
Reference Guide

ECRTP™
Version 4.2

DOCUMENT ID: DC36333-01-0420-01

LAST REVISED: November 2004

Copyright © 1999-2004 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Application Alerts, iAnywhere Mobile Delivery, iAnywhere Mobile Document Viewer, iAnywhere
Mobile Inspection, iAnywhere Mobile Marketing Channel, iAnywhere Mobile Pharma, iAnywhere Mobile Sales, iAnywhere Pylon,
iAnywhere Pylon Application Server, iAnywhere Pylon Conduit, iAnywhere Pylon PIM Server, iAnywhere Pylon Pro, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage
Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway,
media.splash, MetaWorks, My iAnywhere, My iAnywhere Media Channel, My iAnywhere Mobile Marketing, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit,
Report-Execute, Report Workbench, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure
SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere
Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL
Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ,
STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server,
Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
TotalFix, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK
Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 05/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Reference Guide iii

About This Book .. v

CHAPTER 1 About ECRTP... 1
About ECRTP... 2

Map development.. 3
Moving from map development to production 4
Production – processing modes .. 4

How ECRTP uses data by location, description, and use................ 6
Executable files and DLLs... 6
EDI standards.. 6
Generated map files .. 7
Trading partner files .. 8
Application data... 9
EDI data .. 10
Log files ... 12

CHAPTER 2 Running ECRTP .. 15
Running ECRTP as an executable .. 16

Required switches for an outbound executable 16
Required switches for an inbound executable......................... 17
Environment variables... 18

Running ECRTP as a DLL ... 22
WIN API function calls for outbound processing 25
Using Java to execute ECRTP.. 33

Running ECRTP from a Visual Basic script 45
Source code for a module ... 45
Source code for Visual Basic form .. 46

CHAPTER 3 User Exit Routines .. 51
About user exit routines ... 52

CHAPTER 4 Using ECRTP as an Adapter .. 61

iv ECRTP

Using ECRTP as an adapter .. 62
Configuration file for the Acquire Mode 63
Configuration file for the Deliver Mode 65
Configuration file for the Process Mode................................... 67

CHAPTER 5 Using ECRTP in a Web Environment .. 71
Using ECRTP in a Web environment ... 72

CHAPTER 6 ECRTP Performance... 73
Factors affecting performance.. 74

Map caching .. 74
Memory I/O.. 76
Database technology ... 77

Windows runtime parameters/switches .. 78
Required parameters ... 86
Inbound required parameters .. 88

CHAPTER 7 Non-ODBC Database and File Formats..................................... 103
Trading partner files.. 104

Company data file (wixset.dat) .. 104
Trading partner file (customer.mdb) 104
Trade agreement file (tradstat.mdb) 106
Log files ... 108
Trace files (incoming.err and outgoing.err)............................ 113
Status file (status.in and status.out)....................................... 113

CHAPTER 8 ODBC Database Table Formats... 115
How ODBC trading partner data is stored 116

Trading partner database tables.. 116

Index.. 123

Reference Guide v

About This Book

Audience Map developers are targeted as the primary users of this book. Map
developers who use this book to manage maps must also be familiar with
the contents of the reference guide. Additional conceptual information and
examples are provided in the reference guide to assist the users who
configure the system.

How to use this book This document describes how to use ECRTP™ in a Windows
environment. ECRTP is a data transformation engine. It analyzes,
transforms, and routes messages.

The guide is organized into the following chapters:

• Chapter 1, “About ECRTP” describes how the product works.

• Chapter 2, “Running ECRTP” provides code examples on how to run
ECRTP as an executable, DLL, or from a Visual Basic script.

• Chapter 3, “User Exit Routines” provides information on how to
invoke a proprietary routine from within a map so that you can
perform additional functions called by mapping rules.

• Chapter 4, “Using ECRTP as an Adapter” explains how to use
ECRTP as a standalone adapter.

• Chapter 5, “Using ECRTP in a Web Environment” explains how to
use ECRTP for your website.

• Chapter 6, “ECRTP Performance” explains how to improve the
performance of ECRTP using map caching and memory I/O.

• Chapter 7, “Non-ODBC Database and File Formats” describes the
format of trading partner files.

• Chapter 8, “ODBC Database Table Formats” explains how ODBC
trading partner data is stored.

Related documents This section describes the available documentation.

Cross-Platform Documentation The ECRTP documentation set
includes:

• Installation Guide

vi ECRTP

• Reference Guide

• Feature Guide

• Release Bulletin

Related Documentation Other related documentation is available from New
Era of Networks, Sybase, and IBM. Refer to other documentation from each of
these companies for more detail about use of applications relevant to this
product.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks Bookshelf CD, and the
Sybase Product Manuals web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks Bookshelf CD. It is included
with your software. To read or print documents on the Getting Started CD,
you need Adobe Acrobat Reader, which you can download at no charge
from the Adobe Web site using a link provided on the CD.

• The SyBooks Bookshelf CD is included with your software. It contains
product manuals in a platform-independent bookshelf that contains fully
searchable, HTML-based documentation.

Some documentation is provided in PDF format, which you can access
through the PDF directory on the SyBooks Bookshelf CD. To view the
PDF files, you need Adobe Acrobat Reader.

Refer to the README.txt file on the SyBooks Bookshelf CD for
instructions on installing and starting SyBooks.

• The Sybase Product Manuals Web site is the online version of the
SyBooks Bookshelf CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to EBFs/Maintenance,
Technical Documents, Case Management, Solved Cases, newsgroups, and
the Sybase Developer Network.

To access the Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

 About This Book

Reference Guide vii

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The formatting conventions used in this manual are:

Formatting example To indicate

command names and
method names

When used in descriptive text, this font indicates
keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in
descriptive text

• Java package names used in descriptive text

viii ECRTP

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

myCounter variable

Server.log

myfile.txt

User Guide

Italic font indicates:

• Program variables

• Parts of input text that must be substituted

• Directory and file names.

• Book titles

sybase/bin

A forward slash (“/”) indicates generic directory
information. A backslash (“\”) applies to Windows
users only.

Directory names appearing in text display in
lowercase unless the system is case sensitive.

“About This Book” References to chapter titles have initial caps and
are enclosed within quotation marks.

File > Save Menu names and menu items are displayed in plain
text. The angle bracket indicates how to navigate
menu selections, such as from the File menu to the
Save option.

parse|put|get

Name|Address

The vertical bar indicates:

• Options available within code

• Delimiter within message examples

create table

table created

Monospace font indicates:

• Information that you enter on a command line
or as program text.

• Example output fragments

Formatting example To indicate

Reference Guide 1

C H A P T E R 1 About ECRTP

Information included in this chapter includes:

• Map development

• Moving from map development to production

• Executable files and DLLs

• EDI standards

• Generated map files

• Trading partner files

• Application data

• EDI data

• Log files

Topic Page
About ECRTP 2

How ECRTP uses data by location, description, and use 6

About ECRTP

2 ECRTP

About ECRTP
ECRTP is a data transformation engine. It analyzes, transforms, and routes
messages. There are many types of message transformations:

Figure 1-1: ECRTP flow chart"

1 EDI to flat file – interprets incoming EDI-formatted data and translates it
into a user-defined file format. Performed by inbound maps.

2 EDI to EDI – interprets incoming EDI-formatted data and translates it into
another EDI format. Performed by any-to-any maps.

3 EDI to XML/HTML – interprets incoming EDI-formatted data and
translates it into XML or HTML-formatted data. Performed by web maps
(special any-to-any maps).

4 Flat file to EDI – interprets a user-defined file and translates it to an EDI
standard or to other standard message formats. Performed by outbound
maps.

5 Flat file to flat file – interprets a user-defined file and translates it into
another user-defined format. Performed by any-to-any maps.

6 Flat file to XML/HTML – interprets a user-defined file and translates it
into XML or HTML-formatted data. Performed by web maps (special any-
to-any maps).

7 XML/HTML to EDI – interprets XML or HTML-formatted data and
translates it to an EDI standard or to other standard message formats.
Performed by web maps (special any-to-any maps).

8 XML/HTML to flat file – interprets XML or HTML-formatted data and
translates it into a user-defined format. Performed by web maps (special
any-to-any maps).

Flat File

EDI

XML/HTML

ECRTP

XML/HTML

EDI

Flat File

CHAPTER 1 About ECRTP

Reference Guide 3

9 XML/HTML to XML/HTML – interprets XML or HTML-formatted data
and translates it into XML or HTML-formatted data. Performed by web
maps (special any-to-any maps).

ECRTP consists of the following components: map files, trading partner
database, and log files.

• The map files contain the business rules and logic that define the
relationships between the incoming and outgoing data.

• The trading partner database contains information that is used to route
messages between trading partners and to select the specific map that
should be run.

• The log files maintain an audit trail of the transaction processing.

Figure 1-2: Map execution flow chart

Map development
The map development program is installed on a client workstation and includes
a client ECRTP for execution testing. Maps are developed and tested on the
client PC using the map development program and then transferred to the
Windows NT server for production. Before transferring map files to the server,
it is a good practice to create a backup copy of the files. You can use the
Archive or Copy Map functions in ECMap to create a backup.

Map Execution

Trading
Partner

LogsMaps

Data Files In Data Files Out

About ECRTP

4 ECRTP

Moving from map development to production
The map development program is installed on a client workstation and includes
a client ECRTP for execution testing. Maps are developed and tested on the
client PC using the map development program and then transferred to the
Windows NT server for production. Before transferring map files to the server,
it is a good practice to create a backup copy of the files. You can use the
Archive or Copy Map functions in ECMap to create a backup.

• Map files – copy the ASCII *.map files generated by the map development
program from the client PC to a “map directory” on the production server.
The fully qualified path to this “map directory” (also called the “generated
files directory”) is used as a switch on the command line of the ECRTP
executable or passed in as a parameter to the ECRTP DLL.

• Trading partner database – copy the trading partner database created by the
map development program from the client PC to the production server.
The location of this database is used as a switch on the command line of
the ECRTP executable or passed in as a parameter to the ECRTP DLL. If
the trading partner information is stored in a non-ODBC database, the
fully qualified path to the “trading partner directory” is used as a
switch/parameter. If the trading partner information is stored in an ODBC
database, the “trading partner DSN” (that points to the trading partner
database) is used as a switch/parameter.

Production – processing modes
The production ECRTP is installed on an NT server and executes the maps
developed with the map development program. ECRTP can be used in a
“batch” processing mode or in a “real-time” interactive mode. Illustrations of
both modes are shown below:

CHAPTER 1 About ECRTP

Reference Guide 5

Batch processing mode
Figure 1-3: Batch mode processing flow

Interactive processing mode
Figure 1-4: Interactive process mode flow

ECRTP for Windows can be invoked from a command line as an executable
file or called from within a program as a DLL.

There are two executables for the Windows version of ECRTP:

• wrmi32.exe for inbound processing

• wrmo32.exe for outbound processing

There is one DLL file for the Windows version of ECRTP:

• owrm32c.dll for multithreaded processing

This DLL file contains calls to both inbound and outbound runtime functions.

ECRTP

Data Files Out

Data Files
In Data

Message
Message ECRTP

Application
B

Application
A

S
oc

ke
t

S
oc

ke
t

How ECRTP uses data by location, description, and use

6 ECRTP

How ECRTP uses data by location, description, and
use

ECRTP uses information stored in files, databases, and memory. The user must
know, and provide some of these data locations at runtime. For example, the
fully qualified path location of specific data files must be included with certain
switches and parameters. Other data locations are known by the program or are
not used at runtime. See “Windows runtime parameters/switches” on page 78
for a detailed explanation.

ECMap has a utility available from both the Run Inbound Map and Run
Outbound Map screens that allows the user to create a batch file of
switches/parameters that correspond to the choices and entries that have been
made. When ECRTP is run, this batch file can be used to provide command line
parameters or switches, using the -pf switch.

Executable files and DLLs
The executable files and the DLLs both contain the runtime code. The program
uses Program Files/nnsy/ECRTP (or /ECMap) as the default installation
location of the executable files and DLLs. The user can install these files in
another location during the installation process, but must provide the location
of these files at runtime.

EDI standards
The program uses Program Files/nnsy/Standards as the default installation
location of the EDI Standards (X12, EDIFACT, and HL7). The user is not
required to know the location of the standards at runtime. This information is
required by the map development program during map generation, but not by
the runtime program during map execution.

CHAPTER 1 About ECRTP

Reference Guide 7

Generated map files
During map development, the program places map files in a <project
name>/<map name> directory structure. When the map files are transferred to
the production server, this same directory structure can be kept or the user can
specify a different location. The program uses the fully qualified path to the
generated map file as part of a required runtime parameter/ switch for inbound
and outbound processing. The ECRTP uses this information to dynamically
switch maps at runtime, based on the trading partner search option specified by
the user at runtime.

• In outbound processing, the map name is the second required
switch/parameter and the fully qualified path to the generated map file
directory is part of the required -dg (or -dm) switch/parameter. Although a
map name is required when the runtime program is invoked, the program
does a lookup to see whether a different map should be selected and used.
Using the internal trading partner ID information in the incoming
application data, ECRTP searches the trading partner database for a record
with a matching CUSTNO field. Once it has found a match, ECRTP
replaces the current map name with the map name in the trade agreement
table (TBCODE field) if it is different from the current map.

• In inbound processing, the fully qualified path to the generated map file
directory is part of the required -dg (or -dm) switch/parameter. ECRTP
uses either the default trading partner lookup criteria or the lookup
specified by a parameter passed in (or switch set) at runtime to
dynamically select the correct map at runtime.

Non-ODBC users have two trading partner lookup options:

Table 1-1: Non-ODBC trading partner search criteria and parameters

ODBC users have fifteen trading partner lookup options:

Trading partner search criteria Switch/parameter

group sender default

reverse - group receiver -er

How ECRTP uses data by location, description, and use

8 ECRTP

Table 1-2: ODBC trading partner search criteria and parameters

Trading partner files
The trading partner files store information about trading partners, the entities
that exchange electronic business documents. The trading partner files contain
information such as the codes that identify the sender and receiver on EDI
envelopes and the details of the trade agreements that link specific maps with
specific EDI messages/transaction sets for specific trading partners. Trading
partner information is stored in the trading partner file/database and the
wixset.dat file.

In both inbound and outbound processing, the fully qualified path to the trading
partner directory is part of the required -t switch/parameter for users with non-
ODBC trading partner files. For users with an ODBC trading partner database,
the DSN (data source name) that points to the trading partner database is part
of the required -st <DSN> parameter/switch.

Trading partner search criteria Switch/parameter

group sender default

interchange sender -e5

group and interchange sender -e2

interchange receiver -e6

group and interchange receiver -e4

group sender and receiver -e1

interchange sender and receiver -e7

group and interchange sender and receiver -e3

reverse - group receiver code -er

reverse - interchange receiver -e10

reverse - group and interchange receiver -e13

reverse - interchange sender -e11

reverse - group and interchange sender -e12

reverse - interchange sender and receiver -e8

reverse - group and interchange sender and receiver -e9

CHAPTER 1 About ECRTP

Reference Guide 9

Application data
User-defined application data is the input for outbound transaction maps, and
the output for inbound transaction maps. Application data is both the input and
the output for any-to-any maps and webmaps. Application data can be
formatted as a flat file, an ODBC database, or HTML or XML data in a text
file. Application data can be located in a file/database or in memory; if it is in
memory, it can be in a memory location or specified as standardin or
standardout.

Outbound processing (application data is the input of the map)

1 In outbound processing, the location of the output application file is
specified in the generated map file. The location of the output application
file can be overridden at runtime by entering the fully qualified path to the
substitute file name with the optional -eo switch/parameter. (In ECMap,
this information is entered as the Substitute Input Filename and the
Substitute User File Directory on the Option 2 tab of the Run Outbound
Map screen.)

2 Input application data can be read from stdin – instead of from disk – using
the -mi switch at runtime. (In ECMap, this information is entered in the
Standard Input pane on the I/O Redirect tab of the Run Outbound Map
screen.)

3 Input application data can be read from a specified memory address –
instead of from disk – using the -mp switch at runtime. (In ECMap, this
information is entered in the Internal Memory pane on the I/O Redirect tab
of the Run Outbound Map screen.)

Inbound processing (application data is the output of the map)

1 In inbound processing, the location of the input application file is specified
in the generated map file. The location of the input application file can be
overridden at runtime by entering a different fully qualified path and file
name with the optional -ei switch/parameter. (In ECMap, this information
is entered as the Substitute Output Filename and the Substitute User File
Directory on the Option 2 tab of the Run Inbound Map screen.)

2 Output application data can be written to stdout – instead of to disk – using
the -mo switch at runtime. (In ECMap, this information is entered in the
Standard Output pane on the I/O Redirect tab of the Run Inbound Map
screen.)

How ECRTP uses data by location, description, and use

10 ECRTP

3 Output application data can be written to a specified memory address,
instead of to disk, using the -mp switch at runtime. (In ECMap, this
information is entered in the Internal Memory pane on the I/O Redirect tab
of the Run Inbound Map screen.)

4 By default, output application data is appended to the existing data in the
application file at runtime. To overwrite the output data in the application
data file instead of appending it, use the -w switch at runtime.

EDI data
EDI data is the input for inbound transaction maps, the output of outbound
transaction maps. EDI data is not used in any-to-any maps.

Outbound processing (EDI file is the output of the map)

1 In outbound processing, the fully qualified path including the EDI output
file name is the first required parameter passed to the ECRTP.

2 The output EDI file can be written to stdout, instead of to disk, using the -
mo switch at runtime. (In ECMap, this information is entered in the
Standard Output pane on the I/O Redirect tab of the Run Outbound Map
screen.)

3 The output EDI file can be written to a specified memory address, instead
of to disk, using the -mp switch at runtime. (In ECMap, this information is
entered in the Internal Memory pane on the I/O Redirect tab of the Run
Outbound Map screen.)

4 Using the trading partner and trade agreement mailbox switches, output
EDI data can be routed to different locations:

• If the trading partner mailbox is not ignored (-it switch is not set),
outbound EDI data can be routed to the following mailboxes – IN (-ri
switch), OUT (-ro switch), GOOD (-rg switch), BAD (-rb switch), or
OTHER (-rt switch) – by passing in the appropriate Route EDI Type
switch to the ECRTP. (The entry in the Route EDI Type textbox on
the Option 1 tab of the Run Outbound Map screen.)

CHAPTER 1 About ECRTP

Reference Guide 11

• If the trading partner mailbox is not ignored (-it switch is not set) and
either there is no trade agreement mailbox or a trade agreement
mailbox exists and is ignored (-o switch is set), the outbound EDI data
is automatically routed to the OUT mailbox of the trading partner
directory, if no Route EDI Type switch has been passed to the ECRTP.
For ODBC users, it is placed in a file with the filename NN.EDI
(where NN is the run ID number).

• If the trading partner mailbox is ignored (–it switch is set) and either
there is no trade agreement mailbox or a trade agreement mailbox
exists and is ignored (–o switch is set), the EDI output is placed in the
full path filename specified by the first required parameter passed in
to the ECRTP

• If the trade agreement mailbox is not ignored (the–o switch is not set),
the EDI output is routed to the trade agreement mailbox and filename.
However, for ODBC users, if there is a trade agreement mailbox but
no filename, the EDI output is routed to a file with the filename
NN.EDI (where NN is the run ID number) in the trade agreement
mailbox.

Inbound processing (EDI file is the input to the map)

1 In inbound processing, the fully qualified path including the EDI input file
name is the first required parameter passed to the ECRTP.

2 The input EDI file can be written to stdin, instead of to disk, using the
-mi switch at runtime. (In ECMap, this information is entered in the
Standard Input pane on the I/O Redirect tab of the Run Inbound Map
screen.)

3 The input EDI file can be written to a specified memory address, instead
of to disk, using the -mp switch at runtime. (In ECMap, this information is
entered in the Internal Memory pane on the I/O Redirect tab of the Run
Inbound Map screen.)

4 Using the trading partner and trade agreement mailbox switches, output
EDI data can be routed to different locations:

• If the trading partner mailbox is not ignored (-it switch is not set),
inbound EDI data can be routed to the following mailboxes - IN (-ri
switch), OUT (-ro switch), GOOD (-rg switch), BAD (-rb switch), or
OTHER (-rt switch) - by passing in the appropriate Route EDI Type
switch to the ECRTP. (The entry in the Route EDI Type textbox on
the Option 1 tab of the Run Inbound Map screen.)

How ECRTP uses data by location, description, and use

12 ECRTP

• If the trading partner mailbox is not ignored (-it switch is not set) and
either there is no trade agreement mailbox or a trade agreement
mailbox exists and is ignored (-o switch is set), the inbound EDI data
is routed to the IN mailbox of the trading partner directory when no
Route EDI Type switch has been passed in to the ECRTP.

• If the trading partner mailbox is ignored (-it switch is set) and either
there is no trade agreement mailbox or a trade agreement mailbox
exists and is ignored (-o switch is set), the inbound EDI data is not
routed.

• If the trade agreement mailbox is not ignored (the -o switch is not set),
the EDI input is routed to the IN mailbox of the trade agreement
mailbox if it exists, or to the IN mailbox of the trading partner mailbox
if the trade agreement mailbox does not exist.

• If the trading partner mailbox is ignored (-it switch is set) and the trade
agreement mailbox is not ignored (-o switches is not set), the inbound
EDI data is routed to the IN mailbox of the trade agreement mailbox
if it exists, and not routed if the trade agreement mailbox does not
exist.

Log files
Non-ODBC log files include the transaction log and the trace file. The ODBC
log database includes the transaction log, the trace file, and the run ID table. If
a non-ODBC log is used, ECRTP places the log files in the same directory
where the executable is installed. If an ODBC log is used, the user must
specify the DSN (data source name) that points to the log database using the
required –sl <DSN> parameter/switch.

Non-ODBC log files

Non-ODBC transaction log

The transaction logs for non-ODBC users are stored in fixed-length files in the
directory where the executable is installed, in a file named translog.out for
outbound processing and in a file named translog.in for inbound processing.
Each time ECRTP is executed, the program appends new information to the
transaction log files. Since these files can become very large, the user must
institute a procedure to control their size by periodically deleting information.

Non-ODBC users have three choices for the creation of the transaction log:

CHAPTER 1 About ECRTP

Reference Guide 13

• No Log

• Non-Expanded Text Transaction Log

• Expanded Text Transaction Log

If the transaction log is written in the expanded format (-xl switch), additional
fields are included and the sizes of three fields are expanded to include eight-
digit dates, six-digit times, and the complete text of all error messages. The
non-expanded format has fewer fields and includes only six-digit dates, four-
digit times, and truncated versions of the error messages. See “Expanded
format” on page 110 for the layout of the non-ODBC expanded text transaction
log.)

Non-ODBC trace files

The trace files for non-ODBC users are stored in fixed-length files in the
map/generated files directory, in outgoing.err for outbound processing and
incoming.err for inbound processing.

ODBC log files

ODBC transaction log

For both outbound and inbound processing, the ODBC transaction logs are
stored in the TRLOG table in the ODBC log database. The format of TRLOG
is essentially the same as the format of the non-ODBC expanded text
transaction log file - with the exception of the first field. In TRLOG, this field
is an auto-increment field. (Section 11 contains the layout for the ODBC
transaction log.)

ODBC users have only one choice for the creation of the transaction log:

• ODBC Database Log Table

ODBC RunID table

The RunID table contains unique sequential run number associated with each
map run. This number is incremented each time that a map is executed,
regardless of whether the processing is inbound or outbound.

How ECRTP uses data by location, description, and use

14 ECRTP

ODBC trace files

The ODBC trace files for both inbound and outbound processing are stored in
a fixed-length file called TRNN.dat, where NN is the Run ID number for the
map run.

Reference Guide 15

C H A P T E R 2 Running ECRTP

Topic Page
Running ECRTP as an executable 16

Running ECRTP as a DLL 22

Running ECRTP from a Visual Basic script 45

Running ECRTP as an executable

16 ECRTP

Running ECRTP as an executable
ECRTP can be invoked from a command line, using one of two executable
programs. One of the executable programs is used for outbound and any-to-any
processing, and the other executable program is used for inbound processing.

• wrmo32.exe – executable program for outbound and any-to-any
processing

• wrmi32.exe – executable program for inbound processing

When you run ECRTP from the command line, there are required switches that
must be used, as well as optional switches that can be used. For a description
of all available switches, see “Windows runtime parameters/switches” on page
78. When ECRTP is invoked as an executable, the -mi, -mo, and -mm memory
I/O parameters can be used, but not -mp or -mx.) The required switches for
executables are described below

Required switches for an outbound executable
The switches shown below are required for outbound processing. You must use
the first three switches in the order shown. The other switches have no fixed
position, but they must be preceded by the appropriate “-letters” flag. You use
either the -st or -sl switch, depending on whether your trading partner
information is stored in a non-ODBC or an ODBC database. You are also
allowed to use the -dm switch in place of the –dt and –dg switches when the
trading partner directory and the generated files directory are the same.

wrmo32 <EDI output file> <mapname> <transaction code>
-t<transaction/message> -dt<fullpath trading partner
directory> -dg<fullpath generated files directory>

or

wrmo32 <EDI output file> <mapname> <transaction code>
-t<transaction/message> -dg<fullpath generated files
directory> -st <trading partner DSN>

When the trading partner directory and the generated files directory are the
same, the command line is shortened as follows:

wrmo32 <EDI output file> <mapname> <transaction code>
-t<transaction/message> -dm<fullpath trading
partner/generated files directory>

CHAPTER 2 Running ECRTP

Reference Guide 17

Table 2-1: Switch descriptions

Required switches for an inbound executable
The switches shown below are required for inbound processing. The first
switch is required and must always be first in the order. The other switches
have no fixed position, but they must be preceded by the appropriate “-letters”
flag. You use either the -st or –sl switch, depending on whether your trading
partner information is stored in a non-ODBC or an ODBC database. You are
also allowed to use the -dm switch in place of the –dt and –dg switches when
the trading partner directory and the generated files directory are the same.

wrmi32 <EDI input file> -dt<fullpath trading partner
directory>

-dg<fullpath generated files directory>

Switch Description

<EDI output file> The name of the EDI output file.

<map name without extension> The map name without the extension.

<transaction code> Two-character transaction code.

-t<transaction/message> Transaction set/message.

Example:

-t 837

-dt<full path trading partner directory> The fully qualified path to the trading
partner directory. For users with a non-
ODBC trading partner database, these
switches are required unless the –dm
switch is used.

Example:

-dt c:\ecdata\tptner

-dg<full path generated files directory> The fully qualified path to generated files
directory. This directory contains the
generated (map and cross-reference
tables) files. These switches are required
unless the -dm directory is used.

Example:

-dg c:\ecdata\rtp

-st<trading partner DSN> The DSN specifies the data source name
for the ODBC trading partner database.

Example:

-st "MS Access"

Running ECRTP as an executable

18 ECRTP

or:

wrmi32 <EDI input file> -dg<fullpath generated files
directory> -st <trading partner DSN>

When the trading partner directory and the generated files directory are the
same, the command line is shortened as follows:

wrmi32 <EDI input file> -dm<fullpath trading
partner/generated files directory>

Table 2-2: Switch descriptions

Environment variables
In addition to command line switches, you must also set the following
environment variables listed in Table 2-3, which affect program performance.

Switch Description

<EDI input file> The name of the EDI input file.

-dt<full path trading partner directory> The fully qualified path to the trading
partner directory. For users with a non-
ODBC trading partner database, these
switches are required unless the –dm
switch is used.

Example:

 -dt c:\ecdata\tptner

-dg<full path generated files directory> The fully qualified path to generated files
directory. This directory contains the
generated (map and cross-reference
tables) files. These switches are required
unless the “-dm” directory is used.

Example:

-dg c:\ecdata\rtp

-st<trading partner DSN> The DSN specifies the data source name
for the ODBC trading partner database

Example:

-st "MS Access"

CHAPTER 2 Running ECRTP

Reference Guide 19

In the current trading partner database, there are two levels for storing
information, Interchange Level and Transaction Set Level. As ECRTP
processes each transaction, a lookup is done on the trading partner file and if a
transaction set is not defined in the trade agreement table, no acknowledgement
flags are set for that transaction. Therefore, a bad transaction set id error cannot
be reported in the 997 Acknowledgement transaction that is transmitted back
to the originator of the interchange. If there was an option in the Trading
Partner database to set acknowledgement flags at the Functional Group Level
instead of the Transaction Set level, the ACK_EXPECT field in the TRLOG
database could be set correctly based on the value of the flag at the Functional
Group Level.

Running ECRTP as an executable

20 ECRTP

Table 2-3: Environment variable descriptions

Environment variable Description

ACKINT ECRTP checks for the existence of the ACKINT
environment variable. If this environment variable
exists and has been set to any value, then when the
trading partner record is not found during an inbound
run, the ACK_EXPECT log value will be a ’1’ instead
of '0'.

ACKGROUP ECRTP checks for the existence of an ACKGROUP
environment variable. If this environment variable
exists and has been set to any value, then when the
TRADSTAT record is not found during an inbound
run, the ACK_EXPECT log value will be a '1' instead
of '0'.

ALL_TB_OWNERS ECRTP checks for the existence of an
ALL_TB_OWNERS environment variable. If this
environment variable exists and has been set to any
value, then a table can be accessed by the code as long
as the current user has sufficient access permission.

AUTO_INC_FIX For databases that do not support an auto-increment
field, setting the AUTO_INC_FIX environment
variable provides a mechanism by which the TPKEY
(TP table), TRADKEY (TRADSTAT table), and
ALFD (TRLOG table) fields are incremented
whenever a record is added to the TP, TRADSTAT, and
TRLOG tables.

For DB2, the sytax for AUTO_INC_FIX is:
auto_inc_fix = NOT NULL GENERATED
ALWAYS AS IDENTITY

PADEDI Pads numeric fields with leading zeros or
alphanumeric field with trailing spaces to ensure
that data meets minimal field length requirements.

In Windows, set the Variable Name to PADEDI. Set
the Variable Value to Y.

In UNIX, open a shell and run the following
commands:

ksh: set PADEDI=YES ; export PADEDI

sh: set PADEDI=1 ; export PADEDI

csh: setenv PADEDI 1

CHAPTER 2 Running ECRTP

Reference Guide 21

WWIXTB=(NUMBER) The number set by wwixtb is the maximum number of
records that a cross reference file can have and still be
loaded into memory. The default wwixtb value is
10000. This is equivalent to the command line
parameter “-r number”.Example: Set wwixtb=200

This environment variable is only available on NT and
Window Platforms. For UNIX, the default is 10000,
and the
–r switch must be used to change maximum value.

WWIXQUOTE This optional delimited file environment variable can
be set to SPACE or NONE or PIPE or any character.
Default delimited file quote is a double quote.

WWIXDELIM This optional delimited file environment variable can
be set to SPACE or PIPE (where PIPE is “|”) The
default delimited file delimiter is a comma. Example:
Set WWIQUOTE=' changes delimited file quote to
single quote.

WWIXNUNG If set, then no UNG EDIFACT segment is written for
outbound maps (same as -u switch).

WWIXTRANS If set to no, no badtrans.nmt is produced for inbound
maps (equivalent to the -b command line parameter).

WWIXERR If set, then the inbound control numbers from trading
partners are compared with previous inbound control
numbers from the same trading partner. If the inbound
control numbers are not being incremented by 1 from
the previous control number, then an error message is
written. (no equivalent switch)

WWIXDEBUG If set to any value, then temporary files created during
the processing of “Multiple Files Yes” run will not be
deleted for outbound maps. This switch is available to
help analyze/debug map problems (same as “-db”
switch).

WWIXNOCR If set to any value, then a segment delimiter of newline,
will be written as newline only. Normally on the PC, a
newline segment delimiter is written as <return,
newline>. On UNIX, this is not a valid switch because
newline segment delimiters are always written as just a
newline (no equivalent switch).

Environment variable Description

Running ECRTP as a DLL

22 ECRTP

Running ECRTP as a DLL
There is one DLL file that can be used to run ECRTP: owrm32c.dll. This file
is for single-threaded and multithreaded applications, and contains code for
both inbound and outbound maps.

The owrm32c.dll file has three inbound run API functions and three outbound
run API functions.

There are also several API functions that allow you to:

• Load a map into memory

• Free a specific map in memory

• Free all maps in memory

For the owrm32c.dll file, there is a corresponding LIB file that can be used to
link implicitly to the DLL from a C program or Java program and a DEF file
for information only.

The DLL file and its related files are described below.

CHAPTER 2 Running ECRTP

Reference Guide 23

Table 2-4: DLL file descriptions

DLL file and related files Description

• owrm32c.dll

• owrm32c.lib

• owrm32c.def

This is a single-threaded and
multithreaded Visual C++ compiled DLL
with ODBC rule functions. It can be
loaded dynamically via an API during
runtime. It can also be linked implicitly
from a C++ program via owrm32c.lib.
owrm32c.def provides information only.

When you run owrm32c.dll, the result of
the run returns codes 1–5:

• 1 – correct

• 2 – transaction skipped error, –
checking trace file (incoming.err or
outgoing.err)

• 3 – transaction user abort error –
checking trace file (incoming.err or
outgoing.err)

• 4 – transaction user stop error –
checking trace file (incoming.err or
outgoing.err)

• 5 – transaction fatal error P checking
trace file (incoming.err or
outgoing.err).

If the return code is 2–5, run the map
again with long trace set by adding -c and
-l at the end of the mapswitch. Or check
the long trace in the Run Map screen in
ECMap.

• callrtp.dll

• callrtp.lib (For

 Windows NT only)

This DLL contains JNI functions and acts
as a wrapper around owrm32c.dll. From
Windows NT, it can be linked implicitly
from a C++ program via callrtp.dll. A
callrtp.def file is not included.

Running ECRTP as a DLL

24 ECRTP

When you invoke ECRTP as a DLL, there are required parameters that must be
used, as well as optional parameters/switches that can be used. For a
description of all available switches, see “Windows runtime
parameters/switches” on page 78. When ECRTP is invoked as a DLL, all of
the memory I/O parameters can be used.

The prototypes for the WINAPI calls (available in toolpak.h) are shown below:

 typedef struct {

char *filename; /* Pointer to name of
 Directory\Filename-in MAP File */

char **paddr; /* Double pointer to memory address
of data */

long *pbytes; /* Pointer to Number of bytes of data
in memory */

long *pbuflen; /* Pointer to Number of bytes allocated
in memory */} MEMIOSTRUCT;

extern "C" {
__declspec(dllimport) int WINAPI OUTBOUNDRunCmd(char
*cmd);
__declspec(dllimport) int WINAPI INBOUNDRunCmd(char
*cmd);__declspec(dllimport) int WINAPI
OUTBOUNDMAPPER(int argc, char **argv);
__declspec(dllimport) int WINAPI INBOUNDMAPPER(int
argc, char **argv);

toolpak.h Contains the prototypes for the following
six WIN API calls that are available
within each DLL:

• OUTBOUNDMAPPER

• OUTBOUNDRunCmd

• OUTRun

• INBOUNDMAPPER

• INBOUNDRunCmd

• INRun

There are also four JAVA API functions
provided:

• JINBOUNDRunCmd

• JOUTBOUNDRunCmd

• JINRun

• JOUTRun

DLL file and related files Description

CHAPTER 2 Running ECRTP

Reference Guide 25

__declspec(dllimport) int WINAPI OUTRun(LPSTR,
MEMIOSTRUCT **);
__declspec(dllimport) int WINAPI INRun(LPSTR,
MEMIOSTRUCT **);

/* load map into memory ahead of map running*/
/* note: LOADMAP can be called multiple times to load
many maps*/
/* -map_dir: 0 for inbound , 1 for outbound */
/* -MulMaps: how many maps to save in memory, 1 to N */
/* upper limit N is dependent on memory available */
__declspec(dllimport) int WINAPI LOADMAP(char
*dir_path, char * name, int map_dir, int MulMaps);

/* free specific map in memory*/

__declspec(dllimport) int WINAPI FREEMAPNAME(char
*map_name);

/* clear all maps in memory*/
/* it's calling program's responsibility to call
FREEALLMAP to free all maps in memory if calling
program does not pass -xf switch to rtp engine. If -xf
switch passes into rtp engine rtp will free all maps
in memory at the end of this run */

__declspec(dllimport) void WINAPI FREEALLMAP();}

The prototypes for the Java API calls are shown below:

• int JINBOUNDRUNCmd(String Str);

• int JOUTBOUNDRunCmd(String Str);

• int JINRun(String[] starr);

• int JOUTRun(String[] strarr);

WIN API function calls for outbound processing
The outbound ECRTP functions convert data from a flat file, ODBC database
table, or XML/ HTML data to a standard EDI message format. Three API
function calls are available for running outbound transaction maps:

extern "C" _declspec(dllimport) int WINAPI
OUTBOUNDMAPPER(int argc, char **argv

extern "C" _declspec(dllimport) int WINAPI

Running ECRTP as a DLL

26 ECRTP

OUTBOUNDRunCmd(char *cmd);

extern "C" _declspec(dllimport) int WINAPI
OUTRun(LPSTR, MEMIOSTRUCT **)

The parameters passed to the DLL for outbound processing have the same
values as the switches used on the command line of the executable program for
outbound maps—wrmo32.exe.

• For OUTBOUNDMAPPER, the runtime parameters are passed in using
an array. “argc” is the number of cells in the array “argv”. The first
“argv[0]” cell contains the function name (OUTBOUNDMAPPER) and
the remaining cells contain the runtime parameters in the required order
shown below.

• For OUTBOUNDRunCmd, the runtime parameters are passed in as a
string, in the required order shown below. “cmd” is the string containing
the runtime parameters.

• For OUTRun, the runtime parameters are passed in as a string, in the
required order shown below. “LPSTR” is the string containing the
runtime parameters. “MEMIOSTRUCT” is a pointer to an array of
MEMIOSTRUCT structures that are used to redirect memory I/O files.

Parameters required for outbound API function calls

The following parameters are required for outbound processing via a DLL:

Table 2-5: Switch descriptions

Switch Description

<EDI output file> The name of the EDI output file.

map name without file extension Map name without file extension.

-t<transaction/message> Transaction set/message

-dt Required if -st is not used.

-dg<full path generated files directory> The fully qualified path to generated files
directory. This directory contains the
generated (map and cross-reference
tables) files. These switches are required
unless the “-dm” directory is used.

Example:

 -dg c:\ecdata\rtp

CHAPTER 2 Running ECRTP

Reference Guide 27

Syntax for outbound API function calls

The three following syntax options are available for outbound processing via a
DLL:

ret = OUTBOUNDMAPPER(int argc, char **argv);

The required parameters are passed as an array for OUTBOUNDMAPPER.

ret = OUTBOUNDRunCmd(char *cmd);

The parameters are passed as one command string for OUTBOUNDRunCmd.
This string argument can be generated automatically in ECMap by filling in the
appropriate the textboxes on the Run Outbound Map screen and clicking the
Create Batch button.

ret = OUTRun(char *argv[1], MEMIOSTRUCT **ppmystruct);

The parameters are passed as one command string for OUTRun. This string
argument can be generated automatically in ECMap by filling in the
appropriate the textboxes on the Run Outbound Map screen and clicking the
Create Batch button.

Sample programs for using outbound API function calls

A sample setup for the OUTBOUNDMAPPER API call is shown below:

int ret, iarg;
char **argpp;
char *argp[12];
argp[0] = "OUTBOUNDMAPPER";
argp[1] = "EDIFILE"; /* full EDI output file name */
argp[2] = "837MAP"; /* file name of initial map */
argp[3] = "PO"; /* transaction code */
argp[4] = "-t"; /* message/transaction set parameter */
argp[5] = "837"; /* message/transaction set */
argp[6] = "-dt"; /* trading partner directory parameter
*/

-st<trading partner DSN> The -st option is required if the -dt option
is used. The DSN specifies the data
source name for the ODBC trading
partner database

Example:

-st "MS Access"

Switch Description

Running ECRTP as a DLL

28 ECRTP

argp[7] = "../tptner"; /* trading partner directory */
argp[8] = "-dg"; /* generated files directory

 parameter */
argp[9] = "../rtp"; /* generated files (ie. map)

 directory */
argp[10] = "-st"; /* trading partner DSN parameter */
argp[11] = "MS Access"; /* trading partner DSN */
iarg = 12 ;
argpp = &argp[0];ret = OUTBOUNDMAPPER(iarg, argpp);

A sample setup for the OUTBOUNDRunCmd API call is shown below:

 int ret;ret = OUTBOUNDRunCmd("EDIFILE 837MAP PO -t 837
–dt ../tptner –dg ../rtp”);

A sample setup for the OUTRun API call is shown below:

// memiodemo.cpp
// This is a memory I/O demo program. This is an example
// of an OUTRun call where the input file and output
// file are both memory files. Thisprogram illustrates
// how to call a map and have that map read a file
// from memory instead of disk. It also illustrates how
// to call a map so that the map will write a file to
// memory instead of disk. // The construction of second
// parameter, the MEMIOSTRUCT, is the key to passing
// memory files. The run map switches are passed in as
// the first parameter.
#include <windows.h>
#include <stdio.h>
/* Memory file structure */
typedef struct {

char *filename; /* Pointer to name of
Directory\Filename - in MAP File */

char **paddr; /* Double pointer to memory address
of data */

long *pbytes; /* Pointer to Number of bytes of
data in memory */

long *pbuflen; /* Pointer to Number of bytes
allocated in memory */

} MEMIOSTRUCT

extern "C" {
__declspec (dllimport) int WINAPI OUTRun(LPSTR,
MEMIOSTRUCT **);
}
int main(int argc, char* argv[])
{

CHAPTER 2 Running ECRTP

Reference Guide 29

 int ret;
char myfile1[100], myfile2[100];
 char *membuf1, membuf2;
 long membytes1, membytes2;
 long membuflen1, membuflen2;
 FILE *fp;
MEMIOSTRUCT mystruct, mystruct2;
MEMIOSTRUCT *ppmystruct[3];
ppmystruct[0] = &mystruct;
ppmystruct[[1] = &mystruct2;
ppmystruct[2] = (MEMIOSTRUCT *)NULL; /* Must be
terminated with a NULL pointer */

 /* Allocate memory for the map input file */
if((membuf1 = (char *)malloc(100000 * sizeof(char)))

 == NULL
) exit(1);
 /* Load data into the memory */
 if((fp = fopen("d:\\tmp\\850out\\data\\

850_udf.txt", "rb")) == NULL
)
 {
 exit(1);
 }
 else
 {

int i = 0;
char ch;
 while((ch = fgetc(fp)) != EOF)
membuf1[i++] = ch;
 if(ch == EOF) membuf1[i + 1] = '\0';
 fclose(fp);

 }
 /* Find the number of bytes of valid data */
 membytes1 = strlen(membuf1);
/* The directory and file name are exactly the same as
in the map(case sensitive) */
 strcpy(myfile1, "c:\\test\\data\\850_udf.txt");

ppmystruct[0]->filename = myfile1;
ppmystruct[0]->paddr = &membuf1;
ppmystruct[0]->pbytes = &membytes1;

 ppmystruct[0]->pbuflen= &membuflen1;

/* Set up the MEMIOSTRUCT parameters for the Output
memory File */
/* The directory and file name are exactly the same as
in the map(case sensitive) */

Running ECRTP as a DLL

30 ECRTP

 strcpy(myfile2, "c:\\test\\data\\850_out.txt");
ppmystruct[1]->filename = myfile2;

/* For files that are being written to, one can set the
 base char pointerto null, and ECRTP will allocate space
for any output data and place the address of the
allocated space in membuf2. Similarly, if the output
memory was preallocated and the ECRTP needed more space,
the ECRTP would reallocate the space and place any
modified memory address back in membuf2. */

membuf2 = (char *) NULL;

ppmystruct[1]->paddr = &membuf2;

/* set number bytes to output memory written to 0 */
/* Note, if one is starting with allocated space, the
new output would be appended at the value of membytes2
*/

membytes2 = 0L;

ppmystruct[1]->pbytes = &membytes2;

/* Set the number of bytes already allocated for the
output file to zero */

ppmystruct[1]->pbuflen= &membuflen2;

 /* The run map switches are passed in as one parameter
argv[1] */

ret = OUTRun(argv[1], ppmystruct);

 free membuf1; /* free input file buffer */

 /* Note at this point if the map wrote any data to the
output file, then membuf2 will point to the memory that
was allocated, membytes2 will contain the number of
bytes written. */

/* it is the user’s responsibility to free the output
file */

if(membuf2 != (char *) NULL)
free(membuf2);return ret;

}

CHAPTER 2 Running ECRTP

Reference Guide 31

WIN API function calls for inbound processing

The inbound ECRTP functions convert data from a standard EDI message
format to a flat file, ODBC database table, or XML/HTML data. Three API
function calls are available for running inbound transaction maps:

extern "C" -declspec(dllimport) int WINAPI
INBOUNDMAPPER(int argc, char

extern "C" -declspec(dllimport) int WINAPI
INBOUNDRunCmd(char *cmd);

extern "C" -declspec(dllimport) int WINAPI INRun(LPSTR,
MEMIOSTRUCT**)

The parameters passed to the DLL for inbound processing have the same
values as the switches used on the command line of the executable program for
inbound maps—wrmi32.exe.

• For INBOUNDMAPPER, the runtime parameters are passed in using an
array. “argc” is the number of cells in the array “argv”. The first “argv[0]”
cell is the function name (INBOUNDMAPPER) and the remaining cells
contain the runtime parameters in the required order shown below.

• For INBOUNDRunCmd, the runtime parameters are passed in as a string,
in the required order shown below. “cmd” is the string containing the
runtime parameters.

• For INRun, the runtime parameters are passed in as a string, in the required
order shown below. “LPSTR” is the string containing the runtime
parameters. “MEMIOSTRUCT” is a pointer to an array of
MEMIOSTRUCT structures that are used to redirect memory I/O files.

Parameters required for inbound API function calls

The following parameters are required for inbound processing via a DLL:

Running ECRTP as a DLL

32 ECRTP

Table 2-6: Switch descriptions

Syntax for inbound API function calls

The three following syntax options are available for inbound processing via a
DLL:

ret = INBOUNDMAPPER(int argc, char **argv);

The required parameters are passed as an array for INBOUNDMAPPER.

ret = INBOUNDRunCmd(char *cmd);

The parameters are passed as one command string for INBOUNDRunCmd.
This string argument can be generated automatically in ECMap by filling in the
appropriate the textboxes on the Run Inbound Map screen and clicking the
Create Batch button.

ret = INRun(char *argv[1], MEMIOSTRUCT **ppmystruct);

The parameters are passed as one command string for InRun. This string
argument can be generated automatically in ECMap by filling in the
appropriate the textboxes on the Run Inbound Map screen and clicking the
Create Batch button.

Sample programs for using inbound API function calls

A sample setup for the INBOUNDMAPPER API call is shown below:

int ret, iarg;char **argpp;char *argp[8];

Switch Description

<EDI input file> The name of the EDI input file.

-dt Required if -st is not used.

-dg<full path generated files directory> The fully qualified path to generated files
directory. This directory contains the
generated (map and cross-reference
tables) files. These switches are required
unless the “-dm” directory is used.

Example:

-dg c:\ecdata\rtp

-st<trading partner DSN> The -st option is required if the -dt option
is used. The DSN specifies the data
source name for the ODBC trading
partner database

Example:

-st "MS Access"

CHAPTER 2 Running ECRTP

Reference Guide 33

argp[0] = "INBOUNDMAPPER";
argp[1] = "../data/EDIFILE"; /* full EDI input file

 name */
argp[2] = "-dt"; /* trading partner directory

 parameter */
argp[3] = "../tptner"; /* trading partner directory */
argp[4] = "-dg"; /* generated files directory

 parameter */
argp[5] = "../rtp"; /* generated files directory */
argp[6] = “-st”; /* trading partner DSN parameter */
argp[7] = “MS Access”; /* trading partner DSN */
iarg = 8;
argpp = &argp[0];

ret = INBOUNDMAPPER(iarg, argpp);

A sample setup for the INBOUNDRunCmd API call is shown below:

int ret;
ret = INBOUNDRunCmd("../data/EDIFILE -dt ../tptner -dg
../rtp “);

A sample setup for the INRun API call is shown below:

int ret;
MEMIOSTRUCT mystruct[2];
MEMIOSTRUCT *pmystruct=&mystruct[0];
MEMIOSTRUCT *ppmystruct[2];
ppmystruct[0]=pmystruct;
ppmystruct[1]=(MEMIOSTRUCT*)NULL;

ret = INRun("../data/EDIFILE -dt ../tptner -dg
../rtp “;ppmystruct);

Using Java to execute ECRTP
You can use Java in two ways to execute ECRTP:

• Using Java API calls (requires C++ programming and is very flexible)

• Using a Java package (does not require C++ programming but is less
flexible)

First, “Using Java API calls to execute ECRTP” on page 34 is described below
followed by “Using a Java package to execute ECRTP” on page 38.

Running ECRTP as a DLL

34 ECRTP

Using Java API calls to execute ECRTP

This section describes how to use a Java program to call the Java-callable
version of the ECRTP. CALLRTP.DLL was created using jni (Jave Native
Interface) and OWRM32C.DLL contains ECRTP C/C++ API calls. Both are
compiled as fully reentrant, multi-threaded .dlls using VC++. The Java classes
MYAPP and RTP call CALLRTP.DLL. CALLRTP.DLL is a wrapper around
OWRM32C.DLL and were compiled using JDK 1.3, as follows:

• rtp.class was created by javac RTP.java

• MYAPP.class was created by javac MYAPP.java

The Java program calls RTP.java and passes in two parameters:

• 1, 2, 3 or 4

• Command string (that contains the parameters outlined earlier under either
Parameters Required for Outbound API Function Calls or Parameters
Required for Inbound API Function Calls) or a string array for memory
I/O API functions.)

Based on the first parameter passed in, the program calls one of four Java
functions—JINBOUNDRunCmd, JOUTBOUNDRunCmd, JINRun, or
JOUTRun.

• If the first parameter is a “1” for an inbound map, the program calls the
JAVA function JINBOUNDRunCmd and passes to it the second parameter
to run the inbound map. JINBOUNDRunCmd then calls the API
INBOUNDRunCmd and again passes the command string.

• If the first parameter is a “2” for an outbound map, the program calls the
JAVA function JOUTBOUNDRunCmd and passes the second parameter
to run the outbound map. JOUTBOUNDRunCMD then calls the API
OUTBOUNDRunCmd and again passes the command string.

• If the first parameter is a “3” for an inbound map using memory I/O
variables, the program calls the Java function JINRun and passes the
second parameter to run the inbound map. The second parameter contains
the command string, input/output memory file names, and the data of the
memory files to run the specified inbound map. JINRun then calls the API
INRun and again passes the command string.

CHAPTER 2 Running ECRTP

Reference Guide 35

• If the first parameter is a “4” for an outbound map using memory I/O
variables, the program calls the Java function JOUTRun and passes the
second parameter to run the outbound map. The second parameter
contains the command string, input/output memory file names, and the
data of the memory files to run the specified outbound map. JOUTRun
then calls the API OUTRun and again passes the command string.

These Java calls automatically interface with CALLRTP.DLL that in turn calls
OWRM32C.DLL. OWRM32C.DLL executes the map and returns a value that
indicates the success of the map run. The CALLRTP.DLL contains a JNI (Java
Native Interface) which calls an API function in OWRM3C.DLL.
OWRM3C.DLL returns an integer from 0 to 5 indicating the degree of success
of the map run. The value is returned to CALLRTP.DLL.

Sample program for using a Java API call

public class MYAPP
{
 public static void main(String[] args)
 {
 int ret;
 // Declare and initialize the RTP JAVA Class.
 RTP myrtp;
 myrtp = new RTP();

 // Convert the first argument as the case number.
 Integer num = Integer.valueOf(args[0]);
 switch (num.intValue()) {
 case 1:
 System.out.println("one");
 System.out.println("args[1] = " + args[1]);
 // Run an inbound map, pass the command switches

 as the parameter.
 ret = myrtp.JINBOUNDRunCmd(args[1]);
 System.out.println("ret = " + ret);
 break;

 case 2:
 System.out.println("two");
 System.out.println("args[1] = " + args[1]);
 // Run an outbound map, pass the command switches
as the parameter.
 ret = myrtp.JOUTBOUNDRunCmd(args[1]);
 System.out.println("ret = " + ret);
 break;

Running ECRTP as a DLL

36 ECRTP

 case 3:
 System.out.println("three");
 // Prepare the string array as the JINRun() parameter
to run 271in map.
 String[] strarr_inrun =
 {
 // Command line switches for 271in map.
 "d:\\maps\\271in\\271gdtst.txt -dg
d:\\maps\\271in -dt d:\\maps\\271in -du d:\\maps\\271in
-xl -l -it -o -wx 1 -n -w -b -m 271IN -mx 2",
 // Input file name to be substituted with
memory buffer.
 "d:\\maps\\271in\\271gdtst.txt",
 // Input data of 271in map.
 "ISA*00* *00* *01*9012345720000
*01*9088877320000
*001030*1030*U*00401*000000001*0*T*:!\n" +

"GS*HB*901234572000*908887732000*20001030*1615*1*X*004
010X092!\n" +
 "ST*271*0001!\n" +
 "BHT*0022*11*3920394930203*20001030*1615!\n" +
 "HL*1**20*1!\n" +
 "NM1*PR*2*BLUE CROSS BLUE
SHIELD*****PI*9012345918341!\n" +
 "PER*IC*ARTHUR
JONES*TE*6145551212*FX*6145551214!\n" +
 "HL*2*1*21*1!\n" +

"NM1*1P*1*JOHNSON*BARBARA****SV*223447582752!\n" +
 "REF*1J*500!\n" +
 "HL*3*2*22*1!\n" +

"TRN*2*12345678900987654321768958473*1311234567*500!\n
" +
 "NM1*IL*1*DAVIS*SAM*T***MI*223344!\n" +
 "REF*18*223453424!\n" +
 "N3*PO BOX 123!\n" +
 "N4*CINCINNATI*OH*43017*US!\n" +
 "PER*IC**HP*6147562231*WP*6145221212!\n" +
 "DMG*D8*19720513*F!\n" +
 "INS*Y*18*******F*N!\n" +

 "DTP*102*D8*001030!\n" +
 "EB*1*CHD*1*GP**6*100.00****N*N!\n" +
 "HSD*DY*100*DA*163395*6*100*1*A!\n" +
 "REF*18*4654746868565!\n" +

CHAPTER 2 Running ECRTP

Reference Guide 37

 "DTP*193*D8*001030!\n" +
 "III*BF*11!\n" +
 "LS*2120!\n" +
 "NM1*13*1*SMITH*MUFFY****24*111222333!\n" +
 "N3*157 WEST 57TH STREET!\n" +
 "N4*COLUMBUS*OH*43017*US!\n" +
 "PER*IC*MAGGIE MCGILLICUTTY*TE*6145551245!\n" +
 "PRV*AT*9K*3920394930203!\n" +
 "LE*2120!\n" +
 "SE*31*0001!\n" +
 "GE*1*1!\n" +
 "IEA*1*000000001!\n",
 // Output file name.
 "d:\\maps\\271in\\dbo_EL_ENVOY",
 // An empty string that indicates the previous
 // file name is substituted with output memory
file.
 ""
 };
 // Run an inbound map with Memory I/O, pass a

 string array as the parameter.
 ret = myrtp.JINRun(strarr_inrun);
 System.out.println("ret = " + ret);
 System.out.println("strarr_inrun[4] = " +

 strarr_inrun[4]);
 break;

 case 4:
 System.out.println("four");
 // Prepare the string array as the JOUTRun()
parameter to run 270out map.
 String[] strarr_outrun =
 {
 // Command line switches for 270out map.
 "d:\\maps\\270out\\270out.x12 270OUT HS -t 270
-xl -dg d:\\maps\\270out -dt d:\\maps\\270out -du
d:\\maps\\270out -xl -l -it -o -wx 1 -mx 2",
 // Input file name to be substituted with
memory buffer.
 "D:\\maps\\270out\\dbo_EL_ENVOY",
 // Input data of 270out map.
 "0394930203 SAM
 DAVIS PO BOX 123
 CINCINNATI OH
 43017 19720513 F223344
 1 100BLUE CROSS BLUE SHIELD 9012345918341

Running ECRTP as a DLL

38 ECRTP

JOHNSON 223447582752
 AT SMITH
 \n",
 // Output file name.

"d:\\maps\\270out\\270out.x12",
 // An empty string that indicates the previous

// file name is substituted with output memory
file.
 ""
 };
 // Run an outbound map with Memory I/O, pass
 // a string array as the parameter.
 ret = myrtp.JOUTRun(strarr_outrun);

 System.out.println("ret = " + ret);

 System.out.println("strarr_outrun[4] = " +
strarr_outrun[4]);

 break;

 default:
 System.out.println("Invalid option!");
 break; } }}

Using a Java package to execute ECRTP

For the ECRTP Java API on a PC, we are now providing the JAVA class
(RTP.class) and the wrapper DLL (callrtp.dll) rather than the source code.
Before using your Java API with your map, you need to follow these steps.

1 At your classpath, extract the javartp.jar (i.e. jar xf javartp.jar).

2 Copy callrtp.dll and owrm32c.dll from %classpath%\com\sybase\vn\lib
directory to your PATH directory. You can add a PATH directory (c:\lib,
for example) through your System Properties, Advanced Tab.

3 Check and modify the drive letter in the demo files to point to the hard
drive where your map files are located.

4 Use the provided demo files (demo1.bat, demo2.bat, etc.) and their
referenced sample maps to test with your ECRTP Java API before you try
to run your own maps.

5 Modify DEMOAPP.java or build your own application with ECRTP Java
API and reference the maps you want to run.

CHAPTER 2 Running ECRTP

Reference Guide 39

Following is a table of the error codes for the wrapper DLL:

Table 2-7: Error code description

Sample code for a Java package

Below is the sample code for DEMOAPP.java.

/*
 DEMOAPP.java
 This Java Program demonstrates how to use RTP Java
Class(RTP.class).

 There are 4 API functions provided by RTP Java Class.
 1. int JINBOUNDRunCmd(String Str);

Error code Description

100 An exception occurred when calling the
API for ECRTP. This indicates that
something may be wrong in your
OWRM32C.DLL. For example, the
version may be incorrect.

101 An exception occurred before the API for
ECRTP was called. Exceptions other
than 103-109 will be caught by this.

102 An exception occurred after the API for
ECRTP was called. Exceptions other
than 103-109 will be caught by this.

103 The incorrect number of elements were
entered in a string array.

104 An exception occurred when the UTF
character strings were released.

105 An exception occurred when getting the
string array elements. System resource
problem.

106 An exception occurred when a memory
I/O structure pointer array was allocated.
System resources problem.

107 An exception occurred when the memory
I/O structure pointer for memory files
was initialized. System resources
problem.

108 An exception occurred when the output
was set. System resource problem.

109 An exception occurred when deleting
memiostruct elements.

Running ECRTP as a DLL

40 ECRTP

 2. int JOUTBOUNDRunCmd(String Str);
 3. int JINRun(String[] strarr);
 4. int JOUTRun(String[] strarr);

The 3rd and 4th functions call Memory I/O functions. The
parameter of these two functions is a string array. The
very first element of the string array is the command
line switches for running the map. The following
elements are grouped by two elements. the first one is
the file name that will be substituted with a memory
file. The second one will be the data of the memory file.
If the memory file is an input file, put the input data
in this string. If the memory file is an output file,
use an empty string to indicate it. Multiple
input/output memory files can be specified in this
string array.

 DEMOAPP Class contains 4 cases that use each of
the 4 RTP Java API functions. Each case is called by a
separate batch file that is below after this listing.
 Case 1: Run an inbound map, pass the command switches
as the parameter.
 Case 2: Run an outbound map, pass the command
switches as the parameter.
 Case 3: Run an inbound map with Memory I/O, pass
a string array as the parameter.
 Case 4: Run an outbound map with Memory I/O, pass
a string array as the parameter.
 */

package com.sybase.vn.demo;
import com.sybase.vn.javartp.RTP;

public class DEMOAPP
{
 public static void main(String[] args)
 {
 int ret;
 // Declare and initialize the RTP Java Class.
 RTP myrtp;
 try
 {
 myrtp = new RTP();
 }
 catch(Throwable t)
 {
 System.err.println("Exception caught: " +

CHAPTER 2 Running ECRTP

Reference Guide 41

t.getMessage());
 return;
 }
 // Convert the first argument as the case number.
 Integer num = Integer.valueOf(args[0]);
 switch (num.intValue()) {
 case 1:
 System.out.println("one");
 System.out.println("args[1] = " + args[1]);
 // Run an inbound map, pass the command switches
as the parameter.
 ret = myrtp.JINBOUNDRunCmd(args[1]);
 System.out.println("ret = " + ret);
 break;

 case 2:
 System.out.println("two");
 System.out.println("args[1] = " + args[1]);
 // Run an outbound map, pass the command switches
as the parameter.
 ret = myrtp.JOUTBOUNDRunCmd(args[1]);
 System.out.println("ret = " + ret);
 break;

 case 3:
 System.out.println("three");
 // Prepare the string array as the JINRun()
parameter to run 271in map.
 String[] strarr_inrun =
 {
 // Command line switches for 271in map.
"d:\\classes\\com\\sybase\\vn\\maps\\271in\\271gdtst.t
xt -dg d:\\classes\\com\\sybase\\vn\\maps\\271in -dt
d:\\classes\\com\\sybase\\vn\\maps\\271in -du
d:\\classes\\com\\sybase\\vn\\maps\\271in -xl -l -it
-o -wx 1 -n -w -b -m 271IN -mx 2",
 // Input file name to be substituted with
memory buffer.
 "d:\\classes\\com\\sybase\\vn\\maps\\
271in\\271gdtst.txt",
 // Input data of 271in map.
 "ISA*00* *00* *01*9012345720000
 *01*9088877320000
*001030*1030*U*00401*000000001*0*T*:!\n" +

"GS*HB*901234572000*908887732000*20001030*1615*1*X*004

Running ECRTP as a DLL

42 ECRTP

010X092!\n" +
 "ST*271*0001!\n" +
 "BHT*0022*11*3920394930203*20001030*1615!\n" +
 "HL*1**20*1!\n" +
 "NM1*PR*2*BLUE CROSS BLUE
SHIELD*****PI*9012345918341!\n" +
 "PER*IC*ARTHUR
JONES*TE*6145551212*FX*6145551214!\n" +
 "HL*2*1*21*1!\n" +
"NM1*1P*1*JOHNSON*BARBARA****SV*223447582752!\n" +
 "REF*1J*500!\n" +
 "HL*3*2*22*1!\n" +

"TRN*2*12345678900987654321768958473*1311234567*500!\n
" +
 "NM1*IL*1*DAVIS*SAM*T***MI*223344!\n" +
 "REF*18*223453424!\n" +
 "N3*PO BOX 123!\n" +
 "N4*CINCINNATI*OH*43017*US!\n" +
 "PER*IC**HP*6147562231*WP*6145221212!\n" +
 "DMG*D8*19720513*F!\n" +
 "INS*Y*18*******F*N!\n" +
 "DTP*102*D8*001030!\n" +
 "EB*1*CHD*1*GP**6*100.00****N*N!\n" +
 "HSD*DY*100*DA*163395*6*100*1*A!\n" +
 "REF*18*4654746868565!\n" +
 "DTP*193*D8*001030!\n" +
 "III*BF*11!\n" +
 "LS*2120!\n" +
 "NM1*13*1*SMITH*MUFFY****24*111222333!\n" +
 "N3*157 WEST 57TH STREET!\n" +
 "N4*COLUMBUS*OH*43017*US!\n" +
 "PER*IC*MAGGIE MCGILLICUTTY*TE*6145551245!\n" +
 "PRV*AT*9K*3920394930203!\n" +
 "LE*2120!\n" +
 "SE*31*0001!\n" +
 "GE*1*1!\n" +
 "IEA*1*000000001!\n",
 // Output file name.
 "d:\\classes\\com\\sybase\\vn\\maps\\
271in\\dbo_EL_ENVOY",
 // An empty string that indicates the previous
 // file name is substituted with output memory
file.
 ""
 };

CHAPTER 2 Running ECRTP

Reference Guide 43

 // Run an inbound map with Memory I/O, pass a
string array as the parameter.
 ret = myrtp.JINRun(strarr_inrun);
 System.out.println("ret = " + ret);
 System.out.println("strarr_inrun[4] = " +
strarr_inrun[4]);
 break;

 case 4:
 System.out.println("four");
 // Prepare the string array as the JOUTRun()
parameter to run 270out map.
 String[] strarr_outrun =
 {
 // Command line switches for 270out map.

"d:\\classes\\com\\sybase\\vn\\maps\\270out\\270out.x1
2 270OUT HS -t 270 -xl -dg
 d:\\classes\\com\\sybase\\vn\\maps\\270out -dt
 d:\\classes\\com\\sybase\\vn\\maps\\270out -du
 d:\\classes\\com\\sybase\\vn\\maps\\270out -xl -l -it
-o -wx 1 -mx 2",
 // Input file name to be substituted with
memory buffer.
 "d:\\classes\\com\\sybase\\vn\\maps
\\270out\\dbo_EL_ENVOY",
 // Input data of 270out map.
 "0394930203 SAM
 DAVIS PO BOX 123
 CINCINNATI OH
 43017 19720513 F223344

1 100BLUE CROSS BLUE SHIELD 9012345918341
 JOHNSON 223447582752
 AT SMITH
 \n",
 // Output file name.

"d:\\classes\\com\\sybase\\vn\\maps\\270out\\270out.x1
2",
 // An empty string that indicates the previous file.
 // name is substituted with output memory file.
 ""
 };
 // Run an outbound map with Memory I/O, pass a
 // string array as the parameter.

Running ECRTP as a DLL

44 ECRTP

 ret = myrtp.JOUTRun(strarr_outrun);
 System.out.println("ret = " + ret);
 System.out.println("strarr_outrun[4] = " +
strarr_outrun[4]);
 break;
 default:
 System.out.println("Invalid option!");
 break;
 }
 }
}

Below is the contents of demo1.bat, which runs an inbound map and passes the
command switches as the parameters.

REM demo1.batjava com.sybase.vn.demo.DEMOAPP 1

"d:\\classes\\com\\sybase\\vn\\maps\\271in\\271gdtst.t
xt -dg
d:\\classes\\com\\sybase\\vn\\maps\\271in -dt
 d:\\classes\\com\\sybase\\vn\\maps\\271in -du
d:\\classes\\com\\sybase\\vn\\maps\\271in -xl -l -it -
o -wx 1 -n -w -b -m
271IN -mx 2"
pause

Below is the contents of demo2.bat, which runs an outbound map and passes
the command switches as the parameters.

REM demo2.batjava com.sybase.vn.demo.DEMOAPP 2
"d:\\classes\\com\\sybase\\vn\\maps\\270out\\270out.x1
2 270OUT HS -t 270 -xl -dg
d:\\classes\\com\\sybase\\vn\\maps\\270out -dt
d:\\classes\\com\\sybase\\vn\\maps\\270out -du
d:\\classes\\com\\sybase\\vn\\maps\\270out -xl -l -it -
o -wx 1 -mx 2"
pause

Below is the contents of demo3.bat, which runs an inbound map with Memory
I/O and passes a string array as a parameter.

REM demo3.batjava com.sybase.vn.demo.DEMOAPP 3pause

Below is the contents of demo4.bat, which runs an outbound map with
Memory I/O and passes a string array as a parameter.

REM demo4.bat
java com.sybase.vn.demo.DEMOAPP 4
pause

CHAPTER 2 Running ECRTP

Reference Guide 45

Running ECRTP from a Visual Basic script
You can execute ECRTP from a Visual Basic script. For Visual Basic, there are
four API functions to call an EDI server directly. The commands are:

• INBOUNDRUNCmd

• OUTBOUNDRUNCmd

• INRUN

• OUTRUN

Use INBOUNDRUNCmd and OUTBOUNDRUNCmd for inbound and
outbound mapping. Use INRUN and OUTRUN for Memory I/O inbound and
outbound mapping.

Visual Basic developers can design and build their own forms and module to
call either of those API functions. Here is a code example for a module and a
form.

Source code for a module

Note As a VB developer, you need to built a similar module code to declare
function and user type. It will be very helpful if you know how to call a
function inside a dynamic link library. You need to know some concepts about
Microsoft automatic data types and how to pass a string through VB and C/C++
code to do Memory I/O with Visual Basic.

'call INBOUNDRunCmd() of owrm32c.dll
Declare Function inBound _
 Lib "owrm32c" _
 Alias "INBOUNDRunCmd" _
 (ByVal commandline As String) As Integer

 Declare Function outBound _
 Lib "owrm32c" _
 Alias "OUTBOUNDRunCmd" _
 (ByVal commandline As String) As Integer
 ''user defined type to match struct memio in rtp engine
Type MEMIOSTRUCT
 filename As String 'file name for memory redirection
 paddr As String 'data string to in or out
 pbytes As Long 'size of data string in or out

Running ECRTP from a Visual Basic script

46 ECRTP

 pbuflen As Long 'set to vbNullString
End Type
'call vb_OUTRUN () in rtpdll.dll which will call
OUTRun() of owrm32c.dll
Declare Function vb_OUTRUN _
 Lib "vbrtpdll" _
 Alias "OUTRun_vb" _
 (ByVal commandline As String, ByRef ioStruct_in As
MEMIOSTRUCT, ByRef ioStruct_out As MEMIOSTRUCT) As
Integer
'call vb_INRUN () in rtpdll.dll which will call INRun
() of owrm32c.dllDeclare Function vb_INRUN _
 Lib "vbrtpdll" _
 Alias "INRun_vb" _
 (ByVal commandline As String, ByRef ioStruct_in As
MEMIOSTRUCT, ByRef ioStruct_out As MEMIOSTRUCT) As
Integer

Source code for Visual Basic form
Visual Basic developers can design their own forms to call the above alias
functions. Here is an example of code:

Option Explicit
 Private Sub ExitBut_Click()
 End
End Sub

Private Sub INBOUNDRunCmdBut_Click(
)'call INBOUNDRunCmd () in owrm32c.dll
 Dim ret As Integer
 Dim inString As String
 ’user’s mapping commandline
 inString = "c:\maps\MapTestings\850in\s-850.x12 -dt
 c:\maps\MapTestings\850in -dg
c:\maps\MapTestings\850in -du
c:\maps\MapTestings\850in -eo
c:\maps\MapTestings\850in\850udf.txt -b -z -l -it -c"
 ret = inBound(inString)
 MsgBox " The return value is " & ret
End Sub

Private Sub OUTBOUNDRunCmdBut_Click()
 Dim ret As Integer
 Dim outString As String

CHAPTER 2 Running ECRTP

Reference Guide 47

 ‘user’s mapping commandline
 outString = "c:\maps\MapTestings\850out\850o.x12
850OUT XX -t 850 -dt c:\maps\MapTestings\850out -dg
c:\maps\MapTestings\850out -du
c:\maps\MapTestings\850out -ei
c:\maps\MapTestings\850out\s-850.udf -z -it -l"
 ret = outBound(outString)
 MsgBox "The return value is " & ret
End Sub

Private Sub OUTRUNBut_Click()
 Dim ret As Integer 'return value from INRUN/OUTRUN
 Dim memBuf_in As String 'input buffer
 Dim memBytes_in As Long 'size of input buffer
 Dim memBuflen_in As Long 'length of input buffer

 Dim memBuf_out As String 'output buffer
 Dim memBytes_out As Long '0
 Dim memBuflen_out As Long 'size of buffer

 Dim myStruct_in As MEMIOSTRUCT 'input memiostruct
 Dim myStruct_out As MEMIOSTRUCT 'output memiostruct
 Dim map_switches As String

 'open a file and load data into input buffer (memory)
 Dim myfile_in As String 'for test purpose
 Dim myfile_out As String 'for test purpose
 memBuf_in = String(1000, vbNullChar)
 ‘input disk file
 myfile_in =
"L:\WINDOWS\dbase\t850out\ver221\normal.x12"
 Open myfile_in For Input As #1
 memBuf_in = Input(LOF(1), #1)
 memBytes_in = Len(memBuf_in)
 memBuflen_in = 1000
 Close #1
 myStruct_in.filename = myfile_in
 myStruct_in.paddr = memBuf_in
 myStruct_in.pbuflen = memBuflen_in
 myStruct_in.pbytes = memBytes_in

'define output buffer and enough buffer size
'rtp engine will reallocate memory space and it is
illegal in VB
 ‘out put disk file
 myfile_out = "I:\TEST\850BP\DATA\PO_HEADI.SEQ"

Running ECRTP from a Visual Basic script

48 ECRTP

 memBuflen_out = 2000 'define 2000 here
 memBuf_out = String(2000, vbNullChar) 'clear string
 memBytes_out = 0 'no appending
 myStruct_out.filename = myfile_out
 myStruct_out.paddr = memBuf_out
 myStruct_out.pbuflen = memBuflen_out
 myStruct_out.pbytes = memBytes_out

 'set map switches
 map_switches = String(255, vbNullChar)
 ‘user’s mapping commandline
 map_switches =
"L:\WINDOWS\dbase\t850in\ver221\normal.x12 -dg
L:\WINDOWS\dbase\t850in\ver221 -dt
L:\WINDOWS\dbase\t850in\ver221 -n -it -o -w -l -b -wx
0 -du L:\WINDOWS\dbase\t850in\ver221"
 'call vb_OUTRUN() in rtpdll.dll
 ret = vb_OUTRUN(map_switches, myStruct_in,
myStruct_out)
 MsgBox "The return value is " & ret

 Dim final_out As String
 'output
 final_out =
"L:\WINDOWS\dbase\t850in\ver221\PO_HEADI.SEQ"
 Open final_out For Binary As #2
 Put #2, , myStruct_out.paddr
 Close #2
 End Sub

Private Sub INRUN1_Click()
 Dim ret As Integer 'return value from
INRUN/OUTRUN
 Dim memBuf_in As String 'input buffer
 Dim memBytes_in As Long 'size of input buffer
 Dim memBuflen_in As Long 'length of input
buffer
 Dim memBuf_out As String 'output buffer
 Dim memBytes_out As Long 'size of data already
in buffer
 Dim memBuflen_out As Long 'size of output buffer
 Dim myStruct_in As MEMIOSTRUCT 'input struct
 Dim myStruct_out As MEMIOSTRUCT 'output struct
 Dim map_switches As String

 Dim myfile_in As String 'test purpose

CHAPTER 2 Running ECRTP

Reference Guide 49

 Dim myfile_out As String 'test purpose
 Dim final_out As String 'test purpose

 'open a file and load all data into memory
 memBuf_in = String(1000, vbNullChar)
 myfile_in =
"L:\WINDOWS\dbase\t850in\ver221\normal.x12"
 Open myfile_in For Input As #1
 memBuf_in = Input(LOF(1), #1)
 memBytes_in = Len(memBuf_in)
 memBuflen_in = 1000
 Close #1
 myStruct_in.filename = myfile_in
 myStruct_in.paddr = memBuf_in
 myStruct_in.pbuflen = memBuflen_in
 myStruct_in.pbytes = memBytes_in
 'output buffer myfile_out =
"I:\TEST\850BP\DATA\PO_HEADI.SEQ"
 memBuflen_out = 2000
 memBuf_out = String(2000, vbNullChar)
 memBytes_out = 0
 myStruct_out.filename = myfile_out
 myStruct_out.paddr = memBuf_out
 myStruct_out.pbuflen = memBuflen_out
 myStruct_out.pbytes = memBytes_out

map_switches = String(255, vbNullChar)
 ‘user’s mapping commandline
 map_switches =
"L:\WINDOWS\dbase\t850in\ver221\normal.x12 -dg
L:\WINDOWS\dbase\t850in\ver221 -dt
L:\WINDOWS\dbase\t850in\ver221 -du
L:\WINDOWS\dbase\t850in\ver221 -n -it -o -w -l -b -wx
0 "

 'call vb_OUTRUN() in rtpdll.dll
 ret = vb_INRUN(map_switches, myStruct_in,
myStruct_out)
 MsgBox "The return value is " & ret

 final_out =
"L:\WINDOWS\dbase\t850in\ver221\PO_HEADI.SEQ"
 Open final_out For Binary As #2
 Put #2, , myStruct_out.paddr
 Close #2
End Sub

Running ECRTP from a Visual Basic script

50 ECRTP

Reference Guide 51

C H A P T E R 3 User Exit Routines

Topic Page
About user exit routines 52

About user exit routines

52 ECRTP

About user exit routines
User exit routines allow a user to invoke a proprietary routine from within a
map, providing a way for a user to perform additional functions called by
mapping rules. The user exit routine behaves like a call-back mechanism in
event-driven programs. The following files are provided to help the user create
user exit routines.

• userex32.dll

• userexit.cpp

• fcnv.cpp

• userex32.lib

• userex32.def

The USEREX32.DLL file provided with the program contains one User Exit
Function FCNV. The FCNV function will read a file that has lines terminated
by CRLF or LF and write them out to another file with fixed line length
specified by the cpRegBuf input parameter. To call the FCNV function, the
User Exit CpuExitName must be equal to “FCNV”, and the cpRegBuf
parameter should contain the new line length, the old file name and the new file
name. These values should be separated by one space in the cpRegBuf input
parameter. If the parameter CpuExitName does not equal “FCNV” then the
supplied program will simply ring a bell and return.

To have the USEREX32.DLL file perform other functions, the user must write
his or her own “user exit” routine and insert the code in the appropriate place
in the USEREXIT.C file, which is supplied with ECRTP. The user then
compiles the modified USEREXIT.C file to create a new USEREX32.DLL.

The USEREX32.LIB file allows the user to implicitly link to the DLL from a C
program. The DEF file provides information. The C program is recompiled to
create the DLL file after the user’s code has been inserted.

The USEREX32.DEF file is furnished for informational purposes only.

The annotated example provided with the installation is shown below. This
example represents a very simple routine, which the user is expected to modify.
The user’s code should be inserted where the code says “ring bell – user will
add code here”.

/*--
* UserExit - Windows DLL and Unix shared library.
* This file and userdll.c and userexit.def are used for
* userexit.DLL.

CHAPTER 3 User Exit Routines

Reference Guide 53

* This file alone is used for UNIX shared library
* userexit.sl
*---
* USEREXIT function.
* Parameters:
* char cpuExitName - pointer to dynamically allocated
* storage which contains the routine name.
* This pointer should not be written to.
* This value can be used to determine what
* action should be done by USEREXIT() function.
* short sLanguage - will contain a 1 for Cobol or a 2
* for 'C' language.
* char *cpRegBuf - pointer to input buffer which
* has been loaded with the value of a Memvar,
* Record Field or Record Buffer.
* For 16 bit program the maximum record buffer
* length is 3200 characters. For 32 bit program
* the maximum record buffer length is 10000
* characters.
* char cpRetBuf - pointer to output buffer, where the
* routine output of Memvar, Record Field or
* Record Buffer should be placed.
*
* Note cpRegBuf and cpRetBuf have been set to
* point to the same large buffer. Empty input
* cpRegBuf before writing to output cpRetBuf.
*
*
* char *cpStatus - pointer to dynamically allocated
* storage which has been space filled and null
* terminated to actual length of memvar of
* status memvar. The user exit routine should
* be careful not to store more information
* in the field than it can hold.
*
* parameter returns: cpRetbuf, and cpStatus.
* return value: none
---/
ifndef NO_PROTO
 void fcnv(char *, char *);
#else
 void fcnv();
endif

#ifndef
 UNIXextern "C" __declspec (dllexport)

About user exit routines

54 ECRTP

void
WINAPI
USEREXIT(char *cpUExitName, short sLanguage, char
*cpRegBuf,
 char *cpRetBuf, char *cpStatus)
#else
#if defined(__cplusplus)
extern "C"
#endif
void
ifndef NO_PROT
OUSEREXIT(char *cpUExitName, short sLanguage, char
*cpRegBuf,
 char *cpRetBuf, char *cpStatus)
else
USEREXIT(cpUExitName, sLanguage, cpRegBuf,cpRetBuf,
cpStatus)
char *cpUExitName;
short sLanguage;
char *cpRegBuf, *cpRetBuf, *cpStatus;
endif
#endif
{
 if(stricmp(cpUExitName, "FCNV") == 0)
 {
 fcnv(cpRegBuf, cpStatus);
 }
 else
 {
#ifndef UNIX
 MessageBeep(-1); /* ring bell - user will add
code here */
#else
 write(0,"\007", 1); /* ring bell - user will add
code here */
#endif
 }
}
/*********** File Conversion Program ******************
 ** UNWRAP.CPP - 11/11/98 **

--
** THIS PROGRAM CONVERTS A SOURCE FILE OF VARIOUS LENGTH
**
** RECORDS INTO THE USER'S DESIRED SIZE RECORDS. **
** PARAMETER 1 - USER'S DESIRED RECORDS SIZE. **
** PARAMETER 2 - SOURCE FILE NAME **

CHAPTER 3 User Exit Routines

Reference Guide 55

** PARAMETER 3 - DESTINATION FILE NAME (CREATED BY
PROGRAM) **
---/
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <ctype.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <io.h>
#include <process.h>
#include <windows.h>
#include <winbase.h>
#include <time.h>
#include <stddef.h>
#include <memory.h>

/* ErrCondTYP */
#define NoErrCOND 1 /* normal completion, no

 errors detected */
#define OpenErrCOND 7 /* attempt opening an already

 open file, */
#define FileMissingCOND 10 /* operating system can't

find file */
#define OtherCOND 11 /* other unspecified error

 conditions */
#ifndef NO_PROTO
lastchr(char *strng, int len);
#else
lastchr();
#endif

#ifndef NO_PROTO
void fcnv(char *xcmdline, char *cpStatus);
#else
void fcnv();
#endif
#define IMAX_BUF 1024
#ifndef NO_PROTO
void fcnv(char *xcmdline, char *cpStatus)
#else
void fcnv(xcmdline, cpStatus)
char *xcmdline, *cpStatus
;#endif
{

About user exit routines

56 ECRTP

 char *argvp[3];
 unsigned char rdBfr[(IMAX_BUF + 2)];
 char arg1[302], arg2[302], arg3[302], buf[302];
 long rsize, lcnt, jcnt;

 FILE *srcfp, *dstfp;
 int at_eof, ich, k = 0, len, j, indx = -1;

 argvp[0] = arg1;
 argvp[1] = arg2;
 argvp[2] = arg3;
 memset(arg1, 302, '\0');
 memset(arg2, 302, '\0');
 memset(arg3, 302, '\0');
 len = lastchr(xcmdline, (int)strlen(xcmdline));
 if(len == 0)
 {
 sprintf(cpStatus, "%ld", OtherCOND);
 return;
 }
 while(k < len && indx < 2)
 {
 while (xcmdline[k] == ' ' && k < len)
 k += 1;
 j = 0;
 if(k < len)
 {
 indx += 1;
 /* Group single-quoted parameter as one argvp[]
entry. */
 if (xcmdline[k] == '\'')
 {
 k += 1; /* skip first ' */
 while (xcmdline[k] != '\'' && j < 300 && k
 < len) buf[j++] = xcmdline[k++];
 k += 1; /* skip last ' */
 }
 /* Group double-quoted parameter as one argvp[]
entry. */
 else if (xcmdline[k] == '\"')
 {
 k += 1; /* skip first " */
 while (xcmdline[k] != '\"' && j < 300 && k
< len)
 buf[j++] = xcmdline[k++];
 k += 1; /* skip last " */

CHAPTER 3 User Exit Routines

Reference Guide 57

 }
 /* Normal argvp[] entry processing. */
 else while (xcmdline[k] != ' ' && j < 300 && k
< len)
 {
 buf[j++] = xcmdline[k++];
 }
 buf[j] = '\0';
 strcpy(argvp[indx], buf);
 }
 }
 /**------------------------------**
 ** Verify input parameter count **
 ------------------------------/
 if(indx != 2)
 {
#ifdef UNIX
 printf("\nTHE FCNV UserExit REQUIRES THREE

PARAMETERS:\n");
 printf("PARAMETER 1 = NEW RECORD SIZE\n");
 printf("PARAMETER 2 = SOURCE FILE NAME\n");
 printf("PARAMETER 3 = DESTINATION FILE NAME\n");
#endif
 sprintf(cpStatus, "%ld", OtherCOND);
 return;
 } // END IF on number of parameters
 /**--**
 ** Convert the new record size to integer **
 --/
 rsize = atol(arg1);

 /**-----------------------**
 ** Open source file name **
 -----------------------/
 if ((srcfp = fopen(arg2, "rb")) == (FILE *) NULL)
 {
#ifdef UNIX
 printf("ERROR OPENING FILE %s - Program
Terminated\n", argv[2]);
#endif
 sprintf(cpStatus, "%ld", FileMissingCOND);
 return;
 }
 /**-------------------------**
 ** Create destination file **
 -------------------------/

About user exit routines

58 ECRTP

 if((dstfp = fopen(arg3, "wb")) == (FILE *) NULL)
 {
#ifdef UNIX
 printf("ERROR CREATING DESTINATION FILE %s -

Program Terminated\n", arg3);
#endif
 sprintf(cpStatus, "%ld", OtherCOND);
 return;
 }
 at_eof = 0;
 /* lcnt is index into rdBfr */
 /* jcnt is index up to size of wrap and inserted CR
LF */
 jcnt = lcnt = 0L;

memset(rdBfr, 0, (IMAX_BUF + 2));

 while(at_eof == 0)
 {
 /**------------------**
 ** Read source file **
 ------------------/
 if((ich = fgetc(srcfp)) == EOF && feof(srcfp))
 {
 at_eof = 1;
 continue;
 }
 if(ich == 10 || ich == 13)
 {
 continue;
 }
 rdBfr[lcnt++] = ich;
 jcnt += 1;
 if(jcnt >= rsize)
 {
#ifndef UNIX
 rdBfr[lcnt++] = 13;
#endif
 rdBfr[lcnt++] = 10;
 jcnt = 0;
 }

 if(lcnt >= IMAX_BUF)
 {
 if((fwrite(rdBfr, (size_t) lcnt, (size_t) 1,
dstfp)) != 1)
 {

CHAPTER 3 User Exit Routines

Reference Guide 59

 fclose(srcfp);
 fclose(dstfp);
 unlink(arg3);
 sprintf(cpStatus, "%ld", OtherCOND);
 return;
 }
 lcnt = 0;
 }
 }
 if(jcnt != 0) /* Need to pad out line */
 {
 while(jcnt < rsize)
 {
 rdBfr[lcnt++] = '\0';
 jcnt++;
 if(lcnt >= IMAX_BUF)
 {
 if((fwrite(rdBfr, (size_t) lcnt, (size_t)
1, dstfp)) != 1)
 {
 fclose(srcfp);
 fclose(dstfp);
 unlink(arg3);
 sprintf(cpStatus, "%ld", OtherCOND);
 return;
 }
 lcnt = 0;
 }
 }

#ifndef UNIX
 rdBfr[lcnt++] = 13;
#endif
 rdBfr[lcnt++] = 10;
 }
 if(lcnt > 0)
 {
 if((fwrite(rdBfr, (size_t) lcnt, (size_t) 1,
dstfp)) != 1)
 {
 fclose(srcfp);
 fclose(dstfp);
 unlink(arg3);
 sprintf(cpStatus, "%ld", OtherCOND);
 return;
 }

About user exit routines

60 ECRTP

 }
 fclose(srcfp);
 fclose(dstfp);
 sprintf(cpStatus, "%ld", NoErrCOND);
 return;
}
 /* END main */
/*--*/
int
#ifndef NO_PROTO
lastchr(char *strng, int len)
#else
lastchr(strng, len)
char *strng;
int len;
#endif
{
 int i;
 char *ptr;

 if(len)
 {
 i = len -1;
 for(ptr = strng+i; ptr >= strng; ptr--)
 {
 if(*ptr != ' ' && *ptr != '\0') break;
 }
 i = (int) (ptr - strng + 1);
 return(i);
 }
 else
 return(0);
}

Reference Guide 61

C H A P T E R 4 Using ECRTP as an Adapter

Information included in using ECRTP is:

• Configuration file for the Acquire Mode

• Configuration file for the Deliver Mode

• Configuration file for the Process Mode

Topic Page
Using ECRTP as an adapter 62

Using ECRTP as an adapter

62 ECRTP

Using ECRTP as an adapter
ECRTP can be used as a plug-in adapter (called EDIadapter) with these core
integration products:

• e-Biz 2000

• e-Biz Integrator

• MQSeries Integrator

To use ECRTP as an adapter, you must perform the following additional
actions that are not required when ECRTP is used as a stand-alone product.

• Install ARE (Adapter Runtime Environment) from the New Era of
Networks EDI Products CD onto the same server that has ECRTP. See the
ECRTP Installation Guide for instructions on how to install the ARE.

• Export a schema to the core integration product. The schema can be
created in ECMap and exported to the other product’s schema repository,
or the format of a schema that already exists in the other product’s schema
repository can be manually entered in ECMap. The finished schema tells
the integration product which adapter to run (in this case, the EDIadapter),
provides specific queue-related information, and supplies information
required by the EDIadapter. (Refer to the ECMap Reference Guide for a
detailed explanation of the utility that creates and exports a schema.)

• Create a configuration file. In ECMap, click on the Create Adapter
Configuration File button in the Run Inbound Map, Run Outbound Map,
or Run Any-to-Any Map Option 2 screens. When this button is clicked,
ECMap creates a partial configuration file, which must then be modified
based on a variety of factors. The configuration file will either be in
Acquire, Deliver, or Process Mode. The type of configuration file depends
on the map that is run. After the button is clicked, use Windows Explorer
to locate the configuration file, open the file, and modify it.

Example configuration files for the Acquire Mode, the Deliver Mode, and the
Process Mode are shown below. Note that the keys and values in the
configuration files are case sensitive. For complete details of how to use the
EDIadapter, see the Adapter Runtime Environment User Guide.

CHAPTER 4 Using ECRTP as an Adapter

Reference Guide 63

Configuration file for the Acquire Mode
After you click on Run Map, remove all of the “#” comment symbol in column
one for every line except the two sentences below (“# The following is a
sample configuration file.” and “# You must modify the settings to work for
your instance.”). After you remove the comment symbols, modify the lines that
have instructions listed below.

Adapter
clash.avoid=TRUE
continue.format.exists=TRUE
adapter=EDIAdapter
mode=ACQUIRE
data=NDO

The following is a sample configuration file.
You must modify the settings to work for your
instance.

#maximum_num_retries=2
#transport.out.name=OUTQ
#failurequeue.name=FAIL

#output.serializer.factory=XMLSerializer_Factory
#output.serializer.library=adk33xmlsd
#output.serializer.factory=NCFSerializer_Factory
#output.serializer.library=adk33ncfsd
#prefix=<prefix> # Obtain prefix name from the

configuration file generated
 # from Export Schema to MQSI, e-Biz
 # Integrator, or e-Biz 2000.
#msg.type=<prefix>.IC.<schema name> # Obtain the

prefix name from the file
 # configuration file generated from
 # Export Schema to MQSI, e-Biz

Integrator, or e-Biz 2000.)

#transport.context.name=ADKContext

#OTContext.ADKContext
#NNOT_CTX_DEFAULT_TIL_ID=FAIL
#NNOT_CTX_TMID=MQSeriesTM
#NNOT_CTX_ENFORCE_TX=TRUE

#TransactionManager.MQSeriesTM
#NNOT_SHARED_LIBRARY=oti21mqstm
#NNOT_FACTORY_FUNCTION=NNOTMQSeriesTXManagerFactory
#NN_TM_MQS_QMGR=TEST_QMGR # Obtain the Queue

Manager name from MQSeries

Using ECRTP as an adapter

64 ECRTP

#Session.ADKSession
#NNOT_SHARED_LIBRARY=dbt21mqs
#NNOT_FACTORY_FUNCTION=NNMQSSessionFactory
#NNMQS_SES_OPEN_QMGR=TEST_QMGR # Enter the Queue

Manager name from
MQSeries.

#TRANSPORT.OUTQ
#NNOT_SHARED_LIBRARY=dbt21mqs
#NNOT_FACTORY_FUNCTION=NNMQSQueueFactory
#NNOT_TIL_OPEN_SESSION_ID=ADKSession
#NNOT_TIL_OPEN_TSI=TEST_OUT # Enter the local

queue to which the message
is being put in
MQSeries.

#Transport.FAIL
#NNOT_SHARED_LIBRARY=dbt21mqs
#NNOT_FACTORY_FUNCTION=NNMQSQueueFactory
#NNOT_TIL_OPEN_SESSION_ID=ADKSession
#NNOT_TIL_OPEN_TSI=TEST_FAIL # Enter the local

queue that serves as
the failure queue in
MQSeries.

#Session.FileSession

#NNOT_SHARED_LIBRARY=nnfile
#NNOT_FACTORY_FUNCTION=NNSesFileFactory
#NN_SES_MSG_SIZE=1000
#NN_SES_SERVER=bsmith1

EDIAdapter # The lines below are unique to
each map generated by the Run
Map screen.
rtp.mapswitches="C:\Program
Files\nnsy\ECMap\maps\NDO2\EDI_TO_NDO\training.x12"
-xl -dg "C:\Program
Files\nnsy\ECMap\maps\NDO2\EDI_TO_NDO" -dt "C:\Program
Files\nnsy\ECMap\maps\NDO2\EDI_TO_NDO" -n -it -o -l
-m EDI_TO_NDO -b -du "C:\Program
Files\nnsy\ECMap\maps\NDO2\EDI_TO_NDO" -wx 1

rtp.acquire_dir=I

In some cases, an additional line must be added to the AcquireNDO
configuration file:

CHAPTER 4 Using ECRTP as an Adapter

Reference Guide 65

rtp.acquire_dir="1" (or "0")

When the EDIadapter is used to read XML data, a change must be made to the
configuration file. ECRTP uses outbound processing to read XML data, and the
EDIadapter uses the Deliver Mode for outbound processing. However, when
EDI data is being converted to an NDO data tree, the EDIadapter normally uses
the Acquire Mode. In order for the EDIadapter to read and process the XML
input data, a line (that was added only for the EDIadapter Acquire Mode) must
be changed. The line rtp.acquire_dir=”1” must be changed to
rtp.acquire_dir=”0”.

Configuration file for the Deliver Mode
Deliver Mode is used to get information from the transport and deliver it to the
application. Outbound maps use the Deliver Mode. In Deliver NDO Mode, the
adapter receives a deserialized data tree. After you click on Run Map, remove
all of the “#” comment symbol in column one for every line except the two
sentences below (“# The following is a sample configuration file.” and “# You
must modify the settings to work for your instance.”). After you remove the
comment symbols, modify the lines that have instructions listed below.

Adapter
clash.avoid=TRUE
continue.format.exists=TRUE
adapter=EDIAdapter
mode=DELIVER
data=NDO

The following is a sample configuration file.
You must modify the settings to work for your
instance.

#transport.in.name=INQ
#transport.failure_store_name=FAIL
#maximum.transport.retries=2
#transport.exit_if_empty=true
#input.serializer.factory=NCFSerializer_Factory
#input.serializer.library=adk33ncfsd
#input.serializer.factory=XMLSerializer_Factory
#input.serializer.library=adk33xmlsd
#prefix=<prefix> > # Obtain the prefix name from

the configuration file
 # generated from Export Schema
 # to MQSI, e-Biz Integrator,

or e-Biz 2000.

Using ECRTP as an adapter

66 ECRTP

#msg.type=<prefix>.IC.<schema name> # Obtain the
prefix name from the

 # configuration file generated
 # from Export Schema to MQSI,
 # e-Biz Integrator, or e-Biz

2000.
#transport.context.name=ADKContext

#OTContext.ADKContext
#NNOT_CTX_DEFAULT_TIL_ID=FAIL
#NNOT_CTX_TMID=MQSeriesTM
#NNOT_CTX_ENFORCE_TX=TRUE

#TransactionManager.MQSeriesTM
#NNOT_SHARED_LIBRARY=oti21mqstm
#NNOT_FACTORY_FUNCTION=NNOTMQSeriesTXManagerFactory
#NN_TM_MQS_QMGR=TEST_QMGR # Obtain the Queue Manager

name from
MQSeries.#Session.ADKSession

#NNOT_SHARED_LIBRARY=dbt21mqs
#NNOT_FACTORY_FUNCTION=NNMQSSessionFactory
#NNMQS_SES_OPEN_QMGR=TEST_QMGR #Enter the Queue

Manager name from
 # MQSeries.#TRANSPORT.INQ

#NNOT_SHARED_LIBRARY=dbt21mqs
#NNOT_FACTORY_FUNCTION=NNMQSQueueFactory
#NNOT_TIL_OPEN_SESSION_ID=ADKSession
#NNOT_TIL_OPEN_TSI=TEST_OUT # Enter the local queue

to which the message
 # is being put in

MQSeries.

#Transport.FAIL
#NNOT_SHARED_LIBRARY=dbt21mqs
#NNOT_FACTORY_FUNCTION=NNMQSQueueFactory
#NNOT_TIL_OPEN_SESSION_ID=ADKSession
#NNOT_TIL_OPEN_TSI=TEST_FAIL # Enter the local

queue that serves as
 # the failure queue in

MQSeries.EDIAdapter
 # The lines below are unique to each map

generated by the Run Map screen.

rtp.mapswitches=NDO_TO_EDI.x12 NDO_TO_EDI PO -t 850
-dg "C:\Program Files\nnsy\ECMap\maps\NDO2\NDO_TO_EDI"
-dt "C:\Program Files\nnsy\ECMap\maps\NDO2\NDO_TO_EDI"

CHAPTER 4 Using ECRTP as an Adapter

Reference Guide 67

-n -it -o -l -wx 1

rtp.acquire_dir=O

Configuration file for the Process Mode
In addition to converting data to and from an EDI format, the EDIadapter can
also be used with an NDO data tree as both input and output. The EDIAdapter
normally uses the Deliver Mode when NDO is the input. Process Mode is used
to get data from a transport, enrich the data or submit a request and get a
response, and put the data to another transport. Process Mode is most
appropriate when interfacing with applications that operate in a synchronous
manner such as a CORBA call, an RFC request reply, or a database SELECT.

The Process Mode file already has comments removed. Copy the file below to
a configuration file and then modify the lines that have instructions listed
below.

Adapter
adapter=EDIAdapter
mode=PROCESS
data=NDO
prefix=<prefix> # Obtain the prefix name from the

Schema configuration
 # file generated from Export Schema
 # to MQSI, e-BizIntegrator,

or e-Biz 2000.
msg.type=<prefix>.IC.<schema name> > # Obtain the

prefix name from the
 # configuration generated from
 # Export Schema to MQSI, e-Biz

Integrator, or e-Biz 2000.
maximum_num_retries=2
transport.context.name=ADKContext
transport.out.name=OUT
failurequeue.name=FAIL
transport.in.name=IN
transport.out.name=OUT
transport.failure_store_name=FAIL
maximum.transport.retries=2

 transport.exit_if_empty=true
acknowledge.put=true

#NCF Serializer
Input.Serializer.Factory=NCFSerializer_Factory

Using ECRTP as an adapter

68 ECRTP

Input.Serializer.Library=adk33ncfsd
Output.Serializer.Factory=NCFSerializer_Factory
Output.Serializer.Library=adk33ncfsd

#XML Serializer
#Input.Serializer.Factory=XMLSerializer_Factory
#Input.Serializer.Library=adk33xmlsd
#Output.Serializer.Factory=XMLSerializer_Factory
#Output.Serializer.Library=adk33xmlsd

OTContext.ADKContext
NNOT_CTX_DEFAULT_TIL_ID = FAIL
NNOT_CTX_TMID = MQSeriesTM
NNOT_CTX_ENFORCE_TX = TRUE

TransactionManager.MQSeriesTM
NNOT_SHARED_LIBRARY = oti21mqstm
NNOT_FACTORY_FUNCTION =

 NNOTMQSeriesTXManagerFactory
NN_TM_MQS_QMGR = TEST_MQ1 # Obtain the Queue

Manager name from
 # MQSeries.

Session.ADKSession
 NNOT_SHARED_LIBRARY = dbt21mqs
 NNOT_FACTORY_FUNCTION = NNMQSSessionFactory
 NNMQS_SES_OPEN_QMGR = TEST_MQ1 # Enter the Queue

Manager name from
 # MQSeries.Transport.IN
 NNOT_SHARED_LIBRARY = dbt21mqs
 NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
 NNOT_TIL_OPEN_SESSION_ID = ADKSession
 NNOT_TIL_OPEN_TSI = TESTQ # Enter the local

queue where
 # the message(s)

originally reside
 # on the queue.

Transport.OUT
 NNOT_SHARED_LIBRARY = dbt21mqs
 NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
 NNOT_TIL_OPEN_SESSION_ID = ADKSession
 NNOT_TIL_OPEN_TSI = OUTQ # Enter the

local queue where
 # the message(s) is

being moved.

CHAPTER 4 Using ECRTP as an Adapter

Reference Guide 69

Transport.FAIL
NNOT_SHARED_LIBRARY = dbt21mqs

 NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = FAILQ # Enter the

local queue that
 # serves as the

failure queue in
 # MQSeries.

EDIAdapter # The lines below are unique
to each map and must

 # be carefully edited.

rtp.mapSwitches="C:\Program Files\Nnsy\ECMap\Maps\
NDO2\temp.x12" NDO_TO_NDO PO -t ANY -dg "C:\Program
Files\Nnsy\ECMap\Maps\NDO2\NDO_TO_NDO" -dt "C:\Program
Files\Nnsy\ECMap\Maps\NDO2\NDO_TO_NDO" -nt -ne -c -l -
wx 0
 rtp.acquire_dir=O

After the EDIadapter configuration file has been created and edited, you can
click on Run Map. ECMap will call the NNSYadapter33.exe with the command
line parameter: "-file=<configuration file>".

Using ECRTP as an adapter

70 ECRTP

Reference Guide 71

C H A P T E R 5 Using ECRTP in a Web
Environment

Topic Page
Using ECRTP in a Web environment 72

Using ECRTP in a Web environment

72 ECRTP

Using ECRTP in a Web environment
ECRTP can be used to map data to and from HTML or XML data. There are a
number of features in ECMap (the map development program) that support the
use of ECRTP in a Web environment.

On the Web Script tab of the Run Inbound Map and Run Outbound Map,
ECMap has a utility that creates an ASP (Active Server Page) that contains the
runtime script or a CGI (Common Gateway Interface) that contains the script.
You have the choice of creating uncompiled C code or compiled executable
code. If you create uncompiled code, you can make changes to it. The map
switches are in the code itself, and you must compile it before you use it. If you
create compiled code, you cannot make changes to the code. The map switches
are in a separate file outside the code.

Reference Guide 73

C H A P T E R 6 ECRTP Performance

Topic Page
Factors affecting performance 74

Inbound-only optional parameters 78

Factors affecting performance

74 ECRTP

Factors affecting performance
A variety of factors can influence ECRTP’s speed and performance, including
the design of the maps being run, the database technology being used, and the
use of optional product features designed to enhance performance.

Map design is the responsibility of the individual mappers. Maps can impact
runtime performance because they reflect complicated business logic that is
required, but sometimes maps have not been written in the most efficient
manner or have not taken advantage of performance-enhancing features. Two
important performance-enhancing features are:

• Map caching

• Memory I/O

Map caching
Map caching is designed to improve the interactive character of ECRTP by
eliminating the processing time associated with opening and closing maps. The
user is able to specify that maps will be cached in memory and to specify the
maximum number of maps that will be cached. The user is also able to load
specific maps into memory before running the ECRTP.

The user is able to specify that a map will stay open, using the –mx <maximum
number of cached maps> switch. A separate switch is required for each map
that will remain open. This functionality is available through both the ECRTP
.dll and the ECRTP executable. For the ECRTP executable, maps will stay
open only until the executable is finished. For the ECRTP .dll, the maps will
stay open until the user explicitly closes them. The open maps are maintained
in a structure in memory, with the mapname as the index key. An API allows a
pointer (to the array of maps stored in memory) to be passed back to the calling
program.

The user specifies the maximum number of maps that will remain open. If no
maximum is specified, the default is 0 maps. As a result, if the user does not
explicitly set a maximum number of maps, the ECRTP will not cache maps in
memory. If the maximum number of maps is reached and the user specifies that
a new map is to remain open, the program uses an algorithm to determine the
least frequently used map of the maps that are currently open and replace that
map with the new map. There is no upper limit to the maximum number of
maps except that imposed by memory.

• FREEALLMAP() closes all open maps. (-xf switch)

CHAPTER 6 ECRTP Performance

Reference Guide 75

• FREEMAPNAME(char*) closes a specific map. There is no switch
because you cannot close a specific map from the command line.

The user passes in the map name, and the function returns a “-1” if the map is
not found and a “1” if the map is found and removed. This functionality is not
applicable for the ECRTP executable because it automatically frees all maps in
memory when it is finished, and consequently, ignores any -xf switch.

The user may use UTILCONTMAP and UTILMAPNAME to decide which
map to free from memory with the FREEMAPNAME() API.

extern "C" DLLEXPORT int WINAPI UTILCOUNTMAP(int
*mapMaxLoad,

int *mapLoaded);extern "C" DLLEXPORT int WINAPI
UTILMAPNAME(int mapPosition, char

 *mapName, int mapNameBufSize);

There are two return parameters for UTILCOUNTMAP. The first return
parameter is int *mapMaxLoad. This is the maximum number of maps that can
be loaded into memory. This value is set by the initial -mx N parameter on the
command line API (for example, OUTBOUNDRUNCmd, OUTRun,
INBOUNDRUNCmd, or INRun). The second return parameter is int
*mapLoaded. This is the number of maps that have actually been loaded into
memory.

The API function returns zero (success) as long as the original -mx N switch is
used to allow multiple map processing. The API function returns -1 if there is
no -mx switch or there was a -mx 0 switch.

There are two input parameters for UTILMAPNAME. The first input
parameter is int mapPosition. The valid values are 0 to maximum number of
maps. The first map is loaded at index zero and the second map is loaded at
index position 1, and so forth. The second input parameter is int
mapNameBufSize. This input parameter provides the maximum length of the
parameter String mapName.

The output parameter for UTILMAPNAME is char * mapName which
specifies the name of the map loaded at mapPosition index.

UTLIMAPNAME returns a zero (success) and the name of the map at position
mapPosition in the mapName return parameter. If no map was loaded at
position, mapPosition or the map name size was greater than
mapNameBufSize then a -1 for failure is returned.

Factors affecting performance

76 ECRTP

Using the LOADMAP API, the user is able to load map(s) into memory before
the ECRTP is run. The user passes in the map directory, map name, and map
direction, as well as the maximum number of maps that can be cached at one
time. (The maximum number passed to this DLL must be the same maximum
number that is specified in the -mx <maximum number of maps> switch on the
ECRTP command line.

The arguments for the LOADMAP API are shown below:

LOADMAP(LPSTR dir_path, LPSTR name, int map_dir, int
MulMaps)

dir_path -- directory where map file store in disk.
such as "c:\\temp\\850IN"

name -- name of map file without extension file name
such as "T850IN" not "T850IN.MAP"

map_dir -- 0 means INBOUND,
1 means OUTBOUND

MulMaps-- how many maps are allowed to save in memory.
It should have same value as -mx switch when
the run ECRTP

The LOADMAP API returns one of the following four error/success codes:

• 0 – success

• -1 – input directory or map name does not exist

• -2 – number of maps is memory cannot be < 0

• -3 – only MAP_IN and MAP_OUT are legal input for map_dir

Neither -xf nor -mx is case-sensitive.

Memory I/O
Memory I/O is designed to speed up performance by allowing the user to read
or write from memory rather than the physical disk. The user can read from
stdin or a specified memory address, or write to stdout or a temporary memory
address.

CHAPTER 6 ECRTP Performance

Reference Guide 77

• To read from stdin instead of from disk, the user can enter information on
the Standard Input pane on the I/O Redirect tab of the Run Outbound Map
screen. If the data being read is application data, the user can enter this
information using the –mi switch/parameter at runtime. If the data being
read is EDI data, the user can enter this information using the –xmi
switch/parameter at runtime.

• To write to stdout instead of to disk, the user can enter information on the
Standard Output pane on the I/O Redirect tab of the Run Inbound Map
screen. If the data being written is application data, the user can enter this
information using the –mo switch/parameter at runtime. If the data being
written is EDI data, the user can enter this information using the –xmo
switch/parameter at runtime.

• To read from or write to a temporary internal memory address, the user can
enter information on the Internal Memory pane on the I/O Redirect tab of
the Run Inbound Map or Run Outbound Map screen. The user can also
enter this information using the –mm switch/parameter at runtime.

There is an additional memory I/O option, which allows the user to read or
write from a specific memory address, but this option is available only when
ECRTP is invoked from a DLL.

• To read application data from or write application data to a specific
memory address, the user must use the –mp parameter at runtime; this
information cannot be entered in ECMap. The format of the –mp switch is
-mp <full-path file name> <pointer to memory address> <pointer to # of
bytes> <pointer to size of buffer>.

• To read EDIdata from or write EDI data to a specific memory address, the
user must use the –xmp parameter at runtime; this information cannot be
entered in ECMap. The format of the –xmp switch is -xmp <pointer to
memory address> <pointer to # of bytes> <pointer to size of buffer>.

Database technology
Maps that use ODBC databases for either trading partner information or
logging will take longer to execute than maps that use non-ODBC databases.

The performance of maps that use ODBC databases for trading partner
information improves when dBase is used as the ODBC database. ECMap has
a utility that allows ECRTP to run against their trading partner information in
dBase. Refer to the Run Map chapter of the ECMap Reference Guide for more
information about using this feature.

Windows runtime parameters/switches

78 ECRTP

Windows runtime parameters/switches
The following tables contain a listing of all the Windows parameters/switches
that can be used with the runtime program (ECRTP)—both when it is run from
a script and when it is invoked with a function call. For each parameter/switch,
there is a brief description, an indication of whether the parameter/switch is
used for inbound or outbound messages, and an indication of whether it is
required or optional. The first table contains parameters/ switches that are used
with both non-ODBC and ODBC trading partner files, while the second table
contains parameters that are used only when the trading partner information is
in an ODBC database. Each parameter is described in greater detail following
the table.

Table 6-1: Parameters/switches for trading partner files

Parameter Description Inbound/outbound Required/optional

-a Updates the ISA Out control count field
only in the ALL TradePartner record
when the interchange envelopes are built.

Outbound Optional

-ab Specifies a new full path and file name to
be used in place of the BAD EDI file.

I/O Optional

-af Specifies a new full-path file name to be
used in place of a file name embedded in
the map file.

I/O Optional

-ag Specifies a new full path and file name to
be used in place of the GOOD EDI file.

I/O Optional

-as Checks that each ST Transaction Control
Number in a GS to GE is greater than the
previous ST Transaction Control
Number. Validation assumes control
numbers appear in ascending order.

Inbound Optional

-b Does not save the rejected EDI
transactions/messages into the
badtrans.nmt file.

Inbound Optional

-c Closes the trace file after every write
statement.

I/O Optional

CHAPTER 6 ECRTP Performance

Reference Guide 79

-clz Flags leading zeros in numeric X12 fields
as an error on HIPAA compliance maps.

An error is flagged if leading zeros are
not used to meet the minimum length
requirement of that particular element.

If the leading zeros are necessary to meet
the minimum length of the element, no
error is generated. This option does not
check leading zeros on non-compliance
maps.

Inbound Optional

-cu Checks for unique control numbers
within a transaction. Control numbers
can now occur in any sequence, as long
as they are unique.

If duplicate control numbers are found,
ECRTP logs a 6054 error. Use only one
of the switches (-as or -cu) for any map
run. If both switches are present, ECRTP
defaults to the last switch encountered.

Inbound Optional

-db Does not delete outbound temporary files
that are created when processing multiple
files.

Outbound Optional

-dg Specifies the directory in which the map
files are located.

I/O Required

-dm Specifies the directory in which the
trading partner, map, and log files are
located.

I/O Optionally

Required

-dt Specifies the directory in which the
trading partner files are located.

I/O Required for Non-
ODBC

-du Specifies the directory to be used in place
of the application directories embedded
in the map.

I/O Optional

-dw Specifies the directory in which the
company (wixset.dat) file is located.

Outbound Optional

-ec Does not create the transaction log file
(translog.in, translog.out, or trlog) or the
status file (status.in or status.out).

I/O Optional

Parameter Description Inbound/outbound Required/optional

Windows runtime parameters/switches

80 ECRTP

-ed Specifies the directory in which the
transaction log file (translog.in,
translog.out, or trlog), trace file
(incoming.err, outgoing.err, or trnn.dat),
and status file (status.in or status.out) are
located.

I/O Optional/

Required for Tandem
and Stratus

-ee Ends processing of the EDI file after it
processes the specified number of
characters.

Inbound Optional

-ef Does not create the status file (status.in
or status.out)

I/O Optional

-ei Specifies the full-path file name to be
used in place of the input file name
embedded in the map.

Outbound Optional

-el Specifies the full-path file name to be
used for the transaction log.

I/O Optional

Required for Tandem
and Stratus

-eo Specifies the full-path file name to be
used in place of the output application
filename embedded in the map.

Inbound Optional

-er Performs the trading partner lookup
based on the group receiver. (basic
reverse lookup)

Inbound Optional

-es Starts processing the EDI file after it has
read a specified number of characters.

Inbound Optional

-et Specifies the directory in which the trace
file is located. (incoming.err or
outgoing.err)

I/O Optional

-eu Specifies a string variable to be used in
place of all but the first character in the
application file name (not including the
file extension) embedded in the map.

I/O Optional

-ev Specifies a string variable to be placed in
front of the application file name in the
map.

I/O Optional/

-id Specifies a Run ID number to be used
instead of having the program look it up.
If there is a log database, the program
normally looks up the Run ID number in
the Run ID table in the log database.

Inbound Optional

-it Ignores the trading partner mailbox. I/O Optional

Parameter Description Inbound/outbound Required/optional

CHAPTER 6 ECRTP Performance

Reference Guide 81

-k Sets compliance checking. Inbound Optional

-kf Splits files into multiple files only once. Outbound Optional

-l Writes long trace messages to an error
file.

I/O Optional

-m Runs a specific map (identified by the
mapname, which is the file name of the
map with no extension) without
referencing company or trading partner
files.

Inbound Optional

-mi Uses stdin in place of a file embedded in
the map.

Inbound Optional

-mm Uses a temporary memory location in
place of a file embedded in the map.

I/O Optional

-mn Passes the map name extension as part of
a command line argument.

The Map Name Extension works with
other map lookup fields to find a correct
map. For map functions with multiple
parameters, such as LOADMAP, the
correct map name should be found by
using current map lookup fields with the
Map Name Extension before calling the
functions.

I/O Optional

-mo Uses stdout in place of a file embedded in
the map.

Outbound Optional

-mp Uses a specific memory address in place
of a file embedded in the map.

I/O Optional

-mx Keeps a specified number of maps open
in memory.

I/O Optional

-n Uses the ALL TradePartner record if no
trading partner match is found in the
trading partner file.

I/O Optional

-ncb Indicates that the EDI file to be processed
is an NCPDP batch file. Required for all
inbound NCPDP files unless -nct is
active.

Inbound Required for inbound
NCPDP batch files

-nct Indicates that the EDI file to be processed
is an NCPDP telecommunications file.
Required for all inbound NCPDP files
unless -ncb is active.

Inbound Required for inbound
NCPDP
telecommunications
files

-ne Does not produce an outbound EDI file. Outbound Optional

Parameter Description Inbound/outbound Required/optional

Windows runtime parameters/switches

82 ECRTP

-nret Adds new return codes that provide more
information to the calling program.
Based on the return value, the user can
determine the next step in the process.
The return codes reflect the following
information:

• At least one interchange or group is in
error implying a TA1 map should be
run.

• At least one group or transaction is in
error, implying a 997 map should be
run.

• At least one good transaction is
present, implying a translation map
should be run.

I/O Optional

-nt Does not perform a trading partner
lookup. Uses the map specified in the
command line.

Outbound Optional

-nz Maps numeric data literally (including
blank fields) as it appears on the map.
Previous versions of ECRTP pad numeric
values with leading zeros based on field
length.

I/O Optional

-o Does not use the trade agreement
mailbox directory and file name.

I/O Optional

-ol Triggers a series of look ups against the
Trading Partner database when the
ECMap/EC Gateway Log is used as
input.

If a trading partner match is found,
ECRTP uses the entry to populate the
EDI envelope.

Outbound Optional

-pe Pads alphanumeric fields with
trailing spaces if those spaces are
required to meet the minimum length
of the element. Numeric fields will
be padded with leading 0s if those 0s
are required to meet the minimum
length of the element.

This switch is an optional replacement
for PADEDI environmental variable.

Outbound Optional

Parameter Description Inbound/outbound Required/optional

CHAPTER 6 ECRTP Performance

Reference Guide 83

-pf Uses contents of the file as the command
line parameters

I/O Optional

-r Specifies the maximum number of cross-
reference table entries that will be loaded
into memory. Anything over the
maximum must be accessed from the
database.

I/O Optional

-rb Ignores the trade agreement mailbox and
places routed EDI data in the trading
partner BAD mailbox.

I/O Optional

-re Ignores the trade agreement mailbox and
places routed EDI data in the trading
partner IN mailbox.

I/O Optional

-rg Ignores the trade agreement mailbox and
places routed EDI data in the trading
partner GOOD mailbox.

I/O Optional

-ro Ignores the trade agreement mailbox and
places routed EDI data in the trading
partner OUT mailbox.

I/O Optional

-rt Ignores the trade agreement mailbox and
places routed EDI data in the trading
partner OTHER mailbox.

I/O Optional

-s Does not produce a trace file. I/O Optional

-s3 Processes the X12 ST03 element. I/O Optional

-sc Validates the sequence of the Interchange
(ISA) and Group (GS) control numbers.
If you use this command, RTP checks the
current control number against the
Trading Partner database to validate the
entry. If the entry in the file is not the next
sequential entry, an error will be
reported.

If you run an inbound compliance map,
choose the “Validate Control Number
Sequence" option to add an -sc switch to
the command line options.

I/O Optional

-sdb Specifies the maximum number of
cached ODBC connections. The default
value '0' indicates no ODBC connection
caching.

I/O Optional

-t Specifies the message/transaction set
being mapped.

Outbound Required

Parameter Description Inbound/outbound Required/optional

Windows runtime parameters/switches

84 ECRTP

Table 6-2 contains UNIX Run Time parameters that are only for ODBC users.

Table 6-2: ODBC trading partner parameters/switches

-td Specifies the directory in which the bin
files are located if the –du switch is not
set.

Specifies the directory in which the
temporary split files are located.

Inbound

Outbound

Optional

Optional

-tm Writes the elapsed run time to the trace
file.

I/O Optional

Optional

-u Does not write EDIFACT UNB and UNG
segments.

Outbound Optional

-w Overwrites all application output files.
(The default is to append the application
output files.)

Inbound Optional

-xf Closes map(s) that have been left open in
memory.

I/O Optional

-xl Writes the text transaction log file in
expanded field length format.

I/O Optional

-xmi Uses stdin in place of the EDI file in the
map.

Inbound Optional

-xmo Uses stdout in place of the EDI file in the
map.

Outbound Optional

-xmp Uses a specific memory address in place
of the EDI file in the map.

I/O Optional

-z Zero-fills numeric fields that contain
data.

I/O Optional

Parameter Description Inbound/outbound Required/optional

Parameter Description Inbound/outbound Required/optional

-ad Specifies a DSN connect string to be used
in place of a specified DSN connect
string embedded in the map file.

I/O Optional

-e1 Performs the trading partner lookup
based on the group sender and receiver.

Inbound Optional

-e2 Performs the trading partner lookup
based on the group and interchange
sender.

Inbound Optional

-e3 Performs the trading partner lookup
based on the group and interchange
sender and receiver.

Inbound Optional

CHAPTER 6 ECRTP Performance

Reference Guide 85

-e4 Performs the trading partner lookup
based on the group and interchange
receiver.

Inbound Optional

-e5 Performs the trading partner lookup
based on interchange sender.

Inbound Optional

-e6 Performs the trading partner lookup
based on the interchange receiver.

Inbound Optional

-e7 Performs the trading partner lookup
based on the interchange sender and
receiver.

Inbound Optional

-e8 Performs a reverse trading partner lookup
based on the interchange sender and
receiver.

Inbound Optional

-e9 Performs a reverse trading partner lookup
based on the group and interchange
sender and receiver.

Inbound Optional

-e10 Performs a reverse trading partner lookup
based on the interchange receiver.

Inbound Optional

-e11 Performs a reverse trading partner lookup
based on the interchange sender.

Inbound Optional

-e12 Performs a reverse trading partner lookup
based on the group and interchange
sender.

Inbound Optional

-e13 Performs a reverse trading partner lookup
based on the group and interchange
receiver.

Inbound Optional

-e14 Performs the trading partner lookup
based on Batch Sender.

Validates interchange and group data
against the Trading Partner database
during inbound processing, and, if any
information does not match, ECRTP
writes an error to the log and returns an
error in the TA1 Acknowledgment.

Inbound Optional

-e15 Performs the trading partner lookup
based on Batch Receiver.

Inbound Optional

-e16 Performs the trading partner lookup
based on Batch Sender and Receiver.

Inbound Optional

-e17 Performs the trading partner lookup
based on Bin Number.

Inbound Optional

Parameter Description Inbound/outbound Required/optional

Windows runtime parameters/switches

86 ECRTP

Required parameters
Some parameters are required for both inbound and outbound runs, while
others are required only for outbound runs or only for inbound runs.

Outbound required parameters

The normal outbound run has the parameters illustrated below.

rmapout <full-path EDI output filename> <map>

-e18 Performs the trading partner lookup
based on Processor Control Number.

Inbound Optional

-e19 Performs the trading partner lookup
based on Batch Sender and Bin Number.

Inbound Optional

-e20 Performs the trading partner lookup
based on Batch Sender and Processor
Control Number.

Inbound Optional

-e21 Performs the trading partner lookup
based on Batch Receiver and Bin
Number.

Inbound Optional

-e22 Performs the trading partner lookup
based on Batch Receiver and Processor
Control Number.

Inbound Optional

-et Specifies the trace file directory.
(trnn.dat)

I/O Optional

-sl Specifies a DSN connect string to be used
in place of the log database DSN connect
string embedded in the map.

I/O Required for ODBC
Log

-st Specifies a DSN connect string to be used
in place of the trading partner database
DSN connect string embedded in the
map.

I/O Required for ODBC
TP

-td Specifies directory used to make sure
information is correctly backed out with
Backout and Checkpoint commands.

I/O Optional

-wx Uses the record in the WIXSET company
ID table where the RECORD_NO field is
the same as the specified number (in
other words, selects a specific company
profile).

I/O Required for ODBC
TP

Parameter Description Inbound/outbound Required/optional

CHAPTER 6 ECRTP Performance

Reference Guide 87

<transaction/message code> -t <message/ transaction>
-dt <full-path trading partner directory> -dg <full
-path map directory>

When the trading partner and the map directory are the same, the command line
can be shortened by using the –dm directory in their place, as shown below:

rmapout <full-path EDI output filename> <map>
<transaction/message code> -t <message/ transaction/>
-dm <full-path trading partner and map directory>

The first three parameters are always required and must be in the following
order:

• <full-path EDI output filename>

• <map>

• <transaction/message>

The three other required parameters do not have to be in any specific order, but
they must be preceded by the appropriate “-letters” flag.

• -t <transaction> – specifies the code of the EDI transaction/message being
mapped.

• -dt <directory> – specifies the directory that contains trading partner
information.

• -dg <directory> – specifies the directory that contains the generated files –
map files, cross reference tables, and log files.

When the trading partner directory and the map directory are the same, the
–dm switch can be used in place of both the –dt and –dg switches.

• -dm <directory> – specifies the directory that contains trading partner
information and generated files; map files, cross reference tables, and log
files.

Outbound required parameters for ODBC database users

When an ODBC trading partner database is used, –dt <trading partner
directory> is replaced by –st <“DSN=<data source name>;uid=<user
id>;pwd=<password>”>.

When an ODBC log database is used, –sl <"DSN=<data source
name>;uid=<user id>; pwd=<password>”> switch must be included. (The
DSN pointing to the log database is the only required parameter; uid and pwd
are included only if they are required by the database.)

Windows runtime parameters/switches

88 ECRTP

 rmapout <full-path EDI output filename> <map>
<transaction/message code>
-t <transaction/message>
-st <trading partner DSN connect string>
-dg <full-path map directory>
-sl <log DSN connect string>

• -sl <“DSN Connect String”> – specifies the data source name (DSN)
connect string for the ODBC log database that contains the log tables. In
addition to the DSN, this connect string must include a uid and pwd if they
are required.

• -st <“DSN connect string”> – specifies the data source name (DSN)
connect string for the ODBC trading partner database that contains the
trading partner and trade agreement tables. In addition to the DSN, this
connect string must include a uid and pwd if they are required.

Inbound required parameters
The normal inbound run has the parameters illustrated below.

mapinrun <full-path EDI input filename>
-dt <full-path trading partner Directory>
-dg <full-path map directory>

When the trading partner and the map directory are the same, the command line
can be shortened by using the –dm directory in their place, as shown below:

mapinrun <full-path EDI input filename> -dm <full-path
trading partner/map directory>

The first parameter is always required for an inbound run and must be first in
order.

<full-path EDI input filename>

The three other required parameters do not have to be in any specific order, but
they must be preceded by the appropriate “-letters” flag.

• -dt <directory> – specifies the directory that contains trading partner
information.

• -dg <directory> – specifies the directory that contains the generated files –
map files, cross reference tables, and log files.

When the trading partner directory and the map directory are the same, the
–dm switch can be used in place of both the –dt and –dg switches.

CHAPTER 6 ECRTP Performance

Reference Guide 89

• -dm <directory> – specifies the directory that contains trading partner
information and generated files; map files, cross reference tables, and log
files.

Inbound required parameters for ODBC database users

When an ODBC trading partner database is used, –dt <trading partner
directory> is replaced by –st <“DSN=<data source name>;uid=<user
id>;pwd=<password>”>.

When an ODBC log database is used, –sl <"DSN=<data source
name>;uid=<user id>; pwd=<password>”> switch must be included. (The
DSN pointing to the log database is the only required parameter; uid and pwd
are included only if they are required by the database.)

rmapinrun <full-path EDI input filename> -st <trading
partner DSN connect string> -dg <full-path map
directory> -sl <log DSN connect string>

• -st <“DSN connect string”> – specifies the data source name (DSN)
connect string for the ODBC trading partner database that contains the
trading partner and trade agreement tables. In addition to the DSN, this
connect string must include a uid and pwd if they are required.

• -sl <“DSN Connect String”> – specifies the data source name (DSN)
connect string for the ODBC log database that contains the log tables. In
addition to the DSN, this connect string must include a uid and pwd if they
are required.

Optional parameters

Some optional parameters can be used with both inbound and outbound runs,
while other optional parameters can be used for only inbound or only outbound
runs.

Inbound/outbound optional parameters

Table 6-3: Inbound/outbound optional parameters

Parameter Description

-af <full-path map filename> <full-path
new filename>

Uses the named “new filename” in place
of the named “map filename” imbedded
in the map.

Windows runtime parameters/switches

90 ECRTP

-c Closes the trace file after every write
statement. (This is used to ensure that
the last trace message is written to disk.
This flag impedes processing and should
not be used unless a serious problem is
encountered and must be debugged.)

-du <directory> Uses the named directory in place of the
application directories embedded in the
map.

-ec Does not create the transaction log file
(translog.in, translog.out, or trlog) or the
status file (status.in or status.out).

-ed <directory> Writes the transaction log file
(translog.in or translog.out), status file
(status.in or status.out), or trace file
(incoming.err, outgoing.err, or trnn.dat),
to the named directory. (Required for
Tandem and Stratus; optional for all other
versions.)

-ef Does not create the status file (status.in
or status.out).

-el Uses the named full path file name as the
transaction log file name. (Required for
Tandem and Stratus; optional for all other
versions.)

-el <full-path filename> Uses the named directory for the trace
file (incoming.err or outgoing.err). If this
switch is not used, the trace file is placed
in the map directory.

-et <directory> Replaces all except the first character in
the application file name in the map
(excluding the file extension) with the
named string variable. This switch is
required when multiple copies of the
executable are run simultaneously.

-eu <string variable> (up to 7 characters) Replaces all except the first character in
the application file name in the map
(excluding the file extension) with the
named string variable. This switch is
required when multiple copies of the
executable are run simultaneously.

-ev <string variable> (up to 8 characters) Places the named string variable in front
of all application file names in the map.

Parameter Description

CHAPTER 6 ECRTP Performance

Reference Guide 91

-id <run ID number> Uses the specified run ID number instead
of looking it up. (Normally, the program
looks up the next run ID number in the
Run ID table in the log database.) The run
ID number can have from one to eight
digits.

-it Ignores the trading partner mailbox. If
this switch is not set for inbound maps, a
copy of the inbound EDI file is placed in
the trading partner IN mailbox and no
rules are processed unless the trade
agreement records have the EDI_OUT
flag set. If this switch is not set for
outbound maps, the outbound EDI file is
placed in the trading partner OUT
mailbox. (If a trade agreement mailbox
exists and this switch is not set, the trade
agreement mailbox will override the
trading partner mailbox.)

-l Turns the long trace on, causing trace
messages to be written to an error file.
(This switch is used for debugging.)

-mm <full-path filename> Uses a temporary memory location in
place of the named file imbedded in the
map.

-mn Passes the map name extension as part of
a command line argument. The Map
Name Extension works with other map
lookup fields to find a correct map.

For map functions with multiple
parameters, such as LOADMAP, the
correct map name should be found by
using current map lookup fields with the
newly added Map Name Extension
before calling the functions.

-mp <full-path filename> <pointer to
memory address> <pointer to # of bytes>
<pointer to size of memory buffer>

Uses a specified memory location in
place of a specified file during map
execution.

-mx <number> Keeps a specified number of maps open
in memory.

-n Uses the ALL TradePartner if no trading
partner match is found in the trading
partner file.

Parameter Description

Windows runtime parameters/switches

92 ECRTP

-nret Adds new return codes that provide more
information to the calling program.
Based on the return value, the user can
determine the next step in the process.
The return codes reflect the following
information:

• At least one interchange or group is in
error implying a TA1 map should be
run.

• At least one group or transaction is in
error, implying a 997 map should be
run.

• At least one good transaction is
present, implying a translation map
should be run.

-nz Maps numeric data literally (including
blank fields) as it appears on the map.
Previous versions of ECRTP pad numeric
values with leading zeros based on field
length.

-o Ignores the trade agreement mailbox file
name that was set up for routing EDI
data.

-pf Uses the map switches in the named
batch file on the command line.

-r Specifies the maximum number of cross
reference table entries that will be loaded
into memory. Anything over the
maximum must be accessed from the
database.

-rb Ignores the trade agreement mailbox and
places the EDI data in the trading partner
BAD mailbox on inbound maps and on
outbound maps with “Route Bad”
selected.

-rg Ignores the trade agreement mailbox and
places the EDI data in the trading partner
GOOD mailbox on inbound maps and on
outbound maps with “Route Good”
selected.

Parameter Description

CHAPTER 6 ECRTP Performance

Reference Guide 93

-ri Ignores the trade agreement mailbox and
places the EDI data in the trading partner
IN mailbox on inbound maps and on
outbound maps with “Route In” selected.

-ro Ignores the trade agreement mailbox and
places the EDI output in the trading
partner OUT mailbox on outbound maps
and on inbound maps with “Route Out”
selected.

-rt Ignores the trade agreement mailbox and
places the EDI data in the trading partner
OTHER mailbox on inbound maps and
on outbound maps with “Route Other”
selected.

-s Does not produce a trace file.

-sdb Specifies the maximum number of
cached ODBC connections. The default
value '0' indicates no ODBC connection
caching.

-tm Writes the elapsed time of execution for
the entire run of this command line to the
trace file (incoming.err file for inbound
maps or outgoing.err file for outbound
maps).

-xf Closes all open maps.

-xf <mapname> Closes the specified map.

-xl Writes the text transaction log file in the
expanded field-length format. (See
Section 10 for the format of the non-
ODBC expanded text transaction log
file.)

-xmp <pointer to memory address>
<pointer to # of bytes> <pointer to size of
memory buffer>

Indicates that a specified memory
location should be used in place of the
EDI file during map execution.

-z Zero-fills numeric fields that contain
data. (For inbound maps, numeric fields
are zero-filled if the EDI element
contains data, and left blank if there is no
data. For outbound maps, a zero is
produced if a zero is contained in the data
field.)

Parameter Description

Windows runtime parameters/switches

94 ECRTP

Inbound/outbound optional parameters for ODBC database users

Table 6-4: Inbound/outbound optional parameters for ODBC database
users

Outbound-only optional parameters

Table 6-5: Outbound-only optional parameters

Parameter Description

-ad <“map DSN connect string”> <“new
DSN connect string”>

Specifies the named “new DSN connect
string” to be used in place of the named
“map DSN connect string” in the map
file. (Connect strings include the data
source name and any other required
connection information, such as uid and
pwd.)

-et <directory> Uses the named directory for the trace
file (trnn.dat where nn is a non-zero run
ID number). If this switch is not used, the
trace file is placed in the current
directory. The run ID number can have
from one to eight digits.

-sdb <number> Specifies the maximum number of
cached ODBC connections. The default
value '0' indicates no ODBC connection
caching.

-td <directory> Specifies the named directory to be used
with the Backout and Checkpoint
commands to make sure that information
is correctly backed out. (The -td switch
has two other uses; one only for inbound
and one only for outbound.)

-wx <number> Uses the record in the wixset company
table where the RECORD_NO field is
the same as the specified number. (allows
a specific company profile to be selected)

Parameter Description

-a Updates the ISA Out control count field
only in the All TradePartner record
(customer number = 0) when the
interchange envelopes are built.

CHAPTER 6 ECRTP Performance

Reference Guide 95

-db Does not delete outbound temporary files
created when processing multiple files
(in other words, when the map is set by
the user to separate one input file into
several input files). These files are not
deleted and can be used to diagnose map
flow problems. Use this switch when
debugging.

-dw <directory> Uses the named directory as the location
of the wixset.dat (company) file.

-ei <full-path filename> Uses the named filename in place of the
input application filename embedded in
the map.

-kf Splits files into multiple files only once
when processing multiple files (when the
map is set by the user to separate one
input file into several input files).

-mo < full-path filename> Uses stdout in place of the named file
imbedded in the map.

-ne Does not produce an outbound EDI file.

-nt Does not perform trading partner lookup.
(Uses the map passed in on the command
line.)

-pe Pads alphanumeric fields with
trailing spaces if those spaces are
required to meet the minimum length
of the element. Numeric fields will
be padded with leading 0s if those 0s
are required to meet the minimum
length of the element.

This switch is an optional replacement
for PADEDI environmental variable.

-s3<value> Uses the specified value to create the
optional ST03 element on outbound X12
EDI transactions.

Parameter Description

Windows runtime parameters/switches

96 ECRTP

Inbound-only optional parameters

Table 6-6: Inbound-only optional parameters

-td <directory> Writes temporary split files to the named
directory. Temporary split files (pfs.*) are
created when the Multiple Files option is
selected (when the map is set by the user
to separate one input file into several
input files). If this switch is not set, the
temporary files are written to the current
directory. (In earlier versions, they were
written to the root directory.)

-u Does not write EDIFACT UNB and UNG
segments.

-xmo Uses stdout in place of the EDI file
during map execution.

Parameter Description

Parameter Description

-ab Specifies a new full path and file name to
be used in place of the BAD EDI file.

-ag Specifies a new full path and file name to
be used in place of the GOOD EDI file.

-as Checks that each ST Transaction Control
Number in a GS to GE is greater than the
previous ST Transaction Control
Number. Validation assumes control
numbers appear in ascending order.

-b Does not save the rejected EDI
messages/transactions into the
badtrans.nmt file.

-clz Flags leading zeros in numeric X12 fields
as an error on HIPAA compliance maps.

An error is flagged if leading zeros are
not used to meet the minimum length
requirement of that particular element. If
the leading zeros are necessary to meet
the minimum length of the element, no
error is generated. This option does not
check leading zeros on non-compliance
maps.

CHAPTER 6 ECRTP Performance

Reference Guide 97

-cu Checks for unique control numbers
within a transaction. Control numbers
can now occur in any sequence, as long
as they are unique.

If duplicate control numbers are found,
ECRTP logs a 6054 error. Use only one
of the switches (-as or -cu) for any map
run. If both switches are present, ECRTP
defaults to the last switch encountered.

-ee <number of characters> Ends processing of the EDI file after it
processes the specified number of
characters. (Useful when processing is
done by VANS who charge by the byte).

-eo <full path filename> Uses the named full path file name in
place of the output application file name
embedded in the map.

-es <number of characters> Starts processing the EDI file after it has
read the specified number of characters.
(Useful when processing is done by
VANS who charge by the byte.)

-k Sets compliance checking for:

• Missing mandatory segments

• Exceeding loop counts

• Exceeding segment counts

• Segments out of sequence

• Exceeding Standards definition for
number of elements in a segment

-m <mapname> Runs the map with the specified map
name without referencing company or
trading partner files. (<mapname> is the
file name of the map without the
extension. For example, 837IN is the
<mapname> for the map file
837IN.map.).

-mi <full path filename> Uses stdin in place of the named file
imbedded in the map.

-ncb Indicates that the EDI file to be processed
is an NCPDP batch file. Required for all
inbound NCPDP files unless -nct is
active.

Parameter Description

Windows runtime parameters/switches

98 ECRTP

-nct Indicates that the EDI file to be processed
is an NCPDP telecommunications file.
Required for all inbound NCPDP files
unless -ncb is active.

-nt Does not perform trading partner lookup.
(Uses the map passed in on the command
line.)

-s3 Processes the optional 12 ST03 element
in incoming EDI data.

-sc Validates the sequence of the Interchange
(ISA) and Group (GS) control numbers.
If you use this command, RTP checks the
current control number against the
Trading Partner database to validate the
entry. If the entry in the file is not the next
sequential entry, an error will be
reported.

If you run an inbound compliance map,
choose the “Validate Control Number
Sequence" option to add an -sc switch to
the command line options.

-td <directory> Writes the bin files to the named
directory if the –du switch is not set. (All
bin files start with bin.)

-w Overwrites all output map files. (The
default is to append the map files.).

-xmi Uses stdin in place of the named EDI file
during map execution.

Parameter Description

CHAPTER 6 ECRTP Performance

Reference Guide 99

Inbound-only optional parameters – trading partner lookup switches

Table 6-7: Trading partner lookup switches – Inbound-only

Inbound-only optional parameters for ODBC database users – trading partner lookup switches

Table 6-8: ODBC trading partner lookup switches – inbound-only

Parameter Description

-er Performs a reverse trading partner lookup
based on the group receiver code.

-ol Triggers a series of look ups against the
Trading Partner database when the
ECMap/EC Gateway Log is used as
input.

If a trading partner match is found,
ECRTP uses the entry to populate the
EDI envelope.

Parameter Description

-e1 Performs the trading partner lookup
based on the group sender and receiver
codes.

-e2 Performs the trading partner lookup
based on the group sender code and the
interchange sender code and qualifier.

-e3 Performs the trading partner lookup
based on the group sender and receiver
codes and the interchange sender and
receiver codes and qualifiers.

-e4 Performs the trading partner lookup
based on the group receiver code and the
interchange receiver code and qualifier.

-e5 Performs the trading partner lookup
based on the interchange sender code and
qualifier.

-e6 Performs the trading partner lookup
based on the interchange receiver code
and qualifier.

-e7 Performs the trading partner lookup
based on the interchange sender and
receiver codes and qualifiers.

-e8 Performs a reverse trading partner lookup
based on the interchange sender and
receiver codes and qualifiers.

Windows runtime parameters/switches

100 ECRTP

-e9 Performs a reverse trading partner lookup
based on the group sender and receiver
codes and the interchange sender and
receiver codes and qualifiers.

-e10 Performs a reverse trading partner lookup
based on the interchange receiver code
and qualifier.

-e11 Performs a reverse trading partner lookup
based on the interchange sender code and
qualifier.

-e12 Performs a reverse trading partner lookup
based on the group sender code and the
interchange sender code and qualifier.

-e13 Performs a reverse trading partner lookup
based on the group receiver code and the
interchange receiver code and qualifier.

-e14 Performs the trading partner lookup
based on Batch Sender.

Validates interchange and group data
against the Trading Partner database
during inbound processing, and, if any
information does not match, ECRTP
writes an error to the log and returns an
error in the TA1 Acknowledgment.

-e15 Performs the trading partner lookup
based on Batch Receiver.

-e16 Performs the trading partner lookup
based on Batch Sender and Receiver.

-e17 Performs the trading partner lookup
based on Bin Number.

-e18 Performs the trading partner lookup
based on Processor Control Number.

-e19 Performs the trading partner lookup
based on Batch Sender and Bin Number.

-e20 Performs the trading partner lookup
based on Batch Sender and Processor
Control Number.

-e21 Performs the trading partner lookup
based on Batch Receiver and Bin
Number.

Parameter Description

CHAPTER 6 ECRTP Performance

Reference Guide 101

-e22 Performs the trading partner lookup
based on Batch Receiver and Processor
Control Number.

Parameter Description

Windows runtime parameters/switches

102 ECRTP

Reference Guide 103

C H A P T E R 7 Non-ODBC Database and File
Formats

Topic TOC
Trading partner files 104

Trading partner files

104 ECRTP

Trading partner files
Trading partner information is stored in three files: the company data file, the
trading partner data file, and the trade agreement data file. Information is
logged by ECRTP in two files: the transaction log and the trace file. In addition,
ECRTP produces a status file if errors occur during processing.

Trading partner files include information about the user’s company, the user’s
trading partners, and the trade agreements that link trading partners to specific
maps. The -t runtime switches indicates that an ODBC trading partner database
will be used.

Company data file (wixset.dat)
Table 7-1: Company data file information

Trading partner file (customer.mdb)
Table 7-2: Trading partner file information

Number Field name Field type Field precision

1. wix_company_name Character 35

2. <filler> Character 12

3. wix_gsid Character 35

4. wix_idqual Character 4

5. wix_idcode Character 35

6. wix_auth_qual Character 2

7. wix_auth_code Character 10

8. wix_secu_qual Character 2

9. wix_secu_code Character 10

10. <filler> Character 47

11. wix_sndr_route Character 14 (35 for EDIFACT
Syntax 4)

12. wix_sndr_subid Character 35 (only for EDIFACT
Syntax 4)

13. wix_app_snd_ql Character 4

Number Field name Field type Field precision Decimals

1. CUSTNO Character 35

2. TYP_OWNER Character 1 (Reserved for Future)

CHAPTER 7 Non-ODBC Database and File Formats

ECRTP 105

3. NAME Character 35

4. IDQUAL Character 4

5. IDCODE Character 35

6. AUTH_QUAL Character 2

7. AUTH_CODE Character 10

8. SECU_QUAL Character 2

9. SECU_CODE Character 10

10. GSID Character 35

11. SHIPQUAL Character 2

12. SHIPIDEN Character 15

13 BILLQUAL Character 2

14 BILLIDEN Character 15

15 ADDR1 Character 35

16 ADDR2 Character 35

17. CITY Character 19

18. STATE Character 15

19. COUNTRY Character 25

20. ZIP Character 9

21. CONTACT1 Character 35

22. TELEPHONE1 Character 22

23. CONTACT2 Character 35

24. TELEPHONE2 Character 22

25. ISA_IN_NO Character 14

26. ISA_OUT_NO Character 14

27. SND_GSID Character 35

28. SND_IDQUAL Character 4

29 SND_IDCODE Character 35

30. SUB_DELIMT Character 3

31. ELE_DELIMT Character 3

32. SEG_DELIMT Character 3

33. RELEASE_CH Character 3

34. X12_REPEAT Character 3

35. DEL_CODE Character 1 (Reserved for Future)

36. EDIF_SUBDL Character 3

37. EDIF_ELEDL Character 3

38. EDIF_SEGDL Character 3

39. EDIF_RELCH Character 3

Number Field name Field type Field precision Decimals

Trading partner files

106 ECRTP

Trade agreement file (tradstat.mdb)
Table 7-3: Trade agreement file information

40. EDIF_REPEA Character 3

41. HL7_SEGDL Character 3

42. HL7_ELEDL Character 3

43. HL7_SUBDL Character 3

44. HL7_SUBSUB Character 3

45. HL7_RELCH Character 3

46. HL7_REPEAT Character 3

47. EXPORT_FLG Character 1

48. MBOX_NAME Character 35

49. MAILBOX Character 100

50. CURR_FMT Character 1

51. POS_LTR Character 1

52. SNDR_ROUTE Character 14 (35 for EDIFACT
Syntax 4)

53. SNDR_SUBID Character 35 (only for EDIFACT
Syntax 4)

54. RCVR_ROUTE Character 14 (35 for EDIFACT
Syntax 4)

55. RCVR_SUBID Character 35 (only for EDIFACT
Syntax 4)

56. APP_SND_QL Character 4

57. APP_RCV_QL Character 4

58. TPKEY Numeric 19 5

Number Field name Field type Field precision Decimals

Number Field name Field type Field precision

1. CUSTNO Character 35

2. MAP_TRAN Character 6

3. ST03 Character 35

4. DIR Character 3

5. STAT Character 1

6. VERS Character 12

7. TBCODE Character 60

8. MBOX_NAME Character 35

9. DEST Character 100

CHAPTER 7 Non-ODBC Database and File Formats

ECRTP 107

10. FILE Character 30

11. GS_NO Character 14

12. ISA_TYPE Character 5

13. SERV_CODE Character 6

14. <filler> Character 1

15. RCV_GSID Character 35

16. FCV_IDQUAL Character 4

17. RCV_IDCODE Character 35

18. ACK_RQSTD Character 1

19. ACK_RQSTD2 Character 1

20. EDI_OUT Character 1

21. DAYS Character 2

22. HOURS Character 2

23. MINUTES Character 2

24. SECONDS Character 2

25. APPL_REF Character 14

26. ACK_MSG Character 1

27. ACK_INTCH Character 1

28. RCVR_ROUTE Character 14 (35 for EDIFACT
Syntax 4)

29. RCVR_SUBID Character 35 (only for EDIFACT
Syntax 4)

30. APP_RCV_QL Character 4

31. PROC_PRIOR Character 1

32. COMM_AGM Character 35

33. APP_PSWD Character 14

34. ASSOC_CODE Character 6

35. CNT_AG1 Character 3

36. CLIST_VER Character 6 (only for EDIFACT
Syntax 4)

37. MSG_TYPE Character 6 (only for EDIFACT
Syntax 4)

38. MSG_SUBID Character 14 (only for EDIFACT
Syntax 4)

39. MSG_SUBVER Character 3 (only for EDIFACT
Syntax 4)

40. MSG_SUBREL Character 3 (only for EDIFACT
Syntax 4)

Number Field name Field type Field precision

Trading partner files

108 ECRTP

Log files
Information is logged by ECRTP in two files: the transaction log and the trace
file. In addition, ECRTP produces a status file if errors occur during
processing.

Text transaction log files

When the user has turned on logging, the text transaction logs are stored in files
with fixed-length records in the directory where the map is executed. Unless
the user specifies otherwise, information in these files is appended upon
execution of the map. (However, the user can cause the files to be overwritten
by using a run time switch.)

41. CNT_AG2 Character 3 (only for EDIFACT
Syntax 4)

42. MSG_IMPID Character 14(only for EDIFACT
Syntax 4)

43. MS_IMPVER Character 3 (only for EDIFACT
Syntax 4)

44. MSG_IMPREL Character 3 (only for EDIFACT
Syntax 4)

45. CNT_AG3 Character 3 (only for EDIFACT
Syntax 4)

46. SCEN_ID Character 14 (only for EDIFACT
Syntax 4)

47. SCEN_VER Character 3 (only for EDIFACT
Syntax 4)

48. SCEN_REL Character 3 (only for EDIFACT
Syntax 4)

49. SCEN_AG4 Character 3 (only for EDIFACT
Syntax 4)

50. STD_TYPE Character 2

51. APP_RCV_QL Character 4

52. TRADKEY Numeric 10

Number Field name Field type Field precision

CHAPTER 7 Non-ODBC Database and File Formats

ECRTP 109

Based on the Log Type selected, the text transaction log files can be written out
in either an expanded format (Explanded Text Log) or a non-expanded format
(Text Log). You should always choose the expanded format; the non-expanded
format is included only to support earlier versions of the software and cannot
be used to generate a 997 functional acknowledgement.

The text transaction log files are written to translog.out for outbound and any-
to-any maps and translog.in for inbound and Web maps. You can edit these log
files with a text editor to provide report-style information about the transaction
run.

Transaction log files (translog.in and translog.out)

Non-expanded format

Table 7-4: Transaction log files – non-expanded format

Number Field name Field description Field type
Field
length

1. TYPE Record Type Flag Character 1

2. RUN_DATE DATE: YYMMDD Date 6

3. RUN_TIME Time: HHMMSS Time 6

4. TRANS_CODE Transaction/Message Letter Code Character 2

5. TRANS_NAME Message/Transaction Set Number Character 6

6. TPTNER_ID Trading Partner Number Character 35

7. VERSION Standard Version Character 12

8. ISA_TYPE Standard Type Character 5

9. INTERCHANG Interchange Control Number Character 35

10. GROUP_NO Group Control Number Character 35

11. TRANS_NO Transaction/Message Control Number +
Transaction/Message count

Character 35

12. APP_RCV_CD Group Receiver Code Character 35

13. APP_SND_CD Group Sender Code Character 35

14. SEND_CODE Interchange Sender Code Character 35

15. RECV_CODE Interchange Receiver Code Character 35

16. RECV_QUAL Interchange Receiver Qualifier Character 4

17. SEND_QUAL Interchange Sender Qualifier Character 4

18. ERRORS Number of non-fatal errors this
transaction/message

Number 5

19. STAT This ST or SE Status Code Character 1

20. BYTE_COUNT Byte Offset in input file Character 9

Trading partner files

110 ECRTP

Transaction log files (translog.in and translog.out)

Expanded format

Table 7-5: Transaction log files – expanded format

21. DIR Direction indicator – IN/OUT/PRT/CMP Character 33

22. FLOW_LEVEL User-defined flow level number Character 5

23. RECORD_NAM Record Name Character 10

24. RECORD_NO Record sequence number Character 6

25. FIELD_NAME Field Name Character 15

26. SEGMENT Segment identifier Character 3

27. SEG_COUNT Original Segment count Number 6

28. ELEMENT Element sequence number Character 2

29. SUBELEM Subelement identifier Character 2

30. SEV_CODE Message severity Character 2

31. MSG_NO Message number Character 5

32. MSG_TEXT Message description Character 100

33. FILENAME Full-path EDI file name Character 160

34. FIELDVAL Field Value Character 30

Number Field name Field description Field type
Field
length

Number Field name Field description Field type
Field
length

1. RUN_ID Run ID number Numeric 9

2. TYPE Record Type Character 1

3. RUN_DATE Run Date Time:
YYYYMMDDHHMMSS

Date 14

4. ACKBY_DATE Acknowledgement Date Time:
YYYYMMDDHHMMSS

Date 14

5. TRANS_CODE Message/Transaction Letter Code Character 2

6. TPANS_NAME Message/Transaction Letter Code Character 6

7. TPTNER_ID Trading Partner Number Character 35

8. VERSON Standard Version Character 12

9. ISA_TYPE Standard Type Character 5

10. INTERCHANG Interchange Control Number Character 35

11. GROUP_NO Group Control Number Character 35

12. TRANS_NO Transaction/Message Control Number +
Transaction/Message count

Number 35

CHAPTER 7 Non-ODBC Database and File Formats

ECRTP 111

13. APP_RCV_CD Group Receiver Code Character 35

14. APP_SND_CD Group Sender Code Character 35

15. RECV_CODE Interchange Receiver Code Character 35

16. SEND_CODE Interchange Sender Code Character 35

17. RECV_QUAL Interchange Receiver Qualifier Character 4

18. SEND_QUAL Interchange Sender Qualifier Character 4

19. ERRORS Count of total error messages Number 10

20. STAT Status Code (See following chart for
values)

Character 1

21. BYTE_COUNT This ST or SE Status Code Character 9

22. DIR Direction indicator – IN/OUT/PRT/CMP Character 3

23. FLOW_LEVEL User-defined flow level number Character 5

24. RECORD_NAM Record Name Character 10

25. RECORD_NO Record sequence number Character 6

26. FIELD_NAME Field Name Character 15

27. SEGMET Segment identifier Character 3

28. SEG_COUNT Count of Segment in
Transaction/Message

Number 10

29. ELEMENT Element sequence number Character 2

30. SUBELEM Subelement identifier Character 2

31. SEV_CODE Message severity Character 2

32. MSG_NO Message number Character 5

33. MSG_TEXT Message description Character 100

34. FILENAME Full-path EDI File Name Character 160

35. FIELDVAL Field Value Character 30

36. USER_IDENT User Field Character 35

37. ACK_EXPECT Acknowledgement Expected Flag Character 1

38. TR_ACK_TYP Filler Character 1

39. T_P_IND Test/Production Indicator - T or P Character 1

40. TRANS_CNT Count of Transactions/Messages Number 10

41 FILEOFFSET EDI Input File/Output File Offset Number 10

42 RCOUNT Field for record manipulation Number 1

43 SNDR_ROUTE Interchange-level internal sender ID code Character 14

44 SNDR_SUBID Interchange-level internal sender sub ID
code

Character 35

Number Field name Field description Field type
Field
length

Trading partner files

112 ECRTP

The following chart displays possible Status Code values and the definition for
each. Status Code is a field in the transaction log file.

45 RCVR_ROUTE Interchange-level internal receiver ID
code

Character 14

46 RCVR_SUBID Interchange-level internal receiver sub-
ID code

Character 35

47 APPL_REF Name of messages contained in UNB
envelope

Character 14

48 PROC_PRIOR Processing priority code Character 1

49 COMM_AGM Interchange agreement identifier Character 35

50 APP_SND_QL Group-level sender code qualifier Character 4

51 APP_RCV_QL Group-level receiver code qualifier Character 4

52 ASSOC_CODE Association-assigned code Character 6

53 APP_PSWD Application password Character 14

54 CLIST_VER Code list directory version number Character 6

55 MSG_TYPE Message type sub-function identifier Character 6

Number Field name Field description Field type
Field
length

CHAPTER 7 Non-ODBC Database and File Formats

ECRTP 113

Table 7-6: Status code information

Trace files (incoming.err and outgoing.err)
Trace files are created during the processing of the map and placed in the same
directory as the map files (–dg <directory> switch). The trace file for inbound
and web maps is placed in the incoming.err file, and the trace file for outbound
and any-to-any maps is placed in the outgoing.err file. Error messages are
created in the trace file whenever the execution of the map (either inbound or
outbound) encounters an error. Based on the Trace Type selected, the trace file
can be short or long. The trace files have a free text format.

Status file (status.in and status.out)
When ECRTP encounters an error, it produces a status file - status.in for
inbound maps or status.out for outbound maps. The user can quickly and
easily check to see whether errors occurred during a map run by checking for
the existence of a status file. If no status.out or status.in file exists in the
executables directory, then no errors occurred. If a file does exist, it contains an
error code with an error count. The chart below lists the definition of each of
the possible error codes. The creation of status.in and status.out can be turned
off with the -ef switch. In addition to creating a status file, ECRTP exits with a
numeric return value. See the table below for the meaning of the return values:

Table 7-7: Status file information

Status codes Definitions

W Wrote ST or SE

S Skipped write

A User abort

T Unknown Trading Partner

U Stop run

F Fatal error

D Inbound destination file transfer

E Other error

Return value Error code Definition

0 Wrote ST or SE No errors

1 W## - ## Errors but no transaction skipped

2 BADTRAN W## Transaction skipped with ## errors

3 UABORT W## User Abort Rule with ## errors

Trading partner files

114 ECRTP

When application programs are linked to the RTP DLL files, no status file is
produced. However, the status of the inbound or outbound run is returned to the
calling program as a number (0 thru 5). This number corresponds to a return
value in the chart above - the same value that is returned by the executables.

4 USTOP W## User Stop Rule and ## errors

5 EFATAL W## Fatal error stop and ## errors

Return value Error code Definition

Reference Guide 115

C H A P T E R 8 ODBC Database Table Formats

Topic Page
How ODBC trading partner data is stored 116

How ODBC trading partner data is stored

116 ECRTP

How ODBC trading partner data is stored
ODBC trading partner data is stored in three tables in the trading partner
database – the company table, the trading partner table, and the trade
agreement table. Log information is stored in the log database – in the
transaction log table and the trace file. The ODBC log database also has an
error table and a run ID table. Like the non-ODBC log, the ECRTP produces a
status file if errors occur during processing.

Trading partner database tables
The three ODBC trading partner database tables contain information about the
company, the trading partners, and the trade agreements that link trading
partners to specific maps. These tables can be created during map development
if an ODBC link has been established to the UNIX computer from the PC. The
-st runtime switch indicates that an ODBC trading partner database is being
used.

Note The TPKEY field in the trading partner table (TP) and the TRADKEY
field in the trade agreement table (TRADSTAT) should be
AUTOINCREMENT fields. If they are not, a provision must be made to assign
a unique numeric value to these fields every time a record is inserted into one
of these tables.

Company table (WIXSET)
Table 8-1: Company table

Number Field name Field type Field precision

1. RECORD_NO SQL_SMALLINT 4

2. GSID SQL_VARCHAR 35

3. NAME SQL_VARCHAR 35

4. IDQUAL SQL_VARCHAR 4

5. IDCODE SQL_VARCHAR 35

6. AUTH_QUAL SQL_VARCHAR 2

7. AUTH_CODE SQL_VARCHAR 10

8. SECU_QUAL SQL_VARCHAR 2

9. SECU_CODE SQL_VARCHAR 10

10. SNDR_ROUTE SQL_VARCHAR 14

CHAPTER 8 ODBC Database Table Formats

Reference Guide 117

Trading partner table (TP)
Table 8-2: Trading partner table

11. SNDR_SUBID SQL_VARCHAR 35

12. APP_SND_QL SQL_VARCHARr 4

Number Field name Field type Field precision

Number Field name Field type Field precision

1. CUSTNO SQL_VARCHAR 35

2. <filler> SQL_VARCHAR 1

3. NAME SQL_VARCHAR 35

4. IDCODE SQL_VARCHAR 35

5. AUTH_QUAL SQL_VARCHAR 2

6. AUTH_CODE SQL_VARCHAR 10

7. SECU_QUAL SQL_VARCHAR 2

8. SECU_CODE SQL_VARCHAR 10

9. GSID SQL_VARCHAR 35

10. SHIPQUAL SQL_VARCHAR 2

11. SHIPIDEN SQL_VARCHAR 15

12. BILLQUAL SQL_VARCHAR 2

13. BILLIDEN SQL_VARCHAR 15

14. ADDR1 SQL_VARCHAR 35

15. ADDR2 SQL_VARCHAR 35

16. CITY SQL_VARCHAR 19

17. STATE SQL_VARCHAR 15

18. COUNTRY SQL_VARCHAR 25

19. ZIP SQL_VARCHAR 9

20. CONTACT1 SQL_VARCHAR 35

21. TELEPHONE1 SQL_VARCHAR 22

22. CONTACT2 SQL_VARCHAR 35

23. TELEPHONE2 SQL_VARCHAR 22

24. ISA_IN_NO SQL_VARCHAR 14

25. ISA_OUT_NO SQL_VARCHAR 14

26. SND_GSID SQL_VARCHAR 35

27. SND_IDQUAL SQL_VARCHAR 4

28. SND_IDCODE SQL_VARCHAR 35

29. SUB_DELIMT SQL_VARCHAR 3

30. ELE_DELIMT SQL_VARCHAR 3

How ODBC trading partner data is stored

118 ECRTP

Trade agreement table (TRADSTAT)
Table 8-3: Trade agreement table

31. SEG_DELIMT SQL_VARCHAR 3

32. RELEASE_CH SQL_VARCHAR 3

33. X12_REPEAT SQL_VARCHAR 3

34. <filler> SQL_VARCHAR 1

35. EDIF_SUBDL SQL_VARCHAR 3

36. EDIF_ELEDL SQL_VARCHAR 3

37. EDIF_SEGDL SQL_VARCHAR 3

38. EDIF_RELCH SQL_VARCHAR 3

39. EDIF_REPEA SQL_VARCHAR 3

40. HL7_SEGDL SQL_VARCHAR 3

41. HL7_ELEDL SQL_VARCHAR 3

42. HL7_SUBDL SQL_VARCHAR 3

43. HL7_SUBS SQL_VARCHAR 3

44. HL7_RELCH SQL_VARCHAR 3

45. HL7_REPEAT SQL_VARCHAR 3

46. EXPORT_FLG SQL_VARCHAR 1

47. MBOX_NAME SQL_VARCHAR 35

48. MAILBOX SQL_VARCHAR 100

49. CURR_FMT SQL_VARCHAR 1

50. POS_LTR SQL_VARCHAR 1

51. SNDR_ROUTE SQL_VARCHAR 14

52. SNDR_SUBID SQL_VARCHAR 35

53. RCVR_ROUTE SQL_VARCHAR 14

54. RCVR_SUBID SQL_VARCHAR 35

55. APP_SND_QL SQL_VARCHAR 4

56. APP_RCV_QL SQL_VARCHAR 4

57. TPKEY SQL_INTEGER 10

Number Field name Field type Field precision

Number Field name Field type Field precision

1. CUSTNO SQL_VARCHAR 35

2. MAP_TRAN SQL_VARCHAR 6

3. ST03 SQL_VARCHAR 35

4. DIR SQL_VARCHAR 3

5. STAT SQL_VARCHAR 1

CHAPTER 8 ODBC Database Table Formats

Reference Guide 119

6. VERS SQL_VARCHAR 12

7. TBCODE SQL_VARCHAR 60

8. MBOX_NAME SQL_VARCHAR 35

9. DEST SQL_VARCHAR 100

10. FILE SQL_VARCHAR 30

11. GS_NO SQL_VARCHAR 14

12. ISA_TYPE SQL_VARCHAR 5

13. SERV_CODE SQL_VARCHAR 6

14. <filler> SQL_VARCHAR 1

15. RCV_GSID SQL_VARCHAR 35

16. RCV_IDQUAL SQL_VARCHAR 2

17. RCV_IDCODE SQL_VARCHAR 35

18. ACK_RQSTD SQL_VARCHAR 1

19. ACK_RQSTD2 SQL_VARCHAR 1

20. EDI_OUT SQL_VARCHAR 1

21. DAYS SQL_VARCHAR 2

22. HOURS SQL_VARCHAR 2

23. MINUTES SQL_VARCHAR 2

24. SECONDS SQL_VARCHAR 1

25. APPL_REF SQL_VARCHAR 14

26. ACK_MSG SQL_VARCHAR 1

27. ACK_INTCH SQL_VARCHAR 1

28. RCVR_ROUTE SQL_VARCHAR 14

29. RCVR_SUBID SQL_VARCHAR 35

31. PROC_PRIOR SQL_VARCHAR 1

32. COMM_AGM SQL_VARCHAR 35

33. APP_PSWD SQL_VARCHAR 14

34. ASSOC_CODE SQL_VARCHAR 6

35. CNT_AG1 SQL_VARCHAR 3

36. CLIST_VER SQL_VARCHAR 6

37. MSG_TYPE SQL_VARCHAR 4

38. MSG_SUBID SQL_VARCHAR 14

39. MSG_SUBVER SQL_VARCHAR 3

40. MSG_SUBREL SQL_VARCHAR 3

41. CNT_AG2 SQL_VARCHAR 3

42. MSG_IMPID SQL_VARCHAR 14

43. MSG_IMPVER SQL_VARCHAR 3

Number Field name Field type Field precision

How ODBC trading partner data is stored

120 ECRTP

Log database tables

The log tables contain information that is written to the log tables during
processing. The log database includes the transaction log table, the trace file,
the run ID table, and an error table. The -sl runtime switch indicates that an
ODBC log database is being used.

Note The AFLD field in the log table (TRLOG) should be an
AUTOINCREMENT field. If it is not, a provision must be made to assign a
unique numeric value to this field every time a record is inserted into this table.

Transaction log (TRLOG)

Table 8-4: Transaction log

44 MSG_IMPREL SQL_VARCHAR 3

45 CNT_AG3 SQL_VARCHAR 3

46 SCEN_ID SQL_VARCHAR 14

47 SCEN_VER SQL_VARCHAR 3

48. SCEN_REL SQL_VARCHAR 3

49. CNT_AG4 SQL_VARCHAR 3

50. STD_TYPE SQL_VARCHAR 2

51 APP_RCV_QL SQL_VARCHAR 4

52 TRADKEY SQL_INTEGER 10

Number Field name Field type Field precision

Number Field name Field type Field precision

1 AFLD AUTOINCREMENT 10

2 RUN_ID SQL_BIG_INT 9

3 TYP SQL_VARCHAR 1

4 RUN_DATE SQL_TIMESTAMP 14

5 ACKBY_DATE SQL_TIMESTAMP 14

6 TRANS_CODE SQL_VARCHAR 2

7 TRANS_NAME SQL_VARCHAR 6

8 TPTNER_ID SQL_VARCHAR 35

9 VERSION SQL_VARCHAR 12

10 ISA_TYPE SQL_VARCHAR 5

11 INTERCHANG SQL_VARCHAR 35

12 GROUP_NO SQL_VARCHAR 35

CHAPTER 8 ODBC Database Table Formats

Reference Guide 121

13 TRANS_NO SQL_VARCHAR 35

14 APP_RCV_CD SQL_VARCHAR 35

15 APP_SND_CD SQL_VARCHAR 35

16 RECV_CODE SQL_VARCHAR 35

17 SEND_CODE SQL_VARCHAR 35

18 RECV_QUAL SQL_VARCHAR 4

19 SEND_QUAL SQL_VARCHAR 4

20 ERRORS SQL_BIGINT 10

21 STAT SQL_VARCHAR 1

22 BYTE_COUNT SQL_BIGINT 10

23 DIR SQL_VARCHAR 3

24 FLOW_LEVEL SQL_VARCHAR 5

25 RECORD_NAM SQL_VARCHAR 10

26 RECORD_NO SQL_VARCHAR 6

27 FIELD_NAME SQL_VARCHAR 15

28 SEGMENT SQL_VARCHAR 3

29 SEG_COUNT SQL_INTEGER 10

30 ELEMENT SQL_VARCHAR 2

31 SUBELEM SQL_VARCHAR 2

32 SEV_CODE SQL_VARCHAR 2

33 MSG_NO SQL_VARCHAR 5

34 MSG_TEXT SQL_VARCHAR 100

35 FILENAME SQL_VARCHAR 160

36 FIELDVAL SQL_VARCHAR 30

37 USER_IDENT SQL_VARCHAR 35

38 ACK_EXPECT SQL_VARCHAR 1

39 TR_ACK_TYP SQL_VARCHAR 1

40 T_P_IND SQL_VARCHAR 1

41 TRANS_CNT SQL_INTEGER 10

42 FILEOFFSET SQL_BIGINT 10

43 RCOUNT SQL_SMALLINT 1

44 SNDR_ROUTE SQL_INTEGER 14

45 SNDR_SUBID SQL_INTEGER 35

46 RCVR_ROUTE SQL_INTEGER 14

47 RCVR_SUBID SQL_INTEGER 35

48 APPL_REF SQL_INTEGER 14

49 PROC_PRIOR SQL_INTEGER 1

Number Field name Field type Field precision

How ODBC trading partner data is stored

122 ECRTP

Run ID table (RUN_ID)

Table 8-5: Run ID table

Trace File (TRNN.DAT)

When an ODBC log database is used, the trace files are stored in the file
TRNN.DAT in the current working directory (unless the -et switch is used to
specify another directory). NN is the run number (RUN_NO field) from the
RUN_ID table in the log database. RUN_NO is incremented for each run.

Error log (ERROR) - used with functional acknowledgements

Table 8-6: Error log

50 COMM_AGM SQL_INTEGER 35

51 APP_SND_QL SQL_INTEGER 4

52 APP_RCV_QL SQL_INTEGER 4

53 ASSOC_CODE SQL_INTEGER 6

54 APP_PSWD SQL_INTEGER 14

55 CLIST_VER SQL_INTEGER 6

56 MSG_TYPE SQL_INTEGER 6

Number Field name Field type Field precision

Number Field name Field type Field precision

1 RUN_NO SQL_BIGINT 8

Number Field name Field type Field precision

1. RUN_ID SQL_BIGINT 9

2. ISA_SEND SQL_VARCHAR 35

3. ISA_RECV SQL_VARCHAR 35

4. GS_SEND SQL_VARCHAR 35

5. GS_RECV SQL_VARCHAR 35

6. GS_NUMBER SQL_VARCHAR 35

7. ST_NUMBER SQL_VARCHAR 35

8. TRANS_NAME SQL_VARCHAR 3

9. SEGMENT SQL_VARCHAR 3

10. SEG_NUMBER SQL_VARCHAR 10

11. SEG_ERROR SQL_VARCHAR 50

12. ELEM_NO SQL_VARCHAR 2

13. SUBELEM_NO SQL_VARCHAR 2

14. ELEM_ERROR SQL_VARCHAR 50

Reference Guide 123

A
ACKGROUP environment variable 20
ACKINT environment variable 20
Acquire Mode, sample configuration file 63
adapter, using ECRTP as an 62
all maps, freeing in memory 22
ALL_TB_OWNERS environment variable 20
API function calls

for inbound processing 31
inbound processing, sample programs 32
inbound processing, syntax 32
Java, using to execute ECRTP 34
outbound processing, sample programs 27
outbound processing, syntax 27
required parameters, inbound processing 31

application data
inbound processing 9
location of 9
outbound processing 9

ARE (Adapter Runtime Environment), installing 62
AUTO_INC_FIX environment variable 20

B
batch processing mode 4

C
company data file (wixset.dat) 104
customer.mdb file (trading partner file) 104

D
Deliver Mode, sample configuration file 65
DLLs, location of 6
-dt required parameter

for inbound API function calls 32
for outbound API function calls 26

E
e-Biz 2000, using ECRTP as an adapter with 62
e-Biz Integrator, using ECRTP as an adapter with 62
ECRTP

using as an adapter 62
using in a Web environment 72
using with e-Biz 2000 62
using with e-Biz Integrator 62
using with MQSeries Integrator 62

EDI data
inbound processing 11
outbound processing 10

EDI input file
inbound processing 18
required parameter for inbound API function calls

32
EDI output file

outbound processing 17
required parameter for outbound API function calls

26
EDI standards, location of 6
EDI to EDI message transformation 2
EDI to flat file message transformation 2
EDI to XML/HTML message transformation 2
environment variables 18

ACKGROUP 20
ACKINT 20
ALL_TB_OWNERS 20
AUTO_INC_FIX 20
WWIXDEBUG 21
WWIXDELIM 21
WWIXERR 21
WWIXNOCR 21
WWIXNUNG 21
WWIXQUOTE 21

Index

Index

124 ECRTP

WWIXTB=(NUMBER) 21
WWIXTRANS 21

error codes
for using Java packages to execute ECRTP 39

ERROR file (ODBC error log) 122
executable files, location of 6
exit routines, user 52

F
flat file to EDI message transformation 2
flat file to flat file message transformation 2
flat file to XML/HTML transformation 2
full path generated files directory, required parameter

for inbound API function calls 32
for outbound API function calls 26
inbound processing 18
outbound processing 17

full path trading partner directory parameter
inbound processing 18
outbound processing 17

function calls, API
inbound processing 31
inbound processing, sample programs 32
outbound processing, sample programs 27
syntax, inbound processing 32
syntax, outbound processing 27

G
generated map files, location of 7

I
inbound parameters

optional 89
optional for ODBC database users 94
required 88
required for ODBC database users 89

inbound processing
API function calls 31
application data 9
EDI data 11

EDI input file switch 18
map name 7
parameters required for API function calls 31
required switches 17
syntax for API function calls 32
wrmi32.exe file 5

inbound-only optional parameters 96
ODBC database users, trading partner lookup

switches 99
trading partner lookup switches 99

incoming.err trace file 113
installing ARE (Adapter Runtime Environment) 62

J
Java API calls

sample program 35
using to execute ECRTP 34

Java packages
sample code 39
using to execute ECRTP 38
using to execute ECRTP, error codes 39

L
loading maps into memory 22
location of

application data 9
DLL files 6
EDI standards 6
executable files 6
generated map files 7
log files 12
trading partner files 8

log files 3
location of 12
non-ODBC trace files 13
non-ODBC transaction log 12
ODBC trace files 14
ODBC transaction logs 13
text transaction 108

Index

Reference Guide 125

M
map files 3

generated, location of 7
map name

inbound processing 7
outbound processing 7
without extension switch, outbound processing

17
without file extension, required parameter for

outbound API function calls 26
maps

caching 74
development 3
development, moving from to production 4
freeing a specific in memory 22
freeing all in memory 22
loading into memory 22

memory
freeing a specific map 22
freeing all maps in 22
I/O 76
loading maps into 22

message transformations, types of 2
moving from map development to production 4
MQSeries Integrator, using ECRTP as an adapter with

62
multithreaded processing

owrm32c.dll file 5

N
non-ODBC

trace files 13
transaction logs 12

O
ODBC

database users, optional parameters 94
databases, vs. non-ODBC databases, performance

77
error log (ERROR) 122
log files, RunID table 13
Run ID table (RUN_ID 122

trace file (TRNN.DAT) 122
trace files 14
trade agreement table (TRADSTAT) 118
trading partner company table (WIXSET) 116
trading partner table (TP) 117
transaction log (TRLOG) 120
transaction logs 13

optional parameters
inbound-only 96
inbound-only, for ODBC database users, trading

partner lookup switches 99
inbound-only, trading partner lookup switches 99
outbound-only 94

outbound parameters
optional 89
optional for ODBC database users 94

outbound processing
application data 9
EDI data 10
EDI output file 17
map name 7
optional parameters 89
optional parameters for ODBC database users 94
required parameters 86
required parameters, for API function calls 26
required switches 16
syntax for API function calls 27
wrmo32.exe file 5

outgoing.err trace file 113
owrm32c.dll file, for multithreaded processing 5
owrm32c.dll file, running ECRRP as a DLL 22

P
parameters

for ODBC and non-ODBC trading partner files 78
inbound, required for ODBC database users 89
ODBC trading partners 84
optional 89
optional, inbound-only 96
optional, inbound-only, for ODBC database users,

trading partner lookup switches 99
optional, inbound-only, trading partner lookup

switches 99
optional, outbound-only 94

Index

126 ECRTP

outbound processing, required 86
required for inbound API function calls 31
required, inbound 88

performance
map caching 74
memory I/O 76
ODBC databases vs. non-ODBC databases 77

Process Mode, sample configuration file 67
processing modes

interactive 5
production 4

production
batch processing mode 4
interactive processing mode 5
moving from map development to 4
processing modes 4

R
required parameters

inbound 88
inbound processing 17
inbound, for ODBC database users 89
outbound API function calls 26
outbound processing 16, 86

routines, user exit 52
RUN_ID file (ODBC Run ID table) 122
RunID table, ODBC log files 13
running ECRTP from Visual Basic scripts 45

S
samples

configuration file for Acquire Mode 63
configuration file for Deliver Mode 65
configuration file for Process Mode 67
for inbound API function calls 32
for Java API calls 35
for Java packages 39
for outbound API function calls 27

scripts, Visual Basic, running ECRTP from 45
source code

for Visual Basic forms 46
for Visual Basic modules 45

specific map, freeing in memory 22
status code information 113
status files (status.in, status.out) 113
status.in status file 113
status.out status file 113
switches

-ol 99
required for outbound processing 16
required, for inbound processing 17

syntax
for inbound API function calls 32
for outbound API function calls 27

T
text transaction log files 108
TP file (ODBC trading partner file) 117
trace files

incoming.err, outgoing.err 113
non-ODBC 13
ODBC 14

trade agreement file (tradstat.mdb) 106
trading partner files

customer.mdb 104
location of 8

trading partners
database 3
database tables 116
DSN switch, inbound processing 18
DSN switch, outbound processing 17
DSN, required parameters for inbound API function

calls 32
DSN, required parameters for outbound API function

calls 27
information 104

TRADSTAT file (ODBC trade agreement table) 118
tradstat.mdb file (trade agreement file) 106
transaction code, outbound processing 17
transaction log files

expanded format 110
non-expanded format 109
ODBC 13

transaction/message
required parameters for outbound API function calls

26

Index

Reference Guide 127

transformations, message, types of 2
translog.in

expanded format 110
non-expanded format 109

translog.out 12
expanded format 110
non-expanded format 109

TRLOG file (ODBC transaction log) 120
TRNN.DAT file (ODBC trace file) 122
types of message transformations 2

U
user exit routines 52
using

ECRTP in a Web environment 72
Java calls to execute ECRTP 34
Java packages to execute ECRTP 38
Java to execute ECRTP 33

using ECRTP as an adapter 62
creating a configuration file 62
exporting a schema to the core integration product

62
installing ARE (Adapter Runtime Environment)

62

V
Visual Basic

running ECRTP from 45
source code for a module 45
source code for forms 46

W
Web environment, using ECRTP in 72
WIXSET file (ODBC trading partner company table)

116
wixset.dat file (company data file) 104
wrmi32.exe file, used for inbound processing 5
wrmo32.exe file, used for outbound processing 5
WWIXDEBUG environment variable 21
WWIXDELIM environment variable 21

WWIXERR environment variable 21
WWIXNOCR environment variable 21
WWIXNUNG environment variable 21
WWIXQUOTE environment variable 21
WWIXTB=(NUMBER) environment variable 21
WWIXTRANS environment variable 21

X
XML/HTML to EDI message transformation 2
XML/HTML to flat file message transformation 2
XML/HTML to XML/HTML message transformation

3

Index

128 ECRTP

	Reference Guide
	About This Book
	CHAPTER 1 About ECRTP
	About ECRTP
	Map development
	Moving from map development to production
	Production - processing modes
	Batch processing mode
	Interactive processing mode

	How ECRTP uses data by location, description, and use
	Executable files and DLLs
	EDI standards
	Generated map files
	Trading partner files
	Application data
	Outbound processing (application data is the input of the map)
	Inbound processing (application data is the output of the map)

	EDI data
	Outbound processing (EDI file is the output of the map)
	Inbound processing (EDI file is the input to the map)

	Log files
	Non-ODBC log files
	ODBC log files

	CHAPTER 2 Running ECRTP
	Running ECRTP as an executable
	Required switches for an outbound executable
	Required switches for an inbound executable
	Environment variables

	Running ECRTP as a DLL
	WIN API function calls for outbound processing
	Parameters required for outbound API function calls
	Syntax for outbound API function calls
	Sample programs for using outbound API function calls
	WIN API function calls for inbound processing
	Parameters required for inbound API function calls
	Syntax for inbound API function calls
	Sample programs for using inbound API function calls

	Using Java to execute ECRTP
	Using Java API calls to execute ECRTP
	Using a Java package to execute ECRTP

	Running ECRTP from a Visual Basic script
	Source code for a module
	Source code for Visual Basic form

	CHAPTER 3 User Exit Routines
	About user exit routines

	CHAPTER 4 Using ECRTP as an Adapter
	Using ECRTP as an adapter
	Configuration file for the Acquire Mode
	Configuration file for the Deliver Mode
	Configuration file for the Process Mode

	CHAPTER 5 Using ECRTP in a Web Environment
	Using ECRTP in a Web environment

	CHAPTER 6 ECRTP Performance
	Factors affecting performance
	Map caching
	Memory I/O
	Database technology

	Windows runtime parameters/switches
	Required parameters
	Outbound required parameters
	Outbound required parameters for ODBC database users

	Inbound required parameters
	Inbound required parameters for ODBC database users
	Optional parameters

	CHAPTER 7 Non-ODBC Database and File Formats
	Trading partner files
	Company data file (wixset.dat)
	Trading partner file (customer.mdb)
	Trade agreement file (tradstat.mdb)
	Log files
	Text transaction log files
	Transaction log files (translog.in and translog.out)
	Transaction log files (translog.in and translog.out)

	Trace files (incoming.err and outgoing.err)
	Status file (status.in and status.out)

	CHAPTER 8 ODBC Database Table Formats
	How ODBC trading partner data is stored
	Trading partner database tables
	Company table (WIXSET)
	Trading partner table (TP)
	Trade agreement table (TRADSTAT)
	Log database tables

	Index

