
Reference Guide

ECMap™
Version 4.2

[Windows]

DOCUMENT ID: DC36332-01-0420-01

LAST REVISED: November 2004

Copyright © 1999-2004 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Application Alerts, iAnywhere Mobile Delivery, iAnywhere Mobile Document Viewer, iAnywhere
Mobile Inspection, iAnywhere Mobile Marketing Channel, iAnywhere Mobile Pharma, iAnywhere Mobile Sales, iAnywhere Pylon,
iAnywhere Pylon Application Server, iAnywhere Pylon Conduit, iAnywhere Pylon PIM Server, iAnywhere Pylon Pro, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage
Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway,
media.splash, MetaWorks, My iAnywhere, My iAnywhere Media Channel, My iAnywhere Mobile Marketing, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit,
Report-Execute, Report Workbench, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure
SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere
Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL
Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ,
STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server,
Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
TotalFix, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK
Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 05/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Reference Guide iii

About This Book .. v

CHAPTER 1 Informational Messages ... 1
Overview .. 2

Message number... 2
Severity level ... 2
Message text ... 2

System messages.. 3
On map selection and directories.. 6
On file I/O .. 12
On records... 18
On fields .. 21
On dates.. 21
On data and data manipulation ... 22
On types, usage and type linking .. 26
On formats... 32
On mapping... 34
On rules... 35
On trading partners ... 37
On outbound map level changes... 40
On inbound map control segments ... 44
On inbound map checkpoints.. 53
On running the EDI product as an adapter.............................. 54

Microsoft standard ODBC error messages 56

CHAPTER 2 Adapter Configuration Files... 69
Overview .. 70
Configuration file samples .. 70

Schema Mode samples... 70
Schema_Remove Mode sample ... 73

CHAPTER 3 Trading Partner and Log Database Formats 75
Overview .. 76

Contents

iv ECMap

In outbound processing ... 77
In inbound processing ... 78

Database tables and logs... 79
Company table in non-ODBC trading partner database.......... 79
Company table in ODBC trading partner database................. 83
Trading partner file in non-ODBC trading partner database.... 86
Trading partner table in ODBC trading partner database........ 96
Trade agreement table in non-ODBC trading partner database ..

109
Trade agreement table in ODBC trading partner database... 114
Non-ODBC transaction log table in log database.................. 120
ODBC transaction log table in log database 129

CHAPTER 4 EDI Envelopes.. 141
Overview .. 142
Envelope types... 142

X12 envelope .. 143
EDIFACT envelope ... 143
HL7 envelopes .. 144

CHAPTER 5 ASCII Character Chart ... 145
About ASCII characters.. 146
ASCII Set 1 .. 146
ASCII Set 2 .. 153

Index ... 161

Reference Guide v

About This Book

This document is a reference guide for ECMap™, a tool for building and
understanding structured information messages.

Audience While you certainly do not need to be a programmer to use ECMap, it is
helpful to be familiar with certain technical concepts, such as the
following:

• ECRTP™ (process engine)

• Electronic Data Interchange (EDI) and HIPAA concepts

• HIPAA transaction formats and usage

How to use this book This guide presents general technical background information about
specific topics that are relevant to understanding and using ECMap. It also
provides a brief summary of ECMap features, with a particular emphasis
on the newest additions to product functionality.

This guide describes how to use ECMap. It is organized into the following
chapters:

• Chapter 1, “Informational Messages” describes the informational
messages ECMap may encounter.

• Chapter 2, “Adapter Configuration Files” describes how to create the
configuration files specified in ECMap’s Export Schema utility.

• Chapter 3, “Trading Partner and Log Database Formats” describes
how ECMap’s trading partner information is stored in the trading
partner database, and transaction and error logging are stored in a log
database with their ODBC and non-ODBC versions.

• Chapter 4, “EDI Envelopes” describes the EDI envelope types.

• Chapter 5, “ASCII Character Chart” describes each of the ASCII
characters that can be used in ECMap, such as decimal, binary and
hexadecimal representations; description; abbreviation; and printable
and non-printable characters.

Related documents The following documents ship with ECMap:

• ECMap New Features Guide

vi ECMap

• ECMap Installation Guide

• Release Bulletin for ECMap

• ECMap Reference Guide

• ECMap User Guide

• ECMap Getting Started

Additional documents are referred to in the ECMap documentation to supply
you with specific information that supports this product:

• ECRTP Reference Guide to use the data transformation engine

Documentation that supports ECMap can be found on the Sybase Product
Manuals web site. Go to Product Manuals at
http://www.sybase.com/support/manuals, select ECMap from the drop-down
list, and click Go!

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks Bookshelf CD, and the
Sybase Product Manuals web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks Bookshelf CD. It is included
with your software. To read or print documents on the Getting Started CD,
you need Adobe Acrobat Reader, which you can download at no charge
from the Adobe Web site using a link provided on the CD.

• The SyBooks Bookshelf CD is included with your software. It contains
product manuals in a platform-independent bookshelf that contains fully
searchable, HTML-based documentation.

Some documentation is provided in PDF format, which you can access
through the PDF directory on the SyBooks Bookshelf CD. To view the
PDF files, you need Adobe Acrobat Reader.

Refer to the README.txt file on the SyBooks Bookshelf CD for
instructions on installing and starting SyBooks.

• The Sybase Product Manuals Web site is the online version of the
SyBooks Bookshelf CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to EBFs/Maintenance,
Technical Documents, Case Management, Solved Cases, newsgroups, and
the Sybase Developer Network.

To access the Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

 About This Book

Reference Guide vii

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

viii ECMap

Typographic
conventions

This documentation uses the following typographic conventions:

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Item Description

Code SQL and program code displays in a mono-spaced (fixed-
width) font.

User entry Text entered by the user is shown in bold serif type.

emphasis Emphasized words are shown in italic.

file names File names are shown in italic.

database objects Names of database objects, such as tables and procedures, are
shown in sans serif type in print, and in italic online.

sybase\bin A backward slash (“\”) indicates cross-platform directory
information.

A forward slash (“/”) applies to UNIX-specific information.
Directory names appearing in text display in lowercase unless
the system is case sensitive.

File > Save Menu names and menu items are displayed in plain text. The
angle bracket indicates how to navigate menu selections, such
as from the File menu to the Save option.

parse|put|get The vertical (pipe) bar indicates

• Options available within code

• Delimiter within message examples

segment Bold text indicates a glossary term.

Reference Guide 1

C H A P T E R 1 Informational Messages

About this chapter This chapter describes the informational messages ECMap may
encounter.

Topics This chapter contains the following topics:

Topic Page

Overview 2

System messages 3

On map selection and directories 6

On file I/O 12

On records 18

On fields 21

On dates 21

On data and data manipulation 22

On types, usage and type linking 26

On formats 32

On mapping 34

On rules 35

On trading partners 37

On outbound map level changes 40

On inbound map control segments 44

On inbound map checkpoints 53

On running the EDI product as an adapter 54

Microsoft standard ODBC error messages 56

Overview

2 ECMap

Overview
Message format The standard format for an ECMap informational message is the following:

(Message Number) Severity Level: Message

Example (7015) ERROR: Output Files Reset Due to Transaction
Errors

Message number
The message number is a unique number assigned to an informational
message. Messages are generally grouped by category of message, with a
specific range of message numbers falling within a given category. See
“System messages” on page 3.

Severity level
The following table describes an informational message’s level of severity:

Message text
The message text is a brief explanation of message. Informational messages are
found in the transaction log – trlog for those using an ODBC log and
translog.in and translog.out for those using a non-ODBC log.

Message Description of level of severity

OK Informational message to the user that requires no action.
TRACE Informational message to the user that requires no action.
DEBUG Informational message to the user that requires no action
WARNING Caution note to the user. Sybase recommends that you

correct all WARNING conditions.
ERROR A problem exists that you must correct. ERROR messages

are frequently the result of a mistake in your setup, but
they can also be simple data entry errors.

FATAL A problem causes the program to terminate. FATAL errors
can be the result of missing executables, not enough PC
memory, internal program errors, or missing databases.

CHAPTER 1 Informational Messages

Reference Guide 3

System messages
With two exceptions, system messages are the result of missing executables,
inadequate PC memory, or internal program errors.

Error message
exceptions

The two exceptions are the messages related to the User ABORT and
STOP_RUN commands. The messages for these commands indicate that the
user terminated the map run.

Error messages described as “Internal program error” are present to catch
program logic errors and do not display. If they do display, note the message
number and any associated error number, and call Sybase support for
assistance immediately.

ECMap relies on the dynamic allocation and deallocation of memory. If
memory allocation errors occur, call Sybase support for help in analyzing your
transaction set databases and your PC memory limits.

Memory error work
arounds

Two work arounds could allow work to continue when memory errors occur:

• If a Memory Allocation Error message displays during map run or compile,
examine the data dictionary and rules databases, as well as the map flow
database used with the current transaction. If particular rules, map flow
levels, records, fields or memory variables are not needed for the current
transaction, reduce the amount of memory required to process the
transaction by creating a smaller rules, map flow or data dictionary
database.

• If a Memory Allocation Error occurs when an option other than map run or
compile was executed, restart ECMap and try running your map again.

Table 1-1 lists the format, cause, and solution (if applicable) for the ECMap
system messages in numeric order by message number.

Table 1-1: ECMap system messages

Message Cause Solution

(0003) FATAL:
undefined database
type- <internal
program code>

Internal program error. Call support for assistance.

(0021) OK: executed
STOP_RUN command

Information Only. User STOP_RUN
rule was executed.

A command placed in the map
by a user. Find where the
command is located in the map
and remove it if the command is
not desired.

System messages

4 ECMap

(0100/<ERRNO-NO>)
FATAL: call to program
module- <program
name>

An attempt to spawn “PROGRAM”
failed. The ERRNO-NO is the error
code from the ‘C’ “errno” table. The
most likely reasons are “errno” number
2, which means that the executable file
does could not be found on disk, or
“errno” number 12, which means that
there is not enough memory available
to load the called program.

For “errno” value of 2, the
corrective action is to do a DIR
on the directory where the
MAPPER executable are stored.

WWIXMAP – The default
installation directory for
executables is “MAPEXE”.

ECMAP – The default
installation directory for
executables is Program
Files\Sybase\ECMap. If the file is
not on the disk, reinstall the
WWIX executable files using
the installation disks. If the
executable does exist on disk but
was not found, then make sure
that the WWIX executable
directory is included in the DOS
PATH environment variable.

For “errno” value of 12, call
support for assistance.

(0102) FATAL: program
call- incorrect
parameters

One or more wrong parameters was
called.

Recheck the list of valid
parameters and apply those
parameters to the command line.

(0103) FATAL:
parameter<parameter
switch> exceeds Max
Length number
<maximum length>

You have too many parameters for
your map.

Reduce the number of
parameters.

(0105) FATAL: invalid
or undefined input
parameter(s)

Internal program errors. A parameter
has been called or accessed that has not
been defined, or is not defined
correctly.

Call support for assistance.

(0200) FATAL: memory
allocation

MAPPER was unable to allocate
enough memory to execute a critical
function.

Call support for assistance.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 5

(0202) FATAL: memory
allocation; loading
database- <database>

Indicates that there was not enough
memory to create a temporary memory
table from a database. If this message
occurs while performing the Define
Map Flow function, then the size of
your Map Flow database has exceeded
the size that can be loaded into
memory. Examine the Map Flow to
determine if all of the defined levels
are required.

Call support for assistance.

(0208) FATAL: memory
allocation; loading <
> for Map: <filename>

Insufficient memory available to load
map.

Call support for assistance.

(0209) ERROR: USING
EDIFACT MAP with
NON-EDIFACT ENVELOPE

Occurs when envelope information
does not contain EDIFACT standards.

Call support for assistance.

(0210) ERROR: USING
NON-EDIFACT MAP with
EDIFACT ENVELOPE

Occurs when envelope information
contains EDIFACT standards or a
non-EDIFACT map.

Call support for assistance.

(0211) FATAL: memory
allocation loading
map

An internal program error. The length
of the text keyed in for a rule operand
by the user is greater than the space
that has been allocated to store the text
rule operand.

Call support for assistance.

(0212) FATAL: Trading
Partner <trading
partner> Has No
Mailbox

No directory has been defined in the
Trade Agreement record

Define the directory.

(0213) FATAL: Can’t
Set Transaction level

(0214) FATAL: Can’t
Retrieve WIXSET
Record

The wixset database is damaged or the
wixset database has no record inside.

Check the wixset database

(0215) FATAL: Attempt
to run < > with < > MAP

Attempt to run “inbound” with an
“outbound” map.

Message Cause Solution

System messages

6 ECMap

On map selection and directories
Some of the ECMap informational messages are related to map directories,
application file directories, and ECMap environment variables.

ECMap provides great flexibility in deciding where to place directories and
files on the disk. But with this flexibility comes the responsibility for
accurately describing these locations to the mapping program.

• ECMap depends on the user to correctly define map directory sets for each
inbound and outbound EDI transaction. This is done through setting
project map directories on the Project/Map window.

• Each of the map directory sets defined is identified by a unique map name
that is assigned on the Map window.

• ECMap also relies on the user to have entered valid directory locations for
all application files using the Directories (Mailboxes), Files/Databases,
and Records/Tables windows.

Table 1-2 lists the format, cause, and solution (if applicable) for the ECMap
messages related to map selection and directories, by message number.

Table 1-2: ECMap messages related to map selection and directories

Message Cause Solution

(1000) ERROR: can’t
find map- <mapname>

The map name was not found in the
database table of defined map names,
MTABLE.

If this error displays as a result of direct
window entry of a map name or at
ECMap startup ensure that the map name
is correctly spelled.

If this error occurs when running an
inbound or outbound map, examine the
trade agreement records that are
associated with the transaction set for the
trading partner processed. One of the map
names that has been specified in the trade
agreement records is not a valid map
name (i.e. is not contained in MTABLE).

WWIXMAP – Valid map names can be
viewed from the trade agreement record
window by moving the cursor to the map
name field and pressing <F2> (option to
display valid map names).

(1006) ERROR: Map name
or directory database
is incomplete

The currently selected map name has
not been defined completely.

Examine all of the directory entries for
this map name. One of the directories has
been left blank. Enter a directory name
into this field.

CHAPTER 1 Informational Messages

Reference Guide 7

(1010)
ERROR:[WWIXMAP] =
environment variable
is not SET

The environment variable must be set
to an existing directory prior to
invoking the MAPPER program. The
MAPPER program checks this
directory for control databases at start
up. If the control databases do not
exist they are automatically created.

WWIXMAP default directory is
MAPEXE

Control databases, such as the database
table of defined map names, MTABLE,
are located under the ECMap
environment directory. Changing the
value of ECMap causes a new MTABLE
to be created under the new ECMap
directory. This new MTABLE does not
contain previously defined map names.

(1012) ERROR:
[WWIXMAP] =
environment variable
invalid value

(1013) ERROR:
[WWIXMAP] =
environment variable
Disk Drive not
Specified

(1014) ERROR:
[WWIXMAP] =
environment variable
Must have \"\\\" after
Drive:

Messages 1012 – 1014 are displayed
when the environment variable is
either not set or set to a name that is
not a valid directory name.

Check the setting and correct it. The
values of environment variables can be
checked at the DOS prompt by keying
“SET” and pressing the ENTER key. At
the DOS prompt, you can assign a new
value to the environment variable by
keying: SET [WWIXMAP] = “FULL
PATH DIRECTORY NAME”. For
example, the DOS command, “SET
[WWIXMAP]= C:\MAPDATA”, sets the
environment directory to the directory
C:\MAPDATA.

Note Place the SET command that
assigns a full path directory name in the
DOS autoexec.bat file.

(1015) ERROR:
[WWIXMAP] =
environment Must Be a
Sub-Directory

ECMap cannot point to the root
directory.

Modify environment variables to include
drive and directory.

(1016) ERROR: Invalid
Directory

ECMap was unable to locate the
designated directory.

Modify variable to include drive and
directory.

(1017) ERROR: can’t
get Current Working
Directory

System cannot get current working
directory or pathname can be longer
than 260 characters (default for
Windows).

Verify that all path directories should be
less than 260 characters.

(1018) ERROR: putenv <
> failed

Creating a new environment variable,
modifying, or removing existing
environment variables failed.

System error. Call Technical Support.

Message Cause Solution

System messages

8 ECMap

(1020) FATAL: can’t
create - <directory
name>

Cause 1: The MAPPER program was
unable to create the designated
directory. This message displays
because either the directory name is
invalid or the DOS limit has been
reached for the number of directories
on the PC.

Solution 1: Verify that the directory name
is a valid directory for the PC. For
example if the PC in use does not have a
D drive, then attempts to create a
directory on the D drive fails.

Cause 2: This message can be the
result of keying in an incorrect
directory name.

Solution 2: Key in a correct directory
name in the window field.

Cause 3: Directory Names are stored
in the User Files and in the map name
Definition databases. When these
directory names are entered they are
verified as correct. However,
changing the Configuration of a PC or
copying data files between PC's could
result in invalid directories in use.

Solution 3: Verify that all file directories
are valid. When the current map name is
highlighted, verify that the Map
directories for this map name are correct

Cause 4: If the directory name is valid,
then the DOS limit for the number of
directories on your hard disk could
have been reached. For most hard
disks, the total number of directories
allowed depends on how the hard disk
was formatted. Double sided 40 track
diskettes can have a total of 112
directories, and high capacity double
sided 80 track diskettes can have a
total of 224 directories.

Solution 4: Delete a directory that is
unrelated to the MAPPER to free up a
directory entry space and execute the
program again.

(1021) FATAL:
Connection to <DSN>
failed.

ODBC could not establish a
connection to the database specified in
the filename.

Check that the DSN specified is correct.

Connection between ODBC drivers and
the actual database has been broken. For
example, the database server is down,
and communication is not taking place.

(1022) FATAL: Bind
Parameter Failed.

The internal record field definitions
and the table structures do not match.

Re-import the table definitions from the
database.

Re-export and create a new table in the
database based on the new table
definition in ECMap.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 9

(1023) FATAL: Select
Failed.

Cause 1: Select statement could not
execute because maximum number of
connections (cursors) has been
exceeded.

Solution 1: Examine tables that establish
the maximum number of cursors.

Check Select Statement for correct
syntax.

Cause 2: Select statement could not
execute because database connection
has been terminated.

Solution 2: Ensure that database has not
gone inactive at the current location.

(1024) FATAL: Fetch
without Select

Fetch was issued against a particular
record type that had not been selected.

Examine rules to ensure that table has
been “selected” prior to issuing the
“fetch” command.

(1025) FATAL: Insert
<record name> Failed

Cause 1: ODBC code failed to insert a
record into the database because
maximum number of connections
(cursors) has been exceeded.

Solution 1: Examine tables that establish
the maximum number of cursors.

Check Insert Statement for correct
syntax.

Cause 2: ODBC code failed to insert a
record into the database because
database connection has been
terminated.

Solution 2: Ensure that database has not
gone inactive at the current location.

(1026) FATAL: Update
without Select.

ODBC could not establish a
connection to the database specified in
the filename.

Check that the DSN specified is correct.

(1027) FATAL: Update
Failed.

Cause 1: Select statement could not
execute because maximum number of
connections (cursors) has been
exceeded.

Solution 1: Examine tables that establish
the maximum number of cursors. Check
Update Statement for correct syntax.

Cause 2: Select statement could not
execute because database connection
has been terminated.

Solution 2: Ensure that database has not
gone inactive at the current location.

(1028) FATAL:
Get/SetCursorName
Failed.

(1029) FATAL: Invalid
Cursor State

No ODBC connection or no cursor
handler.

Call Support assistance.

(1030) FATAL: <ODBC>
Error: <text
explanation>

ODBC manager detected an error.
Passed back to ECMap.

See the ODBC error messages in Section
15 – Microsoft Standard ODBC Error
Messages.

(1031) ERROR: SQL
RollBack Performed

A Bad Transaction has been
processed. SQL statements that insert
data into database are rolled back.

Informational Message accompanied by
other error messages that detail the
transaction errors that occurred.

(1032) OK: SQL
RollBack Performed

A user-invoked SQL rollback has
occurred.

Informational Message

Message Cause Solution

System messages

10 ECMap

(1033) FATAL: Fetch
Failed.

Record definition and database
records do not match.

Ensure that the database definitions and
the record definitions are synchronized.

(1034) FATAL:
Procedure <Procedure
Name> Failed

Cause 1: Procedure Call failed
because of environment issue

Solution 1: Examine procedure call in
database to ensure that environment
settings are correct

Cause 2: Procedure Call failed
because of a bad parameter.

Solution 2: Examine procedure call in
database to ensure that a bad parameter
was not passed to the program.

(1035) Fatal: Number
of Fields in <record>
Does Not Match Prior
Map

Error occurs on Map Switching when
using different maps for the same
messages. The record definitions in
one map do not match the Record
Definitions in the initial map.

If different maps are used, ensure that
they contain the same record definition
for the same table.

(1036) TRACE:
Database doesn’t
support a LOCK_TYPE.

(1037) Fatal: Wixset
Connection string not
defined.

ODBC Trading Partner Set up the company information.

(1038) Fatal: RUN_ID
Table Empty

(1039) Fatal: Cannot
Obtain Mutex Lock

(1040) Fatal: Try to
write to stdin

(1041) Fatal: Try to
read from stdout

(1042) FATAL: Failed
to Write TRLOG –
dumping log to < >

(1043) FATAL: Commit
Failed on < >

(1050) ERROR: Data is
too long, exceed the
buffer length

(1051) ERROR: Element
name does not exist

(1052) ERROR: Element
name is too long

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 11

(1053) ERROR: The
element name
<element> does not
match any record tag
names

(1054) ERROR: Failed
to load attribute
value

(1055) ERROR: While
reading data
encountered an end of
file

(1056) ERROR: Tag
length is 0

(1057) ERROR:
Attribute name is too
long

(1058) ERROR:
Attribute name is
missing

(1059) ERROR: This is
not a right position
to get the attribute
value

(1060) ERROR: Missing
ending quote when
loading attribute
value

(1061) ERROR:
Attribute value is too
long

(1062) ERROR:
xml_input_convert()
failed

(1063) ERROR: Invalid
switch

(1064) ERROR: Invalid
read operation from
stdout

(1065) ERROR: Invalid
write operation to
stdin

Message Cause Solution

System messages

12 ECMap

On file I/O
Some of the messages in this section are the result of system errors from
opening, reading, writing and closing files. Other errors result from users
performing MAPPER program definitions for User Files, Map Directory Sets,
Map I/O Rules or Map Flows.

Note Some of the messages in this section are described as internal program
errors. Internal program error messages are not expected to display. If an
internal error message occurs or if the suggested corrective action does not
solve a problem, note the message number and any associated DBCIII error
number and call Sybase support for assistance.

(1066) TRACE: Write
XML start tag --
<start tag>

(1067) TRACE: Write
XML end tag -- <end
tag>

(1068) WARNING: Next
XML Tag = <next tag>;
Reading Record Tag =
<current tag>

Tag in data does not match tag in Read
Rule at that level or the following
level

This is an informational message; you
might not need to do anything. You can
make sure the matching tag exists in the
input data at this level or the following
level.

(1069) WARNING: No
more starting tag when
reading record tag --
<current tag>

There are no more starting tags at the
top of the loop in the input data and the
end of the file has been reached.

Verify that the looping tag exists in the
input data.

(1070) WARNING: The
element name
(<element>) does not
exist in the map, skip
to next

The element in the input data is not
present in the map definition.

Verify that the input data is correct or
element exists in the map.

(1071) WARNING: The
attribute name
(<attribute>) is not
defined in the record,
skip to next

The specified attribute in the input
data is not present in the map
definition.

Verify that the input data is correct or the
specified attribute exists in the map.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 13

Table 1-3 lists the format, cause, and solution (if applicable) for the ECMap
messages related to File I/O (including databases and indexes), by message
number.

Table 1-3: ECMap messages related to File I/O

Message Cause Solution

(1101) FATAL: file
<file name> has
non-numeric < >

(1102) FATAL: file
<file name> has
invalid zero
delimiter

(1104) FATAL: file
number out of range -
< >

A run time map message that is written
to the error log along with other
detailed information to identify the
exact cause of the message. The
message indicates that the generated
map has a rule that is incorrectly
referencing a file.

Regenerate the map for the
current transaction. If message
reoccurs, call support for
assistance.

(1105) FATAL:
filename is blank on
read

Displays if a map is run and the
generated tables contain a blank file
name. This message is not expected to
be displayed since the “Define Rules”
option checks for valid file names.

Examine the Map Rules for any
incorrect File I/O rules.
Regenerate the map for the
current transaction and examine
the map generation error log.
Correct any generation error log
messages. If message reoccurs,
call support for assistance.

(1106) FATAL: file-
<file name> used both
as <READ/WRITE> and
KEYED

A run time map message that is written
to the error log along with other
detailed information to identify the
exact cause of the message. This
message occurs if the name file has
been used as both a keyed index file
and as a sequential user file.

Examine the file I/O rules that
uses the FILE NAME in
question. Correct the rules so
that FILE NAME is not
referenced as both a keyed file
and a sequential file.

System messages

14 ECMap

(1110) FATAL: can’t
open file- < file name
>

(1113) FATAL: can’t
open index- <index
name> database-
<database>

Messages 1110 and 1113 are displayed
as a result of a failed open file
command. When a file cannot be
opened, it could be due to file damage
or the file might not exist on disk. The
full path name of the file that cannot be
opened displays in the error message.

Check that the file exists, and
directory path exists. If the
directory does not exist create it.
If it cannot be determined why
the database or index cannot be
opened, call support for
assistance.

ECMap automatically creates the
required directories; however, it is
possible one of the needed
directories has been deleted. If the
directory exists but the file does not,
determine what type of file it is by
the file name and directory location.
For example, the file could be a
standards database that has not been
loaded into the directory specified.
Or perhaps the problem is a missing
data file that has not been loaded
into the directory. Or perhaps the
map flow databases or the rules
database have not been created, and
the user is trying to generate a map.

(1118) FATAL: can’t
open EDI file- <EDI
file name>

The specified EDI file cannot be
opened. This Run Time map message
is written to the error log along with
other detailed information to identify
the exact cause of the message.

Verify that the file exists on disk.
If the file does exist, call support
for assistance.

(1119) ERROR: not
found- <file type>:
<file name>

A map run time error message that
occurs when a Look Up Table, or
Keyed index file does not exist. The
displayed file name contains the full
path name of the needed file.

Place the needed file in the
indicated directory or modify
the map so that the file is not
referenced and regenerate the
map. If the file is a keyed index
file, then use the “Define Rules”
to remove file I/O rules using
this keyed index file. If the file is
a table lookup file, then
“Mapping” options can be used
to either create the look up table
or delete any reference to it.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 15

(1120) WARNING: file
not found- create?

Verifies that file creation is desired.
MAPPER is designed to create some
files when they are not present. For
example, empty User file databases,
and empty map flow databases are
created by the MAPPER program.
Before creation of these databases,
MAPPER verifies that the user wants
to create the new database for the
currently selected map.

If the user responds with “Y”,
MAPPER creates the file.

If the user responds with “N”,
MAPPER terminates the
function.

(1122) ERROR: file
<file name> not found

A file specified in the rules and/or
directory structure is not found. This is
a read only problem.

Check directory and filename
specifications, to ensure that
there is a file of that type present
on the system.

(1124) FATAL:
unexpected EOF while
processing level <map
flow level number>

An outbound map run time error
message that occurs when a level’s I/O
rule is performed to read a user file and
the read results in End Of File. The End
of File is considered to be unexpected
if the level has not been defined as
“Optional” by the user in the “Mapper
Flow” options, and the level is either
not a repeating level or is a repeating
level but the repeating level is executed
for the first time in the loop. If this
message displays, then either the user
files for this transaction are incomplete
or the map flow does not correctly
describe the user files.

Call support for assistance.

(1125) FATAL: DBF
Error

Displays when any errors have been
detected by the Run Time while
accessing dBASE files.

May indicate the Trading
Partner file is not present.
Ensure that directory location
and Trading Partner status has
been established.

(1126) FATAL:
Directory <directory>
Does Not Exist

Message Cause Solution

System messages

16 ECMap

(1130) FATAL: can’t
read file- <file name>

Messages 1130 through 1132 are
displayed when an error occurs as a
result of a read file command and the
end of file has not been reached. Verify
that the file name displayed exists on
the disk. This message is usually
displayed only after the file has been
successfully opened, and if the file
does exist on disk these messages
should be regarded as internal program
errors.

Call support for assistance.

(1140) FATAL: can’t
write to file- <file
name>

(1141) (DBCIII ERR #)
FATAL: can't write to
file- <file name>

Messages 1140 and 1141 are displayed
if an attempt to write a record to an
open database or file fails. Could be the
result of a full disk, or not enough free
memory.

Exit MAPPER and check for
free disk space. If there is free
disk space, restart MAPPER and
retry the MAPPER option that
caused the error. If the write fails
again, call support for
assistance.

(1142) ERROR: Rename
<File 1> to <File2>
Failed.

Rename command did not execute
correctly.

Ensure that:

• directory exists

• filenames are correct and valid

• File 2 does not already exist
since the rename command can
not update.

(1177) ERROR: on
Breakfield

An internal program error that should
never occur. If it does, it occurs when a
outbound map is running, and the size
of a breakfield for a user file exceeds
the space that has been dynamically
allocated to hold the breakfield value.

Call support for assistance.

(1181) ERROR: file-
<file name> has
multiple records, but
record- <record name>
doesn’t have record
type field.

A run time map message. A User file
has been defined to contain several
different records but the displayed
RECORD NAME that belongs to FILE
NAME file does not have a record type
field.

Correct this by defining a record
type field for the record or by
changing the definition of the
displayed FILE NAME to
contain only one record.

(1190) ERROR: Missing
<record name> Record
in Map <map name>

Required type of record is not in map,
such as outstat and flow record

Check flow, and/or record
definitions to ensure that record
is defined. Run Generate to
regenerate the map.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 17

(1191) ERROR: Invalid
header line in map
<map name> at line
<line number>

*.MAP file is incorrect. Somehow this
file has been corrupted.

Run Generate to regenerate the
map.

(1192) ERROR:
Unexpected < > of < >
records at line < line
number> Map <map name>

Map was not completed correctly i.e.:
the flow is missing,

Ensure that all map components
are present (including the flow)
and regenerate the map.

(1193) ERROR: Level
<level number>
Current Record Name
Cannot be Blank

Outbound map flow has errors. Current record is not defined in
outbound flow. Define record
and regenerate the map.

(1194) ERROR: Level
<level number> Parent
Record Name Cannot be
Blank

Outbound map flow has errors. Parent record is not defined in
outbound flow. Define parent
record and regenerate the map.

(1195) ERROR: Level
<level number> Not
Linked to Prior Level

Outbound map flow has errors. Modify flow to include prior
level and regenerate the map.

(1196) ERROR: Level
<level number>
Multiple Link Only's
Attached to Same Prior
Level

Outbound map flow has errors. Modify flow to eliminate
multiple “link onlys” attached to
the same level. This is not a legal
condition.

(1197) ERROR: Level
<level number> Link
Only Must Attach to
Repeat or Master Level

Link only has been specified where it is
not needed. Link only’s are only
needed after repeats on the master
level.

Delete the link only that is
attached to the instance where
this error message occurs and
change the level numbers for the
segments so that they are
attached to the appropriate level.

(1198) ERROR: Level
<level number> Should
Be Placed Directly
Beneath Parent Level

Outbound map flow has errors. Check placement of entries in
this flow table to ensure that
parent and child levels flow
correctly.

(1199) ERROR: Flow
Errors In Outstate Map
– Run Aborted

Outbound map flow has errors. Check placement of entries in
flow table.

Message Cause Solution

System messages

18 ECMap

On records
Some of the ECMap informational messages are the result of errors in adding,
updating, reading and deleting database and index records. Other errors are the
result of search or re-index failures. Some of the errors are the result of
mistakes made in defining Map Flow records. Some of the messages in this
section are described as internal program errors. Internal program error
messages are not expected to be displayed. If an internal error message occurs
or if the suggested corrective action does not solve a problem, note the message
number and any associated DBCIII error number and call support for
assistance.

Table 1-4 lists the format, cause, and solution (if applicable) for the ECMap
messages related to records, in numeric order by message number.

Table 1-4: ECMap messages related to records

Message Cause Solution

(1208) ERROR: invalid
record- <EDI segment
expected>

Can occur when an inbound map is
running and the inbound EDI X12 file
has an invalid or missing control
segment. The “EDI Segment
Expected” part of the message could be
“GS”, “ST” or another control segment
name to indicate the control segment
that the program was expecting.

Examine the error log and the
bad transaction file for the
inbound map run to determine
where the error occurred.

(1214) FATAL: can’t
find key- <key value>

Indicates that the index files for a
MAPPER database have been
corrupted.

Delete the DOS index files
(*.NDX) under the current map’s
“Data Dictionary Tables”
directory. When the MAPPER
program is restarted, the index
files under the “Data Dictionary
Tables” automatically rebuilds.

If this does not solve the
problem, call support for
assistance.

(1222) FATAL:
duplicate record-
<record number> found
in database-
<database>

Should not display. It can occur when a
map is run but the generated tables
have become damaged.

Regenerate the map for this
transaction. If message occurs
again, call support for
assistance.

(1223) FATAL: fseek
failed during file
read

An internal error that could occur if,
during a map run, an attempt to seek to
a saved file location fails.

Call support for assistance.

CHAPTER 1 Informational Messages

Reference Guide 19

(1225) ERROR: <record
name> in file <file
name> doesn’t have
valid record type

An outbound map run error that occurs
when processing a user file that
contains multiple records with record
type key fields, and a record is read that
does not have a type key field value
that matches any of the user defined
type key field values.

Either correct the user file record
so that it has a correct type key
field value or modify the User
File so that the record key field
value of the user file record in
error is valid.

(1226) FATAL: record
number out of range- <
>

Could occur when a map is run but the
generated tables have become
damaged.

Regenerate the map for this
transaction. If message occurs
again, call support for
assistance.

(1227) FATAL:
XML-READ gets into an
infinite loop

(1228) ERROR: No
Tradstat for Tptnr
<TRADING PARTNER NAME
> Trans <TRANSACTION
NUMBER > Vers <VERSION
NUMBER> TstInd <TEST
INDICATOR
NUMBER>Agency <AGENCY
NAME> Release
<RELEASE NUMBER> –
Skipping Forward

A Trade Agreement entry for this
trading partner, for this version, for this
test indicator, for this agency, for this
release is not present.

Modify the Trading Partner
Trade Agreement to link version
transaction number for this
trading partner. Ensure that
agency, release and direction are
correct.

(1230) FATAL: reading
record from database-
<database>

(1231) FATAL: reading
record- <record
number> from
database- <database>

Messages 1230 and 1231 display if a
read of a database file fails. When this
message occurs, the program has
already found or added a record to the
database and the read is attempting to
retrieve a record that is known to exist
in the database. Such an error could
occur only if the database or index file
has been damaged.

Check to see if the hard disk is
full. Also, follow the database
re-index procedures outlined in
Error 1214 solution. If these
corrective procedures fail, then
the message can be the result of
an internal program error. Call
support for assistance.

Message Cause Solution

System messages

20 ECMap

(1293) ERROR: Max
Record Length of < >
exceeded by Record < >

Occurs when the record you have just
defined exceeds the system record
length.

If you have requirement that a
record exceeds the record
boundary, you can define two
records – when you write one
you write the other. When
defining the record, specify
NONE as the end of record
terminator for the first record.

(1294) ERROR: Maximum
Length < > of EDI
record exceeded

EDI file exceeds the maximum
segment length that the system
supports.

May be invalid data in the EDI
file. Check the EDI file the
ensure that segment terminator
is present.

(1297) ERROR: Value- <
> is not found in
Table- <file
name>.XRF

In performing a cross reference
between an EDI value and a user value,
the value is not present in the table.

Add the value to cross reference
table and regenerate the map.

(1298) ERROR: Unknown
Table Translation
Name < file name >.XRF

A cross reference table has been
specified but that table no longer
exists. This could occur when you have
specified that the table is in an external
file, and the file cannot be found. Or a
table has been deleted from the list of
tables, but is still specified in the
mapping under rules.

Verify file location if an external
table is specified. If table is no
longer needed, and has been
deleted from the tables list,
remove the rule that calls the
table. If the table was
erroneously removed, add it
again and regenerate the map.

(1299) DEBUG: Line
<line number> Read
<record name> Defined
Rec Len < >

Information message. Error occurs
when debug mode is on. The record
has been defined as a specific length,
and the Record read exceeds the
defined length

Informational message only.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 21

On fields
Some of the ECMap informational messages are the result of an attempt to add
a record whose key field already exists in a database. Some are the result of
trying to reference a User File record field that does not exist in the User file
database. Some are the result of User File record fields whose definitions in the
User File have been changed since the User Field/Element Mapping defined.
And, some of the messages in this section are described as internal program
errors. Internal program error messages are not expected to ever be displayed.
If an internal error message occurs or if the suggested corrective action does
not solve a problem, note the message number and any associated DBCIII error
number and call support for assistance.

Table 1-5 lists the format, cause, and solution (if applicable) for the ECMap
messages related to fields, in numeric order by message number.

Table 1-5: ECMap messages related to fields

On dates
Some of the ECMap informational messages are the result of problems with
dates.

Table 1-6 lists the format, cause, and solution (if applicable) for the ECMap
messages related to dates, in numeric order by message number.

Table 1-6: ECMap messages related to dates

Message Cause Solution

(1316) FATAL: invalid
field number -
<number> in database -
<database>

A run time map message that is written
to the error log, which indicates that
the map generated tables are incorrect.

Regenerate the map. If problem
is not corrected, call support for
assistance.

(1321) FATAL: User Set
Flow Level <flow level
number> is Not in Flow
Map

User has overridden the flow to branch
to different levels other than the
defaults, and has specified a flow
number that no longer exists.

Modify level number entries in
outbound flow table.

Message Cause Solution

(1400) ??????: Invalid
Century Minimum at line <>

(1401) ???????: Invalid
Date Flag at line <>

System messages

22 ECMap

On data and data manipulation
Many of these messages are map generation and map run time messages that
occur because of invalid data, invalid Map Rules or incorrect Map Flow
designs. Some of the error messages are the result of incomplete table look up
databases. Some of the messages in this section are described as internal
program errors. Internal program error messages are not expected to be
displayed. If an internal error message occurs or if the suggested corrective
action does not solve a problem, note the message number and any associated
DBCIII error number and call support for assistance.

Table 1-7 lists the format, cause, and solution (if applicable) for the ECMap
messages related to data and data manipulation, in numeric order by message
number.

Table 1-7: ECMap messages related to data and data manipulation

(1402) ?????: < > Century
Minimum Required To Run
Map after 9/30/1999

A result of Y2k
logic.

Starting with version 4.5 and higher, Y2k date
logic must be used. Choose the Utilities/Update
Date option to assist you in this process.

Message Cause Solution

Message Cause Solution

(2000) ERROR:
attempted to divide by
zero

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. This message indicates that a
Map Rule division failed because the
denominator field had a zero value.

Check both data in User Files
and values assigned to variables
in the Map Rules.

(2001) ERROR: numeric
overflow

A run time map message that is written
to the error log along with other
detailed information to identify the
exact cause of the message. This
indicates that the numeric value was
too large to be stored in the User File
field, or too large to be stored in the
standard X12 EDI transaction file
field.

Compare User File numeric field
sizes against the maximum size
for the standard X12 Field.

CHAPTER 1 Informational Messages

Reference Guide 23

(2002) ERROR: ILLEGAL
USE OF DATE FIELDS IN
ARITHMETIC RULE

Arithmetic operation requested on a
date field cannot be performed. For
example, adding a date field to a date
field, or multiplying or dividing dates.

Use the “Define Rules” option to
correct the rule. Allowable Date
options are:

• Date = Date + number

• Date = Date - number

• Number = Date-Date

(2028) ERROR:
Level:<level number>-
Loop count of exceeds
maximum of <max loop
occur>

A compliance error caused this
message. The loop specified occurs
more than the maximum number
allowed.

Solution:

(2029) ERROR:
Level<level number>,
segment: <segment
name> - occurred
<number> times,
exceeding maximum of
<maximum segment
occurrence>

A compliance map error caused this
message. The segment specified
occurred more than the maximum
number of occurrences for that
particular instance.

Solution:

(2030) ERROR: Segment
<segment name> in loop
<loop name> was
Out-Of-Sequence.

A compliance map error caused this
message. A segment in a particular
loop came in the incorrect order or
sequence.

Solution:

(2031) ERROR:
Mandatory segment
<segment name> in loop
<loop name> was
skipped.

A compliance map error. A mandatory
segment is missing.

Look in the Standards Guide and
compare it to your map to see
what mandatory segment was
left out.

(2032) ERROR: EDI
Segment <segment
name> not found in
Transaction

One of the segments listed in the
transaction should be in this
transaction.

Remove the segment that is not
required according to the
Standards Guide.

Message Cause Solution

System messages

24 ECMap

(2033) ERROR: EDI
Segment <segment
name> level <level
number> not found in
database- <database
name>

Cause 1: An inbound run map message
that is written to the error log. It occurs
when the incoming X12 transaction
file has a segment name that is not
defined by the inbound Map at the
indicated level. The run time result is
that these incoming segments are
ignored.

Solution 1: If that is desired,
then no corrective action is
necessary.

Cause 2: The incoming X12 file has an
invalid segment name. Also check the
inbound Map Flow definition and the
segment names that are defined for the
Map. Perhaps some of the map
segment names were incorrectly set to
the IGNORE status, or some segment
names need to be included in the map
at additional levels.

Solution 2: Correct as indicated
above and regenerate the map.

(2034) ERROR:
end-of-file reached,
while searching for
control Segment

An inbound run map message that is
written to the error log. This message
occurs when the program reads the last
record of the incoming X12
transaction file and the X12
transaction file does not have a correct
ending control segment sequence, such
as GE, IEA.

Examine the X12 incoming data
file to check for valid control
segments.

(2044) ERROR: Record
Type Read <record
type> Does Not Match
Any In File

Occurs with a file with multiple record
types. The message indicates that a
record type is encountered in the data
that does not match the file
specifications.

Create a record for this record
type and add it to your
specifications.

(2045) ERROR: Invalid
Date Field: <date
read> format
<specified date
format>

An inbound run map message that
indicates the date that was just read
does not match the format specified.

Adjust format specification of
change modify incoming data to
meet specified format.

(2046) ERROR: Date
Value <date read> is
greater than field
size <specified field
size>

An inbound run map message that
indicates the date that was just read
exceeds the field size specified.

Define date field size and
regenerate the map.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 25

(2047) WARNING: No
Rule To Process Record
Type <record type
read>, Reading
Forward

An inbound run map message that
indicates that the rules for reading files
for multiple record types does not
define the record type just read.

Add record type to the list of
records. Ensure that an I/O rule
has been created that causes a
read of the specified record type.

(2048) ERROR: Invalid
Time Field: <record
name> <field name>

Time value passed is not valid Correct value.

(2049) ERROR: Invalid
Field Value in SQL
Where: <record name>
<field name> <value>

Value is not valid for the Field name in
the Where Clause.

Correct the rule or the data
populating the value in the
Where Clause.

(2050) ERROR: <record
name> <field name>
TimeStamp Missing
Time

The time parameter in the TimeStamp
has no data.

(2051) ERROR: Select
'?' and # Parameter
Mismatch

Number of parameters and number of
parameters passed do not match. This
is usually because the SQL statement
has been modified, but has not been
recompiled.

Modify the SQL rule and
recompile and store.

(2052) ERROR: Invalid
Test Indicator: <test
indicator value read>

An invalid test indicator was in the
inbound data.

Look at the Test Indicator in the
input data. The test indicator
should be a P, T, or I in the ISA
15 section.

(2053) ERROR: No Test
Indicator

An invalid test indicator was in the
inbound data.

Look at the Test Indicator in the
input data. The test indicator
should be a P, T, or I in the ISA
15 section

(2054) ERROR: Memory
variable can not be
defined as a time
stamp

(2061) ERROR: Cannot
switch between NCPDP
Batch Versions

Cannot switch between NCPDP Batch
Versions

(2062) ERROR: Cannot
Switch between Real
Time and Batch

Cannot Switch between Real Time and
Batch

Message Cause Solution

System messages

26 ECMap

On types, usage and type linking
The messages in this section focus on valid data entry and correct definitions
of fields in the User Field/Element Map, User File, and Map rules. Some of the
messages are displayed during data entry and other of the messages are written
to error logs as the maps are generated and run. Some messages are described
as internal program errors. Internal program error messages are not expected to
ever be displayed. If an internal error message occurs or if the suggested
corrective action for a message does not solve the problem, call support for
assistance.

Table 1-8 lists the format, cause, and solution (if applicable) for the ECMap
messages related to types, usage, and type linking, in numeric order by
message number.

Table 1-8: ECMap messages related to types, usage, and type linking

(2063) ERROR: NCPDP
MAP Has No
Transmission Segments
Marked

NCPDP MAP Has No Transmission
Segments Marked

(2064) ERROR: NCPDP
MAP CANNOT USE DBC3 TP
Files

 NCPDP must use ODBC trading partner.

(2065) ERROR: Cannot
Process NCPPD Data
with Non-NCPDP Map

Cannot Process NCPPD Data with Non-
NCPDP Map

Message Cause Solution

Format Cause Solution

(0101) FATAL:
invalid type –
<field>

An arithmetic rule could be attempting to
process alphanumeric field types. This error
should be reported when Map generation
takes place.

Modify arithmetic rule or
modify data types to allow
arithmetic operation on numeric
fields.

CHAPTER 1 Informational Messages

Reference Guide 27

(2102) ERROR:
invalid Rule
Parameters

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. This message is usually
caused by a map rule with incorrect
parameter type fields. This message is
not expected to be displayed because the
“Define Rules” option does data entry
time checking on valid map rule
parameters.

(2104) ERROR:
invalid relational
operator code

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. It is usually caused by a
map rule with an incorrect relational
operator code. This message is not
expected to be displayed because the
“Define Rules” option does data entry
checking on valid relational operator
codes.

If the cause is not apparent from
the error log, call support for
assistance.

(2105) ERROR:
invalid conditional
check type

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. It is caused by a map rule
making a comparison between
incompatible field value types or by one
of the field values compared not having
been designated with a correct type of
field. This message is not expected to be
displayed because the because the
“Define Rules” option and “User File”
mapping options do data entry time
checking on valid field types.

Examine the error log to identify
the field name or map rule with
the invalid field type. Then
examine the User File or Map
Rule definition of this field.
Correct any User File or Map
Rule errors. Regenerate the map.
If the error occurs again, call
support for assistance.

Format Cause Solution

System messages

28 ECMap

(2106) ERROR:
invalid EDI standard
field type

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. It is caused by a generated
table field with an invalid field type. This
message is not expected to be displayed
because both the “User File” option and
the generate map option check for valid
field types.

Examine the error log to identify
the field name with the invalid
field type. Then examine the
User File definition of this field.
Correct any User File errors.
Regenerate the map. If the error
occurs again, call support for
assistance.

(2107) ERROR:
condition and field-
must be a RECFLD or
MEMVAR

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. It is usually caused by an
invalid outbound Conditional Check
field specified during User
Field/Element mapping. Conditional
check fields must be defined as either
record fields or memory variables in the
User File database. This message is not
expected to be displayed because the
“User Field/Element” mapping option
does data entry time checking on valid
Conditional fields.

If the cause is not apparent from
the error log, call support for
assistance.

(2120) ERROR:
unexpected
authority qualifier
<authority
qualifier read>

In the inbound file, GS section, you have
an authority qualifier that does not
belong in this section.

In the inbound file, remove the
authority qualifier.

(2121) ERROR:
unexpected security
qualifier <security
qualifier read>

In the inbound file, GS section, you have
a security qualifier that does not belong
in this section.

In the inbound file, remove the
security qualifier.

(2122) ERROR:
unexpected sender
qualifier <sender
qualifier read>

In the inbound file, a bad sender ID
qualifier is listed that is not in the
Standard.

In the inbound file, verify that
the ISA sender qualifier is
correct.

(2123) ERROR:
unexpected receiver
qualifier <receiver
qualifier read>

In the inbound file, a bad receiver ID
qualifier is listed that is not in the
Standard.

In the inbound file, verify that
the ISA receiver qualifier is
correct.

Format Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 29

(2124) ERROR:
unexpected
end-of-segment
while decoding
<segment name>
Segment

An inbound run time map message that is
written to the error log along with other
detailed information to identify the exact
cause of the message. It occurs if an end
of segment delimiter is read while
processing a GS or ST segment in the
incoming transaction X12 file before all
of the required EDI fields have been read.

Examine the error log and
Incoming X12 transaction file to
locate and correct the invalid GS
or ST transaction file record.

(2157) ERROR: first
condition must be
MEMVAR type

Messages 2157 through 2159 are
generated at run time map messages that
are written to the error log along with
other detailed information to identify the
exact map records that caused the error
message. They occur if the Record and
Field names for the map condition fields
in the User Field/Element maps are not
correct.

Outbound maps can have map condition
fields at both the Segment and Sequence
level. At the Segment level of an
outbound map, the first condition must
be either blank, a MEMVAR or a
RECFLD. At the Sequence map record
level, an outbound map must be blank or
have a MEMVAR as the first map
condition field.

Inbound maps do not have map condition
fields at the Segment level. At the
Sequence map record level, an inbound
map must have a blank, a MEMVAR or a
RECFLD as the first map condition.

Regardless of the level or map
direction, if a first map condition
field is specified, the second map
condition field must be
MEMVAR, RECFLD, or
STRVAR.

Format Cause Solution

System messages

30 ECMap

(2164) ERROR: on
<READ/WRITE>, empty
(M)andatory field-
<field name>

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. It indicates that a field that
has been defined as a mandatory User
File field has a blank or zero value. For
inbound maps, this message is generated
when a record is read and a mandatory
User File data field is blank. For
outbound maps, this message is
generated when a record is written and a
mandatory User File data field is blank.

If the User File field does not
need to be mandatory, the error
can be corrected by simply
changing the User File field's
mandatory attribute status. If the
field is truly a mandatory field,
then for inbound maps correct
the User data file that contains
the blank field.

For outbound maps, examine the
mapping rules to determine a
possible cause of the blank
mandatory field. For outbound
maps, it is the user defined map
rules working with the User
Field/Element map to place a
non-blank value into a User
record field before it is written.

(2168) ERROR: must
map to RECFLD or
MEMVAR

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. It is caused by an inbound
User Field/Element Map not having a
RECFLD or MEMVAR defined in the
Record field of a sequence record. For
inbound maps, the Record field indicated
where to store an inbound X12
transaction value.

Use the User Field/Element
mapping option to correct the
Record field name and
regenerate the map.

Format Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 31

(2169) ERROR: empty
value mapped to EDI
mandatory field
<record name> from
<field name>

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. It indicates that a field that
has been defined as an mandatory EDI
standard field has a blank or zero value.
For inbound maps, this message is
generated when an X12 record is read
and a mandatory EDI field is blank.

For outbound maps, this message is
generated when a record is written to the
X12 file and a mandatory X12 EDI field
is blank.

For an inbound map, the inbound
X12 transaction file needs to be
corrected.

For an outbound map, examine
the error log, the user data file,
the map rules and the User
Field/Element map to determine
and correct the cause of the
blank EDI field value. If the
error was caused by a missing or
incorrect map rule or User
Field/Element map, regenerate
the map and run the map again.

(2170) ERROR:
Mandatory <defined
length> EDI Len <
Min: Value <minimum
specified standards
length>

A mandatory EDI field is defined as less
than the minimum length in the EDI
standards.

Contact Trading Partner to
update transaction to meet EDI
specification

(2171) ERROR:
Invalid <segment
name> Segment <code>
code

A run time map message that is written to
the error log along with other detailed
information to identify the exact cause of
the message. For inbound maps, this
message is generated when required
information within the EDI elements
such as the X12 version, are empty. In
some cases, this message is generated for
information only, and in most cases,
processing continues.

Bad EDI file. Inform sender, or
fix data.

(2172) ERROR:
Mapping To Numeric
EDI Field with
Non-Numeric Data:
<field value >

Occurs when mapping an alphanumeric
field to a numeric EDI field. Inbound
data received is not numeric.

Change the alphanumeric data to
numeric or change the mapping
specifications to meet the current
data type or report the message
to file sender regarding bad data.

(2173) ERROR:
Incoming EDI Numeric
Field Has
Non-Numeric Data: <
field value >

The EDI file read is invalid for this
particular element.

The data for this element is bad.
Report message to file sender.

Format Cause Solution

System messages

32 ECMap

On formats
The messages in this section are the result of either User File database fields
defined incorrectly, or the data in an actual user file field not corresponding to
the User File database definition.

Table 1-9 lists the format, cause, and solution (if applicable) for the ECMap
messages related to formats, in numeric order by message number.

(2174) ERROR:
Numeric Field
Contains
Non-Numeric Data <
field value >

User field specified as numeric has
non-numeric data.

Change the definition of the user
file field or modify incoming
data.

(2175) ERROR: Level
<level number> Cond
Check of Seg
<segment name>,
Non-Numeric Data: <
>

Segment specified as numeric has
non-numeric data.

Change the Segment definition
to accommodate numeric values
or modify incoming data.

(2176) ERROR: Level
<level number> Cond
Flow Check of Seg
<segment name>,
Non-Numeric Data: <
>

Level specified as numeric has
non-numeric data.

Change the definition or modify
incoming data.

(2177) ERROR: Map
Cond Check Numeric
Field has
Non-Numeric Data: <
field value >

Condition specified as numeric has
non-numeric data.

Change the definition or modify
incoming data.

(2180) ERROR:
Invalid Interchange
Control Version
Number: %s

Added for ISA error checking.

(2181) ERROR:
Invalid Interchange
Control Standards
Identifier: %s

Added for ISA error checking.

Format Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 33

Table 1-9: ECMap messages related to formats

Format Cause Solution

(2408) ERROR: length
must be 4 or 8 for CD
field type

An interactive data entry error that
occurs during User File definition if a
field's length is less than 4 and the field
is specified to be a computational field
(i.e. CD).

Either change the field type or
change the field length to 4.

(2411) ERROR: Status
MemVar Field Size too
small for Err Code

Indicates that a Keyed I/O Map Rule
has been defined to use a MEMVAR
variable as an error code field and the
MEMVAR length is less than 2. The
MEMVAR length must be at least 2 in
order for the MEMVAR to be large
enough to hold the error code.

Use the User File definition
option to redefine the MEMVAR
field length. Or use the Map
Rule definition option to select a
different MEMVAR. If this
message occurred during a map
run, the map must be
regenerated after the MEMVAR
length has been corrected.

(2422) WARNING: field
truncated

A map run or map generation message
that is written to the error log along
with other detailed information to
identify the exact cause of the message.
It could be the result of a map addition
rule that results in a value too large to
be stored in the designated field. This
message can also occur for inbound
maps when the data field mapped to the
User File field exceeds the defined
User File field length and the User
Field/Element map for the field does
not explicitly specify that field
truncation is allowed. For an outbound
map this message displays when the
data field mapped to an EDI
transaction field exceeds the maximum
size defined EDI field length.

Use the User Files options to
change the lengths or specify
that truncation is allowed.

System messages

34 ECMap

On mapping
The messages in this section focus on interactive User Field/Element mapping
errors and interactive Map Flow errors. Many of these errors are caused by
differences between EDI field definitions and User File field definitions.

The format, cause, and solution (if applicable) for the ECMap messages related
to mapping are listed below, in numeric order by message number.

Table 1-10 lists the format, cause, and solution (if applicable) for the ECMap
messages related to mapping, in numeric order by message number.

(2424) WARNING:
<numeric type>
overflow, <full
number> truncated to
<number>

A map run message that is written to
the error log along with other detailed
information to identify the exact cause
of the message. It occurs when
mapping a numeric field type results in
truncation, and the field mapped to has
not been specified as a field that can be
truncated. Both the full number and the
resulting truncated number are written
as part of the message.

Use the User Files options to
change the lengths or specify
that truncation is allowed.

(2444) ERROR:
Delimiter for < start
position > Not Found
in < field value >

Occurs when creating substring and/or
concatenation rules. Rule is executed
based on the presence of a specified
delimiter, which cannot be found.

For substring errors: Delimiter for start
position is not found in Source Field

Delimiter for Substring length is not
found in Source Old

For Concatenate errors: Concatenate
Delimiter for Destination is not found
in LHS Variable

Check data for presence of
delimiter.

Format Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 35

Table 1-10: ECMap messages related to mapping

On rules
The messages in this section are primarily valid map rule and map condition
messages.

Table 1-11 lists the format, cause, and solution (if applicable) for the ECMap
messages related to rules, in numeric order by message number.

Table 1-11: ECMap messages related to rules

Message Cause Solution

(3024) ERROR: Prior ST
Transaction Removed
From <file name> Due
To < reason >

An abort transaction was executed
either by the user or because of
bad map information. User data
was backed out.

If it does occur because of bad data,
fix data and rerun the map. If abort
transaction was erroneous placed in
map flow, remove the command, and
regenerate map.

(3026) ERROR:
<element or
subelement> Map to
CNDVAR should not be
Conditional

A conditional store was defined
for an element or sub-element
with conditions applied.

From the mapping window, modify
the element and remove the
conditional aspect for the conditional
store or change the element from a
conditional store element.

(3027) ERROR: Group
Aborted by SysVar

(3028) ERROR:
Interchange Aborted
by SysVar

Message Cause Solution

(4000) ERROR: Rule out
of valid range

The message indicates that one rule
number (rule index in the rule table) is
over the total rule number (in the rule
table). It is not expected to occur, and
would normally be caught at data entry
time or map generated time.

If this error does occur,
regenerate the map. If the error
occurs again, call Support for
assistance.

(4001) ERROR: Rule out
of valid range for
level - <level number>
Segment - <segment
name>

This message indicates that the rule
with <rule number> with <segment
number> is out of valid rule range that
is defined in the map. It is not expected
to occur and would normally be caught
at map-generation-time.

Regenerate the map. If it occurs
again, call Support for
assistance.

System messages

36 ECMap

(4002) ERROR: Rule
#(<beginning rule
number> - <ending rule
number>)out of valid
range for level <level
number>

These messages are run time map
messages that are written to the error
log along with other detailed
information to identify the exact cause
of the message. The message indicates
that the generated map has an
undefined rule number. This message
is not expected to occur. Errors of this
type would normally be caught at data
entry time, or map generation time.

If it does occur, examine the
error log to determine the rule
number that was invalid. Then
locate where this rule was used
in the User Field/Element Map
or the Map Flow. Correct by
adding the Defining the Map
rule or eliminating reference to
it. Then regenerate the map.

(4006) ERROR: invalid
conditional check
value

An outbound run time map message
that is written to the error log along
with other detailed information to
identify the exact cause of the
message. It indicates that a map record
had the first field of a map condition
line defined correctly but did not have
the required second field of the map
condition defined as a valid RECFLD,
MEMVAR or STRVAR.

Examine the error log to
determine the map record in
error, and use the User
Field/Element option to
correctly define the second map
condition field. Then regenerate
the map.

(4009) ERROR: Rule
command undefined

Occurs during Map Rule definition if
the user attempts to use an undefined
rule number as part of a rule command.

Use Map Rule definition to
define the rule to be used in
another rule.

(4013) ERROR: Rules
for SQL Stored
Procedure are
obsolete. Please run
Generate Map

Occurs when running a map created in
a previous release with the new release
of ECMap. The rules for Stored
Procedure in the new version have
changed

Map rules must be modified to
use the latest rule definitions.
Then regenerate the map under
the new release.

(4019) TRACE: Level
<level number> ->
<level number>
processing Segment:
<rule number
>-No<line number>

Occurs before executing the OK Rule
in the <level> to <level> processing
and the rule number is <rule number>,
line number is <line number>

(4020) TRACE: Level
<level number>
processing Rule:
<rule number
>-No<line number>

Occurs before the command executed,
which is at <line number> of <rule
number> during the <level number>
processing.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 37

On trading partners
These messages are generated due to invalid or mismatched Trading Partner
numbers or fields.

Table 1-12 lists the format, cause, and solution (if applicable) for the ECMap
messages related to trading partners, in numeric order by message number.

(4021) TRACE: Level
<level number> No
<Before/After> Rules
to process

Indicates that the rule with rule <level
number> does not have a “before and
after” command to process.

(4022) TRACE: Rule
<rule number> Changed
Level To <level
number>

(4023) TRACE:
Performing Rule <rule
number>

Indicates that at runtime the rule <rule
number> is executed.

(4024) TRACE: Rule
<rule number> Line
<line number> Start
Perform While on Rule
<rule number>

These informational messages occur
when Verbose Trace is on. They report
progress at particular points in time
when running the map.

(4040) ERROR:
Parameter <parameter>
is empty on assignment

You try to assign a parameter to a
system variable or a memory variable
but this parameter is empty.

Verify that the parameter in
parameters tab at Run Map
window of ECMap. Verify that
the command that assigns the
parameter to a system variable or
a memory variable.

(4050) FATAL: MemVar
<memory variable> has
uncompleted sql
statement

Message Cause Solution

System messages

38 ECMap

Table 1-12: ECMap messages related to trading partners

Message Cause Solution

(5000) OK: executed
ABORT_TRANS command
for Trading Partner
<internal trading
partner number>

A run time map message that is written
to the error log. It indicates that the
map transaction for the displayed
Trading Partner number was aborted
by the execution of an ABORT
Transaction map rule.

If an error in compliance maps,
this error also appears. Solve the
earlier fatal errors listed before
this message.

(5001) ERROR:
aborting- database
Customer has no record
for Trading Partner
<internal trading
partner number>

An outbound run time map message
that is written to the error log along
with other detailed information to
identify the exact cause of the
message. It indicates that the outbound
transaction for the displayed Trading
Partner was aborted because the
Trading Partner definition database,
Customer, has no entry for the
displayed Trading Partner number.

Either modify this Trading
Partner number, or correct the
user data file that contains the
invalid Trading Partner number.

(5002) ERROR:
aborting- database
<trade agreement
database> Table
<transaction code>
has no Trading Partner
<internal trading
partner number>

These are outbound run time map
messages that are written to the error
log along with other detailed
information to identify the exact cause
of the message. It indicates that the
outbound transaction for the displayed
Trading Partner was aborted because
the Trading Partner definition
database, TRADSTAT, has no entry for
the displayed Trading Partner number
and transaction set or Map Table code.

Either define this Trading
Partner number and transaction
set by using the Trading Partner
menu option, or correct the user
data file that contains the invalid
Trading Partner number.

(5004) ERROR: Trading
Partner not made
current

An outbound run time map message
that is written to the error log along
with other detailed information to
identify the exact cause of the
message. It indicates that the Master
Outbound Map Flow record has not
been defined with a Trading Partner
field. This error is not expected to
happen since the Map Flow and map
generation options check for this error
condition.

Use the User File or Map Flow
options to include the Trading
Partner field and regenerate the
map.

CHAPTER 1 Informational Messages

Reference Guide 39

(5006) ERROR: Trading
Partner ID- <internal
trading partner
number> match not
found

A run time map message that is written
to the error log along with other
detailed information to identify the
exact cause of the message. It indicates
that the displayed Trading Partner was
not found in the Trading Partner
definition databases. This could be due
to invalid Trading Partner data or
because the displayed Trading Partner
has not been defined with the Trading
Partner menu option.

Either define this Trading
Partner number by using the
Trading Partner menu option, or
correct the user data file or X12
transaction file that contains the
invalid Trading Partner number.

(5007) ERROR: Trading
Partner is blank

An outbound run time map message
that is written to the error log along
with other detailed information to
identify the exact cause of the
message. It indicates that the Trading
Partner user data file record was read
and the Trading Partner field was
blank.

Correct the user data file record
to include a valid Trading
Partner.

(5019) TRACE: Trading
partner: <internal
trading partner
number> New
Transaction
<transaction code>

Cause:

(5020) TRACE: New
Trading Partner:
<trading partner
name>

Found a new trading partner in the data
for an inbound or outbound map.

(5021) TRACE: Changed
Trading Partner:
<trading partner
name>

This message usually appears after
5020. The trading partner is now
different than earlier.

(5022) TRACE: Map
change for Trading
Partner <trading
partner name> Map:
<map name>

This message usually appears after
5020. The map is now different than
earlier.

Message Cause Solution

System messages

40 ECMap

On outbound map level changes
Table 1-13 lists the format, cause, and solution (if applicable) for the ECMap
messages related to outbound map level changes, in numeric order by message
number.

Table 1-13: ECMap messages related to trading partners

(5023) TRACE:
Tradstat found for
Tptnr <trading
partner name> Trans
<transaction code>
Vers <version number>
TstInd <test
indicator value>
Agency <agency>
Release <release>,
Overlay < >

These informational messages occur
when Verbose Trace is on. They report
that a new Trading Partner has been
encountered during the mapping
process.

(5024) FATAL: Trading
Partner Database
Structure Needs To Be
Updated

The map you ran has a previous
version of the ODBC trading partner
from an earlier version.

Open Map Properties. Reselect
DSN and select OK and that
updates your trading partner
database.

(5025) FATAL: Map uses
Repeat Elements but
ISA_TYPE < 00402

Cause: Solution:

Message Cause Solution

Message Cause Solution

(5030) TRACE: Level
<level number>,
combined files Break
flag was set

This message occurs when Verbose Trace
is on. Informational message indicates
that when a read record was performed,
the record did not match the defined
record type and the Multiple Files switch
has been turned off. Map continues to
search for the correct level to go to, based
on this record type.

(5031) TRACE: Level
<level number>,
End-of-File Break,
normal end of
transaction

This message occurs when Verbose Trace
is on. Informational message occurs at
the Master Record level indicating the
end of the file has been reached and the
transaction has ended normally.

CHAPTER 1 Informational Messages

Reference Guide 41

(5033) TRACE: Level
<level number>,
End-of-File Break

This message occurs when Verbose Trace
is on. Informational message indicates
the end of the file has been reached.

(5034) TRACE: Level
<level number>,
generated Keyfield
Break - Old
Keyfield: <value>
New Keyfield:
<value> Length:
<length>

(5035) TRACE: Level
<level number>,
Keyfield Break - Old
Keyfield: <value>
New Keyfield:
<value>

(5036) TRACE: Level
<level number>,
generated
Breakfield Break -
Old Breakfield:
<value> New
Breakfield: <value>
Length: <length>

(5037) TRACE: Level
<level number>,
Breakfield Break -
Old Breakfield:
<value> New
Breakfield: <value>

(5038) TRACE: Level
<level number>,
generated Keyfield
Linkfield Break,
Keyfield: <value>
Linkfield: <value>
Length: <length>

Occurs when Verbose Trace is on.
Informational message indicates a
mismatch for the Keyfield and Linkfield.
Values of the various fields are displayed
in the message.

Message Cause Solution

System messages

42 ECMap

(5039) ERROR: Level
<level number>,
Keyfield does not
match Linkfield and
current record is
not optional;
Keyfield: <field
name> Linkfield:
<field name>

Is received when processing multiple
files. A record has just been read that is
defined as a key field and must match a
field in another record, and the field is
not optional.

Flow can be incorrect. Modify
flow to indicate you are reading
this record out of sequence.

(5040) TRACE: Level
<level number>,
Keyfield does not
match Linkfield and
current record is
optional; Keyfield:
<field name>
Linkfield: <field
name>

Occurs when Verbose Trace is on.
Informational message occurs when
reading multiple files where the key
fields do not match. No error is generated
since the record is optional.

(5041) TRACE: after
Keyfield/Linkfield
Break

Occurs when Verbose Trace is on.
Informational message reports progress
after encountering a Keyfield / Linkfield
Break.

(5042) TRACE: Level
<level number>,
TOP-OF-LOOP
processing <file
type> files < > Loop
Depth:- < > New
Level: < > Brk
Level: < >

Occurs when Verbose Trace is on.
Informational message appears at the top
of the Trace file that reports the level, the
file type, the loop depth, the new level
and break level.

(5043) TRACE: Level
<level number>,
Processing LINK ONLY

Occurs when Verbose Trace is on.
Informational message reports level
number during link only process.

The format, cause, and solution (if
applicable) for the ECMap messages
related to map level changes are listed
below, in numeric order by message
number.

(5044) FATAL: Record
Type Break and Level
<level number>, Not
Optional

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 43

(5045) ERROR: Level
<level number>,
Missing Optional
Record

(5046) FATAL: File
<file name> Missing
No Record Type Field

Received when processing multiple files
in that you are reading two files and
matching them up by fields. A record has
just been read that is defined as a key
field and must match a field in another
record, and the field is not optional.

Solution 1: This record can in
fact by optional. Change
inbound flow so that reading this
record is optional.

Solution 2: Flow can be
incorrect. Modify flow to
indicate you are reading this
record out of sequence.

Solution 3: Using wrong field to
link the two records. Change
inbound flow.

(5047) TRACE:
Reading File <file
name> Record <record
name>

Occurs when Verbose Trace is on.
Informational message indicates current
reading of a file and record. Also
indicates end of file for the file name
specified.

(5048) TRACE: <I/O
operation > File
<file name> Record
<record name>

Occurs when Verbose Trace is on.
Informational message indicates reads,
writes and SQL selects and inserts for a
file and record.

(5049) TRACE: Rule
<rule number>
Executing Procedure
<procedure name>

Occurs when Verbose Trace is on.
Informational message indicates
execution of procedure.

(5050) TRACE: < >
Writing File <file
name> Record <record
name>

(5051) FATAL:
Combined File
Missing Record Type

(5052) TRACE:
Writing File < > < >
< >

Message Cause Solution

System messages

44 ECMap

On inbound map control segments
Table 1-14 lists the format, cause, and solution (if applicable) for the ECMap
messages related to inbound map control segments, in numeric order by
message number.

Table 1-14: ECMap messages related to inbound map control segments

(5999) ERROR: Failed
to Get Status
Information on File
<file name>

Message Cause Solution

Message Cause Solution

(6000) TRACE: Reading <
>- Seg Delim <segment
delimiter> Elem Delim
<element delimiter> Sub
Delim <subelement
delimiter> Test Ind <test
indicator value>

(6001) ERROR: expected <
segment> read <segment>,
Skipping Forward to Next
<segment>

Expecting a control segment such
as GS or ST and MAPPER is not
finding it. It therefore, is reading
forward to next occurrence of one
of those records.

EDI data sent is corrupted.
Report to sender.

(6002) ERROR: expected
<segment> read <segment>,
Aborting

Expecting a read of a particular
segment type and did not find it.
The MAPPER aborts the
transaction.

EDI data sent is corrupted.
Report to sender.

(6003) TRACE: Looking..
Segment <segment>
(control)

Occurs when Verbose Trace is on.
Informational message indicates
processing is looking for a
particular Segment control.

(6004) TRACE: Level
<level number>, Segment
<segment> (control)

Occurs when Verbose Trace is on.
Informational message indicates
current level number and looking
for a particular Segment control.

CHAPTER 1 Informational Messages

Reference Guide 45

(6005) ERROR: errors in
processing ST, skipping
forward

Expecting a control segment such
as GS or ST and MAPPER is not
finding it. It therefore, is reading
forward to next occurrence of one
of those records.

EDI data sent is corrupted.
Report to sender.

(6006) TRACE: Level
<level number>, Segment
<segment> (control) Rules

Occurs when Verbose Trace is on.
Informational message indicates
current level number and the
execution of a particular control
rule number.

(6007) TRACE: Level
<level number>, Segment
<segment> (default) Rules

Occurs when Verbose Trace is on.
Informational message indicates
current level number and the
execution of the default rule. This
is used in the default flow, where
you can change levels based on
the default.

(6008) TRACE: Level
<level number>, Segment
<segment> <element> Rules

This message occurs when
Verbose Trace is on. Informational
message indicates that at this
Segment Name/Element number
the execution of a particular rule
number is performed.

(6009) TRACE: Level
<level number>, Segment
<segment> (mapping)

Occurs when Verbose Trace is on.
Informational message indicates
that at this level, the Segment is
mapped.

(6010) TRACE: Level
<level number>, Segment
<segment> (conditional)
<NOT MAPPED>

Occurs when Verbose Trace is on.
Informational message indicates
that at this level, the Segment is
conditional and is not mapped.

(6011) TRACE: Level<level
number>, MEMVAR Rules

Occurs when Verbose Trace is on.
Informational message indicates
levels have changed based on a
Memory variable rule.

Message Cause Solution

System messages

46 ECMap

(6012) TRACE: <segment>
CNDVAR LOAD

Occurs when Verbose Trace is on.
Informational message indicates
the processing of a Segment
loading the Conditional Store
variables.

(6013) ERROR: <segment>
Not Terminated By
<segment>

The EDI X12 envelope defines
segments that must be followed by
specific segments. The MAPPER
has encountered a Segment that is
not in the proper location, or has
not been properly terminated
before encountering another
Segment

EDI data sent is corrupted.
Report to sender.

(6014) ERROR: ISA # < >
Not Equal to Expected # <
>, Resetting ISA # to < >
for Tptner <trading
partner name >

If WWIXERR set, this message
can appear. Error based on ISA
control counters. Not finding
correct control count and
generating message accordingly.

Bad EDI data. Report to sender.

(6015) ERROR: Group
Control # < > Not Equal to
Expected Number < >

Group control count does not
match expected resulted.

Bad EDI data. Report to sender.

The following messages are
related to the BIN segment, that
is the binary segment. (allows
you to place binary data within
an X12 transmission)

(6016) ERROR: Incoming
EDI BIN seg Numeric Field
Has Non-Numeric Data: < >
Transaction Aborted

Number of bytes in file in not
numeric.

Bad Data. Report to Sender.

(6017) ERROR: Incoming
EDI BIN segment with
Non-Zero Char Count is
Missing File Transaction
Aborted

Actual data after the character
count can not be found.

Bad Data. Report to Sender.

(6018) ERROR: Incoming
EDI BIN File <binary file
name> EOF After < > Chars

Number of characters transmitted
does not match expected number
of characters.

Bad Data. Report to Sender.

(6019)`WARNING: BIN FILE
<binary file name> is
EMPTY

Binary file has no data. Bad Data. Report to Sender.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 47

(6020) WARNING: BIN FILE
NAME BLANK

Name of binary file has not been
entered. Parameter is blank.

Bad Data. Report to Sender.

(6021) ERROR: Can’t Open
BIN File <binary file
name> Transaction Aborted

Binary segment was transmitted
and system could not create a file
definition to place binary data.

Bad Data. Report to Sender.

(6022) ERROR: Reset EDI
File to First Seg Delim in
BIN FILE after < > Chars

Binary segment was transmitted
and system could not create a file
definition to place binary data.

Length of binary file does not
match the BIN segment
specifications.

Bad Data. Report to Sender.

(6023) ERROR: Read
Unexpected < >

(6024) ERROR: < > Not
Terminated by < >

(6025) ERROR: ISA Control
Number < > exceeds max
length

(6026) ERROR: ISA Control
Number not numeric using
< >

(6029) TRACE: Level
<level number>, <amount
of RAM available> of RAM
Memory Free

Occurs when Verbose Trace is on.
Informational message indicates
the amount of RAM Memory
available at this level.

(6030) TRACE: Level
<level number>,
Segment<segment><element
> Edit Rule

Occurs when Verbose Trace is on.
Informational message indicates
that at this Level, Segment,
Element, this rule is performed.

(6031) TRACE: Level
<level number>, Segment
<segment> (mapping)

Occurs when Verbose Trace is on.
Informational message indicates
an element is mapped at this
Level, Segment.

(6032) TRACE: Level
<level number>, Segment
<segment> (conditional)
<NOT MAPPED>

Occurs when Verbose Trace is on.
Informational message indicates
an element is not mapped at this
Level, Segment, because it is
conditional

Message Cause Solution

System messages

48 ECMap

(6033) TRACE: Level
<level number>, <#>
processing RPTMAP Segment
<segment>

Occurs when Verbose Trace is on.
Informational message indicates a
Repeat Map function is processed
for this Level, Segment.

(6034) TRACE: Level<level
number>, Loading Next <#>
CNDVAR

Occurs when Verbose Trace is on.
Informational message indicates
that the next Conditional Store
Variable is loaded for this Level.

(6050) ERROR: Segment
<segment name> exceeds
Max Elements

Occurs on Inbound when the
expected number of elements for
this segment is exceeded.

Check incoming data.

(6051) ERROR: Level
<level number>, Ignored <
> Contains Data

(6060) ERROR: Invalid
source string

(6061) ERROR: Invalid
search string

(6062) ERROR: Invalid
number of occurrence
string

(6063) ERROR: Invalid
replace string

(6064) ERROR: The replace
string is too big

(6080) ERROR: Batch Group
Count <value> Does not
Match Trailer Count
<value>

The number of records in the batch
does not match the count in the trailer
record.

(6081) ERROR: Batch
Control Number <value>
Does Not Match Trailer
<value>

The control number in the batch
header does not match the batch trailer
control number.

(6082) ERROR: EOF Reached
- Expecting %s

EOF (end of file) is received
unexpectedly.

(6082) ERROR: EOF Reached
- Expecting %s

Errors prevented the Batch file from
being processed.

(6084) OK: Received Batch
Transmission Error Header

An error occurred in the batch
transmission header.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 49

(6085) ERROR: Batch
Header Number Not
Numeric: <value>

The batch header number was not a
valid numeric value.

(6086) ERROR:Batch
Transmission Type
Invalid: <value>

Batch Transmission Type Invalid

(6087) ERROR: Batch
Header Has Version:
<value> Expecting

An unexpected Batch Version is sent.

(6088) ERROR: Expected
Batch Trailer, Read Batch
Header

Expected Batch Trailer, Read Batch
Header.

(6089) ERROR:Invalid
Transmission Header,
Searching Forward

The transmission header is invalid.
The program searches ahead for the
next header.

(6090) ERROR:
Transmission Bin Header
Number Not Numeric:
<value>

Transmission Bin Header Number
Not Numeric: <value>

(6091) ERROR: Mandatory
NCPDP Field %s is Blank

A mandatory field is missing.

(6092) ERROR: NCPDP
Telecom Version <value>
unexpected

An unsupported Telecommunications
version is trying to be processed.

(6093) ERROR: Read Batch
Header, Expected Group or
Trailer

Read Batch Header, Expected Group
or Trailer

(6094) ERROR: Invalid TP
Lookup Choice for NCPDP

An inbound error. The type of TP
lookup is invalid for NCPDP, because
NCPDP requires an ODBC trading
partner.

(6095) ERROR: Invalid
NCPDP Segment Name %s

Invalid NCPDP Segment Name %s

(6096) ERROR:
Transmission Hdr
Transaction Count <value>
But Actual Count is
<value>, Aborting Trans

The actual count of transactions in a
transmission does not match the value
specified in the file.

(6097) ERROR: Expected
Segment Sep After Group
Sep, Aborting Trans

Expected Segment Sep After Group
Sep, Aborting Trans

Message Cause Solution

System messages

50 ECMap

(6098) FATAL: Transaction
Header Not Found,
Aborting

Transaction Header Not Found,
Aborting

(6099) ERROR: Transaction
Count %ld Does Not Match
Transactions

Transaction Count %ld Does Not
Match Transactions

(9000) ERROR: NCPDP
switch does not match TP
lookup switch

A TP lookup is used that does not
support the inbound type
(Batch or Telecom) selected.

(6070) ERROR: Invalid
string offset or length

(6071) ERROR: Exceeds the
string boundary

(7001) ERROR: No Table
Ref Destination Field

Cross reference rule executed to a
table but there is no field for it to
go into.

Check cross reference table
definitions to ensure that
destination field has been
defined.

(7002) OK: Transaction
for Trade Partner<trading
partner name>Copied To
File<file name>

(7003) OK: Destination
File <file name>

Information only. Transaction was
copied to a file instead of passing
through a map. 7002 displays
what transaction was copied to
what file. 7003 displays
destination filename.

This is controlled through the
Trade Agreement records where
you instruct the system to copy
the EDI data to another file while
it is passing through a map.

(7004) WARNING: No Flow
Records Defined for < map
name >

Indicates that flow has not been
defined.

Define the levels and flow
information and regenerate the
map.

(7005) WARNING: Map Line
Count Does Not Match HDR
Count

Indicates the *.MAP file is invalid
or has somehow been corrupted.

Regenerate the map. If the error
occurs again, call support for
assistance.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 51

(7006) FATAL: < xref map
table > Index Out of Range

Occurs during map generation
when loading the map into
memory. This internal check
occurs when table header
information such as the total
number of tables in map does not
match the number of tables in the
map.

Regenerate map. If the error
occurs again, call support for
assistance

(7007) FATAL: Invalid
record in map at <line
number> line

Indicates that map definition
contains errors.

Check map definition and
modify. regenerate map. If the
error occurs again, call support
for assistance.

(7008) FATAL: No Trading
Partner Fields Were
Defined

No Trading Partner field has been
defined in the application.

First record read on an outbound
map must contain a field where
the attribute has been set to
Trading Partner. Check Trading
Partner Status to ensure that field
attribute has been selected.

(7009) FATAL: Map Error
Keyed IO Rule with No
Filename

A keyed- I/O rule was executed
with no filename specified.

Modify the rule in question.

(7010) ERROR: < Backout >
point < point position >
out of range

The number of checkpoints or
backout points is over the
maximum number of
system-defined checkpoints.

Call Support for assistance.

(7011) ERROR: < Files/X12
> Backout point < point
number > Called When File
Closed

System error message for the
Checkpoint Backout command.

Call Support for assistance.

(7012) ERROR: < >Backout
point < > With No Prior
Save

Backout command was requested
before a checkpoint command was
issued.

Modify map to insert a
checkpoint prior to doing a
backout. All backouts must have
prior checkpoints, as you are
backing out to the prior
checkpoint.

(7013) OK: EDI Backout
point < point number >
Executed.

Information only. The backout
was executed.

Message Cause Solution

System messages

52 ECMap

(7014) FATAL: Failed
Backout Pt < point number
> TpNo <internal trading
partner number>

System error message. Backout
failed for this trading partner.

Call support for assistance.

(7015) ERROR: Output
Files Reset Due To
Transaction Errs

Indicates that the system
encountered a Fatal error and
backed out the transaction.

Data is corrupted and has been
backed out. Modify data or
report to sender.

(7016) OK: Output Files
Reset to Backout Point <
point number >

Information only. Output Files
Reset to Backout Point.

(7017) FATAL: Destination
File Switch and not ST Seg

Occurs on Inbound when the EDI
Out Destination File field has been
checked in the Trade Agreement
record. Performs mapping rules on
incoming data. The ST segment
initiates this action.

Call support for assistance.

(7018) FATAL: Exceeded
max Field size <
system-defined maximum
size of a field >
searching for Field
delim, EDI Rec # < inbound
number of X12 records >

Missing delimiters. Modify file and regenerate the
map.

(7019) FATAL: Failed
trying to open < original
number > File, errno = < >

Insufficient number of file
handles.

Set system’s config.sys file to
allow for a sufficient number of
files to be opened.

Note If you are mapping
multiple record types, the system
creates a new file for each record
type.

(7020) FATAL: Could Not
Load < dynamic link
library name>

Cannot find <dynamic link
library> in system paths.

Double check whether the
<dynamic link library> path is
located in the system path.

(7021) FATAL: Could Not
Get Address for Procedure
<procedure name>

To use User exit command, the
USEREXIT.DLL file must be
available.

Ensure that USEREXIT.DLL file is
in current path.

Message Cause Solution

CHAPTER 1 Informational Messages

Reference Guide 53

On inbound map checkpoints
Table 1-15 lists the format, cause, and solution (if applicable) for the ECMap
messages related to inbound map checkpoints, in numeric order by message
number.

Table 1-15: ECMap messages related to inbound map checkpoints

Message Cause Solution

(7022) OK: Output
Files Checkpoint < >
at < > < >

Cause:

(7023) OK: EDI OUT
File < > Chkpt < > at
< >

Information only. Advises that
checkpoint has been set.

(7024) ERROR: Invalid
Date Assignment

Moving date from one field to another
field using an invalid operation.

Modify rule to perform
operation.

(7025) ERROR: < >
Control Count
Mismatch < > vs < >

Control counts on the GE do not match
the GS.

Bad EDI data. Inform sender.

(7026) ERROR: < >
Reference Mismatch: <
> vs < >

Control counts on the GE do not match
the GS.

Bad EDI data. Inform sender.

(7031) ERROR:
Non-Numeric < >
Control Count: < >

Control counts are not numeric for the
SE Segment

Bad EDI data. Inform sender.

(7034) ERROR: Missing
< > Control Count: < >

Control counts are missing for the SE
Segment

Bad EDI data. Inform sender

(7037) FATAL: Rule
<rule number> L < >
MemVar File Name > 256

Performed an operation on a file where
a defined memory variable is a file
name and the size of the memory
variable file name is greater than 256
characters.

Modify extended file name to
meet the maximum limit
imposed.

(7038) ERROR: No Open
File: <file name>

Occurs when a file management rule
has been issued to close a file that is
not opened.

Modify file management rule.

(7039) TRACE: < > < >
< >

A generic trace message that occurs
when Verbose Trace is on.

(7040) FATAL: Nested
Perform Limit
Exceeded

Runtime program has a limit of 50
nested rules. This message can occur
when a rule calls itself within a nested
rule.

Modify perform rule.

System messages

54 ECMap

On running the EDI product as an adapter
Table 1-16 lists the format, cause, and solution (if applicable) for the ECMap
messages related to running the EDI adapter, in numeric order by message
number.

Table 1-16: ECMap messages related to running the EDI adapter

Message Cause Solution

(8000) ERROR: ADK does
not support %s data
type of %s field

The specified field is an unsupported
data type for use with NDO metadata.
Currently, the only unsupported field
type is Packed Decimal, F_Comp3.

For an unsupported field type,
assigned a supported field type
in another record. Then use that
record for the NDO.

(8001) ERROR: Put NDO
object into NDO queue
failed

The internal queue fails to hold another
NDO object.

System error. Call the vendor.

(8002) ERROR:
Incompleted NDO
structure parent node
missing Transaction
Abort.

The current record placed in the NDO
data tree is does not have its specified
parent already in the NDO tree.

Correct the map so that the
NDO_WRITE command of a
parent record is always
performed before using
NDO_WRITE for a child
record.

(8003) ERROR: Cannot
find record %s’s
parent %s in data
tree, skip this node.

When reading a NDO Data tree, this
message occurs if the parent child
relationships in the data tree do not
match the parent child relationships
defined in the map.

Check that the repository
schema matches the parent child
relationship described in the
map.

(8004) ERROR: < field
name > field has
invalid date < date
value >.

Date format of <date value> is invalid. Check input data field and data
type of this <field name>

(8050) ERROR: Does not
support %s type of %s
field.

When reading the NDO data tree, the
node data type trying to be read is not
a supported conversion type.
Currently, conversion is not supported
for DT_VoidPTR and DT_Binary.

Do not use DT_VoidPtr or
DT_Binary as field type for
NDO data trees that are to be
read by the EDI Adapter.

(8051) ERROR: <Schema
name> does not match
<filename>.

The schema name of the NDO Data
Tree Being read from a Queue must
match the schema name defined in the
map. Note in the map the schema name
is the file name.

Schema name of either the map
or the NDO data tree must be
changed so that both are
identical.

CHAPTER 1 Informational Messages

Reference Guide 55

(8052) ERROR: Record
%s undefined in map
file, skip all leaf
nodes.

A container node name does not match
any record name in the map

Correct either the NDO schema
or the map. All container NDO
node names should be defined as
a record in the map.

(8053) ERROR: <Field
name> undefined in
record <record name>
in the map file.

When reading an NDO data tree, the
field name of one of the nodes is not
matched by a map field name in the
map.

Redefine map or schema so that
all field names in the schema
matches a field name in the map.

(9000) ERROR: NCPDP
switch does not match
TP lookup switch

A TP lookup is used that does not support
the inbound type
(Batch or Telecom) selected.

Message Cause Solution

Microsoft standard ODBC error messages

56 ECMap

Microsoft standard ODBC error messages
SQLError returns SQLSTATE values as defined by the X/Open and SQL
Access Group SQL CAE specification (1992). SQLSTATE values are strings
that contain five characters.

The following table lists SQLSTATE values that a driver can return for
SQLError. The character string value returned for an SQLSTATE consists of a
two character class value followed by a three character subclass value. A class
value of “01” indicates a warning and is accompanied by a return code of
SQL_SUCCESS_WITH_INFO. Class values other than “01”, except for the
class “IM”, indicate an error and are accompanied by a return code of
SQL_ERROR. The class “IM” is specific to warnings and errors that derive
from the implementation of ODBC itself. The subclass value “000” in any class
is for implementation defined conditions within the given class. The
assignment of class and subclass values is defined by ANSI SQL-92.

Note Although successful execution of a function is normally indicated by a
return value of SQL_SUCCESS, the SQLSTATE 00000 also indicates success.

Table 1-17: SQLSTATE values that SQLError returns

SQLError Returns SQLSTATE value

01000 General warning All ODBC functions except:
SQLAllocEnv

SQLError

01002 Disconnect error SQLDisconnect

01004 Data truncated SQLBrowseConnect SQLColAttributes
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPutData
SQLSetPos

01006 Privilege not revoked SQLExecDirect SQLExecute
01S00 Invalid connection string attribute
SQLBrowseConnect

SQLDriverConnect

CHAPTER 1 Informational Messages

Reference Guide 57

01S01 Error in row SQLExtendedFetch SQLSetPos
01S02 Option value changed SQLSetConnectOption SQLSetStmtOption
01S03 No rows updated or deleted SQLExecDirect SQLExecute

SQLSetPos

01S04 More than one row updated or deleted
SQLExecDirect

SQLExecute
SQLSetPos

07001 Wrong number of parameters SQLExecDirect SQLExecute

07006 Restricted data type attribute violation
SQLBindParameter

SQLExtendedFetch
SQLFetch
SQLGetData

08001 Unable to connect to data source
SQLBrowseConnect

SQLConnect
SQLDriverConnect

08002 Connection in use SQLBrowseConnect SQLConnect
SQLDriverConnect
SQLSetConnectOption

08003 Connection not open SQLAllocStmt SQLDisconnect
SQLGetConnectOption
SQLGetInfo
SQLNativeSql
SQLSetConnectOption
SQLTransact

08004 Data source rejected establishment of
connection SQLBrowseConnect

SQLConnect
SQLDriverConnect

08007 Connection failure during transaction
SQLTransact

SQLError Returns SQLSTATE value

Microsoft standard ODBC error messages

58 ECMap

08S01 Communication link failure SQLBrowseConnect SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLGetData
SQLGetTypeInfo
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetConnectOption
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

21S01 Insert value list does not match column list
SQLExecDirect

21S02 Degree of derived table does not match column
list SQLExecDirect

SQLPrepare
SQLSetPos

22001 String data right truncation SQLPutData

22003 Numeric value out of range SQLExecDirect SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetInfo
SQLPutData
SQLSetPos

22005 Error in assignment SQLExecDirect SQLExecute
SQLGetData
SQLPrepare
SQLPutData
SQLSetPos

SQLError Returns SQLSTATE value

CHAPTER 1 Informational Messages

Reference Guide 59

22008 Datetime field overflow SQLExecDirect SQLExecute
SQLGetData
SQLPutData
SQLSetPos

22012 Division by zero SQLExecDirect SQLExecute
SQLExtendedFetch
SQLFetch

22026 String data, length mismatch SQLParamData

23000 Integrity constraint violation SQLExecDirect SQLExecute
SQLSetPos

24000 Invalid cursor state SQLColAttributes SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetStmtOption
SQLGetTypeInfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetCursorName
SQLSetPos
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

25000 Invalid transaction state SQLDisconnect

28000 Invalid authorization specification
SQLBrowseConnect

SQLConnect
SQLDriverConnect

34000 Invalid cursor name SQLExecDirect SQLPrepare
SQLSetCursorName

37000 Syntax error or access violation SQLExecDirect

3C000 Duplicate cursor name SQLSetCursorName SQLNativeSql
SQLPrepare

SQLError Returns SQLSTATE value

Microsoft standard ODBC error messages

60 ECMap

40001 Serialization failure SQLExecDirect SQLExecute
SQLExtendedFetch
SQLFetch

42000 Syntax error or access violation SQLExecDirect SQLExecute
SQLPrepare
SQLSetPos

70100 Operation aborted SQLCancel

IM001 Driver does not support this function All ODBC
functions except:SQLAllocConnect

SQLAllocEnv
SQLDataSources
SQLDrivers
SQLError
SQLFreeConnect
SQLFreeEnv
SQLGetFunctions

IM002 Data source name not found and no default
driver specified SQLBrowseConnect

SQLConnect
SQLDriverConnect

IM003 Specified driver could not be loaded
SQLBrowseConnect

SQLConnect
SQLDriverConnect

IM004 Driver’s SQLAllocEnv failed SQLBrowseConnect SQLConnect
SQLDriverConnect

IM005 Driver’s SQLAllocConnect failed
SQLBrowseConnect

SQLConnect
SQLDriverConnect

IM006 Driver’s SQLSetConnect-Option failed
SQLBrowseConnect

SQLConnect
SQLDriverConnect

IM007 No data source or driver specified; dialog
prohibited SQLDriverConnect

IM008 Dialog failed SQLDriverConnect

IM009 Unable to load translation DLL SQLBrowseConnect SQLConnect
SQLDriverConnect
SQLSetConnectOption

IM010 Data source name too long SQLBrowseConnect SQLDriverConnect
IM011 Driver name too long SQLBrowseConnect SQLDriverConnect
IM012 DRIVER keyword syntax error SQLBrowseConnect SQLDriverConnect
IM013 Trace file error All ODBC functions.

S0001 Base table or view already exists SQLExecDirect SQLPrepare
S0002 Base table not found SQLExecDirect SQLPrepare

S0011 Index already exists SQLExecDirect SQLPrepare

S0012 Index not found SQLExecDirect SQLPrepare
S0021 Column already exists SQLExecDirect SQLPrepare
S0022 Column not found SQLExecDirect SQLPrepare

SQLError Returns SQLSTATE value

CHAPTER 1 Informational Messages

Reference Guide 61

S0023 No default for column SQLSetPos

S1000 General error All ODBC functions
except:SQLAllocEnv

S1001 Memory allocation failure All ODBC functions
except:SQLAllocEnv

SQLError
SQLFreeConnect
SQLFreeEnv

S1002 Invalid column number SQLBindCol SQLColAttributes
SQLDescribeCol
SQLExtendedFetch
SQLFetch
SQLGetData

S1003 Program type out of range SQLBindCol SQLBindParameter
SQLGetData

S1004 SQL data type out of range SQLBindParameter SQLGetTypeInfo
S1008 Operation canceled All ODBC functions that can
be processed

asynchronously:SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

SQLError Returns SQLSTATE value

Microsoft standard ODBC error messages

62 ECMap

S1009 Invalid argument value SQLAllocConnect SQLAllocStmt
SQLBindCol
SQLBindParameter
SQLExecDirect
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPutData
SQLSetConnectOption
SQLSetCursorName
SQLSetPos
SQLSetStmtOption

SQLError Returns SQLSTATE value

CHAPTER 1 Informational Messages

Reference Guide 63

S1010 Function sequence error SQLBindCol SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLDisconnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetConnectOption
SQLGetCursorName
SQLGetData
SQLGetFunctions
SQLGetStmtOption
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLParamOptions
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLRowCount
SQLSetConnectOption
SQLSetCursorName
SQLSetPos
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

S1011 Operation invalid at this time SQLGetStmtOption SQLSetConnectOption
SQLSetStmtOption

SQLError Returns SQLSTATE value

Microsoft standard ODBC error messages

64 ECMap

S1012 Invalid transaction operation code specified
SQLTransact

S1015 No cursor name available SQLGetCursorName

S1090 Invalid string or buffer length SQLBindCol SQLBindParameter
SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLForeignKeys
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetCursorName
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

S1091 Descriptor type out of range SQLColAttributes

S1092 Option type out of range SQLFreeStmt SQLGetConnectOption
SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

S1093 Invalid parameter number SQLBindParameter SQLDescribeParam
S1094 Invalid scale value SQLBindParameter

S1095 Function type out of range SQLGetFunctions

S1096 Information type out of range SQLGetInfo

S1097 Column type out of range SQLSpecialColumns

S1098 Scope type out of range SQLSpecialColumns

SQLError Returns SQLSTATE value

CHAPTER 1 Informational Messages

Reference Guide 65

S1099 Nullable type out of range SQLSpecialColumns

S1100 Uniqueness option type out of range
SQLStatistics

S1101 Accuracy option type out of range SQLStatistics

S1103 Direction option out of range SQLDataSources SQLDrivers
S1104 Invalid precision value SQLBindParameter

S1105 Invalid parameter type SQLBindParameter

S1106 Fetch type out of range SQLExtendedFetch

S1107 Row value out of range SQLExtendedFetch SQLParamOptions
SQLSetPos
SQLSetScrollOptions

S1108 Concurrency option out of range
SQLSetScrollOptions

S1109 Invalid cursor position SQLExecute SQLExecDirect
SQLGetData
SQLGetStmtOption
SQLSetPos

S1110 Invalid driver completion SQLDriverConnect

S1111 Invalid bookmark value SQLExtendedFetch

SQLError Returns SQLSTATE value

Microsoft standard ODBC error messages

66 ECMap

S1C00 Driver not capable SQLBindCol SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetConnectOption
SQLGetData
SQLGetInfo
SQLGetStmtOption
SQLGetTypeInfo
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetConnectOption
SQLSetPos
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

SQLError Returns SQLSTATE value

CHAPTER 1 Informational Messages

Reference Guide 67

S1T00 Timeout expired SQLBrowseConnect SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDescribeCol
SQLDescribeParam
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

SQLError Returns SQLSTATE value

Microsoft standard ODBC error messages

68 ECMap

Reference Guide 69

C H A P T E R 2 Adapter Configuration Files

About this chapter This chapter describes how to create the configuration files specified in
the Export Schema utility in ECMap.

Topics This chapter contains the following topics:

Topic Page
Overview 70

Configuration file samples 70

Overview

70 ECMap

Overview
The EDI product can be used as a plug-in adapter (called EDIadapter) with
these core integration products:

• e-Biz 2000

• e-Biz Integrator

• MQSI

The configuration files for ECMap use two modes:

• Schema

• Schema_Remove

Configuration file samples
The following are sample configuration files.

Note The keys and values in the configuration files are case sensitive.

Schema Mode samples
The mode of the configuration file is Schema Mode. Schema Mode is used
during design time to create formats for storing data structure definitions in a
repository. The adapter plug-in library defines all schemas for the integration
servers to use to parse and format messages. Each schema is equal to one New
Data Object (NDO). Comments indicate the lines that must be added or on
which information must be changed.

Sample configuration file for e-Biz 2000

This is a sample of a Schema Mode configuration file for e-Biz 2000,
NNT41SchemaLoader, NNT51SchemaLoader, and how to remove a schema
from the formatter. This file exports to e-Biz 2000.

Adapter
adapter=schemamode
mode=schema

CHAPTER 2 Adapter Configuration Files

Reference Guide 71

data=NDO

e-Biz 2000 schema load settings
Ebiz2K.Client.Name=

Name of the machine where the client is setup, plus
the name of the client

Ebiz2K.Message.Type=MessageType25
SchemaLoader.Factory=eBiz2kSchemaLoader_Factory
SchemaLoader.Library=adk33ebiz2ksl
set.oob.options= false

ebiz2K.Outgoing_Schema = True
in_file_name=ectree.txt

prefix= # Prefix for the schema
clash.avoid=true
continue.format.exists=true

testinput
file.delimiter=;
default.nodedatatype=DT_String
default.treedatatype=FALSE
schemadata.file=ECTREE.TXT
outputlog.Verbose=false
outputlog.Warning=false
outputlog.Error=true
outputlog.file=ecmap.log
outputerror.file=ecmap.err
autoappendchild.maintree=true
autoappendchild.maintree.error=true
allow.same.name.dif.tree=true

Sample configuration file for Sybase Formatter 4.11,e-Biz Integrator, or MQSI

This configuration file exports to the Sybase Formatter 4.11, e-Biz Integrator,
or MQSI.

Adapter
clash.avoid=TRUE
continue.format.exists=TRUE
adapter=schemamode
SchemaLoader.Factory=NNT41SchemaLoader_Factory SchemaLoader.Library=

Name of the library for the database prefix=
Prefix used for this schema

mode=SCHEMA
data=NDO
repository.dir=C:\nnsy\NNSYContentRepository
schema.key=ECMap session.server=

Name of the server where database is located session.username=

Configuration file samples

72 ECMap

User ID for the database session.password=
Password for the database session.database=
Name of the databasetestinput

file.delimiter=;default.nodedatatype=DT_String
default.treedatatype=FALSE
schemadata.file=ECTREE.TXT
outputlog.Verbose=false
outputlog.Warning=false
outputlog.Error=true
outputlog.file=ecmap.log
outputerror.file=ecmap.err
autoappendchild.maintree=true
autoappendchild.maintree.error=true
allow.same.name.dif.tree=true

Sample configuration file for Sybase Formatter 5.1, e-Biz Integrator, and MQSI

This configuration file exports to Sybase Formatter 5.1, e-Biz Integrator, and
MQSI.

Adapter
clash.avoid=TRUE
continue.format.exists=TRUE
adapter=schemamodeSchemaLoader.Factory=NNT51SchemaLoader_Factory
SchemaLoader.Library=adk33nnt51sl prefix=

Prefix for the schema
mode=SCHEMA
data=NDO repository.dir=C:\nnsy\NNSYContentRepository
schema.key=ECMap
session=ECSchemaSession.ECSchema NNOT_SHARED_LIBRARY=

Library needed to connect to database NNOT_FACTORY_FUNCTION=
Function specific to each database NN_SES_SERVER=
Name of the server NN_SES_USER_ID=
User ID for the database NN_SES_PASSWORD=
Password for the database NN_SES_DB_NAME=
Name of the databasetestinput

file.delimiter=;
default.nodedatatype=DT_String
default.treedatatype=FALSE
schemadata.file=ECTREE.TXT
outputlog.Verbose=false
outputlog.Warning=false
outputlog.Error=true
outputlog.file=ecmap.log
outputerror.file=ecmap.err
autoappendchild.maintree=true

CHAPTER 2 Adapter Configuration Files

Reference Guide 73

autoappendchild.maintree.error=true
allow.same.name.dif.tree=true

Schema_Remove Mode sample
This file allows schemas to be removed from the formatter.

Adapter
clash.avoid=TRUE
adapter=NNADKStubPlugIn
SchemaLoader.Factory=NNT41SchemaLoader_Factory
SchemaLoader.Library=

Name of the appropriate library for your database
mode=SCHEMA_REMOVE
data=NDO prefix=

Prefix for the schema(s) you are going to remove session.server=
Name of the server session.username=
User ID for the database session.password=
Password for the database session.database=
Name of the database

remove.by.prefix=true remove.schema.keys=
Name(s) of the schema(s) you are going to remove

For more information about the EDI adapter, see Adapter Runtime
Environment for EDI User Guide.

Configuration file samples

74 ECMap

Reference Guide 75

C H A P T E R 3 Trading Partner and Log
Database Formats

About this chapter In ECMap, trading partner information is stored in the trading partner
database, and transaction and error logging are stored in a log database.
Both databases have an ODBC and non-ODBC version.

Topics This chapter contains the following topics:

Topic Page

Overview 76

Database tables and logs 79

Company table in non-ODBC trading partner database 79

Company table in non-ODBC trading partner database 79

Company table in ODBC trading partner database 83

Trading partner file in non-ODBC trading partner database 86

Trading partner table in ODBC trading partner database 96

Trade agreement table in non-ODBC trading partner database 109

Trade agreement table in ODBC trading partner database 114

Non-ODBC transaction log table in log database 120

ODBC transaction log table in log database 129

Overview

76 ECMap

Overview
The trading partner database consists of three tables that contain information
about the company, its trading partners, and the trade agreements that have
been set up between them.

In the non-ODBC version, the company information is stored in an ASCII flat
file, and the trading partner and trade agreement information are stored in
Access tables and dBaseIII tables. (For map development, the program uses the
data in Access tables, but at runtime the program uses the data in dBaseIII
tables.)

In the ODBC version, the three tables can be stored in any ODBC-compliant
database. The user must assign a data source name (DSN) that points to the
trading partner database and use the appropriate ODBC driver for that specific
database.

The log database contains information logged during the map execution. For
non-ODBC users, transaction logging is written to one of two ASCII flat
files—translog.in for inbound processing and translog.out for outbound
processing. For ODBC users, transaction logging is written to one trlog table.
The user must assign a data source name (DSN) that points to the log database
and use the appropriate ODBC driver for that specific database.

File Description

wixset.dat Contains company information for non-ODBC
databases. See details in Table 3-1 on page 79.

wixset Contains company information for ODBC databases. See
details in Table 3-2 on page 83.

customer.dbf
customer.mdb

Contains trading partner information for non-ODBC
databases. See details in Table 3-3 on page 87.

Contains trading partner information for ODBC
databases. See details in Table 3-4 on page 96.

tradstat.dbf
tradstat.mdb

Contains trade agreement information for non-ODBC
databases. See details in Table 3-5 on page 109.

tradstat Contains trade agreement information for ODBC
databases. See details in Table 3-6 on page 114.

File Description

translog.in
translog.out

Contains transaction logging for non-ODBC databases.
See details in Table 3-7 on page 120.

trlog Contains transaction logging for ODBC databases. See
details in Table 3-8 on page 129.

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 77

The transaction log has one user-defined field (USERID_ENT) with a
corresponding system variable (SYS_USER_FIELD), which can be used in
any way the user wants.

For related information, see Chapter 4, “EDI Envelopes,” the System Variables
chapter in the ECMap User Guide, and the ECRTP Reference Guide.

This chapter contains the formats for each of the files and tables in the two
databases. The following information is included in the description of each
format: Field Number, Field Name, Type, Width/Precision, and Description.
The Description contains a textual explanation of the field contents and where
applicable, an explanation of the relationship between the field itself, other
fields in the database, EDI envelope fields, and related system variables.

The program actions involving database fields differ for inbound and outbound
processing. Some important processing actions are highlighted in the following
sections. See “In outbound processing” and “In inbound processing” on page
78.

In outbound processing
I/O Rule When the program performs the first I/O Rule associated with the first flow

level, it increments the value in the isa_out_no field in the trading partner table
and the value in the gs_no field in the trade agreement table and stores these
values in memory. At this point, it loads information from the company
file/table into WIX_* system variables and information from the trading
partner database into the system variables that hold trading-partner and trade
agreement information.

Before Rule In the Before Rule associated with the first flow level, the user can assign
values to system variables, overriding the system-assigned values and causing
the program to use the user-assigned values instead. This gives the user control
over envelope fields that are loaded from system variables; some fields are
loaded from other program variables.

After Rule Before performing the After Rule associated with the first flow level, the
program populates the outbound EDI envelope fields with values from either
system variables (user-assigned or system-assigned) or other program
variables.

During processing During processing – each time that the trading partner changes (regardless of
whether the transaction changes), the program loads the interchange and group
control numbers stored in memory into the appropriate database fields
(ISA_OUT_NO and GS_NO) and increments the values stored in memory by 1.

Overview

78 ECMap

Each time that the transaction changes (regardless of whether the trading
partner changes), the program loads the group control number stored in
memory into the GS_NO field in the trade agreement database and increments
the value stored in memory by 1.

In inbound processing
Loading company
data

The program loads information from the company file/table into the WIX_*
system variables and information from the trading partner database into the
system variables that hold trading-partner and trade agreement information.

Looking up the trading
partner

The program performs a trading partner lookup to determine which map to run.
Based on the search option chosen (switch selected/parameter used), the
program looks for a match between the values in specific system variables
(which were loaded from fields in the incoming envelope) and corresponding
fields in the trading partner database.

Reading the ISA
envelope

Each time the program reads a new ISA envelope, it updates the ISA_IN_NO
field in the trading partner table in the trading partner database using the value
from the following areas:

• Interchange Control Number (ISA 13) field in X12 envelopes

• Interchange Control Reference (UNB S004 0020) field in EDIFACT
envelopes

• File Control ID (FHS 00091) field in HL7 envelopes

Reading the GS
envelope

Each time it reads a new GS envelope, the program updates the GS_NO field
in the trade agreement table in the trading partner database using the value from
the following areas:

• Functional Group Header Control Number (GS 06) field in X12 envelopes

• Interchange Control Reference (UNG S004 00248 field in EDIFACT
envelopes

• Batch Control ID (BHS 00091) field in HL7 envelopes

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 79

Database tables and logs
The following sections describe the database tables and logs.

Company table in non-ODBC trading partner database
The wixset.dat file is a fixed-length sequential file that contains one record.

Note With non-ODBC, the user cannot create multiple company profiles.

This file is created from the internal wixset table, which the program creates
from the entries on the Company window, when the map runs. The location for
wixset.dat is the trading partner directory, but for outbound processing you can
override this directory location at runtime using the -dw <directory> switch.

Table 3-1: Company table in non-ODBC trading partner database

Name Type Width Description

WIX_COMPANY_NAME Character 35 Internal application name for the company.

Inbound – Loads the contents of this field into the
WIX_COMPANY_NAME system variable.

<filler> Character 12 Not used.

WIX_GSID Character 35 Main code used to identify the group level default sender on
outbound maps – used only if the SND_GSID field in the
trading partner file is blank.

• Outbound– Loads the contents of this field into the
WIX_GSID system variable. If the APP_SEND_CODE
system variable is blank, the program loads WIX_GSID
into APP_SEND_CODE, then loads APP_SEND_CODE
into the following envelope fields:

• Application Sender’s Code – GS 02

• Application Sender ID – UNG S006 0040

• Sending Application – MSH 00004

• File Sending Application – FHS 00070

• Batch Sending Application – BHS 00084

• Inbound – Loads the contents of this field into the
WIX_GSID system variable.

Database tables and logs

80 ECMap

WIX_IDQUAL Character 4 Qualifier that specifies the type of main code used to identify
the interchange level default sender on outbound maps – used
only if the SND_IDQUAL field in the trading partner file is
blank.

• Outbound – Loads the contents of this field into the
WIX_IDQUAL system variable. If the SEND_QUAL
system variable is blank, the program loads
WIX_IDQUAL into SEND_QUAL, then loads
SEND_QUAL into these envelope fields:

• Interchange Sender ID Qualifier – ISA 05

• Interchange Sender ID Code Qualifier – UNB S002
0007

• Inbound – Loads the contents of this field into the
WIX_IDQUAL system variable.

WIX_IDCODE Character 35 Main code used to identify the interchange level default
sender on outbound maps – used only if SND_IDCODE field
in the trading partner file is blank.

• Outbound – Loads the contents of this field into the
WIX_IDCODE system variable. If the SEND_CODE
system variable is blank, the program loads
WIX_IDCODE into SEND_CODE, then loads
SEND_CODE into the following envelope fields:

• Interchange Sender ID Code – ISA 06

• Interchange Sender ID – UNB S002 0004

• Sending Facility – MSH 00003

• File Sending Facility – FHS 00069

• Batch Sending Facility – BHS 00083

• Inbound – Loads the contents of this field into the
WIX_IDCODE system variable.

WIX_AUTH_QUAL Character 2 Qualifier that specifies the type of code used to authenticate
the company at the interchange level – used only if the
AUTH_QUAL field in the trading partner file is blank.

• Outbound – Loads the contents of this field into the
WIX_AUTH_QUAL system variable. If the
AUTH_QUAL system variable is blank, the program
loads WIX_AUTH_QUAL into AUTH_QUAL, then
loads AUTH_QUAL into this envelope field:

Authorization Information Qualifier – ISA 01

• Inbound – Loads the contents of this field into the
WIX_AUTH_QUAL system variable.

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 81

WIX_AUTH_CODE Character 10 Code used to authenticate the company at the interchange
level – used only if the AUTH_CODE field in the trading
partner file is blank.

• Outbound – Loads the contents of this field into the
WIX_AUTH_CODE system variable. If the
AUTH_CODE system variable is blank, the program
loads WIX_AUTH_CODE into AUTH_CODE, then
loads AUTH_CODE into this envelope field:

Authorization Information Qualifier – ISA 02

• Inbound – Loads the contents of this field into the
WIX_AUTH_CODE system variable.

WIX_SECU_QUAL Character 2 Qualifier that specifies the type of code used to grant the
company security clearance at the interchange level – used
only if the SECU_QUAL field in the trading partner file is
blank.

• Outbound – Loads the contents of this field into the
WIX_SECU_QUAL system variable. If the
SECU_QUAL system variable is blank, the program
loads WIX_SECU_QUAL into SECU_QUAL, then loads
SECU_QUAL into the following envelope fields:

• Security Information Qualifier – ISA 03

• Recipient Reference/Password Qualifier – UNB S005
0025

• Inbound – Loads the contents of this field into the
WIX_SECU_QUAL system variable.

WIX_SECU_CODE Character 10 Code used to grant the company security clearance at the
interchange level – used only if the SECU_CODE field in the
trading partner file is blank.

• Outbound – Loads the contents of this field into the
WIX_SECU_CODE system variable. If the
SECU_CODE system variable is blank, the program loads
WIX_SECU_CODE into SECU_CODE, then loads
SECU_CODE into the following envelope fields:

• Security Information – ISA 04

• Recipient Reference/Password – UNB S005 0022

• Inbound – Loads the contents of this field into the
WIX_SECU_CODE system variable.

Name Type Width Description

Database tables and logs

82 ECMap

WIX_SNDR_ROUTE Character 14

(35 for
Syntax
4)

Internal code used to identify the interchange level default
sender on outbound maps – used only if the SNDR_ROUTE
field in the trading partner file is blank.

• Outbound – Loads the contents of this field into the
WIX_SNDR_ROUTE system variable. If the
SEND_REV_ROUTE system variable is blank, the
program loads WIX_SNDR_ROUTE into
SEND_REV_ROUTE, then loads SEND_REV_ROUTE
into this envelope field:

Interchange Sender Internal ID – UNB S002 0008

• Inbound – Loads the contents of this field into the
WIX_SNDR_ROUTE system variable.

WIX_SNDR_SUBID Character 35 Internal sub-code used to identify the interchange level
default sender on outbound maps – used only if the
SNDR_SUBID field in the trading partner file is blank.

(EDIFACT Syntax 4 only)

• Outbound – Loads the contents of this field into the
WIX_SNDR_SUBID system variable. If the
SNDR_SUBID system variable is blank, the program
loads WIX_SNDR_SUBID into SNDR_SUBID, then
loads SNDR_SUBID into this envelope field:

Interchange Sender Internal Sub-ID – UNB S002 0042

• Inbound – Loads the contents of this field into the
WIX_SNDR_SUBID system variable.

WIX_APP_SND_QL Character 4 Qualifier that specifies the type of main code used to identify
the group level default sender on outbound maps – used only
if the APP_SND_QL field in the trading partner file is blank.

• Outbound – Loads the contents of this field into the
WIX_APP_SND_QL system variable. If the
APP_SEND_QUAL system variable is blank, the
program loads WIX_APP_SND_QL into
APP_SEND_QUAL, then loads APP_SEND_QUAL into
this envelope field:

Application Sender ID/ID Code Qualifier – UNG S006
0007

• Inbound – Loads the contents of this field into the
WIX_APP_SND_QL system variable.

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 83

Company table in ODBC trading partner database
The wixset table is created from the entries on the Company window and can
contain multiple company profiles, as shown in Table 3-2.

Table 3-2: Company table in ODBC trading partner database

Name Type Precision Description

RECORD_NO SQL_SMALLINT 4 Unique identifier used to create multiple profiles for the
company.

GSID SQL_VARCHAR 35 Main code used to identify the group level default sender
on outbound maps – used only if the SND_GSID field in
the trading partner table is blank.

• Outbound – Loads the contents of this field into the
WIX_IDQUAL system variable. If the
APP_SEND_CODE system variable is blank, the
program loads WIX_IDQUAL into
APP_SEND_CODE, then loads APP_SEND_CODE
into the following envelope fields:

• Application Sender’s Code – GS 02

• Application Sender ID – UNG S006 0040

• Sending Application – MSH 00004

• File Sending Application – FHS 00070

• Batch Sending Application – BHS 00084

• Inbound – Loads the contents of this field into the
WIX_IDQUAL system variable.

NAME SQL_VARCHAR 35 Internal application name for the company.

Inbound – Loads the contents of this field into the
WIX_COMPANY_NAME system variable.

IDQUAL SQL_VARCHAR 4 Qualifier that specifies the type of main code used to
identify the interchange level default sender on outbound
maps – used only if the SND_IDQUAL field in the trading
partner table is blank.

• Outbound – Loads the contents of this field into the
WIX_IDQUAL system variable. If the SEND_QUAL
system variable is blank, the program loads
WIX_IDQUAL into SEND_QUAL, then loads
SEND_QUAL into the following envelope fields:

• Interchange Sender ID Qualifier – ISA 05

• Interchange Sender ID Code Qualifier – UNB S002
0007

• Inbound – Loads the contents of this field into the
WIX_IDQUAL system variable.

Database tables and logs

84 ECMap

IDCODE SQL_VARCHAR 35 Main code used to identify the interchange level default
sender on outbound maps – used only if the SND_IDCODE
field in the trading partner table is blank.

• Outbound – Loads the contents of this field into the
WIX_IDCODE system variable. If the SEND_CODE
system variable is blank, the program loads
WIX_IDCODE into SEND_CODE, then loads
SEND_CODE into the following envelope fields:

• Interchange Sender ID Code – ISA 06

• Interchange Sender ID – UNB S002 0004

• Sending Facility – MSH 00003

• File Sending Facility – FHS 00069

• Batch Sending Facility – BHS 00083

• Inbound – Loads the contents of this field into the
WIX_IDCODE system variable.

AUTH_QUAL SQL_VARCHAR 2 Qualifier that specifies the type of code used to
authenticate the company at the interchange level – used
only if the AUTH_QUAL field in the trading partner table is
blank.

• Outbound – Loads the contents of this field into the
WIX_AUTH_QUAL system variable. If the
AUTH_QUAL system variable is blank, the program
loads WIX_AUTH_QUAL into AUTH_QUAL, then
loads AUTH_QUAL into this envelope field:

Authorization Information Qualifier – ISA 01

• Inbound – Loads the contents of this field into the
WIX_AUTH_QUAL system variable.

AUTH_CODE SQL_VARCHAR 10 Code used to authenticate the company at the interchange
level, used only if the AUTH_CODE field in the trading
partner table is blank.

• Outbound – Loads the contents of this field into the
WIX_AUTH_CODE system variable. If the
AUTH_CODE system variable is blank, the program
loads WIX_AUTH_CODE into AUTH_CODE, then
loads auth_code into this envelope field:

Authorization Information Qualifier – ISA 02

• Inbound – Loads the contents of this field into the
WIX_AUTH_CODE system variable.

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 85

SECU_QUAL SQL_VARCHAR 2 Qualifier that specifies the type of code used to grant the
company security clearance at the interchange level – used
only if the SECU_QUAL field in the trading partner table is
blank.

• Outbound – Loads the contents of this field into the
WIX_SECU_QUAL system variable. If the
SECU_QUAL system variable is blank, the program
loads WIX_SECU_QUAL into SECU_QUAL, then
loads SECU_QUAL into the following envelope fields:

• Security Information Qualifier – ISA 03

• Recipient Reference/Password Qualifier –UNB
S005 0025

• Inbound – Loads the contents of this field into the
WIX_SECU_QUAL system variable.

SECU_CODE SQL_VARCHAR 10 Code used to grant the company security clearance at the
interchange level – used only if the SECU_CODE field in
the trading partner table is blank.

• Outbound – Loads the contents of this field into the
WIX_SECU_CODE. If the SECU_CODE system
variable is blank, the program loads
WIX_SECU_CODE into SECU_CODE, then loads
secu_code into the following envelope fields:

• Security Information – ISA 04

• Recipient Reference/Password – UNB S005 0022

• Inbound – Loads the contents of this field into the
WIX_SECU_CODE system variable.

SNDR_ROUTE SQL_VARCHAR 14

(35 for
Syntax 4)

Internal code used to identify the interchange level default
sender on outbound maps – used only if the
SNDR_ROUTE field in the trading partner table is blank.

• Outbound – Loads the contents of this field into the
WIX_SNDR_ROUTE system variable. If the
SEND_REV_ROUTE system variable is blank, the
program loads WIX_SNDR_ROUTE into
SEND_REV_ROUTE, then loads
SEND_REV_ROUTE into this envelope field:

Interchange Sender Internal ID – UNB S002 0008

• Inbound – Loads the contents of this field into the
WIX_SNDR_ROUTE system variable.

Name Type Precision Description

Database tables and logs

86 ECMap

Trading partner file in non-ODBC trading partner database
The customer.dbf file contains trading partner information for non-ODBC
databases as shown in Table 3-3.

SNDR_SUBID SQL_VARCHAR 35 Internal sub-code used to identify the interchange level
default sender on outbound maps – used only if the
SNDR_SUBID field in the trading partner table is blank.

(EDIFACT Syntax 4 only)

• Outbound – Loads the contents of this field into the
WIX_SNDR_SUBID system variable. If the
SNDR_SUBID system variable is blank, the program
loads WIX_SNDR_SUBID into SNDR_SUBID, then
loads SNDR_SUBID into this envelope field:

Interchange Sender Internal Sub-ID – UNB S002 0042

• Inbound – Loads the contents of this field into the
WIX_SNDR_SUBID system variable.

APP_SND_QL SQL_VARCHAR 4 Qualifier that specifies the type of main code used to
identify the group level default sender on outbound maps
– used only if the APP_SND_QL field in the trading partner
table is blank.

• Outbound – Loads the contents of this field into the
WIX_APP_SND_QL system variable. If the
APP_SEND_QUAL system variable is blank, the
program loads WIX_APP_SND_QL into
APP_SEND_QUAL and then loads
APP_SEND_QUAL into this envelope field:

Application Sender ID/ID Code Qualifier – UNG S006
0007

• Inbound – Loads the contents of this field into the
WIX_APP_SND_QL system variable.

B_SEND_ID SQL_VARCHAR 24 Batch sender ID

BIN_NUMB SQL_SMALLINT 6 Bin number

PROC_NUMB SQL_VARCHAR 10 Processing control number

SERV_QUAL SQL_VARCHAR 2 Service provider ID qualifier

SERV_ID SQL_VARCHAR 15 Service provider ID

SOFT_ID SQL_VARCHAR 10 Software/vendor ID

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 87

Table 3-3: Trading partner file in non-ODBC trading partner database

Name Type Width Description

CUSTNO Character 35 Internal application identifier for the trading partner, used to link the
trading partner table (customer.dbf), trade agreement (tradstat.dbf)
table, and the application data field that has the attribute “Trading
Partner ID”.

<filler> Numeric 1 No longer used (formerly TYPE_OWNER).

NAME Character 35 Internal application name for the trading partner.

IDQUAL Character 4 Qualifier that specifies the type of main code used to identify the
interchange level default receiver on outbound maps. (The value in this
field is overridden by a value in the RCV_IDQUAL field of the trade
agreement table for outbound processing.)

Outbound – Loads the contents of this field into the RECV_EQUAL
system variable, then loads RECV_EQUAL into these envelope fields:

• Interchange Receiver ID Qualifier – ISA 07

• Interchange Recipient ID Code Qualifier – UNB S003 0007

IDCODE Character 35 Main code used to identify the interchange level default receiver on
outbound maps. The value in this field is overridden by a value in the
RCV_IDCODE field of the trade agreement table for outbound
processing.

Outbound – Loads the contents of this field into the RECV_CODE
system variable, then loads RECV_CODE into the following envelope
fields:

• Interchange Receiver ID Code – ISA 08

• Interchange Receiver ID – UNB S003 0010

• Receiving Facility – MSH 00005

• File Receiving Facility – FHS 00071

• Batch Receiving Facility – BHS 00085

AUTH_QUAL Character 2 Qualifier that specifies the type of code used to authenticate the trading
partner at the interchange level. If this field is blank, the program uses
the value in the WIX_AUTH_QUAL field of the company file for
outbound processing.

Outbound – Loads the contents of this field into the AUTH_QUAL
system variable, then loads AUTH_QUAL into this envelope field:

Authorization Information Qualifier – ISA 01

Database tables and logs

88 ECMap

AUTH_CODE Character 10 Code used to authenticate the trading partner at the interchange level. If
this field is blank, the program uses the value in the WIX_AUTH_CODE
field of the company file for outbound processing.

Outbound – Loads the contents of this field into the AUTH_CODE
system variable, then loads AUTH_CODE into the following envelope
fields:

• Authorization Information – ISA 02

• Application Password – UNG S008 0058

SECU_QUAL Character 2 Qualifier that specifies the type of code used to grant security clearance
to the trading partner at the interchange level. If this field is blank, the
program uses the value in the WIX_SECU_QUAL field of the company
file for outbound processing.

Outbound – Loads the contents of this field into the SECU_QUAL
system variable, then loads SECU_QUAL into the following envelope
fields:

• Security Information Qualifier – ISA 03

• Recipient Reference/Password Qualifier – UNB S005 0025

SECU_CODE Character 10 Code used to grant security clearance to the trading partner at the
interchange level. If this field is blank, the program uses the value in the
WIX_SECU_CODE field of the company file for outbound processing.

Outbound – Loads the contents of this field into the SECU_CODE
system variable, then loads SECU_CODE into these envelope fields:

• Security Information – ISA 04

• Recipient Reference/Password – UNB S005 0022

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 89

GSID Character 35 Main code used to identify the group level default receiver on outbound
maps and the group sender lookup value on inbound maps. The value in
this field is overridden by a value in the RCV_GSID field of the trade
agreement table for outbound processing.

• Outbound – Loads the contents of this field into the
APP_RECV_CODE system variable, then loads
APP_RECV_CODE into the following envelope fields:

• Application Receiver’s Code – GS 03

• Application Recipient ID – UNG S007 0044

• Receiving Application – MSH 00006

• File Receiving Application – FHS 00072

• Batch Receiving Application – BHS 00086

• Inbound – When this field is part of the trading partner lookup, the
program compares the contents of this field with the contents of the
APP_SEND_CODE system variable, loaded from the following
envelope fields:

• Application Sender’s Code – GS 02

• Application Sender ID – UNG S006 0040

• Sending Application – MSH 00004

• File Sending Application – FHS 00070

• Batch Sending Application – BHS 00084

SHIPQUAL Character 2 Qualifier that specifies Ship To identification code of the trading
partner.

Outbound – Loads the contents of this field into the SYS_SHIPQUAL
system variable, where it is available for use in mapping.

SHIPIDEN Character 15 Ship To identification code of the trading partner.

Outbound – Loads the contents of this field into the SYS_SHIPIDEN
system variable, where it is available for use in mapping.

BILLQUAL Character 2 Qualifier that specifies Bill To identification code of the trading partner.

Outbound – Loads the contents of this field into the SYS_BILLQUAL
system variable, where it is available for use in mapping.

BILLIDEN Character 15 Bill To identification code of the trading partner.

Outbound – Loads the contents of this field into the SYS_BILLIDEN
system variable, where it is available for use in mapping.

ADDR1 Character 35 Street address at which the trading partner is located.

Outbound – Loads the contents of this field into the SYS_ADDR1
system variable, where it is available for use in mapping.

Name Type Width Description

Database tables and logs

90 ECMap

ADDR2 Character 35 Additional street address at which the trading partner is located.

Outbound – Loads the contents of this field into the SYS_ADDR2
system variable, where it is available for use in mapping.

CITY Character 19 City in which the trading partner is located.

Outbound – Loads the contents of this field into the SYS_CITY system
variable, where it is available for use in mapping.

STATE Character 15 State in which the trading partner is located.

Outbound – Loads the contents of this field into the SYS_STATE
system variable, where it is available for use in mapping.

COUNTRY Character 25 Country in which the trading partner is located.

Outbound – Loads the contents of this field into the SYS_COUNTRY
system variable, where it is available for use in mapping.

ZIP Character 9 Zip code at which the trading partner is located.

Outbound – Loads the contents of this field into the SYS_ZIP system
variable, where it is available for use in mapping.

CONTACT1 Character 35 Name of the trading partner contact.

Outbound – Loads the contents of this field into the CONTACT1 system
variable, where it is available for use in mapping.

TELEPHONE1 Character 22 Telephone number of the trading partner contact.

Outbound – Loads the contents of this field into the TELEPHONE1
system variable, where it is available for use in mapping.

CONTACT2 Character 35 Name of an additional trading partner contact.

Outbound – Loads the contents of this field into the CONTACT2 system
variable, where it is available for use in mapping.

TELEPHONE2 Character 22 Telephone number of an additional trading partner contact.

Outbound – Loads the contents of this field into the TELEPHONE2
system variable, where it is available for use in mapping.

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 91

ISA_IN_NO Character 14 Interchange-level control reference number for inbound processing.

Inbound – To eliminate unnecessary processing time, the program
updates this field only when the trading partner changes.

The program reads the incoming EDI envelope, performs a trading
partner lookup to select the map to run (using criteria specified by the
user), writes an entry to the log, then the contents of these envelope
fields into the INT_HEAD_NUM system variable:

• Interchange Control Number – ISA 13

• Interchange Control Reference – UNB S004 0020

• File Control ID – FHS 00077

The program also stores the contents of the INT_HEAD_NUM system
variable in an internal storage location at this time. When the trading
partner changes, the program loads the contents of the internal storage
location into this field.

Users can load an override value into this field on the General tab of the
Trading Partner window.

ISA_OUT_NO Character 14 Interchange-level control reference number for outbound processing.

Outbound – To eliminate unnecessary updates during processing, the
program updates the value in this field initially and then only when the
trading partner changes.

The program performs the internal update when it looks for a trade
agreement match to select the map to be run. When it finds a match, it
increments the value in this field by 1, loads the contents of the field into
the INT_HEAD_NUM system variable, then loads INT_HEAD_NUM
into these envelope fields:

• Interchange Control Number – ISA 13

• Interchange Control Reference – UNB S004 0020

• File Control ID – FHS 00077

Whenever the trading partner changes during processing, the program
again increments the value in this field by 1, loads the contents of the
field into the INT_HEAD_NUM system variable, and loads
INT_HEAD_NUM into the appropriate envelope field.

Users can load an override value into this field on the General tab of the
Trading Partner window.

Name Type Width Description

Database tables and logs

92 ECMap

SND_GSID Character 35 Main code used to identify the group level override receiver on
outbound maps and the group receiver lookup value on inbound maps.
If this field is blank, the program uses the value in the WIX_IDQUAL
field of the company file for outbound processing.

• Outbound – Loads the contents of this field into the
APP_SEND_CODE system variable, then loads
APP_SEND_CODE into the following envelope fields:

• Application Sender’s Code – GS 02

• Application Sender ID – UNG S006 0040

• Sending Application – MSH 00004

• File Sending Application – FHS 00070

• Batch Sending Application – BHS 00084

• Inbound – When this field is part of the trading partner lookup, the
program compares the contents of this field with the contents of the
APP_RECV_CODE system variable, loaded from the following
envelope fields:

• Application Receiver’s Code – GS 03

• Application Recipient ID – UNG S007 0044

• Receiving Application – MSH 00006

• File Receiving Application – FHS 00072

• Batch Receiving Application – BHS 00086

SND_IDQUAL Character 4 Qualifier that specifies the type of main code used to identify the
interchange level override sender on outbound maps. If this field is
blank, the program uses the value in the WIX_IDQUAL field of the
company file for outbound processing.

Outbound – Loads the contents of this field into the SEND_QUAL
system variable, then loads SEND_QUAL into the following envelope
fields:

• Interchange Sender ID Qualifier – ISA 05

• Interchange Sender ID Code Qualifier – UNB S002 0007

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 93

SND_IDCODE Character 35 Main code used to identify the interchange level override sender on
outbound maps. (If this field is blank, the program uses the value in the
WIX_IDCODE field of the company file for outbound processing.)

Outbound – Loads the contents of this field into the SEND_CODE
system variable, then loads SEND_CODE into the following envelope
fields:

• Interchange Sender ID Code – ISA 06

• Interchange ID – UNB S002 0004

• Sending Facility – MSH 00003

• File Sending Facility – FHS 00069

• Batch Sending Facility – BHS 00083

SUB_DELIMT Character 3 Special character used by the trading partner to override the default X12
sub-element delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound X12 data. If not, it uses a default value.

ELE_DELIMT Character 3 Special character used by the trading partner to override the default X12
element delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound X12 data. If not, it uses a default value.

SEG_DELIMT Character 3 Special character used by the trading partner to override the default X12
segment delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound X12 data. If not, it uses a default value.

RELEASE_CH Character 3 Special character used by the trading partner to override the default X12
release character.

Outbound – If there is a value in this field, the program uses it to create
outbound X12 data. If not, it uses a default value.

X12_REPEATS Character 3 Special character used by the trading partner to override the default X12
repeat character.

Outbound – If there is a value in this field, the program uses it to create
outbound X12 data. If not, it uses a default value.

<filler> Character 1 No longer used. (formerly DEL_CODE)

EDIF_SUBDL Character 3 Special character used by the trading partner to override the default
EDIFACT sub-element delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound EDIFACT data. If not, it uses a default value.

Name Type Width Description

Database tables and logs

94 ECMap

EDIF_ELEDL Character 3 Special character used by the trading partner to override the default
EDIFACT element delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound EDIFACT data. If not, it uses a default value.

EDIF_SEGDL Character 3 Special character used by the trading partner to override the default
EDIFACT segment delimiter.

Outbound If there is a value in this field, the program uses it to create
outbound EDIFACT data. If not, it uses a default value.

EDIF_RELCH Character 3 Special character used by the trading partner to override the default
EDIFACT release character.

Outbound – If there is a value in this field, the program uses it to create
outbound EDIFACT data. If not, it uses a default value.

EDIF_REPEA Character 3 Special character used by the trading partner to override the default
EDIFACT repeat character.

Outbound – If there is a value in this field, the program uses it to create
outbound EDIFACT data. If not, it uses a default value.

HL7_SEGDL Character 3 Special character used by the trading partner to override the default HL7
segment delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound HL7 data. If not, it uses a default value.

HL7_ELEDL Character 3 Special character used by the trading partner to override the default HL7
element delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound HL7 data. If not, it uses a default value.

HL7_SUBDL Character 3 Special character used by the trading partner to override the default HL7
sub-element delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound HL7 data. If not, it uses a default value.

HL7_SUBSUB Character 3 Special character used by the trading partner to override the default HL7
component delimiter.

Outbound – If there is a value in this field, the program uses it to create
outbound HL7 data. If not, it uses a default value.

HL7_RELCH Character 3 Special character used by the trading partner to override the default HL7
release character.

Outbound – If there is a value in this field, the program uses it to create
outbound HL7 data. If not, it uses a default value.

HL7_REPEAT Character 3 Special character used by the trading partner to override the default HL7
repeat character.

Outbound – If there is a value in this field, the program uses it to create
outbound HL7 data. If not, it uses a default value.

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 95

EXPORT_FLAG Character 1 Special character used to designate that flagged trading partner records
can be moved from one database to another.

MBOX_NAME Character 35 Internal name of the trading partner mailbox - used only as a label on
windows or reports. The value in this field can be overridden by a value
in the MBOX_NAME field in the trade agreement table.

MAILBOX Character 100 Full-path name of the trading partner mailbox folder, or directory. The
value in this field can be overridden by a value in the dest field in the
trade agreement table.

CURR_FMT Character 1 Character used to indicate whether a period or comma is used as the
decimal character

• C – Comma decimal character

• D – Period decimal character

POS_LTR Character 1 Reserved for future use with packed decimal.

SNDR_ROUTE Character 14

(35 for
Syntax
4)

Internal code used to identify the interchange level override sender on
outbound maps.

Outbound – Loads the contents of this field into the
SEND_REV_ROUTE system variable, then loads
SEND_REV_ROUTE into this envelope field:

Interchange Sender Internal ID – UNB S002 0008

SNDR_SUBID Character 35 Internal sub-code used to identify the interchange level override sender
on outbound maps.

(EDIFACT Syntax 4 only)

Outbound – Loads the contents of this field into the SNDR_SUBID
system variable, then loads SNDR_SUBID into this envelope field:

Interchange Sender Internal Sub-ID – UNB S002 0042

RCVR_ROUTE Character 14

(35 for
Syntax
4)

Internal code used to identify the interchange level default receiver on
outbound maps.

Outbound – Loads the contents of this field into the RCVR_ROUTE
system variable, then loads RCVR_ROUTE into this envelope field:

Interchange Receiver Internal ID – UNB S003 0014

RCVR_SUBID Character 35 Internal sub-code used to identify the interchange level default receiver
on outbound maps.

(EDIFACT Syntax 4 only)

Outbound – Loads the contents of this field into the RCVR_SUBID
system variable, then loads RCVR_SUBID into this envelope field:

Interchange Receiver Internal Sub-ID – UNB S003 0046

Name Type Width Description

Database tables and logs

96 ECMap

Trading partner table in ODBC trading partner database
The tp file contains trading partner information for ODBC databases as
illustrated in Table 3-4.

Table 3-4: Trading partner table in ODBC trading partner database

APP_SND_QL Character 4 Qualifier that specifies the type of main code used to identify the group
level override sender on outbound maps. (If this field is blank, the
program uses the value in the WIX_APP_SND_QL field of the company
file for outbound processing.)

Outbound – Loads the contents of this field into the
APP_SEND_QUAL system variable, then loads APP_SEND_QUAL
into this envelope field:

Application Sender ID/ID Code Qualifier – UNG S006 0007

APP_RCV_QL Character 4 Qualifier that specifies the type of main code used to identify the group
level default receiver on outbound maps. (The value in this field will be
overridden by a value in the app_rcv_ql field of the trade agreement
table for outbound processing.)

Outbound – Loads the contents of this field into the
APP_RECV_QUAL system variable, then loads APP_RECV_QUAL
into this envelope field:

Application Recipient ID/ID Code Qualifier – UNG S007 0007

B_SEND_ID Character 24 Batch sender ID

BIN_NUMB Integer 6 Bin number

PROC_NUMB Character 10 Processing control number

SERV_QUAL Character 2 Service provider ID qualifier

SERV_ID Character 15 Service provider ID

SOFT_ID Character 10 Software/vendor ID

ACK_TYPE Character 1 Acknowledgement flag

TPKEY Integer 10 Unique auto-increment field used to:

Update the ISA_IN_NO and ISA_OUT_NO control numbers

Prevent simultaneous update of the trading partner database by multiple
users

Name Type Width Description

Name Type Precision Description

CUSTNO SQL_VARCHAR 35 Internal application identifier for the trading partner, used to
link the trading partner table (tp), trade agreement (tradstat)
table, and the application data field that has the attribute
Trading Partner ID

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 97

<filler> SQL_VARCHAR 1 No longer used (formerly TYPE_OWNER)

NAME SQL_VARCHAR 35 Internal application name for the trading partner

IDQUAL SQL_VARCHAR 4 Qualifier that specifies the type of main code used to identify
the interchange level default receiver on outbound maps and
the interchange sender lookup value on inbound maps. (The
value in this field will be overridden by a value in the
RCV_IDQUAL field of the trade agreement table for outbound
processing.)

• Outbound – Loads the contents of this field into the
RECV_QUAL system variable, then loads RECV_QUAL
into the following envelope fields:

• Interchange Receiver ID Qualifier – ISA 07

• Interchange Recipient ID Code Qualifier –UNB S003
0007

• Inbound – Loads the contents of this field into the
SEND_QUAL system variable. When this field is used as
part of the trading partner lookup, the program compares
the contents of SEND_QUAL with the contents of the
following envelope fields:

• Interchange Sender ID Qualifier – ISA 05

• Interchange Sender ID Code Qualifier – UNB S002
0007

IDCODE SQL_VARCHAR 35 Main code used to identify the interchange level default
receiver on outbound maps and default sender on inbound
maps. The value in this field is overridden by a value in the
RCV_IDCODE field of the trade agreement table for outbound
processing.

Outbound – Loads the contents of this field into the
RECV_CODE system variable, then loads RECV_CODE into
the following envelope fields:

• Interchange Receiver ID Code – ISA 08

• Interchange Receiver ID–UNB S003 0010

• Receiving Facility – MSH 00005

• File Receiving Facility – FHS 00071

• Batch Receiving Facility – BHS 00085

Name Type Precision Description

Database tables and logs

98 ECMap

IDCODE SQL_VARCHAR 35 Inbound – When this field is part of the trading partner lookup,
the program compares the contents of this field with the
contents of the SEND_CODE system variable loaded from
these envelope fields:

• Interchange Sender ID Code – ISA 06

• Interchange Sender ID – UNB S002 0004

• Sending Facility – MSH 00003

• File Sending Facility – FHS 00069

• Batch Sending Facility – BHS 00083

AUTH_QUAL SQL_VARCHAR 2 Qualifier that specifies the type of code used to authenticate
the trading partner at the interchange level. If this field is
blank, the program uses the value in the WIX_AUTH_QUAL
field in the company table for outbound processing.

Outbound – Loads the contents of this field into the
AUTH_QUAL system variable, then loads AUTH_QUAL
into this envelope field:

Authorization Information Qualifier – ISA 01

AUTH_CODE SQL_VARCHAR 10 Code used to authenticate the trading partner at the
interchange level. If this field is blank, the program uses the
value in the WIX_AUTH_CODE field in the company table for
outbound processing.

Outbound – Loads the contents of this field into the
AUTH_CODE system variable, then loads AUTH_CODE
into the following envelope fields:

• Authorization Information – ISA 02

• Application Password – UNG S005 0058

SECU_QUAL SQL_VARCHAR 2 Qualifier that specifies the type of code used to grant security
clearance to the trading partner at the interchange level. If this
field is blank, the program uses the value in the
WIX_SECU_QUAL field in the company table for outbound
processing.

Outbound – Loads the contents of this field into the
SECU_QUAL system variable, then loads SECU_QUAL into
these envelope fields:

• Security Information Qualifier – ISA 03

• Recipient Reference/Password Qualifier – UNB S005 0025

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 99

SECU_CODE SQL_VARCHAR 10 Code used to grant security clearance to the trading partner at
the interchange level. If this field is blank, the program uses
the value in WIX_SECU_CODE field in the company table for
outbound processing.

Outbound – Loads the contents of this field into the
SECU_CODE system variable, then loads SECU_CODE into
these envelope fields:

• Security Information – ISA 04

• Recipient Reference/Password – UNB S005 0022

GSID SQL_VARCHAR 35 Main code used to identify the group level default receiver on
outbound maps and default sender on inbound maps.

• Outbound – Loads the contents of this field into the
APP_RECV_CODE system variable, then loads
APP_RECV_CODE into the following envelope fields:

• Application Receiver’s Code – GS 03

• Application Recipient ID – UNG S007 0044

• Receiving Application – MSH 00006

• File Receiving Application – FHS 00072

• Batch Receiving Application – BHS 00086

• Inbound – When this field is part of the trading partner
lookup, the program compares contents of this field with
the contents of the APP_SEND_CODE system variable,
loaded from the following envelope fields:

• Application Sender’s Code – GS 02

• Application Sender ID - UNG S006 0040

• Sending Application – MSH 00004

• File Sending Application – FHS 00070

• Batch Sending Application – BHS 00084

SHIPQUAL SQL_VARCHAR 2 Qualifier that specifies Ship To identification code of the
trading partner.

Outbound – Loads the contents of this field into the
SYS_SHIPQUAL system variable, where it is available for
use in mapping.

SHIPIDEN SQL_VARCHAR 15 Ship To identification code of the trading partner.

Outbound – Loads the contents of this field into the
SYS_SHIPIDEN system variable, where it is available for use
in mapping.

Name Type Precision Description

Database tables and logs

100 ECMap

BILLQUAL SQL_VARCHAR 2 Qualifier that specifies Bill To identification code of the
trading partner.

Outbound – Loads the contents of this field into the
SYS_BILLQUAL system variable, where it is available for
use in mapping.

BILLIDEN SQL_VARCHAR 15 Bill To identification code of the trading partner.

Outbound – Loads the contents of this field into the
SYS_BILLIDEN system variable, where it is available for use
in mapping.

ADDR1 SQL_VARCHAR 35 Street address at which the trading partner is located.

Outbound – Loads the contents of this field into the
SYS_ADDR1 system variable, where it is available for use in
mapping.

ADDR2 SQL_VARCHAR 35 Additional street address at which the trading partner is
located.

Outbound – Loads the contents of this field into the
SYS_ADDR2 system variable, where it is available for use in
mapping.

CITY SQL_VARCHAR 19 City in which the trading partner is located.

Outbound – Loads the contents of this field into the
SYS_CITY system variable, where it is available for use in
mapping.

STATE SQL_VARCHAR 15 State in which the trading partner is located.

Outbound – Loads the contents of this field into the
SYS_STATE system variable, where it is available for use in
mapping.

COUNTRY SQL_VARCHAR 25 Country in which the trading partner is located.

Outbound – Loads the contents of this field into the
SYS_COUNTRY system variable, where it is available for use
in mapping.

ZIP SQL_VARCHAR 9 Zip code at which the trading partner is located.

Outbound – Loads the contents of this field into the SYS_ZIP
system variable, where it is available for use in mapping.

CONTACT1 SQL_VARCHAR 35 Name of the trading partner contact.

Outbound – Loads the contents of this field into the
CONTACT1 system variable, where it is available for use in
mapping.

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 101

TELEPHONE1 SQL_VARCHAR 22 Telephone number of the trading partner contact.

Outbound – Loads the contents of this field into the
TELEPHONE1 system variable, where it is available for use
in mapping.

CONTACT2 SQL_VARCHAR 35 Name of an additional trading partner contact.

Outbound – Loads the contents of this field into the
CONTACT2 system variable, where it is available for use in
mapping.

TELEPHONE2 SQL_VARCHAR 22 Telephone number of an additional trading partner contact.

Outbound – Loads the contents of this field into the
TELEPHONE2 system variable, where it is available for use
in mapping.

ISA_IN_NO SQL_VARCHAR 14 Interchange-level control reference number for inbound
processing.

Inbound – The program reads the incoming EDI envelope,
performs a trading partner lookup to select the map to be run
(using criteria specified by the user), writes an entry to the log,
then the contents of these envelope fields into the
INT_HEAD_NUM system variable:

• Interchange Control Number – ISA 13

• Interchange Control Reference –UNB S004 0020

• File Control ID – FHS 0077

The program then also stores the contents of
INT_HEAD_NUM in an internal storage area. When the
trading partner changes, the program loads the contents of the
internal storage location into this field.

Users can load an override value into this field on the Mailbox
tab of the Trading Partner window.

Name Type Precision Description

Database tables and logs

102 ECMap

ISA_OUT_NO SQL_VARCHAR 14 Interchange-level control reference number for outbound
processing.

Outbound – The program first looks for a trade agreement
match to select the map to be run. Once it finds a match, it
increments the value in this field by 1, loads the field contents
into the INT_HEAD_NUM system variable, then loads
INT_HEAD_NUM into these envelope fields:

• Interchange Control Number – ISA 13

• Interchange Control Reference–UNB S004 0020

• File Control ID – FHS 0077

When the trading partner changes during processing, the
program increments the value in this field by 1, loads the
contents of the field into the INT_HEAD_NUM system
variable, and loads INT_HEAD_NUM into the appropriate
envelope field.

Users can load an override value into this field on the Mailbox
tab of the Trading Partner window.

SND_GSID SQL_VARCHAR 35 Main code used to identify the group level override sender on
outbound maps and group receiver lookup value on inbound
maps. If this field is blank, the program uses the value in the
WIX_IDQUAL field in the company table for outbound
processing.

• Outbound – Loads the contents of this field into the
APP_SEND_CODE, then loads APP_SEND_CODE into
the following envelope fields:

• Application Sender’s Code – GS 02

• Application Sender ID – UNG S006 0040

• Sending Application – MSH 00004

• File Sending Application – FHS 00070

• Batch Sending Application – BHS 00084

• Inbound – When this field is part of the trading partner
lookup, the program compares contents of this field with
the contents of APP_RECV_CODE loaded from the
following envelope fields:

• Application Receiver’s Code – GS 03

• Application Recipient ID – UNG S007 0044

• Receiving Application – MSH 00006

• File Receiving Application – FHS 00072

• Batch Receiving Application – BHS 00086

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 103

SND_IDQUAL SQL_VARCHAR 4 Qualifier that specifies the type of main code used to identify
the interchange level override sender on outbound maps and
interchange receiver lookup value on inbound maps. If this
field is blank, the program uses the value in the WIX_IDQUAL
field of the company table for outbound processing.

• Outbound – Loads the contents of this field into the
SEND_QUAL system variable, then loads SEND_QUAL
into the following envelope fields:

• Interchange Sender ID Qualifier – ISA 05

• Interchange Sender ID Code Qualifier – UNB S002
0007

• Inbound – When this field is part of the trading partner
lookup, the program compares the contents of this field
with the contents of the RECV_QUAL system variable,
loaded from the following envelope fields:

• Interchange Receiver ID Qualifier – ISA 07

• Interchange Recipient ID Code Qualifier – UNB S003
0007

SND_IDCODE SQL_VARCHAR 35 Main code used to identify the interchange level override
sender on outbound maps and interchange receiver lookup
value on inbound maps. If this field is blank, the program uses
the value in the WIX_IDCODE field of the company table for
outbound processing.

• Outbound – Loads the contents of this field into the
SEND_CODE, then loads SEND_CODE into the
following envelope fields:

• Interchange Sender ID Code – ISA 06

• Interchange ID – UNB S002 0004

• Sending Facility – MSH 00003

• File Sending Facility – FHS 00069

• Batch Sending Facility – BHS 00083

• Inbound – When this field is part of the trading partner
lookup, the program compares the contents of this field
with the contents of RECV_CODE, loaded from the
following envelope fields:

• Interchange Receiver ID Code – ISA 08

• Interchange Receiver ID – UNB S003 0010

• Receiving Facility – MSH 00005

• File Receiving Facility – FHS 00071

• Batch Receiving Facility – BHS 00085

Name Type Precision Description

Database tables and logs

104 ECMap

SUB_DELIMT SQL_VARCHAR 3 Special character used by the trading partner to override the
default X12 sub-element delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

ELE_DELIMT SQL_VARCHAR 3 Special character used by the trading partner to override the
default X12 element delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

SEG_DELIMT SQL_VARCHAR 3 Special character used by the trading partner to override the
default X12 segment delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

RELEASE_CH SQL_VARCHAR 3 Special character used by the trading partner to override the
default X12 release character.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

X12_REPEAT SQL_VARCHAR 3 Special character used by the trading partner to override the
default X12 repeat character.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. IfIf not, it uses a default value.

<filler> SQL_VARCHAR 1 No longer used. (formerly DEL_CODE)

EDIF_SUBDL SQL_VARCHAR 3 Special character used by the trading partner to override the
default EDIFACT sub-element delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

EDIF_ELEDL SQL_VARCHAR 3 Special character used by the trading partner to override the
default EDIFACT element delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

EDIF_SEGDL SQL_VARCHAR 3 Special character used by the trading partner to override the
default EDIFACT segment delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

EDIF_RELCH SQL_VARCHAR 3 Special character used by the trading partner to override the
default EDIFACT release character.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 105

EDIF_REPEA SQL_VARCHAR 3 Special character used by the trading partner to override the
default EDIFACT repeat character.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

HL7_SEGDL SQL_VARCHAR 3 Special character used by the trading partner to override the
default HL7 segment delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

HL7_ELEDL SQL_VARCHAR 3 Special character used by the trading partner to override the
default HL7 element delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

HL7_SUBDL SQL_VARCHAR 3 Special character used by the trading partner to override the
default HL7 sub-element delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

HL7_SUBSUB SQL_VARCHAR 3 Special character used by the trading partner to override the
default HL7 component delimiter.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

HL7_RELCH SQL_VARCHAR 3 Special character used by the trading partner to override the
default HL7 release character.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

HL7_REPEAT SQL_VARCHAR 3 Special character used by the trading partner to override the
default HL7 repeat character.

Outbound – If there is a value in this field, the program uses it
to create outbound EDI data. If not, it uses a default value.

EXPORT_FLAG SQL_VARCHAR 1 Special character used to designate that flagged trading partner
records can be moved from one database to another.

MBOX_NAME SQL_VARCHAR 35 Internal name of the trading partner mailbox – used only as a
label on windows or reports.

The value in this field can be overridden by a value in the
MBOX_NAME field in the trade agreement table.

MAILBOX SQL_VARCHAR 100 Full-path name of the trading partner mailbox folder, or
directory.

The value in this field can be overridden by a value in the dest
field in the trade agreement table.

Name Type Precision Description

Database tables and logs

106 ECMap

CURR_FMT SQL_VARCHAR 1 Character used to indicate whether a period or comma is used
as the decimal character

• C – comma decimal character

• D – period decimal character

POS_LTR SQL_VARCHAR 1 Reserved for future use with packed decimal.

SNDR_ROUTE SQL_VARCHAR 14

(35 for
Syntax 4)

Internal code used to identify the interchange level override
sender on outbound maps and interchange receiver lookup
value on inbound maps.

• Outbound – Loads the contents of this field into the
SNDR_ROUTE system variable, then loads
SNDR_ROUTE into this envelope field:

Interchange Sender Internal ID – UNB S002 0008

• Inbound – When this field is part of the trading partner
lookup, the program compares the contents of this field
with the contents of the RCVR_ROUTE system variable,
loaded from this envelope field:

Interchange Receiver Internal ID – UNB S003 0014

SNDR_SUBID SQL_VARCHAR 35 Internal sub-code used to identify the interchange level
override sender on outbound maps and interchange receiver
lookup value on inbound maps.

(EDIFACT Syntax 4 only)

• Outbound – Loads the contents of this field into the
SNDR_SUBID system variable, then loads SNDR_SUBID
into this envelope field:

Interchange Sender Internal Sub-ID – UNB S002 0042

• Inbound – When this field is part of the trading partner
lookup, the program compares the contents of this field
with the contents of the RCVR_SUBID system variable,
loaded from this envelope field:

Interchange Receiver Internal Sub-ID – UNB S003 0046

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 107

RCVR_ROUTE SQL_VARCHAR 14

(35 for
Syntax 4)

Internal code used to identify the interchange level default
receiver on outbound maps and interchange sender lookup
value on inbound maps.

• Outbound – Loads the contents of this field into the
RCVR_ROUTE system variable, and contents of
RCVR_ROUTE into this envelope field:

Interchange Receiver Internal ID – UNB S003 0014

• Inbound – When this field is part of the trading partner
lookup, the program compares the contents of this field
with the contents of the SNDR_ROUTE system variable,
loaded from this envelope field:

Interchange Sender Internal ID – UNB S002 0008

RCVR_SUBID SQL_VARCHAR 35 Internal sub-code used to identify the interchange level default
receiver on outbound maps and interchange sender lookup
value on inbound maps.

• Outbound – Loads the contents of this field into the
RCVR_SUBID system variable, then loads RCVR_SUBID
into this envelope field:

Interchange Receiver Internal Sub-ID – UNB S003 0046

• Inbound – When this field is part of the trading partner
lookup, the program compares the contents of this field
with the contents of the SNDR_SUBID system variable,
loaded from this envelope field:

Interchange Sender Internal Sub-ID-UNB S002 0042

APP_SND_QL SQL_VARCHAR 4 Qualifier that specifies type of code used to identify the group
level override sender on outbound maps and group receiver
lookup value on inbound maps.

• Outbound – Loads the contents of this field into the
APP_SEND_QUAL system variable, then loads
APP_SEND_QUAL into this envelope field:

Application Sender ID/ID Code Qualifier – UNG S006
0007

• Inbound – When this field is part of the trading partner
lookup, the program compares the contents of this field
with the contents of the APP_RECV_QUAL system
variable, loaded from this envelope field:

Application Recipient ID/ID Code Qualifier – UNG S007
0007

Name Type Precision Description

Database tables and logs

108 ECMap

APP_RCV_QL SQL_VARCHAR 4 Qualifier that specifies the type of main code used to identify
the group level default receiver on outbound maps and group
sender lookup value on inbound maps.

• Outbound – Loads the contents of this field into the
APP_RECV_QUAL system variable, then loads
APP_RECV_QUAL into this envelope field:

Application Recipient ID/ID Code Qualifier – UNG S007
0007

• Inbound – When this field is part of the trading partner
lookup, the program compares the contents of this field
with the contents of the APP_SEND_QUAL system
variable, loaded from this envelope field:

Application Sender ID/ID Code Qualifier – UNG S006
0007

B_SEND_ID SQL_VARCHAR 24 Batch sender ID

B_RECV_ID SQL_VARCHAR 24 Batch receiver ID

BIN_NUMB SQL_INTEGER 6 Bin number

PROC_NUMB SQL_VARCHAR 10 Processing control number

SERV_QUAL SQL_VARCHAR 2 Service provider ID qualifier

SERV_ID SQL_VARCHAR 15 Service provider ID

SOFT_ID SQL_VARCHAR 10 Software/vendor ID

ACK_TYPE SQL_VARCHAR 1 Acknowledgement flag

TPKEY SQL_INTEGER 10 Unique auto-increment field used to:

• Update the ISA_IN_NO and ISA_OUT_NO control
numbers

• Prevent simultaneous update of the trading partner database
by multiple users

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 109

Trade agreement table in non-ODBC trading partner database
The tradstat.dbf file contains trade agreement information for non-ODBC databases,
as shown in Table 3-5.

Table 3-5: Trade agreement table in non-ODBC trading partner
database

Name Type Width Description

CUSTNO Character 35 Internal application identifier for the trading partner, used
to link the trading partner (customer.dbf) table, trade
agreement (tradstat.dbf) table, and the application data
field that has the attribute “Trading Partner ID.”

MAP_TRAN Character 6 EDI transaction (message) identifier.

Outbound:

• Transaction Set Identifier Code – ST 01

• Message Type – UHH S009 0065

ST03 Character 35 Value to be used as the third element in the transaction on
outbound X12 processing.

Outbound – Implementation Convention Reference – ST
03

MAP_EXT Character 8 Unique map identifier

DIR Character 3 Direction/purpose of maps:

• IN or OUT – Direction of Transaction Map

• PRT – Print Map

• CMP – Compliance Map

STAT Character 1 Transaction mode:

• T – Test

• P – Production

• D – Debug

• I – Information

• 1–9

• Null

Outbound:

• Indicator – ISA 15

• TEST INDICATOR – UNB S005 0035

VERS Character 12 Version of EDI Standard used in the map.

Outbound:

• Version/Release/Industry Identifier Code – GS 08

• Message Version Number – UNG S008 0052

• Message Release Number – UNG S008 0054

Database tables and logs

110 ECMap

TBCODE Character 60 Name of the map.

MBOX_NAME Character 35 Name of the trading partner mailbox - used only as a label
on windows and reports. A value in this field overrides a
value in the MBOX_NAME field of the trading partner table.

DEST Character 100 Folder/ full-path directory name used to override the
trading partner mailbox folder/ full-path directory name –
if EDI Out is checked and only for this trade agreement. A
value in this field overrides a value in the MAILBOX field of
the trading partner table.

FILE Character 30 File name of the trading partner mailbox that is used – if
EDI Out is checked and only for this trade agreement

GS_NO Character 14 Unique functional group control number used with tpkey in
outbound maps to quickly retrieve trade agreement records
once they have been found.

Outbound:

• Functional Group Header Control Number – GS 06

• GROUP REFERENCE NUMBER – UNG S004 0048

ISA_TYPE Character 5 EDI standard used by this trading partner in this
transaction/message.

Outbound:

• Interchange Control Version Number – ISA 12

• Syntax Identifier – UNB S001 0001 (char 1-4)

• Syntax Version Number – UNB S001 0002 (char 5)

SERV_CODE Character 6 Outbound – Service Code List Directory Version Number –
UNB S001 0080

<filler> Character 1 No longer used. (formerly DEL_CODE)

RCV_GSID Character 35 Main code used to identify the group level override receiver
on outbound maps. A value is this field overrides a value in
the GSID field of the trading partner table.

Outbound:

• Application Receiver Code – GS 03

• Application Recipient ID – UNG S007 0044

• Receiving Application – MSH 00006

• File Receiving Application – FHS 00072

• Batch Receiving Application – BHS 00086

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 111

RCV_IDQUAL Character 4 Qualifier that specifies the type of main code used to
identify the interchange level override receiver on
outbound maps. A value in this field overrides a value in
the ID_QUAL field of the trading partner table.

Outbound:

• Interchange Receiver ID Qualifier – ISA 07

• Interchange Recipient ID Code Qualifier – UNB S003
0007

RCV_IDCODE Character 35 Main code used to identify the interchange level override
receiver on outbound maps. A value in this field overrides
the value in the ID_CODE field of the trading partner table.

Outbound:

• Interchange Receiver ID Code – ISA 08

• Interchange Receiver ID – UNB S003 0010

• Receiving Facility – MSH 00005

• File Receiving Facility – FHS 00071

• Batch Receiving Facility – BHS 00085

ACK_RQSTD Character 1 Flag that specifies whether an X12 interchange-level TA1
acknowledgement is expected on outbound EDI maps

• 1 = TA1 acknowledgement expected

• = TA1 acknowledgement not expected

Outbound:

• Acknowledgement Requested – ISA 14

• ACKNOWLEDGEMENT REQUEST – UNB S005
0031

ACK_RQSTD2 Character 1 Flag that specifies whether an X12 group-level 997
functional acknowledgement is expected on outbound EDI
maps:

Outbound:

• 1 = 997 functional acknowledgement expected

• = 997 functional acknowledgement not expected

EDI_OUT Character 1 Flag that specifies if inbound EDI data is to be passed
through to a mailbox, only on inbound maps:

• 1 = map EDI data and pass it through

• = map EDI data but do not pass it through

DAYS Character 2 “Days” portion of the time period within which the trading
partner expects to receive an interchange-level
acknowledgement.

Name Type Width Description

Database tables and logs

112 ECMap

HOURS Character 2 “Hours” portion of the time period within which the trading
partner expects to receive an interchange-level
acknowledgement.

MINUTES Character 2 “Minutes” portion of the time period within which the
trading partner expects to receive an interchange-level
acknowledgement.

SECONDS Character 2 “Seconds” portion of the time period within which the
trading partner expects to receive an interchange-level
acknowledgement.

APPL_REF Character 14 Name of the application messages contained in the
EDIFACT UNB envelope.

Outbound – Application Reference – UNB S005 0026

ACK_MSG Character 1 Flag that specifies whether a message-level CONTRL
segment (UCM) is generated in response to inbound
EDIFACT messages.

• 1 = generate UCM

• = do not generate UCM

ACK_INTCH Character 1 Flag that specifies whether an interchange-level CONTRL
segment (UCI) is generated in response to inbound
EDIFACT messages.

• 1 = generate UCI

• = do not generate UCI

Outbound – Acknowledgement Request – UNB S005 0031

RCVR_ROUTE Character 14

(35 for
Syntax 4)

Internal code used to identify the interchange level override
sender on outbound maps. A value in this field overrides
the value in the RCVR_ROUTE field of the trading partner
table.

Outbound – Interchange Receiver Internal ID – UNB S003
0014

RCVR_SUBID Character 35 Internal sub-code used to identify the interchange level
override receiver on outbound maps. A value in this field
overrides the value in the RCVR_SUBID field of the trading
partner table.

(EDIFACT Syntax 4 only)

Outbound – Interchange Receiver Internal Sub-ID – UNB
S003 0046

PROC_PRIOR Character 1 Outbound – Processing Priority Code – UNB S005 0029

COMM_AGM Character 35 Outbound – Interchange Agreement Identifier – UNB S005
0032

APP_PSWD Character 14 Outbound – Application Password – UNG S008 0058

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 113

ASSOC_CODE Character 6 Outbound – Association Assigned Code:

• UNG S008 0057

• UNH S009 0057

CNT_AG1 Character 3 Outbound – Controlling Agency, Coded:

• UNG S004 0051

• UNH S009 0051

CLIST_VER Character 6 Outbound – Code List Directory Version Number – UNH
S009 0110 (EDIFACT Syntax 4 only)

MSG_TYPE Character 6 Outbound – Message Type Sub-Function Identifier – UNH
S009 0113 (EDIFACT Syntax 4 only)

MSG_SUBID Character 14 Outbound – Message Subset ID – UNH S016 011
5(EDIFACT Syntax 4 only)

MSG_SUBVER Character 3 Outbound – Message Subset Version Number – UNH S016
0116 (EDIFACT Syntax 4 only)

MSG_SUBREL Character 3 Outbound – Message Subset Release Number – UNH S016
0118 (EDIFACT Syntax 4 only)

CNT_AG2 Character 3 Outbound – Controlling Agency, Coded – UNH S016 0051
(EDIFACT Syntax 4 only)

MSG_IMPID Character 14 Outbound – Message Implementation Guideline ID – UNH
S017 0121 (EDIFACT Syntax 4 only)

MSG_IMPVER Character 3 Outbound – Message Implementation Guideline Version
Number – UNH S017 0122 (EDIFACT Syntax 4 only)

MSG_IMPREL Character 3 Outbound – Message Implementation Guideline Release
Number – UNH S017 0124 (EDIFACT Syntax 4 only)

CNT_AG3 Character 3 Outbound – Controlling Agency, Coded – UNH S017 0051
(EDIFACT Syntax 4 only)

SCEN_ID Character 14 Outbound – Scenario ID – UNH S018 0127 (EDIFACT
Syntax 4 only)

SCEN_VER Character 3 Outbound – Scenario Version Number – UNH S018 0128
(EDIFACT Syntax 4 only)

SCEN_REL Character 3 Outbound – Scenario Release Number – UNH S018 0130
(EDIFACT Syntax 4 only)

CNT_AG4 Character 3 Outbound – Controlling Agency, Coded – UNH S018 0051
(EDIFACT Syntax 4 only)

STD_TYPE Character 2 The type of standard used in the map:

• X X12 Standard

• H HL7 Standard

• E3 EDIFACT Standard, Syntax 3

• E4 EDIFACT Standard, Syntax 4

Name Type Width Description

Database tables and logs

114 ECMap

Trade agreement table in ODBC trading partner database
The tradstat file contains trade agreement information for ODBC databases, as
shown in Table 3-6.

Table 3-6: Trade agreement table in ODBC trading partner database

APP_RCV_QL Character 4 Qualifier that specifies the type of main code used to
identify the group level override receiver on outbound
maps. (A value in this field overrides the value in the
app_rcv_ql field of the trading partner table.)

Outbound – Application Receiver ID/ID Code Qualifier –
UNG S007 0007

TRADKEY Numeric 10 Unique auto-increment field used to:

• Update the gs_no control number

• Prevent simultaneous update of the trade agreement
(tradstat) table by multiple users

Name Type Width Description

Name Type Precision Description

CUSTNO SQL_VARCHAR 35 Internal application identifier for the trading partner,
used to link the trading partner (tp) table, trade
agreement (tradstat) table, and the application data
field that has the attribute “Trading Partner ID.”

MAP_TRAN SQL_VARCHAR 6 EDI transaction (message) identifier.

Outbound:

• Transaction Set Identifier Code – ST 01

• Message Type – UHH S009 0065

ST03 SQL_VARCHAR 35 Value to be used as the third element in the transaction
on outbound X12 processing.

Outbound – Implementation Convention Reference –
ST 03

MAP_EXT CHARACTER 8 Unique map identifier

DIR SQL_VARCHAR 3 Direction/purpose of maps:

• IN or OUT – direction of Transaction Map

• PRT – print Map

• CMP – compliance Map

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 115

STAT SQL_VARCHAR 1 Transaction mode:

• T – test

• P – production

• I – information

• D – debug

• 1–9

• Null

Outbound:

• Indicator – ISA 15

• TEST INDICATOR – UNB S005 0035

VERS SQL_VARCHAR 12 Version of EDI Standard used in the map.

Outbound:

• Version/Release/Industry Identifier Code – GS 08

• Message Version Number – UNG S008 0052

• Message Release Number – UNG S008 0054

TBCODE SQL_VARCHAR 60 Name of the map.

MBOX_NAME SQL_VARCHAR 35 Name of the trading partner mailbox - used only as a
label on windows and reports. A value in this field
overrides a value in the MBOX_NAME field of the
trading partner table.

DEST SQL_VARCHAR 100 Folder/ full-path directory name used to override the
trading partner mailbox folder/ full-path directory
name – if EDI Out is checked and only for this trade
agreement. A value in this field overrides a value in the
MAILBOX field of the trading partner table.

FILE SQL_VARCHAR 30 File name of the trading partner mailbox that is used –
if EDI Out is checked and only for this trade agreement

GS_NO SQL_VARCHAR 14 Unique functional group control number used with
tpkey in outbound maps to quickly retrieve trade
agreement records once they have been found.

Outbound:

• Functional Group Header Control Number – GS 06

• GROUP REFERENCE NUMBER – UNG S004
0048

Name Type Precision Description

Database tables and logs

116 ECMap

ISA_TYPE SQL_VARCHAR 5 EDI standard used by this trading partner in this
transaction/message.

Outbound:

• Interchange Control Version Number – ISA 12

• Syntax Identifier – UNB S001 0001 (Char 1–4)

• Syntax Version Number–UNB S001 0002 (Char 5)

SERV_CODE SQL_VARCHAR 6 Outbound – Service Code List Directory Version
Number – UNB S001 0080 (EDIFACT Syntax 4 only)

<filler> SQL_VARCHAR 1 No longer used. (formerly DEL_CODE)

RCV_GSID SQL_VARCHAR 35 Main code used to identify the group level override
receiver on outbound maps.

Outbound:

• Application Receiver Code – GS 03

• Application Recipient ID – UNG S007 0044

• Receiving Application – MSH 00006

• File Receiving Application – FHS 00072

• Batch Receiving Application – BHS 00086

RCV_IDQUAL SQL_VARCHAR 4 Qualifier that specifies the type of main code used to
identify the interchange level override receiver on
outbound maps.

Outbound:

• Interchange Receiver ID Qualifier – ISA 07

• Interchange Recipient ID Code Qualifier – UNB
S003 0007

RCV_IDCODE SQL_VARCHAR 35 Main code used to identify the interchange level
override receiver on outbound maps.

Outbound:

• Interchange Receiver ID Code – ISA 08

• Interchange receiver ID – UNB S003 0010

• Receiving Application – MSH 00005

• File Receiving Application – FHS 00071

• Batch Receiving Application – BHS 00085

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 117

ACK_RQSTD SQL_VARCHAR 1 Flag that specifies whether an X12 interchange-level
TA1 acknowledgement is expected on outbound EDI
maps:

• 1 = TA1 acknowledgement expected

• = TA1 acknowledgement not expected

Outbound:

• Acknowledgement Requested – ISA 14

• ACKNOWLEDGEMENT REQUEST – UNB S005
0031

ACK_RQSTD2 SQL_VARCHAR 1 Flag that specifies whether an X12 group-level 997
functional acknowledgement is expected on outbound
EDI maps:

• 1 = 997 functional acknowledgement expected

• = 997 functional acknowledgement not expected

Outbound:

• Acknowledgement Requested – ISA 14

• ACKNOWLEDGEMENT REQUEST – UNB S005
0031

EDI_OUT SQL_VARCHAR 1 Flag that specifies if inbound EDI data is to be passed
through to a mailbox on inbound maps:

• 1 = map EDI data and pass it through

• = map EDI data but do not pass it through

DAYS SQL_VARCHAR 2 “Days” portion of the time period within which the
trading partner expects to receive an interchange-level
acknowledgement, on outbound maps.

HOURS SQL_VARCHAR 2 “Hours” portion of the time period within which the
trading partner expects to receive an interchange-level
acknowledgement, on outbound maps.

MINUTES SQL_VARCHAR 2 “Minutes” portion of the time period within which the
trading partner expects to receive an interchange-level
acknowledgement, on outbound maps.

SECONDS SQL_VARCHAR 2 “Seconds” portion of the time period within which the
trading partner expects to receive an interchange-level
acknowledgement, on outbound maps.

APPL_REF SQL_VARCHAR 14 Name of the application messages contained in the
EDIFACT UNB envelope.

Outbound – Application Reference – UNB S005 0026

Name Type Precision Description

Database tables and logs

118 ECMap

ACK_MSG SQL_VARCHAR 1 Flag that specifies whether a message-level CONTRL
segment (UCM) is generated in response to inbound
EDIFACT messages.

• 1 = generate UCM

• = do not generate UCM

ACK_INTCH SQL_VARCHAR 1 Flag that specifies whether an interchange-level
CONTRL segment (UCI) is generated in response to
inbound Edifact messages.

• 1 = generate UCI

• = do not generate UCI

Outbound – Acknowledgement Request – UNB S005
0031

RCVR_ROUTE SQL_VARCHAR 14

(35 for
Syntax 4)

Internal code used to identify the group level override
receiver on outbound maps and override sender on
inbound maps. (A value in this field overrides the value
in the RCVR_ROUTE field of the trading partner table.)

Outbound – Interchange Receiver Internal ID – UNB
S003 0014

RCVR_SUBID SQL_VARCHAR 35 Internal sub-code used to identify the group level
override receiver on outbound maps and override
sender on inbound maps. (A value in this field
overrides the value in the RCVR_SUBID field of the
trading partner table.)

(EDIFACT Syntax 4 only)

Outbound – Interchange Receiver Internal Sub-ID –
UNB S003 0046

PROC_PRIOR SQL_VARCHAR 1 Outbound – Processing Priority Code – UNB S005
0029

COMM_AGM SQL_VARCHAR 35 Outbound – Interchange Agreement Identifier – UNB
S005 0032

APP_PSWD SQL_VARCHAR 14 Outbound – Application Password – UNG S008 0058

ASSOC_CODE SQL_VARCHAR 6 Outbound – Association Assigned Code:

• UNG S008 0057

• UNH S009 0057

CNT_AG1 SQL_VARCHAR 3 Outbound – Controlling Agency, Coded:

• UNG S004 0051

• UNH S009 0051

CLIST_VER SQL_VARCHAR 6 Outbound – Code List Directory Version Number –
UNH S009 0110(EDIFACT Syntax 4 only)

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 119

MSG_TYPE SQL_VARCHAR 6 Outbound – Message Type Sub-Function Identifier –
UNH S009 0113 (EDIFACT Syntax 4 only)

MSG_SUBID SQL_VARCHAR 14 Outbound – Message Subset ID – UNH S016 0115
(EDIFACT Syntax 4 only)

MSG_SUBVER SQL_VARCHAR 3 Outbound – Message Subset Version Number – UNH
S016 0116 (EDIFACT Syntax 4 only)

MSG_SUBREL SQL_VARCHAR 3 Outbound – Message Subset Release Number – UNH
S016 0118 (EDIFACT Syntax 4 only)

CNT_AG2 SQL_VARCHAR 3 Outbound – Controlling Agency, Coded – UNH S016
0051 (EDIFACT Syntax 4 only)

MSG_IMPID SQL_VARCHAR 14 Outbound – Message Implementation Guideline ID –
UNH S017 0121 (EDIFACT Syntax 4 only)

MSG_IMPVER SQL_VARCHAR 3 Outbound – Message Implementation Guideline
Version Number – UNH S017 0122 (EDIFACT Syntax
4 only)

MSG_IMPREL SQL_VARCHAR 3 Outbound – Message Implementation Guideline
Release Number – UNH S017 0124 (EDIFACT Syntax
4 only)

CNT_AG3 SQL_VARCHAR 3 Outbound – Controlling Agency, Coded – UNH S017
0051 (EDIFACT Syntax 4 only)

SCEN_ID SQL_VARCHAR 14 Outbound – Scenario ID – UNH S018 0127 (EDIFACT
Syntax 4 only)

SCEN_VER SQL_VARCHAR 3 Outbound – Scenario Version Number – UNH S018
0128 (EDIFACT Syntax 4 only)

SCEN_REL SQL_VARCHAR 3 Outbound – Scenario Release Number – UNH S018
0130 (EDIFACT Syntax 4 only)

CNT_AG4 SQL_VARCHAR 3 Outbound – Controlling Agency, Coded – UNH S018
0051 (EDIFACT Syntax 4 only)

STD_TYPE SQL_VARCHAR 2 The type of standard used in the map:

• X – X12 Standard

• H – L7 Standard

• E3 EDIFACT Standard, Syntax 3

• E4 EDIFACT Standard, Syntax 4

APP_RCV_QL SQL_VARCHAR 4 Qualifier that specifies the type of main code used to
identify the group level override receiver on outbound
maps. A value in this field overrides the value in the
APP_RCV_QL field of the trading partner table.

Outbound – Application Receiver ID/ID Code
Qualifier – UNG S007 0007

Name Type Precision Description

Database tables and logs

120 ECMap

Non-ODBC transaction log table in log database
The translog.in and translog.out files contain transaction logging for non-
ODBC databases, as shown in Table 3-7.

Table 3-7: Non-ODBC transaction log table in log database

TRADKEY SQL_INTEGER 10 Unique auto-increment field used to:

• Update the gs_no control number

• Prevent simultaneous update of the Trade
Agreement database (tradstat table) by multiple
users

Name Type Precision Description

Name Type Width Description

RUN_ID Number Single Runtime ID – loaded from internal run ID number that was
passed in as a -id parameter. This run ID is also loaded once into
the SYS_RUNID system variable, but the value of
SYS_RUNID is not used for trlog. The run ID always numeric
from initial parameter value.

TYP Character 1 Type flag:

• H – Header (ST)

• T – Trailer (SE)

• D – Detail (messages between ST and SE)

• U – User Write Log command

RUN_DATE Date 14 Runtime date – loaded from the SYS_DATE and
SYS_HHMMSS system variables (SYS_DATE and
SYS_HHMMSS are loaded from the system time.)

ACKBY_DATE Date 14 Date by which an acknowledgement must be made

• Inbound – Before each log write, if TYP is H, date is loaded
from the INT_HEAD_DATE and INT_HEAD_TIME
system variables, which are loaded from envelope.

If TYP is not H, then null date.

• Outbound – Before each log write, if TYP is H and an
acknowledgment was requested, date is calculated from
today’s date plus the value in the DAYS, HOURS, and
MINUTES fields in the trade agreement database. If TYP is
not H, then null date.

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 121

TRANS_CODE Character 2 Transaction code – loaded from the SYS_TRCODE system
variable.

• Inbound – SYS_TRCODE loaded from envelope.

• Outbound – SYS_TRCODE loaded from parameter.

TRANS_NAME Character 6 Transaction name – loaded from the SYS_TRANS system
variable, which is loaded from internal transaction code before
each log write.

Message Type – MSH 00009

TPTNER_ID Character 35 Code used to identify the trading partner

Loaded from the SYS_TRADNO system variable.

• Inbound – TPTNER_ID is looked up in trading partner
database based on lookup criteria and data in EDI envelope.

• Outbound – TPTNER_ID is loaded from an application file.

VERSION Character 12 Version of EDI standard used in the map

Loaded from the X12_VERSION system variable.

• Inbound – X12_version loaded from envelope

• Outbound – Loaded from trade agreement table

• Version/Release/Industry Identifier Code – GS 08

• Message Version Number – UNH S009 0052

• Message Release Number – UNH S009 0054

ISA_TYPE Character 5 EDI standard used by this trading partner in this transaction

• Inbound – Loaded from the INT_VERSION system
variable, which is loaded from the EDI envelope.

• Outbound – Loaded from the ISA_TYPE system variable,
which is loaded from trade agreement table

• Interchange Control Version Number – ISA 12

• Syntax Identifier – UNB S001 0001

• Syntax Version Number – UNB S001 0002

INTERCHANG Character 35 Interchange code – loaded from the INT_HEAD_NUM system
variable

• Inbound – Value taken from the EDI envelope.

• Outbound – Loaded from the ISA control number taken
from trading partner table and incremented.

• Interchange Control Number – ISA 13

• Interchange Control Count – UNB S004 0020

Name Type Width Description

Database tables and logs

122 ECMap

GROUP_NO Character 35 Group number – loaded from the FUNC_GP_NUM system
variable

• Inbound – Value taken from EDI envelope.

• Outbound – Loaded from GS control number taken from the
trade agreement table and incremented

• Functional Group Header Control Number – GS 06

• Batch Control ID – BHS 00091

TRANS_NO Character 35 Transaction number – loaded from the FUNC_ST_NUM
system variable

• Inbound – Value taken from EDI envelope.

• Outbound – Loaded from 1000 * (GS control number taken)
+ transaction count.

APP_RCV_CD Character 35 Code used to identify the group level receiver on outbound
maps and sender on inbound maps. Loaded from the
APP_RECV_CODE system variable.

• Inbound – Loaded from EDI envelope.

• Outbound – Loaded from Tradepartner.

• Application Receiver Code – GS 03

• Interchange Receiver Internal Sub-ID – UNB S003 0046

• Receiving Facility – MSH 00006

• File Receiving Facility – FHS 00072

• Batch Receiving Facility – BHS 00086

APP_SND_CD Character 35 Code used to identify the group level sender on outbound maps
and receiver on inbound maps. Loaded from the
APP_SEND_CODE system variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Application Sender Code – GS 02

• Interchange Sender Internal Sub-ID – UNB S002 0042

• Sending Facility – MSH 00004

• File Sending Facility – FHS 00070

• Batch Sending Facility – BHS 00084

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 123

RECV_CODE Character 35 Code used to identify the interchange level receiver on
outbound maps and sender on inbound maps. Loaded from the
RECV_CODE system variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Interchange Receiver ID Code – ISA 08

• Interchange Receiver ID – UNB S003 0010

• Receiving Application – MSH 00005

• File Receiving Application – FHS 00071

• Batch Receiving Application – BHS 00085

SEND_CODE Character 35 Code used to identify the interchange level sender on outbound
maps and receiver on inbound maps. Loaded from the
SEND_CODE system variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Interchange Sender ID Code – ISA 06

• Interchange Sender ID – UNB S002 0004

• Sending Application – MSH 00003

• File Sending Application – FHS 00069

• Batch Sending Application – BHS 00083

RECV_QUAL Character 4 Qualifier that specifies the type of code used to identify the
interchange level receiver on outbound maps and sender on
inbound maps. Loaded from the RECV_QUAL system
variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Interchange Receiver ID Qualifier – ISA 07

• Interchange Receiver ID Code Qualifier –UNB S003
0007

SEND_QUAL Character 4 Qualifier that specifies the type of code used to identify the
interchange level sender on outbound maps and receiver on
inbound maps. Loaded from the SEND_QUAL system
variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Interchange Sender ID Qualifier – ISA 06

• Interchange Sender ID Code Qualifier – UNB S002
0007

Name Type Width Description

Database tables and logs

124 ECMap

ERROR Number Single Total errors – loaded from internal system count of errors
between ST and SE.

The LOG_ERRS and TOT_ERRS system variables are loaded
at same time. LOG_ERRS is the number of errors between ST
and SE. TOT_ERRS is the total number of errors for the run.

STAT Character 1 Status – loaded from internal count of total # errors.

The LOG_STATUS system variable is also loaded at time of
write log.

• W – SEG_ST, SEG_SE, User Write

• T – Bad Tradepartner

• S – Bad ISA, GS or ST

• U – Stop Run

• A – Abort Trans

• F – Fatal Error

• E – Other Error Message

BYTE-COUNT Number Single Count of the number of bytes between ST and SE – is zero for
every ST and increment until SE is written.

The LOG_SIZE system variable is loaded with the byte count
at time of write log.

DIR Character 3 Direction of map

• Outbound – OUT

• Inbound – IN, CMP, PRT

There is no system variable

FLOW_LEVEL Character 5 Level of segment in flow

The LOG_LEVEL system variable is loaded at time of write
log.

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 125

RECORD_NAM Character 10 Record name – the LOG_RECNAME system variable is
loaded at time of write log. Can be assigned by user in write
log.

If:

• Mapping is in progress and the field being mapped to or
from is a record field, then this record name value is used.

• Error occurs during a rule, then code attempts to identify the
record name involved.

• The field involved is a memory variable or a string variable,
then the memory variable or string variable is written to the
log field RECORD_NAM.

• No record is associated with the error, then this field will be
blank. This field cannot be written to by the user assigning
a value to the system variable.

RECORD_NO Character 6 Record number – the LOG_READ_CNT system variable can
be assigned by user in write log command. Otherwise the
system variable and log are loaded and written at the same
time.

• Inbound – The line number being processed in the incoming
EDI file.

• Outbound – Contains the count that this record type has
been read if the error message involves a record. If not, it
will be zero.

FIELD_NAME Character 15 Field Name – the LOG_FIELDNAME system variable can be
assigned by user in write log command. Otherwise the
LOG_FIELDNAME and FIELD_NAME log field are loaded at
the same time of write log.

If:

• Mapping is in progress and the field being mapped to or
from is a record field, then this field name value is used.

• Error occurs during a rule, then code attempts to identify the
field name involved.

This field cannot be written to by the user directly assigning a
value to the system variable.

SEGMENT Character 3 Segment – can be assigned by user in write log command.

• Inbound – Current segment name LOG_SEG

• Outbound – Will have a value on write logs for SEG_ST and
SEG_SE types and for errors that occur during direct
mapping to EDI file.

Name Type Width Description

Database tables and logs

126 ECMap

SEG_COUNT Number Long
Integer

Segment count – can be assigned by user in write log
command.

Count of segments between ST and SE inclusive.

The SEGMENT_COUNT system variable loaded every time
segment is written/read from EDI File.

ELEMENT Character 2 Element – can be assigned by user in write log command.

The LOG_ELEM system variable

SUBELEM Character 2 Sub-element – can be assigned by user in write log command.

The LOG_SUBELEM system variable

SEV_CODE Character 2 Severity code – can be assigned by user in write log command.

For all system error messages this code is a 1.

For other system non-error messages this code is 0.

MSG_NO Character 5 Message number – can be assigned by user in write log
command.

The LOG_MSG_NO system variable

MSG_TEXT Character 100 Message text – can be assigned by user in write log command.

The LOG_MSG system variable

FILENAME Character 160 For ST segments:

• Outbound – FILENAME contains the current EDI outbound
file name (can change based on tradstat and tp mailbox
entries). Filename is not available as the system variable.

• Inbound – The inbound EDI file name (always the same).
Filename is not available as the system variable.

For SE segments and inbound transactions:

FILENAME

• Contains the current file name of any EDI OUT file names
(can change based on tradstat, tp mailboxes and tradstat EDI
OUT field)

• Consists of both complete path and Filename.

• Is available as the EDI_OUT_FILENAME system variable.

FIELDVAL Character 30 Field value – the LOG_VALUE system variable.

Can be assigned by user in write log command. Otherwise the
system variable and log field value are loaded at time of write
to the log. If this is an error message, the value of the field code
attempts to load the value of the record field, memory variable,
or string constant in error.

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 127

USER_IDENT Character 35 User-defined field – the SYS_USER_FIELD system variable.

Log field is loaded from system variable.

RTP does not assign values to SYS_USER_FIELD.

ACK_EXPECT Character 1 Flag that specifies whether a TA1 interchange-level
acknowledgement is expected, only on outbound maps:

• 1 – TA1 acknowledgement requested

• 0 – TA1 acknowledgement not requested the
ACK_REQSTD system variable.

Inbound – Loaded from EDI Envelope (ISA element 14).

TR_ACK_TYP Character 1 Flag that specifies whether a group-level functional
acknowledgement is expected, only on outbound maps:

• 1 – functional acknowledgement requested

• 0 – functional acknowledgement not requested

The corresponding system variable is TR_ACK.

Outbound – Loaded from tradstat table

T_P_IND Character 1 Test/Production Indicator

• T – T Test

• P – Production

• I – Information

• D – Debug

• 1–9

• Null

The TEST_IND system variable

Inbound – Loaded from EDI envelope

Outbound – Loaded from Tradstat.

TRANS_CNT Number Long
Integer

Transaction count

No system variable.

Outbound – Log value is loaded from an internal count of the
number of ST–SE transactions read or written between
SEG_GS and SEG_GE.

FILEOFFSET Number Single Number of Bytes File Offset

No system variable. Written from internal count of number of
bytes read (inbound) or number of bytes written to the EDI file.

RCOUNT Number Integer Field for Record Manipulation

Always set equal to 1 before log write.

Name Type Width Description

Database tables and logs

128 ECMap

SNDR_ROUTE Character 14

(35 for
Syntax 4)

Internal code used to identify the interchange level sender on
outbound maps and receiver on inbound maps.

Interchange Sender Internal ID – UNB S002 0008

SNDR_SUBID Character 35 Internal sub-code used to identify the interchange level sender
on outbound maps and receiver on inbound maps.

Interchange Sender Internal Sub-ID – UNB S002 0042
(EDIFACT Syntax 4 only)

RCVR_ROUTE Character 14

(35 for
Syntax 4)

Internal code used to identify the interchange level receiver on
outbound maps and sender on inbound maps.

Interchange Receiver Internal ID – UNB S003 0014

RCVR_SUBID Character 35 Internal sub-code used to identify the interchange level
receiver on outbound maps and sender on inbound maps.

Interchange Receiver Internal Sub-ID – UNB S003 0046
(EDIFACT Syntax 4 only)

APPL_REF Character 14 Name of the application messages contained in the EDIFACT
UNB envelope.

Application Reference – UNB S005 0026

PROC_PRIOR Character 1 Processing Priority Code – UNB S005 0029

COMM_AGM Character 35 Interchange Agreement Identifier – UNB S005 0032

APP_SND_QL Character 4 Qualifier that specifies the type of code used to identify the
trading partner at the group level – as the sender on outbound
maps and as the receiver on inbound maps.

Application Sender ID/ID Code Qualifier – UNG S006 0007

APP_RCV_QL Character 4 Qualifier that specifies the type of code used to identify the
trading partner at the group level – as the receiver on outbound
maps and as the sender on inbound maps.

Application Receiver ID/ID Code Qualifier – UNG S007 0007

ASSOC_CODE Character 6 Association Assigned Code –

• UNG S008 0057

• UNH S009 0057

APP_PSWD Character 14 Application Password – UNG S008 0058

CLIST_VER Character 6 Code List Directory Version Number – UNH S009 0110
(EDIFACT Syntax 4 only)

MSG_TYPE Character 6 Message Type Sub-Function Identifier – UNH S009 0113
(EDIFACT Syntax 4 only)

Name Type Width Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 129

ODBC transaction log table in log database
The trlog file contains transaction logging information for ODBC databases, as
shown in Table 3-8.

Table 3-8: ODBC transaction log table in log database – expanded log

Name Type Precision Description

AFLD SQL_INTEGER 10 Auto increment field (AutoNumber)

RUN_ID SQL_BIGINT 9 Runtime ID – loaded from internal run id number
that was passed in as a –id parameter. This run id is
also loaded once into the SYS_RUNID system
variable, but the value of SYS_RUNID is not used
for TRLOG. The run id always numeric from initial
parameter value.

TYP SQL_VARCHAR 1 Type flag:

• H – header (ST)

• T – trailer (SE)

• D – detail (messages between ST and SE)

• U – user write log command

RUN_DATE SQL_TIMESTAMP 14 Runtime date – loaded from the

SYS_DATE and SYS_HHMMSS system variables
(SYS_DATE and SYS_HHMMSS are loaded from
the system time.)

ACKBY_DATE SQL_TIMESTAMP 14 Date by which an acknowledgement must be made

• Inbound – Before each log write, if TYP is H,
date is loaded from the INT_HEAD_DATE and
INT_HEAD_TIME system variables, which are
loaded from envelope.

If TYP is not H, then null date.

• Outbound – Before each log write, if TYP is H
and an acknowledgment was requested, date is
calculated from today’s date plus the value in the
DAYS, HOURS, and MINUTES fields in the
tradstat database. If TYP is not H, then null date.

TRANS_CODE SQL_VARCHAR 2 Transaction code – loaded from the SYS_TRCODE
system variable.

• Inbound – SYS_TRCODE loaded from envelope.

• Outbound – SYS_TRCODE loaded from
parameter.

Database tables and logs

130 ECMap

TRANS_NAME SQL_VARCHAR 6 Transaction name – loaded from the SYS_TRANS
system variable, which is loaded from internal
transaction code before each log write.

Message Type – MSH 00009

TPTNER_ID SQL_VARCHAR 35 Code used to identify the trading partner

Loaded from the SYS_TRADNO system variable.

• Inbound – TPTNER_ID is looked up in trading
partner database based on lookup criteria and data
in EDI envelope.

• Outbound – TPTNER_ID is loaded from an
application file.

VERSION SQL_VARCHAR 12 Version of EDI standard used in the map

Loaded from the X12_VERSION system variable.

• Inbound – X12 version loaded from envelope

• Outbound – Loaded from tradstat table

• Version/Release/Industry Identifier Code –
GS 08

• Message Version Number – UNH S009 0052

• Message Release Number – UNH S009 0054

ISA_TYPE SQL_VARCHAR 5 EDI standard used by this trading partner in this
transaction

• Inbound – Loaded from the INT_VERSION
system variable, which is loaded from the EDI
envelope.

• Outbound – Loaded from the ISA_TYPE system
variable, which is loaded from tradstat table.

• Interchange Control Version Number – ISA
12

• Syntax Identifier – UNB S001 0001

• Syntax Version Number – UNB S001 0002

INTERCHANG SQL_VARCHAR 35 Interchange code – loaded from the
INT_HEAD_NUM system variable

• Inbound – Value taken from the EDI envelope.

• Outbound – Loaded from the ISA control number
taken from trading partner table and incremented.

• Interchange Control Number – ISA 13

• Interchange Control Count – UNB S004 0020

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 131

GROUP_NO SQL_VARCHAR 35 Group number – loaded from the FUNC_GP_NUM
system variable

• Inbound – Value taken from EDI envelope.

• Outbound – Loaded from GS control number
taken from the tradstat table and incremented

• Functional Group Header Control Number –
GS 06

• Batch Control ID – BHS 00091

TRANS_NO SQL_VARCHAR 35 Transaction number – loaded from the
FUNC_ST_NUM system variable

• Inbound – Value taken from EDI envelope.

• Outbound – Loaded from 1000 * (GS control
number taken) + transaction count.

APP_RCV_CD SQL_VARCHAR 35 Code used to identify the group level receiver on
outbound maps and sender on inbound maps.
Loaded from the APP_RECV_CODE system
variable.

• Inbound – Loaded from EDI envelope.

• Outbound – Loaded from Tradepartner.

• Application Receiver Code – GS 03

• Interchange Receiver Internal Sub-ID – UNB
0003 0046

• Receiving Facility – MSH 00006

• File Receiving Facility – FHS 00072

• Batch Receiving Facility – BHS 00086

APP_SND_CD SQL_VARCHAR 35 Code used to identify the group level sender on
outbound maps and receiver on inbound maps.
Loaded from the APP_SEND_CODE system
variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Application Sender Code – GS 02

• Interchange Sender Internal Sub-ID – UNB
S002 0042

• Sending Facility – MSH 00004

• File Sending Facility – FHS 00070

• Batch Sending Facility – BHS 00084

Name Type Precision Description

Database tables and logs

132 ECMap

RECV_CODE SQL_VARCHAR 35 Code used to identify the interchange level receiver
on outbound maps and sender on inbound maps.
Loaded from the RECV_CODE system variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Interchange Receiver ID Code – ISA 08

• Interchange Receiver ID – UNB S003 0010

• Receiving Application – MSH 00005

• File Receiving Application – FHS 00071

• Batch Receiving Application – BHS 00085

SEND_CODE SQL_VARCHAR 35 Code used to identify the interchange level sender on
outbound maps and receiver on inbound maps.

Loaded from the SEND_CODE system variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Interchange Sender ID Code – ISA 06

• Interchange Sender ID – UNB S002 0004

• Sending Application – MSH 00003

• File Sending Application – FHS 00069

• Batch Sending Application – BHS 00083

RECV_QUAL SQL_VARCHAR 4 Qualifier that specifies the type of code used to
identify the interchange level receiver on outbound
maps and sender on inbound maps.

Loaded from the RECV_QUAL system variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Interchange Receiver ID Qualifier – ISA 07

• Interchange Receiver ID Code Qualifier –
UNB S003 0007

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 133

SEND_QUAL SQL_VARCHAR 4 Qualifier that specifies the type of code used to
identify the interchange level sender on outbound
maps and receiver on inbound maps.

Loaded from the SEND_QUAL system variable.

• Inbound – Loaded from EDI envelope

• Outbound – Loaded from tradepartner.

• Interchange Sender ID Qualifier – ISA 06

• Interchange Sender ID Code Qualifier – UNB
S002 0007

ERRORS SQL_BIGINT 10 Total errors – loaded from internal system count of
errors between ST and SE.

The LOG_ERRS and TOT_ERRS system variables
are loaded at same time. LOG_ERRS is the number
of errors between ST and SE. TOT_ERRS is the total
number of errors for the run.

STAT SQL_VARCHAR 1 Status – loaded from internal count of total # errors.

The LOG_STATUS system variable is also loaded at
time of write log.

• W – SEG_ST, SEG_SE, User Write

• T – Bad Tradepartner

• S – Bad ISA, GS or ST

• U – Stop Run

• A – Abort Trans

• F – Fatal Error

• E – Other Error Message

BYTE-COUNT SQL_BIGINT 10 Count of the number of bytes between ST and SE –
will be zero for every ST and increment until SE is
written.

The LOG_SIZE system variable is loaded with the
byte count at time of write log.

DIR SQL_VARCHAR 3 Direction of map

• Outbound – OUT

• Inbound – IN, CMP, PRT

There is no system variable

FLOW_LEVEL SQL_VARCHAR 5 Level of segment in flow – the LOG_LEVEL system
variable is loaded at time of write log.

Name Type Precision Description

Database tables and logs

134 ECMap

RECORD_NAM SQL_VARCHAR 10 Record name – the LOG_RECNAME system
variable is loaded at time of write log. Can be
assigned by user in write log if the following
conditions are present:

• Mapping is in progress and the field being
mapped to or from is a record field, then this
record name value is used.

• Error occurs during a rule, then code attempts to
identify the record name involved.

• The field involved is a memory variable or a
string variable, then the memory variable or
string variable is written to the RECORD_NAM
log field.

• No record is associated with the error, then this
field is blank. This field cannot be written to by
the user assigning a value to the system variable.

RECORD_NO SQL_VARCHAR 6 Record number – the LOG_READ_CNT system
variable can be assigned by user in write log
command. Otherwise the system variable and log are
loaded and written at the same time.

• Inbound – This is the line number being
processed in the incoming EDI file.

• Outbound – This field will contain the count that
this record type has been read if the error message
involves a record. Otherwise it will be zero.

FIELD_NAME SQL_VARCHAR 15 Field name – the LOG_FIELDNAME system
variable can be assigned by user in write log
command. Otherwise LOG_FIELDNAME and
FIELD_NAME log field are loaded at the same time
of write log.

If mapping is in progress and the field being mapped
to or from is a record field, then this field name value
is used.

If error occurs during a rule, then code attempts to
identify the field name involved.

This field cannot be written to by the user directly
assigning a value to the system variable.

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 135

SEGMENT SQL_VARCHAR 3 Segment – can be assigned by user in write log
command.

• Inbound – Current segment name LOG_SEG

• Outbound – Will have a value on write logs for
SEG_ST and SEG_SE types and for errors that
occur during direct mapping to EDI file.

SEG_COUNT SQL_INTEGER 10 Segment count – can be assigned by user in write log
command.

Count of segments between ST and SE inclusive.

The SEGMENT_COUNT system variable loaded
every time segment is written/read from EDI File.

ELEMENT SQL_VARCHAR 2 Element – can be assigned by user in write log
command.

The LOG_ELEM system variable

SUBELEM SQL_VARCHAR 2 Sub-element – can be assigned by user in write log
command.

The LOG_SUBELEM system variable

SEV_CODE SQL_VARCHAR 2 Severity code – can be assigned by user in write log
command.

For all system error messages this code is a 1.

For other system non-error messages this code is 0.

MSG_NO SQL_VARCHAR 5 Message number – can be assigned by user in write
log command.

The LOG_MSG_NO system variable

MSG_TEXT SQL_VARCHAR 100 Message text – can be assigned by user in write log
command.

The LOG_MSG system variable

Name Type Precision Description

Database tables and logs

136 ECMap

FILENAME SQL_VARCHAR 160 For ST segments:

• Outbound – FILENAME contains the current EDI
outbound file name (can change based on tradstat
and tp mailbox entries). Filename is not available
as the system variable.

• Inbound – The inbound EDI file name (always
the same).Filename is not available as the system
variable.

For SE segments and inbound transactions:

FILENAME

• Contains the current file name of any EDI OUT
file names (can change based on tradstat, tp
mailboxes and tradstat EDI_OUT field)

• Consists of both complete path and file name.

• Is available as the EDI_OUT_FILENAME
system variable.

FIELDVAL SQL_VARCHAR 30 Field value – the LOG_VALUE system variable.

Can be assigned by user in write log command.
Otherwise the system variable and log field value are
loaded at time of write to the log. If this is an error
message, the value of the field code attempts to load
the value of the record field, memory variable, or
string constant in error.

USER_IDENT SQL_VARCHAR 35 User-defined field – the SYS_USER_FIELD system
variable.

Log field is loaded from system variable.

RTP does not assign values to SYS_USER_FIELD.

ACK_EXPECT SQL_VARCHAR 1 Flag that specifies whether a TA1 interchange-level
acknowledgement is expected, only on outbound
maps:

• 1 = TA1 acknowledgement requested

• 0 = TA1 acknowledgement not requested

The ACK_REQSTD system variable.

Inbound – Loaded from EDI Envelope (ISA element
14).

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 137

TR_ACK_TYP SQL_VARCHAR 1 Flag that specifies whether a group-level functional
acknowledgement is expected, only on outbound
maps:

• 1 = functional acknowledgement requested

• 0 = functional acknowledgement not requested

The corresponding system variable is TR_ACK.

Outbound – Loaded from tradstat table

T_P_IND SQL_VARCHAR 1 Test/Production Indicator

• T – T Test

• P – Production

• I – Information

• D – Debug

• 1–9

• Null

The TEST_IND system variable

Inbound – Loaded from EDI envelope

Outbound – Loaded from Tradstat.

TRANS_CNT SQL_INTEGER 10 Transaction count – no system Variable.

Inbound/Outbound – This log value is loaded from
an internal count of the number of ST-SE
transactions read or written between SEG_GS and
SEG_GE.

FILEOFFSET SQL_BIGINT 10 Number of Bytes File Offset – no system variable.
Written from internal count of number of bytes read
(inbound) or number of bytes written to the EDI file.

RCOUNT SQL_SMALLINT 1 Field for Record Manipulation – always set equal to
1 before log write.

SNDR_ROUTE SQL_VARCHAR 14

(35 for
Syntax 4)

Internal code used to identify the interchange level
sender on outbound maps and receiver on inbound
maps.

Interchange Sender Internal ID – UNB S002 0008

SNDR_SUBID SQL_VARCHAR 35 Internal sub-code used to identify the interchange
level sender on outbound maps and receiver on
inbound maps.

(EDIFACT Syntax 4 only)

Interchange Sender Internal Sub-ID – UNB S002
0042

Name Type Precision Description

Database tables and logs

138 ECMap

RCVR_ROUTE SQL_VARCHAR 14

(35 for
Syntax 4)

Internal code used to identify the interchange level
receiver on outbound maps and sender on inbound
maps.

Interchange Receiver Internal ID – UNB S003 0014

RCVR_SUBID SQL_VARCHAR 35 Internal sub-code used to identify the interchange
level receiver on outbound maps and sender on
inbound maps.

(EDIFACT Syntax 4 only)

Interchange Receiver Internal Sub-ID-UNB S003
0046

APPL_REF SQL_VARCHAR 14 Name of the application messages contained in the
EDIFACT UNB envelope.

Application Reference – UNB S005 0026

PROC_PRIOR SQL_VARCHAR 1 Processing Priority Code – UNB S005 0029

COMM_AGM SQL_VARCHAR 35 Interchange Agreement Identifier – UNB S005 0032

APP_SND_QL SQL_VARCHAR 4 Qualifier that specifies the type of code used to
identify the trading partner at the group level – as the
sender on outbound maps and as the receiver on
inbound maps.

Application Sender ID/ID Code Qualifier – UNG
S006 0007

APP_RCV_QL SQL_VARCHAR 4 Qualifier that specifies the type of code used to
identify the trading partner at the group level – as the
receiver on outbound maps and as the sender on
inbound maps.

Application Receiver ID/ID Code Qualifier – UNG
S007 0007

ASSOC_CODE SQL_VARCHAR 6 Association Assigned Code –

• UNG S008 0057

• UNH S009 0057

APP_PSWD SQL_VARCHAR 14 Application Password – UNG S008 0058

CLIST_VER SQL_VARCHAR 6 (EDIFACT Syntax 4 only)

Code List Directory Version Number – UNH S009
0110

MSG_TYPE SQL_VARCHAR 6 (EDIFACT Syntax 4 only)

Message Type Sub-Function Identifier – UNH S009
0113

Name Type Precision Description

CHAPTER 3 Trading Partner and Log Database Formats

Reference Guide 139

RPT_NO SQL_VARCHAR 2 (X12 version 40020 and later)

Repeat Number – this field holds the number of a
repeating element

ST03 SQL_VARCHAR 35 Implementation Convention Reference – ST 03

Value to be used as the third element in the
transaction on outbound X12 processing.

Name Type Precision Description

Database tables and logs

140 ECMap

Reference Guide 141

C H A P T E R 4 EDI Envelopes

About this chapter This chapter describes EDI envelopes.

Topics This chapter contains the following topics:

Topic Page

Overview 142

Envelope types 142

Overview

142 ECMap

Overview
For EDI messages to be delivered and recognized, they need addressing
information. In ECMap, EDI messages are enclosed in both an outer and an
inner envelope that each contains addressing information. The information on
these envelopes identifies the intended recipient of the message, allowing the
data to be correctly sent and delivered. It also identifies the sender of the
message. The outer envelope is referred to as the interchange level envelope,
and the inner envelope is referred to as the group level envelope. One outer
envelope can contain multiple inner envelopes. One inner envelope can contain
multiple messages.

Different standards use different methods to provide the addressing
information required for delivery of the message. Sometimes a message is sent
in both an inner and an outer envelope. Sometimes a message is sent in only
one envelope. And sometimes a message is sent with no envelope at all;
instead, the addressing information is included in the header and trailer of the
message itself.

Envelope types
In X12, addressing information is included in both an inner and an outer
envelope. The outer envelope begins with an ISA segment and ends with an
ISE segment. The inner envelope begins with a GS segment and ends with a
GE segment. The message, or transaction, begins with an ST segment and ends
with an SE segment.

In EDIFACT, there is always an outer envelope, but an inner envelope is not
necessarily used. The outer envelope begins with a UNB segment and ends
with a UNZ segment. The inner envelope begins with a UNG segment and ends
with a UNE segment. The message begins with a UNH segment and ends with
a UNT segment. There is an optional UNA segment that is used only to change
the default delimiters.

In HL7, while there are outer and inner envelopes, they are used infrequently.
The outer envelope begins with a FHS segment and ends with a FTS segment.
The inner envelope begins with a BHS segment and ends with a BTS segment.
Instead, addressing information is included in the header and trailer of the
message. A message begins with the MSH segment and has no ending
segment. (In ECMap, we artificially create an EOT end-of-message segment
so that the map flow works correctly.)

CHAPTER 4 EDI Envelopes

Reference Guide 143

The following charts show how the components of each EDI envelope are used
by, stored in, or created by ECMap. The following information is shown for
each element:

• The window and text box in which the value for each element is entered.

• The table in the trading partner database in which the information entered
in the text boxes on the window is stored and from which it is retrieved.

• The system variable into which the information in the databases is loaded
and from which the information is obtained.

The envelope structures are presented in the order shown below:

X12 envelope
Table 4-1: X12 envelopes

EDIFACT envelope
Table 4-2: EDIFACT envelopes

Envelope type Description

ISA/IEA Outer Envelope

GS/GE Inner Envelope

ST/SE Transaction

Envelope type Description

UNB/UNZ Outer Envelope

UNG/UNE Inner Envelope

UNH/UNT Message

FHS/FTS Outer Envelope

BHS/BTS Inner Envelope

MSH Message (often used without an envelope)

Envelope types

144 ECMap

HL7 envelopes
For outbound envelopes, the values used to create the envelopes can come from
several sources. Values to the left always override values to the right. For
example, if there is value in the trade agreement table, it overrides a value in
the trading partner table. If a value exists in the trading partner table, it
overrides a value in the trade agreement table.

For inbound envelopes, the values in the envelope are placed in the system
variables to the far right.

For some system variables, values may be entered into the system variables via
a first-level Before Rule. Values entered in this way override any values
previously loaded from the trading partner database or the I/O Rule.

Reference Guide 145

C H A P T E R 5 ASCII Character Chart

About this chapter This chapter describes ASCII characters and provides ASCII charts.

Topics This chapter contains the following topics:

Topic Page

About ASCII characters 146

ASCII Set 1 146

ASCII Set 2 153

About ASCII characters

146 ECMap

About ASCII characters
In ECMap, ASCII characters are used as delimiters—special characters
that separate objects. For example, they are used to separate objects such
as segments, elements, subelements, fields, components, and
subcomponents. ASCII characters are also used as escape, or release,
characters and as repeat, or repetition, characters.

The following pages contain the following information for each of the
ASCII characters that can be used in ECMap:

• Decimal representation

• Binary representation

• Hexadecimal representation

• Description

• Abbreviation

• Printable character

• Non-printable character

ASCII Set 1

Dec Bin Hex Description Abbr
Non-
Printable Printable

0 0000
0000

0 NULL NUL

1 0000
0001

1 START OF HEADING SOH

2 0000
0010

2 START OF TEXT STX

3 0000
0011

3 END OF TEXT ETX

4 0000
0100

4 END OF TRANSMISSION EOT

5 0000
0101

5 ENQUIRY ENQ

6 0000
0110

6 ACKNOWLEDGE ACK

CHAPTER 5 ASCII Character Chart

Reference Guide 147

7 0000
0111

7 BELL BEL

8 0000
1000

8 BACKSPACE BS

9 0000
1001

9 CHARACTER TABULATION HT

10 0000
1010

A LINE FEED LF

11 0000
1011

B LINE TABULATION VT

12 0000
1100

C FORM FEED FF

13 0000
1101

D CARRIAGE RETURN CR

14 0000
1110

E SHIFT OUT SO

15 0000
1111

F SHIFT IN SI

16 0001
0000

10 DATALINK ESCAPE DLE

17 0001
0001

11 DEVICE CONTROL ONE DC1

18 0001
0010

12 DEVICE CONTROL TWO DC2

19 0001
0011

13 DEVICE CONTROL THREE DC3

20 0001
0100

14 DEVICE CONTROL FOUR DC4

21 0001
0101

15 NEGATIVE ACKNOWLEDGE NAK

22 0001
0110

16 SYNCHRONOUS IDLE SYN

23 0001
0111

17 END OF TRANSMISSION BLOCK ETB

24 0001
1000

18 CANCEL CAN

25 0001
1001

19 END OF MEDIUM EM

Dec Bin Hex Description Abbr
Non-
Printable Printable

ASCII Set 1

148 ECMap

26 0001
1010

1A SUBSTITUTE SUB

27 0001
1011

1B ESCAPE ESC

28 0001
1100

1C FILE SEPARATOR IS4

29 0001
1101

1D GROUP SEPARATOR IS3

30 0001
1110

1E RECORD SEPARATOR IS2

31 0001
1111

1F UNIT SEPARATOR IS1

32 0010
0000

20 SPACE

33 0010
0001

21 EXCLAMATION MARK !

34 0010
0010

22 QUOTATION MARK "

35 0010
0011

23 NUMBER SIGN #

36 0010
0100

24 DOLLAR SIGN $

37 0010
0101

25 PERCENT SIGN %

38 0010
0110

26 AMPERSAND &

39 0010
0111

27 APOSTROPHE '

40 0010
1000

28 LEFT PARENTHESIS (

41 0010
1001

29 RIGHT PARENTHESIS)

42 0010
1010

2A ASTERISK *

43 0010
1011

2B PLUS SIGN +

44 0010
1100

2C COMMA ,

Dec Bin Hex Description Abbr
Non-
Printable Printable

CHAPTER 5 ASCII Character Chart

Reference Guide 149

45 0010
1101

2D HYPHEN-MINUS -

46 0010
1110

2E FULL STOP .

47 0010
1111

2F SOLIDUS /

48 0011
0000

30 DIGIT ZERO 0

49 0011
0001

31 DIGIT ONE 1

50 0011
0010

32 DIGIT TWO 2

51 0011
0011

33 DIGIT THREE 3

52 0011
0100

34 DIGIT FOUR 4

53 0011
0101

35 DIGIT FIVE 5

54 0011
0110

36 DIGIT SIX 6

55 0011
0111

37 DIGIT SEVEN 7

56 0011
1000

38 DIGIT EIGHT 8

57 0011
1001

39 DIGIT NINE 9

58 0011
1010

3A COLON

59 0011
1011

3B SEMICOLON ;

60 0011
1100

3C LESS-THAN SIGN <

61 0011
1101

3D EQUALS SIGN =

62 0011
1110

3E GREATER-THAN SIGN >

63 0011
1111

3F QUESTION MARK ?

Dec Bin Hex Description Abbr
Non-
Printable Printable

ASCII Set 1

150 ECMap

64 0100
0000

40 COMMERCIAL AT @

65 0100
0001

41 LATIN CAPITAL LETTER A A

66 0100
0010

42 LATIN CAPITAL LETTER B B

67 0100
0011

43 LATIN CAPITAL LETTER C C

68 0100
0100

44 LATIN CAPITAL LETTER D D

69 0100
0101

45 LATIN CAPITAL LETTER E E

70 0100
0110

46 LATIN CAPITAL LETTER F F

71 0100
0111

47 LATIN CAPITAL LETTER G G

72 0100
1000

48 LATIN CAPITAL LETTER H H

73 0100
1001

49 LATIN CAPITAL LETTER I I

74 0100
1010

4A LATIN CAPITAL LETTER J J

75 0100
1011

4B LATIN CAPITAL LETTER K K

76 0100
1100

4C LATIN CAPITAL LETTER L L

77 0100
1101

4D LATIN CAPITAL LETTER M M

78 0100
1110

4E LATIN CAPITAL LETTER N N

79 0100
1111

4F LATIN CAPITAL LETTER O O

80 0101
0000

50 LATIN CAPITAL LETTER P P

81 0101
0001

51 LATIN CAPITAL LETTER Q Q

82 0101
0010

52 LATIN CAPITAL LETTER R R

Dec Bin Hex Description Abbr
Non-
Printable Printable

CHAPTER 5 ASCII Character Chart

Reference Guide 151

83 0101
0011

53 LATIN CAPITAL LETTER S S

84 0101
0100

54 LATIN CAPITAL LETTER T T

85 0101
0101

55 LATIN CAPITAL LETTER U U

86 0101
0110

56 LATIN CAPITAL LETTER V V

87 0101
0111

57 LATIN CAPITAL LETTER W W

88 0101
1000

58 LATIN CAPITAL LETTER X X

89 0101
1001

59 LATIN CAPITAL LETTER Y Y

90 0101
1010

5A LATIN CAPITAL LETTER Z Z

91 0101
1011

5B LEFT SQUARE BRACKET [

92 0101
1100

5C REVERSE SOLIDUS \

93 0101
1101

5D RIGHT SQUARE BRACKET]

94 0101
1110

5E CIRCUMFLEX ACCENT ^

95 0101
1111

5F LOW LINE _

96 0110
0000

60 GRAVE ACCENT `

97 0110
0001

61 LATIN SMALL LETTER A a

98 0110
0010

62 LATIN SMALL LETTER B b

99 0110
0011

63 LATIN SMALL LETTER C c

100 0110
0100

64 LATIN SMALL LETTER D d

101 0110
0101

65 LATIN SMALL LETTER E e

Dec Bin Hex Description Abbr
Non-
Printable Printable

ASCII Set 1

152 ECMap

102 0110
0110

66 LATIN SMALL LETTER F f

103 0110
0111

67 LATIN SMALL LETTER G g

104 0110
1000

68 LATIN SMALL LETTER H h

105 0110
1001

69 LATIN SMALL LETTER I i

106 0110
1010

6A LATIN SMALL LETTER J j

107 0110
1011

6B LATIN SMALL LETTER K k

108 0110
1100

6C LATIN SMALL LETTER L l

109 0110
1101

6D LATIN SMALL LETTER M m

110 0110
1110

6E LATIN SMALL LETTER N n

111 0110
1111

6F LATIN SMALL LETTER O o

112 0111
0000

70 LATIN SMALL LETTER P p

113 0111
0001

71 LATIN SMALL LETTER Q q

114 0111
0010

72 LATIN SMALL LETTER R r

115 0111
0011

73 LATIN SMALL LETTER S s

116 0111
0100

74 LATIN SMALL LETTER T t

117 0111
0101

75 LATIN SMALL LETTER U u

118 0111
0110

76 LATIN SMALL LETTER V v

119 0111
0111

77 LATIN SMALL LETTER W w

120 0111
1000

78 LATIN SMALL LETTER X x

Dec Bin Hex Description Abbr
Non-
Printable Printable

CHAPTER 5 ASCII Character Chart

Reference Guide 153

ASCII Set 2

121 0111
1001

79 LATIN SMALL LETTER Y y

122 0111
1010

7A LATIN SMALL LETTER Z z

123 0111
1011

7B LEFT CURLY BRACKET {

124 0111
1100

7C VERTICAL LINE !!

125 0111
1101

7D RIGHT CURLY BRACKET }

126 0111
1110

7E TILDE ~

127 0111
1111

7F DELETE (DEL) DEL

Dec Bin Hex Description Abbr
Non-
Printable Printable

Dec Bin Hex Description Abbr
Non-
Printable Printable

0 0000
0000

0 NULL NUL

1 0000
0001

1 START OF HEADING SOH

2 0000
0010

2 START OF TEXT STX

3 0000
0011

3 END OF TEXT ETX

4 0000
0100

4 END OF TRANSMISSION EOT

5 0000
0101

5 ENQUIRY ENQ

6 0000
0110

6 ACKNOWLEDGE ACK

7 0000
0111

7 BELL BEL

ASCII Set 2

154 ECMap

8 0000
1000

8 BACKSPACE BS

9 0000
1001

9 CHARACTER TABULATION HT

10 0000
1010

A LINE FEED LF

11 0000
1011

B LINE TABULATION VT

12 0000
1100

C FORM FEED FF

13 0000
1101

D CARRIAGE RETURN CR

14 0000
1110

E SHIFT OUT SO

15 0000
1111

F SHIFT IN SI

16 0001
0000

10 DATALINK ESCAPE DLE

17 0001
0001

11 DEVICE CONTROL ONE DC1

18 0001
0010

12 DEVICE CONTROL TWO DC2

19 0001
0011

13 DEVICE CONTROL THREE DC3

20 0001
0100

14 DEVICE CONTROL FOUR DC4

21 0001
0101

15 NEGATIVE ACKNOWLEDGE NAK

22 0001
0110

16 SYNCHRONOUS IDLE SYN

23 0001
0111

17 END OF TRANSMISSION BLOCK ETB

24 0001
1000

18 CANCEL CAN

25 0001
1001

19 END OF MEDIUM EM

26 0001
1010

1A SUBSTITUTE SUB

Dec Bin Hex Description Abbr
Non-
Printable Printable

CHAPTER 5 ASCII Character Chart

Reference Guide 155

27 0001
1011

1B ESCAPE ESC

28 0001
1100

1C FILE SEPARATOR IS4

29 0001
1101

1D GROUP SEPARATOR IS3

30 0001
1110

1E RECORD SEPARATOR IS2

31 0001
1111

1F UNIT SEPARATOR IS1

32 0010
0000

20 SPACE

33 0010
0001

21 EXCLAMATION MARK !

34 0010
0010

22 QUOTATION MARK "

35 0010
0011

23 NUMBER SIGN #

36 0010
0100

24 DOLLAR SIGN $

37 0010
0101

25 PERCENT SIGN %

38 0010
0110

26 AMPERSAND &

39 0010
0111

27 APOSTROPHE '

40 0010
1000

28 LEFT PARENTHESIS (

41 0010
1001

29 RIGHT PARENTHESIS)

42 0010
1010

2A ASTERISK *

43 0010
1011

2B PLUS SIGN +

44 0010
1100

2C COMMA ,

45 0010
1101

2D HYPHEN-MINUS -

Dec Bin Hex Description Abbr
Non-
Printable Printable

ASCII Set 2

156 ECMap

46 0010
1110

2E FULL STOP .

47 0010
1111

2F SOLIDUS /

48 0011
0000

30 DIGIT ZERO 0

49 0011
0001

31 DIGIT ONE 1

50 0011
0010

32 DIGIT TWO 2

51 0011
0011

33 DIGIT THREE 3

52 0011
0100

34 DIGIT FOUR 4

53 0011
0101

35 DIGIT FIVE 5

54 0011
0110

36 DIGIT SIX 6

55 0011
0111

37 DIGIT SEVEN 7

56 0011
1000

38 DIGIT EIGHT 8

57 0011
1001

39 DIGIT NINE 9

58 0011
1010

3A COLON :

59 0011
1011

3B SEMICOLON ;

60 0011
1100

3C LESS-THAN SIGN <

61 0011
1101

3D EQUALS SIGN =

62 0011
1110

3E GREATER-THAN SIGN >

63 0011
1111

3F QUESTION MARK ?

64 0100
0000

40 COMMERCIAL AT @

Dec Bin Hex Description Abbr
Non-
Printable Printable

CHAPTER 5 ASCII Character Chart

Reference Guide 157

65 0100
0001

41 LATIN CAPITAL LETTER A A

66 0100
0010

42 LATIN CAPITAL LETTER B B

67 0100
0011

43 LATIN CAPITAL LETTER C C

68 0100
0100

44 LATIN CAPITAL LETTER D D

69 0100
0101

45 LATIN CAPITAL LETTER E E

70 0100
0110

46 LATIN CAPITAL LETTER F F

71 0100
0111

47 LATIN CAPITAL LETTER G G

72 0100
1000

48 LATIN CAPITAL LETTER H H

73 0100
1001

49 LATIN CAPITAL LETTER I I

74 0100
1010

4A LATIN CAPITAL LETTER J J

75 0100
1011

4B LATIN CAPITAL LETTER K K

76 0100
1100

4C LATIN CAPITAL LETTER L L

77 0100
1101

4D LATIN CAPITAL LETTER M M

78 0100
1110

4E LATIN CAPITAL LETTER N N

79 0100
1111

4F LATIN CAPITAL LETTER O O

80 0101
0000

50 LATIN CAPITAL LETTER P P

81 0101
0001

51 LATIN CAPITAL LETTER Q Q

82 0101
0010

52 LATIN CAPITAL LETTER R R

83 0101
0011

53 LATIN CAPITAL LETTER S S

Dec Bin Hex Description Abbr
Non-
Printable Printable

ASCII Set 2

158 ECMap

84 0101
0100

54 LATIN CAPITAL LETTER T T

85 0101
0101

55 LATIN CAPITAL LETTER U U

86 0101
0110

56 LATIN CAPITAL LETTER V V

87 0101
0111

57 LATIN CAPITAL LETTER W W

88 0101
1000

58 LATIN CAPITAL LETTER X X

89 0101
1001

59 LATIN CAPITAL LETTER Y Y

90 0101
1010

5A LATIN CAPITAL LETTER Z Z

91 0101
1011

5B LEFT SQUARE BRACKET [

92 0101
1100

5C REVERSE SOLIDUS \

93 0101
1101

5D RIGHT SQUARE BRACKET]

94 0101
1110

5E CIRCUMFLEX ACCENT ^

95 0101
1111

5F LOW LINE _

96 0110
0000

60 GRAVE ACCENT `

97 0110
0001

61 LATIN SMALL LETTER A a

98 0110
0010

62 LATIN SMALL LETTER B b

99 0110
0011

63 LATIN SMALL LETTER C c

100 0110
0100

64 LATIN SMALL LETTER D d

101 0110
0101

65 LATIN SMALL LETTER E e

102 0110
0110

66 LATIN SMALL LETTER F f

Dec Bin Hex Description Abbr
Non-
Printable Printable

CHAPTER 5 ASCII Character Chart

Reference Guide 159

103 0110
0111

67 LATIN SMALL LETTER G g

104 0110
1000

68 LATIN SMALL LETTER H h

105 0110
1001

69 LATIN SMALL LETTER I i

106 0110
1010

6A LATIN SMALL LETTER J j

107 0110
1011

6B LATIN SMALL LETTER K k

108 0110
1100

6C LATIN SMALL LETTER L l

109 0110
1101

6D LATIN SMALL LETTER M m

110 0110
1110

6E LATIN SMALL LETTER N n

111 0110
1111

6F LATIN SMALL LETTER O o

112 0111
0000

70 LATIN SMALL LETTER P p

113 0111
0001

71 LATIN SMALL LETTER Q q

114 0111
0010

72 LATIN SMALL LETTER R r

115 0111
0011

73 LATIN SMALL LETTER S s

116 0111
0100

74 LATIN SMALL LETTER T t

117 0111
0101

75 LATIN SMALL LETTER U u

118 0111
0110

76 LATIN SMALL LETTER V v

119 0111
0111

77 LATIN SMALL LETTER W w

120 0111
1000

78 LATIN SMALL LETTER X x

121 0111
1001

79 LATIN SMALL LETTER Y y

Dec Bin Hex Description Abbr
Non-
Printable Printable

ASCII Set 2

160 ECMap

122 0111
1010

7A LATIN SMALL LETTER Z z

123 0111
1011

7B LEFT CURLY BRACKET {

124 0111
1100

7C VERTICAL LINE !!

125 0111
1101

7D RIGHT CURLY BRACKET }

126 0111
1110

7E TILDE ~

127 0111
1111

7F DELETE (DEL) DEL

Dec Bin Hex Description Abbr
Non-
Printable Printable

Reference Guide 161

A
ASCII character chart 146

C
configuration files

creating for Export Schema utility 70
sample, to remove schemas from formatter 73

customer.dbf/mdb file, trading partner information for
non-ODBC database 87

D
data

and data manipulation, messages related to 22
databases

non-ODBC, company information 79
non-ODBC, log information (translog.in/out file)

120
non-ODBC, trade agreement information

(tradstat.dbf/mdb file) 109
non-ODBC, trading partner information

(customer.dbf/mdb file) 87
non-ODBC, trading partner information (tp file)

96
ODBC, company information for 83
ODBC, log information (trlog file) 129
ODBC, trade agreement information (tradstat file)

114
trading partners 76

dates
messages related to 21

directories
map, messages related to 6

E
e-Biz 2000, exporting schemas to 70
e-Biz Integrator, exporting schemas to 71
EDI

envelopes 142
EDIFACT standard

envelopes 143
envelopes

EDI 142
EDIFACT 143
HL7 144
X12 143

Export Schema utility, creating configuration files for
70

exporting
schemas, to e-Biz 2000 70
schemas, to e-Biz Integrator 71, 72
schemas, to Formatter 4.11 71
schemas, to Formatter 5.1 72
schemas, to MQSI 71, 72

F
fields

messages related to 21
files

I/O, messages related to 12
formats, messages related to 32
Formatter 4.11, exporting schemas to 71

H
HL7 health care standard

envelopes 144

Index

Index

162 ECMap

I
inbound maps

check points, messages related to 53
control segments, messages related to 44

informational messages
message number 2
message text 2
Microsoft standard ODBC error messages 56
related to data and data manipulation 22
related to dates 21
related to fields 21
related to file I/O 12
related to formats 32
related to inbound map check points 53
related to inbound map control segments 44
related to map selection and directories 6
related to mapping 34
related to outbound map level changes 40
related to records 18
related to rules 35
related to running EDI product as an adapter 54
related to trading partners 37
related to types, usage, and type linking 26
system messages 3

M
mapping

messages related to 34
maps

selection, messages related to 6
messages

message number 2
message text 2
Microsoft standard ODBC error messages 56
related to data and data manipulation 22
related to dates 21
related to fields 21
related to file I/O 12
related to formats 32
related to inbound map check points 53
related to inbound map control segments 44
related to map selection and directories 6
related to mapping 34
related to outbound map level changes 40

related to records 18
related to rules 35
related to running EDI product as an adapter 54
related to trading partners 37
related to types, usage, and type linking 26
system messages 3

Microsoft
standard ODBC error messages 56

MQSI, exporting schemas to 71

N
non-ODBC databases

company information (wixset.dat) 79
log information for (translog.in/out file) 120
trade agreement information for (tradstat.dbf/mdb

file) 109
trading partner information for (customer.dbf/mdb

file) 87
trading partner information for (tp file) 96

O
ODBC

databases, company information for 83
databases, log information for (trlog file) 129
databases, trade agreement information for (tradstat

file) 114
standard error messages 56

outbound maps
level changes, messages related to 40

R
records

messages related to 18
rules

messages related to 35

S
sample configuration files

Index

Reference Guide 163

e-Biz 2000 70
e-Biz Integrator 71
for e-Biz Integrator 72
for MQSI 72
Formatter 4.11 71
Formatter 5.1 72
MQSI 71
to remove schemas from formatter 73

system messages 3

T
text of informational messages 2
tp file, trading partner information for non-ODBC

database 96
trading partners

database 76
messages related to 37

tradstat file, trade agreement information for ODBC
database 114

tradstat.dbf/mdb file, trade agreement information for
non-ODBC database 109

translog.in/out file, log information for non-ODBC
database 120

trlog file, log information for ODBC database 129
type linking, messages related to 26
types, messages related to 26

U
usage, messages related to 26
utilities

Export Schema, creating configuration files for
70

W
wixset file, company information for ODBC databases

83
wixset.dat file, company information, non-ODBC

databases 79

X
X12

envelopes 143

Index

164 ECMap

	Reference Guide
	About This Book
	CHAPTER 1 Informational Messages
	Overview
	Message number
	Severity level
	Message text

	System messages
	On map selection and directories
	On file I/O
	On records
	On fields
	On dates
	On data and data manipulation
	On types, usage and type linking
	On formats
	On mapping
	On rules
	On trading partners
	On outbound map level changes
	On inbound map control segments
	On inbound map checkpoints
	On running the EDI product as an adapter

	Microsoft standard ODBC error messages

	CHAPTER 2 Adapter Configuration Files
	Overview
	Configuration file samples
	Schema Mode samples
	Sample configuration file for eBiz 2000
	Sample configuration file for Sybase Formatter 4.11,eBiz Integrator, or MQSI
	Sample configuration file for Sybase Formatter 5.1, eBiz Integrator, and MQSI

	Schema_Remove Mode sample

	CHAPTER 3 Trading Partner and Log Database Formats
	Overview
	In outbound processing
	In inbound processing

	Database tables and logs
	Company table in non-ODBC trading partner database
	Company table in ODBC trading partner database
	Trading partner file in non-ODBC trading partner database
	Trading partner table in ODBC trading partner database
	Trade agreement table in non-ODBC trading partner database
	Trade agreement table in ODBC trading partner database
	Non-ODBC transaction log table in log database
	ODBC transaction log table in log database

	CHAPTER 4 EDI Envelopes
	Overview
	Envelope types
	X12 envelope
	EDIFACT envelope
	HL7 envelopes

	CHAPTER 5 ASCII Character Chart
	About ASCII characters
	ASCII Set 1
	ASCII Set 2

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

