SYBASE

Reference Guide

ECRTP™

Version 4.2

DOCUMENT ID: DC36333-01-0420-01
LAST REVISED: November 2004

Copyright © 1999-2004 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein isfurnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Trand ator, APT-Library, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, eeADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financia Fusion, Financial Fusion Server, Gateway Manager,
GlobaFIX, iAnywhere, iAnywhere Application Alerts, iAnywhere Mobile Delivery, iAnywhere Mobile Document Viewer, iAnywhere
Mobile Inspection, iAnywhere Mobile Marketing Channel, iAnywhere Mobile Pharma, iAnywhere Mobile Saes, iAnywhere Pylon,
iAnywhere Pylon Application Server, iAnywhere Pylon Conduit, iAnywhere Pylon PIM Server, iAnywhere Pylon Pro, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage
Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway,
media.splash, MetaWorks, My iAnywhere, My iAnywhere Media Channel, My iAnywhere Mobile Marketing, MySupport, Net-
Gateway, Net-Library, New Eraof Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, Omni SQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit,
Report-Execute, Report Workbench, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure
SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere
Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL
Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ,
STEP, SupportNow, S\W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financia Server,
Sybase Gateway's, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
Total Fix, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK
Runtime Kit for UniCode, VisuaWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 05/04

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Reference Guide

.. v
ADOUL ECRTP ..ttt e 1
ADOUL ECRTP ...ttt rare e e 2
Map developPMENt.......coociiiiiiee e 3

Moving from map development to productioncccceeeeeennn. 4
Production — processing MOUEScevvveiiiiiiiiiiiieesiiniiiieeeeeens 4

How ECRTP uses data by location, description, and use................. 6
Executable files and DLLSccccveiiiiieiiiieie e 6

EDI StandardS.........coooveieiiiiieeniiee e 6
Generated Map fileSuevviiii i 7

Trading partner filesccovvvviei i 8
APPIICAtioN dat@........coocviiiiiiiee e 9

|1 o Fo 1 - SRR 10

LOQG filES i 12
RUNNING ECRTP oo 15
Running ECRTP as an executableccccccceviiiiiiienie e, 16
Required switches for an outbound executable 16
Required switches for an inbound executable......................... 17
Environment variables ... 18
RUnNNiNg ECRTP @S @ DLL .cccvvviiiiiiieeeiiiieeee e 22
WIN API function calls for outbound processingccccc...... 25

Using Java to execute ECRTPccccvvvviiieiniiiiieeee i, 33
Running ECRTP from a Visual BasiC SCriptcccccvveveeeiiiniiiinennn. 45
Source code for a moduleccoviiiiiiiiie i 45

Source code for Visual Basic formccccccovvcviieeiieee i, 46

User EXit ROULINESooouiiiiiiiiiiiiee et 51
ADOUL USEr EXIt FOULINES ... 52
Using ECRTP as an Adaptereeeeeeiiieicciiiiieeeeeece e e 61

Using ECRTP as an adapterc..uuvveeeeiiiiiiiiieee e eciiiiieee e e 62

Configuration file for the Acquire Modecccccvvvevieeniinnns 63

Configuration file for the Deliver Modeccccvvveviieeniinns 65

Configuration file for the Process Mode.............occcvvveevieeininnnns 67

CHAPTER 5 Using ECRTP in a Web Environmentcccccccceeeiaiiniiiiiiiineeenn. 71
Using ECRTP in a Web environmentccccceeeeeiiiiiiiiieenee e, 72

CHAPTER 6 ECRTP PerformManCe ... 73
Factors affecting performance...........cccoccvvveeeieiiiiiiieeee e, 74

MaP CACNING ...t 74

MEMOTY 1O . 76

Database technologycccccoviiiiiiiiiiiie e 77

Windows runtime parameters/switches...........cccccccvviiiiiieneeee s 78

Required parametersS.........ccuveeeiicciiiiiieee e criineeeee e e ssiiareneaae s 86

Inbound required parametersccccvveeeeeeeiiciiiieee e 88

CHAPTER 7 Non-ODBC Database and File Formats.........cccccoovveeeeiiiiiieeenenne 103
Trading partner fileS........coooviiiiiee e 104

Company data file (wixset.dat)cccccuvveveeeeeiiiiiiiiieee e, 104

Trading partner file (customer.mdb)ccccceevveeiiiiciiienneenn, 104

Trade agreement file (tradstat.mdb)ccccccveiviiiiiiiennnnnn, 106

LOG fIlES v 108

Trace files (incoming.err and outgoiNg.err).........ccooccvvveeeeeennn. 113

Status file (status.in and Status.out).........ccccceviiiviiieneeenniinnns 113

CHAPTER 8 ODBC Database Table Formatsooocviiiiiiiiiii 115
How ODBC trading partner data is stored..........cccccceevviviiinnenennn, 116

Trading partner database tables.........c.cccoovviiiiiiiiiinnniiiineenn. 116

10T 1= PR PT PP PPPPR PRSP 123

iv ECRTP

About This Book

Audience

How to use this book

Related documents

Reference Guide

Map developers are targeted as the primary users of this book. Map
developers who use this book to manage maps must also be familiar with
the contents of thereference guide. Additional conceptual information and
examples are provided in the reference guide to assist the users who
configure the system.

This document describes how to use ECRTP™ in a Windows
environment. ECRTP is a data transformation engine. It analyzes,
transforms, and routes messages.

The guide is organized into the following chapters:
e Chapter 1, “About ECRTP” describes how the product works.

e Chapter 2, “Running ECRTP’ provides code exampleson how to run
ECRTP as an executable, DLL, or from a Visual Basic script.

e Chapter 3, “User Exit Routines’ provides information on how to
invoke a proprietary routine from within a map so that you can
perform additional functions called by mapping rules.

e Chapter 4, “Using ECRTP as an Adapter” explains how to use
ECRTP as a standalone adapter.

e Chapter 5, “Using ECRTP in a Web Environment” explains how to
use ECRTP for your website.

e Chapter 6, “ECRTP Performance” explains how to improve the
performance of ECRTP using map caching and memory 1/0O.

e Chapter 7, “Non-ODBC Database and File Formats® describes the
format of trading partner files.

e Chapter 8, “ODBC Database Table Formats” explains how ODBC
trading partner datais stored.

This section describes the available documentation.

Cross-Platform Documentation The ECRTP documentation set
includes:

¢ Installation Guide

Reference Guide
Feature Guide

Release Bulletin

Related Documentation Other related documentationisavailablefrom New
Eraof Networks, Sybase, and IBM. Refer to other documentation from each of
these companies for more detail about use of applications relevant to this

product.
Other sources of Use the Sybase Getting Started CD, the SyBooks Bookshelf CD, and the
information Sybase Product Manuals web site to learn more about your product:

Sybase EBFs and
software
maintenance

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks Bookshelf CD. It isincluded
with your software. To read or print documents on the Getting Started CD,
you need Adobe Acrobat Reader, which you can download at no charge
from the Adobe Web site using a link provided on the CD.

The SyBooks Bookshelf CD isincluded with your software. It contains
product manuals in a platform-independent bookshelf that contains fully
searchable, HTML-based documentation.

Some documentation is provided in PDF format, which you can access
through the PDF directory on the SyBooks Bookshelf CD. To view the
PDF files, you need Adobe Acrobat Reader.

Refer to the README.txt file on the SyBooks Bookshelf CD for
instructions on installing and starting SyBooks.

The Sybase Product Manuals Web siteis the online version of the
SyBooksBookshelf CD that you can access using astandard \Web browser.
In addition to product manuals, you will find links to EBFS/Maintenance,
Technical Documents, Case Management, Solved Cases, newsgroups, and
the Sybase Developer Network.

To access the Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

O Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at

Vi

http://lwww.sybase.com/support.

ECRTP

About This Book

Sybase EBFs and
software
maintenance

Conventions

Reference Guide

Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

Specify atime frame and click Go. A list of EBF/Maintenancereleasesis
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Finding the latest information on EBFs and software maintenance

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Maintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.
Specify atime frame and click Go.

Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

The formatting conventions used in this manual are:

Formatting example | To indicate

command names and When used in descriptive text, this font indicates
method names keywords such as:

» Command names used in descriptive text

¢ C++ and Java method or class names used in
descriptive text

» Javapackage names used in descriptive text

Vil

If you need help

Viii

Formatting example

To indicate

myCounter variable

Italic font indicates:
e Program variables

Server. | og Partsof input text that must be substituted
myfile.txt « Directory and file names.
User Guide » Book titles
A forward dash (“/”) indicates generic directory
sybase/bin information. A backslash (*\") appliesto Windows
usersonly.
Directory names appearing in text display in
lowercase unless the system is case sensitive.
“About This Book” References to chapter titles have initial caps and
are enclosed within quotation marks.
File> Save Menu namesand menuitemsaredisplayedinplain

text. The angle bracket indicates how to navigate
menu selections, such as from the File menu to the
Save option.

par se| put | get
Nane| Addr ess

Thevertical bar indicates:
* Options available within code
« Delimiter within message examples

create table

table created

Monospace font indicates:

« Information that you enter on acommand line
or as program text.

« Example output fragments

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manual s or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary

in your area.

ECRTP

CHAPTER 1

Reference Guide

About ECRTP

Topic Page
About ECRTP 2
How ECRTP uses data by location, description, and use 6

Information included in this chapter includes:

e Map development

e Moving from map development to production
* Executablefilesand DLLs

+ EDI standards

e Generated map files

e Trading partner files

e Application data

e EDI data

e Logfiles

About ECRTP

About ECRTP

ECRTP is adatatransformation engine. It analyzes, transforms, and routes
messages. There are many types of message transformations:

Figure 1-1: ECRTP flow chart"

EDI

Flat File ECRTP

XML/HTML

XML/HTM

1 EDI toflat file—interprets incoming EDI-formatted data and translates it
into a user-defined file format. Performed by inbound maps.

2 EDI to EDI —interpretsincoming EDI-formatted dataand translatesit into
another EDI format. Performed by any-to-any maps.

3 EDI to XML/HTML —interprets incoming EDI-formatted data and
translatesit into XML or HTML-formatted data. Performed by web maps
(specid any-to-any maps).

4 Flat fileto EDI —interprets a user-defined file and translates it to an EDI
standard or to other standard message formats. Performed by outbound
maps.

5 Flatfileto flat file—interprets a user-defined file and trandlates it into
another user-defined format. Performed by any-to-any maps.

6 Flatfileto XML/HTML —interprets a user-defined file and translates it
into XML or HTM L-formatted data. Performed by web maps (special any-
to-any maps).

7 XML/HTML to EDI —interprets XML or HTML-formatted data and
translates it to an EDI standard or to other standard message formats.
Performed by web maps (specia any-to-any maps).

8 XML/HTML toflat file—interprets XML or HTML-formatted data and
translates it into a user-defined format. Performed by web maps (special
any-to-any maps).

2 ECRTP

CHAPTER 1 About ECRTP

Data Files In

9 XML/HTML to XML/HTML —interprets XML or HTML-formatted data
and trandates it into XML or HTML-formatted data. Performed by web
maps (special any-to-any maps).

ECRTP consists of the following components: map files, trading partner
database, and log files.

e The map files contain the business rules and logic that define the
relationships between the incoming and outgoing data.

e Thetrading partner database containsinformation that is used to route
messages between trading partners and to select the specific map that
should be run.

e Thelog files maintain an audit trail of the transaction processing.

Figure 1-2: Map execution flow chart

> Map Execution P Data Files Out
Tradin
Maps Partne? Logs

Map development

Reference Guide

Themap development program isinstalled on aclient workstation and includes
aclient ECRTP for execution testing. Maps are developed and tested on the
client PC using the map development program and then transferred to the
Windows NT server for production. Before transferring map filesto the server,
itisagood practice to create a backup copy of thefiles. You can use the
Archive or Copy Map functionsin ECMap to create a backup.

About ECRTP

Moving from map development to production

The map development program isinstalled on aclient workstation and includes
aclient ECRTP for execution testing. Maps are devel oped and tested on the
client PC using the map devel opment program and then transferred to the
WindowsNT server for production. Before transferring map filesto the server,
it isagood practice to create a backup copy of thefiles. You can use the
Archive or Copy Map functionsin ECMap to create a backup.

Map files—copy the ASCII *.map fil es generated by the map devel opment
program from the client PC to a“map directory” on the production server.
Thefully qualified path to this“map directory” (also called the“ generated
files directory”) is used as a switch on the command line of the ECRTP
executable or passed in as a parameter to the ECRTP DLL.

Trading partner database — copy thetrading partner database created by the
map development program from the client PC to the production server.
The location of this database is used as a switch on the command line of
the ECRTP executable or passed in as a parameter to the ECRTP DLL. If
the trading partner information is stored in a non-ODBC database, the
fully qualified path to the “trading partner directory” isused asa
switch/parameter. If the trading partner information isstored inan ODBC
database, the “trading partner DSN” (that points to the trading partner
database) is used as a switch/parameter.

Production — processing modes

The production ECRTP isinstalled on an NT server and executes the maps
developed with the map development program. ECRTP can be used in a
“batch” processing mode or ina“real-time’ interactivemode. Illustrations of
both modes are shown below:

ECRTP

CHAPTER 1 About ECRTP

Batch processing mode
Figure 1-3: Batch mode processing flow

N Data Files Out

ECRTP e ——
Data Files

I~
m |)| Data

Interactive processing mode
Figure 1-4: Interactive process mode flow

Application
B

Message

Application
A

ECRTP for Windows can be invoked from a command line as an executable
file or called from within aprogramasaDLL.

There are two executables for the Windows version of ECRTP:
« wrmi32.exefor inbound processing

* wrmo32.exe for outbound processing

Thereisone DLL file for the Windows version of ECRTP:

e owrm32c.dll for multithreaded processing

This DLL file contains calls to both inbound and outbound runtime functions.

Reference Guide 5

How ECRTP uses data by location, description, and use

How ECRTP uses data by location, description, and

use

ECRTP usesinformation stored infiles, databases, and memory. The user must
know, and provide some of these data locations at runtime. For example, the
fully qualified path location of specific datafiles must beincluded with certain
switchesand parameters. Other datalocations are known by the program or are
not used at runtime. See “ Windows runtime parameters/switches’” on page 78
for adetailed explanation.

ECMap has a utility available from both the Run Inbound Map and Run
Outbound Map screens that allows the user to create a batch file of
switches/parameters that correspond to the choices and entries that have been
made. When ECRTPisrun, thisbatch file can be used to provide command line
parameters or switches, using the -pf switch.

Executable files and DLLs

EDI standards

The executablefiles and the DL L s both contain the runtime code. The program
uses Program Files/nnsy/ECRTP (or /ECMap) as the default installation
location of the executable filesand DLLs. The user can install these filesin
another location during the installation process, but must provide the location
of thesefiles at runtime.

The program uses Program Files/nnsy/Standards as the default installation
location of the EDI Standards (X12, EDIFACT, and HL7). The user is not
required to know the location of the standards at runtime. Thisinformation is
required by the map development program during map generation, but not by
the runtime program during map execution.

ECRTP

CHAPTER 1 About ECRTP

Generated map files

Reference Guide

During map devel opment, the program places map filesin a <project
name>/<map name> directory structure. When the map files are transferred to
the production server, this same directory structure can be kept or the user can
specify adifferent location. The program uses the fully qualified path to the
generated map file as part of arequired runtime parameter/ switch for inbound
and outbound processing. The ECRTP uses this information to dynamically
switch maps at runtime, based on the trading partner search option specified by
the user at runtime.

« Inoutbound processing, the map name is the second required
switch/parameter and the fully qualified path to the generated map file
directory ispart of the required -dg (or -dm) switch/parameter. Although a
map name is required when the runtime program is invoked, the program
does alookup to see whether a different map should be selected and used.
Using theinternal trading partner 1D information in the incoming
application data, ECRTP searchesthe trading partner database for arecord
with amatching CUSTNO field. Once it has found a match, ECRTP
replaces the current map name with the map name in the trade agreement
table (TBCODE field) if it is different from the current map.

e Ininbound processing, the fully qualified path to the generated map file
directory is part of the required -dg (or -dm) switch/parameter. ECRTP
uses either the default trading partner lookup criteria or the lookup
specified by a parameter passed in (or switch set) at runtimeto
dynamically select the correct map at runtime.

Non-ODBC users have two trading partner lookup options:

Table 1-1: Non-ODBC trading partner search criteria and parameters

Trading partner search criteria Switch/parameter
group sender default
reverse - group receiver -er

ODBC users have fifteen trading partner lookup options:

How ECRTP uses data by location, description, and use

Table 1-2: ODBC trading partner search criteria and parameters

Trading partner search criteria Switch/parameter
group sender default
interchange sender -e5
group and interchange sender -e2
interchange receiver -e6
group and interchange receiver -ed
group sender and receiver -el
interchange sender and receiver -e7
group and interchange sender and receiver -e3
reverse - group receiver code -er
reverse - interchange receiver -e10
reverse - group and interchange receiver -e13
reverse - interchange sender -ell
reverse - group and interchange sender -e12
reverse - interchange sender and receiver -e8
reverse - group and interchange sender and receiver | -e9

Trading partner files

The trading partner files store information about trading partners, the entities
that exchange el ectronic business documents. The trading partner files contain
information such as the codes that identify the sender and receiver on EDI
envelopes and the details of the trade agreements that link specific maps with
specific EDI messages/transaction sets for specific trading partners. Trading
partner information is stored in the trading partner file/database and the
wixset.dat file.

In both inbound and outbound processing, the fully qualified pathto thetrading
partner directory is part of the required -t switch/parameter for users with non-
ODBC trading partner files. For userswith an ODBC trading partner database,
the DSN (data source name) that points to the trading partner database is part
of the required -st <DSN> parameter/switch.

8 ECRTP

CHAPTER 1 About ECRTP

Application data

User-defined application datais the input for outbound transaction maps, and
the output for inbound transaction maps. Application datais both theinput and
the output for any-to-any maps and webmaps. Application data can be
formatted as aflat file, an ODBC database, or HTML or XML datain atext
file. Application data can be located in afile/database or in memory; if itisin
memory, it can be in amemory location or specified as standardin or
standardout.

Outbound processing (application data is the input of the map)

1

In outbound processing, the location of the output application fileis
specified in the generated map file. The location of the output application
file can be overridden at runtime by entering the fully qualified path to the
substitute file name with the optional -eo switch/parameter. (In ECMap,
thisinformation is entered as the Substitute Input Filename and the
Substitute User File Directory on the Option 2 tab of the Run Outbound
Map screen.)

Input application data can beread from stdin —instead of from disk —using
the -mi switch at runtime. (In ECMap, thisinformation is entered in the
Standard Input pane on the 1/O Redirect tab of the Run Outbound Map
screen.)

Input application data can be read from a specified memory address —
instead of from disk —using the -mp switch at runtime. (In ECMap, this
information isenteredinthe Internal Memory pane onthel/O Redirect tab
of the Run Outbound Map screen.)

Inbound processing (application data is the output of the map)

Reference Guide

1

Ininbound processing, thelocation of theinput application fileis specified
in the generated map file. The location of the input application file can be
overridden at runtime by entering adifferent fully qualified path and file
name with the optional -ei switch/parameter. (In ECMap, thisinformation
is entered as the Substitute Output Filename and the Substitute User File
Directory on the Option 2 tab of the Run Inbound Map screen.)

Output application data can be written to stdout —instead of to disk —using
the -mo switch at runtime. (In ECMap, thisinformation is entered in the
Standard Output pane on the 1/O Redirect tab of the Run Inbound Map
screen.)

How ECRTP uses data by location, description, and use

EDI data

Output application data can be written to a specified memory address,
instead of to disk, using the -mp switch at runtime. (In ECMap, this
information isentered in the Internal Memory pane onthe /O Redirect tab
of the Run Inbound Map screen.)

By default, output application datais appended to the existing datain the
application file at runtime. To overwrite the output datain the application
datafile instead of appending it, use the -w switch at runtime.

EDI dataisthe input for inbound transaction maps, the output of outbound
transaction maps. EDI datais not used in any-to-any maps.

Outbound processing (EDI file is the output of the map)

10

1

In outbound processing, the fully qualified path including the EDI output
file nameisthe first required parameter passed to the ECRTP.

The output EDI file can be written to stdout, instead of to disk, using the -
mo switch at runtime. (In ECMap, thisinformation is entered in the
Standard Output pane on the I/0O Redirect tab of the Run Outbound Map
screen.)

The output EDI file can be written to a specified memory address, instead
of to disk, using the-mp switch at runtime. (In ECMap, thisinformationis
entered in the Internal Memory pane on the I/O Redirect tab of the Run
Outbound Map screen.)

Using the trading partner and trade agreement mailbox switches, output
EDI data can be routed to different locations:

e If thetrading partner mailbox is not ignored (-it switch is not set),
outbound EDI data can be routed to the following mailboxes—IN (-ri
switch), OUT (-ro switch), GOOD (-rg switch), BAD (-rb switch), or
OTHER (-rt switch) — by passing in the appropriate Route EDI Type
switch to the ECRTP. (The entry in the Route EDI Type textbox on
the Option 1 tab of the Run Outbound Map screen.)

ECRTP

CHAPTER 1 About ECRTP

e |f thetrading partner mailbox is not ignored (-it switch is not set) and
either there is no trade agreement mailbox or atrade agreement
mailbox existsandisignored (-o switchisset), the outbound EDI data
is automatically routed to the OUT mailbox of the trading partner
directory, if no Route EDI Type switch has been passed tothe ECRTP.
For ODBC users, it isplaced in afile with the filename NN.EDI
(where NN isthe run ID number).

e |f thetrading partner mailbox isignored (—it switch is set) and either
thereis no trade agreement mailbox or a trade agreement mailbox
existsand isignored (—o switchis set), the EDI output isplaced inthe
full path filename specified by the first required parameter passed in
to the ECRTP

e |fthetrade agreement mailbox isnot ignored (the—o switchisnot set),
the EDI output isrouted to the trade agreement mailbox and filename.
However, for ODBC users, if there is atrade agreement mailbox but
no filename, the EDI output is routed to a file with the filename
NN.EDI (where NN isthe run ID number) in the trade agreement
mailbox.

Inbound processing (EDI file is the input to the map)

Reference Guide

1

Ininbound processing, thefully qualified path including the EDI input file
nameisthefirst required parameter passed to the ECRTP.

The input EDI file can be written to stdin, instead of to disk, using the
-mi switch at runtime. (In ECMap, thisinformation is entered in the
Standard Input pane on the 1/0 Redirect tab of the Run Inbound Map
screen.)

The input EDI file can be written to a specified memory address, instead
of to disk, using the -mp switch at runtime. (In ECMap, thisinformationis
entered in the Internal Memory pane on the I/O Redirect tab of the Run
Inbound Map screen.)

Using the trading partner and trade agreement mailbox switches, output
EDI data can be routed to different locations:

« |If thetrading partner mailbox is not ignored (-it switch is not set),
inbound EDI data can be routed to the following mailboxes - IN (-ri
switch), OUT (-ro switch), GOOD (-rg switch), BAD (-rb switch), or
OTHER (-t switch) - by passing in the appropriate Route EDI Type
switch to the ECRTP. (The entry in the Route EDI Type textbox on
the Option 1 tab of the Run Inbound Map screen.)

11

How ECRTP uses data by location, description, and use

Log files

Non-ODBC log files

If the trading partner mailbox is not ignored (-it switch is not set) and
either there is no trade agreement mailbox or atrade agreement
mailbox existsand isignored (-o switch is set), theinbound EDI data
isrouted to the IN mailbox of the trading partner directory when no
Route EDI Type switch has been passed in to the ECRTP.

» If thetrading partner mailbox isignored (-it switch is set) and either
there is no trade agreement mailbox or a trade agreement mailbox
existsand isignored (-o switch is set), the inbound EDI datais not
routed.

» If thetrade agreement mailbox isnot ignored (the -o switch isnot set),
the EDI input isrouted to the IN mailbox of the trade agreement
mailbox if it exists, or to the IN mailbox of thetrading partner mailbox
if the trade agreement mailbox does not exist.

e If thetrading partner mailbox isignored (-it switch isset) and thetrade
agreement mailbox isnot ignored (-o switchesis not set), theinbound
EDI datais routed to the IN mailbox of the trade agreement mailbox
if it exists, and not routed if the trade agreement mailbox does not
exist.

Non-ODBC log filesinclude the transaction |og and the trace file. The ODBC
log database includes the transaction log, the trace file, and the run ID table. If
anon-ODBC log is used, ECRTP places the log files in the same directory
where the executableisinstalled. |If an ODBC log is used, the user must
specify the DSN (data source name) that points to the log database using the
required —s| <DSN> parameter/switch.

Non-ODBC transaction log

12

Thetransaction logs for non-ODBC users are stored in fixed-length filesin the
directory where the executableisinstalled, in afile named translog.out for
outbound processing and in afile named trand og.in for inbound processing.
Each time ECRTP is executed, the program appends new information to the
transaction log files. Since these files can become very large, the user must
institute a procedure to control their size by periodically deleting information.

Non-ODBC users have three choices for the creation of the transaction log:

ECRTP

CHAPTER 1 About ECRTP

Non-ODBC trace files

ODBC log files

ODBC transaction log

ODBC RunID table

Reference Guide

* NolLog
* Non-Expanded Text Transaction Log
e Expanded Text Transaction Log

If the transaction log is written in the expanded format (-xI switch), additional
fields are included and the sizes of three fields are expanded to include eight-
digit dates, six-digit times, and the complete text of all error messages. The
non-expanded format has fewer fields and includes only six-digit dates, four-
digit times, and truncated versions of the error messages. See “ Expanded
format” on page 110 for the layout of the non-ODBC expanded text transaction

log.)

The trace files for non-ODBC users are stored in fixed-length files in the
map/generated files directory, in outgoing.err for outbound processing and
incoming.err for inbound processing.

For both outbound and inbound processing, the ODBC transaction logs are
stored in the TRLOG table in the ODBC log database. The format of TRLOG
is essentialy the same as the format of the non-ODBC expanded text
transaction log file - with the exception of the first field. In TRLOG thisfield
isan auto-increment field. (Section 11 contains the layout for the ODBC
transaction log.)

ODBC users have only one choice for the creation of the transaction log:
e ODBC Database Log Table

The RunlD table contains unique sequential run number associated with each
map run. This number is incremented each time that a map is executed,
regardless of whether the processing is inbound or outbound.

13

How ECRTP uses data by location, description, and use

ODBC trace files

The ODBC tracefilesfor both inbound and outbound processing are stored in
afixed-length file called TRNN.dat, where NN is the Run ID number for the
map run.

14 ECRTP

CHAPTER 2

Reference Guide

Running ECRTP

Topic Page
Running ECRTP as an executable 16
Running ECRTPasaDLL 22
Running ECRTP from a Visual Basic script 45

15

Running ECRTP as an executable

Running ECRTP as an executable

ECRTP can be invoked from a command line, using one of two executable
programs. One of the executable programsis used for outbound and any-to-any
processing, and the other executable program is used for inbound processing.

* wrmo32.exe — executable program for outbound and any-to-any
processing

» wrmi32.exe — executable program for inbound processing

When you run ECRTP from the command line, there are required switches that
must be used, as well as optional switches that can be used. For a description
of all available switches, see*Windowsruntime parameters/switches’ on page
78. When ECRTP isinvoked as an executable, the -mi, -mo, and -mm memory
I/O parameters can be used, but not -mp or -mx.) The required switches for
executables are described below

Required switches for an outbound executable

16

The switches shown below are required for outbound processing. You must use
the first three switches in the order shown. The other switches have no fixed
position, but they must be preceded by the appropriate “-letters’ flag. You use
either the -st or -sl switch, depending on whether your trading partner
information is stored in anon-ODBC or an ODBC database. You are aso
allowed to use the -dm switch in place of the —dt and —dg switches when the
trading partner directory and the generated files directory are the same.

wr np32 <EDI output file> <mapnane> <transacti on code>
-t<transaction/ message> -dt<full path tradi ng partner
directory> -dg<full path generated files directory>

or

w nmp32 <EDI output file> <mapname> <transacti on code>
-t<transacti on/ nessage> -dg<full path generated files
directory> -st <tradi ng partner DSN>

When the trading partner directory and the generated files directory are the
same, the command line is shortened as follows:

wr np32 <EDI output file> <mapnane> <transacti on code>
-t<transacti on/ nessage> -dnxful |l path tradi ng
partner/generated files directory>

ECRTP

CHAPTER 2 Running ECRTP

Table 2-1: Switch descriptions

Switch

Description

<EDI output file>

The name of the EDI output file.

<map name without extension>

The map name without the extension.

<transaction code>

Two-character transaction code.

-t<transaction/message>

Transaction set/message.
Example:
-t 837

-dt<full path trading partner directory>

The fully qualified path to the trading
partner directory. For users with anon-
ODBC trading partner database, these
switches are required unless the —dm
switch is used.

Example:

-dt c:\ecdata\tptner

-dg<full path generated files directory>

Thefully qualified path to generated files
directory. This directory containsthe
generated (map and cross-reference
tables) files. These switches are required
unless the -dm directory is used.

Example:
-dg c:\ecdata\rtp

-st<trading partner DSN>

The DSN specifies the data source name
for the ODBC trading partner database.

Example:
-st "MS Access”

Required switches for an inbound executable

The switches shown below are required for inbound processing. The first
switch isrequired and must always be first in the order. The other switches
have no fixed position, but they must be preceded by the appropriate “-letters’
flag. You use either the -st or —sl switch, depending on whether your trading
partner information is stored in anon-ODBC or an ODBC database. You are
also allowed to use the -dm switch in place of the —dt and —dg switches when
the trading partner directory and the generated files directory are the same.

Reference Guide

wm 32 <EDI input file> -dt<fullpath trading partner

directory>

-dg<ful | path generated files directory>

17

Running ECRTP as an executable

or:

wm 32 <EDI input file> -dg<fullpath generated files
directory> -st <tradi ng partner DSN>

When the trading partner directory and the generated files directory are the
same, the command line is shortened as follows:

wrm 32 <EDI input file> -dnxfullpath trading
partner/generated files directory>

Table 2-2: Switch descriptions

Switch

Description

<EDI input file>

The name of the EDI input file.

-dt<full path trading partner directory>

Thefully qualified path to the trading
partner directory. For users with anon-
ODBC trading partner database, these
switches are required unless the —dm
switch is used.

Example:

-dt c:\ecdata\tptner

-dg<full path generated files directory>

Thefully qualified path to generated files
directory. This directory containsthe
generated (map and cross-reference
tables) files. These switches are required
unless the “-dm” directory is used.

Example:
-dg c:\ecdata\rtp

-st<trading partner DSN>

The DSN specifies the data source name
for the ODBC trading partner database

Example:
-st "MS Access”

Environment variables

In addition to command line switches, you must also set the following
environment variables listed in Table 2-3, which affect program performance.

18

ECRTP

CHAPTER 2 Running ECRTP

Reference Guide

In the current trading partner database, there are two levels for storing
information, Interchange Level and Transaction Set Level. AsECRTP
processes each transaction, alookup is done on the trading partner fileand if a
transaction set isnot defined in the trade agreement tabl e, no acknowledgement
flagsareset for that transaction. Therefore, abad transaction set id error cannot
be reported in the 997 Acknowledgement transaction that is transmitted back
to the originator of the interchange. If there was an option in the Trading
Partner database to set acknowledgement flags at the Functional Group Level
instead of the Transaction Set level, the ACK_EXPECT field in the TRLOG
database could be set correctly based on the value of the flag at the Functional
Group Level.

19

Running ECRTP as an executable

Table 2-3: Environment variable descriptions

Environment variable

Description

ACKINT

ECRTP checks for the existence of the ACKINT
environment variable. If this environment variable
exists and has been set to any value, then when the
trading partner record is not found during an inbound
run, the ACK_EXPECT log valuewill bea’1’ instead
of '0'.

ACKGROUP

ECRTP checks for the existence of an ACKGROUP
environment variable. If this environment variable
exists and has been set to any value, then when the
TRADSTAT record is not found during an inbound
run, the ACK_EXPECT log value will be a'1' instead
of '0".

ALL_TB_OWNERS

ECRTP checks for the existence of an
ALL_TB_OWNERS environment variable. If this
environment variable exists and has been set to any
value, then atable can be accessed by the code aslong
as the current user has sufficient access permission.

AUTO_INC_FIX

For databases that do not support an auto-increment
field, setting the AUTO_INC_FIX environment
variable provides a mechanism by which the TPKEY
(TPtable), TRADKEY (TRADSTAT table), and
ALFD (TRLOG table) fields are incremented
whenever arecord isadded to the TP, TRADSTAT, and
TRLOG tables.

For DB2, the sytax for AUTO_INC_FIX is:

auto_inc_fix = NOT NULL GENERATED
ALWAYS AS | DENTI TY

PADEDI

20

Pads numeric fields with leading zeros or
alphanumeric field with trailing spaces to ensure
that data meets minimal field length requirements.

In Windows, set the Variable Name to PADED! . Set
the Variable Valueto Y.
In UNIX, open ashell and run the following
commands;
ksh: set PADEDI =YES ; export PADEDI
sh: set PADEDI =1 ; export PADEDI
csh: setenv PADED 1

ECRTP

CHAPTER 2 Running ECRTP

Environment variable

Description

WWIXTB=(NUMBER)

The number set by wwixth isthe maximum number of
recordsthat a cross reference file can have and still be
loaded into memory. The default wwixtb value is
10000. Thisis equivaent to the command line
parameter “-r number” .Example: Set wwixth=200

Thisenvironment variableisonly availableon NT and
Window Platforms. For UNIX, the default is 10000,
and the

—r switch must be used to change maximum value.

WWIXQUOTE

This optiona delimited file environment variable can
be set to SPACE or NONE or PIPE or any character.
Default delimited file quote is a double quote.

WWIXDELIM

This optional delimited file environment variable can
be set to SPACE or PIPE (where PIPE is“[") The
default delimited file delimiter is acomma. Example:
Set WWIQUOTE=" changes delimited file quote to
single quote.

WWIXNUNG

If set, then no UNG EDIFACT segment iswritten for
outbound maps (same as -u switch).

WWIXTRANS

If set to no, no badtrans.nmt is produced for inbound
maps (equivalent to the -b command line parameter).

WWIXERR

If set, then the inbound control numbers from trading
partners are compared with previous inbound control
numbers from the same trading partner. If the inbound
control numbers are not being incremented by 1 from
the previous control number, then an error message is
written. (no equivalent switch)

WWIXDEBUG

If set to any value, then temporary files created during
the processing of “Multiple Files Yes’ run will not be
deleted for outbound maps. This switch isavailableto
help analyze/debug map problems (same as “-db”
switch).

WWIXNOCR

If set to any value, then asegment delimiter of newline,
will bewritten as newline only. Normally onthe PC, a
newline segment delimiter is written as <return,
newline>. On UNIX, thisisnot avalid switch because
newline segment delimiters are alwayswritten asjust a
newline (no equivalent switch).

Reference Guide

21

Running ECRTP as a DLL

Running ECRTP as a DLL

22

Thereisone DLL file that can be used to run ECRTP: owrm32c.dll. Thisfile
isfor single-threaded and multithreaded applications, and contains code for
both inbound and outbound maps.

The owrm32c.dll file has three inbound run API functions and three outbound
run APl functions.

There are also several API functions that allow you to:
* Load amap into memory

» Freeaspecific map in memory

* Freeal mapsin memory

For the owrm32c.dll file, there is a corresponding L 1B file that can be used to
link implicitly to the DLL from a C program or Java program and a DEF file
for information only.

TheDLL fileand itsrelated files are described below.

ECRTP

CHAPTER 2 Running ECRTP

Reference Guide

Table 2-4: DLL file descriptions

DLL file and related files

Description

« owrm32c.dll
* owrm32c.lib
¢ owrm32c.def

Thisisasingle-threaded and
multithreaded Visual C++ compiled DLL
with ODBC rule functions. It can be
loaded dynamically viaan API during
runtime. It can also be linked implicitly
from a C++ program viaowrm32c.lib.
owrm32c.def provides information only.

When you run owrm32c.dll, the result of
the run returns codes 1-5:

e 1—correct

e 2 —transaction skipped error, —
checking tracefile (incoming.err or
outgoing.err)

e 3 -—transaction user abort error —
checking trace file (incoming.err or
outgoing.err)

e 4 —transaction user stop error —
checking trace file (incoming.err or
outgoing.err)

¢ 5—transaction fatal error P checking
tracefile (incoming.err or
outgoing.err).

If the return code is 2-5, run the map

again with long trace set by adding -c and

-1 at the end of the mapswitch. Or check

the long trace in the Run Map screenin

ECMap.

o callrtp.dil
e callrtp.lib (For
Windows NT only)

ThisDLL containsJNI functionsand acts
as awrapper around owrm32c.dll. From
Windows NT, it can be linked implicitly
from a C++ program viacallrtp.dil. A
callrtp.def fileis not included.

23

Running ECRTP as a DLL

DLL file and related files Description

toolpak.h Containsthe prototypesfor thefollowing
six WIN API callsthat are available
within each DLL:

« OUTBOUNDMAPPER
¢ OUTBOUNDRunCmd
* OUTRun

* INBOUNDMAPPER
¢ INBOUNDRunCmd

* INRun

There are aso four JAVA API functions
provided:

¢ JNBOUNDRunCmd
¢ JOUTBOUNDRunCmd
e JNRun

¢ JOUTRun

Whenyouinvoke ECRTPasaDLL, therearerequired parametersthat must be
used, aswell as optional parameters/switches that can be used. For a
description of all available switches, see “Windows runtime
parameters/switches’ on page 78. When ECRTP isinvoked asaDLL, al of
the memory 1/0O parameters can be used.

The prototypesfor the WINAPI calls (available in tool pak.h) are shown below:

typedef struct {

char *fil enaneg; /* Pointer to nanme of
Directory\Fil ename-in MAP File */
char **paddr; /* Doubl e pointer to nmenory address
of data */
| ong *pbytes; /* Pointer to Nunmber of bytes of data
in nenmory */
| ong *pbufl en; /* Pointer to Nunmber of bytes all ocated

in nmenmory */} MEM OSTRUCT;

extern "C' {

__declspec(dllinport) int WNAPI OUTBOUNDRunCnd(char
*cnd) ;

__declspec(dllinport) int WNAPI | NBOUNDRunCnd(char
*cmd) ; __decl spec(dllinmport) int WNAPI
OUTBOUNDMAPPER(i nt argc, char **argv);

__declspec(dllinmport) int WNAPI | NBOUNDMAPPER(i nt
argc, char **argv);

24 ECRTP

CHAPTER 2 Running ECRTP

__decl spec(dllinport) int WNAPI OUTRun(LPSTR,
MEM OSTRUCT **);

__decl spec(dllinmport) int WNAPI | NRun(LPSTR
MEM OSTRUCT **);

/* load map into nmenory ahead of map runni ng*/

/* note: LOADMAP can be called nmultiple times to | oad
many maps*/

[* -map_dir: O for inbound , 1 for outbound */

/* -Mil Maps: how many maps to save in nenory, 1 to N */
/* upper linit Nis dependent on nenory available */
__declspec(dllinport) int WNAPI LQOADMAP(char
*dir_path, char * nanme, int map_dir, int Ml Maps);

/* free specific map in menory*/
__decl spec(dllinmport) int WNAPI FREEMAPNAME(char
*map_nane) ;

/* clear all maps in nmenory*/

/* it's calling programs responsibility to call
FREEALLMAP to free all maps in nmenory if calling
program does not pass -xf switch to rtp engine. If -xf
switch passes into rtp engine rtp will free all maps
in nmenory at the end of this run */

__decl spec(dllinport) void WNAPI FREEALLMAP();}
The prototypes for the Java API calls are shown below:
e int JINBOUNDRUNCMd(String Str);
e int JOUTBOUNDRuUNCmd(String Str);
e int INRun(String[] starr);
e int JOUTRun(String[] strarr);

WIN API function calls for outbound processing

Reference Guide

The outbound ECRTP functions convert data from aflat file, ODBC database
table, or XML/ HTML datato a standard EDI message format. Three API
function calls are available for running outbound transaction maps:

extern "C' _decl spec(dllinport) int W NAPI
CUTBOUNDMAPPER(i nt argc, char **argv

extern "C' _decl spec(dllinport) int W NAPI

25

Running ECRTP as a DLL

OUTBOUNDRuUnCnd(char *cnd) ;

extern "C'" _declspec(dllinport) int WNAPI
OUTRun(LPSTR, MEM OSTRUCT **)

The parameters passed to the DLL for outbound processing have the same
values asthe switches used on the command line of the executable program for

outbound maps—wrmo32.exe.

* For OUTBOUNDMAPPER, the runtime parameters are passed in using
an array. “argc” isthe number of cellsin the array “argv”. The first
“argv[0]” cell contains the function name (OUTBOUNDMAPPER) and
the remaining cells contain the runtime parametersin the required order

shown below.

» For OUTBOUNDRuUNCmd, the runtime parameters are passed in asa
string, in the required order shown below. “cmd” isthe string containing

the runtime parameters.

» For OUTRun, the runtime parameters are passed in as a string, in the
required order shown below. “LPSTR” isthe string containing the
runtime parameters. “MEMIOSTRUCT” is a pointer to an array of
MEMIOSTRUCT structuresthat are used to redirect memory 1/O files.

Parameters required for outbound API function calls
The following parameters are required for outbound processing viaaDLL:

26

Table 2-5: Switch descriptions

Switch

Description

<EDI output file>

The name of the EDI output file.

map name without file extension

Map name without file extension.

-t<transaction/message>

Transaction set/message

-dt

Required if -st is not used.

-dg<full path generated files directory>

Thefully qualified path to generated files
directory. This directory containsthe
generated (map and cross-reference
tables) files. These switches are required
unless the “-dm” directory is used.
Example:

-dg c:\ecdata\rtp

ECRTP

CHAPTER 2 Running ECRTP

Switch Description

-st<trading partner DSN> The-st optionisrequired if the-dt option
isused. The DSN specifies the data
source name for the ODBC trading
partner database
Example:

-st "MS Access”

Syntax for outbound API function calls

Thethree following syntax options are available for outbound processing viaa
DLL:

ret = OUTBOUNDMAPPER(i nt argc, char **argv);
The required parameters are passed as an array for OUTBOUNDMAPPER.
ret = OUTBOUNDRunCnd(char *cnd);

The parameters are passed as one command string for OUTBOUNDRunCmd.
Thisstring argument can be generated automatically in ECMap by fillinginthe
appropriate the textboxes on the Run Outbound Map screen and clicking the
Create Batch button.

ret = OUTRun(char *argv[1l], MEM OSTRUCT **ppnystruct);

The parameters are passed as one command string for OUTRun. This string
argument can be generated automatically in ECMap by filling in the
appropriate the textboxes on the Run Outbound Map screen and clicking the
Create Batch button.

Sample programs for using outbound API function calls

Reference Guide

A sample setup for the OUTBOUNDMAPPER API call is shown below:

int ret, iarg;
char **argpp;
char *argp[12];

argp[0] = " OQUTBOUNDVAPPER';

argp[1l] = "ED FILE"; /* full ED output file name */
argp[2] = "837MAP*; /* file name of initial map */
argp[3] = "PO'; /* transaction code */

argp[4] = "-t"; /* nessage/transaction set paraneter */
argp[5] = "837"; /* nessage/transaction set */
argp[6] ="-dt"; /* trading partner directory paraneter

*/

27

Running ECRTP as a DLL

argp[7] ="../tptner"; /* trading partner directory */

argp[8] = "-dg"; /* generated files directory
paraneter */

argp[9] ="../rtp"; /* generated files (ie. nmap)
directory */

argp[10] = "-st"; /* trading partner DSN paraneter */

argp[11] = "MS Access"; /* trading partner DSN */

iarg = 12 ;

argpp = &argp[0];ret = OUTBOUNDMAPPER(i arg, argpp);

A sample setup for the OUTBOUNDRunCmd API call is shown below:

int ret;ret = OQUTBOUNDRunCrd(" EDI FI LE 837MAP PO -t 837
—dt ../tptner —-dg ../rtp”);

A sample setup for the OUTRun API call is shown below:

28

/1 mem odeno. cpp

/1 This is a nenory I/ Odeno program This is an exanple
/1 of an QUTRun call where the input file and out put

/1 file are both menory files. Thisprogramillustrates
/1 howto call a map and have that map read a file

/1 fromnenory instead of disk. It alsoillustrates how
/1 to call a map so that the map will wite a file to
/1 menory instead of disk. // The construction of second
/1 paraneter, the MEM OSTRUCT, is the key to passing
/1 menory files. The run nmap switches are passed in as
/1 the first paraneter.

#i ncl ude <wi ndows. h>

#i ncl ude <stdi o. h>

/* Menory file structure */

typedef struct {

char *filenaneg; /* Pointer to nane of
Directory\Filename - in MAP File */
char **paddr; /* Doubl e pointer to nenory address
of data */
| ong *pbytes; /* Pointer to Nunber of bytes of
data in nenory */
| ong *pbufl en; /* Pointer to Nunber of bytes

al located in nenory */
} MEM GSTRUCT

extern "C' {

__declspec (dllinport) int WNAPI QUTRun(LPSTR,
VEM OSTRUCT **);

}

int main(int argc, char* argv[])

{

ECRTP

CHAPTER 2

Running ECRTP

Reference Guide

int ret;
char nyfilel[100], nyfile2[100];

char *nenbuf 1, nmenbuf?2;

| ong nmenbytesl, nenbytes2;

I ong nmenbufl enl, nenbuflen2;

FI LE *fp;
MEM OSTRUCT nystruct, mystruct?2;
MEM OSTRUCT *ppnystruct[3];
ppnystruct[0] = &nmystruct;
ppnystruct[[1] = &nystruct?2;
ppnystruct[2] = (MEM OSTRUCT *) NULL; /*
termnated with a NULL pointer */

Must be

/* Al'locate nenory for the map input file */
i f((menbufl = (char *)mall oc(100000 * sizeof(char)))

== NULL
) exit(1);
/* Load data into the nenmory */

if((fp = fopen("d:\\tnp\\8500ut\\data\l

850 udf.txt", "rb")) == NULL

{
exit(1);
}
el se
{
int i =0;
char ch;
while((ch = fgetc(fp)) !'= EOF)
menbuf 1[i ++] = ch;

if(ch == EOF) menbuf1[i + 1] = '\0';

fclose(fp);
}

/* Find the number of bytes of valid data */

menbyt esl = strl en(menbufl);

/* The directory and file nane are exactly the same as

in the map(case sensitive) */

strepy(nmyfilel, "c:\\test\\data\\850 udf.txt");

ppnystruct[0] ->fil enane = nyfil el;
ppnystruct [0] - >paddr = &menbuf 1;
ppnystruct[0] - >pbytes = &mrenbyt esl;
ppnystruct [0] - >pbuf | en= &renbufl enl;

/* Set up the MEM OSTRUCT paraneters for the Qutput

menory File */

/* The directory and file nane are exactly the same as

in the map(case sensitive) */

29

Running ECRTP as a DLL

30

strepy(nmyfile2, "c:\\test\\data\\850 out.txt");
ppnystruct[1] ->fil enane = nyfil e2;
/* For files that are being witten to, one can set the
base char pointerto null, and ECRTP wi || all ocate space
for any output data and pl ace the address of the
all ocated space in nmenbuf2. Simlarly, if the output
menory was preal | ocat ed and t he ECRTP needed nore space,
the ECRTP woul d real | ocate the space and pl ace any
nodi fi ed menory address back in nenbuf2. */

menmbuf 2 = (char *) NULL;

ppnystruct[1] - >paddr = &menbuf 2;

/* set nunber bytes to output nenmory witten to 0 */
/* Note, if one is starting with allocated space, the
new out put woul d be appended at the val ue of nenbytes2
*/

menbytes2 = OL;

ppnystruct[1] - >pbytes = &renbyt es2;

/* Set the nunmber of bytes already allocated for the
output file to zero */

ppnystruct[1] - >pbufl en= &nenbufl en2;

/* The run map switches are passed i n as one paraneter
argv[1] */

ret = OUTRun(argv[1], ppnystruct);

free nenmbufl; /* free input file buffer */

/* Note at this point if the nap wote any data to the
output file, then menmbuf2 will point to the nmenory that
was al |l ocated, nenbytes2 will contain the nunber of

bytes witten. */

/* it is the user’s responsibility to free the output
file */

if(membuf2 !'= (char *) NULL)

free(menbuf2);return ret;

}

ECRTP

CHAPTER 2 Running ECRTP

WIN API function calls for inbound processing

The inbound ECRTP functions convert data from a standard EDI message
format to aflat file, ODBC database table, or XML/HTML data. Three API
function calls are available for running inbound transaction maps:

extern "C' -decl spec(dllinport) int W NAPI
| NBOUNDMAPPER(i nt argc, char

extern "C' -decl spec(dllinport) int W NAPI
| NBOUNDRunCnd(char *cnd) ;

extern "C' -declspec(dllinport) int WNAPI | NRun(LPSTR,
MEM OSTRUCT* *)

The parameters passed to the DLL for inbound processing have the same
values asthe switches used on the command line of the executable program for
inbound maps—wrmi32.exe.

For INBOUNDMAPPER, the runtime parameters are passed in using an
array. “argc” isthe number of cellsinthearray “argv”. Thefirst “argv[0]”
cell is the function name (INBOUNDMAPPER) and the remaining cells
contain the runtime parameters in the required order shown below.

For INBOUNDRunCmd, the runtime parameters are passed in asa string,
in the required order shown below. “cmd” is the string containing the
runtime parameters.

For INRun, the runtime parametersare passed in asastring, intherequired
order shown below. “LPSTR” is the string containing the runtime
parameters. “MEMIOSTRUCT” is a pointer to an array of
MEMIOSTRUCT structuresthat are used to redirect memory 1/0O files.

Parameters required for inbound API function calls

The following parameters are required for inbound processing viaaDLL:

Reference Guide

31

Running ECRTP as a DLL

Table 2-6: Switch descriptions

Switch Description
<EDI input file> The name of the EDI input file.
-dt Required if -st is not used.

-dg<full path generated filesdirectory> | Thefully qualified pathto generatedfiles
directory. This directory containsthe
generated (map and cross-reference
tables) files. These switches are required
unlessthe “-dm” directory is used.

Example:

-dg c:\ecdata\rtp
-st<trading partner DSN> The-st optionisrequiredif the-dt option
isused. The DSN specifiesthe data
source name for the ODBC trading
partner database
Example:

-st "MS Access"

Syntax for inbound API function calls

The three following syntax options are available for inbound processing viaa
DLL:

ret = INBOUNDMAPPER(int argc, char **argv);
The required parameters are passed as an array for INBOUNDMAPPER.
ret = INBOUNDRunCmd(char *cmd);

The parameters are passed as one command string for INBOUNDRunCmd.
Thisstring argument can be generated automatically in ECMap by fillinginthe
appropriate the textboxes on the Run Inbound Map screen and clicking the
Create Batch button.

ret = INRun(char *argv[1], MEMIOSTRUCT **ppmystruct);

The parameters are passed as one command string for InRun. This string
argument can be generated automatically in ECMap by filling in the
appropriate the textboxes on the Run Inbound Map screen and clicking the
Create Batch button.

Sample programs for using inbound API function calls
A sample setup for the INBOUNDMAPPER API call is shown below:

int ret, iarg;char **argpp; char *argp[8];

32 ECRTP

CHAPTER 2 Running ECRTP

argp[0] = "1 NBOUNDVAPPER';
argp[1l] = "../data/EDIFILE"; /* full ED input file
name */

argp[2] = "-dt"; /* trading partner directory
paraneter */

argp[3] ="../tptner"; /* trading partner directory */

argp[4] = "-dg"; /* generated files directory
paraneter */

argp[5] = "../rtp"; /* generated files directory */

argp[6] = “-st”; /* trading partner DSN paraneter */

argp[7] = “M5 Access”; /* trading partner DSN */

iarg = 8;

argpp = &argp[0];
ret = | NBOUNDMAPPER(i arg, argpp);

A sample setup for the INBOUNDRunCmd API call is shown below:

int ret;
ret = | NBOUNDRunCnd("../data/EDIFILE -dt ../tptner -dg
odrtp Y);

A sample setup for the INRun API call is shown below:

int ret;
MEM OSTRUCT nystruct][2];
MEM OSTRUCT *pnystruct =&mystruct[0];
MEM OSTRUCT *ppnystruct[2];
ppnystruct [0] =pmystruct;
ppnystruct [1] =(MEM OSTRUCT*) NULL;
ret = INRun("../data/EDIFILE -dt ../tptner -dg

../rtp “; ppnystruct);

Using Java to execute ECRTP

Reference Guide

You can use Javain two ways to execute ECRTP:

Using Java API calls (requires C++ programming and is very flexible)

Using a Java package (does not require C++ programming but is less
flexible)

First, “Using Java APl callsto execute ECRTP” on page 34 isdescribed bel ow
followed by “Using a Java package to execute ECRTP” on page 38.

33

Running ECRTP as a DLL

Using Java API calls to execute ECRTP

34

This section describes how to use a Java program to call the Java-callable
version of the ECRTP. CALLRTPDLL was created using jni (Jave Native
Interface) and OWRM32C.DLL contains ECRTP C/C++ AP calls. Both are
compiled asfully reentrant, multi-threaded .dlIsusing V C++. The Javaclasses
MYAPP and RTP call CALLRTPDLL. CALLRTPDLL isawrapper around
OWRM32C.DLL and were compiled using JDK 1.3, asfollows:

* rtp.classwas created by javac RTPjava

* MYAPPclass was created by javac MYAPPjava

The Java program calls RTPjava and passes in two parameters:
« 1,2,30r4

» Command string (that containsthe parametersoutlined earlier under either
Parameters Required for Outbound API Function Calls or Parameters
Required for Inbound API Function Calls) or a string array for memory
[/O API functions.)

Based on the first parameter passed in, the program calls one of four Java
functions—JINBOUNDRunCmd, JOUTBOUNDRunCmd, JINRun, or
JOUTRun.

o |If thefirst parameter isa“1” for an inbound map, the program calls the
JAVA function INBOUNDRunCmd and passesto it the second parameter
to run the inbound map. INBOUNDRunCmd then calls the API
INBOUNDRuUNCmd and again passes the command string.

o If thefirst parameter isa“2” for an outbound map, the program calls the
JAVA function JOUTBOUNDRunCmd and passes the second parameter
to run the outbound map. JOUTBOUNDRUNCMD then callsthe API
OUTBOUNDRuUNCmd and again passes the command string.

» If thefirst parameter isa*“3” for an inbound map using memory 1/0
variables, the program calls the Java function JINRun and passes the
second parameter to run the inbound map. The second parameter contains
the command string, input/output memory file names, and the data of the
memory filesto run the specified inbound map. JINRun then callsthe API
INRun and again passes the command string.

ECRTP

CHAPTER 2 Running ECRTP

e If thefirst parameter isa“4” for an outbound map using memory 1/O
variables, the program calls the Java function JOUTRun and passes the
second parameter to run the outbound map. The second parameter
contains the command string, input/output memory file names, and the
data of the memory filesto run the specified outbound map. JOUTRun
then callsthe APl OUTRun and again passes the command string.

These Java calls automatically interface with CALLRTP.DLL that in turn calls
OWRM32C.DLL. OWRM32C.DLL executes the map and returns a value that
indicates the success of the map run. The CALLRTRP.DLL containsa JNI (Java
Native Interface) which calls an API functionin OWRM3C.DLL.
OWRMS3C.DLL returnsaninteger from 0 to 5 indicating the degree of success
of the map run. The valueisreturned to CALLRTPDLL.

Sample program for using a Java API call

Reference Guide

public class MYAPP

{
public static void main(String[] args)
{
int ret;
/! Declare and initialize the RTP JAVA d ass.
RTP nyrtp;

myrtp = new RTP();

/1 Convert the first argunent as the case numnber.
Integer num = Integer.valueO (args[0]);
switch (numintValue()) {
case 1:

Systemout. println("one");

Systemout.printin("args[1] =" + args[1]);

/1 Run an inbound map, pass the comand switches

as the paraneter.
ret = nyrtp.JI NBOUNDRunCrd(args[1]);

Systemout.println("ret =" + ret);
br eak;
case 2:
Systemout.println("tw");
Systemout.printin("args[1] =" + args[1]);

/1 Run an out bound map, pass the conmand swit ches
as the paraneter.
ret = nyrtp. JOUTBOUNDRunCnd(args[1]);
Systemout.printin("ret =" + ret);
br eak;

35

Running ECRTP as a DLL

36

case 3:
Systemout.println("three");
/1 Prepare the string array as the JI NRun() paraneter
to run 271lin nmap.
String[] strarr_inrun =
{

/1 Commrand |ine switches for 271in nap.
"d:\\maps\\271i n\\ 271gdt st. txt -dg
d:\\maps\\ 271in -dt d:\\maps\\271lin -du d:\\ maps\\271in

-xI -1 -it -0 -wx 1 -n -w-b -m271IN -nx 2",

/1 Input file nane to be substituted with
menory buffer.

"d:\\'maps\\271i n\\ 271gdt st . txt",

/1 Input data of 271in nmap.

"1 SA*00* *00* *01*9012345720000

*01*9088877320000
*001030*1030* U*00401*000000001*0*T*: I\ n" +

" GS* HB*901234572000*908887732000* 20001030* 1615* 1* X* 004
010X092!\ n" +
"ST*271*0001!'\ n" +
"BHT*0022*11*3920394930203*20001030*1615!\ n" +
"HL*1**20* 11\ n" +
"NML* PR* 2* BLUE CROSS BLUE
SHI ELD***** P| *9012345918341!\ n" +
" PER* | C* ARTHUR
JONES* TE* 6145551212* FX* 61455512141\ n" +
"HL*2*1*21* 11\ n" +

" NML* 1P* 1* JOHNSON* BARBARA* * * * S* 223447582752/ \ n" +
"REF*1J*500!\ n" +
"HL*3*2*22* 11\ n" +

"TRN*2* 12345678900987654321768958473*1311234567*500! \ n
"+

"NML* | L*1* DAVI S* SAMF T***M *223344!\ n" +

" REF*18*223453424!\ n" +

"N3*PO BOX 123!\ n" +

" N4* Cl NCI NNATI * OH*43017*US! \ n" +

"PER*| C-*HP*6147562231*WP*6145221212!\ n" +

"DMG*D8*19720513*FI\ n" +

"I NSHY*18***¥xx**EXNI\ 0" +

"DTP*102*D8*001030!\ n" +

"EB*1* CHD* 1* GP**6* 100. 00****N*NI \ n" +
" HSD* DY* 100* DA* 163395* 6* 100* 1* Al \ n" +
" REF* 18*4654746868565!\ n" +

ECRTP

CHAPTER 2 Running ECRTP

Reference Guide

" DTP*193*D8*001030!\ n" +
"I11*BF*111\n" +
"LS*2120!'\n" +
"NML* 13* 1* SM TH* MUFFY****24*111222333!\ n" +
"N3*157 WEST 57TH STREET!\n" +
" N4* COLUMBUS* OH*F 43017*US! \ n" +
"PER*| C*MAGG E MCA LLI CUTTY* TE*6145551245! \ n" +
" PRV* AT* 9K* 3920394930203! \ n" +
"LE*2120!'\n" +
" SE*31*0001!\ n" +
"GEF1*1\n" +
"1 EA*1*000000001! \ n",
/1 Qutput file nanme.
"d:\\'maps\\ 271i n\\ dbo_EL_ENVOY",
/1 An enpty string that indicates the previous
/1 file name is substituted with output nmenory
file.

b

/1 Run an inbound map with Menory I/ Q pass a
string array as the paraneter.

ret = nyrtp.JINRun(strarr_inrun);

Systemout.println("ret =" + ret);
Systemout.println("strarr_inrun[4] =" +
strarr_inrun[4]);
br eak;
case 4:

Systemout. println("four");
/1 Prepare the string array as the JOUTRun()
paranmeter to run 270out nap.
String[] strarr_outrun =
{
/1 Conmand |ine swtches for 2700ut map.
"d:\\ maps\\ 270out\\ 2700ut . x12 270QUT HS -t 270
-xI -dg d:\\maps\\270out -dt d:\\maps\\270out -du
d:\\'maps\\270out -xI -1 -it -0 -wx 1 -nmx 2",
/1 Input file nanme to be substituted with
menory buffer.
"D\ \ maps\\ 270out \\ dbo_EL_ENVOY",
/1 1 nput data of 270out map.

"0394930203 SAM
DAVI S PO BOX 123
Cl NCI NNATI oH
43017 19720513 F223344
1 100BLUE CROSS BLUE SHI ELD 9012345918341

37

Running ECRTP as a DLL

JOHNSON 223447582752
AT SM TH
\n",
/1 CQutput file nane.
"d:\\ maps\\ 2700ut\\ 2700ut . x12",
/1 An enpty string that indicates the previous
/1 file name is substituted with output nmenory
file.

b
/1 Run an out bound map with Menory 1/ Q, pass

/!l a string array as the paraneter.
ret = nyrtp.JOUTRun(strarr_outrun);

Systemout.println("ret =" + ret);

1
+

Systemout.println("strarr_outrun|4]
strarr_outrun[4]);

br eak;

defaul t:
Systemout.println("Invalid option!");
br eak; o1}

Using a Java package to execute ECRTP

For the ECRTP Java APl on a PC, we are now providing the JAVA class
(RTP.class) and the wrapper DLL (callrtp.dil) rather than the source code.
Before using your Java APl with your map, you need to follow these steps.

1 Atyour classpath, extract the javartp.jar (i.e. jar xf javartp.jar).

2 Copy callrtp.dil and owrm32c.dll from %classpath%e\com\sybase\vn\lib
directory to your PATH directory. You can add a PATH directory (c:\lib,
for example) through your System Properties, Advanced Tab.

3 Check and modify the drive letter in the demo files to point to the hard
drive where your map files are located.

4 Usethe provided demo files (demol.bat, demo2.bat, etc.) and their
referenced sample mapsto test with your ECRTP Java API before you try
to run your own maps.

5 Modify DEMOAPPjavaor build your own application with ECRTP Java
API and reference the maps you want to run.

38 ECRTP

CHAPTER 2 Running ECRTP

Following is atable of the error codes for the wrapper DLL :

Table 2-7: Error code description

Error code

Description

100

An exception occurred when calling the
API for ECRTP. This indicates that
something may be wrong in your
OWRM32C.DLL. For example, the
version may be incorrect.

101

Anexception occurred beforethe API for
ECRTP was called. Exceptions other
than 103-109 will be caught by this.

102

An exception occurred after the API for
ECRTP was called. Exceptions other
than 103-109 will be caught by this.

103

The incorrect number of elements were
entered in astring array.

104

An exception occurred when the UTF
character strings were rel eased.

105

An exception occurred when getting the
string array elements. System resource
problem.

106

An exception occurred when a memory
1/0 structure pointer array was allocated.
System resources problem.

107

An exception occurred when the memory
1/0 structure pointer for memory files
was initialized. System resources
problem.

108

An exception occurred when the output
was set. System resource problem.

109

An exception occurred when deleting
memiostruct elements.

Sample code for a Java package
Below is the sample code for DEMOAPPjava.

Reference Guide

/ *
DEMOAPP. j ava

Thi s Java Program denpnstrates how to use RTP Java

Cl ass(RTP. cl ass).

There are 4 APl functions provided by RTP Java C ass.
1. int JINBOUNDRunCnd(String Str);

39

Running ECRTP as a DLL

40

2. int JOUTBOUNDRunCnd(String Str);
3. int JINRun(String[] strarr);
4. int JOUTRun(String[] strarr);

The 3rd and 4th functions call Menory 1/ O functions. The
paranmeter of these two functions is a string array. The
very first elenent of the string array is the conmand
line switches for running the map. The foll ow ng

el enents are grouped by two elements. the first one is
the file name that will be substituted with a nenory
file. The second one will be the data of the menory file.
If the menory file is an input file, put the input data
inthis string. If the nenory file is an output file,
use an enpty string to indicate it. Miltiple

i nput/output nenory files can be specified in this
string array.

DEMOAPP Cl ass contains 4 cases that use each of
the 4 RTP Java APl functions. Each case is called by a
separate batch file that is below after this listing.
Case 1: Run an i nbound nmap, pass the command switches
as the paraneter.
Case 2: Run an out bound nmap, pass the comrand
switches as the paraneter.
Case 3: Run an inbound map with Menmory 1/ O, pass
a string array as the paranmeter.
Case 4: Run an outbound nmap with Menory |/ O pass
a string array as the paranmeter.
*/

package com sybase. vn. denvo;
i mport com sybase.vn.javartp. RTP;

public class DEMOAPP

{

public static void main(String[] args)

{ .
int ret;
/!l Declare and initialize the RTP Java d ass.
RTP nyrtp;
try
{

myrtp = new RTP();
catch(Throwabl e t)
{

Systemerr.println("Exception caught: " +

ECRTP

CHAPTER 2 Running ECRTP

Reference Guide

t.get Message());
return;
}
/1 Convert the first argunment as the case number.
I nteger num = I nteger.valueO (args[0]);
switch (numintValue()) {
case 1:
Systemout. println("one");
Systemout.println("args[1] =" + args[1]);
/1 Run an inbound map, pass the command swi tches
as the paraneter.
ret = nyrtp.JI NBOUNDRunCrd(args[1]);

Systemout.printin("ret =" + ret);
br eak;
case 2:
Systemout.println("two");
Systemout.println("args[1] =" + args[1]);

/1 Run an out bound nap, pass the command swi tches
as the paraneter.
ret = nyrtp. JOUTBOUNDRunCnd(args[1]);
Systemout.println("ret =" + ret);
br eak;

case 3:
Systemout.println("three");
/1 Prepare the string array as the JI NRun()
parameter to run 271in map.
String[] strarr_inrun =

/1 Conmmand |ine switches for 271in map.
"d:\\classes\\com\sybase\\vn\\ maps\\ 271i n\\ 271gdt st . t
xt -dg d:\\classes\\com \sybase\\vn\\maps\\271in -dt
d:\\cl asses\\ com \ sybase\\vn\\ maps\\ 271i n -du
d:\\cl asses\\com \sybase\\vn\\ maps\\ 271in -xI -1 -it
-0 -wx 1 -n -w-b -m271IN -nx 2",

/1 Input file nanme to be substituted with
menory buffer.

"d:\\classes\\com \sybase\\vn\\ naps\\
271i n\\ 271gdt st . txt",

/1 1Input data of 271in map.

"1 SA*00* *00* *01*9012345720000
*01*9088877320000
*001030*1030* U00401*000000001*0* T*: '\ n" +

" G5*HB*901234572000*908887732000* 20001030* 1615* 1* X* 004

41

Running ECRTP as a DLL

42

010X092!\ n" +

"ST*271*0001!'\ n" +
"BHT*0022*11*3920394930203*20001030*1615!\ n" +

"HL*1**20* 11\ n" +
" NML* PR* 2* BLUE CROSS BLUE

SHI ELD***** P| *9012345918341!\ n" +
" PER* | C* ARTHUR

JONES* TE* 6145551212* FX* 61455512141\ n" +
"HL*2*1*21* 11\ n" +

" NML* 1P* 1* JOHNSON* BARBARA* * * * S* 2234475827521 \ n" +
"REF*1J*500!\ n" +
"HL*3*2*22* 11\ n" +

" TRN* 2* 12345678900987654321768958473*1311234567* 500! \ n
"+
"NML* | L* 1* DAVI S* SAMF T***M * 2233441\ n" +
" REF*18* 2234534241\ n" +
"N3*PO BOX 123!\ n" +
" N4* Cl NCI NNATI * OH*43017*US! \ n" +
"PER*| C**HP*6147562231* WP*6145221212! \ n" +
"DM3* D8*19720513*F! \ n" +
" NS*Y*18******* XN\ n" +
"DTP*102*D8*001030!\ n" +
"EB* 1* CHD* 1* GP**6* 100. 00****N*NI \ n" +
" HSD* DY* 100* DA* 163395* 6* 100* 1* Al \ n" +
" REF* 18*4654746868565!\ n" +
"DTP*193*D8*001030!\ n" +
"I11*BF*111\n" +
"LS*2120!'\n" +
"NML* 13* 1* SM TH* MUFFY* ***24*111222333!\ n" +
"N3*157 WEST 57TH STREET!\n" +
" N4* COLUMBUS* OH* 43017*US! \ n" +
"PER*| C*MAGG E MCA LLI CUTTY* TE*6145551245! \ n" +
" PRV* AT* 9K* 3920394930203! \ n" +
"LE*2120!'\n" +
"SE*31*0001!\ n" +
"GEF1*1\n" +
"1 EA*1*000000001!\ n",
/1 Qutput file nane.
"d:\\cl asses\\com \ sybase\\vn\\ naps\\
271i n\\ dbo_EL_ENVOY",
/1 An enpty string that indicates the previous
/1 file nane is substituted wi th output nenory
file.

I

ECRTP

CHAPTER 2 Running ECRTP

Reference Guide

/1 Run an inbound map with Menory I/ Q pass a
string array as the paraneter.
ret = nyrtp.JINRun(strarr_inrun);

Systemout.println("ret =" + ret);
Systemout.println("strarr_inrun[4] =" +
strarr_inrun[4]);
br eak;
case 4:

Systemout. println("four");

/1 Prepare the string array as the JOUTRun()
paraneter to run 270out map.

String[] strarr_outrun =

{

/1 Command |ine switches for 270out map.

"d:\\classes\\com \sybase\\vn\\ naps\\ 270out \\ 2700ut . x1
2 270QUT HS -t 270 -xI -dg
d:\\cl asses\\com \ sybase\\vn\\ maps\\ 270out -dt
d:\\cl asses\\com \sybase\\vn\\ maps\\ 270out -du
d:\\cl asses\\com \sybase\\vn\\ maps\\ 270out -xI -1 -it
-0 -wx 1 -nx 2",

/1 Input file name to be substituted with
menory buffer.

"d:\\classes\\com \sybase\\vn\\ naps
\\ 2700ut \ \ dbo_EL_ENVOY",

/1 1 nput data of 270out map.

"0394930203 SAM

DAVI S PO BOX 123
CI NCI NNATI H

43017 19720513 F223344

1 100BLUE CROSS BLUE SHI ELD 9012345918341
JOHNSON 223447582752
AT SM TH
\n",
/1 Qutput file nane.

"d:\\classes\\com\sybase\\vn\\ maps\\ 2700ut \\ 2700ut . x1
2",

/1 An enpty string that indicates the previous file.
/1 name is substituted with output nmermory file.

b
/1 Run an outbound map with Menory 1/ O, pass a
/1 string array as the paraneter.

43

Running ECRTP as a DLL

44

ret = nyrtp.JOUTRun(strarr_outrun);
Systemout.printin("ret =" + ret);
Systemout.println("strarr_outrun[4] =" +

strarr_outrun[4]);
br eak;

defaul t:
Systemout.println("Invalid option!");
br eak;
}
}
}

Below isthe contents of demol.bat, which runs an inbound map and passesthe
command switches as the parameters.

REM denol. batj ava com sybase. vn. deno. DEMOAPP 1

"d:\\classes\\com \sybase\\vn\\ maps\\ 271i n\\ 271gdt st . t
xt -dg

d:\\cl asses\\com \ sybase\\vn\\ maps\\271in -dt

d:\\cl asses\\ com \ sybase\\vn\\ maps\\ 271in -du

d:\\cl asses\\com \sybase\\vn\\ maps\\ 271in -xI -1 -it -
o-w 1-n-w-b-m

271IN -nx 2"

pause

Below is the contents of demo?2.bat, which runs an outbound map and passes
the command switches as the parameters.

REM denp2. batj ava com sybase. vn. deno. DEMOAPP 2

"d:\\cl asses\\com \sybase\\vn\\ maps\\ 270out\\ 2700ut . x1
2 2700UT HS -t 270 -xI -dg

d:\\cl asses\\com \sybase\\vn\\ maps\\ 270out -dt

d:\\cl asses\\com \sybase\\vn\\ maps\\ 270out -du

d:\\cl asses\\com \sybase\\vn\\ maps\\ 270out -xI -1 -it -
0O -wx 1 -nx 2"
pause

Below isthe contents of demo3.bat, which runsan inbound map with Memory
I/0 and passes a string array as a parameter.

REM denop3. batj ava com sybase. vn. deno. DEMOAPP 3pause

Below is the contents of demod4.bat, which runs an outbound map with
Memory 1/0O and passes a string array as a parameter.

REM deno4. bat
java com sybase. vn. denp. DEMOAPP 4
pause

ECRTP

CHAPTER 2 Running ECRTP

Running ECRTP from a Visual Basic script

You can execute ECRTP from aVisua Basic script. For Visual Basic, there are
four API functionsto call an EDI server directly. The commands are:

* INBOUNDRUNCmMd

¢ OUTBOUNDRUNCmMd
« INRUN

« OUTRUN

Use INBOUNDRUNCmMd and OUTBOUNDRUNCMd for inbound and
outbound mapping. Use INRUN and OUTRUN for Memory 1/O inbound and
outbound mapping.

Visual Basic developers can design and build their own forms and module to
call either of those API functions. Here is a code example for amodule and a
form.

Source code for a module

Reference Guide

Note AsaVB developer, you need to built a similar module code to declare
function and user type. It will be very helpful if you know how to call a
function inside adynamic link library. You need to know some concepts about
Microsoft automatic datatypesand how to passastring through VB and C/C++
code to do Memory I/O with Visual Basic.

"call 1 NBOUNDRunCnd() of ow nB2c.dl |
Decl are Function inBound _
Lib "ow nB2c" _
Alias "I NBOUNDRunCmd" _
(ByVal commandline As String) As Integer

Decl are Function out Bound _
Lib "ow nB2c" _
Ali as " OQUTBOUNDRunCmd" _
(ByVal commandline As String) As Integer
"'user defined type to match struct memio in rtp engi ne
Type MEM OSTRUCT
filename As String 'file name for nenmory redirection
paddr As String 'data string to in or out

pbytes As Long 'size of data string in or out

45

Running ECRTP from a Visual Basic script

pbuflen As Long 'set to vbNull String
End Type
‘call vb_OUTRUN () in rtpdll.dll which will call
QUTRun() of ow nB82c.dl |l
Decl are Function vb_OUTRUN _

Lib "vbrtpdl " _

Alias "OUTRun_vb" _

(ByVal commandline As String, ByRef ioStruct_in As
MEM OSTRUCT, ByRef ioStruct_out As MEM OSTRUCT) As
| nt eger
‘call Vvb_INRUN () in rtpdll.dll which will call INRun
() of owrnB2c.dllDeclare Function vb_I NRUN _

Lib "vbrtpdl " _

Alias "I NRun_vb" _

(ByVal comandline As String, ByRef ioStruct_in As
MEM OSTRUCT, ByRef ioStruct_out As MEM OSTRUCT) As
I nt eger

Source code for Visual Basic form

Visual Basic devel opers can design their own formsto call the above alias
functions. Here is an example of code:

Option Explicit
Private Sub ExitBut_Cick()
End

End Sub

Private Sub | NBOUNDRunCndBut _d i ck(
)'call 1 NBOUNDRunCrd () in ownB2c.dll
Dimret As Integer
DminString As String
‘user’s mappi ng comrandl i ne
inString = "c:\maps\ MapTesti ngs\ 850i n\ s- 850. x12 -dt
c:\maps\ MapTesti ngs\ 850i n -dg
c:\ maps\ MapTesti ngs\ 850i n -du
c:\ maps\ MapTesti ngs\ 850in -eo

c:\ maps\ MapTesti ngs\ 850i n\ 850udf .txt -b -z -1 -it -c"
ret = inBound(inString)
MsgBox " The return value is " & ret

End Sub

Private Sub OUTBOUNDRunCrdBut _Cl i ck()
Dimret As Integer
DimoutString As String

46 ECRTP

CHAPTER 2 Running ECRTP

‘user’s mappi ng conmandl i ne

outString = "c:\maps\ MapTest i ngs\ 8500ut\ 8500. x12
850QUT XX -t 850 -dt c:\nmaps\MapTestings\8500ut -dg
c:\ maps\ MapTesti ngs\ 850out -du
c:\ maps\ MapTesti ngs\ 8500ut - ei
c:\ maps\ MapTesti ngs\ 850o0ut\s-850. udf -z -it -I"

ret = outBound(outString)

MsgBox "The return value is " & ret
End Sub

Private Sub OUTRUNBut _dick()
Dimret As Integer 'return value from | NRUN OQUTRUN
DimnmenBuf _in As String 'input buffer
Dim nenBytes_in As Long 'size of input buffer
Dim nmenBufl en_in As Long 'length of input buffer

Di m menBuf _out As String "out put buffer
Di m nenByt es_out As Long "0
Di m nenBufl en_out As Long 'size of buffer

DimnyStruct _in As MEM OSTRUCT 'input nem ostruct
Di mnyStruct _out As MEM OSTRUCT ' out put nem ostruct
Dim map_swi tches As String

"open afile and | oad data i nto i nput buffer (nmenory)
Dmnyfile_in As String "for test purpose
Dimnyfile_out As String "for test purpose
menBuf _in = String(1000, vbNull Char)
‘“input disk file
myfile_in =
"L:\ W NDOMB\ dbase\ t 8500ut \ ver 221\ nor nal . x12"
Open nyfile_in For Input As #1
menBuf _in = I nput (LOF(1), #1)
menBytes_in = Len(nmenBuf _in)
menBufl en_in = 1000
Cl ose #1
nmyStruct_in.filenanme = nyfile_in
nmyStruct _in. paddr = menBuf _in
nmyStruct _in.pbuflen = nenBuflen_in
myStruct _in. pbytes = nenBytes_in

"define output buffer and enough buffer size
‘rtp engine will reallocate nmenory space and it is

illegal in VB
‘out put disk file
myfile_out = "1:\TEST\ 850BP\ DATA\ PO_HEADI . SEQ'

Reference Guide 47

Running ECRTP from a Visual Basic script

menBuf | en_out = 2000 " define 2000 here
menBuf _out = String(2000, vbNull Char) 'clear string
menmBytes_out = 0 ''no appendi ng

myStruct _out.fil ename = nyfile_out
mySt ruct _out . paddr = nenBuf _out

nmySt ruct _out. pbufl en = nmenBufl en_out
nmySt ruct _out. pbytes = nmenBytes_out

'set map switches
map_swi tches = String(255, vbNull Char)
‘user’s mappi ng comrandl i ne
map_swi tches =
"L:\ W NDOWMS\ dbase\t 850i n\ ver 221\ nornal . x12 -dg
L: \ W NDOAB\ dbase\ t 850i n\ ver 221 -dt
L: \ W NDOAB\ dbase\t 850i n\ver221 -n -it -0 -w -1 -b -wx
0 -du L:\ W NDOAR\ dbase\ t 850i n\ ver 221"
"call vb_OQUTRUN() in rtpdll.dll
ret = vb_OUTRUN(map_swi t ches, nyStruct_in,
myStruct _out)
MsgBox "The return value is " & ret

Dimfinal _out As String
' out put
final _out =
"L:\ W NDOWS\ dbase\ t 850i n\ ver 221\ PO_HEADI . SEQ"'
Open final _out For Binary As #2
Put #2, , nyStruct_out. paddr
Cl ose #2
End Sub

Private Sub I NRUNL_Cick()

Dimret As Integer "return val ue from
I NRUN OQUTRUN
Dim menmBuf _in As String "input buffer
DimnmenBytes_in As Long 'size of input buffer
Di m menBufl en_in As Long "l ength of input
buf f er
Di m nenBuf _out As String "out put buffer
Di mnmenBytes_out As Long 'size of data al ready
in buffer
Di mnenBuf | en_out As Long 'size of output buffer

DimnyStruct _in As MEM OSTRUCT 'input struct
DimnyStruct _out As MEM OSTRUCT ' out put struct
Dim map_swi tches As String

Dmnyfile_in As String 'test purpose

48 ECRTP

CHAPTER 2 Running ECRTP

Reference Guide

Dimnyfile_out As String 'test purpose
Dimfinal _out As String 'test purpose

‘open a file and load all data into nenory
menBuf _in = String(1000, vbNull Char)
nyfile_in =

"L:\ W NDOW5\ dbase\ t 850i n\ ver 221\ nor mal . x12"
Open nyfile_in For Input As #1
menBuf _in = I nput (LOF(1), #1)
menBytes_in = Len(nmenBuf _in)
menBufl en_in = 1000
Cl ose #1
nmyStruct_in.filenanme = nyfile_in
nyStruct _in. paddr = menBuf _in
nmyStruct _in. pbuflen = nenBuflen_in
myStruct _in. pbytes = nenBytes_in
"out put buffer nyfile_out =
"1:\ TEST\ 850BP\ DATA\ PO _HEADI . SEQ'
menBuf | en_out = 2000
menBuf _out = String(2000, vbNull Char)
menBytes_out = 0
myStruct_out.fil ename = nyfil e_out
mySt ruct _out. paddr = nenBuf _out
mySt ruct _out . pbufl en = menBufl en_out
nmySt ruct _out. pbytes = menBytes_out

map_swi tches = String(255, vbNull Char)

‘user’s mappi ng comrandl i ne

map_swi tches =

"L:\ W NDOWB\ dbase\ t 850i n\ ver 221\ nor nal . x12 -dg
L: \ W NDOMB\ dbase\ t 850i n\ ver 221 -dt
L: \ W NDONB\ dbase\ t 850i n\ ver 221 -du
L: \ W NDOMB\ dbase\ t 850i n\ver221 -n -it -0 -w-Il -b -wx
0"

‘call vb_OUTRUN() in rtpdll.dll
ret = vb_I NRUN(nmap_swi tches, nmyStruct _in,
nmySt ruct _out)
MsgBox "The return value is " & ret

final _out =
"L:\ W NDOMB\ dbase\ t 850i n\ ver 221\ PO_HEADI . SEQ"'
Open final _out For Binary As #2
Put #2, , nmyStruct_out. paddr
Cl ose #2
End Sub

49

Running ECRTP from a Visual Basic script

50 ECRTP

CHAPTER 3

Reference Guide

User Exit Routines

Topic

| Page

About user exit routines

|52

51

About user exit routines

About user exit routines

52

User exit routines allow a user to invoke a proprietary routine from within a
map, providing away for a user to perform additional functions called by
mapping rules. The user exit routine behaves like a call-back mechanism in
event-driven programs. Thefollowing filesare provided to help the user create
user exit routines.

o userex32.dll

e userexit.cpp

» fenvepp

o userex32lib
o userex32.def

The USEREX32.DLL file provided with the program contains one User Exit
Function FCNV. The FCNV function will read afile that has lines terminated
by CRLF or LF and write them out to another file with fixed line length
specified by the cpRegBuf input parameter. To call the FCNV function, the
User Exit CpuExitName must be equal to “FCNV”, and the cpRegB uf
parameter should contain the new linelength, the old file name and the new file
name. These values should be separated by one space in the cpRegBuf input
parameter. If the parameter CpuExitName does not equal “FCNV” then the
supplied program will simply ring a bell and return.

To havethe USEREX32.DLL file perform other functions, the user must write
his or her own “user exit” routine and insert the code in the appropriate place
inthe USEREXIT.C file, which is supplied with ECRTP. The user then
compiles the modified USEREXIT.C fileto create a new USEREX32.DLL.

The USEREX32.LIB fileallowsthe user toimplicitly link tothe DLL fromaC
program. The DEF file provides information. The C program is recompiled to
create the DLL file after the user’s code has been inserted.

The USEREX32.DEF fileis furnished for informational purposes only.

The annotated example provided with the installation is shown below. This
examplerepresentsavery simpleroutine, which the user isexpected to modify.
The user’s code should be inserted where the code says “ring bell — user will
add code here”.

* UserExit - Wndows DLL and Unix shared library.
* This file and userdl|l.c and userexit.def are used for
* userexit.DLL.

ECRTP

CHAPTER 3 User Exit Routines

Reference Guide

This file alone is used for UNI X shared library
userexit. sl
USEREXI T functi on.
Par anet er s:
char cpuExi t Nane - pointer to dynamically allocated
storage whi ch contains the routine nane.
Thi s pointer should not be witten to.
Thi s val ue can be used to determnm ne what
action shoul d be done by USEREXI T() function.
short sLanguage - will contain a 1 for Cobol or a 2
for 'C | anguage.
char *cpRegBuf - pointer to input buffer which
has been | oaded with the value of a Menvar,
Record Field or Record Buffer.
For 16 bit programthe nmaxi numrecord buffer
I ength is 3200 characters. For 32 bit program
the maxi mumrecord buffer length is 10000
characters.
char cpRetBuf - pointer to output buffer, where the
routi ne output of Menmvar, Record Field or
Record Buffer should be placed.

Not e cpRegBuf and cpRet Buf have been set to
point to the same large buffer. Enpty input
cpRegBuf before witing to output cpRetBuf.

char *cpStatus - pointer to dynamically allocated
st orage whi ch has been space filled and null
termnated to actual length of nenmvar of
status nmenmvar. The user exit routine should
be careful not to store nore information
inthe field than it can hold.

parameter returns: cpRetbuf, and cpStatus.
return val ue: none

L I S T T T I R R . T R R S S S T R R I S N N S S R S D R

i fndef NO_PROTO

void fcnv(char *, char *);
#el se

void fcnv();
endif

#i f ndef
UNI Xextern "C' __ decl spec (dlIexport)

53

About user exit routines

54

voi d
W NAPI
USEREXI T(char *cpUExit Name, short slLanguage, char
*cpRegBuf ,
char *cpRetBuf, char *cpStatus)
#el se
#i f defined(__cpl uspl us)
extern "C'
#endi f
voi d
i fndef NO_PROT
QUSEREXI T(char *cpUExit Nane, short slLanguage, char
*cpRegBuf,
char *cpRetBuf, char *cpStatus)
el se
USEREXI T(cpUEXi t Nane, slLanguage, cpRegBuf, cpRet Buf,
cpSt at us)
char *cpUExi t Nane;
short slLanguage;
char *cpRegBuf, *cpRetBuf, *cpStatus;

endif
#endi f
{
i f(stricnmp(cpUExitName, "FCNV') == 0)
{
fcnv(cpRegBuf, cpStatus);
}
el se

{

#i f ndef UNI X
MessageBeep(-1); /* ring bell - user will add

code here */
#el se

wite(O0,"\007", 1); [* ring bell - user will add
code here */
#endi f

}
}
/*********** Flle (anEI’SI On Program******************
** UNWRAP. CPP - 11/11/98 **

** TH S PROGRAM CONVERTS A SOURCE FI LE OF VARI OQUS LENGTH
* %

** RECORDS | NTO THE USER S DESI RED SI ZE RECORDS. **

** PARAMETER 1 - USER S DESI RED RECORDS Sl ZE. *x

** PARAMETER 2 - SCURCE FI LE NAME *x

ECRTP

CHAPTER 3 User Exit Routines

Reference Guide

** PARAMETER 3 - DESTI NATI ON FI LE NAME (CREATED BY
PROGRAM) **

K K L o o o e =
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/stat.h>

#i ncl ude <ctype. h>

#i nclude <fcntl. h>

#i ncl ude <errno. h>

#incl ude <string. h>

#i ncl ude <io. h>

#i ncl ude <process. h>

#i ncl ude <wi ndows. h>

#i ncl ude <wi nbase. h>

#i ncl ude <tine.h>

#i ncl ude <stddef. h>

#i ncl ude <menory. h>

/* Err CondTYP */

#defi ne NoErr COND 1 /* normal conpletion, no
errors detected */

#def i ne OpenEr r COND 7 |* attenpt opening an al ready
open file, */

#define Fil eM ssi ngCOND 10 /* operating systemcan't

find file */
#defi ne O her COND 11 /* other unspecified error
condi tions */

#i f ndef NO_PROTO

| astchr(char *strng, int len);
#el se

| astchr();

#endi f

#i f ndef NO_PROTO

void fcnv(char *xcmdline, char *cpStatus);
#el se

void fcnv();

#endi f

#define | MAX_BUF 1024

#i f ndef NO_PROTO

void fcnv(char *xcmdline, char *cpStatus)
#el se

voi d fcnv(xcendline, cpStatus)

char *xcndline, *cpStatus

; #endi f

{

55

About user exit routines

56

char *argvp[3];

unsi gned char rdBfr[(I MAX_ BUF + 2)];

char argl[302], arg2?2[302], arg3[302], buf[302];
long rsize, lcnt, jcnt;

FILE *srcfp, *dstfp

int at_eof, ich, k =0, len, j, indx = -1;
argvp[0] = argl;
argvp[1] = arg2
argvp[2] = arg3

menset (argl, 302, '\0');
nmenset (arg2, 302, '\0');
nmenset (arg3, 302, '\0');

len = lastchr(xcmdline, (int)strlen(xcndline));
if(len == 0)
{
sprintf(cpStatus, "%d", O her COND);
return;
}
while(k < len & indx < 2)
while (xcmdline[k] ==" && k < len)
k += 1;
i =0
if(k < len)
{
indx += 1;
/* Group single-quoted paraneter as one argvp[]
entry. */
if (xcmdline[k] == "\"")
{
k += 1; /* skip first ' */
while (xcnmdline[k] !'="\"" &% j < 300 && k
< len) buf[j++] = xcndline[k++];
k += 1; /* skip last ' */
}
/* Group doubl e-quoted paraneter as one argvp[]
entry. */
else if (xcmdline[k] =="\"")
{
k += 1; /* skip first " */
while (xcrmdline[k] !'="\"" && j < 300 && k

< len)

buf[j ++] = xcndline[k++];
k += 1; /* skip last " */

ECRTP

CHAPTER 3 User Exit Routines

Reference Guide

}
/* Normal argvp[] entry processing. */
else while (xcndline[k] '="'" "' & j < 300 && k
< len)
buf [j ++] = xcndl i ne[k++];
}
buf[j] = "\0";
strcpy(argvp[indx], buf);
}
}
/** ______________________________ * %
** Verify input paraneter count **
KK o L o o e o o e e e e e e e e = - **/
if(indx !'= 2)
{
#i f def UNI X

printf("\nTHE FCNV User Exit REQUI RES THREE
PARAVETERS: \ n") ;

printf("PARAMETER 1 = NEW RECORD S| ZE\n");

printf (" PARAMVETER 2 = SOURCE FILE NAME\n");

printf (" PARAVETER 3 = DESTI NATI ON FILE NAME\n");

#endi f
sprintf(cpStatus, "% d", O herCOND);
return;
} // END IF on nunber of paraneters
/** __ * %
** Convert the new record size to integer **
K K L o o e o e e e e e e e e e e e e e e e e = - **/
rsize = atol (argl);
/** _______________________ * %
** (Open source file nane **
KK L o o e e e e e e e e e e e m i m = - **/
if ((srcfp = fopen(arg2, "rb")) == (FILE *) NULL)
{
#i fdef UNIX

printf("ERROR OPENING FILE % - Program
Term nated\n", argv[2]);

#endi f
sprintf(cpStatus, "%d", FileM ssingCOND);
return;
}
/** _________________________ * %
** Create destination file **
KK o o o e o e e e e e e e e m e m = **/

57

About user exit routines

if((dstfp = fopen(arg3, "wbh")) == (FILE *) NULL)
{
#i f def UNI X
printf("ERROR CREATI NG DESTI NATION FI LE % -
Program Terni nated\n", arg3);
#endi f
sprintf(cpStatus, "%d", O herCOND);
return;
}
at _eof = 0;
/* lcnt is index into rdBfr */
/* jcnt is index up to size of wap and inserted CR
LF */
jent = lent = OL;
menset (rdBfr, 0, (| MAX_BUF + 2));

whil e(at _eof == 0)

KK o o o o e e e e e e e e e mm == **/
if((ich = fgetc(srcfp)) == EOF && feof (srcfp))
{
at _eof = 1;
conti nue;
if(ich == 10 || ich == 13)
{
conti nue;
rdBfr[lcnt++] = ich;
jent += 1;
if(jecnt >= rsize)
{
#i f ndef UNI X
rdBfr[lcnt++] = 13;
#endi f
rdBfr[lcnt++] = 10;
jent = 0;
}
if(lcnt >= 1 MAX_BUF)
{
if((fwite(rdBfr, (size_t) lcnt, (size_t) 1,
dstfp)) !'= 1)

{

58 ECRTP

CHAPTER 3 User Exit Routines

fclose(srcfp);

fclose(dstfp);

unlink(arg3);

sprintf(cpStatus, "% d", O herCOND);
return;

lent = 0;
}

}
if(jent '=0) /* Need to pad out line */

while(jcnt < rsize)

{
rdBfr[lcnt++] = "\0'";
j cnt ++;
if(lcnt >= 1 MAX_BUF)
{

if((fwite(rdBfr, (size_t) lcnt, (size_t)
1, dstfp)) !'=1)
{

fcl ose(srcfp);

fcl ose(dstfp);

unl i nk(arg3);

sprintf(cpStatus, "%d", O herCOND);
return;

}
lent = 0;

}

#i f ndef UNI X
rdBfr[lcnt++] = 13;
#endi f
rdBfr[lcnt++] = 10;

}
if(lecnt > 0)

if((fwite(rdBfr, (size_t) lcnt, (size_t) 1,
dstfp)) !'=1)

{
fclose(srcfp);
fclose(dstfp);
unlink(arg3);
sprintf(cpStatus, "%d"
return;

, Ot her COND) ;

Reference Guide 59

About user exit routines

60

}

fclose(srcfp);
fclose(dstfp);
sprintf(cpStatus, "%d",
return;

}
/* END main */

int

#i f ndef NO_PROTO

| astchr(char *strng, int
#el se

| ast chr(strng,
char *strng;
int |en;
#endi f

{

| en)

| en)

int i;
char *ptr;

if(len)
{
i =len -1;
for(ptr = strng+i; ptr >= strng;

{

}
i = (int) (ptr - strng + 1);
return(i);

if(*ptr ="

}

el se
return(0);

NoEr r COND) ;

ptr--)

&& *ptr 1= "'"\0") break;

ECRTP

CHAPTER 4

Reference Guide

Using ECRTP as an Adapter

Topic

| Page

Using ECRTP as an adapter

Information included in using ECRTP is:
« Configuration file for the Acquire Mode
« Configuration file for the Deliver Mode

« Configuration file for the Process Mode

|62

61

Using ECRTP as an adapter

Using ECRTP as an adapter

ECRTP can be used as a plug-in adapter (called EDladapter) with these core
integration products:

* eBiz2000
* eBizIntegrator
* MQSeries Integrator

To use ECRTP as an adapter, you must perform the following additional
actionsthat are not required when ECRTP is used as a stand-al one product.

* Install ARE (Adapter Runtime Environment) from the New Era of
Networks EDI Products CD onto the same server that has ECRTP. Seethe
ECRTP Installation Guide for instructions on how to install the ARE.

» Export a schemato the core integration product. The schema can be
created in ECMap and exported to the other product’s schema repository,
or theformat of aschemathat already existsin the other product’s schema
repository can be manually entered in ECMap. The finished schematells
theintegration product which adapter to run (in this case, the EDladapter),
provides specific queue-related information, and supplies information
required by the EDladapter. (Refer to the ECMap Reference Guide for a
detailed explanation of the utility that creates and exports a schema.)

» Createaconfiguration file. In ECMap, click on the Create Adapter
Configuration File button in the Run Inbound Map, Run Outbound Map,
or Run Any-to-Any Map Option 2 screens. When this button is clicked,
ECMap creates apartial configuration file, which must then be modified
based on avariety of factors. The configuration file will either bein
Acquire, Deliver, or Process Mode. Thetype of configuration file depends
on the map that is run. After the button is clicked, use Windows Explorer
to locate the configuration file, open the file, and modify it.

Example configuration files for the Acquire Mode, the Deliver Mode, and the
Process Mode are shown below. Note that the keys and valuesin the
configuration files are case sensitive. For complete details of how to use the
EDladapter, see the Adapter Runtime Environment User Guide.

62 ECRTP

CHAPTER 4 Using ECRTP as an Adapter

Configuration file for the Acquire Mode

Reference Guide

After you click on Run Map, removeall of the“#’ comment symbol in column
one for every line except the two sentences below (“# The following isa
sample configuration file.” and “# You must modify the settings to work for
your instance.”). After you remove the comment symbols, modify thelinesthat
have instructions listed bel ow.

Adapt er
cl ash. avoi d=TRUE
conti nue. format. exi st s=TRUE
adapt er =EDI Adapt er
nmode=ACQUI RE
dat a=NDO

The following is a sanple configuration file.
You nust nodify the settings to work for your
instance.
#maxi num numretri es=2
#transport. out. nanme=0UTQ
#f ai | ur equeue. nane=FAl L
#out put . serializer.factory=XM.Seri alizer_Factory
#out put.serializer.library=adk33xm sd
#out put. serializer.factory=NCFSerializer_Factory
#out put. serializer.library=adk33ncfsd
#pref i x=<prefix> # obtain prefix name fromthe
configuration file generated
from Export Schema to MXI, e-Biz
Integrator, or e-Biz 2000.
#nsg. type=<prefi x>.1C. <schema nane> # btain the
prefix nane fromthe file
configuration file generated from
Export Schema to MXI, e-Biz
Integrator, or e-Biz 2000.)

#t ransport . cont ext . name=ADKCont ext

#0OTCont ext . ADKCont ext
#NNOT_CTX_DEFAULT_TI L_I D=FAI L
#NNOT_CTX_TM D=MXSer i esTM
#NNOT_CTX_ENFORCE_TX=TRUE

#Tr ansact i onManager . MXSeri esTM
#NNOT_SHARED LI BRARY=0t i 21ngst m
#NNOT_FACTORY_FUNCTI ON=NNOTMXSer i esTXManager Fact ory

#NN_TM MQS_QVGR=TEST _QVMGR # Obtain the Queue

Manager name from MXeri es

63

Using ECRTP as an adapter

64

#Sessi on. ADKSessi on
#NNOT_SHARED LI BRARY=dbt 21ngs
#NNOT_FACTORY_FUNCTI ON=NNMQSSessi onFact ory

#NNMQS_SES OPEN_QVGR=TEST_QMGR # Enter the Queue
Manager nane from

MXeri es.

#TRANSPORT. QUTQ
#NNOT_SHARED _L| BRARY=dbt 21nqgs
#NNOT_FACTORY_FUNCTI ON=NNMQSQueueFact ory
#NNOT_TI L_OPEN_SESSI ON_| D=ADKSessi on

#NNOT_TI L_OPEN TSI =TEST_QUT # Enter the | ocal
queue to whi ch the nessage

is being put in
MXeri es.

#Transport. FAI L
#NNOT_SHARED _L| BRARY=dbt 21nqgs
#NNOT_FACTORY_FUNCTI ON=ENNMQSQueueFact ory
#NNOT_TI L_OPEN_SESSI ON_| D=ADKSessi on

#NNOT_TI L_OPEN TSI =TEST_FAIL # Enter the | ocal
queue that serves as
the failure queue in

MXeri es.

#Sessi on. Fi | eSessi on
#NNOT_SHARED LI BRARY=nnfil e
#NNOT_FACTORY_FUNCTI ON=NNSesFi | eFact ory
#NN_SES _MSG_SI ZE=1000
#NN_SES SERVER=bsmi t hl

EDI Adapter # The lines below are unique to
each map generated by the Run

Map screen.

rtp. mpsw t ches="C:\ Program

Fi | es\ nnsy\ ECMap\ maps\ NDO2\ EDI _TO NDQO\ t r ai ni ng. x12"

-xI -dg "C: \Program

Fi | es\ nnsy\ ECVap\ maps\ NDQO2\ EDI _TO NDO' -dt "C:\ Program

Fi | es\ nnsy\ ECVap\ maps\ NDO2\ EDI _TO NDO' -n -it
-mEDI _TO NDO -b -du "C:\Program
Fi | es\ nnsy\ ECMap\ maps\ NDQ2\ EDI _TO NDO' -wx 1

rtp.acquire_dir=l

In some cases, an additional line must be added to the AcquireNDO
configuration file;

-0 -1

ECRTP

CHAPTER 4 Using ECRTP as an Adapter

rtp.acquire_dir="1" (or "0")

When the EDIladapter is used to read XML data, a change must be made to the
configuration file. ECRTP uses outbound processingto read XML data, and the
EDladapter uses the Deliver Mode for outbound processing. However, when
EDI dataisbeing converted to an NDO datatree, the EDladapter normally uses
the Acquire Mode. In order for the EDIadapter to read and process the XML
input data, aline (that was added only for the EDIadapter Acquire Mode) must
be changed. The line rtp.acquire_dir="1" must be changed to
rtp.acquire_dir="0".

Configuration file for the Deliver Mode

Reference Guide

Deliver Modeis used to get information from the transport and deliver it to the
application. Outbound maps use the Deliver Mode. In Deliver NDO Mode, the
adapter receives adeserialized data tree. After you click on Run Map, remove
al of the“#” comment symbol in column one for every line except the two
sentences below (“# Thefollowing isa sample configuration file.” and “# You
must modify the settings to work for your instance.”). After you remove the
comment symbols, modify the lines that have instructions listed bel ow.

Adapt er
cl ash. avoi d=TRUE
conti nue. for mat . exi st s=TRUE
adapt er =EDI Adapt er
node=DELI| VER
dat a=NDO

The following is a sanple configuration file.
You nust nodify the settings to work for your
instance.

#t ransport.in. nane=l NQ
#transport.failure_store_name=FAl L
#maxi mum transport.retri es=2
#transport.exit_if_enpty=true
#input . serializer.factory=NCFSeri alizer_Factory
#i nput.serializer.!library=adk33ncfsd
#input.serializer.factory=XM.Seri al i zer _Factory
#i nput.serializer.!library=adk33xmn sd
#prefix=<prefix> > # Cbtain the prefix name from
the configuration file
generated from Export Schema
to MBI, e-Biz Integrator,
or e-Biz 2000.

65

Using ECRTP as an adapter

#nsg. type=<prefi x>.1C. <schena nane> # Obtain the
prefix nane fromthe
configuration file generated
from Export Schema to MXI,
e-Biz Integrator, or e-Biz
2000.

#transport. cont ext . name=ADKCont ext

#OTCont ext . ADKCont ext
#NNOT_CTX_DEFAULT_TI L_I D=FAI L
#NNOT_CTX_TM D=MXer i esTM
#NNOT_CTX_ENFORCE_TX=TRUE

#Tr ansact i onManager . MSeri esTM
#NNOT_SHARED LI BRARY=0t i 21nmgst m
#NNOT_FACTORY_FUNCTI ON=NNOTMXSer i esTXManager Fact ory
#NN_TM_ M _QVGR=TEST_QVGR # (bt ai n t he Queue Manager
nane from
MXeri es. #Sessi on. ADKSessi on
#NNOT_SHARED LI BRARY=dbt 21ngs
#NNOT_FACTORY_FUNCTI ON=NNMQSSessi onFact ory
#NNMQS_SES OPEN_QVGR=TEST_QVGR #Enter the Queue
Manager nane from
MXPeri es. #TRANSPORT. | NQ
#NNOT_SHARED LI BRARY=dbt 21nqs
#NNOT_FACTORY_FUNCTI ON=ENNMQSQueueFact ory
#NNOT_TI L_OPEN_SESSI ON_| D=ADKSessi on
#NNOT_TI L_OPEN_TSI =TEST_OUT # Enter the | ocal queue
to which the nessage
is being put in
MXeri es.

#Transport. FAI L
#NNOT_SHARED LI BRARY=dbt 21nmgs
#NNOT_FACTORY_FUNCTI ON=NNMQSQueueFact ory
#NNOT_TI L_OPEN_SESSI ON_| D=ADKSessi on
#NNOT_TI L_OPEN_TSI =TEST_FAI L # Enter the |ocal
queue that serves as
the failure queue in
MXeri es. EDI Adapt er
The | i nes bel ow are uni que to each nmap
generated by the Run Map screen.

rtp. mapswi t ches=NDO _TO EDI . x12 NDO_TO EDI PO -t 850

-dg "C \ProgramFi | es\ nnsy\ ECVap\ naps\ NDO2\ NDO_TO EDI "
-dt "C \ProgramFil es\ nnsy\ ECVap\ naps\ NDO2\ NDO _TO EDI "

66 ECRTP

CHAPTER 4

Using ECRTP as an Adapter

-n -it -0 -1 -wx 1

rtp.acquire_dir=0

Configuration file for the Process Mode

In addition to converting data to and from an EDI format, the EDIladapter can
also be used with an NDO datatree as both input and output. The EDIAdapter
normally usesthe Deliver Mode when NDO istheinput. ProcessModeisused
to get data from atransport, enrich the data or submit aregquest and get a
response, and put the data to another transport. Process Mode is most
appropriate when interfacing with applications that operate in a synchronous
manner such as a CORBA call, an RFC request reply, or a database SELECT.

The Process Modefile already has comments removed. Copy thefile below to
aconfiguration file and then modify the lines that have instructions listed

Reference Guide

below.
Adapt er
adapt er =EDI Adapt er
node=PROCESS
dat a=NDO

prefix=<prefix> # Obtain the prefix name fromthe
Schema configuration
file generated fromExport Schenma
to MXI, e-Bizlntegrator,
or e-Biz 2000.
nsg. type=<prefix>.1C. <schema nane> > # Obtain the
prefix nane fromthe
configuration generated from
Export Schema to MXI, e-Biz
Integrator, or e-Biz 2000.
maxi mum numretri es=2
transport. cont ext. name=ADKCont ext
transport. out. name=0UJT
fail urequeue. nane=FAI L
transport.in.nane=I N
transport. out. nane=0UT
transport.failure_store_nane=FAl L
maxi mum transport.retri es=2
transport.exit_if_enpty=true
acknowl edge. put =true

#NCF Serializer

Input. Serializer.Factory=NCFSerializer_Factory

67

Using ECRTP as an adapter

68

I nput. Seri alizer. Li brary=adk33ncf sd
Qut put. Seri al i zer. Factory=NCFSeri al i zer _Factory
Cut put . Seri al i zer. Li brary=adk33ncf sd

#XM. Seri ali zer
#l nput. Serializer. Factory=XM.Seri al i zer _Factory
#l nput. Serial i zer. Li brary=adk33xmnl sd
#Qut put . Seri al i zer. Factory=XM.Seri al i zer _Factory
#Qut put . Seri al i zer. Li brary=adk33xm sd

OTCont ext . ADKCont ext
NNOT_CTX_DEFAULT _TIL_ID = FAIL
NNOT_CTX TM D = MXEeriesTM
NNOT_CTX_ENFORCE_TX = TRUE

Transact i onManager. MBeri esTM
NNOT_SHARED LI BRARY = oti21lmgstm
NNOT_FACTORY_FUNCTI ON =
NNOTMXSer i esTXManager Fact ory
NN_TM MS_QVGR = TEST_MQL # obtain the Queue
Manager nane from
MXeri es.

Sessi on. ADKSessi on
NNOT_SHARED LI BRARY = dbt 21ngs
NNOT_FACTORY_FUNCTI ON = NNMXSSessi onFact ory
NNMQS_SES OPEN_QVGR = TEST_MQJL # Enter the Queue
Manager nane from
MXeries. Transport.IN

NNOT_SHARED _L| BRARY = dbt 21ngs
NNOT_FACTORY_FUNCTI ON = NNMQXSQueueFact ory
NNOT_TIL_OPEN SESSION ID = ADKSessi on

NNOT_TI L_OPEN_TSI = TESTQ # Enter the |ocal
queue where
the message(s)
originally reside
on the queue.

Transport. OUT

NNOT_SHARED _L| BRARY = dbt 21ngs
NNOT_FACTORY_FUNCTI ON = NNMQXBSQueueFact ory
NNOT_TI L_OPEN_SESSI ON_I D ADKSessi on

NNOT_TI L_OPEN_TSI ouTQ # Enter the
|l ocal queue where
the nessage(s) is

bei ng noved.

ECRTP

CHAPTER 4 Using ECRTP as an Adapter

Transport. FAI L

NNOT_SHARED _L| BRARY = dbt 21ngs
NNOT_FACTORY_FUNCTI ON = NNMXQueueFact ory
NNOT_TI L_OPEN_SESSION_ID = ADKSessi on

NNOT_TI L_OPEN_TSI = FAILQ # Enter the

| ocal queue that
serves as the
failure queue in

MXeri es.

EDI Adapt er # The lines bel ow are uni que
to each map and nust
be carefully edited.

rtp. mpSw t ches="C: \ Program Fi | es\ Nnsy\ ECMap\ Maps\
NDC2\ t enp. x12" NDO_TO NDO PO -t ANY -dg "C:\Program
Fi | es\ Nnsy\ ECMap\ Maps\ NDO2\ NDO_TO NDO' -dt " C:\ Program
Fi | es\ Nnsy\ ECMap\ Maps\ NDO2\ NDO_ TO NDO' -nt -ne -c -| -
wx 0

rtp.acquire_dir=0

After the EDladapter configuration file has been created and edited, you can
click on Run Map. ECMap will call the NNSYadapter 33.exe with the command
line parameter: "-fil e=<configuration file>".

Reference Guide 69

Using ECRTP as an adapter

70 ECRTP

CHAPTER 5

Reference Guide

Using ECRTP in a Web
Environment

Topic

| Page

Using ECRTP in a Web environment

|72

71

Using ECRTP in a Web environment

Using ECRTP in a Web environment

ECRTP can be used to map datato and from HTML or XML data. Therearea
number of featuresin ECMap (the map devel opment program) that support the
use of ECRTP in a Web environment.

On the Web Script tab of the Run Inbound Map and Run Outbound Map,
ECMap hasa tility that creates an ASP (Active Server Page) that containsthe
runtime script or a CGl (Common Gateway Interface) that contains the script.
You have the choice of creating uncompiled C code or compiled executable
code. If you create uncompiled code, you can make changesto it. The map
switchesarein the codeitself, and you must compileit before you useit. If you
create compiled code, you cannot make changesto the code. The map switches
are in a separate file outside the code.

72 ECRTP

CHAPTER 6

Reference Guide

ECRTP Performance

Topic Page
Factors affecting performance 74
Inbound-only optional parameters 78

73

Factors affecting performance

Factors affecting performance

Map caching

74

A variety of factors can influence ECRTP's speed and performance, including
the design of the maps being run, the database technology being used, and the
use of optional product features designed to enhance performance.

Map design is the responsibility of the individual mappers. Maps can impact
runtime performance because they reflect complicated business logic that is
required, but sometimes maps have not been written in the most efficient
manner or have not taken advantage of performance-enhancing features. Two
important performance-enhancing features are:

* Map caching
* Memory I/O

Map caching is designed to improve the interactive character of ECRTP by
eliminating the processing time associated with opening and closing maps. The
user is able to specify that maps will be cached in memory and to specify the
maximum number of maps that will be cached. The user isalso able to oad
specific maps into memory before running the ECRTP.

Theuser is ableto specify that amap will stay open, using the—-mx <maximum
number of cached maps> switch. A separate switch isrequired for each map
that will remain open. This functionality is available through both the ECRTP
.dll and the ECRTP executable. For the ECRTP executable, maps will stay
open only until the executableisfinished. For the ECRTP .dll, the maps will
stay open until the user explicitly closes them. The open maps are maintained
in astructure in memory, with the mapname asthe index key. An APl allowsa
pointer (to the array of maps stored in memory) to be passed back to thecalling
program.

The user specifies the maximum number of maps that will remain open. If no
maximum is specified, the default is 0 maps. As aresult, if the user does not
explicitly set a maximum number of maps, the ECRTP will not cache mapsin
memory. If the maximum number of mapsisreached and the user specifiesthat
anew map is to remain open, the program uses an algorithm to determine the
least frequently used map of the maps that are currently open and replace that
map with the new map. Thereis no upper limit to the maximum number of
maps except that imposed by memory.

* FREEALLMARP() closesall open maps. (-xf switch)

ECRTP

CHAPTER 6 ECRTP Performance

Reference Guide

e FREEMAPNAME(char*) closes a specific map. There is no switch
because you cannot close a specific map from the command line.

The user passesin the map name, and the function returnsa“-1" if themap is
not foundand a“1” if the mapisfound and removed. Thisfunctionality isnot
applicablefor the ECRTP executable because it automatically freesall mapsin
memory when it is finished, and consequently, ignores any -xf switch.

The user may use UTILCONTMARP and UTILMAPNAME to decide which
map to free from memory with the FREEMAPNAME() API.

extern "C' DLLEXPORT int WNAPI UTI LCOUNTMAP(Ii nt
*mapMaxLoad,

i nt *maplLoaded); extern "C' DLLEXPORT int W NAPI
UTI LMAPNAME(i nt mapPosi tion, char

*mapNane, i nt mapNanmeBuf Si ze) ;

There are two return parameters for UTILCOUNTMARP. The first return
parameter isint *mapMaxL oad. Thisisthe maximum number of mapsthat can
be loaded into memory. Thisvalueis set by theinitial -mx N parameter on the
command line API (for example, OUTBOUNDRUNCmMd, OUTRun,
INBOUNDRUNCMd, or INRun). The second return parameter isint

*mapL oaded. Thisisthe number of maps that have actually been loaded into
memory.

The API function returns zero (success) as long asthe original -mx N switchis
used to allow multiple map processing. The API function returns -1 if thereis
no -mx switch or there was a-mx 0 switch.

There are two input parameters for UTILMAPNAME. The first input
parameter is int mapPosition. The valid values are 0 to maximum number of
maps. The first map is loaded at index zero and the second map is loaded at
index position 1, and so forth. The second input parameter isint
mapNameBufSize. Thisinput parameter provides the maximum length of the
parameter String mapName.

The output parameter for UTILMAPNAME is char * mapName which
specifies the name of the map |oaded at mapPosition index.

UTLIMAPNAME returns azero (success) and the name of the map at position
mapPosition in the mapName return parameter. If no map was loaded at
position, mapPosition or the map name size was greater than
mapNameBufSize then a-1 for failure is returned.

75

Factors affecting performance

Memory /O

76

Using the LOADMAP API, the user is ableto load map(s) into memory before
the ECRTP isrun. The user passesin the map directory, map name, and map
direction, as well as the maximum number of maps that can be cached at one
time. (The maximum number passed to this DLL must be the same maximum
number that is specified in the -mx <maximum number of maps> switch onthe
ECRTP command line.

The arguments for the LOADMAP API are shown below:

LOADMAP(LPSTR di r_path, LPSTR nanme, int map_dir, int
Mul Maps)

dir_path -- directory where map file store in disk.
such as "c:\\tenp\\850l N'

name -- nane of map file without extension file nane
such as "T8501 N' not "T850!1 N. VAP"

map_dir -- 0 nmeans | NBOUND,
1 means OUTBOUND

Mul Maps-- how many maps are allowed to save in nenory.
I't should have same value as -nx sw tch when
the run ECRTP

The LOADMAP API returns one of the following four error/success codes:
* 0-—success

» -1-input directory or map hame does not exist

e -2—number of mapsis memory cannot be<0

 -3-only MAP_IN and MAP_OUT are legal input for map_dir

Neither -xf nor -mx is case-sensitive.

Memory 1/0 isdesigned to speed up performance by allowing the user to read
or write from memory rather than the physical disk. The user can read from
stdin or a specified memory address, or write to stdout or atemporary memory
address.

ECRTP

CHAPTER 6 ECRTP Performance

To read from stdin instead of from disk, the user can enter information on
the Standard I nput pane on the I/O Redirect tab of the Run Outbound Map
screen. If the data being read is application data, the user can enter this
information using the —mi switch/parameter at runtime. If the data being
read is EDI data, the user can enter thisinformation using the —xmi
switch/parameter at runtime.

To write to stdout instead of to disk, the user can enter information on the
Standard Output pane on the /O Redirect tab of the Run Inbound Map
screen. If the data being written is application data, the user can enter this
information using the —mo switch/parameter at runtime. If the data being
written is EDI data, the user can enter thisinformation using the -xmo
switch/parameter at runtime.

Toread from or writeto atemporary internal memory address, the user can
enter information on the Internal Memory pane on the 1/0 Redirect tab of
the Run Inbound Map or Run Outbound Map screen. The user can also
enter this information using the —-mm switch/parameter at runtime.

Thereis an additional memory 1/O option, which allows the user to read or
write from a specific memory address, but this option is available only when
ECRTPisinvoked fromaDLL.

To read application data from or write application data to a specific
memory address, the user must use the -mp parameter at runtime; this
information cannot be entered in ECMap. The format of the—mp switchis
-mp <full-path file name> <pointer to memory address> <pointer to # of
bytes> <pointer to size of buffer>.

To read EDIdatafrom or write EDI data to a specific memory address, the
user must use the —xmp parameter at runtime; this information cannot be
entered in ECMap. The format of the —xmp switch is -xmp <pointer to
memory address> <pointer to # of bytes> <pointer to size of buffer>.

Database technology

Maps that use ODBC databases for either trading partner information or
logging will take longer to execute than maps that use non-ODBC databases.

Reference Guide

The performance of maps that use ODBC databases for trading partner
information improveswhen dBase is used as the ODBC database. ECMap has
autility that allows ECRTP to run against their trading partner information in
dBase. Refer to the Run Map chapter of the ECMap Reference Guide for more
information about using this feature.

77

Windows runtime parameters/switches

Windows runtime parameters/switches

Thefollowing tables contain alisting of al the Windows parameters/switches
that can be used with the runtime program (ECRT P)—both when it is run from
ascript and when it isinvoked with afunction call. For each parameter/switch,
there isabrief description, an indication of whether the parameter/switch is
used for inbound or outbound messages, and an indication of whether it is
required or optional. Thefirst table contains parameters/ switchesthat are used
with both non-ODBC and ODBC trading partner files, while the second table
contains parameters that are used only when the trading partner information is
in an ODBC database. Each parameter is described in greater detail following

the table.

Table 6-1: Parameters/switches for trading partner files

Parameter

Description

Inbound/outbound

Required/optional

-a

Updates the ISA Out control count field
only inthe ALL TradePartner record
when theinterchange envel opes are built.

Outbound

Optional

Specifiesanew full path and file nameto
be used in place of the BAD EDI file.

110

Optional

Specifies anew full-path file name to be
used in place of afile name embedded in
the map file.

110

Optional

Specifiesanew full path and file nameto
be used in place of the GOOD EDI file.

110

Optional

Checksthat each ST Transaction Control
Number in aGSto GE isgreater than the
previous ST Transaction Control
Number. Validation assumes control
numbers appear in ascending order.

Inbound

Optional

Does not save the rejected EDI
transactions/messages into the
badtrans.nmt file.

Inbound

Optional

-C

78

Closes the trace file after every write
Statement.

110

Optional

ECRTP

CHAPTER 6 ECRTP Performance

Parameter

Description

Inbound/outbound

Required/optional

-clz

Flagsleading zerosin numeric X 12fields
as an error on HIPAA compliance maps.

An error isflagged if leading zeros are
not used to meet the minimum length
requirement of that particular element.

If the leading zeros are necessary to meet
the minimum length of the element, no
error is generated. This option does not
check leading zeros on non-compliance

maps.

Inbound

Optional

Checks for unique control humbers
within atransaction. Control numbers
can now occur in any sequence, aslong
asthey are unique.

If duplicate control numbers are found,
ECRTP logs a 6054 error. Use only one
of the switches (-as or -cu) for any map
run. If both switches are present, ECRTP
defaults to the last switch encountered.

Inbound

Optional

Does not del ete outbound temporary files
that are created when processing multiple
files.

Outbound

Optional

Specifies the directory in which the map
filesare located.

110

Required

Specifies the directory in which the
trading partner, map, and log files are
located.

110

Optionally
Required

Specifies the directory in which the
trading partner files are located.

110

Required for Non-
ODBC

Specifiesthedirectory tobeusedin place
of the application directories embedded
in the map.

110

Optional

Specifies the directory in which the
company (wixset.dat) file islocated.

Outbound

Optional

Reference Guide

Does not create the transaction log file
(translog.in, translog.out, or trlog) or the
status file (status.in or status.out).

110

Optional

79

Windows runtime parameters/switches

Parameter

Description

Inbound/outbound

Required/optional

-ed

Specifies the directory in which the
transaction log file (translog.in,
trandog.out, or trlog), trace file
(incoming.err, outgoing.err, or trnn.dat),
and statusfile (status.in or status.out) are
located.

110

Optional/

Required for Tandem

and Stratus

Ends processing of the EDI file after it
processes the specified number of
characters.

Inbound

Optional

Does not create the status file (status.in
or status.out)

110

Optional

Specifies the full-path file name to be
used in place of the input file name
embedded in the map.

Outbound

Optional

Specifies the full-path file name to be
used for the transaction log.

110

Optional

Required for Tandem

and Stratus

Specifies the full-path file name to be
used in place of the output application
filename embedded in the map.

Inbound

Optional

Performs the trading partner lookup
based on the group receiver. (basic
reverse lookup)

Inbound

Optional

Starts processing the EDI file after it has
read a specified number of characters.

Inbound

Optional

Specifiesthe directory in which the trace
fileislocated. (incoming.err or
outgoing.err)

110

Optional

Specifiesastring variable to be used in
place of all but the first character in the
application file name (not including the
file extension) embedded in the map.

110

Optional

80

Specifiesastring variableto be placed in
front of the application file name in the

map.

110

Optional/

Specifiesa Run ID number to be used
instead of having the program look it up.
If thereis alog database, the program
normally looks up the Run ID number in
the Run ID table in the log database.

Inbound

Optional

Ignores the trading partner mailbox.

110

Optional

ECRTP

CHAPTER 6 ECRTP Performance

Parameter Description Inbound/outbound | Required/optional

-k Sets compliance checking. Inbound Optional

-kf Splits files into multiple files only once. | Outbound Optiona

-l Writes long trace messages to an error 1/0 Optional
file.

-m Runs a specific map (identified by the Inbound Optional
mapname, which is the file name of the
map with no extension) without
referencing company or trading partner
files.

-mi Uses stdinin place of afileembedded in | Inbound Optional
the map.

-mm Uses atemporary memory location in 1/0 Optional
place of afile embedded in the map.

-mn Passes the map name extension aspart of | 1/0 Optional
acommand line argument.

The Map Name Extension works with
other map lookup fields to find a correct
map. For map functions with multiple
parameters, such as LOADMAP, the
correct map name should be found by
using current map lookup fields with the
Map Name Extension before calling the
functions.

-mo Usesstdout in place of afileembeddedin | Outbound Optional
the map.

-mp Uses a specific memory addressin place | 1/0 Optional
of afile embedded in the map.

-mx Keeps a specified number of mapsopen | I/0 Optional
in memory.

-n Usesthe ALL TradePartner record if no | 1/O Optional
trading partner match is found in the
trading partner file.

-ncb Indicatesthat the EDI fileto beprocessed | Inbound Required for inbound
isan NCPDP batch file. Required for all NCPDP batch files
inbound NCPDP files unless -nct is
active.

-nct Indicatesthat the EDI fileto beprocessed | Inbound Required for inbound
isan NCPDP telecommunications file. NCPDP
Required for al inbound NCPDP files telecommunications
unless -ncb is active. files

-ne Does not produce an outbound EDI file. | Outbound Optional

Reference Guide

81

Windows runtime parameters/switches

Parameter

Description

Inbound/outbound

Required/optional

-nret

Addsnew return codesthat provide more
information to the calling program.
Based on the return value, the user can
determine the next step in the process.
The return codes reflect the following
information:

« Atleast oneinterchangeor groupisin
error implying a TA1 map should be
run.

e At least onegroup or transactionisin
error, implying a 997 map should be
run.

« At least one good transaction is
present, implying atrandation map
should be run.

110

Optional

Does not perform atrading partner
lookup. Uses the map specified in the
command line.

Outbound

Optional

Maps numeric data literally (including
blank fields) asit appears on the map.
Previousversionsof ECRTP pad numeric
values with leading zeros based on field
length.

110

Optional

-0

Does not use the trade agreement
mailbox directory and file name.

110

Optional

Triggers a series of look ups against the
Trading Partner database when the
ECMap/EC Gateway Log isused as
input.

If atrading partner match is found,
ECRTP uses the entry to popul ate the
EDI envelope.

Outbound

Optional

82

Pads alphanumeric fields with
trailing spaces if those spaces are
required to meet the minimum length
of the element. Numeric fields will
be padded with leading Osif those Os
are required to meet the minimum
length of the element.

This switch is an optiona replacement
for PADEDI environmental variable.

Outbound

Optional

ECRTP

CHAPTER 6 ECRTP Performance

Parameter

Description

Inbound/outbound

Required/optional

-pf

Uses contents of thefile as the command
line parameters

110

Optional

-r

Specifies the maximum number of cross-
referencetable entriesthat will beloaded
into memory. Anything over the
maximum must be accessed from the
database.

110

Optional

Ignoresthe trade agreement mailbox and
places routed EDI datain the trading
partner BAD mailbox.

110

Optional

Ignoresthe trade agreement mailbox and
places routed EDI datain the trading
partner IN mailbox.

110

Optional

Ignoresthe trade agreement mailbox and
places routed EDI datain the trading
partner GOOD mailbox.

110

Optional

Ignoresthe trade agreement mailbox and
places routed EDI datain the trading
partner OUT mailbox.

110

Optional

-rt

Ignoresthe trade agreement mailbox and
places routed EDI datain the trading
partner OTHER mailbox.

110

Optional

Does not produce atracefile.

110

Optional

Processes the X12 ST03 element.

110

Optional

Validatesthe sequence of the Interchange
(ISA) and Group (GS) control humbers.
If you use thiscommand, RTP checksthe
current control number against the
Trading Partner database to validate the
entry. If theentry inthefileisnot the next
sequential entry, an error will be
reported.

If you run an inbound compliance map,
choose the “Validate Control Number
Sequence” option to add an -sc switch to
the command line options.

110

Optional

-sdb

Specifies the maximum number of
cached ODBC connections. The default
value '0" indicates no ODBC connection
caching.

110

Optional

Reference Guide

Specifies the message/transaction set
being mapped.

Outbound

Required

83

Windows runtime parameters/switches

84

Parameter Description Inbound/outbound | Required/optional

-td Specifies the directory in which thebin | Inbound Optional
files are located if the —du switchisnot | outhound Optiona
Set.
Specifies the directory in which the
temporary split files are located.

-tm Writesthe elapsed runtimeto thetrace | I/0 Optional
file. Optional

-u DoesnotwriteEDIFACT UNB and UNG | Outbound Optional
segments.

-w Overwrites all application output files. Inbound Optional
(The default is to append the application
output files.)

-xf Closes map(s) that have been left openin | 1/0 Optional
memory.

Xl Writes the text transaction log filein 1/0 Optional
expanded field length format.

-Xmi Uses stdin in place of the EDI fileinthe | Inbound Optional
map.

-Xmo Uses stdout in place of the EDI fileinthe | Outbound Optional
map.

-xmp Uses a specific memory addressin place | I/0 Optional
of the EDI filein the map.

-z Zero-fills numeric fields that contain 1/0 Optional
data.

Table 6-2 contains UNIX Run Time parametersthat are only for ODBC users.
Table 6-2: ODBC trading partner parameters/switches

Parameter Description Inbound/outbound | Required/optional

-ad SpecifiesaDSN connect stringtobeused | 1/0 Optional
in place of a specified DSN connect
string embedded in the map file.

el Performs the trading partner lookup Inbound Optional
based on the group sender and receiver.

-e2 Performs the trading partner lookup Inbound Optional
based on the group and interchange
sender.

-e3 Performs the trading partner lookup Inbound Optional

based on the group and interchange
sender and receiver.

ECRTP

CHAPTER 6 ECRTP Performance

Parameter

Description

Inbound/outbound

Required/optional

-e4

Performs the trading partner lookup
based on the group and interchange
receiver.

Inbound

Optional

Performs the trading partner lookup
based on interchange sender.

Inbound

Optional

Performs the trading partner lookup
based on the interchange receiver.

Inbound

Optional

Performs the trading partner lookup
based on the interchange sender and
receiver.

Inbound

Optional

Performsareversetrading partner lookup
based on the interchange sender and
receiver.

Inbound

Optional

Performsareversetrading partner lookup
based on the group and interchange
sender and receiver.

Inbound

Optional

-e10

Performsareversetrading partner lookup
based on the interchange receiver.

Inbound

Optional

-ell

Performsareversetrading partner lookup
based on the interchange sender.

Inbound

Optional

-el2

Performsareversetrading partner lookup
based on the group and interchange
sender.

Inbound

Optional

-el3

Performsareversetrading partner lookup
based on the group and interchange
receiver.

Inbound

Optional

-el4

Performs the trading partner lookup
based on Batch Sender.

Validates interchange and group data
against the Trading Partner database
during inbound processing, and, if any
information does not match, ECRTP
writes an error to the log and returns an
error in the TA1 Acknowledgment.

Inbound

Optional

-el5

Performs the trading partner lookup
based on Batch Receiver.

Inbound

Optional

-e16

Performs the trading partner lookup
based on Batch Sender and Receiver.

Inbound

Optional

-el7

Reference Guide

Performs the trading partner lookup
based on Bin Number.

Inbound

Optional

85

Windows runtime parameters/switches

Parameter Description Inbound/outbound | Required/optional
-e18 Performs the trading partner lookup Inbound Optional
based on Processor Control Number.
-e19 Performs the trading partner lookup Inbound Optional
based on Batch Sender and Bin Number.
-e20 Performs the trading partner lookup Inbound Optional
based on Batch Sender and Processor
Control Number.
-e21 Performs the trading partner lookup Inbound Optional
based on Batch Receiver and Bin
Number.
-e22 Performs the trading partner lookup Inbound Optional
based on Batch Recelver and Processor
Control Number.
-et Specifies the trace file directory. 1/0 Optional
(trnn.dat)
-sl SpecifiesaDSN connect stringtobeused | 1/0 Required for ODBC
in place of thelog database DSN connect Log
string embedded in the map.
-st SpecifiesaDSN connect stringtobeused | 1/0 Required for ODBC
in place of the trading partner database TP
DSN connect string embedded in the
map.
-td Specifies directory used to make sure 1/0 Optional
information is correctly backed out with
Backout and Checkpoint commands.
-Wx Usestherecord inthe WIXSET company | I/O Required for ODBC
1D tablewherethe RECORD_NOfieldis TP

the same as the specified number (in
other words, selects a specific company
profile).

Required parameters

Some parameters are required for both inbound and outbound runs, while
others are required only for outbound runs or only for inbound runs.

Outbound required parameters
The normal outbound run has the parametersillustrated bel ow.

86

rmapout <full-path EDI

out put fil ename> <map>

ECRTP

CHAPTER 6 ECRTP Performance

<transaction/ nessage code> -t <nessage/ transaction>
-dt <full-path trading partner directory> -dg <full
-path map directory>

When thetrading partner and the map directory are the same, the command line
can be shortened by using the —dm directory in their place, as shown below:

rmapout <full-path EDI output filename> <map>
<transacti on/ nessage code> -t <nmessage/ transaction/>
-dm <full-path trading partner and nmap directory>

Thefirst three parameters are always required and must be in the following
order:

e <full-path EDI output filename>
. <ma0>
e <transaction/message>

Thethree other required parameters do not have to bein any specific order, but
they must be preceded by the appropriate “-letters” flag.

e -t<transaction>— specifiesthe code of the EDI transaction/message being
mapped.

e -dt <directory> — specifies the directory that contains trading partner
information.

e -dg <directory> — specifiesthedirectory that containsthe generated files—
map files, cross reference tables, and log files.

When the trading partner directory and the map directory are the same, the
—dm switch can be used in place of both the —dt and —dg switches.

e -dm <directory> — specifies the directory that contains trading partner
information and generated files; map files, cross reference tables, and log
files.

Outbound required parameters for ODBC database users

Reference Guide

When an ODBC trading partner database is used, —dt <trading partner
directory> is replaced by —st <* DSN=<data source name>;uid=<user
id>;pwd=<password>">.

When an ODBC log database is used, —s| <"DSN=<data source
name>;uid=<user id>; pwd=<password>"> switch must be included. (The
DSN pointing to the log database is the only required parameter; uid and pwd
are included only if they are required by the database.)

87

Windows runtime parameters/switches

rmapout <full-path EDI output filenane> <map>
<transacti on/ nessage code>
-t <transaction/ nessage>
-st <trading partner DSN connect string>
-dg <full-path map directory>
-sl <l og DSN connect string>

e -sI<"DSN Connect String”> — specifies the data source name (DSN)
connect string for the ODBC log database that contains the log tables. In
addition to the DSN, this connect string must include auid and pwd if they
are required.

e -st <"DSN connect string” > — specifies the data source name (DSN)
connect string for the ODBC trading partner database that contains the
trading partner and trade agreement tables. In addition to the DSN, this
connect string must include a uid and pwd if they are required.

Inbound required parameters

88

The normal inbound run has the parametersillustrated below.

mapi nrun <full-path ED input filenane>
-dt <full-path trading partner Directory>
-dg <full-path map directory>

When thetrading partner and the map directory arethe same, thecommand line
can be shortened by using the —dm directory in their place, as shown below:

mapi nrun <full-path ED input filename> -dm<full-path
tradi ng partner/map directory>

Thefirst parameter is always required for an inbound run and must be first in
order.

<full-path ED input filenane>

Thethree other required parameters do not haveto bein any specific order, but
they must be preceded by the appropriate “-letters’ flag.

» -dt <directory> — specifies the directory that contains trading partner
information.

* -dg <directory>—specifiesthe directory that containsthe generated files—
map files, cross reference tables, and log files.

When the trading partner directory and the map directory are the same, the
—dm switch can be used in place of both the —dt and —dg switches.

ECRTP

CHAPTER 6 ECRTP Performance

e -dm <directory> — specifies the directory that contains trading partner
information and generated files; map files, crossreference tables, and log
files.

Inbound required parameters for ODBC database users

Optional parameters

When an ODBC trading partner database is used, —dt <trading partner
directory> isreplaced by —st <* DSN=<data source name>;uid=<user
id>;pwd=<password>">.

When an ODBC log database is used, —s| <"DSN=<data source
name>;uid=<user id>; pwd=<password>"> switch must be included. (The
DSN pointing to the log database is the only required parameter; uid and pwd
areincluded only if they are required by the database.)

rmapi nrun <full-path ED input filename> -st <trading
partner DSN connect string> -dg <full-path nap
directory> -sl <log DSN connect string>

e -st <"DSN connect string”> — specifies the data source name (DSN)
connect string for the ODBC trading partner database that contains the
trading partner and trade agreement tables. In addition to the DSN, this
connect string must include a uid and pwd if they are required.

e -sI<"DSN Connect String”> — specifies the data source name (DSN)
connect string for the ODBC log database that contains the log tables. In
additiontothe DSN, thisconnect string must include auid and pwd if they
are required.

Some optional parameters can be used with both inbound and outbound runs,
while other optional parameters can be used for only inbound or only outbound
runs.

Inbound/outbound optional parameters

Reference Guide

Table 6-3: Inbound/outbound optional parameters

Parameter Description

-af <full-path map filename> <full-path | Usesthe named “new filename” in place

new filename> of the named “map filename” imbedded
in the map.

89

Windows runtime parameters/switches

90

Parameter

Description

-C

Closes the trace file after every write
statement. (Thisis used to ensure that
the last trace message is written to disk.
Thisflag impedes processing and should
not be used unless a serious problem is
encountered and must be debugged.)

-du <directory>

Uses the named directory in place of the
application directories embedded in the

map.

Does not create the transaction log file
(trandog.in, translog.out, or trlog) or the
status file (status.in or status.out).

-ed <directory>

Writes the transaction log file
(tranglog.in or translog.out), statusfile
(status.in or status.out), or trace file
(incoming.err, outgoing.err, or trnn.dat),
to the named directory. (Required for
Tandem and Stratus; optional for all other
Versions.)

-ef Does not create the status file (status.in
or status.out).
-el Usesthe named full path file name asthe

transaction log file name. (Required for
Tandem and Stratus; optional for all other
vVersions.)

-el <full-path filename>

Uses the named directory for the trace
file(incoming.err or outgoing.err). If this
switch isnot used, thetracefileisplaced
in the map directory.

-et <directory>

Replaces all except the first character in
the application file namein the map
(excluding the file extension) with the
named string variable. This switchis
required when multiple copies of the
executable are run simultaneously.

-eu <string variable> (up to 7 characters)

Replaces all except the first character in
the application file namein the map
(excluding the file extension) with the
named string variable. Thisswitchis
required when multiple copies of the
executable are run simultaneously.

-ev <string variable> (up to 8 characters)

Places the named string variable in front
of al application file names in the map.

ECRTP

CHAPTER 6 ECRTP Performance

Reference Guide

Parameter

Description

-id <run ID number>

Usesthe specified run D number instead
of looking it up. (Normally, the program
looks up the next run ID number in the
Run D tableinthelog database.) Therun
ID number can have from one to eight
digits.

Ignores the trading partner mailbox. If
this switchis not set for inbound maps, a
copy of theinbound EDI fileisplaced in
the trading partner IN mailbox and no
rules are processed unless the trade
agreement records have the EDI_OUT
flag set. If this switchis not set for
outbound maps, the outbound EDI fileis
placed in the trading partner OUT
mailbox. (If atrade agreement mailbox
exists and this switch is not set, the trade
agreement mailbox will override the
trading partner mailbox.)

Turns the long trace on, causing trace
messages to be written to an error file.
(This switchis used for debugging.)

-mm <full-path filename>

Uses atemporary memory location in
place of the named file imbedded in the

map.

Passes the map name extension as part of
acommand line argument. The Map
Name Extension works with other map
lookup fields to find a correct map.

For map functions with multiple
parameters, such as LOADMAP, the
correct map name should be found by
using current map lookup fields with the
newly added Map Name Extension
before calling the functions.

-mp <full-path filename> <pointer to
memory address> <pointer to # of bytes>
<pointer to size of memory buffer>

Uses a specified memory location in
place of a specified file during map
execution.

-mx <number>

K eeps a specified number of maps open
in memory.

Usesthe ALL TradePartner if no trading
partner match is found in the trading
partner file.

91

Windows runtime parameters/switches

Parameter Description

-nret Addsnew return codesthat provide more
information to the calling program.
Based on the return value, the user can
determine the next step in the process.
The return codes reflect the following
information:

« Atleast oneinterchange or groupisin
error implying a TA1 map should be
run.

e At least onegroup or transactionisin
error, implying a 997 map should be
run.

« At least one good transaction is
present, implying atrandation map
should be run.

-nz Maps numeric data literally (including

blank fields) asit appears on the map.

Previousversionsof ECRTP pad numeric

values with leading zeros based on field

length.

-0 Ignores the trade agreement mailbox file
name that was set up for routing EDI
data.

-pf Uses the map switches in the named
batch file on the command line.

-r Specifies the maximum number of cross
reference table entriesthat will beloaded
into memory. Anything over the
maximum must be accessed from the
database.

-rb Ignoresthe trade agreement mailbox and
placesthe EDI datain the trading partner
BAD mailbox on inbound maps and on
outbound maps with “Route Bad”
selected.

-rg Ignoresthe trade agreement mailbox and
placesthe EDI datain the trading partner
GOOD mailbox oninbound mapsand on
outbound maps with “Route Good”
selected.

92 ECRTP

CHAPTER 6 ECRTP Performance

Reference Guide

Parameter

Description

-ri

Ignoresthe trade agreement mailbox and
placesthe EDI datain the trading partner
IN mailbox on inbound maps and on

outbound maps with “Route In” selected.

-ro

Ignoresthe trade agreement mailbox and
places the EDI output in the trading
partner OUT mailbox on outbound maps
and on inbound maps with “Route Out”
selected.

-rt

Ignoresthe trade agreement mailbox and
placesthe EDI datain thetrading partner
OTHER mailbox on inbound maps and
on outbound maps with “Route Other”
selected.

-S

Does not produce atracefile.

-sdb

Specifies the maximum number of
cached ODBC connections. The default
value'0" indicates no ODBC connection
caching.

Writes the elapsed time of execution for
theentire run of thiscommand lineto the
trace file (incoming.err file for inbound
maps or outgoing.err file for outbound

maps).

-xf

Closes al open maps.

-xf <mapname>

Closes the specified map.

-XI

Writes the text transaction log file in the
expanded field-length format. (See
Section 10 for the format of the non-
ODBC expanded text transaction log
file)

-xmp <pointer to memory address>
<pointer to# of bytes> <pointer to size of
memory buffer>

Indicates that a specified memory
location should be used in place of the
EDI file during map execution.

-Z

Zero-fills numeric fields that contain
data. (For inbound maps, numeric fields
are zero-filled if the EDI element
contains data, and left blank if thereisno
data. For outbound maps, azero is
produced if azeroiscontained inthedata
field.)

93

Windows runtime parameters/switches

Inbound/outbound optional parameters for ODBC database users

Table 6-4: Inbound/outbound optional parameters for ODBC database

users

Parameter

Description

-ad <*map DSN connect string” > <" new
DSN connect string”>

Specifies the named “new DSN connect
string” to be used in place of the named
“map DSN connect string” in the map
file. (Connect strings include the data
source name and any other required
connection information, such as uid and
pwd.)

-et <directory>

Uses the named directory for the trace
file (trnn.dat where nn is a hon-zero run
1D number). If thisswitchisnot used, the
tracefileis placed in the current
directory. The run ID number can have
from one to eight digits.

-sdb <number>

Specifies the maximum number of
cached ODBC connections. The default
value '0' indicates no ODBC connection
caching.

-td <directory>

Specifies the named directory to be used
with the Backout and Checkpoint
commands to make sure that information
is correctly backed out. (The -td switch
has two other uses; one only for inbound
and one only for outbound.)

-wx <number>

Uses the record in the wixset company
table where the RECORD_NO field is
the same asthe specified number. (allows
aspecific company profileto be selected)

Outbound-only optional parameters

94

Table 6-5: Outbound-only optional parameters

Parameter

Description

-a

Updates the ISA Out control count field
only in the All TradePartner record
(customer number = 0) when the
interchange envelopes are built.

ECRTP

CHAPTER 6 ECRTP Performance

Parameter

Description

-db

Does not del ete outbound temporary files
created when processing multiple files
(in other words, when the map is set by
the user to separate one input file into
severd input files). Thesefiles are not
deleted and can be used to diagnose map
flow problems. Use this switch when
debugging.

-dw <directory>

Uses the named directory as the location
of the wixset.dat (company) file.

-ei <full-path filename>

Uses the named filename in place of the
input application filename embedded in
the map.

-kf

Splitsfilesinto multiple files only once
when processing multiplefiles (whenthe
map is set by the user to separate one
input file into several input files).

-mo < full-path filename>

Uses stdout in place of the named file
imbedded in the map.

-ne

Does not produce an outbound EDI file.

-nt

Does not perform trading partner lookup.
(Usesthe map passed in on the command
line))

-pe

Pads al phanumeric fields with
trailing spacesif those spaces are
required to meet the minimum length
of the element. Numeric fields will
be padded with leading Osif those Os
are required to meet the minimum
length of the element.

This switch is an optional replacement
for PADEDI environmental variable.

-s3<vaue>

Reference Guide

Uses the specified value to create the
optional ST03 element on outbound X12
EDI transactions.

95

Windows runtime parameters/switches

Parameter

Description

-td <directory>

Writestemporary split filesto the named
directory. Temporary split files(pfs.*) are
created when the Multiple Filesoptionis
selected (when the map is set by the user
to separate one input file into several
input files). If this switch is not set, the
temporary files are written to the current
directory. (In earlier versions, they were
written to the root directory.)

Doesnot writeEDIFACT UNB and UNG
segments.

-Xmo

Uses stdout in place of the EDI file
during map execution.

Inbound-only optional parameters

Table 6-6: Inbound-only optional parameters

Parameter

Description

Specifiesanew full path and file nameto
be used in place of the BAD EDI file.

Specifiesanew full path and file nameto
be used in place of the GOOD EDI file.

Checksthat each ST Transaction Control
Number in aGSto GE isgreater than the
previous ST Transaction Control
Number. Validation assumes control
numbers appear in ascending order.

Does not save the rejected EDI
messages/transactions into the
badtrans.nmt file.

-clz

96

Flagsleading zerosin numeric X12fields
as an error on HIPAA compliance maps.

An error isflagged if leading zeros are
not used to meet the minimum length
regquirement of that particular element. If
the leading zeros are necessary to meet
the minimum length of the element, no
error is generated. This option does not
check leading zeros on non-compliance
maps.

ECRTP

CHAPTER 6 ECRTP Performance

Reference Guide

Parameter

Description

-Cu

Checks for unique control numbers
within atransaction. Control numbers
can now occur in any sequence, as long
asthey are unique.

If duplicate control numbers are found,
ECRTP logs a 6054 error. Use only one
of the switches (-as or -cu) for any map
run. If both switches are present, ECRTP
defaults to the last switch encountered.

-ee <number of characters>

Ends processing of the EDI file after it
processes the specified number of
characters. (Useful when processing is
done by VANS who charge by the byte).

-eo <full path filename>

Uses the named full path file namein
place of the output application file name
embedded in the map.

-es <number of characters>

Starts processing the EDI file after it has
read the specified number of characters.
(Useful when processing is done by
VANS who charge by the byte.)

Sets compliance checking for:

¢ Missing mandatory segments
« Exceeding loop counts

* Exceeding segment counts

¢ Segments out of sequence

* Exceeding Standards definition for
number of elementsin a segment

-m <mapname>

Runs the map with the specified map
name without referencing company or
trading partner files. (<Kmapname> isthe
file name of the map without the
extension. For example, 837IN isthe
<mapname> for the map file

837IN.map.).

-mi <full path filename>

Uses stdin in place of the named file
imbedded in the map.

-ncb

Indicatesthat the EDI fileto be processed
isan NCPDP batch file. Required for all
inbound NCPDP filesunless -nct is
active.

97

Windows runtime parameters/switches

98

Parameter

Description

-nct

Indicatesthat the EDI fileto be processed
is an NCPDP telecommunications file.
Required for all inbound NCPDP files
unless -nch is active.

-nt

Doesnot perform trading partner lookup.
(Usesthe map passed in on the command
line))

Processes the optional 12 ST03 element
in incoming EDI data.

Validatesthe sequence of the Interchange
(ISA) and Group (GS) control numbers.
If you usethis command, RTP checksthe
current control number against the
Trading Partner database to validate the
entry. If theentry inthefileisnot the next
sequential entry, an error will be
reported.

If you run an inbound compliance map,
choose the “Validate Control Number
Sequence” option to add an -sc switch to
the command line options.

-td <directory>

Writes the bin files to the named
directory if the—du switchisnot set. (All
bin files start with bin.)

-w Overwrites all output map files. (The
default is to append the map files.).
-Xmi Usesstdin in place of the named EDI file

during map execution.

ECRTP

CHAPTER 6 ECRTP Performance

Inbound-only optional parameters —trading partner lookup switches

Table 6-7: Trading partner lookup switches — Inbound-only

Parameter

Description

-er

Performsareversetrading partner lookup
based on the group receiver code.

-ol

Triggers a series of look ups against the
Trading Partner database when the
ECMap/EC Gateway Logisused as
input.

If atrading partner match is found,
ECRTP uses the entry to populate the
EDI envelope.

Inbound-only optional parameters for ODBC database users —trading partner lookup switches

Reference Guide

Table 6-8: ODBC trading partner lookup switches — inbound-only

Parameter

Description

-el

Performs the trading partner lookup
based on the group sender and receiver
codes.

-e2

Performs the trading partner lookup
based on the group sender code and the
interchange sender code and qualifier.

-e3

Performs the trading partner lookup
based on the group sender and receiver
codes and the interchange sender and
receiver codes and qualifiers.

-e4

Performs the trading partner lookup
based on the group receiver code and the
interchange receiver code and qualifier.

-e5

Performs the trading partner lookup
based on theinterchange sender code and
qualifier.

-e6

Performs the trading partner lookup
based on the interchange receiver code
and qualifier.

-e7

Performs the trading partner lookup
based on the interchange sender and
receiver codes and qualifiers.

-e8

Performsareversetrading partner lookup
based on the interchange sender and
receiver codes and qualifiers.

99

Windows runtime parameters/switches

100

Parameter

Description

-e9

Performsareversetrading partner lookup
based on the group sender and receiver
codes and the interchange sender and
receiver codes and qualifiers.

-e10

Performsareversetrading partner lookup
based on the interchange receiver code
and qudlifier.

-ell

Performsareversetrading partner lookup
based on theinterchange sender code and
qualifier.

-el2

Performsareversetrading partner lookup
based on the group sender code and the
interchange sender code and qualifier.

-el3

Performsareversetrading partner lookup
based on the group receiver code and the
interchange receiver code and qualifier.

-el4

Performs the trading partner lookup
based on Batch Sender.

Validates interchange and group data
against the Trading Partner database
during inbound processing, and, if any
information does not match, ECRTP
writes an error to the log and returns an
error in the TA1 Acknowledgment.

-el5

Performs the trading partner lookup
based on Batch Receiver.

-el6

Performs the trading partner lookup
based on Batch Sender and Receiver.

-el7

Performs the trading partner lookup
based on Bin Number.

-el8

Performs the trading partner lookup
based on Processor Control Number.

-el9

Performs the trading partner lookup
based on Batch Sender and Bin Number.

-e20

Performs the trading partner lookup
based on Batch Sender and Processor
Control Number.

-e21

Performs the trading partner lookup
based on Batch Receiver and Bin
Number.

ECRTP

CHAPTER 6 ECRTP Performance

Parameter Description
-e22

Performs the trading partner lookup
based on Batch Receiver and Processor
Control Number.

Reference Guide 101

Windows runtime parameters/switches

102 ECRTP

CHAPTER 7 Non-ODBC Database and File

Formats
Topic | TOC
Trading partner files | 104

Reference Guide 103

Trading partner files

Trading partner files

Trading partner information is stored in three files: the company datafile, the
trading partner datafile, and the trade agreement data file. Information is
logged by ECRTPintwofiles: thetransaction log and thetracefile. In addition,
ECRTP produces a statusfile if errors occur during processing.

Trading partner filesinclude information about the user’s company, the user’s
trading partners, and the trade agreements that link trading partnersto specific
maps. The -t runtime switchesindicates that an ODBC trading partner database

will be used.

Company data file (wixset.dat)

Table 7-1: Company data file information

Number Field name Field type Field precision

1 wix_company_name Character 35

2. <filler> Character 12

3. wix_gsid Character 35

4, wix_idqual Character 4

5. wix_idcode Character 35

6. wix_auth_qual Character 2

7. wix_auth_code Character 10

8. wix_secu_qual Character 2

9. wix_secu_code Character 10

10. <filler> Character 47

11 wix_sndr_route Character 14 (35 for EDIFACT
Syntax 4)

12. wix_sndr_subid Character 35 (only for EDIFACT
Syntax 4)

13. wix_app_snd_dl Character 4

Trading partner file (customer.mdb)

Table 7-2: Trading partner file information

Number Field name Field type Field precision Decimals
1 CUSTNO Character 35
2. TYP_OWNER Character 1 (Reserved for Future)
104 ECRTP

CHAPTER 7 Non-ODBC Database and File Formats
Number Field name Field type Field precision Decimals
3. NAME Character 35
4. IDQUAL Character 4
5. IDCODE Character 35
6. AUTH_QUAL Character 2
7. AUTH_CODE Character 10
8. SECU_QUAL Character 2
9. SECU_CODE Character 10
10. GSID Character 35
11. SHIPQUAL Character 2
12. SHIPIDEN Character 15
13 BILLQUAL Character 2
14 BILLIDEN Character 15
15 ADDR1 Character 35
16 ADDR2 Character 35
17. CITY Character 19
18. STATE Character 15
19. COUNTRY Character 25
20. ZIP Character 9
21. CONTACT1 Character 35
22. TELEPHONE1 Character 22
23. CONTACT?2 Character 35
24. TELEPHONE2 Character 22
25. ISA_IN_NO Character 14
26. ISA_OUT_NO Character 14
27. SND_GSID Character 35
28. SND_IDQUAL Character 4
29 SND_IDCODE Character 35
30. SUB_DELIMT Character 3
31. ELE_DELIMT Character 3
32. SEG_DELIMT Character 3
33. RELEASE_CH Character 3
34. X12_REPEAT Character 3
35. DEL_CODE Character 1 (Reserved for Future)
36. EDIF_SUBDL Character 3
37. EDIF_ELEDL Character 3
38. EDIF_SEGDL Character 3
39. EDIF_RELCH Character 3
ECRTP 105

Trading partner files

Number Field name Field type Field precision Decimals

40. EDIF_REPEA Character 3

41, HL7_SEGDL Character 3

42 HL7_ELEDL Character 3

43. HL7_SUBDL Character 3

44, HL7_SUBSUB Character 3

45, HL7_RELCH Character 3

46. HL7_REPEAT Character 3

47. EXPORT_FLG Character 1

48. MBOX_NAME Character 35

49, MAILBOX Character 100

50. CURR_FMT Character 1

51. POS LTR Character 1

52. SNDR_ROUTE Character 14 (35 for EDIFACT
Syntax 4)

53. SNDR_SUBID Character 35 (only for EDIFACT
Syntax 4)

54. RCVR_ROUTE Character 14 (35 for EDIFACT
Syntax 4)

55. RCVR_SUBID Character 35 (only for EDIFACT
Syntax 4)

56. APP_SND_QL Character 4

57. APP_RCV_QL Character 4

58. TPKEY Numeric 19 5

Trade agreement file (tradstat.mdb)

106

Table 7-3: Trade agreement file information

Number Field name Field type Field precision
1 CUSTNO Character 35

2. MAP_TRAN Character 6

3. ST03 Character 35

4. DIR Character 3

5. STAT Character 1

6. VERS Character 12

7. TBCODE Character 60

8. MBOX_NAME Character 35

9. DEST Character 100

ECRTP

CHAPTER 7 Non-ODBC Database and File Formats

ECRTP

Number Field name Field type Field precision

10. FILE Character 30

11. GS NO Character 14

12. ISA_TYPE Character 5

13. SERV_CODE Character 6

14. <filler> Character 1

15. RCV_GSID Character 35

16. FCV_IDQUAL Character 4

17. RCV_IDCODE Character 35

18. ACK_RQSTD Character 1

19. ACK_RQSTD2 Character 1

20. EDI_OUT Character 1

21. DAYS Character 2

22. HOURS Character 2

23. MINUTES Character 2

24, SECONDS Character 2

25. APPL_REF Character 14

26. ACK_MSG Character 1

27. ACK_INTCH Character 1

28. RCVR_ROUTE Character 14 (35 for EDIFACT
Syntax 4)

29. RCVR_SUBID Character 35 (only for EDIFACT
Syntax 4)

30. APP_RCV_QL Character 4

31 PROC_PRIOR Character 1

32. COMM_AGM Character 35

33. APP_PSWD Character 14

34. ASSOC_CODE Character 6

35. CNT_AG1 Character 3

36. CLIST_VER Character 6 (only for EDIFACT
Syntax 4)

37. MSG_TYPE Character 6 (only for EDIFACT
Syntax 4)

38. MSG_SUBID Character 14 (only for EDIFACT
Syntax 4)

39. MSG_SUBVER Character 3 (only for EDIFACT
Syntax 4)

40. MSG_SUBREL Character 3 (only for EDIFACT

Syntax 4)

107

Trading partner files

Number Field name Field type Field precision
41. CNT_AG2 Character 3 (only for EDIFACT
Syntax 4)
42 MSG_IMPID Character 14(only for EDIFACT
Syntax 4)
MS IMPVER Character 3 (only for EDIFACT
Syntax 4)
MSG_IMPREL Character 3 (only for EDIFACT
Syntax 4)
CNT_AG3 Character 3 (only for EDIFACT
Syntax 4)
46. SCEN_ID Character 14 (only for EDIFACT
Syntax 4)
47. SCEN_VER Character 3 (only for EDIFACT
Syntax 4)
48. SCEN_REL Character 3 (only for EDIFACT
Syntax 4)
49. SCEN_AG4 Character 3 (only for EDIFACT
Syntax 4)
50. STD_TYPE Character 2
51. APP_RCV_QL Character 4
52. TRADKEY Numeric 10

Log files

Information islogged by ECRTPin two files: the transaction log and the trace
file. In addition, ECRTP produces a status file if errors occur during
processing.

Text transaction log files

When the user hasturned on logging, thetext transactionlogsare stored infiles
with fixed-length recordsin the directory where the map is executed. Unless
the user specifies otherwise, information in these files is appended upon
execution of the map. (However, the user can cause the filesto be overwritten
by using arun time switch.)

108 ECRTP

CHAPTER 7 Non-ODBC Database and File Formats

Based on the Log Type sel ected, the text transaction log files can be written out
in either an expanded format (Explanded Text Log) or a non-expanded format
(Text Log). You should always choose the expanded format; the non-expanded
format isincluded only to support earlier versions of the software and cannot
be used to generate a 997 functional acknowledgement.

Thetext transaction log files are written to trandog.out for outbound and any-
to-any maps and translog.in for inbound and Web maps. You can edit these log
fileswith atext editor to provide report-style information about the transaction

run.

Transaction log files (translog.in and translog.out)

Non-expanded format

Table 7-4: Transaction log files — non-expanded format

Field
Number Field name Field description Field type length
1 TYPE Record Type Flag Character 1
2. RUN_DATE DATE: YYMMDD Date 6
3. RUN_TIME Time: HHMMSS Time 6
4. TRANS_CODE | Transaction/Message L etter Code Character 2
5. TRANS _NAME | Message/Transaction Set Number Character 6
6. TPTNER_ID Trading Partner Number Character 35
7. VERSION Standard Version Character 12
8. ISA_TYPE Standard Type Character 5
9. INTERCHANG | Interchange Control Number Character 35
10. GROUP_NO Group Control Number Character 35
11. TRANS _NO Transaction/Message Control Number + | Character 35
Transaction/M essage count
12. APP_RCV_CD | Group Receiver Code Character 35
13. APP_SND_CD Group Sender Code Character 35
14. SEND_CODE Interchange Sender Code Character 35
15. RECV_CODE Interchange Receiver Code Character 35
16. RECV_QUAL Interchange Receiver Qualifier Character 4
17. SEND_QUAL Interchange Sender Qualifier Character 4
18. ERRORS Number of non-fatal errorsthis Number 5
transaction/message

19. STAT This ST or SE Status Code Character 1
20. BYTE_COUNT | Byte Offsetininput file Character 9

ECRTP

109

Trading partner files

Field
Number Field name Field description Field type length
21. DIR Direction indicator — IN/OUT/PRT/CMP | Character 33
22. FLOW_LEVEL | User-defined flow level number Character 5
23. RECORD_NAM | Record Name Character 10
24. RECORD_NO Record sequence humber Character 6
25. FIELD_NAME | Field Name Character 15
26. SEGMENT Segment identifier Character 3
27. SEG_COUNT Original Segment count Number 6
28. ELEMENT Element sequence number Character 2
29. SUBELEM Subelement identifier Character 2
30. SEV_CODE Message severity Character 2
3L MSG_NO M essage number Character 5
32. MSG_TEXT M essage description Character 100
33. FILENAME Full-path EDI file name Character 160
34. FIELDVAL Field Value Character 30
Transaction log files (translog.in and translog.out)
Expanded format
Table 7-5: Transaction log files — expanded format
Field

Number Field name Field description Field type length
1 RUN_ID Run 1D number Numeric 9
2. TYPE Record Type Character 1
3. RUN_DATE Run Date Time: Date 14

YYYYMMDDHHMMSS
4. ACKBY_DATE | Acknowledgement Date Time: Date 14

YYYYMMDDHHMMSS
5. TRANS_CODE | Message/Transaction Letter Code Character 2
6. TPANS NAME | Message/Transaction Letter Code Character 6
7. TPTNER_ID Trading Partner Number Character 35
8. VERSON Standard Version Character 12
9. ISA_TYPE Standard Type Character 5
10. INTERCHANG | Interchange Control Number Character 35
11. GROUP_NO Group Control Number Character 35
12. TRANS_NO Transaction/Message Control Number + | Number 35

Transaction/M essage count

ECRTP

110

CHAPTER 7 Non-ODBC Database and File Formats

Field

Number Field name Field description Field type length
13. APP_RCV_CD | Group Receiver Code Character 35
14. APP_SND_CD Group Sender Code Character 35
15. RECV_CODE Interchange Receiver Code Character 35
16. SEND_CODE Interchange Sender Code Character 35
17. RECV_QUAL Interchange Receiver Qualifier Character 4
18. SEND_QUAL Interchange Sender Qualifier Character 4
19. ERRORS Count of total error messages Number 10
20. STAT Status Code (See following chart for Character 1

values)
21. BYTE_COUNT | This ST or SE Status Code Character 9
22. DIR Direction indicator — IN/OUT/PRT/CMP | Character 3
23. FLOW_LEVEL | User-defined flow level number Character 5
24. RECORD_NAM | Record Name Character 10
25. RECORD_NO Record sequence number Character 6
26. FIELD_NAME | Field Name Character 15
27. SEGMET Segment identifier Character 3
28. SEG_COUNT Count of Segment in Number 10

Transaction/M essage
29. ELEMENT Element sequence number Character 2
30. SUBELEM Subelement identifier Character 2
3L SEV_CODE Message severity Character 2
32. MSG_NO Message number Character 5
33. MSG_TEXT Message description Character 100
34. FILENAME Full-path EDI File Name Character 160
35. FIELDVAL Field Value Character 30
36. USER_IDENT User Field Character 35
37. ACK_EXPECT | Acknowledgement Expected Flag Character 1
38. TR_ACK_TYP | Filler Character 1
39. T P IND Test/Production Indicator - T or P Character 1
40. TRANS _CNT Count of Transactions/Messages Number 10
41 FILEOFFSET EDI Input File/Output File Offset Number 10
42 RCOUNT Field for record manipulation Number 1
43 SNDR_ROUTE | Interchange-level interna sender ID code | Character 14
44 SNDR_SUBID Interchange-level internal sender sub ID | Character 35

ECRTP

code

111

Trading partner files

Field
Number Field name Field description Field type length
45 RCVR_ROUTE | Interchange-level interna receiver ID Character 14
code
46 RCVR_SUBID Interchange-level internal receiver sub- | Character 35
ID code
47 APPL_REF Name of messages contained in UNB Character 14
envelope
48 PROC_PRIOR Processing priority code Character 1
49 COMM_AGM Interchange agreement identifier Character 35
50 APP_SND_QL Group-level sender code qualifier Character 4
51 APP_RCV_QL Group-level receiver code qualifier Character 4
52 ASSOC_CODE | Association-assigned code Character 6
53 APP_PSWD Application password Character 14
54 CLIST_VER Code list directory version number Character 6
55 MSG_TYPE M essage type sub-function identifier Character 6

112

Thefollowing chart displays possible Status Code val ues and the definition for
each. Status Codeisafieldin the transaction log file.

ECRTP

CHAPTER 7 Non-ODBC Database and File Formats

Table 7-6: Status code information

Status codes Definitions

Wrote ST or SE

Skipped write

User abort

Unknown Trading Partner

Stop run

Fatal error

Inbound destination file transfer
Other error

mo|ncld > ns

Trace files (incoming.err and outgoing.err)

Tracefilesare created during the processing of the map and placed in the same
directory asthe map files (—dg <directory> switch). The trace file for inbound
and web mapsis placed in the incoming.err file, and the trace file for outbound
and any-to-any maps is placed in the outgoing.err file. Error messages are
created in the trace file whenever the execution of the map (either inbound or
outbound) encounters an error. Based on the Trace Type selected, the tracefile
can be short or long. The trace files have a free text format.

Status file (status.in and status.out)

ECRTP

When ECRTP encounters an error, it produces a statusfile - status.in for
inbound maps or status.out for outbound maps. The user can quickly and
easily check to see whether errors occurred during a map run by checking for
the existence of a statusfile. If no status.out or status.in file existsin the
executablesdirectory, then no errorsoccurred. If afiledoesexigt, it containsan
error code with an error count. The chart below lists the definition of each of
the possible error codes. The creation of status.in and status.out can be turned
off with the -ef switch. In addition to creating astatusfile, ECRTP exitswith a
numericreturnvalue. Seethetable below for the meaning of the return values:

Table 7-7: Status file information

Return value Error code Definition

0 Wrote ST or SE No errors

1 Wi - ## Errors but no transaction skipped
2 BADTRAN W## Transaction skipped with ## errors
3 UABORT W## User Abort Rule with ## errors

113

Trading partner files

Return value Error code Definition
4 USTOP Wi User Stop Rule and ## errors
5 EFATAL Wit

Fatal error stop and ## errors

114

When application programs are linked to the RTP DLL files, no statusfileis
produced. However, the status of theinbound or outbound runisreturned to the
calling program as a number (0 thru 5). This number correspondsto areturn
value in the chart above - the same value that is returned by the executables.

ECRTP

CHAPTER 8 ODBC Database Table Formats

Topic | Page
How ODBC trading partner datais stored | 116

Reference Guide 115

How ODBC trading partner data is stored

How ODBC trading partner data is stored

ODBC trading partner datais stored in three tables in the trading partner
database — the company table, the trading partner table, and the trade
agreement table. Log information is stored in the log database —in the
transaction log table and the trace file. The ODBC |log database also has an
error tableand arun ID table. Like the non-ODBC log, the ECRTP produces a
statusfile if errors occur during processing.

Trading partner database tables

Thethree ODBC trading partner database tables contain information about the
company, the trading partners, and the trade agreements that link trading
partnersto specific maps. Thesetables can be created during map devel opment
if an ODBC link has been established to the UNIX computer from the PC. The
-st runtime switch indicates that an ODBC trading partner database is being
used.

Note The TPKEY field in the trading partner table (TP) and the TRADKEY
field in the trade agreement table (TRADSTAT) should be
AUTOINCREMENT fields. If they are not, aprovision must be madeto assign
aunique numeric value to these fields every time arecord isinserted into one
of these tables.

Company table (WIXSET)

Table 8-1: Company table

116

Number Field name Field type Field precision
1 RECORD_NO SQL_SMALLINT 4
2. GSID SQL_VARCHAR 35
3. NAME SQL_VARCHAR 35
4. IDQUAL SQL_VARCHAR 4
5. IDCODE SQL_VARCHAR 35
6. AUTH_QUAL SQL_VARCHAR 2
7. AUTH_CODE SQL_VARCHAR 10
8. SECU_QUAL SQL_VARCHAR 2
9. SECU_CODE SQL_VARCHAR 10
10. SNDR_ROUTE SQL_VARCHAR 14

ECRTP

CHAPTER 8 ODBC Database Table Formats

Number Field name Field type Field precision
11. SNDR_SUBID SQL_VARCHAR 35
12. APP_SND_QL SQL_VARCHARr 4

Trading partner table (TP)

Table 8-2: Trading partner table

Number Field name Field type Field precision
1 CUSTNO SQL_VARCHAR 35
2. <filler> SQL_VARCHAR 1
3. NAME SQL_VARCHAR 35
4. IDCODE SQL_VARCHAR 35
5. AUTH_QUAL SQL_VARCHAR 2
6. AUTH_CODE SQL_VARCHAR 10
7. SECU_QUAL SQL_VARCHAR 2
8. SECU_CODE SQL_VARCHAR 10
0. GSID SQL_VARCHAR 35
10. SHIPQUAL SQL_VARCHAR 2
11. SHIPIDEN SQL_VARCHAR 15
12. BILLQUAL SQL_VARCHAR 2
13. BILLIDEN SQL_VARCHAR 15
14. ADDR1 SQL_VARCHAR 35
15. ADDR2 SQL_VARCHAR 35
16. CITY SQL_VARCHAR 19
17. STATE SQL_VARCHAR 15
18. COUNTRY SQL_VARCHAR 25
19. ZIP SQL_VARCHAR 9
20. CONTACT1 SQL_VARCHAR 35
21 TELEPHONEL SQL_VARCHAR 22
22. CONTACT2 SQL_VARCHAR 35
23. TELEPHONE2 SQL_VARCHAR 22
24. ISA_IN_NO SQL_VARCHAR 14
25. ISA_OUT_NO SQL_VARCHAR 14
26. SND_GSID SQL_VARCHAR 35
27. SND_IDQUAL SQL_VARCHAR 4
28. SND_IDCODE SQL_VARCHAR 35
29. SUB_DELIMT SQL_VARCHAR 3
30. ELE DELIMT SQL_VARCHAR 3

Reference Guide

117

How ODBC trading partner data is stored

Number Field name Field type Field precision
31. SEG_DELIMT SQL_VARCHAR 3
32. RELEASE_CH SQL_VARCHAR 3
33. X12_REPEAT SQL_VARCHAR 3
34. <filler> SQL_VARCHAR 1
35. EDIF_SUBDL SQL_VARCHAR 3
36. EDIF_ELEDL SQL_VARCHAR 3
37. EDIF_SEGDL SQL_VARCHAR 3
38. EDIF_RELCH SQL_VARCHAR 3
39. EDIF_REPEA SQL_VARCHAR 3
40. HL7_SEGDL SQL_VARCHAR 3
41. HL7_ELEDL SQL_VARCHAR 3
42. HL7_SUBDL SQL_VARCHAR 3
43. HL7_SUBS SQL_VARCHAR 3
44. HL7 _RELCH SQL_VARCHAR 3
45. HL7_REPEAT SQL_VARCHAR 3
46. EXPORT_FLG SQL_VARCHAR 1
47. MBOX_NAME SQL_VARCHAR 35
48. MAILBOX SQL_VARCHAR 100
49. CURR_FMT SQL_VARCHAR 1
50. POS LTR SQL_VARCHAR 1
51. SNDR_ROUTE SQL_VARCHAR 14
52. SNDR_SUBID SQL_VARCHAR 35
53. RCVR_ROUTE SQL_VARCHAR 14
54. RCVR_SUBID SQL_VARCHAR 35
55. APP_SND_QL SQL_VARCHAR 4
56. APP_RCV_QL SQL_VARCHAR 4
57. TPKEY SQL_INTEGER 10

Trade agreement table (TRADSTAT)

Table 8-3: Trade agreement table

118

Number Field name Field type Field precision
1 CUSTNO SQL_VARCHAR 35

2. MAP_TRAN SQL_VARCHAR 6

3. ST03 SQL_VARCHAR 35

4. DIR SQL_VARCHAR 3

5. STAT SQL_VARCHAR 1

ECRTP

CHAPTER 8 ODBC Database Table Formats

Number Field name Field type Field precision
6. VERS SQL_VARCHAR 12
7. TBCODE SQL_VARCHAR 60
8. MBOX_NAME SQL_VARCHAR 35
9. DEST SQL_VARCHAR 100
10. FILE SQL_VARCHAR 30
11. GS NO SQL_VARCHAR 14
12. ISA_TYPE SQL_VARCHAR 5
13. SERV_CODE SQL_VARCHAR 6
14. <filler> SQL_VARCHAR 1
15. RCV_GSID SQL_VARCHAR 35
16. RCV_IDQUAL SQL_VARCHAR 2
17. RCV_IDCODE SQL_VARCHAR 35
18. ACK_RQSTD SQL_VARCHAR 1
19. ACK_RQSTD2 SQL_VARCHAR 1
20. EDI_OUT SQL_VARCHAR 1
21. DAYS SQL_VARCHAR 2
22. HOURS SQL_VARCHAR 2
23. MINUTES SQL_VARCHAR 2
24. SECONDS SQL_VARCHAR 1
25. APPL_REF SQL_VARCHAR 14
26. ACK_MSG SQL_VARCHAR 1
27. ACK_INTCH SQL_VARCHAR 1
28. RCVR_ROUTE SQL_VARCHAR 14
29. RCVR_SUBID SQL_VARCHAR 35
31. PROC_PRIOR SQL_VARCHAR 1
32. COMM_AGM SQL_VARCHAR 35
33. APP_PSWD SQL_VARCHAR 14
34. ASSOC_CODE SQL_VARCHAR 6
35. CNT_AG1 SQL_VARCHAR 3
36. CLIST_VER SQL_VARCHAR 6
37. MSG_TYPE SQL_VARCHAR 4
38. MSG_SUBID SQL_VARCHAR 14
39. MSG_SUBVER SQL_VARCHAR 3
40. MSG_SUBREL SQL_VARCHAR 3
41. CNT_AG2 SQL_VARCHAR 3
42. MSG_IMPID SQL_VARCHAR 14
43. MSG_IMPVER SQL_VARCHAR 3

Reference Guide

119

How ODBC trading partner data is stored

Number Field name Field type Field precision
44 MSG_IMPREL SQL_VARCHAR 3

45 CNT_AG3 SQL_VARCHAR 3

46 SCEN_ID SQL_VARCHAR 14

47 SCEN_VER SQL_VARCHAR 3

48. SCEN_REL SQL_VARCHAR 3

49. CNT_AG4 SQL_VARCHAR 3

50. STD_TYPE SQL_VARCHAR 2

51 APP_RCV_QL SQL_VARCHAR 4

52 TRADKEY SQL_INTEGER 10

Log database tables

The log tables contain information that is written to the log tables during
processing. Thelog database includes the transaction log table, the tracefile,
therun ID table, and an error table. The -sI runtime switch indicates that an
ODBC log database is being used.

Note The AFLD field in thelog table (TRLOG) should be an
AUTOINCREMENT field. If it is not, a provision must be made to assign a
unique numeric valueto thisfield every timearecord isinserted into thistable.

Transaction log (TRLOG)

Table 8-4: Transaction log

Number Field name Field type Field precision
1 AFLD AUTOINCREMENT 10
2 RUN_ID SQL_BIG_INT 9
3 TYP SQL_VARCHAR 1
4 RUN_DATE SQL_TIMESTAMP 14
5 ACKBY_DATE SQL_TIMESTAMP 14
6 TRANS_CODE SQL_VARCHAR 2
7 TRANS_NAME SQL_VARCHAR 6
8 TPTNER_ID SQL_VARCHAR 35
9 VERSION SQL_VARCHAR 12
10 ISA_TYPE SQL_VARCHAR 5
11 INTERCHANG SQL_VARCHAR 35
12 GROUP_NO SQL_VARCHAR 35

120

ECRTP

CHAPTER 8 ODBC Database Table Formats

Number Field name Field type Field precision
13 TRANS NO SQL_VARCHAR 35
14 APP_RCV_CD SQL_VARCHAR 35
15 APP_SND_CD SQL_VARCHAR 35
16 RECV_CODE SQL_VARCHAR 35
17 SEND_CODE SQL_VARCHAR 35
18 RECV_QUAL SQL_VARCHAR 4
19 SEND_QUAL SQL_VARCHAR 4
20 ERRORS SQL_BIGINT 10
21 STAT SQL_VARCHAR 1
22 BYTE_COUNT SQL_BIGINT 10
23 DIR SQL_VARCHAR 3
24 FLOW_LEVEL SQL_VARCHAR 5
25 RECORD_NAM SQL_VARCHAR 10
26 RECORD_NO SQL_VARCHAR 6
27 FIELD_NAME SQL_VARCHAR 15
28 SEGMENT SQL_VARCHAR 3
29 SEG_COUNT SQL_INTEGER 10
30 ELEMENT SQL_VARCHAR 2
31 SUBELEM SQL_VARCHAR 2
32 SEV_CODE SQL_VARCHAR 2
33 MSG_NO SQL_VARCHAR 5
34 MSG_TEXT SQL_VARCHAR 100
35 FILENAME SQL_VARCHAR 160
36 FIELDVAL SQL_VARCHAR 30
37 USER_IDENT SQL_VARCHAR 35
38 ACK_EXPECT SQL_VARCHAR 1
39 TR_ACK_TYP SQL_VARCHAR 1
40 T_P_IND SQL_VARCHAR 1
41 TRANS CNT SQL_INTEGER 10
42 FILEOFFSET SQL_BIGINT 10
43 RCOUNT SQL_SMALLINT 1
44 SNDR_ROUTE SQL_INTEGER 14
45 SNDR_SUBID SQL_INTEGER 35
46 RCVR_ROUTE SQL_INTEGER 14
47 RCVR_SUBID SQL_INTEGER 35
48 APPL_REF SQL_INTEGER 14
49 PROC_PRIOR SQL_INTEGER 1

Reference Guide

121

How ODBC trading partner data is stored

Number Field name Field type Field precision
50 COMM_AGM SQL_INTEGER 35
51 APP_SND_QL SQL_INTEGER 4
52 APP_RCV_QL SQL_INTEGER 4
53 ASSOC_CODE SQL_INTEGER 6
54 APP_PSWD SQL_INTEGER 14
55 CLIST_VER SQL_INTEGER 6
56 MSG_TYPE SQL_INTEGER 6
Run ID table (RUN_ID)
Table 8-5: Run ID table
Number Field name Field type Field precision
1 RUN_NO SQL_BIGINT 8

Trace File (TRNN.DAT)

When an ODBC log database is used, the trace files are stored in the file
TRNN.DAT in the current working directory (unless the -et switch is used to
specify another directory). NN isthe run number (RUN_NO field) from the
RUN_ID tablein the log database. RUN_NO isincremented for each run.

Error log (ERROR) - used with functional acknowledgements

Table 8-6: Error log

Number Field name Field type Field precision
1 RUN_ID SQL_BIGINT 9
2. ISA_SEND SQL_VARCHAR 35
3. ISA_RECV SQL_VARCHAR 35
4. GS_SEND SQL_VARCHAR 35
5. GS_RECV SQL_VARCHAR 35
6. GS_NUMBER SQL_VARCHAR 35
7. ST_NUMBER SQL_VARCHAR 35
8. TRANS NAME SQL_VARCHAR 3
9. SEGMENT SQL_VARCHAR 3
10. SEG_NUMBER SQL_VARCHAR 10
11. SEG_ERROR SQL_VARCHAR 50
12. ELEM_NO SQL_VARCHAR 2
13. SUBELEM_NO SQL_VARCHAR 2
14. ELEM_ERROR SQL_VARCHAR 50

122

ECRTP

Index

A

ACKGROUP environment variable 20
ACKINT environment variable 20
Acquire Mode, sample configuration file 63
adapter, using ECRTPasan 62
al maps, freeing in memory 22
ALL_TB_OWNERS environment variable 20
API function calls

for inbound processing 31

inbound processing, sample programs 32

inbound processing, syntax 32

Java, using to execute ECRTP 34

outbound processing, sample programs 27

outbound processing, syntax 27

required parameters, inbound processing 31
application data

inbound processing 9

locationof 9

outbound processing 9
ARE (Adapter Runtime Environment), installing 62
AUTO_INC_FIX environment variable 20

B

batch processing mode 4

C

company datafile (wixset.dat) 104
customer.mdb file (trading partner file) 104

D

Deliver Mode, sample configuration file 65
DLLs, locationof 6
-dt required parameter

Reference Guide

for inbound API function calls 32
for outbound API function calls 26

E

e-Biz 2000, using ECRTP as an adapter with 62
e-Biz Integrator, using ECRTP as an adapter with 62
ECRTP
using asan adapter 62
using in aWeb environment 72
using with e-Biz2000 62
using with e-Biz Integrator 62
using with MQSeries Integrator 62
EDI data
inbound processing 11
outbound processing 10
EDI input file
inbound processing 18
required parameter for inbound API function calls
32
EDI output file
outbound processing 17
required parameter for outbound API function calls
26
EDI standards, location of 6
EDI to EDI message transformation 2
EDI to flat file message transformation 2
EDI to XML/HTML message transformation 2
environment variables 18
ACKGROUP 20
ACKINT 20
ALL_TB_OWNERS 20
AUTO_INC FIX 20
WWIXDEBUG 21
WWIXDELIM 21
WWIXERR 21
WWIXNOCR 21
WWIXNUNG 21
WWIXQUOTE 21

123

Index

WWIXTB=(NUMBER) 21

WWIXTRANS 21
error codes

for using Java packages to execute ECRTP 39
ERRORfile (ODBC error log) 122
executablefiles, locationof 6
exit routines, user 52

F

flat fileto EDI message transformation 2
flat fileto flat file message transformation 2
flat fileto XML/HTML transformation 2
full path generated files directory, required parameter
for inbound API function calls 32
for outbound API function calls 26
inbound processing 18
outbound processing 17
full path trading partner directory parameter
inbound processing 18
outbound processing 17
function cals, API
inbound processing 31
inbound processing, sample programs 32
outbound processing, sample programs 27
syntax, inbound processing 32
syntax, outbound processing 27

G

generated map files, location of 7

inbound parameters

optiona 89
optional for ODBC database users 94
required 88

required for ODBC database users 89
inbound processing

APl functioncalls 31

applicationdata 9

EDI data 11

124

EDI input file switch 18
map name 7
parameters required for APl function calls 31
required switches 17
syntax for API functioncals 32
wrmi32.exefile 5
inbound-only optional parameters 96
ODBC database users, trading partner lookup
switches 99
trading partner lookup switches 99
incoming.err tracefile 113
installing ARE (Adapter Runtime Environment) 62

J

Java APl cdls
sample program 35
using to execute ECRTP 34
Java packages
samplecode 39
using to execute ECRTP 38
using to execute ECRTP, error codes 39

L

loading mapsinto memory 22
location of
application data 9
DLL files 6
EDI standards 6
executablefiles 6
generated map files 7
logfiles 12
trading partner files 8
logfiles 3
locationof 12
non-ODBC tracefiles 13
non-ODBC transactionlog 12
ODBC tracefiles 14
ODBC transactionlogs 13
text transaction 108

ECRTP

M

map files 3
generated, location of 7
map name
inbound processing 7
outbound processing 7
without extension switch, outbound processing
17
without file extension, required parameter for
outbound API function calls 26
maps
caching 74
development 3
development, moving from to production 4
freeing aspecificin memory 22
freeing al inmemory 22
loading into memory 22
memory
freeing aspecificmap 22
freeing al mapsin 22
110 76
loading mapsinto 22
message transformations, typesof 2
moving from map development to production 4
MQSeries Integrator, using ECRTP as an adapter with
62
multithreaded processing
owrm32c.dll file 5

N

non-ODBC
tracefiles 13
transactionlogs 12

O

ODBC
database users, optional parameters 94
databases, vs. non-ODBC databases, performance
77
error log (ERROR) 122
log files, RunID table 13
RunID table (RUN_ID 122

Reference Guide

Index

tracefile (TRNN.DAT) 122
tracefiles 14
trade agreement table (TRADSTAT) 118
trading partner company table (\WIXSET) 116
trading partner table (TP) 117
transaction log (TRLOG) 120
transactionlogs 13
optional parameters
inbound-only 96
inbound-only, for ODBC database users, trading
partner lookup switches 99
inbound-only, trading partner lookup switches 99
outbound-only 94
outbound parameters
optiona 89
optional for ODBC database users 94
outbound processing
applicationdata 9
EDI data 10
EDI output file 17
map name 7
optional parameters 89
optional parameters for ODBC database users 94
required parameters 86
required parameters, for API function calls 26
required switches 16
syntax for API functioncals 27
wrmo32.exefile 5
outgoing.err tracefile 113
owrm32c.dll file, for multithreaded processing 5
owrm32c.dll file, running ECRRPasaDLL 22

P

parameters

for ODBC and non-ODBC trading partner files 78

inbound, required for ODBC database users 89

ODBC trading partners 84

optiona 89

optional, inbound-only 96

optional, inbound-only, for ODBC database users,
trading partner lookup switches 99

optional, inbound-only, trading partner lookup
switches 99

optional, outbound-only 94

125

Index

outbound processing, required 86
required for inbound API functioncalls 31
required, inbound 88

performance
map caching 74
memory I/O 76

ODBC databases vs. non-ODBC databases 77
Process Mode, sample configuration file 67
processing modes

interactive 5
production 4
production

batch processing mode 4
interactive processing mode 5
moving from map developmentto 4
processing modes 4

R

required parameters
inbound 88
inbound processing 17
inbound, for ODBC database users 89
outbound API functioncalls 26
outbound processing 16, 86
routines, user exit 52
RUN_ID file (ODBC Run ID table) 122
RunID table, ODBC log files 13
running ECRTP from Visual Basic scripts 45

S
samples
configuration file for Acquire Mode 63
configuration file for Deliver Mode 65
configuration file for ProcessMode 67
for inbound API function calls 32
for Java APl calls 35
for Java packages 39
for outbound API function calls 27
scripts, Visual Basic, running ECRTPfrom 45
source code
for Visual Basic forms 46
for Visual Basic modules 45

126

specific map, freeing in memory 22
status code information 113
status files (status.in, status.out) 113
status.in statusfile 113
status.out statusfile 113
switches
-ol 99
required for outbound processing 16
required, for inbound processing 17
syntax
for inbound API function calls 32
for outbound API function calls 27

T

text transaction log files 108
TP file (ODBC trading partner file) 117
trace files
incoming.err, outgoing.err 113
non-ODBC 13
ODBC 14
trade agreement file (tradstat.mdb) 106
trading partner files
customer.mdb 104
locationof 8
trading partners
database 3
databasetables 116
DSN switch, inbound processing 18
DSN switch, outbound processing 17

DSN, required parameters for inbound API function

cals 32

DSN, required parameters for outbound API function

cals 27

information 104
TRADSTAT file (ODBC trade agreement table)
tradstat.mdb file (trade agreement file) 106
transaction code, outbound processing 17
transaction log files

expanded format 110

non-expanded format 109

ODBC 13
transaction/message

required parameters for outbound API function calls

26

transformations, message, typesof 2
translog.in

expanded format 110
non-expanded format 109
translog.out 12

expanded format 110
non-expanded format 109

TRLOG file (ODBC transactionlog) 120
TRNN.DAT file (ODBC tracefile) 122
types of message transformations 2

U

user exit routines 52
using
ECRTPinaWeb environment 72
Java callsto execute ECRTP 34
Java packages to execute ECRTP 38
Javato execute ECRTP 33
using ECRTP asan adapter 62
creating aconfiguration file 62
exporting a schemato the core integration product
62
installing ARE (Adapter Runtime Environment)
62

V

Visua Basic
running ECRTPfrom 45
source code for amodule 45
source code for forms 46

W

Web environment, using ECRTPin 72

WIXSET file (ODBC trading partner company table)
116

wixset.dat file (company datafile) 104

wrmi32.exe file, used for inbound processing 5

wrmo32.exe file, used for outbound processing 5

WWIXDEBUG environment variable 21

WWIXDELIM environment variable 21

Reference Guide

Index

WWIXERR environment variable 21
WWIXNOCR environment variable 21
WWIXNUNG environment variable 21
WWIXQUOTE environment variable 21
WWIXTB=(NUMBER) environment variable 21
WWIXTRANS environment variable 21

X

XML/HTML to EDI message transformation 2

XML/HTML toflat file message transformation 2

XML/HTML to XML/HTML message transformation
3

127

Index

128 ECRTP

	Reference Guide
	About This Book
	CHAPTER 1 About ECRTP
	About ECRTP
	Map development
	Moving from map development to production
	Production - processing modes
	Batch processing mode
	Interactive processing mode

	How ECRTP uses data by location, description, and use
	Executable files and DLLs
	EDI standards
	Generated map files
	Trading partner files
	Application data
	Outbound processing (application data is the input of the map)
	Inbound processing (application data is the output of the map)

	EDI data
	Outbound processing (EDI file is the output of the map)
	Inbound processing (EDI file is the input to the map)

	Log files
	Non-ODBC log files
	ODBC log files

	CHAPTER 2 Running ECRTP
	Running ECRTP as an executable
	Required switches for an outbound executable
	Required switches for an inbound executable
	Environment variables

	Running ECRTP as a DLL
	WIN API function calls for outbound processing
	Parameters required for outbound API function calls
	Syntax for outbound API function calls
	Sample programs for using outbound API function calls
	WIN API function calls for inbound processing
	Parameters required for inbound API function calls
	Syntax for inbound API function calls
	Sample programs for using inbound API function calls

	Using Java to execute ECRTP
	Using Java API calls to execute ECRTP
	Using a Java package to execute ECRTP

	Running ECRTP from a Visual Basic script
	Source code for a module
	Source code for Visual Basic form

	CHAPTER 3 User Exit Routines
	About user exit routines

	CHAPTER 4 Using ECRTP as an Adapter
	Using ECRTP as an adapter
	Configuration file for the Acquire Mode
	Configuration file for the Deliver Mode
	Configuration file for the Process Mode

	CHAPTER 5 Using ECRTP in a Web Environment
	Using ECRTP in a Web environment

	CHAPTER 6 ECRTP Performance
	Factors affecting performance
	Map caching
	Memory I/O
	Database technology

	Windows runtime parameters/switches
	Required parameters
	Outbound required parameters
	Outbound required parameters for ODBC database users

	Inbound required parameters
	Inbound required parameters for ODBC database users
	Optional parameters

	CHAPTER 7 Non-ODBC Database and File Formats
	Trading partner files
	Company data file (wixset.dat)
	Trading partner file (customer.mdb)
	Trade agreement file (tradstat.mdb)
	Log files
	Text transaction log files
	Transaction log files (translog.in and translog.out)
	Transaction log files (translog.in and translog.out)

	Trace files (incoming.err and outgoing.err)
	Status file (status.in and status.out)

	CHAPTER 8 ODBC Database Table Formats
	How ODBC trading partner data is stored
	Trading partner database tables
	Company table (WIXSET)
	Trading partner table (TP)
	Trade agreement table (TRADSTAT)
	Log database tables

	Index

