database preferences that you can set in a PocketBuilder script. You can do this
by:

• (Recommended) Copying PowerScript syntax for AutoCommit and Lock
from the Preview tab in the Database Profile Setup dialog box into your
script

• Coding PowerScript to set values for the AutoCommit and Lock properties
of the Transaction object

• Reading AutoCommit and Lock values from an external text file

For more about using Transaction objects to communicate with a database in a
PocketBuilder application, see Chapter 16, “Using Transaction Objects.”

Copying AutoCommit and Lock syntax from the Preview tab

The easiest way to specify AutoCommit and Lock in a PocketBuilder
application script is to copy the PowerScript syntax from the Preview tab in the
Database Profile Setup dialog box into your script, modifying the default
Transaction object name (SQLCA) if necessary.

CHAPTER 18 Setting Additional Connection Parameters

Resource Guide 297

As you complete the Database Profile Setup dialog box in the development
environment, PocketBuilder generates the correct connection syntax on the
Preview tab for each selected option. Therefore, copying the syntax directly
from the Preview tab ensures that you use the correct PowerScript syntax in
your script.

❖ To copy AutoCommit and Lock syntax from the Preview tab into your
script:

1 On the Connection tab in the Database Profile Setup dialog box for your
connection, supply values for AutoCommit and Lock (Isolation Level) as
required.

For instructions, see “Setting AutoCommit and Lock in the database
profile” on page 291.

2 Click Apply to save your changes to the current tab without closing the
Database Profile Setup dialog box.

3 Click the Preview tab.

The correct PowerScript syntax for each selected option displays in the
Database Connection Syntax box.

4 Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PocketBuilder copies the selected text to the clipboard.

5 Click OK to close the Database Profile Setup dialog box.

6 Paste the selected text from the Preview tab into your script, modifying the
default Transaction object name (SQLCA) if necessary.

Coding PowerScript to set values for AutoCommit and Lock

Another way to specify the AutoCommit and Lock properties in a script is by
coding PowerScript to assign values to the AutoCommit and Lock properties
of the Transaction object.

❖ To set the AutoCommit and Lock properties in a PocketBuilder script:

1 Open the application script in which you want to set connection properties.

For instructions, see the User’s Guide.

Setting database preferences

298 PocketBuilder

2 Use the following PowerScript syntax to set the AutoCommit and Lock
properties. (This syntax assumes you are using the default Transaction
object SQLCA, but you can also define your own Transaction object.)

SQLCA.AutoCommit = value

SQLCA.Lock = "value"

For more information, see AutoCommit or Lock in the online Help.

3 Compile the script to save your changes.

For instructions, see the User’s Guide.

Reading AutoCommit and Lock values from an external text file

As an alternative to setting the AutoCommit and Lock properties in a
PocketBuilder application script, you can use the PowerScript ProfileString
function to read the AutoCommit and Lock values from a specified section of
an external text file, such as an application-specific initialization file.

❖ To read AutoCommit and Lock values from an external text file:

1 Open the application script in which you want to set connection properties.

For instructions, see the User’s Guide.

2 Use the following PowerScript syntax to specify the ProfileString function
with the SQLCA.Lock property:

SQLCA.Lock = ProfileString (file, section, key, default)

The AutoCommit property is a boolean, so you need to convert the string
returned by ProfileString to a boolean. For example, the following
statements in a PocketBuilder script read the AutoCommit and Lock
values from the [Database] section of the APP.INI file:

string ls_string
ls_string = Upper(ProfileString("APP.INI", &

"Database", "Autocommit",""))
if ls_string = "TRUE" then

SQLCA.Autocommit = TRUE
else

SQLCA.Autocommit = FALSE
end if
SQLCA.Lock=ProfileString("APP.INI","Database",

"Lock","")

3 Compile the script to save your changes.

CHAPTER 18 Setting Additional Connection Parameters

Resource Guide 299

Getting values from the registry

If the AutoCommit and Lock values are stored in an application settings key in
the registry, use the RegistryGet function to obtain them. For example:

string ls_string
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp", &

"Autocommit", RegString!, ls_string)
if Upper(ls_string) = "TRUE" then

SQLCA.Autocommit = TRUE
else

SQLCA.Autocommit = FALSE
end if
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp", &

"Lock", RegString!, ls_string)

Setting database preferences

300 PocketBuilder

P A R T 5 Miscellaneous Techniques

This part describes how to handle external functions, work
with the Message object, and interact with the Windows
registry. It also describes command-line arguments you
can use with the PocketBuilder executable file.

Resource Guide 303

C H A P T E R 1 9 Working with Unicode

About this chapter PocketBuilder uses the Unicode character set. This chapter describes how
PocketBuilder handles Unicode and ANSI file formats.

Contents

Working with Unicode in PocketBuilder
PocketBuilder supports the Unicode standard, a universal character set
that encodes the characters of over 650 of the world's languages. Using a
single character set to encode data in multiple languages allows you to
create a single multilingual application that can process data in different
languages rather than creating multiple monolingual applications.

Every application development tool encodes text in a particular character
set. PocketBuilder uses Unicode UTF-16, a two-byte encoding format.
Therefore, any text you enter while developing your application is in
Unicode.

Working with ANSI and Unicode files outside PocketBuilder
In WordPad, you can open and save files as ANSI or Unicode. In TextPad,
you can open and save files as ANSI or Unicode, and you can determine
whether an open file is ANSI or Unicode by viewing its properties.

This section describes how PocketBuilder handles Unicode in several
areas of the product. The next two sections, “Importing and exporting
DataWindow data” on page 305 and “Reading and writing text or binary
files” on page 306, describe how you use these techniques with particular
reference to Unicode.

Topic Page

Working with Unicode in PocketBuilder 303

Importing and exporting DataWindow data 305

Reading and writing text or binary files 306

Working with Unicode in PocketBuilder

304 PocketBuilder

Fonts Some fonts do not display Unicode characters correctly or do not work
appropriately on all platforms, and the number of fonts available on Pocket PC
devices is limited. To ensure consistent display on all platforms, PocketBuilder
uses Tahoma as its default font.

External function calls If you call external functions in your application, the functions must be defined
and compiled with Unicode support. All strings must be passed as Unicode
strings. You can call Windows CE API functions. For more information, see
“Using external functions” on page 309.

Converting
applications in
PocketBuilder

You can convert a PocketBuilder application to a PowerBuilder application and
vice versa. You must use PocketBuilder to perform both conversions. If you
convert a PocketBuilder application to PowerBuilder 10 or higher, you must
select the Create Unicode Libraries check box in the Export Pocket to Desktop
conversion tool. If you convert the PocketBuilder application to
PowerBuilder 9, you must clear the Create Unicode Libraries check box.
Unicode characters that are not supported in ANSI environments, however,
cannot be converted correctly for PowerBuilder 9 applications.

For more information about the conversion tools, see the User’s Guide.

Importing and
exporting files

PocketBuilder allows you to import both ANSI and Unicode files in the System
Tree and Library painter, although you cannot import ANSI files at runtime on
a handheld device. Exported source (.sr*) files are always in Unicode format.
To convert from ANSI to Unicode and from Unicode to ANSI in
PocketBuilder, use the FromANSI and ToANSI functions.

PocketBuilder
resource files

PocketBuilder resource (.pkr) files can be in either Unicode or ANSI file
format.

Target and Workspace
files

Target (.pkt) and workspace (.pkw) files are saved in ANSI format.

Script view and file
editor

The Script view and the file editor accept both Unicode and ANSI file formats.
New text files are saved in the Unicode file format.

Writing to initialization
files with
SetProfileString

On the desktop, the SetProfileString function writes to the text file in the format,
either ANSI or Unicode, in which it was opened. On a handheld device, the
SetProfileString function writes to the text file in Unicode only. To write
Unicode characters to an initialization file, open and save the file as Unicode
before calling SetProfileString. The ProfileInt and ProfileString functions also
require references to valid Unicode files.

CHAPTER 19 Working with Unicode

Resource Guide 305

Unicode two-byte flag Unicode files often have two extra bytes at the start of the file to indicate that
they use Unicode byte ordering. On the desktop, PocketBuilder does not
require that these two bytes be present in Unicode files. It determines whether
the file uses Unicode byte ordering using other methods. However,
PocketBuilder applications deployed to a handheld device do require the
Unicode byte order mark (BOM) at the beginning of the file.

PocketBuilder also does not always add the two-byte flag to the beginning of
files saved with Unicode encoding. A Unicode file that you create in a
PocketBuilder application with the FileOpen command does not contain the
Unicode byte order mark (BOM) at the beginning of the file when you set the
filemode argument to StreamMode!. To include the BOM in a file that you open
in stream mode, you can do one of the following:

• Create the file by calling FileOpen in line mode, add an innocuous
character, such as a single space, then close the file and reopen it in stream
mode using the Append! value for the writemode argument.

• Call FileWrite or FileWriteEx and pass the 2 byte binary blob “Char(65279)”
before the rest of the string that you want to write to the file in stream
mode.

SQL Anywhere and
Unicode

The SQL Anywhere ODBC driver supports either ASCII (8-bit) strings or
Unicode code (wide character) strings. The UNICODE macro controls whether
ODBC functions expect ASCII or Unicode strings. If your application must be
built with the UNICODE macro defined, but you want to use the ASCII ODBC
functions, then the SQL_NOUNICODEMAP macro must also be defined. For
more information, see the SQL Anywhere documentation.

Importing and exporting DataWindow data

PowerBuilder 9 formats not supported
In PowerBuilder 9, ImportFile was enhanced to support CSV and XML, and
SaveAs was enhanced to support PDF, XML, and XSL-FO. Except for CSV,
these formats are not supported in PocketBuilder.

You can use the ImportFile function to import data into a DataWindow control
from a tab-delimited text (.txt) file or a comma-separated values (.csv) file.

Reading and writing text or binary files

306 PocketBuilder

Table 19-1: Formats for ImportFile

You use the SaveAs function to save the contents of a DataWindow control to
one of several file formats. The following table summarizes whether the file
formats differ—specifically how character strings are handled and whether
they are saved in ANSI or Unicode format.

Table 19-2: Formats for SaveAs

Reading and writing text or binary files
You use PowerScript text file functions to read and write text in line mode or
stream mode, or to read and write binary files in stream mode.

The FileOpen function can open Unicode and ANSI files. If the file does not
exist, FileOpen creates a Unicode file. The FileClose function saves the file in
the format in which it was opened.

• In line mode, the FileRead, FileReadEx, FileWrite, and FileWriteEx
functions can read and write to Unicode files.

You can read a file a line at a time until either a carriage return or line feed
(CR/LF) or the end-of-file (EOF) is encountered. When writing to the file
after the specified string is written, PowerScript appends a CR/LF.

File type File format to be imported

.txt On the desktop, both ANSI and Unicode files can be imported in
PocketBuilder, but only Unicode files can be imported on a deployment
device. Unicode files cannot be imported into PowerBuilder 9, but can
be imported into PowerBuilder 10 and higher.

.csv Files created using either PowerBuilder or PocketBuilder can be
imported into both versions.

File type Format of saved file

CSV! Comma-separated values saved as Unicode
strings

DIF!, Excel!, Excel5!, WKS! Character strings saved as ANSI strings

HTMLTable! HTML syntax saved as Unicode strings

SQLInsert! SQL syntax and data values saved as Unicode
strings

Text! Text saved as Unicode strings

CHAPTER 19 Working with Unicode

Resource Guide 307

• In stream mode, the FileRead, FileReadEx, FileWrite, and FileWriteEx
functions can read and write to Unicode and ANSI files. FileOpen and the
file read and write functions assume that any file is a binary file. FileOpen
opens the file as a binary file; FileWrite and FileWriteEx writes to it as a
binary file.

You can read the entire contents of the file, including any CR/LFs. When
writing to the file, you must write out the specified string (but not append
a CR/LF).

The format in which FileWrite and FileWriteEx append data to a file depends
on the format of the data, not the format of the file. If you append a string
entered in PocketBuilder to an ANSI file, it is written as a Unicode
character string. If you are reading from or writing to ANSI files in stream
mode, use the FromANSI and ToANSI functions to convert ANSI blobs to
Unicode character strings, or Unicode characters to ANSI blobs.

This code opens an ANSI file in stream mode, reads the data into a blob,
then converts the blob into a Unicode string:

long ll_fnum
integer li_bytes
string ls_unicode
blob lb_ansi

ll_fnum = FileOpen("employee.dat",StreamMode!,
Read!, LockWrite!, Replace!)

li_bytes = FileRead(ll_fnum, lb_ansi)
ls_unicode = FromANSI(lb_ansi)
FileClose(ll_fnum)

This code converts a Unicode character string into an ANSI blob, opens an
ANSI file in stream mode, and writes the blob to the file:

lb_ansi = ToANSI(ls_unicode)
ll_fnum = FileOpen("employee.dat",StreamMode!,

Write!, LockWrite!, Replace!)

li_bytes = FileWrite(ll_fnum, lb_ansi)
FileClose(ll_fnum)

If the file is in Unicode format and has the two-byte flag, use the Mid
function to skip the leading bytes when the file is opened in stream mode:

bytes = fileread(ll_fnum, ls_unicode)
ls_string = Mid(ls_unicode, 2)

Reading and writing text or binary files

308 PocketBuilder

Reading a file into a MultiLineEdit
You can use stream mode to read an entire file into a MultiLineEdit, and then
write it out after it has been modified.

Understanding the
position pointer

When PocketBuilder opens a file, it assigns the file a unique integer and sets
the position pointer for the file to the position you specify (the beginning or end
of the file). You use the integer to identify the file when you want to read the
file, write to it, or close it. The position pointer defines where the next read or
write will begin. PocketBuilder advances the pointer automatically after each
read or write.

You can also set the position pointer with the FileSeek function.

File functions Table 19-3 lists the built-in PowerScript functions that manipulate files.

Table 19-3: PowerScript functions that manipulate files

Function
Datatype
returned Action

FileClose Integer Closes the specified file

FileDelete Boolean Deletes the specified file

FileExists Boolean Determines whether the specified file exists

FileLength Long Obtains the length of the specified file

FileOpen Integer Opens the specified file

FileRead and
FileReadEx

Integer Read from the specified file

FileSeek Long Seeks to a position in the specified file

FileWrite and
FileWriteEx

Integer Write to the specified file

Resource Guide 309

C H A P T E R 2 0 Using External Functions and
Other Processing Extensions

About this chapter This chapter describes how to use external functions and other processing
extensions in PocketBuilder.

Contents

Using external functions
External functions are functions that are written in languages other than
PowerScript and stored in dynamic link libraries (DLLs).

You can use external functions written in any language that supports the
standard calling sequence for Windows CE platforms.

If you are calling functions in libraries that you have written yourself,
remember that you need to export the functions. Depending on your
compiler, you can do this in the function prototype or in a linker definition
(DEF) file.

Declaring external functions
Before you can use an external function in a script, you must declare it.

Topic Page

Using external functions 309

Sending Windows messages 317

Using utility functions to manage information 319

The Message object 320

Using external functions

310 PocketBuilder

Two types You can declare two types of external functions:

• Global external functions, which are available anywhere in the
application

• Local external functions, which are defined for a particular type of
window, menu, user object, or user-defined function

These functions are part of the object’s definition and can always be used
in scripts for the object itself. You can also choose to make these functions
accessible to other scripts as well.

Datatypes for external
function arguments

When you declare an external function, the datatypes of the arguments must
correspond with the datatypes as declared in the function’s source definition.

For a comparison of datatypes in external functions and in PocketBuilder, see
the section on declaring and calling external functions in the PowerScript
Reference.

❖ To declare an external function:

1 If you are declaring a local external function, open the object for which
you want to declare it.

2 In the Script view, select Declare in the first drop-down list and either
Global External Functions or Local External Functions from the second
list.

3 Enter the function declaration in the Script view.

For the syntax to use, see the PowerScript Reference or the examples
below.

4 Save the object.

PocketBuilder compiles the declaration. If there are syntax errors, an error
window opens, and you must correct the errors before PocketBuilder can
save the declaration.

Sample declarations
Suppose you have created a C dynamic library, SIMPLE.DLL, that contains a
function called SimpleFunc that accepts two parameters: a character string and
a structure. The following statement declares the function in PocketBuilder,
passing the arguments by reference:

FUNCTION int SimpleFunc(REF string lastname, &
REF my_str pbstr) LIBRARY "simple.dll"

CHAPTER 20 Using External Functions and Other Processing Extensions

Resource Guide 311

Declaring Windows
CE functions

The Windows CE API includes a subset of the functions in the Windows API.
The Windows CE API libraries have different names. The following examples
show sample declarations for functions in the Windows CE library coredll.dll.

On the desktop, these functions are in the Windows library user32.dll. To test
the function call on the desktop, substitute the desktop equivalent, shown in
comment lines after each call, for the Windows CE version.

FUNCTION ulong CreateWindowEx(ulong dwExStyle, &
readonly string ClassName, &
readonly string WindowName, &
long dwStyle, &
long xPos, long yPos, long wwidth, long wheight, &
ulong hwndParent, ulong hMenu, ulong hInstance, &
ulong lParams) &
library "Coredll.dll" alias for "CreateWindowExW"

// library "user32.dll" alias for "CreateWindowExW"

FUNCTION ulong BringWindowToTop(ulong hwnd) &
library "Coredll.dll"

//FUNCTION ulong BringWindowToTop(ulong hwnd) &
// library "user32.dll"

FUNCTION ulong SendMessageStr(ulong hwnd, &
ulong wMsg, ulong wParam, &
readonly string lParam) &
library "Coredll.dll" alias for "SendMessageW"

// library "user32.dll" alias for "SendMessageW"

FUNCTION ulong SendMessageLong(ulong hwnd, &
ulong wMsg, ulong wParam, &
ulong lParam) &
library "Coredll.dll" alias for "SendMessageW"

// library "user32.dll" alias for "SendMessageW"

FUNCTION ulong SendMessagePtr(ulong hwnd, &
ulong wMsg, ulong wParam, &
REF ulong lParam[]) &
library "Coredll.dll" alias for "SendMessageW"

// library "user32.dll" alias for "SendMessageW"

FUNCTION ulong SetWindowPos(ulong hwnd, ulong
hwndAfter, &

ulong xPos, ulong yPos, ulong cX, ulong cY, &
ulong wFlage) &
library "Coredll.dll"

// library "user32.dll"

Using external functions

312 PocketBuilder

The following statement declares the function that registers common controls
classes from the common control dynamic-link library commctrl.dll on
Windows CE:

FUNCTION ulong InitCommonControlsEx (ulong &
pInitCtrls[])library "commctrl.dll” // WinCE

This is the equivalent statement on the desktop:

FUNCTION ulong InitCommonControlsEx(REF ulong &
pInitCtrls[2]) library "comctl32.dll" // Win32

For a partial example that uses some of these declarations, see “Using external
functions in a script” on page 316.

You can find a sample application that uses Windows CE API functions in the
PocketBuilder project on the Sybase CodeXchange Web site at
http://pocketbuilder.codexchange.sybase.com.

For more information about coredll.dll, commctrl.dll, and other modules, see
the section on Windows CE modules in the Microsoft Windows CE 3.0 API
documentation at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcesdkr/html/wce30oriWindowsCE30APIReference.asp.

The following statement declares the function that loads and initializes the
Microsoft RichInk edit control:

FUNCTION ulong InitInkX_CE() &
library "inkx.dll" alias for "InitInkX"

For more information about using the RichInk edit control, see “Using Rich Ink
Technology in Microsoft Windows CE 3.0” in the MSDN library at
http://msdn2.microsoft.com/en-us/library/ms834457.aspx.

RAPI Remote API (RAPI) is a set of application programming interfaces that let
applications running on the desktop invoke functions directly on the Windows
CE based device. The set of functions is similar to the Windows CE API, with
functions for managing the registry, file system, and databases, and for
querying the system configuration. There are additional functions for
initializing the RAPI subsystem and enhancing performance.

The following example shows declarations of the CeCloseHandle and
CeCreateFile RAPI functions:

Function Boolean CeCloseHandle (Long hObject) Library
"rapi.dll"

CHAPTER 20 Using External Functions and Other Processing Extensions

Resource Guide 313

Function Long CeCreateFile (&
 String lpFileName, &
 uLong dwDesiredAccess, &
 uLong dwShareMode, &
 REF SECURITY_ATTRIBUTES lpSecurityAttributes, &
 Long dwCreationDistribution, &
 Long dwFlagsAndAttributes, &
 Long hTemplateFile) Library "rapi.dll"

For more information about RAPI, see the MSDN library at
http://msdn2.microsoft.com/en-us/library/aa182819.aspx.

For a sample using RAPI, see the Sybase CodeXchange Web site at
http://pockettbuilder.codexchange.sybase.com.

Passing arguments
In PocketBuilder, you can define external functions that expect arguments to
be passed by reference or by value. When you pass an argument by reference,
the external function receives a pointer to the argument and can change the
contents of the argument and return the changed contents to PocketBuilder.
When you pass the argument by value, the external function receives a copy of
the argument and can change the contents of the copy of the argument. The
changes affect only the local copy; the contents of the original argument are
unchanged.

The syntax for an argument that is passed by reference is:

REF datatype arg

The syntax for an argument that is passed by value is:

datatype arg

Passing numeric datatypes

The following statement declares the external function TEMP in PocketBuilder.
This function returns an integer and expects an integer argument to be passed
by reference:

FUNCTION int TEMP(ref int degree) LIBRARY
"LibName.DLL"

The same statement in C would be:

int _stdcall TEMP(int * degree)

Using external functions

314 PocketBuilder

Since the argument is passed by reference, the function can change the contents
of the argument, and changes made to the argument within the function will
directly affect the value of the original variable in PocketBuilder. For example,
the C statement *degree = 75 would change the argument named degree to
75 and return 75 to PocketBuilder.

The following statement declares the external function TEMP2 in
PocketBuilder. This function returns an integer and expects an integer
argument to be passed by value:

FUNCTION int TEMP2(int degree) LIBRARY "LibName.DLL"

The same statement in C would be:

int _stdcall TEMP2(int degree)

Since the argument is passed by value, the function can change the contents of
the argument. All changes are made to the local copy of the argument; the
variable in PocketBuilder is not affected.

Passing strings
Passing by value The following statement declares the external C function
NAME in PocketBuilder. This function expects a string argument to be passed
by value:

FUNCTION string NAME(string CODE) LIBRARY "LibName.DLL"

The same statement in C would point to a buffer containing the string:

char * _stdcall NAME(char * CODE)

Since the string is passed by value, the C function can change the contents of
its local copy of CODE, but the original variable in PocketBuilder is not
affected.

Passing by reference PocketBuilder has access only to its own memory.
Therefore, an external function cannot return a pointer to a string. (It cannot
return a memory address.)

When you pass a string to an external function, either by value or by reference,
PocketBuilder passes a pointer to the string. If you pass by value, any changes
the function makes to the string are not accessible to PocketBuilder. If you pass
by reference, they are.

CHAPTER 20 Using External Functions and Other Processing Extensions

Resource Guide 315

The following statement declares the external C function NAME2 in
PocketBuilder. This function returns a string and expects a string argument to
be passed by reference:

FUNCTION string NAME2(ref string CODE) &
LIBRARY "LibName.DLL"

In C, the statement would be the same as when the argument is passed by value,
shown above:

char * _stdcall NAME2(char * CODE)

The string argument is passed by reference, and the C function can change the
contents of the argument and the original variable in PocketBuilder. For
example, Strcpy(CODE,STUMP) would change the contents of CODE to
STUMP and change the variable in the calling PocketBuilder script to the
contents of variable STUMP.

If the function NAME2 in the preceding example takes a user ID and replaces it
with the user’s name, the PowerScript string variable CODE must be long
enough to hold the returned value. To ensure that this is true, declare the String
and then use the Space function to fill the String with blanks equal to the
maximum number of characters you expect the function to return.

If the maximum number of characters allowed for a user’s name is 40 and the
ID is always five characters, you would fill the string CODE with 35 blanks
before calling the external function:

String CODE
CODE = ID + Space(35)
. . .
NAME2(CODE)

For information about the Space function, see the PowerScript Reference.

Passing chars to C functions Char variables passed to external C functions
are converted to the C char type before passing. Arrays of char variables are
converted to the equivalent C array of char variables.

An array of string variables embedded in a structure produces an embedded
array in the C structure. This is different from an embedded string, which
results in an embedded pointer to a string in the C structure.

Recommendation
Whenever possible, pass string variables back to PocketBuilder as a return
value from the function.

Using external functions

316 PocketBuilder

Using external functions in a script
This section shows an example that uses some of the external function
declarations for Windows CE functions in “Sample declarations” on page 310.
The example displays a Date Time Picker control from the Microsoft common
controls library commctrl.dll. For more information about the constant values
and other parameters to the external functions, see the Microsoft
documentation.

// First set instance variables
// ulong g_hwndCal
// CONSTANT ulong ICC_DATE_CLASSES = 256 // 0x100
// CONSTANT ulong WS_BORDER = 8388608 // 0x0080 0000
// CONSTANT ulong WS_CHILD = 1073741824 // 0x4000 0000
// CONSTANT ulong WS_VISIBLE = 268435456 // 0x1000 0000
// CONSTANT ulong SWP_NOZORDER = 4
// CONSTANT long HWND_TOP = 0
// CONSTANT ulong MCM_GETMINREQRECT = 4105
// CONSTANT ulong MCM_SETCOLOR = 4106 // 0x100A
// CONSTANT ulong MCSC_MONTHBK = 4 // background

// of a month
// CONSTANT ulong COLOR_MONTH = 12648447 // 0xC0ffff

// (muted yellow)

// Specify the class of the date picker control
string ClassName = "SysDateTimePick32"

long lret
ulong sizeRect[]
ulong xPBUnits, yPBUnits

ulong HeightTitleBar = 0 // For PDA, set to 0

// Initialize the Common Controls DLL
ulong aInitCtrls[2]
aInitCtrls[1] = 8 // structure size
aInitCtrls[2] = ICC_DATE_CLASSES

lret = InitCommonControlsEx(aInitCtrls) // external
if lret = 0 then

return 0
end if

CHAPTER 20 Using External Functions and Other Processing Extensions

Resource Guide 317

// make the calendar control
g_hwndCal = CreateWindowEx(0, ClassName, "", &

WS_BORDER + WS_CHILD + WS_VISIBLE, &
0,0,0,0, &
Handle(this), 0, 0, 0)

// If really created, initialize the control
if g_hwndCal <> 0 then

// Set the calendar color
SendMessageLong(g_hwndCal, MCM_SETCOLOR, &

MCSC_MONTHBK, COLOR_MONTH)

// Set the size to what the control requests
sizeRect[1] = 0
sizeRect[2] = 0
sizeRect[3] = 0
sizeRect[4] = 0
// Get the minimum size required to display a
// full month in the control
SendMessagePtr(g_hwndCal, MCM_GETMINREQRECT, 0, &

sizeRect)

// set the calendar control size
SetWindowPos(g_hwndCal, HWND_TOP, 0, 0, &

sizeRect[3], sizeRect[4], SWP_NOZORDER)

// Set the PARENT window (this) to that size
this.width = PixelsToUnits(sizeRect[3],

XPixelsToUnits!)
this.height = PixelsToUnits

(sizeRect[4] + HeightTitleBar, YPixelsToUnits!)
end if

Sending Windows messages
To send Windows messages to a window that you created in PocketBuilder or
to an external window (such as a window you created using an external
function), use the Post or Send function. To trigger a PocketBuilder event, use
the EVENT syntax or the TriggerEvent or PostEvent function.

Sending Windows messages

318 PocketBuilder

Using Post and Send You usually use the Post and Send functions to trigger Windows events that are
not PocketBuilder-defined events. You can include these functions in a script
for the window in which the event will be triggered or in any script in the
application.

Post is asynchronous: the message is posted to the message queue for the
window or control. Send is synchronous: the window or control receives the
message immediately.

All events posted by PocketBuilder are processed by a queue separate from the
Windows system queue. PocketBuilder posted messages are processed before
Windows posted messages.

Obtaining the window’s handle
To obtain the handle of the window, use the Handle function. To combine two
integers to form the long value of the message, use the Long function. Handle
and Long are utility functions, described in “Using utility functions to manage
information” on page 319.

Triggering
PocketBuilder events

To trigger a PocketBuilder event, you can use the techniques that are listed in
Table 20-1.

Table 20-1: Triggering PocketBuilder events

All three methods bypass the messaging queue and are easier to code than the
Send and Post functions.

Example All three statements shown below click the CommandButton
cb_OK and are in scripts for the window that contains cb_OK.

The Send function uses the Handle utility function to obtain the handle of the
window that contains cb_OK, then uses the Long function to combine the
handle of cb_OK with 0 (BN_CLICK) to form a long that identifies the object
and the event:

Send(Handle(Parent),273,0,Long(Handle(cb_OK),0))
cb_OK.TriggerEvent(Clicked!)
cb_OK.EVENT Clicked()

Technique Description

TriggerEvent function A synchronous function that triggers the event
immediately in the window or control

PostEvent function An asynchronous function: the event is posted to the
event queue for the window or control

Event call syntax A method of calling events directly for a control using dot
notation

CHAPTER 20 Using External Functions and Other Processing Extensions

Resource Guide 319

The TriggerEvent function identifies the object in which the event will be
triggered and then uses the enumerated datatype Clicked! to specify the clicked
event.

The dot notation uses the EVENT keyword to trigger the Clicked event.
TRIGGER is the default when you call an event. If you were posting the clicked
event, you would use the POST keyword:

Cb_OK.EVENT POST Clicked()

Using utility functions to manage information
The utility functions provide a way to obtain and pass Windows information to
external functions and can be used as arguments in the PowerScript Send
function. There are four utility functions.

Utility functions Table 20-2: Utility functions

Example This script uses the external function CreateWindowEx to create a child window
that displays a calendar. The Handle function is used to pass the handle to the
parent window of the window being created:

// Instance variable: ulong g_hwndCal
g_hwndCal = CreateWindowEx(0, ClassName, "", &

WS_BORDER + WS_CHILD + WS_VISIBLE, &
0,0,0,0, &
Handle(this), 0, 0, 0)

Function Return value Purpose

Handle UnsignedInt Returns the handle to a specified object.

IntHigh UnsignedInt Returns the high word of the specified long value.

IntHigh is used to decode Windows values returned by
external functions or the LongParm attribute of the
Message object.

IntLow UnsignedInt Returns the low word of the specified long value.

IntLow is used to decode Windows values returned by
external functions or the LongParm attribute of the
Message object.

Long Long Combines the low word and high word into a long.

The Long function is used to pass values to external
functions.

The Message object

320 PocketBuilder

The Message object
The Message object is a predefined PocketBuilder global object (like the
default Transaction object SQLCA and the Error object) that is used in scripts
to process Microsoft Windows events that are not PocketBuilder-defined
events.

When a Microsoft Windows event occurs that is not a PocketBuilder-defined
event, PocketBuilder populates the Message object with information about the
event.

Other uses of the
Message object

The Message object is also used:

• To communicate parameters between windows when you open and close
them

For more information, see the descriptions of OpenWithParm,
OpenSheetWithParm, and CloseWithReturn in the online Help.

• To pass information to an event if optional parameters were used in
TriggerEvent or PostEvent

For more information, see the online Help.

Customizing the
Message object

You can customize the global Message object used in your application by
defining a standard class user object inherited from the built-in Message object.
In the user object, you can add additional properties (instance variables) and
functions. You then populate the user-defined properties and call the functions
as needed in your application.

For more information about defining standard class user objects, see the User’s
Guide.

Message object properties
Table 20-3 lists the properties of the Message object and the datatype and uses
of each. The first four properties of the Message object correspond to the first
four properties of the Microsoft Windows message structure.

Table 20-3: Message object properties

Property Datatype Use

Handle Integer The handle of the window or control.

Number Integer The number that identifies the event (this
number comes from Windows).

CHAPTER 20 Using External Functions and Other Processing Extensions

Resource Guide 321

Use the values in the Message object in the event script that caused the
Message object to be populated. For example, suppose the FileExists event
contains the following script. OpenWithParm displays a response window that
asks the user if it is OK to overwrite the file. The return value from FileExists
determines whether the file is saved:

OpenWithParm(w_question, &
"The specified file already exists. " + &
"Do you want to overwrite it?")

IF Message.StringParm = "Yes" THEN
RETURN 0 // File is saved

ELSE
RETURN -1 // Saving is canceled

END IF

When processing messages, Windows CE supports both system-defined
messages and application-defined messages. Windows CE does not support
hooking messages. For information on Microsoft message types, see the MSDN
library at http://msdn2.microsoft.com/en-us/library/aa452701.aspx.

WordParm UnsignedInt The word parameter for the event (this
parameter comes from Windows). The
parameter’s value and meaning are determined
by the event.

LongParm Long The long parameter for the event (this number
comes from Windows). The parameter’s value
and meaning are determined by the event.

DoubleParm Double A numeric or numeric variable.

StringParm String A string or string variable.

PowerObjectParm PowerObject Any PocketBuilder object type, including
structures.

Processed Boolean A boolean value set in the script for the
user-defined event:

• true – the script processed the event. Do not
call the default window Proc
(DefWindowProc) after the event has been
processed.

• false (default) – call DefWindowProc after
the event has been processed.

ReturnValue Long The value you want returned to Windows when
Message.Processed is true.

When Message.Processed is false, this attribute
is ignored.

Property Datatype Use

The Message object

322 PocketBuilder

Resource Guide 323

C H A P T E R 2 1 Managing Initialization Files and
the Windows CE Registry

About this chapter This chapter describes how to manage preferences and default settings for
PocketBuilder applications.

Contents

About preferences and default settings
Many applications store user preferences and default settings across
sessions. For example, applications can keep track of settings that control
the appearance and behavior of the application, or store default parameters
for connecting to the database. PocketBuilder applications can manage
this kind of information in initialization files or in the Windows CE
registry.

Database connection
parameters

You might need to set the values of the Transaction object from an external
file. For example, you might want to retrieve values from your
PocketBuilder initialization file when you are developing the application,
or from an application-specific initialization file when you distribute the
application.

For information about database connection parameters in an initialization
file, see “Reading values from an external file” on page 238.

For an example of how to save and restore database connection
parameters in the Windows CE registry, see “Managing information in the
Windows CE registry” on page 325.

Topic Page

About preferences and default settings 323

Managing information in initialization files 324

Managing information in the Windows CE registry 325

Managing information in initialization files

324 PocketBuilder

Custom Today item
parameters

When you deploy a PocketBuilder application, you can add a custom Today
item to the Pocket PC Today screen. Information about the custom Today item
is entered in the Windows CE registry. You can also remove Windows CE
registry information about custom Today items from the PocketBuilder IDE.

For information about custom Today items, see the chapter on “Working with
PowerScript Targets” in the User’s Guide.

Other settings you
might want to save

In addition to the database connection custom Today item parameters, you
might want to store a variety of other application-specific settings, such as user
preferences for colors, fonts, and other display settings.

Managing information in initialization files
Functions for
accessing initialization
files

PocketBuilder provides several functions you can use to manage application
settings in initialization files.

Table 21-1: PocketBuilder initialization file functions

For complete information about these functions, see the online Help.

The format of APP.INI The examples below manage application information in a profile file called
APP.INI. This file keeps track of user preferences that control the appearance
of the application. It has a Preferences section that stores four color settings:

[Preferences]
WindowColor=Silver
BorderColor=Red
BackColor=Black
TextColor=White

Reading values The following script retrieves color settings from the APP.INI file. Wincolor,
brdcolor, bckcolor, and txtcolor are string variables:

wincolor = ProfileString("app.ini", "Preferences", "WindowColor", "")
brdcolor = ProfileString("app.ini", "Preferences", "BorderColor", "")
bckcolor = ProfileString("app.ini", "Preferences", "BackColor", "")
txtcolor = ProfileString("app.ini", "Preferences", "TextColor", "")

Function Description

ProfileInt Obtains the integer value of a setting in a profile file

ProfileString Obtains the string value of a setting in a profile file

SetProfileString Writes a value in a profile file

CHAPTER 21 Managing Initialization Files and the Windows CE Registry

Resource Guide 325

Setting values The following script stores color settings in the APP.INI file:

SetProfileString("app.ini", "Preferences", "WindowColor", wincolor)
SetProfileString("app.ini", "Preferences", "BorderColor", brdcolor)
SetProfileString("app.ini", "Preferences", "BackColor", bckcolor)
SetProfileString("app.ini", "Preferences", "TextColor", txtcolor)

Managing information in the Windows CE registry
Functions for
accessing the
Registry

PocketBuilder provides several functions you can use to manage application
settings in the Windows CE registry.

Table 21-2: PocketBuilder registry setting functions

For complete information about these functions, see the online Help.

To explore and edit the Windows CE registry on a Pocket PC, you can
download the PHM Registry Editor at http://www.phm.lu/Products/PocketPC/.

Reading values from
the registry

The examples that follow use the registry to keep track of database connection
parameters. The connection parameters are maintained in the registry in the
MyCo\MyApp\database branch under HKEY_CURRENT_USER\Software.

The following script retrieves values for the default Transaction object from
the registry.

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbms", sqlca.DBMS)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"database", sqlca.database)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"userid", sqlca.userid)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbpass", sqlca.dbpass)

Function Description

RegistryDelete Deletes a key or a value in a key in the Windows registry.

RegistryGet Gets a value from the Windows registry.

RegistryKeys Obtains a list of the keys that are child items (subkeys) one level
below a key in the Windows registry.

RegistrySet Sets the value for a key and/or a value name in the Windows
registry. If the key or value name does not exist, RegistrySet
creates a new key or value name.

RegistryValues Obtains a list of named values associated with a key.

Managing information in the Windows CE registry

326 PocketBuilder

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logid", sqlca.logid)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logpass", sqlca.logpass)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
“servername", sqlca.servername)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbparm", sqlca.dbparm)

Setting values in the
registry

The following script stores the values for the Transaction object (set elsewhere
in the application) in the registry:

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbms", sqlca.DBMS)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"database", sqlca.database)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"userid", sqlca.userid)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbpass", sqlca.dbpass)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logid", sqlca.logid)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logpass", sqlca.logpass)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"servername", sqlca.servername)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbparm", sqlca.dbparm)

Resource Guide 327

C H A P T E R 2 2 Using the Command Line

About this chapter This chapter describes how to use command-line arguments to build
applications and start PocketBuilder.

Contents

Starting PocketBuilder from a command line
You can start the PocketBuilder executable from a command line to build
a workspace without opening the development environment, or to open
the development environment with a specific painter or object open. You
can also use the Windows Run dialog box to accomplish these tasks.

The general syntax is:

directory\pk20.exe {/workspace workspacepath} {deployoptions |
runoptions} {/output outputpath}

where directory is the fully qualified name of the directory containing
PocketBuilder.

Table 22-1: General command-line options for PocketBuilder

Topic Page

Starting PocketBuilder from a command line 327

Option Description

/W workspacepath Opens the workspace workspacepath. This option is
required for deployment. To open PocketBuilder, the
default is the most recently used workspace if you have
selected the Reopen Workspace on Startup check box in
the System Options dialog box. If you have not selected
this check box, you must specify the /W option before
specifying any other options.

deployoptions Options for deploying the workspace. See Table 22-2.

runoptions Options for opening the development environment. See
Table 22-3.

/OU outputpath Logs the contents of the Output window to outputpath.

Starting PocketBuilder from a command line

328 PocketBuilder

Short option names
The syntax statements in this chapter show the long form of option names. You
need only use the initial letter or letters of the option name as long as the option
is uniquely identified, as shown in Table 22-1.

Building workspaces
from a command line

The deploy options are deploy, fullbuild, and incrementalbuild. These options
must be used with the workspace option.

Table 22-2: Options for deploying a workspace

You need to create projects and specify build and deploy options for the
workspace in PocketBuilder before you start a build from the command line.
Deploy builds the projects in the target in the order listed on the Deploy page
of the target properties dialog box.

When you deploy or build a workspace from a command line, PocketBuilder
starts, completes the build, and exits as soon as the operation is completed. To
retain a log file for the session, you can send the contents of the Output window
to a file.

This example assumes that the location of the PocketBuilder executable file is
in your system path or in the directory from which you enter the command. It
opens the workspace called CDShop, builds and deploys the targets in the
workspace according to your specifications in the workspace and target
properties, records the content of the Output window in the file
D:\tmp\cdshop.out, and exits PocketBuilder:

pk20 /w D:\CDShop\CDShop.pkw /d /out D:\tmp\cdshop.out

Starting PocketBuilder
with command-line
arguments

When you start PocketBuilder from a command line, you can optionally open
a workspace, target, and/or painter. These are the painters and tools you can
open:

Application painter
Database painter
DataWindow painter
Debugger
File Editor
Function painter
Library painter

Option Description

/deploy Deploys the workspace and exits

/fullbuild Fully builds the workspace and exits

/incrementalbuild Incrementally builds the workspace and exits

CHAPTER 22 Using the Command Line

Resource Guide 329

Menu painter
Query painter
Structure painter
User Object painter
Window painter

You can also add options to the command line after /painter paintername to
open a specific object or create a new one:

{/target targetpath} {/painter paintername} {/library libraryname} {/object
objectname} {/inherit objectname} {/new} {/run} {/runonly} {/argument
arguments}

Table 22-3: Options for opening the development environment

Option Description

/T targetpath Opens the target in targetpath.

/P paintername Opens the painter paintername. The default is the window
that displays when you begin a new PocketBuilder session.

The painter name must uniquely identify the painter. You do
not have to enter the entire name. For example, you can
enter q to open the Query painter and datab to open the
Database painter. If you enter the full name, omit any spaces
in the name (enter UserObject, for example).

The painter name is not case sensitive. To open the file
editor, you could set paintername to FI or fileeditor.

Except for the /W, /T, and /L switches, switches must follow
/P paintername on the command line, as shown in the
examples after the table.

/L libraryname The library that contains the object you want to open.

/O objectname
(or /OBJ objectname)

The object, such as a DataWindow object or window, you
want to open.

/I objectname The object you want to inherit from.

/N Creates a new DataWindow object.

/R Runs the DataWindow object specified with /O and allows
designing.

/RO Runs the DataWindow object specified with /O but does not
allow designing.

/A arguments Arguments for the specified DataWindow object.

Starting PocketBuilder from a command line

330 PocketBuilder

Examples The following examples assume that the location of the PocketBuilder
executable file is in your system path.

This example starts a PocketBuilder session by opening a new window (a
window object is not specified) in the Window painter for the Client PKL in
the Math workspace. The output of the session is sent to a file called math.log.
The workspace file, the PKL, and the log file are all in the current directory:

pk20 /w Math.pkw /l Client.pkl /p window /out math.log

Enter this command to start PocketBuilder and open the DataWindow object
called d_emp_report in the workspace Emp.pkw:

pk20 /w D:\pkws\Emp.pkw /P dataw /O d_emp_report

Resource Guide 331

A
accessing databases

ODBC data sources 206
troubleshooting any connection 220

action codes 138
Adaptive Server Anywhere. See SQL Anywhere
AddColumn function 77
AddData function 103
adding items

to a list box 70, 71, 72
to a ListView 73

adding pictures to a ListView 74, 75
AddItem function 70, 71, 72, 74
AddLargePicture function 75
AddSeries function 103
AddSmallPicture function 75
AddStatePicture function 75, 76
aggregate relationships 10
ALIAS FOR keywords

about 247
coding 248

ancestor objects
about 27
calling functions and events 24

AncestorReturnValue variable 24
Application painter

changing default global variable types in 249
Variable Types property page 249

applications
calling database stored procedures 245
coding to use stored procedure user objects 250
connecting to databases from 296
reading Transaction object values from

external files 238
setting AutoCommit and Lock 298
setting database preferences 296
setting DBParm parameters 288, 290
storing preferences 323
tracing ODBC connections from 228

using DataWindow objects in 117
using Preview tab to copy connection

syntax 186, 288, 296
arguments, passing method 26
array management for tab pages 66
ASA. See SQL Anywhere
associative relationships 11
audience for this book xi
AutoCommit database preference

displayed on Preview tab 296
setting in database profiles 291
setting in script 296

AutoCommit Transaction object property
about 234
issuing COMMIT and ROLLBACK 236

autoinstantiated objects 11

B
basic procedures

importing and exporting database profiles 190
selecting a database profile to connect 188
setting database preferences 290
setting DBParm parameters 287
sharing database profiles 191
starting ODBC Driver Manager Trace 228
stopping Database Trace 223
stopping ODBC Driver Manager Trace 229

binary files, reading and writing 306
bitmaps, dynamically adding and removing 148
buffers

DataStore 162
DataWindow 129, 141

build, from command-line 328

C
case sensitivity, in initialization file 211

Index

Index

332 PocketBuilder

chars, passing to C functions 315
client synchronization 256
colons (scope operator) 23
columns

status in DataWindow controls 141
timestamp, in SQL Anywhere tables 208

command line
building from 328
starting from 328

COMMIT statement
about 236
and AutoCommit setting 236
and SetTransObject 124
automatically issued on disconnect 236, 241
error handling 244
for nondefault Transaction objects 242

communication with databases 122
compiling long scripts 40
Connect DB at Startup database preference 293
CONNECT statement

about 236
and SetTransObject 124
coding 239
error handling 244
for nondefault Transaction objects 242
USING TransactionObject clause 239

connect strings, ODBC
about 208
DSN (data source name) value 208

connecting to databases
about 187, 189
and Transaction object 239
by selecting a database profile 188
during application execution 296
troubleshooting any connection 220
using multiple databases 241

ConnectOption DBParm parameter 228
ConnectString DBParm parameter

about 208
DSN (data source name) value 208
in ODBC connections 208

consolidated databases 254
constants 21
controls

drag and drop 13
DropDownListBox 71

DropDownPictureListBox 71
ListBox 70
ListView 72, 74, 75, 77
on tab pages 60
PictureListBox 70
TreeView 78

conventions xiv
coredll.dll 312
create capability for Modify 148
Create method 149
creating nondefault Transaction objects 241
custom class user objects, typical uses 4
custom DataStore objects 160

D
data

adding in graph in windows 103
associating with graphs in windows 102
retrieving and updating 126
saving in graphs 108, 175
sharing 163
synchronizing 253
updating 127

data sources
external 128, 162
types 112

database connections, about 122
database errors 136
database interfaces

connecting to databases 188
creating database profiles 183
importing and exporting database profiles 190
sharing database profiles 191
troubleshooting 220

database preferences
AutoCommit 291, 296
Keep Connection Open 293
Lock 291, 296
Read Only 293
setting in Database Preferences dialog box 292
setting in database profiles 186, 291
setting in scripts 296
Shared Database Profiles 192, 293
SQL Terminator Character 293

Index

Resource Guide 333

Use Extended Attributes 293
using ProfileString function to read 298

Database Preferences button 192
Database Preferences dialog box 192, 292
Database Profile button 188
Database Profile Setup dialog box

AutoCommit Mode check box 291
character limit for DBParm strings 288
Generate Trace check box 223
Isolation Level box 291
ODBC Driver Manager Trace, stopping 230
Preview tab 186, 288, 296
Trace File box 229
Trace ODBC API Calls check box 229

database profiles
about 183
character limit for DBParm strings 288
connect string for ODBC data sources 208
creating 183
Database Profiles dialog box 184
DBMS value for ODBC data sources 208
exporting 190
importing 190
importing and exporting 190
ODBC Driver Manager Trace, stopping 230
selecting in Database Profiles dialog box 188
setting database preferences 186
setting DBParm parameters 186
setting Isolation Level and AutoCommit

Mode 291
shared 191
shared, maintaining 194
shared, saving in local initialization file 194
shared, selecting to connect 193
shared, setting up 192
suppressing password display 188

Database Profiles dialog box
about 184, 188
displaying shared profiles 193

Database section in initialization files 189, 224
Database Trace

about 220
deleting or clearing the log 225
log file contents 221
log file format 222

sample output 225
specifying a nondefault log file 224

Database Transaction object property 234
databases

accessing 206
calling stored procedures in applications 245
communicating with 122
connecting automatically 123
connecting to 239
connecting to multiple 241
connecting with database profiles 188
data source 112
disconnecting automatically 123
disconnecting from 240
profiles, connection properties in 234
retrieving, presenting, and manipulating

data 112, 126
snapshot connections 123
transaction management 124
updating 127

DataModified status 141
DataObject property of DataWindow controls 121
DataStore objects

about 111
accessing data 162
buffers 162
custom 160
importing data from external sources 162
methods 163
populating a TreeView 98
sharing data 163

datatypes, special timestamp for Transact-SQL 208
DataWindow controls

about 111, 113, 114, 118
accessing a specified item 133
accessing the current text 131
action codes 138
and graphs 174
assigning transaction objects to 149
associating with objects during execution 121
buffers 129, 141
column status 141
creating reports with 144
data management in 129
DataObject property 121
DBError event 137

Index

334 PocketBuilder

handling errors 136
importing data from external sources 128
ItemChanged event 132
ItemError event 132
methods 134
names 118
naming in code 119
placing in windows 119
processing entries 130
row status 141
updating, use of row/column status when 141
using graph methods 176

DataWindow expressions, optimizing 29
DataWindow objects

about 111
associating with controls 120, 121
basic use of 117
creating dynamically 149
creating reports with 144
data sources 112
defining 112
displaying data 122
dot notation 20
dynamic use of 147
editing 120
graphs in 171
names 118
overview 112
preparing to use 117
presentation styles 112
properties of 135

DataWindow painter
about 117
editing DataWindow object 120
working in 117

DataWindow runtime errors 139
DataWindow technology 111, 113
DBError event 137
DBF value, in ConnectString parameter 214
dbmlsrv9 254
dbmlsync

about 256
process 259

DBMS
entries in initialization file 210
value in database profiles 208

DBMS Transaction object property 234
DBParm parameters

character limit for strings in database profiles 288
ConnectOption 228
ConnectString 208
displayed on Preview tab 186, 288
in ODBC connections 208
setting in database profiles 186
setting in scripts 288
using ProfileString function to read 290

DBParm Transaction object property 234, 289
DBPass Transaction object property 234
DBTraceFile entry in initialization files 224
declarations

constants 21
external functions 309
Transaction objects 241

default
global variable types 249
Transaction object (SQLCA) 234, 237

defining database interfaces
importing and exporting database profiles 190
sharing database profiles 191

defining ODBC data sources
multiple data sources 206
sharing database profiles 191
SQL Anywhere 203

delegation as object-oriented concept 10
Delete buffer

DataStore 162
DataWindow 129

DeleteLargePicture function 77
DeleteLargePictures function 77
DeleteSmallPictures function 77
DeleteStatePicture function 77
DeleteStatePictures function 77
deleting ListView pictures 77
descendent objects

about 27
defining 246

Describe method 135, 148, 149, 150
destroy capability for Modify 148
DISCONNECT statement

about 236
coding 240
error handling 244

Index

Resource Guide 335

for nondefault Transaction objects 242
USING TransactionObject clause 240

DISCONNECT statement and SetTransObject 124
disconnecting from databases 240
DLL files, executing functions from 309
dot notation

about 17
PowerScript, using to call stored procedures 250

drag and drop
automatic drag mode 14
identifying drag controls 15
properties 14
using 14

DropDownListBox controls
about 71
adding items 71

DSN (data source name)
defining 202
using file on Windows CE 199
value, in ODBC connect strings 208

dynamic DataWindow objects
about 147
adding elements 148
creating 149
modifying 148
providing query mode 151
specifying create syntax 149, 150

dynamic function calls 28
dynamic lookup 9
dynamic SQL, handling errors in 244

E
edit controls

in DataStore objects 162
in DataWindow controls 129, 131, 132

edit styles, overriding in query mode 154
EditChanged event 131
editing

initialization file 209
shared database profiles 191, 194

embedded SQL, handling errors in 244
encapsulation 6, 22
Error event 139

errors
after SQL statements 244
exception handling 31
following database retrieval or update 136

events
action codes 138
calling 318
calling ancestor 24
DBError 137
drag and drop 14
Error 139
ItemChanged 132
ItemError 132
of graph controls 102
passing arguments 26
return value from ancestor 24
triggering 318

exceptions, handling 31
execution

accessing graphs 105, 172
associating DataWindow objects with

controls 121
modifying DataWindow objects 148

exporting a database profile 190
expressions, assigning DataWindow property

values 148
External data source, importing data 128, 162
external files, reading Transaction object

values from 238
external functions

declaring 309
using to call database stored procedures 247

F
FieldSoftware SDK 29
file pointer 308
files

as data source 112
external, reading Transaction object

values from 238
Filter buffer 129, 162
FindSeries function 104
fonts, using in reports 145
FreeDBLibraries 198

Index

336 PocketBuilder

FUNCTION declaration
about 247
coding 248

functions
calling ancestor 24
dynamic 28
graph 102
overloading 8
overriding 26
passing arguments 26

functions, external
about 309
declaring 310
passing arguments 313
using to call database stored procedures 247

functions, PowerScript
AddColumn 77
AddItem 70, 71, 72, 74
AddLargePicture 75
AddSmallPicture 75
AddStatePicture 75, 76
DeleteLargePicture 77
DeleteLargePictures 77
DeleteSmallPicture 77
DeleteSmallPictures 77
DeleteStatePicture 77
DeleteStatePictures 77
file manipulation 306
InsertItem 70, 71, 72, 74, 81
InsertItemFirst 81
InsertItemLast 81
InsertItemSort 81
SetColumn 77
SetItem 77
SetOverlayPicture 76
utility 319

functions, user-defined
overloading 8
overriding 8

G
garbage collection 39
Generate Trace check box in Database Profile Setup

dialog box 223

generic coding techniques 63
GetItemDate function 133
GetItemDateTime function 133
GetItemDecimal function 133
GetItemNumber function 133
GetItemTime function 133
GetParent function 20, 63
GetText function 131
global external functions 310
global variables

default types 249
name conflicts 23

graph functions
data access 107
getting information about data 107
modifying display of data 108
saving data 108

graphics, adding to DataWindow objects 148
graphs

about 171
creating data points in windows 103
creating series in windows 103
data properties 107, 174
getting information about 107, 174
internal representation 105, 173
modifying data properties in DataWindow

control 176
modifying display of data 108, 176
modifying during execution 105, 172
populating with data in windows 102
PowerScript functions 102
properties of 105, 173
saving data 108, 175

grAxis subobject of graphs 105, 173
grDispAttr subobject of graphs 105, 173

H
handling errors after SQL statements 244
help

Database Trace, using 221
ODBC Driver Manager Trace, using 227

Index

Resource Guide 337

I
importing a database profile 190
inclusional polymorphism 7
inheritance, virtual functions in ancestor 5
initialization files

accessing 323
adding functions to 209
DBMS_PROFILES section 194
in ODBC connections 206
locating when sharing database profiles 191
ODBC 207
ODBCINST 207
reading DBParm values from 222, 228, 290
reading Transaction object values from 238
specifying nondefault Database Trace log 224
storing connection parameters 187, 189
suppressing password display 188

InsertItem function 70, 71, 72, 74, 81
InsertItemFirst function 81
InsertItemLast function 81
InsertItemSort function 81
instance variables

access 22
name conflicts 23

instantiating Transaction objects 241
Isolation Level box in Database Profile Setup

dialog box 291
isolation levels and lock values

setting in database profiles 291
ItemChanged event 131, 132
ItemError event 131, 132
items in DataWindow controls 130

K
Keep Connection Open check box in Database

Preferences dialog box 293
Keep Connection Open database preference 293

L
libraries for DataWindow objects 115, 117
line mode 306

ListBox controls
about 70
adding items 70

ListView controls
about 72
adding columns 77
adding items 73
adding pictures 74, 75
deleting pictures 77
image list 74
items 73
populating columns 77
report view 77
setting columns 77

ListView items
index 73
label 73
overlay picture index 73
picture index 73
state picture index 73

local external functions 310
Lock database preference

displayed on Preview tab 296
setting in database profiles 291
setting in script 296

Lock Transaction object property 234
lock values and isolation levels, setting in

database profiles 291
LOG files

PKTRACE.LOG 220
specifying nondefault for Database Trace 224
specifying nondefault for ODBC Driver

Manager Trace 229
SQL.LOG 226

logical unit of work (LUW) 236
LogID Transaction object property 234
LogPass Transaction object property 234
LUW 236

M
mail, sending 30
maintaining shared database profiles 194
memory management 39

Index

338 PocketBuilder

Message object
about 320
properties 320

methods
DataStore 163
DataWindow 134
graph 174

MobiLink synchronization
about 253
articles 257, 279
clients 256
connection events 270
consolidated 254
consolidated databases 270
dbmlsrv8 254
dbmlsync 256, 259
handling deletes 285
hierarchy 255
options window 266
PocketBuilder objects for 260
publications 257, 278
remote 254
remote databases 277
scripts 256, 274
scripts, default 272
server 254
SQL Anywhere client 256
subscriptions 258, 282
table events 272
techniques 283
UltraLite client 257
users 280
wizards 260

Modify method
basic usage 135, 148
using query mode 151
using with graphs 172

multiple databases, accessing 241
multiple ODBC data sources, defining 206

N
names

DataWindow controls 118
DataWindow objects 119

New status 141
NewModified status 141
nondefault Transaction objects

about 241
assigning values to 241
creating 241
destroying 243
specifying in SQL statements 242

NotModified status 141

O
Object property

about 29
dot notation 20

object-oriented programming 3
objects

calling ancestor functions and events 24
instantiating descendants 27
name conflicts 23
pronouns for 19
selecting type during execution 27

ODBC (Open Database Connectivity)
defining multiple data sources 206
ODBC initialization file 207
ODBCINST initialization file 207

ODBC connect strings
about 208
DSN (data source name) value 208

ODBC data sources
accessing 206
defining multiple 206
in ODBC initialization file 207
in ODBCINST initialization file 207
initialization file 209
sharing database profiles 191
troubleshooting 220

ODBC Driver Manager Trace
performance considerations 227
sample output 230
setting with ConnectOption DBParm 228
specifying a nondefault log file 229
starting in database profiles 228
stopping in database profiles 230
viewing the log 226

Index

Resource Guide 339

ODBC drivers
and ODBC initialization file 207
and ODBCINST initialization file 207
initialization file 209
troubleshooting 220

ODBC initialization file, about 207
ODBC interface

connecting to data sources 188
ConnectOption DBParm, using 228
initialization file 209
initialization files required 206
ODBC initialization file 207
ODBCINST initialization file 207
troubleshooting 220

operational polymorphism 7
overloading user-defined functions 8
overriding user-defined functions 8, 26

P
painters 117
parent objects 17
Parent pronoun 19
passing arguments 26
passwords, suppressing display 188
performance

about 21, 29
faster compiling 40
variable scope 40

picture height 74, 75
picture mask 74, 75
picture width 74, 75
PK.INI file. See PocketBuilder initialization file
PKL files 115
PKODB15u initialization file

about 209
case sensitivity 211
special timestamp column support 209

PKTRACE.LOG file
about 221
contents 221
deleting or clearing 225
format 222

sample output 225
using nondefault log file instead 224

PocketBuilder events, triggering 318
PocketBuilder initialization file

about 191
locating when sharing database profiles 191
reading Transaction object values from 238
saving shared database profiles locally 194
setting Shared Database Profiles database

preference 192
specifying nondefault Database Trace log 224
suppressing password display 188

polymorphism 7
position pointer 308
Post function 318
PostEvent function 318
PowerScript dot notation, using to call stored

procedures 250
PowerScript syntax, on Preview tab 187
preparing SQL Anywhere data sources 202
presentation styles, list 112
Preview tab

about 186, 187, 288
copying AutoCommit and Lock properties 296
copying DBParm parameters 288
copying DBParm properties 186

Primary buffer 129, 162
Print method 145
printing

at runtime 29
reports 145

PRIVATE access 22
procedures, basic

importing and exporting database profiles 190
selecting a database profile to connect to 188
setting database preferences 290
setting DBParm parameters 287
sharing database profiles 191
stopping Database Trace 223
stopping ODBC Driver Manager Trace 229

profiles, database 234
 See also database profiles

ProfileString function
about 238, 324
coding 239
setting AutoCommit and Lock in scripts 298

Index

340 PocketBuilder

setting DBParm parameters in scripts 290
starting ODBC Driver Manager Trace in

scripts 222, 228
programs, using DataWindow objects in 117
Prompt for Database Information check box 188
pronouns 19
properties

DataWindow object 135
drag and drop 14
retrieving current values of 148, 149, 150

properties, Transaction object
about 234
assigning values to 237, 241
calling stored procedures 250
descriptions of 234
reading values from external files 238

PROTECTED access 22
PUBLIC access 22
publication 257, 278

Q
qualifying names 17
query mode

clearing 154
forcing equality 155
providing to users 151
sorting in 154

R
Read Only check box in Database Preferences

dialog box 293
Read Only database preference 293
read-only, passing arguments 26
reference, passing arguments by 26
registry, Windows

ODBC initialization file 207
ODBCINST initialization file 207

registry, Windows CE, storing information in 323
RegistryGet function 325
RegistrySet function 326
remote databases 254

remote procedure call technique
about 245
and stored procedure result sets 245, 251
coding your application 250
declaring the stored procedure as an external function

247
defining the standard class user object 246
saving the user object 249
specifying the default global variable type for

SQLCA 249
Remote Stored Procedures dialog box 247
reports

creating with DataWindow objects 144
printing 145

result sets, for stored procedures 245, 251
Retrieve method

handling errors 136
using 126

return values from ancestor scripts 24
ROLLBACK statement

about 236
and AutoCommit setting 236
and SetTransObject 124
for nondefault Transaction objects 242

rows
providing user-specified retrieval 151
status in DataWindow controls 141

RPCFUNC keyword
about 247
coding 248

runtime libraries 117

S
Save User Object dialog box 249
saving data in graphs 108, 175
scope operator 23
scripts

adding list box items 70, 71, 72
adding listbox items 71
adding ListView columns 77
adding ListView items 73
adding ListView pictures 75
deleting ListView items 77
deleting ListView pictures 77

Index

Resource Guide 341

modifying graphs in 105, 172
populating ListView columns 77
setting DBParm values 288
starting ODBC Driver Manager Trace 228
synchronization 256
using Preview tab to set connection options 186,

288, 296
using ProfileString function to read 290, 298

Select Standard Class Type dialog box 246
SELECT statements, modifying at execution

time 153
selection criteria. See query mode
semicolons, as SQL statement terminators 237, 239
Send function 318
sending mail 30
series, graph

adding data points in windows 103
creating in window 103
identifying in windows 104

server, MobiLink synchronization 254
ServerName Transaction object property 234
SetColumn function 77
SetItem function 77, 133
SetOverLayPicture function 76
SetProfileString function 325
SetText function 131
setting database preferences 296
SetTrans function 123
SetTransObject function 124
shared database profiles

maintaining 194
saving in local initialization file 194
selecting in Database Profiles dialog box 193
setting Shared Database Profiles database

preference 192
setting up 191, 192

Shared Database Profiles box in Database Preferences
dialog box 192, 293

Shared Database Profiles database preference 293
sorting in query mode 154
SQL Anywhere

and MobiLink synchronization 254
connection components 200
defining the data source 203
features supported when calling stored

procedures 251

LOG files 202
ODBC Configuration dialog box 203
preparing to use 202
special timestamp columns 208

SQL statements
error handling 244
for transaction processing 236
specifying Transaction object in 242
terminating with semicolons 237, 239

SQL terminator character
changing in Database painter 293
database preference 293

SQL.LOG file
leaving open 226
performance considerations 227
sample output 230
using nondefault log file instead 229
viewing 226

SQL_OPT_TRACE parameter in ConnectOption
DBParm 228

SQL_OPT_TRACEFILE parameter in
ConnectOption DBParm 228

SQLCA
about 234, 237
calling stored procedure as property of 250
creating and destroying prohibited 241
customizing to call stored procedures 245
error handling 244
properties, assigning values to 237
properties, descriptions of 234
setting DBParm property 289
setting in Application painter 249
specifying default global variable type for 249
user object inherited from 246, 249

SQLCode Transaction object property
about 234, 244
coding 244

SQLDBCode Transaction object property
about 234, 244
coding 244

SQLErrText Transaction object property
about 234, 244
coding 244

SQLNRows Transaction object property 234
SQLReturnData Transaction object property 234

Index

342 PocketBuilder

starting ODBC Driver Manager Trace in a
PocketBuilder application 228

static lookup 9
status of DataWindow rows or columns 141
stopping ODBC Driver Manager Trace in development

environment 230
stored procedures, calling in applications

about 245
basic steps 245
coding your application 250
declaring as external functions 247
defining the standard class user object 246
result sets, how PocketBuilder handles 245, 251
saving the user object 249
specifying the default global variable type for

SQLCA 249
stream mode 307
structure objects, using user objects as structures 11
SUBROUTINE declaration

about 247
coding 248

subroutines, using to call database stored procedures 247
subscriptions

about 258
synchronization with multiple servers 282

Super pronoun 24
synchronization server 254
synchronization. See MobiLink synchronization
SyntaxFromSQL method 150

T
Tab controls

about 55
appearance 60
Control property array 66
defined 55
dot notation 63
events 67
managing tab pages 58
parent 63
properties 60
property sheet 60
tab labels 62
types of tab pages 57

tab pages
closing in script 66
controls in scripts 65
defined 55
deleting 58
embedded 57
events 67
independent user objects 57
object references 66
opening in script 66
parent 63
properties 60
reordering 58

target controls, drag and drop 14
text controls in DataWindow objects 148
text files

functions 306
reading and writing 306

text in DataWindow edit control 129
This pronoun 19
timestamp, Transact-SQL special 208
Trace File box in Database Profile Setup dialog

box 229
Trace ODBC API Calls check box in Database

Profile Setup dialog box 229
tracing database connections

Database Trace 220
sample output, Database Trace 225
sample output, ODBC Driver Manager

Trace 230
Transaction object

about 233
as built-in system type 246
assigning values to 237
default 234, 237
error handling 244
for multiple database connections 241
nondefault, assigning values to 241
nondefault, creating 241
nondefault, destroying 243
nondefault, specifying in SQL statements 242
reading values from external files 238
reassociating DataWindow controls with 149
remote procedure call technique 245
specifying 242
SQLCA 234, 237

Index

Resource Guide 343

SQLCA, setting DBParm property 289
using to call stored procedures 245

Transaction object properties
about 234
assigning values to 237, 241
calling stored procedures 250
descriptions of 234
reading values from external files 238

transaction processing
about 236
error handling 244
SQL statements for 236

Transact-SQL special timestamp in SQL
Anywhere 208

TreeView controls
about 78
example 97

TriggerEvent function 318
triggering events 318
troubleshooting database connections

Database Trace 220
ODBC Driver Manager Trace 226

typographical conventions xiv

U
UltraLite

MobiLink client 257
preparing the databases 268

Unicode, working with 303
Update method

handling errors 136
using 127

Use Extended Attributes check box in Database
Preferences dialog box 293

Use Extended Attributes database preference 293
user events, for graphs in DataWindow controls 176
User Object painter, using to define custom

Transaction objects 246
user objects

about 55
Control property array 67
inherited from DataStore objects 160
selecting type during execution 28

using as structures 11
using to call database stored procedures 246

user, MobiLink 280
UserID Transaction object property 234
USING TransactionObject clause

about 242
in CONNECT statement 239
in DISCONNECT statement 240

utility functions 319

V
value, passing arguments by 26
Variable Types property page in Application

painter 249
variables

declaring for Transaction objects 241
default global 249
performance impact 40

W
Window painter

placing DataWindow controls 119
specifying drag mode for a control 14

Windows API 312
Windows events

processing 320
triggering 318

Windows messages, sending 319
windows, selecting type at runtime 28

Index

344 PocketBuilder

	Resource Guide
	PART 1 Using the PowerScript Language
	PART 2 Implementing User Interface Features
	PART 3 Programming DataWindows and DataStores
	PART 4 Connecting to a Database
	PART 5 Miscellaneous Techniques
	About This Book
	CHAPTER 1 Implementing Object-Oriented Programming Techniques
	Terminology review
	PocketBuilder techniques
	Other techniques

	CHAPTER 2 Using Drag and Drop in a Window
	About drag and drop
	Drag-and-drop properties, events, and functions
	Identifying the dragged control

	CHAPTER 3 Using the PowerScript Language
	Dot notation
	Constant declarations
	Controlling access for instance variables
	Resolving naming conflicts
	Return values from ancestor scripts
	Types of arguments for functions and events
	Ancestor and descendent variables
	Optimizing expressions for DataWindow and external objects
	Printing at runtime
	Sending mail from a device or emulator
	Exception handling in PocketBuilder
	Basics of exception handling
	Objects for exception handling support
	Handling exceptions
	Creating user-defined exception types
	Adding flexibility and facilitating object reuse
	Using the SystemError and Error events

	Garbage collection
	Efficient compiling and performance

	CHAPTER 4 Getting Information About PocketBuilder Class Definitions
	Overview of class definition information
	Terminology
	Who uses PocketBuilder class definitions

	Examining a class definition
	Getting a class definition object
	Getting detailed information about the class
	Getting information about a class’s scripts
	Getting information about variables

	CHAPTER 5 Using Tab Controls in a Window
	About Tab controls
	Defining and managing tab pages
	Customizing the Tab control
	Using Tab controls in scripts
	Referring to tab pages in scripts
	Referring to controls on tab pages
	Opening, closing, and hiding tab pages
	Keeping track of tab pages
	Events for the parts of the Tab control

	CHAPTER 6 Using Lists and Tree Views in a Window
	About presenting lists
	Using ListBox controls
	Using DropDownListBox controls
	Using ListView controls
	Using report view

	Using TreeView controls
	Populating TreeViews
	Functions for inserting items
	Inserting items at the root level
	Inserting items below the root level

	Managing TreeView items
	Deleting items
	Renaming items
	Moving items using drag and drop
	Sorting items

	Managing TreeView pictures
	Pictures for items
	Setting up picture lists
	Using overlay pictures

	Using DataWindow information to populate a TreeView

	CHAPTER 7 Manipulating Graphs in Windows
	Using graphs
	Working with graph controls in code

	Populating a graph with data
	Modifying graph properties
	How parts of a graph are represented
	Referencing parts of a graph

	Accessing data properties
	Getting information about the data
	Saving graph data
	Modifying colors, fill patterns, and other data

	CHAPTER 8 About DataWindow Technology
	About DataWindow objects and controls
	DataWindow objects
	Presentation styles and data sources
	Basic process

	DataWindow controls

	CHAPTER 9 Using DataWindow Objects
	About using DataWindow objects
	Putting a DataWindow object into a control
	Names for DataWindow controls and DataWindow objects
	Working with the DataWindow control in PocketBuilder
	Specifying the DataWindow object at runtime

	Accessing the database
	Setting the transaction object for the DataWindow control
	Internal transaction management
	Transaction management with a separate transaction object

	Retrieving and updating data
	Basic data retrieval
	Using retrieval arguments
	Updating data

	Importing data from an external source
	Manipulating data in a DataWindow control
	How a DataWindow control manages data
	Accessing and manipulating the text in the edit control
	Coding the ItemChanged event
	Coding the ItemError event
	Accessing the items in a DataWindow
	Using other DataWindow methods

	Accessing the properties of a DataWindow object
	Handling DataWindow errors
	Retrieve and Update errors and the DBError event
	Errors in property and data expressions and the Error event

	Updating the database
	How the DataWindow control updates the database
	Changing row or column status programmatically

	Creating reports
	Planning and building the DataWindow object
	Printing the report

	CHAPTER 10 Dynamically Changing DataWindow Objects
	About dynamic DataWindow processing
	Modifying a DataWindow object
	Creating a DataWindow object
	Providing query ability to users
	How query mode works
	Using query mode

	CHAPTER 11 Using DataStore Objects
	About DataStores
	Working with a DataStore
	Using a custom DataStore object
	Accessing and manipulating data in a DataStore
	Sharing information
	Example: printing data from a DataStore
	Example: using two DataStores to process data

	CHAPTER 12 Manipulating Graphs in DataWindows
	Using graphs
	Modifying graph properties
	How parts of a graph are represented
	Referencing parts of a graph

	Accessing data properties
	Getting information about the data
	Saving graph data
	Modifying colors, fill patterns, and other data
	Using graph methods

	CHAPTER 13 Database Connectivity in PocketBuilder
	Accessing data in PocketBuilder
	About database profiles
	Creating database profiles
	Database Profiles dialog box
	Database Profile Setup dialog box
	Supplying information in the dialog box
	Creating a database profile
	Specifying passwords in database profiles

	Connecting to a database
	What happens when you connect

	Importing and exporting database profiles
	Maintaining database profiles
	Sharing database profiles

	CHAPTER 14 Using database interfaces
	About database interfaces
	Working with the ODBC database interface
	Connecting to a SQL Anywhere database on Windows CE
	About SQL Anywhere data sources
	Defining the SQL Anywhere data source
	Defining multiple data sources for the same data
	How PocketBuilder accesses the data source
	Support for Transact-SQL special timestamp columns
	The PKODB20 initialization file
	Preparing remote databases
	Starting SQL Anywhere on a device

	Working with the UltraLite database interface
	Supported UltraLite datatypes
	Running utilities for UltraLite databases
	Defining the UltraLite database interface
	Migrating a SQL Anywhere application to UltraLite

	CHAPTER 15 Troubleshooting Your Connection
	About tracing database connections
	Using the Database Trace tool
	About the Database Trace tool
	How you can use the Database Trace information
	Contents of the Database Trace log
	Format of the Database Trace log

	Starting the Database Trace tool
	Stopping the Database Trace tool
	Specifying a nondefault Database Trace log
	Deleting or clearing the Database Trace log
	Sample Database Trace output

	Using the ODBC Driver Manager Trace tool
	About ODBC Driver Manager Trace
	Starting ODBC Driver Manager Trace
	The ConnectOption DBParm parameter

	Stopping ODBC Driver Manager Trace
	Sample ODBC Driver Manager Trace output

	CHAPTER 16 Using Transaction Objects
	About Transaction objects
	Description of Transaction object properties

	Working with Transaction objects
	Transaction basics
	The default Transaction object
	Assigning values to the Transaction object
	Reading values from an external file
	Connecting to the database
	Using the Preview tab to connect in a PocketBuilder application
	Disconnecting from the database
	Defining Transaction objects for multiple database connections
	Error handling after a SQL statement

	Using Transaction objects to call stored procedures
	Step 1: define the standard class user object
	Step 2: declare the stored procedure as an external function
	Step 3: save the user object
	Step 4: specify the default global variable type for SQLCA
	Step 5: code your application to use the user object

	Supported DBMS features when calling stored procedures

	CHAPTER 17 Using MobiLink Synchronization
	About MobiLink synchronization
	Working with PocketBuilder synchronization objects
	Adding synchronization capabilities to your application
	Using the synchronization objects in your application
	Using the synchronization options window
	Preparing to use the wizard for remote SQL Anywhere databases
	Preparing to use the wizard for remote UltraLite databases

	Preparing consolidated databases
	Connection events
	Table events
	Working with scripts and users in Sybase Central

	Creating remote databases
	Creating and modifying publications
	Creating MobiLink users
	Adding subscriptions for remote SQL Anywhere databases

	Synchronization techniques

	CHAPTER 18 Setting Additional Connection Parameters
	Setting database parameters
	Setting database parameters in the development environment
	Setting database parameters in a PocketBuilder application script
	Copying DBParm syntax from the Preview tab
	Coding PowerScript to set values for the DBParm property
	Reading DBParm values from an external text file

	Setting database preferences
	Setting database preferences in the development environment
	Setting AutoCommit and Lock in the database profile
	Setting preferences in the Database Preferences dialog box

	Setting AutoCommit and Lock in a PocketBuilder application script
	Copying AutoCommit and Lock syntax from the Preview tab
	Coding PowerScript to set values for AutoCommit and Lock
	Reading AutoCommit and Lock values from an external text file
	Getting values from the registry

	CHAPTER 19 Working with Unicode
	Working with Unicode in PocketBuilder
	Importing and exporting DataWindow data
	Reading and writing text or binary files

	CHAPTER 20 Using External Functions and Other Processing Extensions
	Using external functions
	Declaring external functions
	Sample declarations
	Passing arguments
	Passing numeric datatypes
	Passing strings

	Using external functions in a script

	Sending Windows messages
	Using utility functions to manage information
	The Message object
	Message object properties

	CHAPTER 21 Managing Initialization Files and the Windows CE Registry
	About preferences and default settings
	Managing information in initialization files
	Managing information in the Windows CE registry

	CHAPTER 22 Using the Command Line
	Starting PocketBuilder from a command line

	Index

