
Full-Text Search Specialty Data Store User’s
Guide

Full-Text Search Specialty Data Store

12.5

UNIX and Windows NT

DOCUMENT ID: DC36521-01-1250-02

LAST REVISED: February, 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup
Server, BizTracker, ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench,
DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP,
ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, MainframeConnect, Maintenance Express, MDI Access Server, MDI Database
Gateway, media.splash, MetaWorks, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips,
Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Rapport, Report Workbench,
Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Resource
Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10,
System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 11/02

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

User’s Guide iii

About This Book ... ix

CHAPTER 1 Introduction ... 1
What Is the Full-Text Search Specialty Data Store?........................ 1
Capabilities of the Full-Text Search Engine 1

High Availablility .. 3

CHAPTER 2 Understanding the Full-Text Search Engine 5
Components of the Full-Text Search Engine 5

The Source Table.. 5
The Verity Collections ... 6
Filters... 6
The text_db Database ... 6
The Index Table .. 7
The text_events Table... 8
Relationships Between the Components 8

How a Full-Text Search Works... 9

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches................. 13
Configuring Adaptive Server for a Full-Text Search Engine........... 13

Enabling Configuration Parameters .. 14
Running the installtextserver Script ... 14
Running the installmessages Script .. 16
Running the installevent Script .. 17
Name the local server ... 18

Creating and Maintaining the Text Indexes.................................... 18
Setting Up Source Tables for Indexing.................................... 19
Creating the Text Index and Index Table 20
Bringing the Database Online for Full-Text Searches 22
Propagating Changes to the Text Index.................................. 22
Replicating Text Indexes ... 23
Example: Enabling a New Database for Text Searches 24

Contents

iv Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions.. 27
Enabling Query-By-Example, Summarization, and Clustering....... 27

Editing the Master style.prm File ... 28
Editing Individual style.prm Files ... 29

Setting Up a Column to Use As a Sort Specification 30
Using Filters on Text That Contains Tags...................................... 32
Creating a Custom Thesaurus (Enhanced Version Only) 34

Examining the Default Thesaurus (Optional) 35
Creating the Control File ... 36
Creating the Thesaurus... 37
Replacing the Default Thesaurus with the Custom Thesaurus 38

Creating Topics (Enhanced Version Only)..................................... 38
Creating an Outline File... 39
Creating a Topic Set Directory .. 40
Creating a Knowledge Base Map.. 41
Defining the Location of the Knowledge Base Map................. 41
Executing Queries Against Defined Topics 42
Troubleshooting Topics ... 42

CHAPTER 5 Writing Full-Text Search Queries ... 43
Components of a Full-Text Search Query...................................... 43

Default Behaviour.. 44
Pseudo Columns in the Index Table .. 44

Using the score Column to Relevance-Rank Search Results . 46
Using the sort_by Column to Specify a Sort Order 47
Using the summary Column to Summarize Documents.......... 48
Using Pseudo Columns to Request Clustered Result Sets..... 48

Full-Text Search Operators.. 50
Considerations When Using Verity Operators......................... 51
Using the Verity Operators .. 53

Operator Modifiers ... 60

CHAPTER 6 System Administration.. 63
Starting the Full-Text Search Engine on UNIX............................... 63

Creating the Runserver File .. 63
Starting the Full-Text Search Engine on Windows NT................... 65

Starting the Full-Text Search Engine As a Service 65
Shutting Down the Full-Text Search Engine 66
Modifying the Configuration Parameters.. 67

Modifying Values in the Enhanced Version............................. 69
Available Configuration Parameters.. 69
Setting the Default Language.. 70
.Setting the Default Character Set... 71

Contents

User’s Guide v

Setting the Default Sort Order ... 72
Setting Trace Flags ... 72
Setting Open Server Trace Flags.. 74
Setting Case Sensitivity... 74

Backup and Recovery for the Enhanced Full-Text Search Engine 75
Customizable Backup and Restore ... 76
Backing Up Verity Collections ... 76
Restoring Collections and Text Indexes from Backup............. 77

CHAPTER 7 Performance and Tuning.. 79
Updating Existing Indexes.. 79
Increasing Query Performance .. 80

Limiting the Number of Rows .. 80
Ensuring the Correct Join Order for Queries........................... 80

Reconfiguring Adaptive Server .. 81
cis cursor rows .. 81
cis packet size ... 82

Reconfiguring the Full-Text Search Engine 82
batch_size .. 82
min_sessions and max_sessions.. 83

Using sp_text_notify ... 83
Configuring Multiple Full-Text Search Engines 84

Creating Multiple Full-Text Search Engines at Start-Up.......... 84
Adding Full-Text Search Engines.. 84
Configuring Additional Full-Text Search Engines.................... 85

Multiple Users .. 86

CHAPTER 8 Verity Topics ... 87
What are Topics? ... 87

Topic Organization .. 87
Weight Assignments.. 88

Using a Topic Outline File .. 88
Making Topics Available .. 89

Setup Process ... 89
Knowledge Bases of Topics... 89

Combining Topics into a Knowledge Base.............................. 90
Structure of Topics ... 91

Top-Level Topics... 92
Subtopics... 92
Evidence Topics .. 93
Topic and Subtopic Relationships ... 93

Maximum Number of Topics .. 94
Topic Naming Issues... 94

Contents

vi Full-Text Search Specialty Data Store

Verity Query Language .. 95
Query Language Summary ... 95
Operator Precedence Rules.. 99

Sample Topic Outlines ... 100
Operator Reference ... 102

ACCRUE Operator .. 102
ALL Operator... 102
AND Operator.. 102
ANY Operator.. 102
CONTAINS Operator... 103
ENDS Operator ... 103
= (EQUALS) Operator ... 104
FILTER Operator... 104
> (GREATER THAN) Operator.. 104
>= (GREATER THAN OR EQUAL TO) Operator.................. 104
< (LESS THAN) Operator.. 105
<= (LESS THAN OR EQUAL TO) Operator 105
IN Operator.. 105
MATCHES Operator.. 105
NEAR Operator ... 106
NEAR/N Operator.. 107
OR Operator.. 107
PARAGRAPH Operator... 107
PHRASE Operator .. 108
SENTENCE Operator.. 108
SOUNDEX Operator ... 108
STARTS Operator ... 108
STEM Operator ... 109
SUBSTRING Operator .. 109
THESAURUS Operator ... 109
WILDCARD Operator .. 109
Using Wildcard Special Characters....................................... 110
Searching for Non-alphanumeric Characters 110
WORD Operator.. 111

Modifier Reference... 112
CASE Modifier... 112
MANY Modifier .. 112
NOT Modifier ... 113
ORDER Modifier.. 113

Weights and Document Importance... 113
Topic Weights.. 113
Which Operators Accept Weights ... 114
How Weights Affect Importance .. 115
Assigning Weights... 117

Contents

User’s Guide vii

Automatic Weight Assignments... 118
Tips for Assigning Weights.. 118
Changing Weights ... 119

Topic Scoring and Document Importance.................................... 119
Designing Topics.. 122
Preparing Your Topic Design ... 122

Understanding Your Information Needs 123
Understanding Your Documents ... 124
Using Scanned Data ... 124
Categorizing Document Samples.. 125

Topic Design Strategies ... 125
Top-Down Design.. 126
Bottom-Up Design ... 126

Designing the Initial Topic .. 127
Outlining a Topic ... 127
Top-Down Topic Outline Example... 128
Bottom-Up Topic Outline Example .. 132

APPENDIX A System Procedures .. 137
sp_check_text_index.. 138
sp_clean_text_events .. 139
sp_clean_text_indexes... 139
sp_create_text_index ... 140
sp_drop_text_index.. 142
sp_help_text_index .. 143
sp_optimize_text_index.. 144
sp_redo_text_events.. 145
sp_refresh_text_index.. 146
sp_show_text_online.. 147
sp_text_cluster ... 148
sp_text_configure... 150
sp_text_dump_database.. 151
sp_text_kill ... 154
sp_text_load_index .. 155
sp_text_notify ... 156
sp_text_online .. 157

APPENDIX B Sample Files .. 159
Default textsvr.cfg Configuration File ... 159
The sample_text_main.sql Script ... 163
Sample Files Illustrating Full-Text Search Engine Features 164

Custom Thesaurus .. 164
Topics.. 164

Contents

viii Full-Text Search Specialty Data Store

Clustering, Summarization, and Query-by-Example 165
getsend Sample Program .. 165

APPENDIX C Unicode Support.. 167

Index ... 169

User’s Guide ix

About This Book

This book explains how to use the Full-Text Search Specialty Data Store
product with Sybase® Adaptive Server™ Enterprise.

This book describes the features and functionality of the enhanced version
which is a separately priced product.

Audience
This book is for System Administrators who are configuring Adaptive
Server for a Full-Text Search Specialty Data Store and for users who are
performing full-text searches on Adaptive Server data.

How to Use This Book
This book includes the following chapters:

• Chapter 1, “Introduction,” provides an overview of Full-Text Search
Specialty Data Store.

• Chapter 2, “Understanding the Full-Text Search Engine,” describes
the components of the Full-Text Search Specialty Data Store and how
it works.

• Chapter 3, “Configuring Adaptive Server for Full-Text Searches,”
describes how to configure Adaptive Server so that Full-Text Search
Specialty Data Store can perform full-text searches on the databases.

• Chapter 4, “Setting Up Verity Functions,” describes the setup you
need to do before issuing full-text search queries.

• Chapter 5, “Writing Full-Text Search Queries,” describes the
components you use to write full-text search queries.

Adaptive Server Enterprise Documents

x Full-Text Search Specialty Data Store

• Chapter 6, “System Administration,” provides information about
system administration issues.

• Chapter 7, “Performance and Tuning,” provides information about
performance and tuning issues.

• Chapter 8, “Verity Topics,” provides information about configuring
the Verity engine.

• Appendix A, “System Procedures,” describes Full-Text Search
Specialty Data Store system procedures.

• Appendix B, “Sample Files,” contains the text of the textsvr.cfg file,
describes the sample files included with Full-Text Search Specialty
Data Store, and discusses issues regarding the sample_text_main.sql
script.

• Appendix C, “Unicode Support,” describes how to configure Full-
Text Search Specialty Data Store to use Unicode.

Adaptive Server Enterprise Documents
The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

• The release bulletin for your platform – contains last-minute
information that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document
information that was added after the release of the product CD, use the
Sybase Technical Library.

• The Installation Guide for your platform – describes installation,
upgrade, and configuration procedures for all Adaptive Server and
related Sybase products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new
features in Adaptive Server version 12.5, the system changes added to
support those features, and the changes that may affect your existing
applications.

 About This Book

User’s Guide xi

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual
serves as a textbook for beginning users of the database management
system. This manual also contains descriptions of the pubs2 and
pubs3 sample databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes
instructions and guidelines for managing physical resources, security,
user and system databases, and specifying character conversion,
international language, and sort order settings.

• Reference Manual – contains detailed information about all Transact-
SQL commands, functions, procedures, and datatypes. This manual
also contains a list of the Transact-SQL reserved words and
definitions of system tables.

• Performance and Tuning Guide – explains how to tune Adaptive
Server for maximum performance. This manual includes information
about database design issues that affect performance, query
optimization, how to tune Adaptive Server for very large databases,
disk and cache issues, and the effects of locking and cursors on
performance.

• The Utility Guide – documents the Adaptive Server utility programs,
such as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures,
extended system procedures, datatypes, and utilities in a pocket-sized
book. Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use
the Adaptive Server Component Integration Services feature to
connect remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use
Java classes as datatypes, functions, and stored procedures in the
Adaptive Server database.

Adaptive Server Enterprise Documents

xii Full-Text Search Specialty Data Store

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive
Server as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management
Features – explains how to configure, use, and troubleshoot Adaptive
Server DTM features in distributed transaction processing
environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy
and execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with
X/Open XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data
stored in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how
to use the Full-Text Search feature with Verity to search Adaptive
Server Enterprise data.

• Historical Server User’s Guide –describes how to use Historical
Server to obtain performance information for SQL Server and
Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server
to obtain performance statistics from SQL Server and Adaptive
Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other Sources of Information
Use the Sybase Technical Library CD and the Technical Library Web site
to learn more about your product:

 About This Book

User’s Guide xiii

• Technical Library CD contains product manuals and technical
documents and is included with your software. The DynaText
browser (included on the Technical Library CD) allows you to access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and starting
Technical Library.

• Technical Library Web site is an HTML version of the Technical
Library CD that you can access using a standard Web browser.

To use the Technical Library Web site, go to www.sybase.com and
choose Documentation, choose Technical Library, then choose
Product Manuals.

Conventions

Directory Paths
For readability, directory paths in this manual are in UNIX format. On
Windows NT, substitute $SYBASE with %SYBASE% and replace slashes
(/) with backslashes (\). For example, replace this user input:

$SYBASE/$SYBASE_FTS/scripts

with:

%SYBASE%\%SYBASE_FTS%\scripts

Formatting SQL Statements
SQL is a free-form language: there are no rules about the number of words
you can put on a line or where you must break a line. However, for
readability, all examples and syntax statements in this manual are
formatted so that each clause of a statement begins on a new line. Clauses
that have more than one part extend to additional lines, which are indented.

Conventions

xiv Full-Text Search Specialty Data Store

SQL Syntax Conventions
The conventions for syntax statements in this manual are as follows:

Table 1: Syntax statement conventions

• Syntax statements (displaying the syntax and all options for a
command) are printed like this:

sp_dropdevice [device_name]

or, for a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase: normal font for keywords, italics for user-
supplied words.

• Examples showing the use of Transact-SQL commands are printed
like this:

select * from publishers

• Examples of output from the computer are printed like this:

pub_id pub_name city state
------- ------------------- ----------- -----
0736 New Age Books Boston MA

Key Definition

command Command names, command option names, utility names, utility
flags, and other keywords are in

bold Courier

 in syntax statements and in bold Helvetica in paragraph text.

variable Variables, or words that stand for values that you fill in, are in
italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed options is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of the options
shown.

, The comma means you may choose as many of the options
shown as you like, separating your choices with commas to be
typed as part of the command.

 About This Book

User’s Guide xv

0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

Case

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example,
SELECT, Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can
change case sensitivity for single-byte character sets by reconfiguring the
Adaptive Server sort order. See “Changing the Default Character Set, Sort
Order, or Language” in Chapter 19 of the System Administration Guide for
more information.

Obligatory Options {You Must Choose At Least One}

• Curly Braces and Vertical Bars: Choose one and only one option.

{die_on_your_feet | live_on_your_knees | live_on_your_feet}

• Curly Braces and Commas: Choose one or more options. If you
choose more than one, separate your choices with commas.

{cash, check, credit}

Optional Options [You Don’t Have to Choose Any]

• One Item in Square Brackets: You don’t have to choose it.

[anchovies]

• Square Brackets and Vertical Bars: Choose none or only one.

[beans | rice | sweet_potatoes]

• Square Brackets and Commas: Choose none, one, or more than one
option. If you choose more than one, separate your choices with
commas.

[extra_cheese, avocados, sour_cream]

If You Need Help

xvi Full-Text Search Specialty Data Store

Ellipsis: Do It Again (and Again)...

An ellipsis (...) means that you can repeat the last unit as many times as
you like. In this syntax statement, buy is a required keyword:

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose a
method of payment: one of the items enclosed in square brackets. You may
also choose to buy additional things: as many of them as you like. For each
thing you buy, give its name, its price, and (optionally) a method of
payment.

If You Need Help
Each Sybase installation that has purchased a support contract has one or
more designated people who are authorized to contact Sybase Technical
Support. If you cannot resolve a problem using the manuals or online help,
please have the designated person contact Sybase Technical Support or the
Sybase subsidiary in your area.

User’s Guide 1

C H A P T E R 1 Introduction

What Is the Full-Text Search Specialty Data Store?
Full-Text Search Specialty Data Store (referred to in this book as the Full-
Text Search engine) is an Open Server™ application built on Verity®
technology available in the Verity Developer’s Kit. Adaptive Server
connects to the Full-Text Search engine through Component Integration
Services (CIS), allowing queries written in the Verity query language to
perform full-text searches on Adaptive Server data.

This book describes the features and functionality of the enhanced Full-
Text Search Specialty Data Store.

Capabilities of the Full-Text Search Engine
The Full-Text Search Specialty Data Store product performs powerful,
full-text searches on Adaptive Server data. In Adaptive Server, without
the Full-Text Search engine, you can search text columns only for data that
matches what you specify in a select statement. For example, if a table
contains documents about dog breeds, and you perform a search on the
words “Saint Bernard,” the query produces only the rows that include
“Saint Bernard” in the text column.

With the Full-Text Search engine, you can expand queries on text columns
to do the following:

• Rank the results by order of how often a searched item appears in the
selected document. For example, you can obtain a list of document
titles that reference the words “Saint Bernard” five or more times.

• Select documents in which the words you search for appear within n
number of words of each other. For example, you can search only for
the documents that include the words “Saint Bernard” and “Swiss
Alps” and that appear within 10 words of each other.

Capabilities of the Full-Text Search Engine

2 Full-Text Search Specialty Data Store

• Select documents that include all the search elements you specify
within a single paragraph or sentence. For example, you can query the
documents that include the words “Saint Bernard” in the same
paragraph or sentence as the words “Swiss Alps.”

• Select documents that contain one or more synonyms of the word you
specify. For example, you can select documents that discuss “dogs,”
and it returns documents that contain the words “dogs,” “canine,”
“pooch,” “pup,” and so on.

• Create your own custom thesaurus. For example, you can create a
custom thesaurus that includes “working dogs,” “St. Bernard,” “large
dogs,” and “European Breeds” as synonyms for “Saint Bernard.”

• Create topics that specify the search criteria for a query. For example,
you can create a topic that returns documents that include the phrase
“Saint Bernard” or “St. Bernard,” followed by documents that include
the phrase “working dogs,” “large dogs,” or “European Breeds.”

• Return documents grouped in clusters to give you a sense of the major
topics covered in the documents.

• Select a section of relevant text in a document and search for other,
similar documents.

• Index many different document types, such as Microsoft Word, and
FrameMaker.

• Sort documents using up to 16 sort orders.

• Integrated backup and restore capabilities

• Ability to change the value of a configuration parameter using a
system procedure

• Ability to optimize indexes for text searches when your server is
inactive, to enhance performance

• Additional system management reports for viewing setup information

• Ability to bring databases online automatically for text searches

CHAPTER 1 Introduction

User’s Guide 3

High Availablility
The Full-Text Search product now supports the High Availability feature
of Adaptive Server Enterprise. If an Adaptive Server Enterprise fails, the
Full-Text Search will accept connections from the companion server.
Additionally, if the Adaptive Server has proxy database support enabled,
then both the primary and companion servers can use the Full-Text Search
at the same time.

Capabilities of the Full-Text Search Engine

4 Full-Text Search Specialty Data Store

User’s Guide 5

C H A P T E R 2 Understanding the Full-Text
Search Engine

This chapter describes how a Full-Text Search engine works.

Topics include:

Components of the Full-Text Search Engine
The Full-Text Search engine uses the following components to provide
full-text search capabilities:

• Source table

• Verity collections (text index)

• Filters for a variety of document types

• text_db database

• Index table

• text_events table

The Source Table
The source table is a user table maintained by Adaptive Server. It
contains one or more columns using the text, image, char, varchar,
datetime, or small datetime datatype, which holds the data to be searched.
With the Enhanced Full-Text Search engine, the source table can also have
int, smallint, and tinyint columns, which holds the data to be searched. The
source table must have an IDENTITY column, which is used to join the
source table with the id column of an index table during text searches.

Topic Page
Components of the Full-Text Search Engine 5

How a Full-Text Search Works 9

Components of the Full-Text Search Engine

6 Full-Text Search Specialty Data Store

The source table can be a local table, which holds the actual data, or it can
be a proxy table that is mapped to remote data using CIS.

The Verity Collections
The Full-Text Search engine uses the Verity collections, which are located
in $SYBASE/$SYBASE_FTS/collections. When you create the text
indexes, as described in “Creating the Text Index and Index Table” on
page 20, Verity creates a collection, which is a directory that implements
a text index. This collection is queried by the Full-Text Search engine. For
more information about Verity collections, see the Verity Web site at
http://www.verity.com.

Filters
The text index uses a filter to strip out the tags in a document that is not
ASCII text. The Enhanced Full-Text Search engine provides filters for a
variety of document types (Microsoft Word, FrameMaker, WordPerfect,
SGML, and HTML).

The text_db Database
During the installation of the Full-Text Search engine, a database named
text_db is added to Adaptive Server using the installation script
installtextserver, as described in “Running the installtextserver Script” on
page 14. The database does not contain any user data, but contains two
support tables: vesaux and vesauxcol. These tables contain the metadata
used by the Full-Text Search engine to maintain integrity between the
Adaptive Server source tables and the Verity collections.

When updating the collections after an insert, update, or delete is made to
an indexed column, the Full-Text Search engine queries the vesaux and
vesauxcol tables. These tables determine which collections contain the
modified columns so that all affected collections are updated. The Full-
Text Search engine also uses these tables when it is brought online, to
make sure that all necessary collections exist.

CHAPTER 2 Understanding the Full-Text Search Engine

User’s Guide 7

The vesaux Table

The columns in the vesaux table are described in Table 2-1.

Table 2-1: Columns in the vesaux table

The vesauxcol Table

The columns in the vesauxcol table are described in Table 2-2.

Table 2-2: Columns in the vesauxcol table

The Index Table
The index table provides a means of locating and searching documents
stored in the source table. The index table is maintained by the Full-Text
Search engine and has an id column that maps to the IDENTITY column
of the corresponding source table. The IDENTITY value from the row in
the source table is stored with the data in the Verity collections, which
allows the source and index tables to be joined. Although the index table
is stored and maintained by the Full-Text Search engine, it functions as a
proxy table to Adaptive Server through the Component Integration
Services feature.

The index table contains special columns, called pseudo columns, that are
used by the Full-Text Search engine to determine the parameters of the
search and the location of the text data in the source table. Pseudo columns
have no associated physical storage—the values of a pseudo column are
valid only for the duration of the query and are removed immediately after
the query finishes running.

Column Name Description

id IDENTITY column

object_name Name of the source table on which the external index is being created

option_string Text index creation options

collection_id Name of the Verity collection

key_column Name of the IDENTITY column in the source table

svrid Server ID of the Full-Text Search engine maintaining the collection

Column Name Description

id ID of the referenced row in the vesaux table

col_name Name of the column for which you are searching

col_type Column type (text, image, char, varchar, datetime, smalldatetime; with the
Enhanced Full-Text Search engine, also int, smallint, and tinyint)

Components of the Full-Text Search Engine

8 Full-Text Search Specialty Data Store

For example, when you use the score pseudo column in a query, to rank
each document according to how well the document matches the query,
you may have to use a score of 15 to find references to the phrase “small
Saint Bernards” in the text database. This phrase does not occur very often,
and a low score value broadens the search to include documents that have
a small number of occurrences of the search criteria. However, if you are
searching for a phrase that is common, like “large Saint Bernards,” you
could use a score of 90, which would limit the search to those documents
that have many occurrences of the search criteria.

You use the score column and the other pseudo columns, id, index_any,
sort_by, summary, and max_docs, to specify the parameters to include in
your search. For a description of the pseudo columns, see “Pseudo
Columns in the Index Table” on page 44.

The text_events Table
Each database containing tables for which there is a text index must
contain an events table, which logs inserts, updates, and deletes to
indexed columns. The name of this table is text_events. It is used to
propagate updated data to the Verity collections.

The columns in the text_events table are described in Table 2-3.

Table 2-3: Columns in the text_events table

Relationships Between the Components
The relationships between the Full-Text Search engine components are
shown in Figure 2-1.

Column Name Description

event_id IDENTITY column.

id ID of the row that was updated, inserted, or deleted.

tableid Name of the table that contains the row that was updated, inserted, or deleted.

columnid Name of the column that the text index was created on.

event_date Date and time of the update, insert, or delete.

event_type Type of update (update, insert, or delete).

event_status Indicates whether the update, insert, or delete has been propagated to the collections.
Event Unread = 0. Event Read = 1. Event Succeeded = 2. Event Failed = 3.

srvid Server ID of the Full-Text Search engine maintaining the collection.

CHAPTER 2 Understanding the Full-Text Search Engine

User’s Guide 9

Figure 2-1: Components of the Full-Text Search engine

How a Full-Text Search Works
To perform a full-text search, you enter a select statement that joins the
IDENTITY column from the source table with the id column of the index
table, using pseudo columns as needed to define the search. For example,
the following query searches for documents in the blurbs table of the pubs2
database in which the word “Greek” appears near the word “Gustibus”
(the i_blurbs table is the index table):

select t1.score, t2.copy
from i_blurbs t1, blurbs t2

Full-Text Search engine

collections

Verity collections. CIS

Adaptive Server

vesaux
The Full-Text Search engine
connects to Adaptive
Server through an Open
Client connection.

text_db database for Full-Text Search

Source table

text columns
contains the actual

vesauxcol

indexsource

Adaptive Server user database(s) containing
the text tables (for example, pubs2)

id id

engine metadata

maps Verity collections
to the Adaptive Server
index table

connects to Full-Text
Search engine
through CIS

text_eventstext_events table
logs changes to
indexed
columns

How a Full-Text Search Works

10 Full-Text Search Specialty Data Store

where t1.id=t2.id and t1.score > 20
and t1.max_docs = 10
and t1.index_any = "<near>(Greek, Gustibus)"

Adaptive Server and the Full-Text Search engine split the query
processing, as follows:

1 The Full-Text Search engine processes the query:

select t1.score, t1.id
from i_blurbs t1
where t1.score > 20
and t1.max_docs = 10
and t1.index_any = "<near>(Greek, Gustibus)"

The select statement includes the Verity operator near and the pseudo
columns score, max_docs, and index_any. The operator and pseudo
columns provide the parameters for the search on the Verity
collections—they narrow the result set from the entire copy column to
the 10 documents in which the words “Greek” and “Gustibus” appear
closest to each other.

2 Adaptive Server processes the following select statement on the result
set that is returned by the Full-Text Search engine in step 1:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id

This joins the blurbs and i_blurbs tables (the source table and the index
table, respectively) on the IDENTITY column of the blurbs table and
the id column of the i_blurbs table.

Figure 2-2 describes how Adaptive Server and the Full-Text Search
engine process the query.

CHAPTER 2 Understanding the Full-Text Search Engine

User’s Guide 11

Figure 2-2: Processing a full-text search query

Adaptive Server

id

1. Index Query

i_blurbs
id

blurbs
id

collections

3. Results

Full-Text Search engine

2. Verity Query4. Adaptive Server Query

5.

1. Adaptive Server sends the index query to the Full-Text Search engine.
2. The Full-Text Search engine processes the Verity operators in the query and produces a result set

from the collections.
3. The Full-Text Search engine returns the result set to Adaptive Server.
4. Adaptive Server processes the select statement on the local table.
5. Adaptive Server displays the results of the query.

How a Full-Text Search Works

12 Full-Text Search Specialty Data Store

User’s Guide 13

C H A P T E R 3 Configuring Adaptive Server for
Full-Text Searches

This chapter describes how to configure Adaptive Server to perform full-
text searches.

Topics include:

Configuring Adaptive Server for a Full-Text Search
Engine

The Full-Text Search engine is a remote server that Adaptive Server
connects to through Component Integration Services (CIS). Before you
can use the Full-Text Search engine, you must configure Adaptive Server
for the Full-Text Search engine as follows:

• Enable the enable cis, cis rpc handling and full-text search
configuration parameters if you have not done so. You will need a
license to enable full-text search.

• Run the installtextserver script to define one or more Full-Text Search
engines.

• Run the installmessages script to install messages for the Full-Text
Search engine’s system procedures.

• Run the installevent script to create the text_events table in each user
database which will contain text indexes.

• Name the local server and reboot.

Topic Page
Configuring Adaptive Server for a Full-Text Search Engine 13

Creating and Maintaining the Text Indexes 18

Configuring Adaptive Server for a Full-Text Search Engine

14 Full-Text Search Specialty Data Store

Enabling Configuration Parameters
To connect to the Full-Text Search engine, Adaptive Server must be
running with the enable cis and cis rpc handling configuration parameters
enabled. If those parameters are not enabled, log in to Adaptive Server
using isql and use sp_configure to enable them. For example:

exec sp_configure "enable cis", 1
exec sp_configure "cis rpc handling", 1
exec sp_configure "enable full-text search", 1

Adaptive Server displays a series of messages stating that you have altered
a configuration parameter and that Adaptive Server must be rebooted for
the new configuration parameters to take effect.

Running the installtextserver Script
The installtextserver script:

• Defines the Full-Text Search engine as a remote server of server class
sds to Adaptive Server.

• Creates a database for storing text index metadata. For more
information about this database, see “The text_db Database” on page
6.

• Installs the system procedures required by the Full-Text Search
engine.

Run the installtextserver script only once (see “Running the
installtextserver Script” on page 16). To add Full-Text Search engines at
a later time, use sp_addserver. See “Configuring Multiple Full-Text
Search Engines” on page 84 for more information about sp_addserver.

All Full-Text Search engines use the same database for storing text index
metadata. This database is referred to in this book as the text_db database,
the default name.

For a list and description of the system procedures added with the
installtextserver script, see Appendix A, “System Procedures.”

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 15

Editing the installtextserver Script

The installtextserver script is located in the
$SYBASE/$SYBASE_FTS/scripts directory. Use a text editor (such as vi or
emacs) to open the script, and make your edits. The edits you can make are
as follows:

• Changing the name of the text_db database. If you use a different
name, replace all occurrences of text_db with the appropriate name.

Note If you change the name of the text_db database, you must
change the name in the defaultDb configuration parameter (see
“Modifying the Configuration Parameters” on page 67).

• Changing the name of the Full-Text Search engine. By default, the
installtextserver script defines a Full-Text Search engine named
“textsvr.” If your Full-Text Search engine is named differently, edit
this script so that it defines the correct server name.

• Adding multiple Full-Text Search engines (for information on how
this can enhance performance, see “Configuring Multiple Full-Text
Search Engines” on page 84). If you are initially defining more than
one Full-Text Search engine, edit the installtextserver script so that it
includes all the Full-Text Search engine definitions. installtextserver
includes the following section for naming the Full-Text Search engine
you are configuring (“textsvr” by default):

/*
** Add the text server
*/
exec sp_addserver textsvr,sds,textsvr
go

Add an entry for each Full-Text Search engine you are configuring.
For example, if you are configuring three Full-Text Search engines
named KRAZYKAT, OFFICAPUP, and MOUSE, replace the default
“textsvr” line with the following lines:

exec sp_addserver KRAZYKAT, sds, KRAZYKAT
exec sp_addserver OFFICAPUP, sds, OFFICAPUP
exec sp_addserver MOUSE, sds, MOUSE
go

Configuring Adaptive Server for a Full-Text Search Engine

16 Full-Text Search Specialty Data Store

• If you use OmniConnect to communicate with the Full-Text Search
engine, change the server name specification in the sp_addobjectdef
calls for the vesaux and vesauxcol tables to a valid remote server. For
example, if your remote server is named REMOTE, change the lines:

exec sp_addobjectdef
"vesaux","SYBASE.master.dbo.vesaux","table"
exec sp_addobjectdef
"vesauxcol","SYBASE.master.dbo.vesauxcol",
"table"

to:

exec sp_addobjectdef
"vesaux","REMOTE.master.dbo.vesaux","table"
exec sp_addobjectdef
"vesauxcol","REMOTE.master.dbo.vesauxcol",
"table"

Running the installtextserver Script

Use isql to run the installtextserver script. For example, to run the
installtextserver script in an Adaptive Server named MYSVR, enter:

isql -Usa -P -SMYSVR -i
$SYBASE/$SYBASE_FTS/scripts/installtextserver

Running the installmessages Script
The Full-Text Search engine has its own set of system procedure messages
that you must install in Adaptive Server. Use the installmessages script to
install the messages. You run the installmessages script only once, even if
you have multiple Full-Text Search engines.

For example, to run the installmessages script in a server named MYSVR,
enter:

isql -Usa -P -SMYSVR -i
$SYBASE/$SYBASE_FTS/scripts/installmessages

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 17

Running the installevent Script
Each database containing tables referenced by a text index must contain a
text_events table, which logs inserts, updates, and deletes to indexed
columns. It is used to propagate updated data to the Verity collections.

Run the installevent script, as described below, to create the text_events
table and associated system procedures in a database. Use the installevent
script as follows:

• If all databases require text indexes, run the installevent script to create
a text_events table in the model database. Each newly created database
will then have a text_events table. To add a text_events table to
existing databases, edit the script as described below to create the
text_events table in the existing user database.

• If not all databases have text indexes, use the installevent script as a
sample. For each existing database and each new database that
includes tables that require text indexing, run the installevent script.
You must edit the script as described below, to create the text_events
table in the correct user database.

Note If a text_events table does not exist in a database that includes
source tables that require text indexing, changes to the source table
will not be propagated to the Verity collections.

Editing the installevent Script

The installevent script is located in the $SYBASE/$SYBASE_FTS/scripts
directory. Use a text editor (such as vi or emacs) to open the script, and
make the edits. The edits you can make are:

• Changing the user database name. The installevent script creates an
events table (named text_events) and associated system procedures in
the model database. The model database is the default database. To
install the text_events table in an existing user database, edit the script
and replace all references to model with the user database name.

Creating and Maintaining the Text Indexes

18 Full-Text Search Specialty Data Store

• Changing the text_db database name. If your database for storing text
index metadata is named something other than text_db, replace all
references to text_db with the appropriate name.

Note The name of the text_db database must be the same as the name
in the defaultDb configuration parameter (see “Modifying the
Configuration Parameters” on page 67).

Running the installevent Script

Using isql, run the installevent script to install the text_events table and
related system procedures in Adaptive Server. For example, to run the
installevent script in a server named MYSVR, enter:

isql -Usa -P -SMYSVR -i
$SYBASE/$SYBASE_FTS/scripts/installevent

Note The text_db database must exist before you run the installevent script.
If it does not exist, run the installtextserver script first.

Name the local server
When using the full-Text Search engine with ASE 12.0, you must name
the local ASE server using the stored procedure, sp_addserver
<servername>, local. After issuing sp_addserver, the local server must be
rebooted. Do not install any system stored procedures in the model
database. They should be installed in sybsystemprocs. If they are installed
in model, every new database that is created will inherit a copy.

Creating and Maintaining the Text Indexes
Before the Full-Text Search engine can process full-text searches, you
must create text indexes for the source tables in the user database. After
the text indexes are created, you must update them when the source data
changes to keep the text indexes current. To create and maintain the text
indexes:

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 19

• Set up the source table for indexing (see “Setting Up Source Tables
for Indexing” on page 19).

• Create the text indexes and index tables (see “Creating the Text Index
and Index Table” on page 20).

• Bring the databases online for full-text searches (see “Bringing the
Database Online for Full-Text Searches” on page 22).

• Propagate changes in the user data to the text indexes (see
“Propagating Changes to the Text Index” on page 22).

• If you are replicating text indexes, set up text indexing in the
destination database (see “Replicating Text Indexes” on page 23).

For an example of setting up a text index, see the sample script
sample_text_main.sql in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Setting Up Source Tables for Indexing
The source table contains the data on which you perform searches (for
example, the blurbs table in the pubs2 database). For more information on
source tables, see “The Source Table” on page 5.

Before you can create text indexes on a source table, you must:

• Verify that the source table has an IDENTITY column

• Create a unique index on the IDENTITY column (optional)

Adding an IDENTITY Column to a Source Table

Every source table must contain an IDENTITY column to uniquely
identify each row and provide a means of joining the index table and the
source table. When you create a text index, the IDENTITY column is
passed with the indexed columns to the Full-Text Search engine. The
IDENTITY column value is stored in the text index and is mapped to the
id column in the index table.

For example, to create an IDENTITY column in a table named composers,
define the table as follows:

create table composers (
id numeric(m,n) identity,
comp_fname char(30) not null,

Creating and Maintaining the Text Indexes

20 Full-Text Search Specialty Data Store

comp_lname char(30) not null,
text_col text

)

where m =< 38 and n always = 0

To add an IDENTITY column to an existing table, enter:

alter table table_name add id numeric(10,0) identity

Adding a Unique Index to an IDENTITY Column

For optimum performance, Sybase recommends creating a unique index
on the IDENTITY column. For example, to create a unique index named
comp_id on the IDENTITY column created above, enter:

create unique index comp_id
on composers(id)

For more information about creating a unique index, see Chapter 11,
“Creating Indexes on Tables,” of the Transact-SQL User’s Guide.

Creating the Text Index and Index Table
Use the sp_create_text_index system procedure to create the text indexes.
sp_create_text_index does the following:

• Updates the vesaux and vesauxcol tables in the text_db database

• Creates the text index (Verity collections)

• Populates the Verity collections

• Creates the index table in the user database where the source table is
located

The text index can contain up to 16 columns. Columns of the following
datatypes can be indexed:

char, varchar, nchar, nvarchar, text, image, datetime, smalldatetime, int,
smallint, tinyint, unichar, and univarchar.

For example, to create a text index and an index table named i_blurbs for
the copy column in the blurbs table in pubs2 on KRAZYKAT, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", " ", "copy"

where:

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 21

• KRAZYKAT is the name of the Full-Text Search engine

• i_blurbs is the name of the index table and text index you are creating

• blurbs is the source table on which you are creating the text indexes

• " " is a placeholder for text index creation options

• copy is the column in the blurbs table that you are indexing

See sp_create_text_index on page 140 for more information.

Note Make sure the text_db database name in the configuration file (listed
after the defaultDb parameter) matches the database name in Adaptive
Server. If they do not match, the text index cannot be created. Also, verify
that the text_events table exists in the user database. If it does not exist, run
the installevent script for that database (refer to “Running the installevent
Script” on page 17).

Populating the Verity collections can take a few minutes or several hours,
depending on the amount of data you are indexing. You may want to
perform this step when the server is not being heavily used. Increasing the
batch_size configuration parameter will also expedite the process. See
“batch_size” on page 82 for more information.

Note Do not rename an index because the Verity collection will not be
renamed.

Specifying Multiple Columns When Creating a Text Index

When you create a text index on two or more columns, each column in the
text index is placed into its own document zone. The name of the zone is
the name of the column. For example, to create a text index and an index
table named i_blurbs for both the copy column and the au_id column in the
blurbs table in pubs2 on KRAZYKAT, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", " ", "copy", "au_id"

sp_create_text_index creates two zones in the text index named “copy” and
“au_id.” When you issue a query against the i_blurbs text index, the search
includes the copy and au_id columns. However, you can limit your search
to a particular column by using the in operator to specify a document zone
(for more information, see “in” on page 54).

Creating and Maintaining the Text Indexes

22 Full-Text Search Specialty Data Store

Bringing the Database Online for Full-Text Searches
With the Enhanced Full-Text Search engine, the database is automatically
brought online when the auto_online configuration parameter is set to 1.

When you bring a database online, the Full-Text Search engine initializes
the internal Verity structures and confirms that the Verity collections exist.

Use the sp_text_online system procedure to bring a database online for
full-text searches if it is not automatically brought online. For example, to
bring the pubs2 database online before issuing full-text searches on the
blurbs table in a Full-Text Search engine named KRAZYKAT, enter:

sp_text_online KRAZYKAT, pubs2

This message appears:

Database ‘pubs2’ is now online

The pubs2 database is now available for performing full-text searches.

See sp_text_online on page 157 for more information.

Propagating Changes to the Text Index
When you insert, update, or delete data in your source table, the text
indexes are not updated automatically. After you update data, run the
sp_refresh_text_index system procedure to log the changes to the
text_events table. Then, run the sp_text_notify system procedure to notify
the Full-Text Search engine that changes need to be processed. The Full-
Text Search engine then connects to Adaptive Server, reads the entries in
the text_events table, determines which indexes, tables, and rows are
affected, and updates the appropriate collections.

See sp_refresh_text_index on page 146 and sp_text_notify on page 156
for more information on these system procedures.

To have sp_refresh_text_index run automatically after each insert, update,
or delete, you can create triggers on your source tables, as follows:

• Create a trigger that runs sp_refresh_text_index after a delete
operation.

• Create a trigger that runs sp_refresh_text_index after an insert
operation.

• Create a trigger that runs sp_refresh_text_index after an update
operation to an indexed column.

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 23

Triggers are not fired when you use writetext to update a text column. To
have sp_refresh_text_index automatically run after a writetext:

• Set up a non-text column and update that column after each writetext.

• Create a trigger on the non-text column to run sp_refresh_text_index.
Since the Full-Text Search engine reinserts the entire row when you
issue sp_text_notify, the update to the text column gets propagated to
the text index.

For examples of each of these triggers, see the sample script
sample_text_main.sql in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Replicating Text Indexes
To replicate tables that have text indexes, follow these guidelines:

• Create the table definition in the destination database.

• Run the installevent script to create the text_events table in the
destination database, if the text_events table does not already exist
(see “Running the installevent Script” on page 17).

• Run sp_create_text_index to create the text index on the empty table
in the destination database (see “Creating the Text Index and Index
Table” on page 20).

• Create triggers for running sp_refresh_text_index to insert entries into
the text_events table whenever you insert, update, or delete data into
the table (see “Propagating Changes to the Text Index” on page 22).

• Create the replication definition in the Replication Server. This
replicates all the data in the source table to the destination table. Refer
to the “Replication Server Administration Guide” for more details.

Creating and Maintaining the Text Indexes

24 Full-Text Search Specialty Data Store

• Run sp_text_notify to update the text index; run sp_text_notify
periodically to process changes to the destination table (see
“Propagating Changes to the Text Index” on page 22).

Note You must issue an update against a non-text column whenever
a writetext command is performed. This ensures that the trigger that
inserts data into the text_events table is fired.

Example: Enabling a New Database for Text Searches
This example describes the steps for creating a text index on the plot
column of the reviews table in the movies database. This process assumes
that:

• You have created a reviews table in a new database named movies on
the MYSVR server

• The reviews table has a column named plot that you are going to index

• Adaptive Server and the Full-Text Search engine named
MYTXTSVR have been configured to connect to each other

Step 1. Verify that the text_events Table Exists

Each database containing tables referenced by a text index must contain a
text_events table, which logs inserts, updates, and deletes to indexed
columns.

If a text_events table is in your model database, it will be in all new
databases. If a text_events table is not in your model database, run the
installevent script to install the text_events table in the new database. For
example, to install the text_events table in the movies database:

• Save the installevent script as installeventmovies.

• Edit the script to replace all references to the word model with the
word movies.

• Run the script as follows:

isql -Usa -P -SMYSVR -i
$SYBASE/$SYBASE_FTS/scripts/installeventmovies

See “Running the installevent Script” on page 17 for information on
installing the text_events table.

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 25

Step 2. Check for an IDENTITY Column

Every source table must contain an IDENTITY column, which uniquely
identifies each row and provides a means of joining the index table and the
source table.

For example, to add an IDENTITY column to the reviews table, enter:

alter table reviews add id numeric(10,0) identity

See “Adding an IDENTITY Column to a Source Table” on page 19 for
more information on creating an IDENTITY column.

Step 3. Create a Unique Index on the IDENTITY Column

This step is optional. To enhance performance, Sybase recommends
creating a unique index that contains only the IDENTITY column. For
example, to create a unique index named reviews_id on the IDENTITY
column created in step 2, issue the command:

create unique index reviews_id on reviews(id)

For more information about creating a unique index, see Chapter 11,
“Creating Indexes on Tables,” of the Transact-SQL User’s Guide.

Step 4. Create the Text Index and Index Table

The source tables in the user database need to be indexed so that you can
perform full-text searches. For example, to create a text index and an index
table named reviews_idx for the plot column in the reviews table, enter:

sp_create_text_index "MYTXTSVR", "reviews_idx",
"reviews", " ", "plot"

The reviews table is now available for running full-text searches.

See sp_create_text_index on page 140 for more information.

Step 5. Bring the Database Online for a Full-Text Search

To bring the movies database online for the Full-Text Search engine named
MYTXTSVR, enter:

Creating and Maintaining the Text Indexes

26 Full-Text Search Specialty Data Store

sp_text_online MYTXTSVR, movies

Note Omit this step if you have Enhanced Full-Text Search engine and
your auto_online configuration parameter is set to “1”.

See sp_text_online on page 157 for more information.

User’s Guide 27

C H A P T E R 4 Setting Up Verity Functions

This chapter describes the setup required before you can write queries
with certain Verity functionality.

Topics includes:

Enabling Query-By-Example, Summarization, and
Clustering

The style.prm file specifies additional data to include in the text indexes
to support the following functionality:

• Query-by-example – Retrieves documents that are similar to a phrase
(see “like” on page 55 for more information).

Note The text indexes only need additional data to support phrases
in the query-by-example specification of the like operator. If you use
a document in the query-by-example specification, additional data is
not required.

• Summarization – returns summaries of documents rather than entire
documents (see “Using the summary Column to Summarize
Documents” on page 48 for more information).

• Clustering – groups documents in result sets by subtopic (see “Using
Pseudo Columns to Request Clustered Result Sets” on page 48 for
more information). Clustering is available only with the Enhanced
Full-Text Search engine.

Topic Page
Enabling Query-By-Example, Summarization, and Clustering 27

Setting Up a Column to Use As a Sort Specification 30

Using Filters on Text That Contains Tags 32

Creating a Custom Thesaurus (Enhanced Version Only) 34

Creating Topics (Enhanced Version Only) 38

Enabling Query-By-Example, Summarization, and Clustering

28 Full-Text Search Specialty Data Store

You can enable these features for all text indexes by editing the master
style.prm file, or you can enable them for an individual text index by
editing its style.prm file. Both methods are describe below.

Query-By-Example and
Clustering

To use phrases in a query-by-example specification and to use clustering,
you must enable the generation of document feature vectors at indexing
time. To do this, uncomment the following line in the style.prm file:

$define DOC-FEATURES "TF"

Summarization To configure the Full-Text Search engine for summarization, uncomment
one of the following lines that starts with “#$define” in the style.prm file:

The example below stores the best three sentences of
the document, but not more than 255 bytes.
#$define DOC-SUMMARIES "XS MaxSents 3 MaxBytes 255"
The example below stores the first four sentences of
the document, but not more than 255 bytes.
#$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 255"
The example below stores the first 150 bytes of
the document, with whitespace compressed.
#$define DOC-SUMMARIES "LB MaxBytes 150"

Each of those lines reflects a different level of summarization. You can
specify how many bytes of data you want the Full-Text Search engine to
display, by altering the numbers at the ends of these lines. For example, if
you want only the first 233 bytes of data summarized, edit the script to
read:

$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 233"

The maximum number of bytes displayed is 255. Any number greater than
that is truncated to 255.

Editing the Master style.prm File
The master style.prm file is located in:

$SYBASE/$SYBASE_FTS/verity/common/style

CHAPTER 4 Setting Up Verity Functions

User’s Guide 29

It contains the default Full-Text Search engine style parameters. Edit this
file to configure the Full-Text Search engine so that all tables on which you
create text indexes allow clustering and literal text in your query-by-
example specifications, or summarization. Uncomment the applicable
lines as described above.

Note If you have existing text indexes, you must re-create the text index
with these features enabled as described in Editing Individual style.prm
Files below.

Editing Individual style.prm Files
Perform the following steps to configure the Full-Text Search engine so
that the individual text index allows clustering and literal text in your
query-by-example specifications, or summarization:

1 Create the text index using sp_create_text_index. Use the word
“empty” in the option_string parameter so that the style.prm file is
created for the text index, but the Verity collections are not populated
with data. For example, if you are enabling clustering for the copy
column of the blurbs table, use the following syntax:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "empty", "copy"

Note If the text index already exists, omit this step. You do not need
to create the text index again.

2 Use sp_drop_text_index to drop the text index associated with the
style.prm file you are editing.

For example, to drop the text index created in step 1, enter:

sp_drop_text_index "blurbs.i_blurbs"

3 Edit the style.prm file that exists for the text index. The style.prm file
for an existing collection is located in:

$SYBASE/$SYBASE_FTS/collections/db.owner.index/style

where db.owner.index is the database, the database owner, and the
index created with sp_create_text_index. For example, if you create a
text index called i_blurbs on the pubs2 database, the full path to these
files is:

Setting Up a Column to Use As a Sort Specification

30 Full-Text Search Specialty Data Store

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style

4 Uncomment the applicable lines as described above.

For example, to enable clustering, uncomment the following line:

$define DOC-FEATURES "TF"

5 Re-create the text index you dropped in step 2. For example, to re-
create the i_blurbs text index, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs",
"blurbs", "", "copy"

Setting Up a Column to Use As a Sort Specification
Before you can sort by specific columns, you must modify the style.vgw
and style.ufl files. (For information on including a column in a sort
specification, see “Using the sort_by Column to Specify a Sort Order” on
page 47.) Both files are in the directory:

$SYBASE/$SYBASE_FTS/collections/db.owner.index/style

where db.owner.index is the database, the database owner, and the index
created using sp_create_text_index. For example, if you created a text
index called i_blurbs on the pubs2 database, the full path to those files
would be similar to:

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style

To edit the style.vgw and style.ufl files, follow these steps:

1 Drop the text index that contains the columns for which you are
adding definitions. (Dropping the text index does not drop the
collection directory.)

For example, to add definitions for the copy column in the blurbs table,
use the following command to drop the text index:

sp_drop_text_index i_blurbs

2 Edit the style.vgw file. Following this line:

dda "SybaseTextServer"

add an entry for the column you are defining. The syntax is:

CHAPTER 4 Setting Up Verity Functions

User’s Guide 31

table: DOCUMENTS
{

copy: fcolumn_number copy_column_number
}

where column_number is the number of the column you are defining.
Column numbers start with 0; if you want the first column to be
sorted, specify “f0”; to sort the second column, specify “f1”; to sort
the third column, specify “f2”, and so on.

For example, to define the first column in a table, the syntax is:

table: DOCUMENTS
{

copy: f0 copy_f0
}

Then, your style.vgw file will be similar to this:

#
Sybase Text Server Gateway
#
$control: 1
gateway:
{

dda: "SybaseTextServer"
{

copy: f0 copy_f0
}
}

3 Edit the style.ufl file, by adding the column definition for a data table
named fts. The syntax is:

data-table: fts
{

fixwidth: copy_fcolumn_number precision datatype
}

Column numbers start with 0; if you want the first column to be
sorted, specify “f0”; to sort the second column, specify “f1”; to sort
the third column, specify “f2”, and so on. For example, to add a
definition for the first column of a table, with a precision of 4, and a
datatype of date, enter:

data-table: fts
{

fixwidth: copy_f0 4 date
}

Using Filters on Text That Contains Tags

32 Full-Text Search Specialty Data Store

Similarly, to add a definition for the second column of a table with a
precision of 10, and a datatype of character, enter:

data-table: fts
{

fixwidth: copy_f1 10 text
}

4 Re-create the index, using sp_create_text_index.

Using Filters on Text That Contains Tags
To perform accurate searches on documents that contain tags (such as
HTML or postscript), the text index must use a filter to strip out the tags.
The Enhanced Full-Text Search engine provides filters for a variety of
document types (Microsoft Word, FrameMaker, WordPerfect, SGML,
HTML, and others).

When you create the text index to use a filter, the data for each type of tag
in the document is placed into its own document zone. For example, if you
have a tag called “chapter,” all chapter names are placed into one
document zone. You can issue a query that searches the entire document,
or that searches only for data in the “chapter” zone (for more information,
see “in” on page 54).

To create a text index that uses a filter, modify the style.dft file for that text
index. To edit the style.dft file, follow these steps:

1 Create the text index using sp_create_text_index. Use the word
“empty” in the option_string parameter so that the style.dft file is
created for the text index, but the Verity collections are not populated
with data. For example, to create a text index for the copy column of
the blurbs table, use the following syntax:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "empty", "copy"

2 Drop the text index that you create in step 1. This drops the text index,
but not the style.dft file. For example, use the following command to
drop the i_blurbs text index:

sp_drop_text_index i_blurbs

3 Edit the style.dft file. The style.dft file is in the directory:

$SYBASE/$SYBASE_FTS/collections/db.owner.index/style

CHAPTER 4 Setting Up Verity Functions

User’s Guide 33

where db.owner.index is the database, the database owner, and the
index created using sp_create_text_index. For example, if you created
a text index called i_blurbs on the pubs2 database, the full path to the
style.dft file would be similar to:

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style

Following this line:

field: f0

add syntax to use a filter.

Use the following syntax:

• For SGML documents, use:

/filter="zone -nocharmap"

• For HTML documents, use:

/filter="zone -html -nocharmap"

With Enhanced Full-Text Search engine, use the following syntax for
all document types:

/filter="universal"

For example, your style.dft file for an SGML document in the will
look like this:

$control: 1
dft:
{

field: f0
/filter="zone -nocharmap"

field: f1
field: f2
.
.
field: f15

{

Your style.dft file for an SGML document in the Enhanced version
will look like this:

$control: 1
dft:
{

field: f0
/filter="universal"

field: f1

Creating a Custom Thesaurus (Enhanced Version Only)

34 Full-Text Search Specialty Data Store

field: f2
.
.
field: f15

{

Note Use getsend to load the database with document data. getsend
takes the following arguments: database, table, column and row id.
Insert a null value for the rowid for each row of text you wish to insert.
getsend must insert into an image column for filtering to work. For
more information on getsend, refer to the README.TXT file and
getsend.c file in $SYBASE/$SYBASE_FTS/sample/source directory.

4 Re-create the index, using sp_create_text_index. For example:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "", "copy"

Creating a Custom Thesaurus (Enhanced Version
Only)

The Verity thesaurus operator expands a search to include the specified
word and its synonyms (for information on using the thesaurus operator,
see “thesaurus” on page 58). In the Enhanced version of the Full-Text
Search engine, you can create a custom thesaurus that contains
application-specific synonyms to use in place of the default thesaurus.

For example, the default English language thesaurus contains these words
as synonyms for “money”: “cash,” ”currency,” ”lucre,” ”wampum,” and
”greenbacks.” You can create a custom thesaurus that contains a different
set of synonyms for “money”; for example, such as: ”bid,” ”tokens,”
”credit,” ”asset,” and ”verbal offer.”

To create a custom thesaurus, follow these steps:

1 Make a list of the synonyms that you will use with your application.
It may help to examine the default thesaurus (see “Examining the
Default Thesaurus (Optional)” on page 35).

2 Create a control file that contains the synonyms you are defining for
your custom thesaurus (see “Creating the Control File” on page 36).

CHAPTER 4 Setting Up Verity Functions

User’s Guide 35

3 Create the custom thesaurus using the mksyd utility (see “Creating the
Thesaurus” on page 37). This uses the control file as input.

4 Replace the default thesaurus with your custom thesaurus (see
“Replacing the Default Thesaurus with the Custom Thesaurus” on
page 38).

For more information on “Custom Thesaurus Support” and the mksyd
utility, see the Verity Web site at http://www.verity.com.

In the Enhanced version of Full-Text Search engine, two sample files
illustrate how to set up and use a custom thesaurus:

• sample_text_thesaurus.ctl is a sample control file

• sample_text_thesaurus.sql issues queries against the custom
thesaurus defined in the sample control file

These files are in the $SYBASE/$SYBASE_FTS/sample/scripts directory.

Examining the Default Thesaurus (Optional)
A control file contains all the synonym definitions for a thesaurus. To
examine the default thesaurus, create its control file using the mksyd
utility. Use the syntax:

mksyd -dump -syd
$SYBASE/$SYBASE_FTS/verity/common/vdkLanguage/vdk20
.syd -f work_location/control_file.ctl

where:

• vdkLanguage – is the value of the vdkLanguage configuration
parameter (for example, “english”)

• work_location – is the directory where you want to place the control
file

• control_file – is the name of the control file you are creating from the
default thesaurus

Examine the control file (control_file.ctl) that it creates to view the default
synonym lists.

Creating a Custom Thesaurus (Enhanced Version Only)

36 Full-Text Search Specialty Data Store

Creating the Control File
Create a control file that contains the new synonyms for your custom
thesaurus. The control file is an ASCII text file in a structured format.
Using a text editor (such as vi or emacs), either:

• Edit the control file from the default thesaurus and add new synonyms
to the existing thesaurus (see “Examining the Default Thesaurus
(Optional)” on page 35), or

• Create a new control file that includes only your synonyms

Control File Syntax

The control file contains synonym list definitions in a synonyms:
statement. For example, the following is a control file named colors.ctl:

$control: 1
synonyms:
{
list: "red, ruby, scarlet, fuchsia,\
magenta"
list: "electric blue <or> azure"
/keys = "lapis"
}
$$

The synonyms: statement includes:

• list: keywords that specify the start of a synonym list. The synonyms
in the list are either in query form or in a list of words or phrases
separated by commas.

CHAPTER 4 Setting Up Verity Functions

User’s Guide 37

• Each list: can optionally have a /keys modifier that specifies one or
more keys separated by commas. In the example above, no keys are
specified in the first “list”. This means the list is found when the
thesaurus is queried for the word “red,” “ruby,” “scarlet,” “fuchsia,”
or “magenta.” The second “list” uses the /keys modifier to specify one
key. This means the words or phrases in the list will satisfy a query
only when you specify <thesaurus>lapis.

Note If you use emacs to build a synonym list and any of your lists
go beyond one line, turn off auto-fill mode. If you separate your list
into multiple lines, include a backslash (\) at the end of each line so
that the lines are treated as one list.

For more complex examples of control files, see the Verity Web site.

Creating the Thesaurus
The mksyd utility creates the custom thesaurus using a control file as input.
It is located in:

$SYBASE/$SYBASE_FTS/verity/bin

Run, or define an alias to run, mksyd from this bin directory. Create your
custom thesaurus in any work directory.

The mksyd syntax for creating a custom thesaurus is:

 mksyd -f control_file.ctl -syd custom_thesaurus.syd

where:

• control_file – is the name of the control file you create in Creating the
Control File above

• custom_thesaurus – is the name of the custom thesaurus you are
creating

For example, to execute the mksyd utility reading the sample control file
defined above, and directing output to a work directory, use the syntax:

mksyd -f /usr/u/sybase/dba/thesaurus/colors.ctl -
syd /usr/u/sybase/dba/thesaurus/custom.syd

Creating Topics (Enhanced Version Only)

38 Full-Text Search Specialty Data Store

Replacing the Default Thesaurus with the Custom Thesaurus
The default thesaurus named vdk20.syd is located in:

$SYBASE/$SYBASE_FTS/verity/common/vdkLanguage

where vdkLanguage is the value of the vdkLanguage configuration
parameter (for example, the English directory is
$SYBASE/$SYBASE_FTS/verity/common/english). Each application and
user reading from this location at runtime uses this thesaurus. To replace
it with your custom thesaurus, follow these steps:

1 Back up the default thesaurus before replacing it with the custom
thesaurus. For example:

mv /$SYBASE/$SYBASE_FTS/verity/common/english/vdk20.syd default.syd

2 Replace the vdk20.syd file with your custom thesaurus. For example:

cp custom.syd /$SYBASE/$SYBASE_FTS/verity/common/english/vdk20.syd

3 Restart your Full-Text Search engine; no configuration file changes
are required. The thesaurus is read from this location when the Full-
Text Search engine is started, not when a query is executed.

Queries using the thesaurus operator will now use the custom thesaurus.

Creating Topics (Enhanced Version Only)
The section provides a condensed overview of Verity Topics. Topics are
discussed in detail in Chapter 8, “Verity Topics.”

A TOPIC® is a grouping of information related to a concept or subject
area. With topic definitions in place, a user can perform searches on the
topic instead of having to write queries with complex syntax.

The user creates topics which can be combinations of words and phrases,
Verity operators and modifiers, and weight values. Then, any user can
query the topic.

Before you create topics, determine your application requirements, and
establish standards for naming conventions and for the location of the
following:

• Outline files – contains the topic definitions. Each topic has its own
outline file.

CHAPTER 4 Setting Up Verity Functions

User’s Guide 39

• Topic set directories – contains the compiled topic. Each topic has its
own topic set directory.

• Knowledge base map file – contains pointers to the topic set
directories.

To implement topics, perform the following steps:

1 Create one or more outline input files to define your topics (see
“Creating an Outline File” on page 39). Each outline file is used to
populate one topic set.

2 Create and populate a topic set directory, using the mktopics utility
(see “Creating a Topic Set Directory” on page 40). Each topic set
directory is populated based on one topic outline input file.

3 Create a knowledge base map, specifying the locations of one or more
topic set directories (see “Creating a Knowledge Base Map” on page
41)

4 Set the knowledge_base configuration parameter to point to the
location of the knowledge base map (see “Defining the Location of
the Knowledge Base Map” on page 41)

5 Execute queries against defined topics.

The following sample files illustrate the topics feature:

• sample_text_topics.otl is a sample outline file

• sample_text_topics.kbm is a sample knowledge base map

• sample_text_topics.sql issues queries using defined topics

These files are in the $SYBASE/$SYBASE_FTS/sample/scripts directory.

Creating an Outline File
A topic outline file specifies all the combinations of words and phrases,
Verity operators and modifiers, and weight values that the search engine
uses when you issue a query using the topic. The outline file is an ASCII
text file in a structured format.

For example, the following outline file defines the topic “saint-bernard”:

$control: 1
saint-bernard <accrue>
*0.80 "Saint Bernard"

Creating Topics (Enhanced Version Only)

40 Full-Text Search Specialty Data Store

*0.80 "St. Bernard"
* "working dogs"
* "large dogs"
* "European breeds"
$$

When you issue a query specifying the topic “saint-bernard”, the Full-Text
Search engine:

• Returns documents that contain one or more of the following phrases:
“Saint Bernard,” “St. Bernard,” “working dogs,” “large dogs,” and
“European breeds”

• Scores documents that contain the phrase “Saint Bernard” or “St.
Bernard” higher than documents that contain the phrase “working
dogs, “large dogs,” or “European breeds”

This example is a very basic topic definition. An outline can introduce
more complex relationships by using:

• Multiple levels of subtopics

• Combinations of Verity operators (this example uses accrue)

• Verity modifiers

Note In Windows NT, you can use the graphical user interface of the
Verity Intelligent Classifier product to create topic outlines. It is
available from Verity. If you use Intelligent Classifier, it automatically
creates a topic set directory, and you can go to “Creating a Knowledge
Base Map” on page 41 to continue setting up your topics.

Creating a Topic Set Directory
Use the mktopics utility to create and populate a topic set directory. It is
located in:

$SYBASE/$SYBASE_FTS/verity/bin

Run, or define an alias to run, mktopics from this bin directory. You can
create a topic set directory or directories in any work directory.

The mktopics syntax is:

mktopics -outline outline_file.otl -topicset topic_set_directory

where:

CHAPTER 4 Setting Up Verity Functions

User’s Guide 41

• outline_file – is the name of the outline file you create in “Creating an
Outline File” on page 39

• topic_set_directory –is the name of the topic set directory you are
creating

For example, to execute the mktopics utility reading the saint-bernard.otl
file defined above, and directing output to a work directory, use the syntax:

mktopics -outline
/usr/u/sybase/topic_outlines/saint-bernard.otl -
topicset /usr/u/sybase/topic_sets/saint-
bernard_topic

Creating a Knowledge Base Map
A knowledge base map specifies the locations of one or more topic set
directories. Create an ASCII knowledge base map file that defines the
fully-qualified directory paths to your topic sets.

For example, the following knowledge base map file illustrates how you
can list multiple knowledge bases in the map. The first entry identifies the
topic set directory created with mktopics above.

$control:1
kbases:
{
kb:
/kb-path = /usr/u/sybase/topic_sets/saint-bernard_topic
kb:
/kb-path = /usr/u/sybase/topic_sets/another_topic
}

Defining the Location of the Knowledge Base Map
Set the knowledge_base configuration parameter to point to the location of
the knowledge base map. For example:

sp_text_configure KRAZYKAT, ’knowledge_base’,
’/usr/u/sybase/topic_sets/sample_text_topics.kbm’

The knowledge_base configuration parameter is static, and you must
restart the Full-Text Search engine for the definition to take effect.

Creating Topics (Enhanced Version Only)

42 Full-Text Search Specialty Data Store

Executing Queries Against Defined Topics
You can now execute queries using the defined topic instead of a complex
query. For example, before you create the “saint-bernard” topic, you
would have to use the following syntax:

...where i.index_any = "<accrue> ([80]Saint Bernard, [80]St. Bernard, working
dogs, large dogs, European breeds)"

to find documents that:

• Contain one or more of the following phrases: “Saint Bernard,” “St.
Bernard,” “working dogs,” “large dogs,” and “European breeds”

• Score documents containing the phrase “Saint Bernard” or “St.
Bernard” higher than documents containing the phrase “working
dogs,” “large dogs,” or “European breeds”

After you create the topic “saint-bernard”, you can use this syntax:

...where i.index_any = "<topic>saint-bernard"

or:

...where i.index_any = "saint bernard"

Note If you enter a word in a query expression, the Full-Text Search
engine tries to match it with a topic name. If you enter a phrase in a query
expression, the Full-Text Search engine replaces spaces with hyphens (-),
and then tries to match it with a topic name. For example, the Full-Text
Search engine matches “saint bernard” with the topic “saint-bernard”.

See the sample_text_topics.sql file for examples of using topics in queries.

Troubleshooting Topics
If the knowledge_base configuration parameter specifies a knowledge
base map file that does not exist, the Full-Text Search engine will not be
able to start a session with Verity, and the server will not start. If the map
file exists but contains invalid entries, Verity issues warning messages at
start-up time. You can correct errors by editing the <textserver>.cfg file in
the $SYBASE directory. You can correct path information and change the
line beginning: “knowledge_base=”.

User’s Guide 43

C H A P T E R 5 Writing Full-Text Search Queries

This chapter describes the pseudo columns, search operators, and
modifiers that you can include in a full-text search.

Topics include:

Components of a Full-Text Search Query
To write a full-text search query, you enter the search parameters as part
of an Adaptive Server select statement. Then the Full-Text Search engine
processes the search. The select statement requires:

• A where clause that assigns a Verity language query to the index_any
pseudo column

• Pseudo columns to further define the parameters of the search
(optional)

• A join between the IDENTITY column from the source table and the
id column from the index table

For example, to return the 10 documents from the copy column of the
blurbs table that have the most occurrences of the word “software,” enter:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<many> <word> software"
and t1.max_docs = 10

Topic Page
Components of a Full-Text Search Query 43

Pseudo Columns in the Index Table 44

Full-Text Search Operators 50

Operator Modifiers 60

Pseudo Columns in the Index Table

44 Full-Text Search Specialty Data Store

Adaptive Server passes the Verity query to the Full-Text Search engine to
process the search. For more information on how Adaptive Server
processes the query, see “How a Full-Text Search Works” on page 9.

Default Behaviour
The default or simple syntax of a query to the full-Text Search engine is
treated broadly:

1 Searches are case sensitive.

2 The STEM operator applies to search words.

3 The MANY modifier is applied.

4 The ACCRUE operator is activated at the parent level.

Pseudo Columns in the Index Table
Pseudo columns are columns in the index table that define the parameters
of the search and provide access to the results data. (For more information
about index tables, see “The Index Table” on page 7.) These columns are
valid only in the context of a query; that is, the information in the columns
is valid only for the duration of the query. If the query that follows contains
a different set of parameters, the pseudo columns contain a different set of
values.

Each pseudo column in an index table describes a different search
attribute. For example, if you indicate the score column, the query displays
only the result set that falls within the parameters you define. For example,
the following query displays only the results that have a score value
greater than 90:

index_table_name.score > 90

Other pseudo columns (like highlight) are used to retrieve data generated
by Verity for a particular document. Table 5-1 describes the pseudo
columns that are maintained by the Full-Text Search engine.

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 45

Table 5-1: Full-Text Search engine pseudo columns

The following sections describe the functionality of the pseudo columns.

Pseudo Column
Name Description Datatype

Length
(in
Bytes)

cluster_number Enhanced Full-Text Search engine only. Contains the
cluster that the row is part of. Clusters are numbered starting
with 1. You can use the cluster_number column only in the
select clause of a query.

int 4

cluster_keywords Enhanced Full-Text Search engine only. Contains the
keywords that Verity uses to build the cluster. You can use
cluster_keywords only in the select clause of a query.

varchar 255

highlight Offsets within the document all words from the query. You
can use highlight only in the select clause of a query.

text 16

id Uniquely identifies a document within a collection. Used to
join with the IDENTITY column of the source table. You can
use id in the select clause or where clause of a query.

numeric 6

index_any Provides a Verity language query to the Full-Text
Search engine. You can use index_any only in a where
clause.

varchar 255

max_docs Limits results to the first n documents, based on the default
sort order. In a clustered result set, limits results to the first n
documents in each cluster. You can use max_docs only in a
where clause.

int 4

score The normalized measure of correlation between search
strings and indexed columns. The score associated with a
specific document has meaning only in reference to the query
used to retrieve the document. You can use score in a select
clause or a where clause.

int 4

sort_by Specifies the sort order in which to return the result set.

The Enhanced Full-Text Search engine allows up to
16 sort specifications in the sort_by column.

You can use sort_by only in a where clause.

varchar 35

summary Selects summarization data. You can use the summary
column only in the select clause of a query.

varchar 255

Pseudo Columns in the Index Table

46 Full-Text Search Specialty Data Store

Using the score Column to Relevance-Rank Search Results
Relevance ranking is the ability of the Full-Text Search engine to assign
the score parameter a value that indicates how well a document satisfies
the query. The score calculation depends on the search operator used in the
query (for more information, see “Using the Verity Operators” on page
53). The closer the document satisfies the query, the higher the score value
is for that document.

For example, if you search for documents that contain the word “rain,” a
document with 12 occurrences of “rain” receives a higher score value than
a document with 6 occurrences of “rain.”

If you set score to a high value (such as 90) in your query, you limit the
result set to documents that have a score value greater than that number.

Note Verity uses decimals for score values; Sybase uses whole numbers.
For example, if Verity reports a score value of .85, Sybase reports the same
value as 85.

For example, the following query searches for documents that contain the
word “raconteur” or “Paris,” or both, and that have a score of 90 or greater:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 90
and t1.index_any = "<accrue>(raconteur, Paris)"
score copy
----- --
(0 rows affected)

The query does not find any documents that contain the word “raconteur”
or “Paris” and that have a score greater than 90. However, if the score
value in the query is lowered to 39, you find that one document in the
blurbs table mentions the word “raconteur” or “Paris”:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 39
and t1.index_any = "<accrue>(raconteur, Paris)"
score copy
----- --
40 A chef’s chef and a raconteur’s raconteur, Reginald
 Blotchet-Halls calls London
his second home. "Th’ palace
 . . .

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 47

Using the sort_by Column to Specify a Sort Order
The sort order specifies the collating sequence used to order the data in the
result set. The default sort order is set by the sort_order configuration
parameter (for more information, see “Setting the Default Sort Order” on
page 72). Case insensitive sort order is supported in the Enhanced version.

Use the sort_by pseudo column to return a result set with a sort order other
than the default. With the Enhanced Full-Text Search engine, you can
specify up to 16 sort specifications in the sort_by pseudo column.

Table 5-2 lists the values for the sort_by pseudo column.

Table 5-2: Values for the sort_by pseudo column

Note Before you can sort by specific columns, you must modify the
style.vgw and style.ufl files (see “Setting Up a Column to Use As a Sort
Specification” on page 30).

For example, the following query sorts the documents by timestamp in
ascending order:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 90
and t1.index_any = "<accrue>(raconteur, Paris)"
and t1.sort_by = “fts_timestamp asc”

Value Description

fts_score desc Returns a result set sorted by score in descending order.

fts_score asc Returns a result set sorted by score in ascending order.

fts_timestamp desc Returns a result set sorted by a timestamp in descending order.

fts_timestamp asc Returns a result set sorted by a timestamp in ascending order.

column_name desc Returns a result set sorted according to the descending order of a column.
column_name is the name of the source table’s column.

column_name asc Returns a result set sorted according to the ascending order of a column.
column_name is the name of the source table’s column.

fts_cluster asc Returns a clustered result set. Only available with the Enhanced Full-Text Search
engine. (See “Using Pseudo Columns to Request Clustered Result Sets” on page
48 for more information.)

Pseudo Columns in the Index Table

48 Full-Text Search Specialty Data Store

Using the summary Column to Summarize Documents
Use the summary pseudo column to have queries return only summaries of
the documents that meet the search criteria, rather than returning entire
documents. The summary column is not available by default; you must edit
the style.prm file prior to creating the text index to enable summarization.
See “Enabling Query-By-Example, Summarization, and Clustering” on
page 27 for information about enabling the summary column.

For example, the following query returns only summaries of documents
that include the words “Iranian” and “book” (in this example, the style.prm
file is configured to display 255 characters):

select t1.score, t1.summary
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 70
and t1.index_any = "(Iranian <and> book)"
score summary
----- --
----------------- 78 They asked me to write about
myself and my book, so here
 goes: I started a restaurant called “de Gustibus”
with two
 of my fri
(1 row affected)

The Full-Text Search engine supports summaries of up to 255 bytes.

For additional examples of queries using summarization, see the sample
script sample_text_queries.sql in the
$SYBASE/$SYBASE_FTS/sample/scripts directory.

Using Pseudo Columns to Request Clustered Result Sets
The clustering function analyzes a result set and groups rows into clusters
so that the rows in each cluster are semantically more similar to each other,
on average, than they are to other rows in other clusters. Ordering rows by
subtopics can help you get a sense of the major subject areas covered in
the result set. Clustering is only available with the Enhanced Full-Text
Search Specialty Data Store.

Returning a clustered result set can be significantly slower than returning
a nonclustered result set. If the response time of a query is critical, use a
nonclustered result set.

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 49

Preparing to Use Clustering

Before you request a clustered result set, you must build the text index
with the clustering function enabled (see “Enabling Query-By-Example,
Summarization, and Clustering” on page 27).

The Verity clustering algorithm attempts to group similar rows together,
based on the values of the following configuration parameters:

• cluster_style

• cluster_max

• cluster_effort

• cluster_order

Use the sp_text_cluster system procedure to have a query use values that
are different from the default values of these configuration parameters.
(For values and how to set them for a query, see sp_text_cluster on page
148.)

Writing Queries Requesting a Clustered Result Set

To obtain a clustered result set, specify “fts_cluster asc” as the sort
specification in the sort_by pseudo column of the query. For example:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<many> <word> software"
and t1.max_docs = 10
and t1.sort_by = "fts_cluster asc"

Include any of the following pseudo columns in your query to return
additional clustering information:

• cluster_number – contains the number of the cluster the row belongs
to. Clusters are numbered starting with 1.

• cluster_keywords – contains the most common words found in the
cluster. The cluster_keywords column contains a null value for each
row that does not fit into any cluster.

• max_docs – limits the number of rows returned for each cluster. (In a
nonclustered query, the max_docs column limits the total number of
rows that are returned in a result set.)

Full-Text Search Operators

50 Full-Text Search Specialty Data Store

• score – contains a value of 0 to 10000. The higher the score, the closer
the row is to the cluster center. A score of 0 indicates the row does not
fit into any cluster. (In a nonclustered query, the score column can
contain a value of 0 to 100.) The search engine does not return results
with a score of 0. Logically a score of 0 represents “no match” but the
user never sees a score of 0.

See the sample script named sample_text_queries.sql in the
$SYBASE/$SYBASE_FTS/sample/scripts directory for examples of SQL
statements using clustering.

Full-Text Search Operators
The special search operators that you use to perform full-text searches are
part of the Verity search engine. Table 5-3 describes the Verity search
operators provided by the Full-Text Search engine.

Table 5-3: Verity search operators

Operator Name Description

accrue Selects documents that contain at least one of the search elements specified in a query.
The more search elements there are, the higher the score will be.

and Selects documents that contain all the search elements specified in a query.

complement Returns the complement of the score value (the score value subtracted from 100).

in Selects documents that contain the search criteria in
the document zone specified.

like Selects documents that are similar to the sample documents or passages specified in
a query.

near Selects documents containing the specified search elements, where the closer the
search terms are to each other in a document, the higher the document’s score.

near/n Selects documents containing two or more search terms within n number of words of
each other, where n is an integer up to 1000. The closer the search terms are to each
other in a document, the higher the document’s score.

or Selects documents that contain at least one of the search elements specified in a query.

paragraph Selects documents that include all the search elements you specify within the same
paragraph.

phrase Selects documents that include a particular phrase. A phrase is a grouping of two or
more words that occur in a specific order.

product Multiplies the score values for each of the items of the search criteria.

sentence Selects documents that include all the specified words in the same sentence.

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 51

Considerations When Using Verity Operators
Consider the following when you write full-text search queries:

• You must enclose the operators in angle brackets (<>) in the query. If
they are not enclosed in angle brackets, the Full-Text Search engine
issues error messages similar to the following:

Msg 20200, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
Error E1-0111 (Query Builder): Syntax error in query string near
character 5
Msg 20200, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
Error E1-0114 (Query Builder): Error parsing query: word(tasmanian)
Msg 20101, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
VdkSearchNew failed with vdk error (-40).
Msg 20101, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
VdkSearchGetInfo failed with vdk error (-11).
score copy
----- --
(0 rows affected) score

• You must enclose the Verity language query in single quotes (’) or
double quotes ("). The Full-Text Search engine strips off the
outermost quotes before it sends the query to Verity. For example,
when you enter the query:

...where index_any = "’?own’"

the Full-Text Search engine sends the following query to Verity:

stem Expands the search to include the specified word and its variations.

sum Adds the score values for all items in the search criteria.

thesaurus Expands the search to include the specified word and its synonyms.

topic Specifies that the search term you enter is a topic.

wildcard Matches wildcard characters included in search strings. Certain characters indicate a
wildcard specification automatically.

word Performs a basic word search, selecting documents that include one or more instances
of the specified word.

yesno Converts all nonzero score values to 100.

Operator Name Description

Full-Text Search Operators

52 Full-Text Search Specialty Data Store

’?own’

• A query may be comprised of several “index_any” clauses anded
together in SQL. The right and value strings can be prefixed with
“<snnn>”. All such strings will be concatenated in Full-Text Search
in the order determined by the “nnn” values. The “<snnn>” is
removed. For instance:

where index_any=“<s001>hello”
and index_any=”<s002> world”

is the same as:

where index_any = “hello world”

This is a handy work-around for search strings that are greater than
255 characters.

• Search terms entered in mixed case automatically become case
sensitive. Search terms entered in all uppercase or all lowercase are
not automatically case sensitive. For example, a query on “Server”
finds only the string “Server”. A query on “server” or “SERVER”
finds the strings “Server”, “server”, and “SERVER”.

• You can use alternative syntax for the query expressions shown in
Table 5-4.

Table 5-4: Alternative Verity syntax

When using the alternative syntax, remember that the Full-Text
Search engine strips off the outermost quotes before it sends the query
to Verity. For example, when you enter the query:

...where index_any = "’play’"

the Full-Text Search engine sends the following query to Verity:

’play’

This is the same as:

<MANY><STEM>play

Standard Query Expression Alternative Syntax

<MANY><WORD>string "string"

<MANY><STEM>string ’string’

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 53

Using the Verity Operators
The following sections describe how to use the Verity operators shown in
Table 5-3 on page 50.

accrue

The accrue operator selects documents that contain at least one of the
search items specified in the query. There must be two or more search
elements. Each result is relevance-ranked. For example, the following
query searches for the word “restaurant” or “deli” or both in the copy
column of the blurbs table:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "<accrue>(restaurant, deli)"

and, or

The and and or operators select documents that contain the specified
search elements. Each result is relevance-ranked. The and operator selects
documents that contain all the elements specified in the query. For
example, the following query selects documents that contain both
“Iranian” and “business”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "(Iranian <and> business)"

The or operator selects the documents that contain any of the search
elements. For example, if the preceding query is rewritten to use the or
operator, the query selects documents that contain the word “Iranian” or
“business”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "(Iranian <or> business)"

Full-Text Search Operators

54 Full-Text Search Specialty Data Store

complement

The complement operator returns the complement of the score value for a
document; that is, it subtracts the value of score from 100 and returns the
result as the score value for the document.

in

The in operator selects documents that contain the specified search
element in one or more document zones. Document zones are created for
a text index in the following two scenarios:

• When you create an index on two or more columns using
sp_create_text_index, a document zone is created for each column in
the text index (for more information, refer to “Specifying Multiple
Columns When Creating a Text Index” on page 21). A document
zone is not created when you create a text index on a single column.
For example, if you specify the au_id and copy columns of the blurbs
table when you create the text index, you can issue the following
query:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "gorilla <in> copy"

This returns rows that contain the word “gorilla” in the copy column.
However, if you specify only the copy column of the blurbs table when
you create the text index, this query does not return any rows.

• When you create an index that uses a filter, a document zone is created
for each tag in the document (for more information, see “Using Filters
on Text That Contains Tags” on page 32). You can limit your search
to a particular tag by specifying the tag name after the in operator. For
example, to search for the word “automotive” in a “title” tag in an
HTML document, specify:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "automotive <in> title"

Text indexes utilizing filters can contain only one column.

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 55

like

The like operator selects documents that are similar to the document(s) or
passages you provide. The search engine analyzes the text to find the most
important terms to use. If you specify multiple samples, the search engine
selects important terms that are common across the samples. Each result is
relevance-ranked.

The like operator accepts a single operand, called the query-by-example
(QBE) specification. The QBE specification can be either literal text or
document IDs. The document IDs are from the IDENTITY column in the
source table. For example, to select documents that are similar to the
document in the copy column in the row with an IDENTITY of “2”, enter:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = ’<like> ("{2}")’

Before using literal text in the QBE specification, you must uncomment
the following line in the style.prm file:

$define DOC-FEATURES "TF"

For more information, see “Enabling Query-By-Example,
Summarization, and Clustering” on page 27.

See the sample script named sample_text_queries.sql in the
$SYBASE/$SYBASE_FTS/sample/scripts directory for examples of SQL
statements using QBE.

near, near/n

The near operator selects documents that contain the items specified in the
query and are near each other (“near” being a relative term). The
documents in which the search words appear closest to each other receive
the highest relevance-ranking.

The near/n operator specifies how far apart the items can be (n has a
maximum value of 1000). The following example selects documents in
which the words “raconteur” and “home” appear within 10 words of each
other:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<near/10>(raconteur, home)"

Full-Text Search Operators

56 Full-Text Search Specialty Data Store

or

See “and, or” on page 53.

phrase

The phrase operator selects documents that contain a particular phrase (a
group of two or more items that occur in a specific order). Each result is
relevance-ranked. The following example selects the documents that
contain the phrase “gorilla’s head”:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<phrase>(gorilla’s head)"

paragraph

The paragraph operator selects documents in which the specified search
elements appear in the same paragraph. The closer the words are to each
other in a paragraph, the higher the score the document receives in
relevance-ranking. The following example searches for documents in
which the words “text” and “search” occur within the same paragraph:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<many><paragraph>(text, search)"

product

The product operator multiplies the score value for the documents for each
of the search elements. To arrive at a document’s score, the Full-Text
Search engine calculates a score for each search element and multiplies the
scores. For example:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<product>(cat, created)"

The score value for each search element is 78; however, because the score
values for the items are multiplied, the document has a score value of 61
(.78 x.78 =.61(100) = 61).

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 57

sentence

The sentence operator selects documents in which the specified search
elements appear in the same sentence. The closer the words are to each
other in a sentence, the higher the score the document receives in
relevance-ranking. The following example searches for documents in
which the words “tax” and “service” occur within the same sentence:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<many><sentence>(tax, service)"

stem

The stem operator searches for documents containing the specified word
and its variations. For example, if you specify the word “cook,” the Full-
Text Search engine produces documents that contain “cooked,”
“cooking,” “cooks,” and so on. To relevance-rank the result set, include
the many modifier in the query (see “Operator Modifiers” on page 60).

The following query uses the stem operator to find documents that contain
variations of the word “create,” that is, words that contain the word
“create” as a stem. Notice that even though the first document contains a
word in which “create” is not a perfect stem (“creative”), the document is
still selected:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 10
and t1.index_any = "<many><stem>create"
score copy
----- --
78 Anne Ringer ran away from the circus as a child. A
 university creative writing professor and her family
 . . .
78 If Chastity Locksley didn’t exist, this troubled world
 would have created her! Not only did she master the mystic

sum

The sum operator totals the score values for each search element, up to a
maximum of 100. To arrive at a document’s score, the Full-Text Search
engine calculates a score for each search element and totals those scores.

Full-Text Search Operators

58 Full-Text Search Specialty Data Store

thesaurus

The thesaurus operator searches for documents containing a synonym for
a search element. For example, you might perform a search using the word
“dog,” looking for documents that use any of its synonyms (“canine,”
“pooch,” “pup,” “watchdog,” and so on). Each result is relevance-ranked.

The Full-Text Search engine supplies a default thesaurus. With the
Enhanced Full-Text Search engine, you can create a custom thesaurus. For
more information, see “Creating a Custom Thesaurus (Enhanced Version
Only)” on page 34.

The following example uses the thesaurus operator to find a result set that
contains synonyms for the word “crave.” The first document is selected
because it contains the word “want”; the second, because it contains the
word “hunger”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<thesaurus>(crave)"
score copy
----- ---
78 They asked me to write about myself and my book, so here
 goes: I started a restaurant called “de Gustibus” with two
 . . .
 of restaurant over another, when what they really want is a
 . . .
78 A chef’s chef and a raconteur’s raconteur, Reginald
 Blotchet-Halls calls London his second home. "Th’ palace
 . . .
 his equal skill in satisfying our perpetual hunger for
 . . .

topic (Enhanced Version Only)

The topic operator selects documents that meet the search criteria defined
by the specified topic. For more information, see “Creating Topics
(Enhanced Version Only)” on page 38. For example, use the following
syntax to find documents that meet the criteria defined by the topic
“engineering”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<topic>(engineering)"

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 59

wildcard

The wildcard operator allows you to substitute wildcard characters for part
of the item for which you are searching. Table 5-5 describes the wildcard
characters and their attributes.

Table 5-5: Full-Text Search engine wildcard characters

To relevance-rank the result set, include the many modifier in the query
(see “Operator Modifiers” on page 60).

For example, the following query searches for documents that include
variations of the word “slingshot”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id

Character Function Syntax Locates
? Specifies one alphanumeric character. You do

not need to include the wildcard operator when
you include the question mark in your query.
The question mark is ignored in a set ([]) or in
an alternative pattern ({}).

’?an’ “ran,” “pan,” “can,”
and “ban”

* Specifies zero or more of any alphanumeric
character. You do not need to include the
wildcard operator when you include the
asterisk in your query; you should not use the
asterisk to specify the first character of a
wildcard-character string. The asterisk is
ignored in a set ([]) or in an alternative pattern
({}).

’corp*’ “corporate,”
“corporation,”
“corporal,” and
“corpulent”

[] Specifies any single character in a set. If a
word includes a set, you must enclose the word
in backquotes (‘‘). Also, there can be no spaces
in a set.

<wildcard> ‘c[auo]t‘ “cat,” “cut,” and
“cot”

{} Specifies one of each pattern separated by a
comma. If a word includes a pattern, you must
enclose the word in backquotes (‘‘). Also,
there can be no spaces in a set.

<wildcard>
‘bank{s,er,ing}‘

“banks,” “banker,”
and “banking”

^ Specifies one of any character not included in
a set. The caret (^) must be the first character
after the left bracket ([) that introduces a set.

<wildcard> ‘st[^oa]ck‘ Excludes “stock”
and “stack,” but
locates “stick” and
“stuck”

- Specifies a range of characters in a set. <wildcard> ‘c[a-r]t‘ Includes every
three-letter word
from “cat” to “crt”

Operator Modifiers

60 Full-Text Search Specialty Data Store

and t1.index_any = ’"slingshot*"’
score copy
----- ---
100 Albert Ringer was born in a trunk to circus parents, but
 another kind of circus trunk played a more important role
 . . .
 gorilla. “Slingshotting” himself from the ring ropes,
 . . .

word

The word operator searches for documents containing the specified word.
To relevance-rank the result set, include the many operator in the query.
The following example searches the blurbs table for documents containing
the word “palates”:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<many><word>(palates)"

yesno

The yesno operator converts all nonzero score values to 100. For example,
if the score values for five documents are 86, 45, 89, 89, and 100, each of
those documents is returned with a score value of 100. score values of 0
are not changed. The yesno operator is helpful for ensuring that all
documents containing the search criteria are returned in the result set,
regardless of the sort order.

Operator Modifiers
The Verity query language includes modifiers that you can use with the
operators to refine a search. The modifiers are described in Table 5-6.

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 61

Table 5-6: Verity operator modifiers

Modifier
Name Description

Works with
These
Operators Example

case Performs case-
sensitive searches. If
you enter search terms
in mixed case, the
search is automatically
case sensitive.

wildcard

word

<case><word>(Net)

many Counts the number of
times that a word,
stemmed word, or
phrase occurs in a
document. Relevance-
ranks the document
according to its
density.

paragraph

phrase

sentence

stem

word

wildcard

<many><stem>(write)

not Excludes documents
that contain the items
for which the query is
searching.

and

or

cat<and><not>elephant

order Specifies that the items
in the documents occur
in the same order in
which they appear in
the query.

Always place the order
modifier just before
the operator

near/n

paragraph

sentence

Simple syntax:

tidbits<order><paragraph>king

Explicit syntax:

<order><paragraph>(tidbits,king)

Operator Modifiers

62 Full-Text Search Specialty Data Store

User’s Guide 63

C H A P T E R 6 System Administration

This chapter describes system administration issues for the Enhanced
version of the Full-Text Search engine.

Topics include:

Starting the Full-Text Search Engine on UNIX
Use the startserver utility to start the Full-Text Search engine on UNIX.
The startserver utility is included in the install directory of Adaptive
Server. For example, to start a Full-Text Search engine named
KRAZYKAT, enter:

startserver -f
$SYBASE/$SYBASE_FTS/install/RUN_KRAZYKAT

where the -f flag specifies the relative path to the runserver file. After you
issue the command, the Full-Text Search engine issues a series of
messages describing the settings of the configuration parameters.

Creating the Runserver File
The runserver file contains start-up commands for the Full-Text Search
engine. The runserver file can include the flags shown in Table 6-1

Topic Page
Starting the Full-Text Search Engine on UNIX 63

Starting the Full-Text Search Engine on Windows NT 65

Shutting Down the Full-Text Search Engine 66

Modifying the Configuration Parameters 67

Backup and Recovery for the Enhanced Full-Text Search Engine 75

Starting the Full-Text Search Engine on UNIX

64 Full-Text Search Specialty Data Store

Table 6-1: Definition of flags in the runserver file

A sample runserver file is copied to the $SYBASE/$SYBASE_FTS/install
directory during installation. Make a copy of this file, renaming it
RUN_server_name, where server_name is the name of the Full-Text
Search engine. You must include the correct path environment variable for
your platform in the runserver file. Table 6-2 shows the path environment
variable to use for each platform.

Table 6-2: Path environment variable for the runserver file

For example, the runserver file on Sun Solaris for a Full-Text Search
engine named KRAZYKAT would be RUN_KRAZYKAT and would be
similar to:

#!/bin/sh
#

LD_LIBRARY_PATH="$SYBASE/$SYBASE_FTS/lib:$LD_LIBRAR
Y_PATH"
export LD_LIBRARY_PATH

$SYBASE/bin/txtsvr -SKRAZYKAT

The start-up command in the runserver file must consist of a single line
and cannot include a return. If you have to carry the contents of the file
over to a second or third line, include a backslash (\) for a line break.

Flag Definition

-Sserver_name Specifies the name of the Full-Text Search engine
and is used to locate the configuration file and the
network connection information in the interfaces
file.

-t Causes the Full-Text Search engine to write start-
up messages to standard error.

-lerrorlog_path Specifies the path to the error log file.

-iinterfaces_file_path Specifies the path to the interfaces file.

Platform Environment Variable

RS/6000 AIX LIBPATH

Sun Solaris LD_LIBRARY_PATH

HP 9000(800) SHLIB_PATH

Digital UNIX LD_LIBRARY_PATH

CHAPTER 6 System Administration

User’s Guide 65

Starting the Full-Text Search Engine on Windows NT
You can start the Full-Text Search engine from Sybase Central™, as a
service, or from the command line:

• From Sybase Central – see your Sybase Central documentation for
information about starting servers.

• As a service – see Starting the Full-Text Search Engine As a Service
below.

• From the command line – use the following syntax:

%SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe -Sserver_name
[-t] [-i%SYBASE%path_to_sql.ini_file] [-
l%SYBASE%path_to_errorlog]

where:

• -S is the name of the Full-Text Search engine you are starting

• -t directs start-up messages to standard error

• -i is the path to the sql.ini file

• -l is the path to the error log

For example, to start a Full-Text Search engine named KRAZYKAT on
NT using the default sql.ini and error log files, and using -t to trace start-
up messages, enter:

%SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe -SKRAZYKAT -t

The Full-Text Search engine is up and running when you see the start-up
complete message.

Starting the Full-Text Search Engine As a Service
Use the instsvr utility in Sybase Central to add the Full-Text Search engine
to the list of items you can start and stop with the Services utility. instsvr is
located in the %SYBASE%\%SYBASE_FTS%\bin directory.

The instsvr utility uses the following syntax:

instsvr.exe service_name %SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe
"startup_parameters"

where:

Shutting Down the Full-Text Search Engine

66 Full-Text Search Specialty Data Store

• service_name is the name of the Full-Text Search engine you are
adding as a service. With Sybase Central, Sybase recommends you
use a server name with the extension “_TS” (for example,
KRAZYKAT_TS).

• startup_parameters are any parameters you want used at start-up.

For example, to install a Full-Text Search engine named KRAZYKAT_TS
as a service, enter:

instsvr.exe KRAZYKAT_TS %SYBASE%\sds\text\bin\txtsvr.exe
"-SKRAZYKAT_TS -t"

Note If you need to include more than one parameter (for example, -i), you
must include all the parameters in one set of double quotes.

To configure Sybase Central to start and stop your Full-Text Search
engine, you must provide a service name that begins with
“SYBTXT_server_name”, where server_name is the name of the Full-
Text Search engine listed in the interfaces file. For example, if the name in
the interfaces file is KRAZYKAT_TS, run the following instsvr command
to create a service that can be managed by Sybase Central:

instsvr SYBTXT_KRAZYKAT_TS %SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe
"-SKRAZYKAT_TS -t"

Shutting Down the Full-Text Search Engine
Use the following command to shut down the Full-Text Search engine
from Adaptive Server:

server_name...sp_shutdown

where server_name is the name of the Full-Text Search engine you are
shutting down.

For example, to shutdown a Full-Text Search engine named KRAZYKAT,
enter:

KRAZYKAT...sp_shutdown

CHAPTER 6 System Administration

User’s Guide 67

Modifying the Configuration Parameters
Each Full-Text Search engine has configuration parameters with default
values, as shown in Table 6-3.

Table 6-3: Configuration parameters

Parameter Description Default Value

batch_size Determines the size of the batches sent to the
Full-Text Search engine.

500

batch_blocksize When enabled, the text server reads data in
smaller chunks. This parameter instructs the text
server to retrieve n number of rows at a time.
Should be set to 0 (disabled) to 65535.

0

max_indexes The maximum number of text indexes that will
be created in the Full-Text Search engine.

126

max_stacksize Size (in kilobytes) of the stack allocated for
client threads.

34,816

max_threads Maximum number of threads available for the
Full-Text Search engine.

50

max_packetsize Packet size sent between the Full-Text Search
engine and the Adaptive Server.

2048

max_sessions Maximum number of sessions for the Full-Text
Search engine.

100

min_sessions Minimum number of sessions for the Full-Text
Search engine.

10

language Language used by the Full-Text Search engine. us_english

charset Character set used by the Full-Text Search
engine.

iso_1

vdkCharset Character set used by Verity search engine. 850

vdkLanguage Language used by Verity search
engine.

english

vdkHome Verity directory. UNIX:

$SYBASE/$SYBASE_FTS/verity

Windows NT:

%SYBASE%\%SYBASE_FTS%\verity

collDir Storage location of the Full-Text Search engine’s
collection.

UNIX:

$SYBASE/$SYBASE_FTS/collections

Windows NT:

%SYBASE%\%SYBASE_FTS%\collections

defaultDb Name of the Full-Text Search engine database
that stores text index metadata.

text_db

Modifying the Configuration Parameters

68 Full-Text Search Specialty Data Store

The Enhanced Full-Text Search engine has additional configuration
parameters as shown in Table 6-4:

Table 6-4: Configuration parameters for Enhanced version only

interfaces Full path to the directory in which the interfaces
file used by the Full-Text Search engine is
located.

UNIX:

$SYBASE/interfaces

Windows NT:

%SYBASE%\ini\sql.ini

sort_order Default sort order. 0

errorLog Full path name to the error log file. The directory in which you start Full-Text
Search engine

traceflags String containing numeric identifiers used to
generate diagnostic information.

0

srv_traceflags String containing numeric flag identifiers used to
generate Open Server diagnostic information.

0

Parameter Description Default Value

Parameter Description Default Value

cluster_style Clustering style to use. Fixed

cluster_max Maximum number of clusters to generate when
cluster_style is set to Fixed.

0

cluster_effort Amount of effort the Full-Text Search engine
should expend on finding a good cluster.

Default

cluster_order The order to return clusters and rows within a
cluster.

0

auto_online Specifies whether to bring indexes online
automatically when the Full-Text Search engine
is started. 0 indicates online is not automatic; 1
indicates automatic.

0

backDir The default location for the placement of text
index backup files.

UNIX:

$SYBASE/$SYBASE_FTS/backup

Windows NT:

%SYBASE%\%SYBASE_FTS%\backup

knowledge_base The location of a knowledge base map for
implementing the Verity topics feature.

null

nocase Sets the case-sensitivity of the Full-Text Search
engine. If you are using a case-sensitive sort
order in Adaptive Server, set to 0. If you are
using a case-insensitive sort order, set to 1.

0

CHAPTER 6 System Administration

User’s Guide 69

A sample configuration file that includes all of these parameters is copied
to your installation directory during installation. The sample configuration
file is named textsvr.cfg. The entire sample configuration file is listed in
Appendix B, “Sample Files.”

Modifying Values in the Enhanced Version
With Enhanced Full-Text Search Specialty Data Store, you can use the
sp_text_configure system procedure to change the value of a configuration
parameter. The syntax is:

sp_text_configure server_name, config_name, config_value

where:

• server_name is the name of the Full-Text Search engine

• config_name is the name of the configuration parameter

• config_value is the value you assign to the configuration parameter

For more information, see sp_text_configure on page 150.

Available Configuration Parameters
The following table provides a list of available configuration parameters
with valid limits:

Table 6-5: Limits to Configuration parameters

Parameter Values Static/Dynamic

batch_size 0 - MAX_INT Dynamic

batch_blocksize 0 - 65535 Dynamic

max_indexes 0 - MAX_INT Static

max_stacksize 0 - MAX_INT Static

max_threads 0 - MAX_INT Static

max_packetsize 0 - MAX_INT Static

max_sessions 0 - MAX_INT Static

min_sessions 0 - max_sessions Static

language french, spanish german, us_english Static

charset ascii_8, cp037, cp1047, cp437, cp500, cp850, deckanji, eucjis,
iso_1, mac, roman8, sjis, utf8

Static

vdkCharset 850, 437, 1252, mac1 (Just the ones listed in the manual) Static

Modifying the Configuration Parameters

70 Full-Text Search Specialty Data Store

Setting the Default Language
The default language for Verity is set with the vdkLanguage configuration
parameter. By default, vdkLanguage is set to “english”. You can configure
Verity to use a different default language. Table 6-6 lists the locales
supported by Sybase.

vdkLanguage frenchx, spanishx, germanx, english, englishx, bokmalx,
dutchx, finnishx, nynorskx, swedishx, portugx, italianx,
danishx

Static

vdkHome A string < 255 chars Static

collDir A string < 255 chars Static

default_Db A string < 32 chars Static

interfaces A string < 255 chars Static

sort_order 0, 1, 2, 3 Dynamic

errorLog A string < 255 chars Static

traceflags A string with comma delimited numbers ranging anywhere
from 1 to 15.

Static

srv_traceflags A string with comma delimited numbers ranging anywhere
from 1 to 8

Static

cluster_style Coarse, Medium, Fine, Fixed Dynamic

cluster_max 0 - MAX_INT Dynamic

cluster_effort Low, Medium, High, Default Dynamic

cluster_order 0 or 1 Dynamic

auto_online 0 or 1 Static

backCmd A string < 255 chars Dynamic

restoreCmd A string < 255 chars Dynamic

backDir A string < 255 chars Static

knowledge_base A string < 255 chars Static

nocase 0 or 1 Dynamic

Parameter Values Static/Dynamic

CHAPTER 6 System Administration

User’s Guide 71

Table 6-6: vdkLanguage configuration parameters

Additional language adapters are available in the
$SYBASE/$SYBASE_FTS/verity/common directory; however, the Full-
Text Search engine displays messages only in the languages shown in
Table 6-6.

The language parameter is the language the Full-Text Search engine
displays its error messages and Open Server and Open Client error
messages. Set the language parameter to the Adaptive Server language.

With the Enhanced Full-Text Search engine, run the following:

sp_text_configure KRAZYKAT, ’vdkLanguage’, ’spanish’

For more information about the Verity languages, see the Verity Web site at
http://www.verity.com.

.Setting the Default Character Set
The default character set for Verity is set with the vdkCharset parameter in
the configuration file. The files used for the Verity character sets are in
$SYBASE/$SYBASE_FTS/verity/common. Table 6-7 describes the
character sets you can use with Verity.

Table 6-7: Verity character sets

The default character set for the Full-Text Search engine is set with the
charset parameter. Set the charset parameter to the Adaptive Server
character set.

For example, with the Enhanced Full-Text Search engine, run the
following:

sp_text_configure KRAZYKAT, ’vdkCharset’, ’437’

Language Default Locale Name

English english

German german

French french

Character Set Description

850 Default

437 IBM PC character set

1252 Windows code page for Western European languages

mac1 Macintosh roman

Modifying the Configuration Parameters

72 Full-Text Search Specialty Data Store

Setting the Default Sort Order
By default, the Full-Text Search engine sorts the result set by the score
pseudo column in descending order (the higher scores appear first). To
change the default sort order, set the sort_order configuration parameter to
one of the values in Table 6-8.

Table 6-8: Sort order values for the configuration file

For example, with the Enhanced Full-Text Search engine, enter:

sp_text_configure KRAZYKAT, ’sort_order’, ’2’

When you sort a result set by descending timestamp (value 2 in Table 6-
8), the Full-Text Search engine returns the newest documents first. The
newest documents are those that were inserted or updated most recently.
When results are sorted by ascending timestamp (value 3 in Table 6-8), the
Full-Text Search engine returns the oldest documents first.

Setting the default sort order is especially important if your query uses the
max_docs pseudo column. The max_docs pseudo column limits the
number of rows of the result set to the first n rows, ordered by the sort
order. If you set max_docs to a number smaller than the size of the result
set, the sort order you select could exclude the rows that contain the
information for which you are searching.

For example, if you sort by ascending timestamp, the latest document
added to the table appears last in the result set. If the entire result set
consists of 11 documents, and you set max_docs to 10, the latest document
does not appear in the result set. However, if you sort by descending
timestamp, the latest document appears first in the result set.

Setting Trace Flags
The traceflags parameter enable the logging of certain events when they
occur within the Full-Text Search engine. Each trace flag is uniquely
identified by a number. Trace flags are described in Table 6-9.

Value Description

0 Returns result sets sorted by the score pseudo column in
descending order. The default value.

1 Returns result sets sorted by the score pseudo column in
ascending order.

2 Returns result sets sorted by a timestamp in descending order.

3 Returns result sets sorted by a timestamp in ascending order.

CHAPTER 6 System Administration

User’s Guide 73

Table 6-9: Full-Text Search engine trace flags

You can enable and disable trace flags interactively, using the remote
procedure calls (RPCs) sp_traceon and sp_traceoff in the Full-Text Search
engine.

To execute sp_traceon, use the following syntax:

textserver...sp_traceon 1,2,3,4

where textserver is the name of the Full-Text Search engine.

Trace
Flag Description

1 Traces connects, disconnects, and attention events from Adaptive
Server.

2 Traces language events. Traces the SQL statement that Adaptive
Server sent to the Full-Text Search engine.

3 Traces RPC events.

4 Traces cursor events. Traces the SQL statement sent to the Full-
Text Search engine by Adaptive Server.

5 Writes the errors that display to the log.

6 Traces information about text indexes. Writes the search string
being passed to Verity to the log, and writes the number of records
that the search returns to the log.

7 Traces done packets.

8 Traces calls to the interface between the Full-Text Search engine
and the Verity API.

9 Traces SQL parsing.

10 Traces Verity processing.

11 Disables Verity collection optimization.

12 Disables sp_statistics from returning information.

13 Traces backup operations. Available only with Enhanced Full-Text
Search Specialty Data Store.

14 Logs Verity status and timing information.

15 Generates ngram index information for collections. ngrams
increase the speed of wildcard searches. This trace flag is required
for wildcard searches against data in unicode format.

30 This traceflag enables the Verity MaxClean feature that removes
out of date collection files. It should only be used during
maintenance since it could take extra time and interfere with
normal usage. It is enabled in conjuntion with
sp_optimize_text_index.

Modifying the Configuration Parameters

74 Full-Text Search Specialty Data Store

The traceflags will stay active until the session is terminated or until the
sp_traceoff RPC is executed using the specific traceflag. To set a traceflag
permanently, either set it in the config file or use the sp_text_configure
command.

Setting Open Server Trace Flags
Use the srv_traceflags parameter to turn on trace flags to log Open Server
diagnostic information. Open Server trace flags are described in Table 6-
10.

Table 6-10: Open Server trace flags

For example, with the Enhanced Full-Text Search engine, run the
following:

sp_text_configure KRAZYKAT, ’srv_traceflags’, ’3’

Setting Case Sensitivity
By default, the Full-Text Search engine is case sensitive. This means you
must enter identifiers in the same case or they are not recognized. For
example, if you have a table named blurbs (lowercase), you cannot issue
an sp_create_text_index command that specifies the table name BLURBS.
You must issue a command that uses the same case for the table name
argument:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "", "copy"

Trace
Flag Description

1 Traces TDS headers.

2 Traces TDS data.

3 Traces attention events.

4 Traces message queues.

5 Traces TDS tokens.

6 Traces Open Server events.

7 Traces deferred event queues.

8 Traces network requests.

CHAPTER 6 System Administration

User’s Guide 75

With Enhanced Full-Text Search engine, use the nocase parameter to set
the case sensitivity of the Full-Text Search engine. 0 indicates case
sensitive; 1 indicates case insensitive. Set the nocase parameter to the sort
order case sensitivity in Adaptive Server.

For example:

sp_text_configure KRAZYKAT, ’nocase’, ’1’

changes the KRAZYKAT server to case insensitive.

Note The nocase parameter does not affect the case sensitivity of the
Verity query. For information on Verity case sensitivity, see
“Considerations When Using Verity Operators” on page 51.

Backup and Recovery for the Enhanced Full-Text
Search Engine

Backup and recovery for the Enhanced Full-Text Search Specialty Data
Store is automated with the sp_text_dump_database and
sp_text_load_index system procedures. These system procedures provide a
seamless interface for maintaining data and text index integrity.

The Adaptive Server user database and the Verity collections are
physically separate. Backing up your user database does not back up the
Verity collections, and restoring your database from a backup does not
restore your Verity collections. The backup and recovery procedures
described in Chapter 21, “Backing Up and Restoring User Databases,” of
the System Administration Guide apply only to the user database and the
text_db database in Adaptive Server.

Follow the recommended schedule for backing up your databases, as
described in Chapter 20, “Developing a Backup and Recovery Plan,” of
the System Administration Guide. Sybase recommends that when you
back up a user database with text indexes, you also back up:

• The text_db database

Backup and Recovery for the Enhanced Full-Text Search Engine

76 Full-Text Search Specialty Data Store

• The text indexes

Note You do not have to back up the user database and text indexes
at the same time to recover the text indexes. However, you must
restore the user database before you restore the text index. This
restores the text_events table, which the sp_text_load_index system
procedure uses to bring the text indexes in sync with the user
database.

A regular backup schedule ensures the integrity of the text indexes, the
Adaptive Server data, and the text_events table, all of which are integral to
recovering your text indexes without having to drop and re-create them.

Customizable Backup and Restore
backCmd and restoreCmd allow customizable backup and restore
commands to be used instead of tar or zip commands when backing up
collection files. If these two parameters are blank, the default commands
are used, otherwise the specified command is executed. String substitution
is performed before execution to allow specification of input and output
directories and collection identification. The string substitution is defined
as follows:

• ${backDir} is replaced by the backup directory specified as the
“backDir” configuration parameter.

• ${collDir} is replaced by the full path name for the collection

• ${colID} is replaced by the collection ID which is the full name of the
backup file.

Backing Up Verity Collections
The sp_text_dump_database system procedure backs up collections and
(optionally) the user and text_db databases. sp_text_dump_database also
maintains the text_events table by deleting entries that are no longer
needed for recovery. It is available only with the Enhanced Full-Text
Search engine.

CHAPTER 6 System Administration

User’s Guide 77

During a backup, the Full-Text Search engine processes queries, but defers
any update requests until the backup is complete. This eliminates the need
to shut down and restart the Full-Text Search engine.

Run sp_text_dump_database from the database containing the text indexes
you are backing up. Make sure all the required servers are running when
issuing the sp_text_dump_database command. sp_text_dump_database
unconditionally backs up all indexes of all enhanced text servers. The
backup of the text indexes is placed in the directory specified in the
backDir configuration parameter. The output of the dump database
command is written to the Full-Text Search error log. Sybase recommends
dumping the current database and the text_db database at the time the text
indexes are backed up. However, this is optional.

For example, to back up the text indexes, the sample_colors_db database
to the /work2/sybase/colorsbackup directory, and the text_db database to
the /work2/sybase/textdbbackup directory, enter:

sp_text_dump_database @backupdbs =
INDEXES_AND_DATABASES, @current_to = "to
’/work2/sybase/colorsbackup’", @textdb_to="to
’/work2/sybase/textdbbackkup’"

Note It is important to back up the text_db database whenever text indexes
are backed up, since that database contains the metadata for all text
indexes.

sp_text_dump_database may fail on Solaris if the required file size is
greater than 2GB.

For more information, see sp_text_dump_database on page 151.

Restoring Collections and Text Indexes from Backup
The sp_text_load_index system procedure restores text indexes that have
been backed up with the sp_text_dump_database system procedure.

As Database Administrator, perform the following procedures to restore
your Verity collections:

Backup and Recovery for the Enhanced Full-Text Search Engine

78 Full-Text Search Specialty Data Store

1 Restore your Adaptive Server user database and text_db database.
This returns the source tables, metadata, and text_events table to a
consistent and predictable state. Follow the procedures described in
Chapter 21, “Backing Up and Restoring User Databases,” in the
System Administration Guide, to restore user and text_db databases.

2 Run sp_text_load_index to restore the Verity collection from the most
recent index dump. The procedure resets the status of all text_events
table entries made since the last index dump to “unprocessed” and
notifies the Full-Text Search engine to process those events.

Example: To restore the sample_colors_db database and all of its text indexes:

1 Restore the text_db database:

1> use master
2> go
1> load database text_db from ’/work2/sybase/textdbbackkup’
2> go

2 Restore the sample_colors_db database:

1> load database sample_colors_db from ’/work2/sybase/colorsbackup’
2> go

3 Bring the text_db and sample_colors_db databases online:

1> online database text_db
2> online database sample_colors_db
3> go

4 Restore the text index:

1> use sample_colors_db
2> go
1> sp_text_load_index
2> go

For more information, see sp_text_load_index on page 155.

User’s Guide 79

C H A P T E R 7 Performance and Tuning

The Full-Text Search engine is shipped with a default configuration. You
can optimize the performance of the Full-Text Search engine by altering
the default configuration so that it better reflects the needs of your site.
This chapter describes ways in which you can enhance performance.

Topics include:

Updating Existing Indexes
The amount of time it takes to update records in a text index can be
reduced by enabling (turning on) trace flag 11 or trace flag 12, or both:

• Enabling trace flag 11 disables Verity collection optimization. This
means that Verity does not optimize the text index after you issue
sp_text_notify, which is a performance gain. If trace flag 11 is turned
off (the default), the Full-Text Search engine calls Verity to optimize
the text index at the end of sp_text_notify processing, which can delay
the completion of sp_text_notify.

With Enhanced Full-Text Search Specialty Data Store, you can use
the sp_optimize_text_index system procedure to optimize a text index
at a later time if trace flag 11 is enabled. (For more information, see
sp_optimize_text_index on page 144.)

Topic Page
Updating Existing Indexes 79

Increasing Query Performance 80

Reconfiguring Adaptive Server 81

Reconfiguring the Full-Text Search Engine 82

Using sp_text_notify 83

Configuring Multiple Full-Text Search Engines 84

Increasing Query Performance

80 Full-Text Search Specialty Data Store

• Enabling trace flag 12 disables the Full-Text Search engine from
returning sp_statistics information. If trace flag 12 is turned off (the
default), an update statistics command is issued to the Full-Text
Search engine, which can delay the completion of sp_text_notify.

If updates to the text index occur as often as every few seconds, you may
improve performance by disabling the update statistics processing and the
Verity optimization, or both, for most of the updates.

Trace flags 11 and 12 can be enabled and disabled interactively using the
remote procedure calls sp_traceon and sp_traceoff in the Full-Text Search
engine.

Increasing Query Performance
Two issues can significantly improve query performance:

• Limiting the number of rows returned by the Full-Text Search engine

• Ensuring the correct join order for queries

Limiting the Number of Rows
Use the max_docs pseudo column to limit the number of rows returned by
the Full-Text Search engine. The fewer the number of rows returned by the
Full-Text Search engine, the faster Adaptive Server can process the join
between the source table and the index table.

Ensuring the Correct Join Order for Queries
The more tables and text indexes that are listed in a join, the greater the
chance that the query will run slowly because of incorrect join order.
Queries run fastest when the text index is queried first during a join
between the text index and one or more tables.

To ensure correct join order:

• Make sure that a unique clustered or nonclustered index is created on
the IDENTITY column of the table being indexed

CHAPTER 7 Performance and Tuning

User’s Guide 81

• Limit joins to one base table and one text index

If a query is running slowly, use showplan or enable trace flag 11205, and
examine the join order. Trace flag 11205 dumps remote queries to the
Adaptive Server error log file. The fastest queries contain an index_any
search condition in the where clause and query the text index first.

The slowest queries contain the id column in the text index where clause
and query the indexed table first. In this case, rewrite the query or use
forceplan to force the join order that is listed in your query. For more
information about forceplan, see Chapter 10, “Advanced Optimizing
Techniques,” in the Performance and Tuning Guide.

Reconfiguring Adaptive Server
You can improve the performance of the Full-Text Search engine by
resetting the following Adaptive Server configuration parameters. (For
information about setting configuration parameters with sp_configure, see
Chapter 11,”Setting Configuration Parameters,” in the System
Administration Guide.)

cis cursor rows
The cis cursor rows parameter specifies the number of rows received by
Adaptive Server during a single fetch operation. The default number for
cis cursor rows is 50. Increasing this number increases the number of rows
received by Adaptive Server from the Full-Text Search engine during a
fetch operation. However, keep in mind that the larger the number you set
for cis cursor rows, the more memory Adaptive Server will dynamically
allocate to return the result set.

Reconfiguring the Full-Text Search Engine

82 Full-Text Search Specialty Data Store

cis packet size
The cis packet size parameter determines the number of bytes contained in
a single network packet. The default for cis packet size is 512. You must
specify values for this parameter in multiples of 512. Increasing this
parameter improves the performance of the Full-Text Search engine
because, with a larger packet size, it returns fewer packets for each query.
However, keep in mind that the larger the number you set for cis packet
size, the more memory Adaptive Server will allocate for that parameter.

The cis packet size parameter is dynamic; you do not need to reboot
Adaptive Server for this parameter to take effect.

Note If you change the cis packet size, you must also change the
max_packetsize parameter in the Full-Text Search engine configuration
file to the same value. If CIS is used to access other remote servers, the
max network packet size on those servers must be increased as well.

You need to reboot the Full-Text Search engine for the max_packetsize
parameter to take effect.

Reconfiguring the Full-Text Search Engine
You can improve the performance of the Full-Text Search engine by
reconfiguring the following Full-Text Search engine configuration
parameters (see “Modifying the Configuration Parameters” on page 67):

batch_size
The batch_size configuration parameter determines the number of rows
per batch the Full-Text Search engine indexes. batch_size has a default of
500 (that is, 500 rows of data indexed per batch). Performance improves
if you increase the size of the batches that are indexed. However, the larger
the batch size, the more memory the Full-Text Search engine allocates for
this parameter.

When considering how large to set batch_size, consider the size of the data
on which you are creating a text index. When creating the text index, the
Full-Text Search engine allocates memory equal to (in bytes):

CHAPTER 7 Performance and Tuning

User’s Guide 83

(amount of space needed for data) x (batch_size) = memory used

For example, if the data you are indexing is 10,000 bytes per row, and
batch_size is set to 500, then the Full-Text Search engine will need to
allocate almost 5MB of memory when creating the text index.

Base the batch size you choose on the typical size of your data and the
amount of memory available on your machine.

min_sessions and max_sessions
min_sessions and max_sessions determine the minimum and maximum
number of user connections allowed for the Full-Text Search engine. Each
user connection requires about 5MB of memory. Do not set max_sessions
to an amount that exceeds your available memory. Also, because the
memory for min_sessions is allocated at start-up, if you set the number for
min_sessions extremely high (to allow for a large number of user
connections), a large percentage of your memory will be dedicated to user
connections for the Full-Text Search engine.

You may improve the performance of the Full-Text Search engine by
setting min_sessions equal to the average number of user sessions that will
be used. Doing so prevents the Full-Text Search engine from having to
allocate memory at the start of the user session.

Using sp_text_notify
Review the needs of your site before you decide how often to issue
sp_text_notify.

Configuring Multiple Full-Text Search Engines

84 Full-Text Search Specialty Data Store

Using the sp_text_notify system procedure produces a load on the Full-Text
Search engine as the system procedure reads the data and updates the text
collections. Depending on the size of this load, the performance hit for
issuing sp_text_notify can be substantial. Because of the performance
implications, you must determine how up to date the indexes need to be.
If they need to be current (close to real-time), then you will have to issue
sp_text_notify frequently (as often as every 5 seconds). However, if your
indexes do not need to be that current, it may be prudent to wait until the
system is not active before you issue sp_text_notify.

Note You cannot issue sp_text_notify from within a transaction.

Configuring Multiple Full-Text Search Engines
For tables that are used frequently, you can improve performance by
placing the text indexes for these tables on separate Full-Text Search
engines. Performance improves because users can spread their queries
over a number of Full-Text Search engines, instead of sending all queries
to a single engine. Each Adaptive Server can connect to multiple Full-Text
Search engines, but each Full-Text Search engine can connect to only one
Adaptive Server.

Creating Multiple Full-Text Search Engines at Start-Up
If you are initially creating multiple Full-Text Search engines, you can edit
the installtextserver script so that it includes all of those Full-Text Search
engines. For more information, see “Editing the installtextserver Script”
on page 15.

Adding Full-Text Search Engines
You can add Full-Text Search engines at a later date by issuing the
sp_addserver command from isql. The sp_addserver command has the
following syntax:

sp_addserver server_name [, server_class [,

CHAPTER 7 Performance and Tuning

User’s Guide 85

physical_name]]

where:

• server_name is the name used to address the server on your system (in
this case, the Full-Text Search engine).

• server_class identifies the category of server being added. For the
Full-Text Search engine, the value is “sds”.

• physical_name is the name in the interfaces file used by the server
server_name.

For more information, see sp_addserver in the Adaptive Server Reference
Manual.

For example, to add a Full-Text Search engine named BLUE, enter:

sp_addserver BLUE, sds, BLUE

After you configure and start the Full-Text Search engine, you can use the
following syntax to see if you can connect to the Full-Text Search engine
from the Adaptive Server:

server_name...sp_show_text_online

For example, to connect to a server named BLUE, enter:

BLUE...sp_show_text_online

Configuring Additional Full-Text Search Engines
Follow the steps described in “Configuring the Full-Text Search Engine”
in the Installation and Release Bulletin for your platform, to configure
additional Full-Text Search engines. Each Full-Text Search engine
requires its own:

• Interfaces file entry

• Configuration file

All Full-Text Search engines use the same database (named text_db by
default) for storing text index metadata and the same vesaux and vesauxcol
tables.

Multiple Users

86 Full-Text Search Specialty Data Store

Multiple Users
The following tips will help avoid deadlocks with multiple users:

1 Make sure the ASE is using the same number of connections as the
Full-Text Search. 100 is the default.

sp_configure “user connections”, 100

2 Make sure the vesaux, vesauxcol and text_events tables (in the model,
or in each of your new databases) are using row level locking.

For existing tables: alter table table_name lock datarows

For new tables: create table ... lock datarows

3 For large batches of commands, try to break them into smaller
transactions.

4 If deadlocks still occur, increase the number of locks available to the
ASE, and tweak the row lock promotion settings. See the ASE System
Administration Guide to assist with setting locks.

User’s Guide 87

C H A P T E R 8 Verity Topics

This chapter is reproduced with permission from Verity. It is a section of
Verity documentation provided to give Full-Text Search users insight into
the complex issue of Verity Topics.

What are Topics?
A topic is a grouping of information related to a concept, or a subject area.
Topics provide a convenient means by which you can encapsulate
knowledge, and make it available to end users as a shared resource. By
adding topics to your Verity application, users can more easily perform
searches over the subject matter which the topics represent.

Topics are combined to form knowledge bases that represent a catalogue
of knowledge that users can tap into when performing searches.
Knowledge bases offer users the ability to find the information they want
without having to compose sophisticated queries using complex syntax.

Topic Organization
Topics organize groups of related search criteria in a format similar to that
of an outline. Operators and modifiers act as the glue that joins related
groups of search criteria. You can create topics as independent units, or as
units with relationships to other topics in a hierarchical structure.

Using a Topic Outline File

88 Full-Text Search Specialty Data Store

Weight Assignments
You can even give some groups of search criteria more weight than other
groups of search criteria in a topic’s structure. Assigning weight to search
criteria affects the importance of documents selected in a search; the closer
a document is to the top of the results list, the more important, or relevant,
the document is to the search criteria. A search criteria weight is a number
between 0.01 and 1.00. The position of a selected document in the results
list can help you determine at a glance how relevant the document is
compared to the search criteria.

Using a Topic Outline File
You can compose topics by creating a topic outline file.

A topic outline file is an ASCII text file in a structured format that contains
topic definitions. A topic outline file might appear as follows:

$Control:1
art <Accrue>
*performing-arts <Accrue>
**0.80 "ballet"
**0.50 "drama"
**0.50 ’dance’
**0.80 "opera"
**0.80 "symphony"
**0.90 "chamber music"
**"Isaac Stern"
*film <Accrue>
**directors <Filter>
/definition="title CONTAINS Truffaut"
*visual-arts <Accrue>
literature <Accrue>
philosophy <Accrue>
language <Accrue>
history <Accrue>
$$

You can create a topic outline file with any text editor.

CHAPTER 8 Verity Topics

User’s Guide 89

Making Topics Available
The topics you make available to users must exist within a topic set that is
generated using the mktopics utility. Verity topic sets generated by
mktopics can be used by any Verity application. A single topic set supports
a maximum of 20,000 topic definitions, and the exact number of topics
allowed for one topic set depends on the Verity query language used to
define them.

Setup Process
Making topics available to users is a three-step process, as outlined below.

1 Create topic definitions using a topic outline file.

2 Generate a topic set. You can create a topic set using the mktopics
utility. The mktopics utility creates the topic set and can also index the
topics over a specific collection.

3 Import the topic set to the Full-Text Search engine.

Knowledge Bases of Topics
This section discusses the principle features of knowledge bases, and the
organization format used to define topics for them.

The following aspects of topic knowledge bases are covered:

• Combining topics into a knowledge base

• The structure of topics

• The relationship between topics and subtopics

• Topic types

• Naming topics

Knowledge Bases of Topics

90 Full-Text Search Specialty Data Store

Combining Topics into a Knowledge Base
A topic is simply a grouping of information related to a concept, or a
subject area. A knowledge base is a grouping of these concepts called
topics. Combining topics into a knowledge base provides users with the
ability to look up concepts saved as topics in a convenient fashion.

The subject area of a topic is typically identified by the topic’s name. In
the example below, the subject of the topic is performing-arts. This topic
is composed of two structural elements, its name, performing-arts, and its
evidence topics, ballet, musical, dance, opera, symphony, and drama.

Operators and modifiers act as the glue that joins related evidence topics.
Operators represent logic to be applied to evidence topics. This logic
defines the qualifications of the kinds of documents you want to find.
Modifiers apply further logic to evidence topics. For example, a modifier
can specify that documents containing an evidence topic not be included
in the list of results.

CHAPTER 8 Verity Topics

User’s Guide 91

A topic’s structure becomes more sophisticated as topics are added to it. In
the next example, the topic film has been added to the structure to form
what is now the top-level topic, art. In this structure, performing-arts and
film are subtopics of the topic art.

Sophisticated topics are composed of top-level topics, subtopics, and
evidence topics. These elements determine the related subject areas of a
topic. Typically, a knowledge base consists of several top-level topics.
Note that subtopics and evidence topics can be used by multiple top-level
topics.

Structure of Topics
The structure of topics affects how the topic is interpreted during search
processing. Designing topics so that they accurately express a concept
involves defining a topic structure with the components described below.

Structure of Topics

92 Full-Text Search Specialty Data Store

Top-Level Topics
Top-level topics are the highest topics defined in a topic structure. Top-
level topics represent the subject areas you want a Verity search agent to
find. In the example below you could think of, literature, philosophy,
languages, history, and art as top-level subtopics that comprise the top-
level topic, liberal-arts.

Subtopics
Subtopics form the levels between top-level topics and evidence topics.
The name of a subtopic should identify the subject area that its subtopics
or evidence topics combine to describe. For example, the subtopic visual-
arts includes several related words, or evidence topics, as shown below:

CHAPTER 8 Verity Topics

User’s Guide 93

Evidence Topics
Evidence topics are the lowest units of a topic structure. Evidence topics
are strings, made up of combinations of alphanumeric characters. An
evidence topic can contain up to 128 alphanumeric characters.

Topic and Subtopic Relationships
Each topic and its associated subtopics form a hierarchical parent and
child relationship. In the example below, the subtopics performing-arts,
film, visual-arts, and video are children of the art topic. The art topic itself
is a child of the liberal-arts topic. The liberal-arts topic could in turn be a
child of successively higher parent topics within the structure.

When you use a topic to perform a search, the subject area defined by the
topic includes its subtopics, their subtopics, and so on, down to the
evidence topics of the structure. Topics that are not direct descendants of
the topic you use are not included in the search.

Maximum Number of Topics

94 Full-Text Search Specialty Data Store

In the example above, for instance, a search using the film topic would
cause the Verity search engine to find documents containing information
on film, motion pictures, movies, and art films. In this example, the search
would not find documents related to the performing-arts, visual-arts, or
video topics since these topics are not children, of the film topic. However,
if the art topic was used, the search would find documents related to all the
art topic’s children, which includes performing-arts, film, visual-arts, and
video.

Maximum Number of Topics
A single topic set representing a knowledge base can consist of as many as
20,000 topics. This includes top-level topics, subtopics, and evidence
topics. Topics containing as many as 1,000 subtopics may exceed memory
limitations when used in a search.

Topic Naming Issues
Note the following issues surrounding the naming of topics.

Topic Name Length

A topic name can contain up to 128 alphanumeric characters, including
hyphens and underscores.

Case Sensitivity

Topic names and evidence topics are normally case-insensitive. You can
name a evidence topic using all caps, as in APPLE, initial caps, as in
Apple, or all lower-case, as in apple. Case is not considered when a search
is performed. Thus, if your evidence topic is entered as APPLE, the Verity
search engine will select documents containing "APPLE", "Apple", or
"apple".

You can, however, use the CASE modifier to specify that case match the
entry of a evidence topic.

CHAPTER 8 Verity Topics

User’s Guide 95

Verity Query Language
This section describes the Verity Query Language, consisting of operators
and modifiers that you can use to create topics. Operators represent logic
to be applied to search elements which can be combined to create a topic.
This logic defines the qualifications of the kinds of documents you want
to find. Modifiers apply further logic to search elements. For example, a
modifier can specify that a search element be case-sensitive.

The information in this section includes the following:

• Query Language Summary

• Operator Precedence Rules

• Sample Topic Outlines

• Operator Reference

• Modifier Reference

Query Language Summary
The Verity Query Language consists of operators and modifiers. Both
operators and modifiers represent logic to be applied to a search element.
This logic defines the qualifications a document must meet to be retrieved.
Operators are classified by their type, as follows:

• Evidence operators

• Proximity operators

• Relational operators

• Concept operators

• Boolean operators

Modifiers extend the logic applied by operators and are used in
combination with operators.

Verity Query Language

96 Full-Text Search Specialty Data Store

Evidence Operators

Evidence operators expand a search word into a list of related words which
are then searched for as well. When you perform a search using an
evidence operator, documents containing one or more occurrences of the
words in the expanded word list are documents containing the word
specified, as well as its synonyms. Documents retrieved using evidence
operators are not relevance-ranked unless you use the MANY modifier.
See "MANY Modifier" in this section for information. The following table
describes each evidence operator.

Table 8-1: Evidence Operators

Proximity Operators

Proximity operators specify the relative location of specific words in the
document; that is, specified words must be in the same phrase, paragraph,
or sentence for a document to be retrieved. In the case of the NEAR and
NEAR/N operators, retrieved documents are relevance-ranked based on
the proximity of the specified words. When proximity operators are
nested, the ones with the broadest scope should be used first; that is,
phrases or individual words can appear within SENTENCE or
PARAGRAPH operators, and SENTENCE operators can appear within
PARAGRAPH operators. The following table describes each proximity
operator.

Operator Name Description

WORD Selects documents that include one or more
instances of a word you specify.

STEM Selects documents that include one or more
variations of the search word you specify.

THESAURUS Selects documents that contain one or more
synonyms of the word you specify.

WILDCARD Selects documents that contain matches to a
character string containing variables.

SOUNDEX Selects documents that include one or more words
that "sound like," or whose letter pattern is similar
to, the word specified.

NEAR/N Expands the search to include the word you enter
plus words that are similar to the query term. This
operator performs "approximate pattern matching"
to identify similar words.

CHAPTER 8 Verity Topics

User’s Guide 97

Table 8-2: Proximity Operators

Relational Operators

Relational operators search document fields (such as AUTHOR) that have
been defined in the collection. These operators perform a filtering function
by selecting documents that contain specified field values. The fields that
are used with relational operators can contain alphanumeric characters.
Documents retrieved using relational operators are not relevance-ranked,
and you cannot use the MANY modifier with relational operators.

When creating topics, relational operators are always used in conjunction
with the special FILTER operator. See the example under the topic "visual-
arts" in "Sample Topic Outlines" later in this section for the proper syntax.

A number of relational operators are available for numeric and date
comparisons, including the following: = (equals), > (greater than), >=
(greater than or equal to), < (less than), <= (less than or equal to).

A number of relational operators are available for text comparisons,
including the following.

Operator Name Description

IN Selects documents that contain specified values in
one or more document zones. A document zone
represents a region of a document, such as the
document’s summary, date, or body text.

PHRASE Selects documents that include a phrase you
specify. A phrase is a grouping of two or more
words that occur in a specific order.

SENTENCE Selects documents that include all of the words
you specify within a sentence.

PARAGRAPH Selects documents that include all of the search
elements you specify within a paragraph.

NEAR Selects documents containing specified search
terms within close proximity to each other.

NEAR/N Selects documents containing two or more words
within N number of words of each other, where N
is an integer.

Verity Query Language

98 Full-Text Search Specialty Data Store

Table 8-3: Relational Operators

Concept Operators

Concept operators combine the meaning of search elements to identify a
concept in a document. Documents retrieved using concept operators are
relevance-ranked. The following table describes each concept operator.

Table 8-4: Concept Operators

Boolean Operators

Boolean operators can be assigned to topics to retrieve documents
containing any or all of the children of that topic. Unlike topics created
using the concept operators, Boolean operators do not accept weights. The
following table describes each Boolean operator..

Operator Name Description

CONTAINS Selects documents by matching the word or phrase
you specify with values stored in a specific
document field.

MATCHES Selects documents by matching the character string
you specify with values stored in a specific
document field.

STARTS Selects documents by matching the character string
you specify with the starting characters of the values
stored in a specific document field.

ENDS Selects documents by matching the character string
you specify with the ending characters of the values
stored in a specific document field.

SUBSTRING Selects documents by matching the character string
you specify with a portion of the strings of the values
stored in a specific document field.

Operator Name Description

AND Selects documents that contain all of the search
elements you specify.

OR Selects documents that show evidence of at least one
of your search elements.

ACCRUE Selects documents that include at least one of the
search elements you specify.

CHAPTER 8 Verity Topics

User’s Guide 99

Table 8-5: Boolean Operators

Modifiers

Modifiers affect the behavior of operators. The following table describes
each modifier..

Table 8-6: Modifiers

Operator Precedence Rules
The Verity search engine uses precedence rules to determine how
operators can be assigned. These rules state that some operators rank
higher than others when assigned to topics, and affect how document
selections are performed.

The following table describes how precedence rules apply to operators.

Operator Name Description

ALL Selects documents that contain all children of a topic.

ANY Selects documents that contain at least one of the
children of a topic.

Operator Name Description

CASE Performs a case-sensitive search.

MANY Counts the density of words or phrases in a
document and produces a relevance-ranked score for
the retrieved documents.

NOT Excludes documents that show evidence of the
specified word or phrase.

ORDER Specifies the order in which search elements must
occur.

Sample Topic Outlines

100 Full-Text Search Specialty Data Store

Table 8-7: Precedence rules

To avoid a precedence violation, do not use ANY or ALL in a parent topic
whose child topic includes a concept operator (AND, OR, ACCRUE).
Topics that use ANY or ALL cannot have variable weights assigned to
them, so you cannot use these operators in a parent topic with any child
topic that allows variable weights (such as AND, OR, ACCRUE). Topics
using ANY and ALL limit evaluation to present or not present (a score of
0.00 or 1.00). If the criteria are met, the children of these topics get an
automatic score of 1.00; if the criteria are not met, the children of these
topics get an automatic score of 0.00; so it is not meaningful to assign these
children variable weights such as 0.80.

Sample Topic Outlines
The following are the same topics as you would create them in a topic
outline file:

Operator Precedence How Precedence is Determined

AND

OR

ACCRUE

Highest
precedence

The concept operators take the highest
precedence over the other operators.
Thus, subtopics of topics using these
operators can be assigned any of the
operators listed below under
"incremental precedence" or "lowest
precedence."

ALL

PARAGRAPH

SENTENCE

NEAR

NEAR/N

PHRASE

ANY

Incremental
precedence

(in descending
order)

The proximity operators refer to
incremental ranges which exist within
a document. Subtopics of topics using
these operators can be assigned their
next lowest operator in the precedence
order. Thus, a phrase takes precedence
over a word; a sentence takes
precedence over a phrase or a word;
and a paragraph takes precedence over
a sentence, a phrase, or a word.

WORD

STEM

SOUNDEX

WILDCARD

THESAURUS

Lowest
precedence

The evidence operators reside at the
lowest level in a topic structure.
Because evidence operators are used
with words contained in documents,
these operators all have the same
precedence.

CHAPTER 8 Verity Topics

User’s Guide 101

$Control:1
art <Accrue>
*performing-arts <Or>
**0.80 "drama"
**0.50 "theater"
**0.80 ’dance’
*film <And>
**0.90 "cinema"
**0.90 "documentary"
**newsreel <Filter>
/definition="DATE >= 05/01/96"
*film-makers <Accrue>
**"Woody Allen"
*film-making <Paragraph>
**"direct"
**"produce"
*visual-arts <Accrue>
**sculpture <In>
/zonespec="title"
**painters <Filter>
/definition="Title MATCHES Famous Painters"
**<Thesaurus>
/wordtext="paint"
literature <Accrue>
*novels <Near>
**0.80 "Proust"
**0.80 "Remembrance" <Case>
*american-novel <Sentence>
**"American"
**"novel"
history <Accrue>
*<Wildcard>
/wordtext="histor*"
music <Accrue>
*jazz
**"bebop"
**<Not> "fusion"
*classical
**"Italian opera"
$$

Operator Reference

102 Full-Text Search Specialty Data Store

Operator Reference
Each operator is listed below alphabetically. Examples for many of these
operators can be found in the topic outline in the previous section.

ACCRUE Operator
Selects documents that include at least one of the search elements you
specify. Valid search elements are two or more words or phrases. Selected
documents are relevance-ranked.

The ACCRUE operator scores selected documents according to the
presence of each search element in the document using a "the more, the
better" approach: the more search elements found in the document, the
better the document’s score. Several examples of the ACCRUE operator
appear in the sample outline file in the previous section, "Sample Topic
Outlines."

ALL Operator
Selects documents that include all of the search elements you specify.
Unlike the ACCRUE operator, you cannot assign weights when you use
the ALL operator.

AND Operator
Selects documents that contain all of the search elements you specify.
Documents selected using the AND operator are relevance-ranked. The
example in "Sample Topic Outlines" shows how the AND operator might
be used with the topic "film." In the example, only those documents that
contain both search words and a date greater than or equal to 05/01/96 are
selected and ranked according to their score.

ANY Operator
Selects documents include at least one of the search elements you specify.
Unlike the ACCRUE operator, you cannot assign weights when you use
the ANY operator.

CHAPTER 8 Verity Topics

User’s Guide 103

CONTAINS Operator
Selects documents by matching the word or phrase you specify with
values stored in a specific document field. When you use the CONTAINS
operator, you specify the field name to search, and the word or phrase to
search for.

With the CONTAINS operator, the words stored in a document field are
interpreted as individual, sequential units. You may specify one or more of
these units as search criteria. To specify multiple words, each word must
be sequential and contiguous, and must be separated by a blank space. Use
CONTAINS with the FILTER operator.

The syntax for CONTAINS is the same as that for MATCHES. See the
example for MATCHES under the topic "visual arts" in "Sample Topic
Outlines." The example assumes that the field TITLE has been created for
the collection.

The CONTAINS operator does not recognize non-alphanumeric
characters. The CONTAINS operator interprets non-alphanumeric
characters as a space and treats the separated values as individual units.
For example, if you have defined a slash (/) as a valid character, and you
enter search criteria that include this character, as in OS/2, "OS" and "2"
are treated as individual units.

Note that the CONTAINS operator does not refer to the style.lex file for
the definition of which characters are included in a word.

ENDS Operator
Selects documents by matching the character string you specify. Use
ENDS with the FILTER operator. The syntax for ENDS is the same as that
for MATCHES. See the example for MATCHES under the topic "visual
arts" in "Sample Topic Outlines." The example assumes that the field
TITLE has been created for the collection.

Operator Reference

104 Full-Text Search Specialty Data Store

= (EQUALS) Operator
Selects documents whose document field values are exactly the same as
the search string you specify. Use EQUALS with the FILTER operator.
The syntax for EQUALS is the same as that for GREATER THAN OR
EQUAL TO. See the example for GREATER THAN OR EQUAL TO
under the topic "film" in "Sample Topic Outlines." The example assumes
that the field DATE has been created for the collection.

FILTER Operator
The special FILTER operator is used in conjunction with the relational
operators to do field searches. See the example under the topic "visual-
arts" in "Sample Topic Outlines" for the proper syntax.

> (GREATER THAN) Operator
Selects documents whose document field values are greater than the
search string you specify. Use GREATER THAN with the FILTER
operator. The syntax for GREATER THAN is the same as that for
GREATER THAN OR EQUAL TO. See the example for GREATER
THAN OR EQUAL TO under the topic "film" in "Sample Topic
Outlines." The example assumes that the field DATE has been created for
the collection.

>= (GREATER THAN OR EQUAL TO) Operator
Selects documents whose document field values are greater than or equal
to the search string you specify. Use GREATER THAN OR EQUAL TO
with the FILTER operator. See the example under the topic "film" in
"Sample Topic Outlines." The example assumes that the field DATE has
been created for the collection.

CHAPTER 8 Verity Topics

User’s Guide 105

< (LESS THAN) Operator
Selects documents whose document field values are less than the search
string you specify. Use LESS THAN with the FILTER operator. The
syntax for LESS THAN is the same as that for GREATER THAN OR
EQUAL TO. See the example for GREATER THAN OR EQUAL TO
under the topic "film" on "Sample Topic Outlines." The example assumes
that the field DATE has been created for the collection.

<= (LESS THAN OR EQUAL TO) Operator
Selects documents whose document field values are less than or equal to
the search string you specify. Use LESS THAN OR EQUAL TO with the
FILTER operator. The syntax for LESS THAN OR EQUAL TO is the
same as that for GREATER THAN OR EQUAL TO. See the example for
GREATER THAN OR EQUAL TO under the topic "film" on "Sample
Topic Outlines." The example assumes that the field DATE has been
created for the collection.

IN Operator
Selects documents that contain specified values in one or more document
zones. A document zone represents a region of a document, such as the
document’s summary, date, or body text. The IN operator only works if
document zones have been defined in your collections. If you use the IN
operator to search collections for which zones are not defined, no
documents will be selected. In addition, the zone name you specify must
match the zone names defined in your collections. Consult your collection
administrator to determine which zones have been defined for specific
collections. The example in "Sample Topic Outlines" shows how IN might
be used with the word "sculpture" and the TITLE zone.

MATCHES Operator
Selects documents by matching the character string you specify with
values stored in a specific document field. When you use the MATCHES
operator, you specify the field name to search, and the word, phrase, or
number to search for.

Operator Reference

106 Full-Text Search Specialty Data Store

Unlike the CONTAINS operator, the search criteria you specify with a
MATCHES operator must match the field value exactly for a document to
be selected. With the MATCHES operator, any occurrence of a search
string that appears as a portion of a value is not selected; only values
matching the entire search string are selected.

You can use question marks (?) to represent individual variable characters
within a string, and asterisks (*) to match multiple variable characters
within a string.

Use MATCHES with the FILTER operator. The example in "Sample Topic
Outlines" shows how MATCHES might be used with the phrase "famous
painters" and the TITLE field. The example assumes that the field TITLE
has been created for the collection.

NEAR Operator
Selects documents containing specified search terms within close
proximity to each other. Document scores are calculated based on the
relative number of words between search terms. For example, if the search
expression includes two words, and those words occur next to each other
in a document (so that the region size is two words long), then the score
assigned to that document is 1.00. Thus, the document with the smallest
region containing all search terms always receives the highest score.
Documents whose search terms are not within 1000 words of each other
are not selected, since the search terms are probably too far apart to be
meaningful within the context of the document.

The NEAR operator is similar to the other proximity operators in the sense
that the search words you enter must be found within close proximity of
one another. However, unlike other proximity operators, the NEAR
operator calculates relative proximity and assigns scores based on its
calculations.

The example in "Sample Topic Outlines" shows how NEAR might be used
with the topic "novels."

CHAPTER 8 Verity Topics

User’s Guide 107

NEAR/N Operator
Selects documents containing two or more words within N number of
words of each other, where N is an integer. Document scores are calculated
based on the relative distance of the specified words when they are
separated by N words or less. Documents containing the specified words
separated by more than N words are not selected. For example, if the
search expression NEAR/5 is used to find two words within five words of
each other, a document that has the specified words within three words of
each other is scored higher than a document that has the specified words
within five words of each other.

The N variable can be an integer between 1 and 1,024, where NEAR/1
searches for two words that are next to each other. Note that if N is 1,000
or above, you must specify its value without commas, as in NEAR/1000.

The NEAR/N operator is similar to the other proximity operators in the
sense that the search words you enter must be found within a close
proximity of one another. However, unlike other proximity operators, the
NEAR/N operator assigns scores based on relative proximity.

OR Operator
Selects documents that show evidence of at least one of your search
elements. Documents selected using the OR operator are relevance-
ranked. The example in "Sample Topic Outlines" shows how you might
use OR with the topic "performing-arts."

PARAGRAPH Operator
Selects documents that include all of the search elements you specify
within a paragraph. Valid search elements are two or more words or
phrases. You can specify search elements in a sequential or a random
order. Documents are retrieved as long as search elements appear in the
same paragraph. The example in "Sample Topic Outlines" shows you how
you might use PARAGRAPH with the topic "film-making."

Operator Reference

108 Full-Text Search Specialty Data Store

PHRASE Operator
Selects documents that include a phrase you specify. A phrase is a
grouping of two or more words that occur in a specific order. You must use
the PHRASE operator when you enter more than one word in the evidence
field. Words with the PHRASE operator are displayed in double quotes.
The example in "Sample Topic Outlines" shows "Woody Allen" and
"Italian opera" as uses of the PHRASE operator.

SENTENCE Operator
Selects documents that include all of the words you specify within a
sentence. You can specify search elements in a sequential or a random
order. Documents are retrieved as long as search elements appear in the
same sentence. The example in "Sample Topic Outlines" shows how you
how you might use SENTENCE with the topic "american-novel."

SOUNDEX Operator
Selects documents that include one or more words that "sound like," or
whose letter pattern is similar to, the word specified. Words have to start
with the same letter as the word you specify to be selected. For example,
when you use SOUNDEX with "sale," the documents selected will include
words such as "sale," "sell," "seal," "shell," "soul," and "scale."
Documents are not relevance-ranked unless the MANY modifier is used.

STARTS Operator
Selects documents by matching the character string you specify with the
starting characters of the values stored in a specific document field. Use
STARTS with the FILTER operator. The syntax for STARTS is the same
as that for MATCHES. See the example for MATCHES under the topic
"visual arts" in "Sample Topic Outlines." The example assumes that the
field TITLE has been created for the collection.

CHAPTER 8 Verity Topics

User’s Guide 109

STEM Operator
Selects documents that include one or more variations of the search word
you specify. Words with the STEM operator are displayed in single quotes.
In the example in "Sample Topic Outlines," the word "dance" is used with
the STEM operator. Documents selected will therefore include words such
as "dances," "danced," "and "dancing," as well as "dance."

SUBSTRING Operator
Selects documents by matching the character string you specify with a
portion of the strings of the values stored in a specific document field. The
characters that comprise the string can occur at the beginning of a field
value, within a field value, or at the end of a field value. The syntax for
SUBSTRING is the same as that for MATCHES. See the example for
MATCHES under the topic "visual arts" in "Sample Topic Outlines." The
example assumes that the field TITLE has been created for the collection.

THESAURUS Operator
Selects documents that contain one or more synonyms of the word you
specify. For example, when you use the word "altitude" with the
THESARUS operator, the documents selected will include words such as
"height" and "elevation." Documents are not relevance-ranked unless the
MANY modifier is used.

WILDCARD Operator
Selects documents that contain matches to a character string containing
variables. The WILDCARD operator lets you define a search string with
variables, which can be used to locate related word matches in documents.
The example in "Sample Topic Outlines" shows how you might use the
string "histor*" to search for words such as "history," "historical," and
"historian." Documents are not relevance-ranked unless the MANY
modifier is used.

Operator Reference

110 Full-Text Search Specialty Data Store

Using Wildcard Special Characters
You can use the following wildcard characters to represent variable
portions of search strings with the WILDCARD operator.

Table 8-8: Wildcard Special Characters

Searching for Non-alphanumeric Characters
Remember that you can only search for non-alphanumeric characters if the
style.lex file used to create the collections you are searching is set up to
recognize the characters you want to search for. Consult your collection
administrator for information.

Searching for Wildcard Characters as Literals

The wildcard characters listed above are interpreted as wildcard
characters, not literal characters, unless they are delimited by a backslash
(\). If you want a wildcard character to be interpreted as a literal in a
wildcard string, you must precede the character with a backslash. For
example, to match the literal asterisk (*) in a wildcard string, you delimit
the character as follows:

Character Function

? Specifies one of any alphanumeric character, as in ?an, which locates "ran," "pan," "can," and
"ban." Note that it is not necessary to specify the WILDCARD operator when you use the
question mark. The question mark is ignored in a set ([]) or in an alternative pattern ({ }).

 * Specifies zero or more of any alphanumeric character, as in corp*, which locates "corporate,"
"corporation," "corporal," and "corpulent." Note that it is not necessary to specify the
WILDCARD operator when you use the asterisk, and you should not use the asterisk to specify
the first character of a wildcard string. The asterisk is ignored in a set ([]) or in an alternative
pattern ({ }).

 [] Specifies one of any character in a set, as in <WILDCARD> `c[auo]t`, which locates "cat,"
"cut," and "cot." Note that you must enclose the word which includes a set in backquotes (`),
and there can be no spaces in a set.

{ } Specifies one of each pattern separated by a comma, as in <WILDCARD> `bank{s,er,ing}`,
which locates "banks," "banker," and "banking." Note that you must enclose the word which
includes a pattern in backquotes (`), and there can be no spaces in a set.

 ^ Specifies one of any character not in the set, as in <WILDCARD> ̀ st[^oa]ck`, which excludes
"stock" and "stack" but locates "stick" and "stuck." Note that the caret (^) must be the first
character after the left bracket ([) that introduces a set.

- Specifies a range of characters in a set, as in <WILDCARD> `c[a-r]t`, which locates every
three-letter word from "cat" to "crt."

CHAPTER 8 Verity Topics

User’s Guide 111

<WILDCARD> a*

Searching for Special Characters as Literals

The following non-alphanumeric characters perform special, internal
functions, and by default are not treated as literals in a wildcard string:

• comma ,

• left and right parentheses ()

• double quotation mark "

• backslash \

• at sign @

• left curly brace {

• left bracket [

• less than sign <

• backquote `

To interpret special characters as literals, you must surround the whole
wildcard string in backquotes (`). For example, to search for the wildcard
string "a{b", you surround the string with backquotes, as follows:

<WILDCARD> `a{b`

To search for a wildcard string that includes the literal backquote character
(`), you must use two backquotes together and surround the whole
wildcard string in backquotes (`), as follows:

<WILDCARD> `*n``t`

Note that you can only search on backquotes if the style.lex file used to
create the collections you are searching is set up to recognize the
backquote character. Consult your collection administrator for
information.

WORD Operator
Selects documents that include one or more instances of a word you
specify. Words with the WORD operator are displayed in double quotes.
The example in "Sample Topic Outlines" displays many instances of the
WORD operator.

Modifier Reference

112 Full-Text Search Specialty Data Store

Modifier Reference
Modifiers further specify the behavior of operators. For example, you can
use the CASE modifier with an operator to specify that the case of the
search word you enter be considered a search element as well. Modifiers
include CASE, MANY, NOT, and ORDER, which are described below.

CASE Modifier
Use the CASE modifier with the WORD or WILDCARD operator to
perform a case-sensitive search, based on the case of the word or phrase
specified.

By default, documents containing any occurrences of a search word or
phrase are retrieved regardless of case. To use the CASE modifier, you
simply enter the search word or phrase as you wish it to appear in retrieved
documents - in all uppercase letters, in mixed uppercase and lowercase
letters, or in all lowercase letters. The example in "Sample Topic Outlines"
shows how you might use the word "Remembrance" with the CASE
modifier in order to refer to the first word of Proust’s novel, Remembrance
of Things Past.

MANY Modifier
Counts the density of words, stemmed variations, or phrases in a
document, and produces a relevance-ranked score for retrieved
documents. The more occurrences of a word, stem, or phrase proportional
to the amount of document text, the higher the score of that document
when retrieved. Because the MANY modifier considers density in
proportion to document text, a longer document that contains more
occurrences of a word may score lower than a shorter document that
contains fewer occurrences.

The MANY modifier can be used with the following operators: WORD,
WILDCARD, STEM, SOUNDEX, PHRASE, SENTENCE,
PARAGRAPH and THESAURUS.

Note that the MANY modifier cannot be used with AND, OR, ACCRUE,
or relational operators.

CHAPTER 8 Verity Topics

User’s Guide 113

NOT Modifier
Use the NOT modifier with a word or phrase to exclude documents that
show evidence of that word or phrase. The example in "Sample Topic
Outlines" shows how you might use the NOT modifier to retrieve
documents that mention "bebop" but not "fusion."

ORDER Modifier
Use the ORDER modifier to express the order in which search elements
must occur. If search values do not occur in the specified order in a
document, the document is not selected. Always place the ORDER
modifier just before the operator.

Note that you can only use the ORDER modifier with the operators ALL,
PARAGRAPH, SENTENCE, and NEAR/N.

Weights and Document Importance
This section describes assigning weights to search criteria in topics, and
the affect of weights on selected documents. The specific information
covered includes the following:

• Which operators accept weights

• How weights affect importance

• Assigning weights

• Topic scoring and document importance

Topic Weights
When processing a search agent, the Verity search engine calculates a
score for each selected document behind the scenes. A document score can
be in the range from 1.0 to 0.01. The higher a document’s score, the more
relevant it is. Using the score assignments for documents selected by a
search agent, Verity applications can present relevance-ranked results in
descending order to application users.

Weights and Document Importance

114 Full-Text Search Specialty Data Store

The ranking of documents is determined by the elements which comprise
your search criteria. Document ranking can be affected depending on
whether the search criteria includes topics, and whether topics include
weights.

When creating topics, you can assign weights to the topic structure to
indicate the relative importance of specific aspects of the topic definition.
For example, you may be interested in two related subjects, but one subject
is more important than another. Note that you do not have to assign
weights when you compose topics because default weights are assigned as
appropriate when a topic set is indexed. However, by assigning weights
you can fine-tune the importance of things you are looking for.

Which Operators Accept Weights
Weights are used in conjunction with operators to compute scores for
parent and child topics during a search. The weight you assign to a topic
child can be a number between 0.01 and 1.00. A child’s weight indicates
its importance relative to the other children that have been defined for its
parent. The higher a child’s weight, the more important that child is
considered to be with respect to its siblings.

Weights can only be assigned to the children of topics which use the
concept operators, as follows:

• AND

• OR

• ACCRUE

Topics which use the proximity operators SENTENCE and
PARAGRAPH, cannot be assigned a weight. These operators assume a
simple "yes" or "no" presence for their children.

Note that if a topic assigned a proximity operator is, in turn, the child of a
topic which has been assigned a concept operator, such as the AND
operator, that child can be assigned a weight.

CHAPTER 8 Verity Topics

User’s Guide 115

It is not mandatory that you assign weights to the children of a topic just
because the operator can accept weighted children. When weights are not
assigned, the child has an automatic weight assignment based on its
operator. Children of topics using AND and OR operators assume a weight
of 1.00, and children of topics using the ACCRUE operator assume a
weight of 0.50. If these operators are changed-for example, if an OR
operator is changed to an ACCRUE operator-the weights of children
which have not been specifically assigned a weight change accordingly.
Thus, if an unweighted child of an AND topic has an assumed weight of
1.00, this assumed weight changes to 0.50 if the operator is changed to
ACCRUE.

If you assign a variable weight to a topic child, then change the operator
used with the parent to one which does not accept weighted children, such
as the SENTENCE operator. The Verity search engine will automatically
assume a weight of 1.00 while this operator is in effect. If the operator is
subsequently changed to one which accepts variable-weighted children,
the previously-assigned variable weights will become effective once
again.

How Weights Affect Importance
When you assign a weight to the child of a topic which uses a concept
operator, you specify the relative contribution of that child to the overall
score produced by a topic. The higher the weight you assign to the child,
the higher selected documents which contain that child will appear in the
list of results. Thus, weights directly affect the importance, or ranking, of
selected documents.

For example, assume you have the following topic:

Weights and Document Importance

116 Full-Text Search Specialty Data Store

The evidence topics 80286 and 80386 (which describe the
microprocessors used in PC products) have an automatic weight
assignment of 1.00. The evidence topics 486, 386, and 286 have a
relatively high probability of referring to their parent topic, so these
evidence topics are assigned weights of 0.80. The evidence topic clone
may or may not refer to PC clones at all; therefore, this evidence topic is
assigned a weight of 0.40.

A search agent using this topic and its assigned weights might produce the
following scores for the matched documents:

If you change the weights of each evidence topic, the importance of your
selection results are affected, as well. In this example, if you change the
weights of the evidence topic 486 to 0.60, the evidence topic 386 to 0.45,
the evidence topic 286 to 0.35, and the evidence topic clone to 0.20, your
selected document scores will change as follows:

CHAPTER 8 Verity Topics

User’s Guide 117

Assigning Weights
When you assign a weight to a child, keep in mind that the weight you use
reflects the importance of a child to its parent topic. The matched
documents will be ranked by importance to the search; thus, your selection
results are directly affected by the weights you assign. If you change a
weight, your selection results will be changed, as well.

Example:

The topic boeing-people includes three weighted children, binder, shrontz,
and woodard, as shown below.

These subtopics are assigned various weights, as follows: the child binder
is assigned a weight of 0.80, since this child is considered to be the most
important of the three. The subtopic hitsman is assigned a "median"
weight of 0.50, since this child is reasonably important with respect to the
other two children. The subtopic johnson is assigned a low weight of 0.30,
since this child is considered to be the least important with respect to the
other children.

When the topic boeing-people is used for a search, the Verity search
engine assumes that if the phrase "Paul Binder" is located within a
document, there is a high probability that the document will be relevant to
a search which uses the topic boeing-people. Documents which contain
the phrase "Frank Shrontz" will be reasonably relevant to this search;
documents which contain the phrase "Ron Woodard" will be the least
relevant.

Weights and Document Importance

118 Full-Text Search Specialty Data Store

Because the topic boeing-people has been assigned the ACCRUE
operator, the documents displayed at the top of the results list will be those
which contain the greatest number of children; therefore all documents
with references to all three people will be given the most importance.
Documents which contain just one name will be selected in an order that
reflects the weights of each child. Thus, because the binder child has the
highest weight, documents which include only one individual will be
ranked by those which refer to Paul Binder first, followed by Frank
Shrontz, and finally Ron Woodard.

Automatic Weight Assignments
When you create a child, the Verity search engine automatically assigns a
default weight of 0.50 for children of topics which use the ACCRUE
operator. A weight of 1.00 is assigned automatically to children of topics
which use the AND or OR operators. These default weights can be
manually adjusted up or down, as described in "Changing Weights" in this
section. When you create a evidence topic off of a topic which uses a
proximity operator, default weight of 1.00 is assigned, and it cannot be
changed.

Tips for Assigning Weights
When initially assigning weights, start with a weight of 0.50 for children
of ACCRUE topics, and 1.00 for children of all other topics.

When assigning weights to children of topics which use the ACCRUE
operator, you may select more relevant results if the children do not have
overly high weights. For example, assigning all of the children of an
ACCRUE topic weights of 1.00 will cause all documents to have equal
importance, regardless of how many of the children are present within the
documents. The Verity search engine will assign equal importance to all
documents containing only one child as well as for documents which
contain all children, so you will not be able to distinguish between these
documents when you view the selection results.

Assign weights between 0.80 and 0.20 for the best selection results.

CHAPTER 8 Verity Topics

User’s Guide 119

Changing Weights
Once you have assigned weights to children, you can test these weights by
running a search using the parent topics to see if the documents you want
are selected. If you find that you need to change the weights, you can edit
the existing weight assigned to that subtopic or evidence topic. Note that
when you edit topic definitions in the topic outline file, you must rebuild
the topic set using mktopics. For complete information about using
mktopics, refer to your Verity application’s administration guide.

Topic Scoring and Document Importance
When you use a topic to perform a search, the search agent starts its
analysis by considering the evidence topics for that topic. If the evidence
topic is present, it is given 1.00 score and is considered relevant to the
search. If the evidence topic is absent, it is given a 0.00 score and is
considered irrelevant to the search. If the evidence topics are weighted, the
scores of the evidence topics are multiplied by the weights, then combines
the resulting products in a manner specified by the operator of the parent
topic. If this parent topic is, in turn, the child of another topic which is
being searched, its score is multiplied by its assigned weight, and the
resulting product is combined with the products of its siblings in a manner
specified by the operator assigned to the parent topic. This process
continues until the parent topic is reached.

The operators you use determine how parent and child scores contribute to
the importance of a selected document. As each child in the topic is given
an importance score, the following calculations are performed:

• If a topic uses an ACCRUE operator, the highest ranking result is
taken from the products of each child’s weight and score, then adds a
little to the score for each child which is present in the document.

• If a topic uses an AND operator, the products of each child’s own
weight and score are compared, and the lowest product (the
minimum) is taken as the score.

• If a child uses an OR operator, the products of each child’s weight and
score are compared, and highest product (the maximum) is taken as
the score.

Topic Scoring and Document Importance

120 Full-Text Search Specialty Data Store

• If a child uses a proximity operator (PHRASE, SENTENCE, or
PARAGRAPH), or a relational operator, the child receives a score of
1.00 if the topic is present, and a score of 0.00 if the topic is not
present.

• An evidence topic receives a score of 1.00 if it is present, and no score
of 0.00 if it is not present.

Once the final calculations for the parent topic have been performed, a
matched document becomes available to the Verity application so that
users can view it with its highlights.

Example:

The following example provides a breakdown of how evidence topics and
subtopics are calculated to illustrate the process by which importance is
assigned to selected documents.

In the following illustration, the parent topic BOEINGCO is being used in
a search.

The evidence topics of each subtopic are first checked against the
documents to determine if they are present. Evidence topics that are
present are assigned scores of 1.00; evidence topics that are absent are
assigned a score of 0.00.

CHAPTER 8 Verity Topics

User’s Guide 121

The operators at the next level of a topic structure are used to combine the
scores of the evidence topics. Because the operators

at this level are all proximity operators (thus, no weights assigned), they
all produce scores that are either 0.00 or 1.00.

For example, assume that the following evidence topics appear within a
given document:

• The evidence topic "Boeing Computer Services" appears within a
phrase

• The evidence topic "Boeing Defense" appears within a paragraph The
evidence topic "Boeing Company" appears within the document

• The evidence topic "Ron Woodard" appears within a phrase

The other evidence topics are only partially present, or are absent. The
following table shows how the presence or absence of these evidence
topics affect topic scores. Note that the score for each topic reflects the
presence of all related evidence topics, based on the operators which have
been assigned to the parent topics.

Table 8-9: Evidence Topics and Scores

Topic Evidence topic
Evidence topic
Present

Evidence topic
Absent

Topic
Score

boeing-comp-services boeing computer services 1

1

1

1

boeing-aerospace boeing aerospace electronics 1

1

1

0

boeing-defense boeing defense 1

1

1

boeing-label boeing company 1

1

1

paul-binder paul binder 1

1

0

frank-shrontz frank shrontz 1

1

0

ron-woodard ron woodard 1

1

1

Designing Topics

122 Full-Text Search Specialty Data Store

Given the above topic scores, the operators at the next level of topics in the
structure are calculated as follows:

• The subtopic boeing-comps, which uses the AND operator, has a
score of 0.50.

• The subtopic boeing-people, which uses the ACCRUE operator, has
a score of 0.50.

Finally, the topic BOEINGCO, which uses the OR operator, compares the
products of each child’s weight and score, and takes the highest product
(the maximum) as its score. The selected document is thus scored as 0.50.

This process is repeated for each document. The documents are sorted by
the scores of the BOEINGCO topic, and displayed in ranked order.

Designing Topics
This section discusses methodologies you can use to design effective
topics. You can apply the methodologies and strategies described here
whether you plan to compose topics using a topic outline file or one of the
Verity clients. The information in this section includes the following:

• Preparing your topic design

• Topic design strategies

• Designing the initial topic

Preparing Your Topic Design
As you prepare your topic design, consider the naming conventions you
will use. Your topic names should help identify the subject matter of the
kinds documents you want to find.

CHAPTER 8 Verity Topics

User’s Guide 123

To ensure the best search performance, use alphanumeric characters (A
through Z, and 0 through 9) for topic names. You can also use foreign
characters whose ASCII value is greater than or equal to 128, as well as
these symbols: $ (dollar sign), % (percentage sign), ̂ (circumflex), + (plus
sign), - (dash), and _ (underscore). Using other non-alphanumeric
characters, could cause misinterpretation of the topic name and affect
results.

Understanding Your Information Needs
You should have an understanding of the subject areas to be addressed by
your topic design and be familiar with the search requirements of users at
your site. The next step is to understand your informational needs, as well
as the document types to be searched.

In planning your initial topic design, keep in mind that you are developing
a strategy, and the topics you define are the tactics you will use to
implement that strategy.

As you develop your strategy, try to answer the following questions:

• What do you wish to gain by using a Verity search agents?

• What issues are to be solved by Verity search agents?

• Who will use search agents?

• What kind(s) of source material will be used?

• What kinds of searches will be performed?

• How are searches currently being performed?

Consider the topics you define as questions to be asked. Just as you might
ask a reference librarian at your local library for information relating to a
subject area, the topics you create should pose questions when creating
Verity search agents.

When considering your strategy, and how Verity search applications will
be implemented to provide a solution, keep in mind that a topic you design
performs several roles, as follows:

• A librarian

• A research assistant

• An information repository

Preparing Your Topic Design

124 Full-Text Search Specialty Data Store

• A knowledge base

Understanding Your Documents
To build effective topics, you must have a good understanding of the types
of documents being used as information sources. For example, your
documents may consist of one or more of the following types of
information:

• Letters

• Memos

• Reports

• Articles

Collect representative samples of the types of documents to be searched.
Note common characteristics you will need to apply to the topics you
design. For example, if your documents contain important terms,
acronyms, or jargon, highlight them so you can create topics that search
for this text.

As you collect your document samples, identify their sources-whether
they are internal sources, such as internal auditing reports; or external
sources, such as electronic mail messages from outside organizations. This
information will enable you to define the subtopics for top-level topics.

Using Scanned Data
If your documents are scanned into electronic files using an OCR facility,
determine whether the document files will be reviewed for accuracy prior
to indexing. If scanned files are reviewed, consult with reviewers to ensure
that standards are applied to terms, acronyms, and jargon. If scanned files
are not reviewed, note possible variations that may occur. You can develop
a topic that uses an OR operator to include variations.

CHAPTER 8 Verity Topics

User’s Guide 125

Categorizing Document Samples
Once you have collected your representative document samples and have
performed an initial analysis of their contents, you may want to categorize
them further. The categorization process can help you to define the top-
level topics and children contained in your topic design, and help
determine the operators and weights to assign.

Following are categorization examples:

• Geographic location

• Sit

• Project

• Subject area

• Date

The categorization process can help you understand the common,
meaningful elements which exist in your information sources. For
example, if you categorize your information by date (such as a month), it
makes sense to create topics that use relational operators, such as
EQUALS.

Topic Design Strategies
Once you have an understanding of your documents, you are ready to
choose a topic design strategy. There are two topic design strategies

• The "top-down" strategy considers the major subject classifications
first, followed by classifications of increasing detail.

• The "bottom-up" strategy considers the detailed areas first, followed
by classifications which group each detailed area by a more
generalized subject.

Topic Design Strategies

126 Full-Text Search Specialty Data Store

Top-Down Design
A top-down strategy assumes you are designing a topic from the top-level
topics down through the individual evidence topics of each subtopic. To
design from the top down, you must adopt a taxonomy, or scientific
classification approach, to creating a topic, as follows:

• Top-level topics: use general headings to identify the subject area

• Subtopics: use more specific headings to identify the primary
groupings within the subject area, as well as topics which are
increasingly more specific.

• Evidence topics: use important terms, acronyms, or jargon, to define
the subject.

A top-down design works best when you have clearly-defined
requirements. This approach is also ideal if your set of searchable
documents is constantly growing or changing. With this strategy, for
example, you are likely to define subjects which may not yet be evident in
your information sources. Keep in mind that you can always add new
topics, if you find that a number of new documents contain information
which are not identified in your topic design.

If your information sources (that is your set of indexed documents)
changes constantly, specific subjects within documents may be missed,
especially at the lowest levels. So, you should periodically analyze the
information being selected by your topics to ensure that topics critical to
your application are current, and the appropriate information is being
found.

Bottom-Up Design
A bottom-up strategy assumes you are designing a topic from the
individual evidence topics up through the top-level topics which will be
defined. With this strategy, your topic design objective is to select
documents containing information similar to your lower-level topics.

When you use a bottom-up design, you can start with a document which
contains a good representative sample of the words or phrases you want to
search for. Then you can group these words by successively higher
classifications.

CHAPTER 8 Verity Topics

User’s Guide 127

A bottom-up design works best when you have documents which are
representative of many other documents that contain similar information.
This approach is also useful when your information sources are not subject
to many changes or additions.

Keep in mind that topic designs based on the contents of specific
documents may miss related subject areas in other documents. For
example, if a name is used in the sample document and that name changes
in other documents, the new name may be missed in searches.

In addition, the bottom-up strategy implies that your topic design is tuned
to the specific document set being used to develop

your topics. These documents may not be representative of all documents
contained in your information sources. So, you should

periodically review the effectiveness of your searches.

Designing the Initial Topic
When you have decided whether to use the top-down approach or the
bottom-up approach for your initial topic design, it can be helpful to create
a topic outline to identify the topic levels to be defined.

Outlining a Topic
Making a topic outline can help you determine how information will be
categorized at the various levels within a topic. You can use a topic outline
with the top-down or the bottom-up design approach, but it is particularly
useful for the top-down approach. We recommend that every topic you
build be developed as an outline first, so that you can understand the
relationships between topics and subtopics, and organize them to be the
most useful.

A topic outline helps you understand how information might be searched
for by the people who use Verity search agents at your site. You can use a
topic outline to fine-tune the information specified by topics and subtopics
to pinpoint document selection. Try to do the following as you develop a
topic outline:

Designing the Initial Topic

128 Full-Text Search Specialty Data Store

• Identify the specific areas of information people will use when
performing searches.

• Identify any related subtopics which may be grouped as children
under a parent topic .

• Consider the initial level of detail to be covered by your topic design.

Keep the scope of your topic outline relatively small to begin with. A
smaller, simpler topic outline is easier to define, and you can always add
additional information later. As you develop your topic outline, determine
how many levels your topic design will include.

Top-Down Topic Outline Example
Developing a top-down topic outline involves three steps.

• Establishing an information hierarchy

• Establishing individual search categories

• Establishing the topics to be built

As you work through these steps, you should meet with the people who use
Verity search agents at your site to develop a topic outline that best meets
their search needs, as described below.

Step One: Establishing an Information Hierarchy

Talk to the people at your site to learn what types of documents contain the
information they need.

For example, assume you are developing a topic design for people in the
medical industry to find information relating to current drug testing. Based
on discussions with the people who will use Verity search agents at your
site, you learn that the following types of documents are prime sources of
current drug testing information:

• Research reports

• Product literature

These documents form the information sources to be searched by Verity
search agents.

CHAPTER 8 Verity Topics

User’s Guide 129

Step Two: Establishing Individual Search Categories

Review the documents that will form the information sources at your site.
Look for ways to categorize documents.

In our example, a review of the medical research reports and product
literature shows information contained in these documents is divided into
several categories. You determine that the following categories will be
used to define the top-level topics in your topic design:

• Lab reports

• Clinical trials, data, or research

• Product literature

Step Three: Establishing the Topics to be Built

Discuss categories you define with the people who create Verity search
agents at your site to determine the most important concepts that selected
documents should contain, and to determine the top-level topics you need
to develop for each category.

For example, you determine that the category "clinical trials" includes the
following top-level topics:

Designing the Initial Topic

130 Full-Text Search Specialty Data Store

Within these top-level topics, for example, the following subtopics are
identified by subject-area experts:

CHAPTER 8 Verity Topics

User’s Guide 131

Once these topics are classified, you consult the people who use Verity
search agents at your site to determine subtopics. Following is an example
of subtopics classified as children for the topic procedural-aspects:

Designing the Initial Topic

132 Full-Text Search Specialty Data Store

As the topic outline is defined, you consult the people who use Verity
search agents at your site to ensure the topics select meaningful
documents. In the next example, a topic called drug-names enables the
users at your site to search clinical trials data for drugs, based on their
names.

Bottom-Up Topic Outline Example
Developing a bottom-up topic outline involves three steps.

• Identifying the subtopics which will form the lowest levels of the
topic design

• Categorizing related subtopics into higher-level topics

• Establishing the top-level topic classifications

CHAPTER 8 Verity Topics

User’s Guide 133

As you work through these steps, meet with the people who create Verity
search agents at your site to develop a topic outline that best meets your
search needs, as described below.

Step One: Identifying Low-level Topics

Find a document you can use as a model whose information is
representative of other documents you want to find.

For example, assume you are developing a topic design to find information
on the computer industry. As a start, you build a topic that searches for
documents related to Apple Computer and related products.

You use the following sample as a model document whose information is
representative of other documents you want to find:

This document makes you decide you want to locate other documents
which refer to "Appletalk" and "Macintosh," so you define two parent
topic names, apple-software and apple-hardware.

You decide you want to add additional evidence topics to select documents
containing related information, such as "Macintosh,"

Designing the Initial Topic

134 Full-Text Search Specialty Data Store

"Mac Classic," "Quadra," and "Power Mac." In addition, you decide you
want to include the evidence topics "AppleTalk" "MacPaint," "MacWrite,"
and "MacDraw," as related software products. You assign these evidence
topics to your apple-hardware and apple-software topics, as follows:

Finally, you want to combine these topics into the topic apple-products, as
follows:

Step Two: Categorizing Related Subtopics

Discuss subtopics with the people who use Verity search agents at your site
to determine if other subtopics exist that can be logically grouped in a
category.

CHAPTER 8 Verity Topics

User’s Guide 135

In our example, some of the people who use Verity search agents are
interested in finding information on personnel at Apple Computer, and
others are interested in finding any documents which refer to Apple
Computer. In the example below, a logical group of topics addresses
several aspects of Apple Computer:

Step Three: Establishing Top-Level Topics

Determine whether other top-level topics are necessary to find related
information.

Designing the Initial Topic

136 Full-Text Search Specialty Data Store

In the following example, a new topic, dec, is developed for another
computer company, Digital Equipment Corporation. This topic was
assigned a top-level topic and contains subtopics similar to those defined
for the apple topic, as shown below.

Verity® and TOPIC® are registered trademarks of Verity, Inc.

User’s Guide 137

A P P E N D I X A System Procedures

This appendix describes the Sybase -supplied system procedures used for
updating and getting reports from system tables. Table A-1 lists the
system procedures included with the Full-Text Search engine.

Table A-1: System procedures

Procedure Description

sp_check_text_index Reports or fixes consistency problems in FTS index and source tables.

sp_clean_text_events Removes processed entries from the text_events table.

sp_clean_text_indexes Removes text indexes which are note associated with a table.

sp_create_text_index Creates an external text index.

sp_drop_text_index Drops text indexes.

sp_help_text_index Enhanced version only. Displays text indexes.

sp_optimize_text_index Enhanced version only. Runs the Verity optimization routines.

sp_redo_text_events Changes the status of entries in the text_events table and forces re-
indexing of the modified table.

sp_refresh_text_index Adds an entry to the text_events table reflecting updates to the
corresponding source table.

sp_show_text_online Displays information about databases or indexes that are currently
online.

sp_text_cluster Enhanced version only. Displays or modifies clustering options.

sp_text_configure Enhanced version only. Displays or modifies Full-Text Search engine
configuration parameters.

sp_text_dump_database Enhanced version only. Makes a backup copy of the text indexes in a
database and optionally dumps the text_db and current databases.

sp_text_kill Enhanced version only. Terminates all connections to a specific text
index.

sp_text_load_index Enhanced version only. Restores text indexes from a backup.

sp_text_notify Notifies the Full-Text Search engine that the text_events table has been
modified.

sp_text_online Makes a database available to Adaptive Server.

sp_check_text_index

138 Full-Text Search Specialty Data Store

sp_check_text_index
Description Reports or fixes consistency problems in the FTS index and source tables.

Syntax sp_check_text_index server, "index_name", "id_column", "fixit"

Parameters server
 – the name of the text server.

index_name
 – the name of the text server.

id_column
 – the source identity column name.

fixit
 – if FALSE, just reports problems. If TRUE, doesn’t report but repairs
problems.

Examples sp_check_text_index "textsvr", "text.i_text", "id",
"false"

Lists problems on the server named textsvr with the column name
text.i_text.

Usage • Before using sp_check_text_index you must issue sp_dboption “select
into”, true

• This procedure addresses three problems:

It generates an sp_refresh_text_index insert for entries in the source
table that do not have a matching entry in the index.

It generates an sp_refresh_text_index delete for entries in the index table
that have no source table entry.

It generates an sp_refresh_text_index delete for each extra entry where
duplicate index entries exist.

• In order to determine the index duplicates, it is necessary to select all
of the ID values from the index table into a temporary table. If the
collection has more than 64K ID values, it will be necessary to change
the “batch_blocksize configuration parameter from its default of 0 to
65536 to enable blocked reading of the returned Verity information. If
this is not done, FTS will attempt to real all ID values in one read and
fail with a Verity error of “-27.”

Messages None

Permissions Any user can execute sp_check_text_index.

APPENDIX A System Procedures

User’s Guide 139

sp_clean_text_events
Description Removes processed entries from the text_events table.

Syntax sp_clean_text_events [up_to_date]

Parameters up_to_date
 – the date and time through which all processed entries will be deleted.

Examples sp_clean_text_events "01/15/98:17:00"

Removes data entered on or before January 15, 1998 at 5:00 p.m.

Usage • If the up_to_date parameter is specified, all entries having a date less
than or equal to up_to_date and whose status is set to processed is
deleted.

• If up_to_date is omitted, all entries whose status is set to processed is
deleted.

• Remove entries from the text_events table only after you have backed
up the collection associated with the text index.

• With the Enhanced Full-Text Search engine, the
sp_text_dump_database system procedure automatically runs this.

Messages None

Permissions Any user can execute sp_clean_text_events.

See also sp_text_dump_database

sp_clean_text_indexes
Description Removes indexes from the vesaux table that are not associated with a

table.

Syntax sp_clean_text_indexes

Parameters None.

Examples sp_clean_text_indexes

Usage • This procedure reads entries from the vesaux and vesauxcol tables,
verifying that both the source table and the corresponding index table
exist. If either is missing, the index is dropped.

Messages • Fetch resulted in an error

sp_create_text_index

140 Full-Text Search Specialty Data Store

• Unable to drop object definition for index_name!

Permissions Any user can execute sp_clean_text_indexes.

sp_create_text_index
Description Creates a text index.

Syntax sp_create_text_index server_name, index_table_name,
table_name, “batch”, column_name
[, column_name ...]

Parameters server_name
 – is the name of the Full-Text Search engine.

index_table_name
 – is the name of the index table. index_table_name has the form
[dbname.[owner.]]table, where:

• dbname is the name of the database containing the index table.

• owner is the name of the owner of the index table.

• table is the name of the index table.

table_name
 – is the name of the source table containing the text being indexed.
table_name has the form [dbname.[owner.]]table.

batch
 – The “batch” operator (must be in quotes) tells the Full-Text Search to
reallocate every session after each batch sent to the VDK.

column_name
 – is the name of the column indexed by the text index.

Examples sp_create_text_index "blue", "i_blurbs", "blurbs", "
", "copy"

Creates a text index and an index table named i_blurbs on the copy column
of the blurbs table.

Usage • Up to 16 columns can be indexed in a single text index.

• Columns of the following datatypes can be indexed: char, varchar,
nchar, nvarchar, text, image, datetime, and smalldatetimeint, smallint,
and tinyint

APPENDIX A System Procedures

User’s Guide 141

• The content of option_string is not case sensitive.

• option_string uses a null string (" ") to specify “No Options”.

• Assign the value “empty” to option_string to create a text index that
you will immediately drop. This creates the Verity collection
directory and the style files, but does not populate the collections. For
example, when you configure an individual table for clustering, you
create the text index and immediately drop it. After you edit the
style.prm file, you re-create the text index. For more information, see
“Editing Individual style.prm Files” on page 29.

• sp_create_text_index writes entries to the vesaux table and tells the
Full-Text Search engine to create the text index.

• Execution of sp_create_text_index is synchronous. The Adaptive
Server process executing this system procedure remains blocked until
the index is created. The time required to index large amounts of data
may be take as long as several hours to complete.

• When you create a text index on two or more columns, each column
in the text index is placed into its own document zone. The name of
the zone is the name of the column. The zones can be used to limit
your search to a particular column. For more information, see “in” on
page 54.

• Do not rename an index after creating.

Messages • Can’t run sp_create_text_index from within a transaction

• ’column_name’ cannot be NULL.

• Column ’column_name’ does not exist in table ’table_name’

• Index table mapping failed - Text Index creation aborted

• Invalid text index name - ’index_name’ already exists

• ’parameter’ is not in the current database

• Server name ’server_name’ does not exist in sysservers.

• ’table_name’ does not exist

• ’table_name’ is not a valid object name

• Table ’table_name’ does not have an identity column - text index
creation aborted

• Text index creation failed

• User ’user_name’ is not a valid user in the database

sp_drop_text_index

142 Full-Text Search Specialty Data Store

Permissions Any user can execute sp_create_text_index.

sp_drop_text_index
Description Drops the index table and text indexes.

Syntax sp_drop_text_index "table_name.index_table_name"
[,"table_name.index_table_name"...]

Parameters table_name
 – is the name of the table associated with the text indexes you are
dropping. table_name has the form [dbname.[owner.]]table, where:

• dbname is the name of the database containing the table.

• owner is the name of the owner of the table.

• table is the name of the table.

index_table_name
 – is the name of the index table and text index you are dropping.
index_table_name has the form [dbname.[owner.]]index.

Examples sp_drop_text_index "blurbs.i_blurbs"

Drops the index table and text index associated with the blurbs table.

Usage • First, the sp_drop_text_index system procedure issues a remote
procedure call (RPC) to the Full-Text Search engine to delete the
Verity collection. Then, it removes the associated entries from the
vesaux and vesauxcol tables, drops the index table, and removes the
index table object definition.

• Up to 255 indexes can be specified in a single sp_drop_text_index
request.

• If database and owner are not specified, the current owner and
database are used.

Messages • Can’t run sp_drop_text_index from within a transaction.

• Index ’index_name’ is not a Text Index

• ’parameter_name’ is not a valid name

• Server name ’server_name’ does not exist in sysservers

APPENDIX A System Procedures

User’s Guide 143

• Unable to drop index table ’table_name’. This table must be dropped
manually

• User ’user_name’ is not a valid user in the ’database_name’ database

• vs_drop_index failed with code ’code_name’.

Permissions Any user can execute sp_drop_text_index.

sp_help_text_index
Description (Enhanced version only)

 Displays a list of text indexes for the current database.

Syntax sp_help_text_index [index_table_name]

Parameters index_table_name
 – is the name of the text index you want to display.

Examples Example 1

sp_help_text_index

Displays all indexes.

Example 2

sp_help_text_index "i_blurbs"

Displays information about the text index i_blurbs.

Usage • sp_help_text_index is available only with Enhanced Full-Text Search
Specialty Data Store.

• If the index_table_name parameter is specified, information about
that text index is displayed. This information includes the name of the
text index, the name of the Verity collection for the index, the name
of the source table, the name of the IDENTITY column, and the name
of the Full-Text Search engine that created the index.

• If index_table_name is omitted, a list of all text indexes in the current
database is displayed

Messages • No text indexes found in database ’database_name’

• Text index ’index_name’ does not exist in database ’database_name’

• Object must be in the current database

sp_optimize_text_index

144 Full-Text Search Specialty Data Store

Permissions Any user can execute sp_help_text_index.

sp_optimize_text_index
Description (Enhanced version only)

Performs optimization on a text index.

Syntax sp_optimize_text_index index_table_name

Parameters index_table_name
 – is the name of the text index you want to optimize. index_table_name
has the form [dbname.[owner.]]table, where:

• dbname is the name of the database containing the index table. If
present, the owner or a placeholder is required.

• owner is the name of the owner of the index table.

• table is the name of the index table.

Examples sp_optimize_text_index "i_blurbs"

Optimizes the text index i_blurbs to improve query performance.

Usage • sp_optimize_text_index is available only with Enhanced Full-Text
Search Specialty Data Store.

• This system procedure causes the Full-Text Search engine to run the
specified text index through the Verity optimization routines.

• sp_optimize_text_index is useful for optimizing a text index that has
been updated with Verity optimization disabled (trace flag 11 turned
on).

• To enable MaxClean optimization turn on traceflag 30. This traceflag
should only be used during maintenance since it could take extra time
and interfere with normal usage. MaxClean is a Verity optimization
feature that removes out-of-date collection files.

Messages • ’index_table_name’ is not in the current database

• ’index_table_name’ does not exist

• Index ’index_table_name’ is not a Text Index

• This procedure is not supported against remote server ’server_name’

Permissions Any user can execute sp_optimize_text_index.

APPENDIX A System Procedures

User’s Guide 145

See also “Updating Existing Indexes” on page 79

sp_redo_text_events
Description Changes the status of entries in the text_events table and forces the re-

indexing of the modified columns.

Syntax sp_redo_text_events [from_date [,to_date]]

Parameters from_date
 – is the starting date and time in a date range of entries to be modified.

to_date
 – is the ending date and time in the specified date range of the entries
to be modified.

Examples sp_redo_text_events "01/05/98:17:00",
"02/12/98:08:30"

Re-indexes columns that were modified between January 5, 1998 at 5:00
p.m. and February 12, 1998 at 8:30 a.m.

Usage • Resets the status to “unprocessed” for all entries in the text_events
table that currently have a status of “processed.” The Full-Text Search
engine is notified that a re-index operation is required.

• Useful for synchronizing a text index after a recovery of the Verity
collection from a backup. When you use the Enhanced Full-Text
Search engine, this procedure is run automatically during
sp_text_load_index.

• If to_date is omitted, all entries between from_date and the current
date with a status of “processed” are reset to “unprocessed.”

• If both from_date and to_date are omitted, all entries in the
text_events table with a status of “processed” are reset to “un-
processed.”

Messages • to_date cannot be specified without from_date

• You have not specified the full range.

Permissions Any user can execute sp_redo_text_events.

sp_refresh_text_index

146 Full-Text Search Specialty Data Store

sp_refresh_text_index
Description Records modifications in the text_events table when you change the text

index’s source table data.

Syntax sp_refresh_text_index table_name, column_name, rowid, mod_type

Parameters table_name
 – is the name of the source table being updated. table_name has the
form [dbname.[owner.]]table, where:

• dbname is the name of the database containing the table.

• owner is the name of the owner of the table.

• table is the name of the table.

column_name
 – is the name of the column being updated.

rowid
 – is the IDENTITY column value of the changed row.

mod_type
 – specifies the type of the change. Must be insert, update, or delete.

Examples sp_refresh_text_index "blurbs", "copy", 2.000000,
"update"

Records in the text_events table that you have updated the copy column of
the blurbs table. The row you have updated has an id of 2.000000.

Usage • The user maintains the consistency of the text index. You must run
sp_refresh_text_index anytime you update source data that has been
indexed so that the text_events table reflects the change. This keeps
the collections in sync with your source data. The collections are not
updated until you run sp_text_notify.

• You can create triggers that issue sp_refresh_text_index for non-text
and non-image columns. For more information on creating triggers,
see “Propagating Changes to the Text Index” on page 22.

Messages • Column ’column_name’ does not exist in table ’table_name’

• Invalid mod_type specified (’mod_type’). Correct values: INSERT,
UPDATE, DELETE

• Owner ’owner_name’ does not exist

• Table ’table_name’ does not exist

• ’table_name’ is not a valid name.

APPENDIX A System Procedures

User’s Guide 147

• Text event table not found

Permissions Any user can execute sp_refresh_text_index.

See also sp_text_notify

sp_show_text_online
Description Displays information about databases or text indexes that are currently

online.

Syntax sp_show_text_online server_name [,{INDEXES | DATABASES}]

Parameters server_name
 – is the name of the Full-Text Search engine to which the request is
sent.

INDEXES | DATABASES
 – specifies whether the request should contain data about online
indexes or online databases. The default is INDEXES.

Examples Example 1

exec sp_show_text_online KRAZYKAT

Displays all indexes that are currently online in the KRAZYKAT Full-Text
Search engine.

Example 2

exec sp_show_text_online KRAZYKAT, DATABASES

Displays all databases that are currently online in the KRAZYKAT Full-
Text Search engine.

Usage • sp_show_text_online issues a remote procedure call (RPC) to the Full-
Text Search engine to retrieve information about the indexes or the
databases that are currently online.

• If the results of this procedure do not list a database, use
sp_text_online to bring the desired database online.

Messages • sp_show_text_online failed for server server_name.

• The parameter value ’value’ is invalid

• The RPC sent to the server returned a failure return code

• The second parameter must be INDEXES or DATABASES

sp_text_cluster

148 Full-Text Search Specialty Data Store

Permissions Any user can execute sp_show_text_online.

See also sp_text_online

sp_text_cluster
Description (Enhanced version only)

Displays or changes clustering parameters for the active thread.

Syntax sp_text_cluster server_name, cluster_parameter [, cluster_value]

Parameters server_name
 – is the name of the Full-Text Search engine.

cluster_parameter
 – is the name of the clustering parameter. Values are shown in Table
A-2.

cluster_value
 – is the value you assign to the clustering parameter for the active
thread. Values are shown in Table A-2.

Table A-2: Clustering configuration parameters

Values for
cluster_parameter Values for cluster_value

cluster_style Specifies the type of clustering to use. Valid values are:

• fixed – generates a fixed number of clusters. The number is set by the
cluster_max parameter.

• coarse – automatically determines the number of clusters to generate, based on
fewer, coarse grained clusters.

• medium – automatically determines the number of clusters to generate, based on
medium sized clusters.

• fine – automatically determines the number of clusters to generate, based on
smaller, finer grained clusters.

cluster_max Specifies the maximum number of clusters to generate when cluster_style is set to
fixed. A value of 0 means that the search engine determines the number of clusters
to generate.

APPENDIX A System Procedures

User’s Guide 149

Examples Example 1

sp_text_cluster KRAZYKAT, cluster_order, "1"

Changes the cluster_order parameter to 1 for the active thread.

Example 2

sp_text_cluster KRAZYKAT, cluster_style

Displays the current value of the cluster_style parameter.

Usage • The Verity clustering algorithm attempts to group similar rows
together, based on the values of the clustering parameters.

• If the cluster_parameter parameter is specified, but the cluster_value
parameter is omitted, sp_text_cluster displays the value of the
clustering parameter that is specified.

• sp_text_cluster does not modify the value of the clustering
configuration parameter. The cluster_value is valid only for the thread
that is currently executing. To modify the default values, use the
sp_text_configure system procedure.

• For information on how to request a clustered result set, see “Using
Pseudo Columns to Request Clustered Result Sets” on page 48.

Messages • This procedure is not supported against remote server ’server_name’

• The parameter value ‘value’ is invalid

cluster_effort Specifies the amount of effort (time) that the search engine should expend on
finding a good clustering. Valid values are:

• effort_default – the search engine spends the default amount of time. You can
also use the Verity term “default” if you enclose it in double quotes (“ ”).

• high – the search engine spends the longest time.

• medium – the search engine spends less time.

• low – the search engine spends the least amount of time.

cluster_order Specifies the order in which to return the rows within the clusters. Valid values are:

• "0" – indicates rows are returned in order of similarity to the cluster center. This
means the first row returned for a cluster is the one that is most prototypical of
the rows in the cluster.

• "1" – indicates that rows are returned in the same relative order in which they
were submitted for clustering. For example, if cluster 1 contains the first, third
and seventh rows found for the query, they will be returned in that relative order
within the cluster.

Values for
cluster_parameter Values for cluster_value

sp_text_configure

150 Full-Text Search Specialty Data Store

• sp_text_cluster failed (status = status)

Permissions Any user can execute sp_text_cluster.

See also sp_text_configure

sp_text_configure
Description (Enhanced version only)

Displays or changes Full-Text Search engine configuration parameters.

Syntax sp_text_configure server_name [, config_name [, config_value]]

Parameters server_name
 – is the name of the Full-Text Search engine.

config_name
 – is the name of the configuration parameter to be displayed or
modified.

config_value
 – is the value you assign to the configuration parameter.

Examples Example 1

sp_text_configure KRAZYCAT, backdir, "/data/backup"

Changes the backup destination directory to /data/backup.

Example 2

sp_text_configure KRAZYCAT, backdir

Displays the backup destination directory.

Usage • When you execute sp_text_configure to modify a dynamic parameter:

• The configuration and run values are updated

• The configuration file is updated

• The change takes effect immediately

• When you execute sp_text_configure to modify a static parameter:

• The configuration value is updated

• The configuration file is updated

APPENDIX A System Procedures

User’s Guide 151

• The change takes effect only when you restart the Full-Text
Search engine

• When issued with no parameters, sp_text_configure displays a report
of all Full-Text Search engine configuration parameters and their
current values.

• If the config_name parameter is specified, but the config_value
parameter is omitted, sp_text_configure displays the report for the
configuration parameter specified.

• For information on the individual configuration parameters, see
“Modifying the Configuration Parameters” on page 67.

Messages • Configuration value cannot be specified without a configuration
option

• This procedure is not supported against remote server ’server_name’

• sp_text_configure failed - possible invalid configuration option
(’config_name’)

Permissions Any user can execute sp_text_configure.

sp_text_dump_database
Description (Enhanced version only)

Makes a backup copy of a text index.

Syntax sp_text_dump_database backupdbs [, current_to] [,
current_with] [, current_stripe01 [, ... [,
current_stripe31]]] [, textdb_to] [, textdb_with] [,
textdb_stripe01 [, ... [, textdb_stripe31]]]

Parameters backupdbs
 – specifies whether the current database and the text_db database are
backed up before the text index is backed up. Valid values are shown in
Table A-3.

Table A-3: Values for backupdbs

Value Description

CURRENT_DB_AND_INDEXES Indicates that the current database is backed up before the text
indexes are backed up.

sp_text_dump_database

152 Full-Text Search Specialty Data Store

current_to
 – is the to clause of the dump database command for dumping the
current database. Use this only if you specify
CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

current_with
 – is the with clause of the dump database command for dumping the
current database. Use this only if you specify
CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

current_stripe
 – is the stripe clause of the dump database command for dumping the
current database. Use this only if you specify
CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

textdb_to
 – is the to clause of the dump database command for dumping the
text_db database. Use this only if you specify
INDEXES_AND_DATABASES for the backupdbs parameter. Use this
only if you specify TEXT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

textdb_with
 – is the with clause of the dump database command for dumping the
text_db database. Use this only if you specify
TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

CURRENT_DB_AND_CURRENT_INDEXES Indicates that the current database is backed up before the text
indexes are backed up, and only the indexes associated with
the current database are dumped.

TEXT_DB_AND_INDEXES Indicates that the text_db database is backed up before the text
indexes are backed up.

INDEXES_AND_DATABASES Indicates that the current and text_db databases are backed up
before the text indexes are backed up.

ONLY_INDEXES Indicates that only the text indexes are backed up.

Value Description

APPENDIX A System Procedures

User’s Guide 153

textdb_stripe
 – is the stripe clause of the dump database command for dumping the
text_db database. Use this only if you specify
TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

Examples Example 1

sp_text_dump_database ONLY_INDEXES

Only text indexes are backed up.

Example 2

sp_text_dump_database CURRENT_DB_AND_INDEXES, "to ’/data/db1backup’"

The current database is dumped to /data/db1backup before the text
indexes are backed up.

Example 3

sp_text_dump_database @backkupdbs = "TEXT_DB_AND_INDEXES", @textdb_to = "to
’/data/textdbbackup’"

The text_db database is dumped to /data/textdbbackup before the text
indexes are backed up.

Example 4

sp_text_dump_database @backupdbs = "INDEXES_AND_DATABASES", @current_to =
"to ’/data/db1backup’",
@textdb_to = "to ’/data/textdbbackup’"

The current database is dumped to /data/db1backup and the text_db
database is dumped to /data/textdbbackup before the text indexes are
backed up.

Usage • The Full-Text Search engine concatenates the values of current_to,
current_with, and current_stripe01 to current_stripe31 to dump
database currentdbname and then executes the dump database
command. The output from the execution of the dump database
command is sent to the Full-Text Search error log.

• The Full-Text Search engine concatenates the values of textdb_to,
textdb_with, and textdb_stripe01 to textdb_stripe31 to the string
“dump database currentdbname” and then executes the dump
database command. The output from the execution of the dump
database command is sent to the Full-Text Search error log.

• All entries in the text_events table that have a “processed” status in the
current database are deleted when all indexes have been backed up.

sp_text_kill

154 Full-Text Search Specialty Data Store

• The backup files for the Verity collections are stored in the directory
specified in the backDir configuration parameter.

• See references to the configuration paramter backCmd for
customizing backups.

Messages • The parameter value ‘value’ is invalid

• Server name ‘server’ does not exist in sysservers

• Attempt to dump database ‘database_name’ failed - use the ’dump
database’ command

• Attempt to backup text indexes on server ’server_name’ failed

• Attempt to clean text_events in database ‘database_name’ failed
(date = ’date’)

• Parameter ’parameter_name’ is required when dumping database
‘database_name’

• Dumping database ’database_name’ - check Full Text Search SDS
error log for status

Permissions Any user can execute sp_text_dump_database.

See also dump_database in the Adaptive Server Reference Manual.

sp_text_kill
Description (Enhanced version only)

Terminates all connections to a specific text index.

Syntax sp_text_kill index_table_name

Parameters index_table_name
 – is the name of the text index from which all connections will be
terminated. index_table_name has the form [dbname.[owner.]]table,
where:

• dbname is the name of the database containing the index table. If
present, the owner or a placeholder is required.

• owner is the name of the owner of the index table.

• table is the name of the index table.

Examples sp_text_kill "i_blurbs"

APPENDIX A System Procedures

User’s Guide 155

Terminates all existing connections to the text index i_blurbs.

Usage • sp_text_kill is available only with Enhanced Full-Text Search
Specialty Data Store.

• This system procedure causes the Full-Text Search engine to
terminate all connections to the specified index, except for the
connection that initiated the request.

• Attempts to drop a text index that is currently in use will fail.
sp_text_kill can be used to terminate all existing connections so that
the index can be successfully dropped.

Messages • Index ’index_table_name’ is not a text index

• This procedure is not supported against remote server ’server_name’

• ’index_table_name’ does not exist

• Only the System Administrator (SA) may execute this procedure

Permissions Only user “sa” can execute sp_text_kill.

See also sp_drop_text_index

sp_text_load_index
Description (Enhanced version only)

Restores a text index backup.

Syntax sp_text_load_index

Parameters None.

Examples sp_text_load_index

Restores all text indexes in the current database.

Usage • Run sp_text_load_index after the text_db database and the current
database have been fully recovered.

• sp_text_load_index restores the Verity collections from the most
recent backup. The Full-Text Search engine then runs
sp_redo_text_events and sp_text_notify to reapply all entries in the
text_events table since the date and time the index was backed up.

sp_text_notify

156 Full-Text Search Specialty Data Store

• See references to the configuration paramter restoreCmd for
customizing backups.

Messages • Server name ‘server_name’ does not exist in sysservers

• Unable to restore text indexes for server ‘server_name’

• This procedure is not supported against remote server ’server_name’

• Update to text_events table in database database_name failed for
server ‘server_name’ - text_events not rolled forward

Permissions Any user can execute sp_text_load_index.

See also sp_redo_text_events; sp_text_notify

sp_text_notify
Description Notifies the Full-Text Search engine that the text_events table has been

modified.

Syntax sp_text_notify [{true | false}] [, server_name]

Parameters true
 – causes the procedure to run synchronously.

false
 – causes the procedure to run asynchronously.

server_name
 – is the name of the Full-Text Search engine you are notifying.

Examples sp_text_notify true

Usage • You must run sp_text_notify after you issue sp_refresh_text_index to
inform the Full-Text Search engine that the source tables have been
modified.

• If you do not specify true or false, sp_text_notify runs synchronously.

• If no server name is specified, all Full-Text Search engines are
notified.

Messages • Can’t run sp_text_notify from within a transaction

• Notification failed, server = ’server_name’

• Server name ’server_name’ does not exist in sysservers

APPENDIX A System Procedures

User’s Guide 157

• The parameter value ’value’ is invalid

Permissions Any user can execute sp_text_notify.

See also sp_refresh_text_index

sp_text_online
Description Makes a database available for full-text searches to Adaptive Server.

Syntax sp_text_online [server_name], [database_name]

Parameters server_name
 – is the name of the Full-Text Search engine.

database_name
 – is the name of the database that you are bringing online.

Examples sp_text_online @database_name = pubs2

Makes the pubs2 database available for full-text searches using the Full-
Text Search engine.

Usage • If a database is not specified, all databases are brought online for full-
text searches.

• If a server name is not specified, all Full-Text Search engines listed in
the vesaux table are notified.

• With the Enhanced Full-Text Search engine, databases are brought
online automatically if the auto_online configuration parameter is set
to 1.

Messages • All Databases using text indexes are now online

• Databases containing text indexes on server
’database_names’ are now online

• Server name ’server_name’ is now online”

• Server name ’server_name’ does not exist in sysservers.

• The parameter value ’value’ is invalid

• The specified database does not exist

• vs_online failed for server ’server_name’

Permissions Any user can execute sp_text_online.

sp_text_online

158 Full-Text Search Specialty Data Store

User’s Guide 159

A P P E N D I X B Sample Files

This appendix contains the following:

• The text of the default configuration file (textsvr.cfg)

• An overview of the sample_text_main.sql sample script

• A list of all the sample files provided by the Full-Text Search engine

• An overview of the getsend program

Default textsvr.cfg Configuration File
;;
; @(#) File: textsvr.cfg 1.17 07/26/99
;
; Full Text Search Specialty Data Store
; Sample Configuration File
;
; The installation procedure places this file in the
; “SYBASE” directory.
;
; Lines with a semi-colon in column 1 are comment lines.
;
; Modification History:
; ---------------------
; 11-21-97 Create file for Full Text Search SDS
; 03-02-98 Add trace flags and config values for
; Enhanced Full Text Search SDS
; 05-26-99 remove references to sds/text
; 07-09-99 added batch block size
; 08-24-99 remove version string and correct copyright
;
;;
;
; copyright (c) 1997, 1999
; Sybase, Inc. Emeryville, CA

Default textsvr.cfg Configuration File

160 Full-Text Search Specialty Data Store

; All rights reserved.
;
;;
;
; DIRECTIONS
;
; Modifying the textsvr.cfg file:
; -------------------------------
; An installation can run the Text Search SDS product
; as supplied, with no modifications to configuration
; parameters. Default values from the executable program
; are in effect.
;
; The “textsvr.cfg” file is supplied with all configuration
; parameters commented out.
;
; The hierarchy for setting configuration values is:
;
; default value internal to the executable program (lowest)
; configuration file value (overrides default value)
; command line argument (overrides default value and *.cfg file)
;
; Command line arguments are available to override
; settings for these options:
;
; -i<file specification for interfaces file>
; -l<file specification for log file>
; -t (no arg) directs text server to write start-up
; information to stderr (default is DO NOT write start-up information)
;
; To set configuration file parameters, follow these steps:
;
; (1) If changing the server name to other than “textsvr”:
; (1A) Copy “textsvr.cfg” to “your_server_name.cfg”
; Example: text_server.cfg
; (1B) Modify the [textsvr] line to [your_server_name]
; Example: [text_server]
; The maximum length of “your_server_name” is 30 characters.
;
; (2) Set any configuration values in the CONFIG VALUES SECTION below.
; Remove the semi-colon from column 1.
;
;;
;
;
; DEFINITIONS OF TRACE FLAG AND SORT ORDER VALUES

APPENDIX B Sample Files

User’s Guide 161

;
; “traceflags” parameter, for text server
; Available “traceflags” values: 1,2,3,4,5,6,7,8,9,10,11,12,13
;
; 1 trace connect/disconnect/attention events
; 2 trace language events
; 3 trace rpc events
; 4 trace cursor events
; 5 log error messages returned to the client
; 6 trace information about indexes
; 7 trace senddone packets
; 8 write text server/Verity api interface records to the log
; 9 trace sql parser
; 10 trace Verity processing
; 11 disable Verity collection optimization
; 12 disable returning of sp_statistics information
; 13 trace backup operations (Enhanced Full Text Search only)
;
; “srv_traceflags” parameter, for Open Server component of text server
; Available “srv_traceflags” values: 1,2,3,4,5,6,7,8
; 1 trace TDS headers
; 2 trace TDS data
; 3 trace attention events
; 4 trace message queues
; 5 trace TDS tokens
; 6 trace open server events
; 7 trace deferred event queue
; 8 trace network requests
;
; “sort_order” parameter
; Available “sort_order” values: 0,1,2,3
; 0 order by score, descending (default)
; 1 order by score, ascending
; 2 order by timestamp, descending
; 3 order by timestamp, ascending
;
;;
;
; CONFIG VALUES SECTION
;
; The “textsvr.cfg” file is supplied with the values commented out.
; To override value(s) in the executable program:
; - Set required value(s) below
; - Remove the semicolon from column 1
;
[textsvr]

Default textsvr.cfg Configuration File

162 Full-Text Search Specialty Data Store

;min_sessions = 10
;max_sessions = 100
;batch_size = 500
;sort_order = 0
;defaultDb = text_db
;errorLog = textsvr.log
;language = english
;charset = iso_1
;vdkLanguage =
;vdkCharset = 850
;traceflags = 0
;srv_traceflags = 0
;max_indexes = 126
;max_packetsize = 2048
;max_stacksize = 34816
;max_threads = 50
;collDir = <txtsvr directory tree location on UNIX>/collections
;collDir = <txtsvr directory tree location on Win-NT>\collections
;vdkHome = <txtsvr directory tree location on UNIX>/verity
;vdkHome = <txtsvr location on Win-NT>\verity
;interfaces = <$SYBASE location on UNIX>/interfaces
;interfaces = <%SYBASE% location on Win-NT>\ini\sql.ini
;;
;
; The parameters in this section apply only to the Enhanced Full Text Search SDS.
; If defined to a Full Text Search engine they will be ignored.
;
;auto_online = 0
;backDir = <txtsvr directory tree location on UNIX>/backup
;backDir = <txtsvr directory tree location on Win-NT>\backup
;backCmd =
;restoreCmd =
;knowledge_base =
;nocase = 0
;cluster_max = 0
;cluster_order = 0
;cluster_style = Fixed
;cluster_effort = Default
;batch_blocksize = 0

APPENDIX B Sample Files

User’s Guide 163

The sample_text_main.sql Script
The installation of the Full-Text Search engine copies the
sample_text_main.sql script to the
$SYBASE/$SYBASE_FTS/sample/scripts directory. This script illustrates
the following operations:

• Setting up a text index.

• Modifying data and propagating changes to the collections. This
includes inserts, updates, and deletes.

• Dropping a text index.

Execution of this script is not required for installation or configuration;
Sybase supplies the script as a sample.

Before you run the sample_text_main.sql script:

• Your Adaptive Server and Full-Text Search engine must be
configured and running.

• Use a text editor to edit the sample_text_main.sql script. Change
“YOUR_TEXT_SERVER” to the name of your Full-Text Search
engine in Step 4 in the sample_text_main.sql script.

• Verify that your model database contains a text_events table. If your
model database is not configured this way, you need to:

• Modify the sample_text_main.sql script to exit after creating the
database

• Apply the installevent script to the new database (see “Running
the installevent Script” on page 17)

• Execute the remainder of the sample script

Direct the script as input to your Adaptive Server. For example, to run the
sample_text_main.sql script on an Adaptive Server named MYSVR:

isql -Ulogin -Ppassword -SMYSVR
-i
$SYBASE/$SYBASE_FTS/sample/scripts/sample_text_main
.sql -omain.out

When you finish with this sample environment, log in to your Adaptive
Server and drop the sample database. For example:

1> use master
2> go
1> drop database sample_colors_db

Sample Files Illustrating Full-Text Search Engine Features

164 Full-Text Search Specialty Data Store

2> go

The sample_text_main.sql script can be rerun.

Sample Files Illustrating Full-Text Search Engine
Features

The Full-Text Search engine supplies a set of sample files for illustrating
text server operations. The files are located in the
$SYBASE/$SYBASE_FTS/sample/scripts directory. Execution of the
sample files is not required for installation, configuration, or operation of
a Full-Text Search engine.

Custom Thesaurus
The following files illustrate how to set up and use a custom thesaurus:

• sample_text_thesaurus.ctl – is a sample control file.

• sample_text_thesaurus.sql – provides sample queries using the
custom thesaurus created by the sample control file.

You can create a custom thesaurus only with the Enhanced Full-Text
Search engine. The scripts can be rerun.

Topics
The following files illustrate how to set up and use topics:

• sample_text_topics.otl – is a sample outline file.

• sample_text_topics.kbm – is a sample knowledge base map.

• sample_text_topics.sql – provides sample queries using the defined
topics.

Topics is available only with the Enhanced Full-Text Search engine. The
scripts can be rerun.

APPENDIX B Sample Files

User’s Guide 165

Clustering, Summarization, and Query-by-Example
The following files illustrate how to set up and use clustering,
summarization and query-by example:

• sample_text_setup.sql – creates a sample environment.

• sample_text_queries.sql – issues queries against the environment and
drops the environment.

You can use these scripts only with the Enhanced Full-Text Search engine.
These scripts can be rerun as a pair.

getsend Sample Program
The Enhanced Full-Text Search engine supplies a program named getsend
to load text or image data from a file into a column defined in Adaptive
Server.

The required source and header files, a makefile, and directions for
building and running the program are included in the directory:

$SYBASE/$SYBASE_FTS/sample/source

Refer to the README.TXT file and getsend.c file for information on how
to use the program.

getsend Sample Program

166 Full-Text Search Specialty Data Store

User’s Guide 167

A P P E N D I X C Unicode Support

The Unicode standard, a subset of the International Standards
Organization’s ISO 10646 standard, is an international character set.
Unicode is identical to the Basic Multilingual Plane (BMP) of ISO 10646,
which supports all the major scripts and languages in the world.
Therefore, it is a superset of all existing character sets.

The major advantages of Unicode are:

• Provides single-source development. This means you develop an
application once and it can then be localized for multiple locales and
in multiple languages. By using a single unified character set, you do
not have to modify your applications to take into account differences
between character sets, thus reducing development, testing, and
support costs.

• Allows you to mix different languages in the same database. An all-
Unicode system does not require that you design your database to
keep track of the character set of your data.

The Enhanced Full-Text Search engine supports Unicode. To use this
feature, you need to obtain and install the Unicode Developer’s Kit (also
known as UDK). This contains everything you need to set up a Unicode-
enabled client/server database system.

To configure the Full-Text Search engine to store data in Unicode format,
set the charset configuration value to utf8 (see “Modifying the
Configuration Parameters” on page 67).

Note If you issue wildcard searches against data in Unicode format, turn
on trace flag 15. For more information, refer to “Setting Trace Flags” on
page 72,

168 Full-Text Search Specialty Data Store

User’s Guide 169

Symbols
, (comma)

in SQL statements xiv
{} (curly braces)

in SQL statements xiv
... (ellipsis) in SQL statements xvi
() (parentheses)

in SQL statements xiv
[] (square brackets)

in SQL statements xiv
< > (angle brackets), enclosing Verity operators in 51

A
accrue operator 50, 53
Adaptive Server

connecting to a Full-Text Search engine 1
processing a full-text query 10

and operator 50, 53
with the not modifier 61

Angle brackets (< >), enclosing Verity operators in
51

Attention events, tracing 73
Open Server 74

auto_online configuration parameter 22, 68, 70, 157

B
backDir configuration parameter 68, 70, 77, 154
Backup and recovery

for the Enhanced version 75
Backup files

default location of 68, 70
Backup operations, tracing 73
batch_blocksize configuration parameter 67
batch_size configuration parameter 67, 69

and performance 82–83

Brackets.
See Square brackets [] and Angle brackets < >

C
case operator modifier 61
Case sensitivity

in queries 52
setting for the Full-Text Search engine 74
in SQL xv

Character sets
setting the default 71

charset configuration parameter 67, 69
setting the default 71

cis cursor rows configuration parameter 81
cis packet size configuration parameter 82
cluster_effort configuration parameter 49, 68, 70

values for 149
cluster_keywords pseudo column 45, 49
cluster_max configuration parameter 49, 68, 70

values for 148
cluster_number pseudo column 45, 49
cluster_order configuration parameter 49, 68, 70

values for 149
cluster_style configuration parameter 49, 68, 70

values for 148
Clustering 48

configuring for all tables 28
configuring for individual tables 29
enabling 27
modifying values of parameters for 148
setting up 49
in a sort specification 47
writing queries for 49

clustering
values of configuration parameters 148

collDir configuration parameter 67, 70
Collections 6

See also text indexes

Index

Index

170 Full-Text Search Specialty Data Store

backing up in the Enhanced version 75, 76, 151
backup and recovery in the Enhanced version 75
creating 140
default character set 71
default language 70
disabling optimization 73, 79
displaying the names of 143
dropping 142
location of 6
setting the location of 67
modifying data in 22
optimizing 144
performance issues when updating 83
populating with data 20
and reindexing 145
restoring from backup in Enhanced version 75
restoring from backup in Standard version 77

Columns
valid datatypes to index 5

Comma (,)
in SQL statements xiv

Commands in Verity.
See Operators (commands)

complement operator 50, 54
Component Integration Services

connecting to a Full-Text Search engine 1
Configuration file

sample 159
Configuration parameters 67–68, 69–70

See also individual configuration parameters
auto_online 157
backDir 77, 154
batch_size parameter and performance 82–83
charset 71
cluster_effort 49, 149
cluster_max 49, 148
cluster_order 49, 149
cluster_style 49, 148
displaying values in the Enhanced version 150
language 70
max_sessions parameter and performance 83
min_sessions parameter and performance 83
modifying values in the Enhanced version 69, 150
nocase 75
sort_order 47, 72
srv_traceflags 74

vdkCharset 71
vdkLanguage 70

Configuration parameters, Adaptive Server
cis cursor rows 81
cis packet size 82

Connecting to a Full-Text Search engine 85
Connections, number of user 83
Conventions

See also Syntax
directory paths xiii
used in manuals xiii

Curly braces ({})
in SQL statements xiv

Cursor events, logging 73
Custom thesaurus 34

and creating the control file 36
and examining the default thesaurus 35
and the mksyd utility 37
and replacing the default thesaurus 38

D
Databases

bringing online for full-text searches 22
Databases, bringing online

automatically 68, 70
Datatypes

and indexing 20
of indexed columns 5, 140

default_Db configuration parameter 67, 70
Defining multiple Full-Text Search engines 15
delete operations

creating triggers for 22
Deletes

and updating the text indexes 8
from the text_events table 139
from the vesaux table 139

Document filters 6
Document zones

and multiple columns in a text index 21
using with the in operator 54

dump database command
and the sp_text_dump_database system procedure

77, 153

Index

User’s Guide 171

E
Ellipsis (...) in SQL statements xvi
Error log file

setting the path name of 68
specifying in the runserver file 64

Error logging 73
errorLog configuration parameter 68, 70
Events, logging 72–74

F
Filters, document 6

creating 32
and document zones 54

forceplan
and forcing join orders 81

Full-Text Search engine
changing the name of 15
configuring multiple engines 15, 84–85
connecting to 85
document filters 6
how queries are processed 9–10
notifying of updates to the text_events table 156
operators 50–60
relationship of components 9
shutting down 66
starting as a service 65
starting for UNIX platforms 63
starting for Windows NT 65–66
starting with Sybase Central 65

Full-text search queries
bringing databases online for 22
and case sensitivity 52
components of 43
processing a 10
and requesting clustered result sets 49
sort order specifications 47
and using topics 42
using alternative syntax 52

Full-Text Search Specialty Data Store
components of 5–9

G
getsend program 165

H
highlight pseudo column 45

I
id pseudo column 7, 45

mapping to the IDENTITY column in the source
table 19

and query optimization 81
IDENTITY Columns

adding to a source table 19
IDENTITY columns

adding a unique index 20
adding to existing source table 20
displaying with the text index 143
example of adding 25
joining with the index table 7, 10
in the source table 5

in operator 50, 54
Index table

contents of 7
creating 20, 140
dropping 142
and the id column 19
in a query 9
joining with the source table 7
and pseudo columns 7, 44

index_any pseudo column 45
and query optimization 81

insert operations
creating triggers for 22

Inserts
and updating the text indexes 8

installevent installation script
editing 17
example of using 24
using 17

installtextserver installation script
and creating multiple Full-Text Search engines 84
editing 15

Index

172 Full-Text Search Specialty Data Store

location of 15
instsvr.exe utility 66
Integrity, maintaining 6
Intelligent Classifier 40
Interfaces

tracing calls between Full-Text Search engine and Verity
73

interfaces configuration parameter 68, 70
Interfaces file

setting the location of 68, 70
specifying in the runserver file 64

J
Join order

ensuring correct 80
Joining the source table with the text index 5, 7, 9, 19, 43

and increasing performance of 80

K
/keys modifier 37
Knowledge base map

creating 41
defining the location of 41

knowledge_base configuration parameter 41, 68, 70

L
Language

setting the default 70–71
language configuration parameter 67, 69

setting the default 70
Language events, logging 73
like operator 50, 55

enabling literal text in the QBE specification 27
list

keyword 36
Logging events using trace flags 72–74

M
Maintaining integrity 6
many operator modifier 61
max_docs pseudo column 45

with clustered result sets 49
and increasing query performance 80
and sort orders 72

max_indexes configuration parameter 67, 69
max_packetsize configuration parameter 67, 69
max_sessions configuration parameter 67, 69

and performance 83
max_stacksize configuration parameter 67, 69
max_threads configuration parameter 67, 69
Metadata 6
min_sessions configuration parameter 67, 69

and performance 83
mksyd utility

and creating a custom thesaurus 37
and examining the default thesaurus 35

mktopics utility 40
Multiple Users 86

N
Naming the Full-Text Search engine 67, 70
near operator 50, 55
near/n operator 50, 55

with the order modifier 61
Network requests, tracing 74
nocase configuration parameter 68, 70, 75
not operator modifier 61

O
Online databases.

See Databases, bringing online
Open Server events, tracing 74
Open Server trace flags 74
Operator modifiers

case 61
many 61
not 61
order 61

Operators (commands) 50–60

Index

User’s Guide 173

accrue 50, 53
and 50, 53
complement 50, 54
enclosing in angle brackets 51
in 50, 54
like 50, 55
near 50, 55
near/n 50, 55
or 50, 53
paragraph 50, 56
phrase 50, 56
product 50, 56
and relevance-ranking 46
sentence 50, 57
stem 51, 57
sum 51, 57
thesaurus 51, 58
topic 51, 58
wildcard 51, 59
word 51, 60
yesno 51, 60

Optimization, disabling 73, 79
or operator 50, 53

with the not modifier 61
order operator modifier 61
Outline file for topics 39

P
paragraph operator 50, 56

with the many modifier 61
with the order modifier 61

Parameters
of a search 7

Parentheses ()
in SQL statements xiv

Performance and tuning
adding a unique index 20
and using multiple Full-Text Search engines 84
disabling text index optimization 79
increasing query performance 80–81
reconfiguring Adaptive Server 81–82
reconfiguring the Full-Text Search engine 82–83
and sp_text_notify 83

phrase operator 50, 56

with the many modifier 61
Procedures.

See System procedures
Processed events

removing from the text_events table 139
Processing full-text searches 9
product operator 50, 56
Propagating changes to the collections 8
Proxy tables as a source table 6
Pseudo columns 7

cluster_keywords 45, 49
cluster_number 45, 49
highlight 45
id 45
in a query 9
index_any 45
max_docs 45, 49, 50
score 46
sort_by 45, 47, 49
summary 45, 48

Q
QBE specification.

See Query-by-example
Queries

and pseudo columns 7
Queries, full-text search

bringing databases online for 22
and case sensitivity 52
components of 43
ensuring the correct join order 80
increasing performance of 80–81
processing of 9, 10
requesting clustered result sets 49
sort order specifications 47
and using topics 42
using alternative syntax 52

Query-by-example
configuring for all tables 28
configuring for individual tables 29
enabling 27
and the like operator 55

Index

174 Full-Text Search Specialty Data Store

R
Ranking documents.

See Relevance-ranking
Recovery

and synchronizing a text index with the source table
145

for the Enhanced version 75
Relevance-ranking 46

See also score pseudo column
Remote procedure calls

sp_traceoff 73, 80
sp_traceon 73, 80

Remote tables as a source table 6
Replicating text indexes 23
RPC events, logging 73
RPCs.

See Remote procedure calls
Runserver file 63

flags for 64

S
Sample files

configuration file 159
illustrating clustering 165
illustrating custom thesaurus 35, 164
illustrating query-by-example 165
illustrating summarization 165
illustrating topics feature 39, 164

Sample program getsend 165
Sample scripts

sample_text_main.sql 19, 23, 163
score pseudo column 8, 46

with clustered result sets 50
and default sort order 72
and the many modifier 61
sorting by 47

score values
how Sybase reports 46

Scripts, sample
sample_text_main.sql 19, 23, 163

Search parameters 7
sentence operator 50, 57

with the many modifier 61
with the order modifier 61

Sessions, number of user 83
showplan

and examining join orders 81
Shutting down the Full-Text Search engine 66
Sort orders

and clustered result sets 47, 49
by column 30, 47
in a query 47
max_docs and sort order 72
by score 47
setting the default 72
by timestamp 47, 72

Sort specifications
setting up a defined column to sort by 30

sort_by pseudo column 45
and requesting a clustered result set 49
and specifying a sort order 47
and setting up a defined column as a sort

specification 30
sort_order configuration parameter 47, 68, 70, 72
Source tables

adding an IDENTITY column to 19
changes to data 146, 156
contents of 5
and displaying text indexes 143
in a query 9

sp_addserver system procedure 84
sp_check_text_index system procedure 138
sp_clean_text_events system procedure 139
sp_clean_text_indexes system procedure 139
sp_create_text_index system procedure 20, 140–142

creating indexes that use a filter 32
example of using 25
specifying multiple columns 21

sp_drop_text_index system procedure 142–143
sp_help_text_index system procedure 143–144
sp_optimize_text_index system procedure 79, 144–

145
sp_redo_text_events system procedure 145
sp_refresh_text_index system procedure 146–147

modifying data in the collections 22
running automatically 22

sp_show_text_online system procedure 147–148
sp_statistics system procedure

disabling 73, 80
sp_text_cluster system procedure 148–150

Index

User’s Guide 175

sp_text_configure system procedure 69, 150–151
sp_text_dump_database system procedure 76,

151–154
sp_text_kill system procedure 154–155
sp_text_load_index system procedure 77, 155–156
sp_text_notify system procedure 156, 157

and modifying data in the collections 22
and performance issues 83
and turning off optimization 79

sp_text_online system procedure 22, 157
example 26

sp_traceoff remote procedure call 73, 80
sp_traceon remote procedure call 73, 80
SQL parsing, tracing 73
Square brackets []

in SQL statements xiv
srv_traceflags configuration parameter 68, 70, 74
Starting the Full-Text Search engine

from Sybase Central 65
on UNIX platforms 63
on Windows NT 65–66
as a service 65

startserver utility 63
Start-up

and setting the number of user connections 83
Start-up commands

and the runserver file 63
on Windows NT 65

stem operator 51, 57
with the many modifier 61

style.dft file 32
style.prm file

editing an existing collection’s 141
editing for an existing collection 29
editing the master 28
and enabling Verity functionality 27
location of an existing collection 29
location of master 28

style.ufl file 30, 32, 33
style.vgw file 30, 32, 33
sum operator 51, 57
Summarization

configuring for all tables 28
configuring for individual tables 29
enabling 27
writing queries requesting 48

summary pseudo column 45
enabling before using 27
using 48

Sybase Central, starting from 65
Symbols in SQL statements xiv
Synonym list for a custom thesaurus 36
synonyms

statement 36
Syntax conventions, Transact-SQL xiii
Syntax, alternative Verity 52
sysservers table

adding Full-Text Search engines 84
System procedures

See also individual system procedures
sp_check_text_index 138
sp_clean_text_events 139
sp_clean_text_indexes 139
sp_create_text_index 140–142
sp_drop_text_index 142–143
sp_help_text_index 143–144
sp_optimize_text_index 144–145
sp_redo_text_events 145
sp_refresh_text_index 146–147
sp_show_text_online 147–148
sp_text_cluster 148–150
sp_text_configure 150–151
sp_text_dump_database 151–154
sp_text_kill 154–155
sp_text_load_index 155–156
sp_text_notify 156–157
sp_text_online 157

System tables
updating 137

T
TDS data, tracing 74
TDS headers, tracing 74
TDS tokens, tracing 74
Text documents, types of 6
Text indexes

backing up in the Enhanced version 75, 76, 151
bringing online 157
creating 20, 140
creating and batch sizes 82

Index

176 Full-Text Search Specialty Data Store

displaying a list of 143
displaying online 147
dropping 142
example of creating 24–26
and the index table 7
metadata 6
that include multiple columns 21
optimizing 144
performance issues when updating 83
placing on multiple Full-Text Search engines 84
and reindexing 145
replicating 23
restoring from backup in Enhanced version 75
restoring from backup in Standard version 77
setting location of backup files 68, 70
and tracing information 73
update using text_events table 8
updating 79
using a document filter with 32

text_db database 6
backing up in the Enhanced version 75, 76, 151
changing the name of 15, 18
restoring from backup in Enhanced version 75, 78
and the vesaux table 7
and the vesauxcol table 7

text_events table 8
backing up in the Enhanced version 76
changing the status of entries 145
columns in 8
creating 17
example of creating 24
recording inserts, updates, and deletes 146
removing entries from 139
restoring from backup in Enhanced version 76, 78
and sp_text_dump_database 76, 153
and sp_text_load_index 78

textsvr.cfg file
sample 159

thesaurus operator 51, 58
using a custom thesaurus 34

Thesaurus, custom 34
and creating the control file 36
and examining the default thesaurus 35
and the mksyd utility 37
and replacing the default thesaurus 38

Timestamp

sorting by 72
topic operator 42, 51, 58
Topic set directories 40

mapping to 41
Topics

creating a knowledge base map 41
creating a topic set directory 40
creating an outline file 39
creating complex relationships 40
description of 38
executing queries using 42
sample files 39
troubleshooting 42

Trace flags 72
enabling trace flags 11 and 12 79
Open Server 74
setting to examine join orders 81

traceflags configuration parameter 68, 70
Triggers for running sp_refresh_text_index 22

U
Unicode 167

and wildcard searches 73
Unicode Support 167
Unique index

adding to an IDENTITY column 20
example of creating 25

update operations
creating triggers for 22

update statistics
disabling 80

Updates
and updating the text indexes 8

Updating indexes 79
User

connections 83
sessions 83

User databases
backing up in the Enhanced version 151
backing up in the Standard version 76
bringing online automatically 68, 70
bringing online for full-text searches 22, 157
displaying a list of text indexes for 143
displaying online 147

Index

User’s Guide 177

restoring from backup in Enhanced version 75,
78

User table.
See Source table

V
vdkCharset configuration parameter 67, 69

setting the default 71
vdkHome configuration parameter 67, 70
vdkLanguage configuration parameter 67, 70

setting the default 70
Verity

setting the Verity directory 67
tracing Verity processing 73

Verity collections.
See Collections

Verity query.
See Full-text search queries

vesaux table
columns in 7
creating entries 141
removing entries from 139
removing entries when dropping text indexes 142
updating 20

vesauxcol table
columns in 7
removing entries when dropping text indexes 142
updating 20

W
wildcard operator 51, 59

using with data in Unicode format 73
with the case modifier 61
with the many modifier 61

Windows NT
directory paths xiii

word operator 51, 60
with the case modifier 61
with the many modifier 61

writetext command, using triggers with 23

Y
yesno operator 51, 60

Z
Zones.

See Document zones

Index

178 Full-Text Search Specialty Data Store

	Full-Text Search Specialty Data Store User’s Guide
	About This Book
	Audience
	How to Use This Book
	Adaptive Server Enterprise Documents
	Other Sources of Information

	Conventions
	Directory Paths
	Formatting SQL Statements
	SQL Syntax Conventions
	Case
	Obligatory Options {You Must Choose At Least One}
	Optional Options [You Don’t Have to Choose Any]
	Ellipsis: Do It Again (and Again)...

	If You Need Help

	CHAPTER 1 Introduction
	What Is the Full-Text Search Specialty Data Store?
	Capabilities of the Full-Text Search Engine
	High Availablility

	CHAPTER 2 Understanding the Full-Text Search Engine
	Components of the Full-Text Search Engine
	The Source Table
	The Verity Collections
	Filters
	The text_db Database
	The vesaux Table
	The vesauxcol Table

	The Index Table
	The text_events Table
	Relationships Between the Components

	How a Full-Text Search Works

	CHAPTER 3 Configuring Adaptive Server for Full-Text Searches
	Configuring Adaptive Server for a Full-Text Search Engine
	Enabling Configuration Parameters
	Running the installtextserver Script
	Editing the installtextserver Script
	Running the installtextserver Script

	Running the installmessages Script
	Running the installevent Script
	Editing the installevent Script
	Running the installevent Script

	Name the local server

	Creating and Maintaining the Text Indexes
	Setting Up Source Tables for Indexing
	Adding an IDENTITY Column to a Source Table
	Adding a Unique Index to an IDENTITY Column

	Creating the Text Index and Index Table
	Specifying Multiple Columns When Creating a Text Index

	Bringing the Database Online for Full-Text Searches
	Propagating Changes to the Text Index
	Replicating Text Indexes
	Example: Enabling a New Database for Text Searches
	Step 1. Verify that the text_events Table Exists
	Step 2. Check for an IDENTITY Column
	Step 3. Create a Unique Index on the IDENTITY Column
	Step 4. Create the Text Index and Index Table
	Step 5. Bring the Database Online for a Full-Text Search

	CHAPTER 4 Setting Up Verity Functions
	Enabling Query-By-Example, Summarization, and Clustering
	Editing the Master style.prm File
	Editing Individual style.prm Files

	Setting Up a Column to Use As a Sort Specification
	Using Filters on Text That Contains Tags
	Creating a Custom Thesaurus (Enhanced Version Only)
	Examining the Default Thesaurus (Optional)
	Creating the Control File
	Control File Syntax

	Creating the Thesaurus
	Replacing the Default Thesaurus with the Custom Thesaurus

	Creating Topics (Enhanced Version Only)
	Creating an Outline File
	Creating a Topic Set Directory
	Creating a Knowledge Base Map
	Defining the Location of the Knowledge Base Map
	Executing Queries Against Defined Topics
	Troubleshooting Topics

	CHAPTER 5 Writing Full-Text Search Queries
	Components of a Full-Text Search Query
	Default Behaviour

	Pseudo Columns in the Index Table
	Using the score Column to Relevance-Rank Search Results
	Using the sort_by Column to Specify a Sort Order
	Using the summary Column to Summarize Documents
	Using Pseudo Columns to Request Clustered Result Sets
	Preparing to Use Clustering
	Writing Queries Requesting a Clustered Result Set

	Full-Text Search Operators
	Considerations When Using Verity Operators
	Using the Verity Operators
	accrue
	and, or
	complement
	in
	like
	near, near/n
	or
	phrase
	paragraph
	product
	sentence
	stem
	sum
	thesaurus
	topic (Enhanced Version Only)
	wildcard
	word
	yesno

	Operator Modifiers

	CHAPTER 6 System Administration
	Starting the Full-Text Search Engine on UNIX
	Creating the Runserver File

	Starting the Full-Text Search Engine on Windows NT
	Starting the Full-Text Search Engine As a Service

	Shutting Down the Full-Text Search Engine
	Modifying the Configuration Parameters
	Modifying Values in the Enhanced Version
	Available Configuration Parameters
	Setting the Default Language
	.Setting the Default Character Set
	Setting the Default Sort Order
	Setting Trace Flags
	Setting Open Server Trace Flags
	Setting Case Sensitivity

	Backup and Recovery for the Enhanced Full-Text Search Engine
	Customizable Backup and Restore
	Backing Up Verity Collections
	Restoring Collections and Text Indexes from Backup

	CHAPTER 7 Performance and Tuning
	Updating Existing Indexes
	Increasing Query Performance
	Limiting the Number of Rows
	Ensuring the Correct Join Order for Queries

	Reconfiguring Adaptive Server
	cis cursor rows
	cis packet size

	Reconfiguring the Full-Text Search Engine
	batch_size
	min_sessions and max_sessions

	Using sp_text_notify
	Configuring Multiple Full-Text Search Engines
	Creating Multiple Full-Text Search Engines at Start-Up
	Adding Full-Text Search Engines
	Configuring Additional Full-Text Search Engines

	Multiple Users

	CHAPTER 8 Verity Topics
	What are Topics?
	Topic Organization
	Weight Assignments

	Using a Topic Outline File
	Making Topics Available
	Setup Process

	Knowledge Bases of Topics
	Combining Topics into a Knowledge Base

	Structure of Topics
	Top-Level Topics
	Subtopics
	Evidence Topics
	Topic and Subtopic Relationships

	Maximum Number of Topics
	Topic Naming Issues
	Topic Name Length
	Case Sensitivity

	Verity Query Language
	Query Language Summary
	Evidence Operators
	Proximity Operators
	Relational Operators
	Concept Operators
	Boolean Operators
	Modifiers

	Operator Precedence Rules

	Sample Topic Outlines
	Operator Reference
	ACCRUE Operator
	ALL Operator
	AND Operator
	ANY Operator
	CONTAINS Operator
	ENDS Operator
	= (EQUALS) Operator
	FILTER Operator
	> (GREATER THAN) Operator
	>= (GREATER THAN OR EQUAL TO) Operator
	< (LESS THAN) Operator
	<= (LESS THAN OR EQUAL TO) Operator
	IN Operator
	MATCHES Operator
	NEAR Operator
	NEAR/N Operator
	OR Operator
	PARAGRAPH Operator
	PHRASE Operator
	SENTENCE Operator
	SOUNDEX Operator
	STARTS Operator
	STEM Operator
	SUBSTRING Operator
	THESAURUS Operator
	WILDCARD Operator
	Using Wildcard Special Characters
	Searching for Non-alphanumeric Characters
	Searching for Wildcard Characters as Literals
	Searching for Special Characters as Literals

	WORD Operator

	Modifier Reference
	CASE Modifier
	MANY Modifier
	NOT Modifier
	ORDER Modifier

	Weights and Document Importance
	Topic Weights
	Which Operators Accept Weights
	How Weights Affect Importance
	Assigning Weights
	Automatic Weight Assignments
	Tips for Assigning Weights
	Changing Weights

	Topic Scoring and Document Importance
	Designing Topics
	Preparing Your Topic Design
	Understanding Your Information Needs
	Understanding Your Documents
	Using Scanned Data
	Categorizing Document Samples

	Topic Design Strategies
	Top-Down Design
	Bottom-Up Design

	Designing the Initial Topic
	Outlining a Topic
	Top-Down Topic Outline Example
	Step One: Establishing an Information Hierarchy
	Step Two: Establishing Individual Search Categories
	Step Three: Establishing the Topics to be Built

	Bottom-Up Topic Outline Example
	Step One: Identifying Low-level Topics
	Step Two: Categorizing Related Subtopics
	Step Three: Establishing Top-Level Topics

	APPENDIX A System Procedures
	sp_check_text_index
	sp_clean_text_events
	sp_clean_text_indexes
	sp_create_text_index
	sp_drop_text_index
	sp_help_text_index
	sp_optimize_text_index
	sp_redo_text_events
	sp_refresh_text_index
	sp_show_text_online
	sp_text_cluster
	sp_text_configure
	sp_text_dump_database
	sp_text_kill
	sp_text_load_index
	sp_text_notify
	sp_text_online

	APPENDIX B Sample Files
	Default textsvr.cfg Configuration File
	The sample_text_main.sql Script
	Sample Files Illustrating Full-Text Search Engine Features
	Custom Thesaurus
	Topics
	Clustering, Summarization, and Query-by-Example

	getsend Sample Program

	APPENDIX C Unicode Support
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

