
Reference Manual: Commands

Adaptive Server® Enterprise

12.5.1

DOCUMENT ID: DC36272-01-1251-03

LAST REVISED: November 2004

Copyright © 1989-2004 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Translation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 05/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Reference Manual: Commands iii

About This Book .. vii

CHAPTER 1 Commands... 1
Overview .. 1
alter database .. 6
alter role ... 12
alter table ... 16
begin...end ... 41
begin transaction.. 42
break .. 43
case.. 44
checkpoint .. 47
close... 49
coalesce ... 50
commit.. 52
compute clause .. 54
connect to...disconnect .. 62
continue.. 64
create database ... 65
create default ... 73
create existing table ... 76
create function (SQLJ) ... 82
create index.. 85
create plan ... 99
create procedure .. 101
create procedure (SQLJ).. 113
create proxy_table.. 116
create role .. 119
create rule .. 122
create schema.. 126
create table .. 128
create trigger .. 160
create view ... 170
dbcc.. 179

Contents

iv Adaptive Server Enterprise

deallocate cursor.. 189
declare ... 190
declare cursor .. 192
delete ... 198
delete statistics... 205
disk init ... 207
disk mirror .. 212
disk refit .. 215
disk reinit .. 216
disk remirror ... 220
disk resize .. 222
disk unmirror .. 224
drop database .. 227
drop default .. 229
drop function (SQLJ) .. 230
drop index .. 231
drop procedure... 232
drop role ... 234
drop rule ... 235
drop table ... 236
drop trigger... 238
drop view.. 239
dump database .. 240
dump transaction.. 253
execute... 268
fetch ... 275
goto label.. 278
grant ... 279
group by and having clauses ... 301
if...else.. 314
insert .. 317
kill ... 326
load database... 328
load transaction.. 336
lock table .. 345
mount ... 347
nullif .. 350
online database.. 352
open ... 354
order by clause... 355
prepare transaction .. 361
print .. 362
quiesce database ... 365
raiserror.. 368

Contents

Reference Manual: Commands v

readtext .. 373
reconfigure ... 377
remove java.. 378
reorg... 380
return.. 382
revoke .. 385
rollback... 396
rollback trigger.. 398
save transaction ... 399
select.. 401
set .. 425
setuser ... 456
shutdown.. 457
truncate table ... 459
union operator .. 461
unmount ... 465
update .. 466
update all statistics... 477
update partition statistics.. 478
update statistics ... 480
use ... 484
waitfor... 485
where clause .. 487
while ... 494
writetext.. 496

Index ... 499

Contents

vi Adaptive Server Enterprise

Reference Manual: Commands vii

About This Book

The Adaptive Server Reference Manual includes four guides to Sybase®
Adaptive Server® Enterprise and the Transact-SQL® language:

• Building Blocks describes the “parts” of Transact-SQL: datatypes,
built-in functions, global variables, expressions and identifiers,
reserved words, and SQLSTATE errors. Before you can use
Transact-SQL sucessfully, you need to understand what these
building blocks do and how they affect the results of Transact-SQL
statements.

• Commands provides reference information about the Transact-SQL
commands, which you use to create statements.

• Procedures provides reference information about system procedures,
catalog stored procedures, extended stored procedures, and dbcc
stored procedures. All procedures are created using Transact-SQL
statements.

• Tables provides reference information about the system tables, which
store information about your server, databases, users, and other
details of your server. It also provides information about the tables in
the dbccdb and dbccalt databases.

Audience The Adaptive Server Reference Manual is intended as a reference tool for
Transact-SQL users of all levels.

How to use this book • Chapter 1, “Commands,” lists the Adaptive Server commands in a
table that provides the name and a brief description. Click on a
command name in Table 1-1 on page 1 to go directly to the
command.

Complex commands, such as select, are divided into subsections. For
example, there are reference pages on the compute clause and on the group
by and having clauses of the select command.

Related documents The Sybase Adaptive Server Enterprise documentation set consists of the
following:

• The release bulletin for your platform – contains last-minute
information that was too late to be included in the books.

viii Adaptive Server Enterprise

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5.1, the system changes added to support
those features, and the changes that may affect your existing applications.

• ASE Replicator User’s Guide – describes how to use the ASE Replicator
feature of Adaptive Server to implement basic replication from a primary
server to one or more remote Adaptive Servers.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server User’s Guide – describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

 About This Book

Reference Manual: Commands ix

• Job Scheduler User's Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Performance and Tuning Guide – is a series of four books that explains
how to tune Adaptive Server for maximum performance:

• Basics – the basics for understanding and investigating performance
questions in Adaptive Server.

• Locking – describes how the various locking schemas can be used for
improving performance in Adaptive Server.

• Optimizer and Abstract Plans – describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

• Monitoring and Analyzing – explains how statistics are obtained and
used for monitoring and optimizing performance.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

• Reference Manual – is a series of four books that contains the following
detailed Transact-SQL® information:

• Building Blocks – Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

• Commands – Transact-SQL commands.

• Procedures – Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

• Tables – Transact-SQL system tables and dbcc tables.

x Adaptive Server Enterprise

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services User’s Guide – explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Other sources of
information

Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
Technical Library Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

 About This Book

Reference Manual: Commands xi

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

xii Adaptive Server Enterprise

2 Select EBFs/Maintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names, command options, utility
names, utility options, and other keywords are
in “command” font (Arial, 8 point).

select

sp_configure

Database names, datatypes, file names and
path names are in “database object” font
(Arial, 8 point).

master database

Book names, file names, variables, and path
names are in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

Variables, or words that stand for values that
you fill in, are in “variable” font (Italics).

select column_name
from table_name
where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the
syntax is written in BNF notation. Do not type
this symbol. Indicates “is defined as”.

::=

Curly braces mean that you must choose at
least one of the enclosed options. Do not type
the braces.

{cash, check, credit}

 About This Book

Reference Manual: Commands xiii

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

or, for a command with more options:

select column_name
 from table_name
 where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

Brackets mean that to choose one or more of
the enclosed options is optional. Do not type
the brackets.

[cash | check | credit]

The comma means you may choose as many
of the options shown as you want. Separate
your choices with commas as part of the
command.

cash, check, credit

The pipe or vertical bar (|) means you may
select only one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the
last unit as many times as you like.

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose
a method of payment: one of the items enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

Element Example

xiv Adaptive Server Enterprise

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Reference Manual: Commands 1

C H A P T E R 1 Commands

This volume describes commands, clauses, and other elements used to
construct a Transact-SQL statement.

Overview
Table 1-1 provides a brief description of the commands in this chapter.

Table 1-1: Transact-SQL commands

Command Description

alter database Increases the amount of space allocated to a database.

alter role Defines mutually exclusive relationships between roles and adds, drops, and changes
passwords for roles.

alter table Adds new columns; adds, changes, or drops constraints, changes constraints; partitions
or unpartitions an existing table.

begin...end Encloses a series of SQL statements so that control-of-flow language, such as if...else,
can affect the performance of the whole group.

begin transaction Marks the starting point of a user-defined transaction.

break Causes an exit from a while loop. break is often activated by an if test.

case Allows SQL expressions to be written for conditional values. case expressions can be
used anywhere a value expression can be used.

checkpoint Writes all dirty pages (pages that have been updated since they were last written) to the
database device.

close Deactivates a cursor.

coalesce Allows SQL expressions to be written for conditional values. coalesce expressions can
be used anywhere a value expression can be used; alternative for a case expression.

commit Marks the ending point of a user-defined transaction.

compute clause Generates summary values that appear as additional rows in the query results.

connect to...disconnect Specifies the server to which a passthrough connection is required.

continue Causes the while loop to restart. continue is often activated by an if test.

create database Creates a new database.

create default Specifies a value to insert in a column (or in all columns of a user-defined datatype) if
no value is explicitly supplied at insert time.

Overview

2 Adaptive Server Enterprise

create existing table Confirms that the current remote table information matches the information that is
stored in column_list, and verifies the existence of the underlying object.

create function (SQLJ)

create index Creates an index on one or more columns in a table.

create plan Creates an abstract query plan.

create procedure Creates a stored procedure that can take one or more user-supplied parameters.

create proxy_table Creates a proxy table without specifying a column list. Component Integration Services
derives the column list from the metadata it obtains from the remote table.

create role Creates a user-defined role.

create rule Specifies the domain of acceptable values for a particular column or for any column of
a user-defined datatype.

create schema Creates a new collection of tables, views and permissions for a database user.

create table Creates new tables and optional integrity constraints.

create trigger Creates a trigger, a type of stored procedure often used for enforcing integrity
constraints. A trigger executes automatically when a user attempts a specified data
modification statement on a specified table.

create view Creates a view, which is an alternative way of looking at the data in one or more tables.

dbcc Database Consistency Checker (dbcc) checks the logical and physical consistency of a
database. Use dbcc regularly as a periodic check or if you suspect any damage.

deallocate cursor Makes a cursor inaccessible and releases all memory resources committed to that
cursor.

declare Declares the name and type of local variables for a batch or procedure.

declare cursor Defines a cursor.

delete Removes rows from a table.

delete statistics Removes statistics from the sysstatistics system table.

disk init Makes a physical device or file usable by Adaptive Server.

disk mirror Creates a software mirror that immediately takes over when the primary device fails.

disk refit Rebuilds the master database’s sysusages and sysdatabases system tables from
information contained in sysdevices. Use disk refit after disk reinit as part of the
procedure to restore the master database.

disk reinit Rebuilds the master database’s sysdevices system table. Use disk reinit as part of the
procedure to restore the master database.

disk remirror Reenables disk mirroring after it is stopped by failure of a mirrored device or
temporarily disabled by the disk unmirror command.

disk resize Dynamically increase the size of database devices, rather than initializing a new device

disk unmirror Disables either the original device or its mirror, allowing hardware maintenance or the
changing of a hardware device.

drop database Removes one or more databases from a Adaptive Server.

drop default Removes a user-defined default.

Command Description

CHAPTER 1 Commands

Reference Manual: Commands 3

drop function (SQLJ)

drop index Removes an index from a table in the current database.

drop procedure Removes user-defined stored procedures.

drop role Removes a user-defined role.

drop rule Removes a user-defined rule.

drop table Removes a table definition and all of its data, indexes, triggers, and permission
specifications from the database.

drop trigger Removes a trigger.

drop view Removes one or more views from the current database.

dump database Makes a backup copy of the entire database, including the transaction log, in a form that
can be read in with load database. Dumps and loads are performed through Backup
Server.

dump transaction Makes a copy of a transaction log and removes the inactive portion.

execute Runs a system procedure, a user-defined stored procedure, or a dynamically constructed
Transact-SQL command.

fetch Returns a row or a set of rows from a cursor result set.

goto label Branches to a user-defined label.

grant Assigns permissions to users or to user-defined roles.

grant dbcc Allows the System Administrator to grant access on certain dbcc commands.

group by and having
clauses

Used in select statements to divide a table into groups and to return only groups that
match conditions in the having clause.

if...else Imposes conditions on the execution of a SQL statement.

insert You can use the insert command to create a new file directory. To do so, use only the
filename, filetype and content columns. You specify “DIR” as the filetype, then filename
is created as a directory.

kill Kills a process.

load database Loads a backup copy of a user database, including its transaction log.

load transaction Loads a backup copy of the transaction log.

lock table Explicitly locks a table within a transaction.

nullif Allows SQL expressions to be written for conditional values. nullif expressions can be
used anywhere a value expression can be used; alternative for a case expression.

online database Marks a database available for public use after a normal load sequence and, if needed,
upgrades a loaded database and transaction log dumps to the current version of
Adaptive Server.

open Opens a cursor for processing.

order by clause Returns query results in the specified column(s) in sorted order.

prepare transaction Used by DB-Library™ in a two-phase commit application to see if a server is prepared
to commit a transaction.

print Prints a user-defined message on the user’s screen.

Command Description

Overview

4 Adaptive Server Enterprise

quiesce database Suspends and resumes updates to a specified list of databases.

raiserror Prints a user-defined error message on the user’s screen and sets a system flag to record
that an error condition has occurred.

readtext Reads text and image values, starting from a specified offset and reading a specified
number of bytes or characters.

reconfigure The reconfigure command currently has no effect; it is included to allow existing scripts
to run without modification. In previous releases, reconfigure was required after the
sp_configure system procedure to implement new configuration parameter settings.

remove java Removes one or more Java-SQL classes, packages, or JARs from a database. Use when
Java is enabled in the database.

reorg Reclaims unused space on pages, removes row forwarding, or rewrites all rows in the
table to new pages, depending on the option used.

return Exits from a batch or procedure unconditionally, optionally providing a return status.
Statements following return are not executed.

revoke Revokes permissions or roles from users or roles.

revoke dbcc Allows the System Administrator to revoke access on some dbcc commands.

rollback Rolls a user-defined transaction back to the last savepoint inside the transaction or to the
beginning of the transaction.

rollback trigger Rolls back the work done in a trigger, including the update that caused the trigger to fire,
and issues an optional raiserror statement.

save transaction Sets a savepoint within a transaction.

select Retrieves rows from database objects.

set Sets Adaptive Server query-processing options for the duration of the user’s work
session. Can be used to set some options inside a trigger or stored procedure. Can also
be used to activate or deactivate a role in the current session.

setuser Allows a Database Owner to impersonate another user.

shutdown Shuts down Adaptive Server or a Backup Server™. This command can be issued only
by a System Administrator.

truncate table Removes all rows from a table.

union operator Returns a single result set that combines the results of two or more queries. Duplicate
rows are eliminated from the result set unless the all keyword is specified.

update Changes data in existing rows, either by adding data or by modifying existing data;
updates all statistics information for a given table; updates information about the
number of pages in each partition for a partitioned table; updates information about the
distribution of key values in specified indexes.

use Specifies the database with which you want to work.

waitfor Specifies a specific time, a time interval, or an event for the execution of a statement
block, stored procedure, or transaction.

where clause Sets the search conditions in a select, insert, update, or delete statement.

Command Description

CHAPTER 1 Commands

Reference Manual: Commands 5

while Sets a condition for the repeated execution of a statement or statement block. The
statement(s) execute repeatedly, as long as the specified condition is true.

writetext Permits non-logged, interactive updating of an existing text or image column.

Command Description

alter database

6 Adaptive Server Enterprise

alter database
Description Increases the amount of space allocated to a database.

Syntax alter database database_name
[on {default | database_device } [= size]

[, database_device [= size]]...]
[log on { default | database_device } [= size]

[, database_device [= size]]...]
[with override]
[for load]
[for proxy_update]

Parameters database_name
is the name of the database. The database name can be a literal, a variable,
or a stored procedure parameter.

on
indicates a size and/or location for the database extension. If you have your
log and data on separate device fragments, use this clause for the data device
and the log on clause for the log device.

default
 indicates that alter database can put the database extension on any default
database device(s) (as shown by sp_helpdevice on page 281 in Reference
Manual: Procedures). To specify a size for the database extension without
specifying the exact location, use this command:

on default = size

To change a database device’s status to default, use the system procedure
sp_diskdefault.

database_device
is the name of the database device on which to locate the database extension.
A database can occupy more than one database device with different
amounts of space on each. Add database devices to Adaptive Server with
disk init.

CHAPTER 1 Commands

Reference Manual: Commands 7

size
is the amount of space to allocate to the database extension. size can be in
the following unit specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes),
and ‘g’ or ‘G’ (gigabytes). Sybase recommends that you always include a
unit specifier. If you do not specify a value, alter database extends a database
by 1MB or 4 allocation unit, whichever is larger. The following table
describes the minimum amounts:

log on
indicates that you want to specify additional space for the database’s
transaction logs. The log on clause uses the same defaults as the on clause.

with override
forces Adaptive Server to accept your device specifications, even if they mix
data and transaction logs on the same device, thereby endangering
up-to-the-minute recoverability for your database. If you attempt to mix log
and data on the same device without using this clause, the alter database
command fails. If you mix log and data, and use with override, you are
warned, but the command succeeds.

for load
is used only after create database for load, when you must re-create the space
allocations and segment usage of the database being loaded from a dump.

for proxy_update
forces the re-synchronization of proxy tables within the proxy database.

Examples Example 1 Adds 1MB to the with a 2K page size database mydb on a default
database device:

alter database mydb

Example 2 Adds 3MB to the space allocated for the pubs2 database on the
database device named newdata:

alter database pubs2 on newdata = 3

If you do not provide a unit specifier for size, the value provided for newdata
is presumed to be in megabytes.

Server’s logical page size Database extended by:

2K 1MB

4K 1MB

8K 2MB

16K 4MB

alter database

8 Adaptive Server Enterprise

Example 3 Adds 10MB of space for data on userdata1 and 2MB for the log on
logdev:

alter database production
on userdata1 = "10M"
log on logdev = '2.5m'

You can use both single and double quotes, and both “m” and “M” as size
specifiers.

Usage Restrictions

• alter database for proxy update drops all proxy tables in the proxy
database.

• Quotes are optional if you do not include a unit specifier. However, you
must use quotes if you include a unit specifier.

• If you do not include a unit specifier, Adaptive Server interprets the size
in terms of megabytes of disk space, and this number is converted to the
logical page size the server uses.

• Adaptive Server reports an error if the total size of all fixed-length
columns, plus the row overhead, is greater than the table’s locking scheme
and page size allows.

• If you create a data-ony locking (DOL) table with a variable-length
column that exceeds a 8191-byte offset, you cannot add any rows to the
column.

• Because Adaptive Server allocates space for databases for create database
and alter database in chunks of 256 logical pages, these commands round
the specified size down to the nearest multiple of allocation units.

• You can specify the size as a float datatype, however, the size is rounded
down to the nearest multiple of the allocation unit.

• The minimum size that space is allocated to a database is the larger of:

• One megabyte.

• One allocation unit of the server’s logical page size.

• Although Adaptive Server does create tables in the following
circumstances, you will receive errors about size limitations when you
perform data manipulation language operations:

• If the total row size for rows with variable-length columns exceeds the
maximum column size.

CHAPTER 1 Commands

Reference Manual: Commands 9

• If the length of a single variable-length column exceeds the maximum
column size.

• For DOL tables, if the offset of any variable-length column other than
the initial column exceeds the limit of 8191 bytes.

• If Adaptive Server cannot allocate the requested space, it comes as close
as possible per device and prints a message telling how much space has
been allocated on each database device.

• You must be using the master database, or executing a stored procedure in
the master database, to use alter database.

• If Adaptive Server cannot allocate the requested space, it comes as close
as possible per device and prints a message telling how much space has
been allocated on each database device.

• You can expand the master database only on the master device. An attempt
to use alter database to expand the master database to any other database
device results in an error message. Here is an example of the correct
statement for modifying the master database on the master device:

alter database master on master = 1

• Each time you allocate space on a database device with create database or
alter database, that allocation represents a device fragment, and the
allocation is entered as a row in sysusages.

• If you use alter database on a database that is in the process of being
dumped, the alter database command cannot complete until the dump
finishes. Adaptive Server locks the in-memory map of database space use
during a dump. If you issue an alter database command while this
in-memory map is locked, Adaptive Server updates the map from the disk
after the dump completes. If you interrupt alter database, Adaptive Server
instructs you to run sp_dbremap. If you fail to run sp_dbremap, the space
you added does not become available to Adaptive Server until the next
reboot.

• You can use alter database on database_device on an offline database.

Backing up master after allocating more space

• Back up the master database with the dump database command after each
use of alter database. This makes recovery easier and safer in case master
becomes damaged.

• If you use alter database and fail to back up master, you may be able to
recover the changes with disk refit.

alter database

10 Adaptive Server Enterprise

Placing the log on a separate device

• To increase the amount of storage space allocated for the transaction log
when you have used the log on extension to create database, give the name
of the log’s device in the log on clause when you issue the alter database
command.

• If you did not use the log on extension of create database to place your logs
on a separate device, you may not be able to recover fully in case of a hard
disk crash. In this case, you can extend your logs by using alter database
with the log on clause, then using sp_logdevice.

Getting help on space usage

• To see the names, sizes, and usage of device fragments already in use by a
database, execute sp_helpdb dbname.

• To see how much space the current database is using, execute
sp_spaceused.

The system and default segments

• The system and default segments are mapped to each new database device
included in the on clause of an alter database command. To unmap these
segments, use sp_dropsegment.

• When you use alter database (without override) to extend a database on a
device already in use by that database, the segments mapped to that device
are also extended. If you use the override clause, all device fragments
named in the on clause become system/default segments, and all device
fragments named in the log on clause become log segments.

Using alter database to awaken sleeping processes

• If user processes are suspended because they have reached a last-chance
threshold on a log segment, use alter database to add space to the log
segment. The processes awaken when the amount of free space exceeds
the last-chance threshold.

Using for proxy_update

• If the for proxy_update clause is entered with no other options, the size of
the database will not be extended; instead, the proxy tables, if any, will be
dropped from the proxy database and re-created from the metadata
obtained from the pathname specified during create database ... with
default_location = ‘pathname’.

• If this command is used with other options to extend the size of the
database, the proxy table synchronization is performed after the size
extensions are made.

CHAPTER 1 Commands

Reference Manual: Commands 11

• The purpose of this alter database extension is to provide the DBA with an
easy-to-use, single-step operation with which to obtain an accurate and
up-to-date proxy representation of all tables at a single remote site.

• This re-synchronization is supported for all external data sources, and not
just the primary server in a HA-cluster environment. Also, a database need
not have been created with the for proxy_update clause. If a default storage
location has been specified, either through the create database command
or with sp_defaultloc, the metadata contained within the database can be
synchronized with the metadata at the remote storage location.

• To make sure databases are synchronized correctly so that all the proxy
tables have the correct schema to the content of the primary database you
just reloaded, you may need to run the for proxy_update clause on the
server hosting the proxy database.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions alter database permission defaults to the Database Owner. System
Administrators can also alter databases.

See also Commands create database, disk init, drop database, load database

System procedures sp_addsegment, sp_dropsegment, sp_helpdb,
sp_helpsegment, sp_logdevice, sp_renamedb, sp_spaceused

alter role

12 Adaptive Server Enterprise

alter role
Description Defines mutually exclusive relationships between roles; adds, drops, and

changes passwords for roles; specifies the password expiration interval, the
minimum password length, and the maximum number of failed logins allowed
for a specified role.

Syntax alter role role1 { add | drop } exclusive
{ membership | activation } role2

alter role role_name [add passwd "password" |
drop passwd] [lock | unlock]

alter role { role_name | "all overrides" }
set { passwd expiration | min passwd length |
max failed_logins } option_value

Parameters role1
is one role in a mutually exclusive relationship.

add
adds a role in a mutually exclusive relationship; adds a password to a role.

drop
drops a role in a mutually exclusive relationship; drops a password from a
role.

exclusive
makes both named roles mutually exclusive.

membership
does not allow you to grant users both roles at the same time.

activation
allows you to grant a user both roles at the same time, but does not allow the
user to activate both roles at the same time.

role2
is the other role in a mutually exclusive relationship.

role_name
is the name of the role for which you want to add, drop, or change a
password.

passwd
adds a password to a role.

CHAPTER 1 Commands

Reference Manual: Commands 13

password
is the password to add to a role. Passwords must be at least 6 characters in
length and must conform to the rules for identifiers. You cannot use
variables for passwords.

lock
locks the specified role.

unlock
unlocks the specified role.

all overrides
applies the setting that follows to the entire server rather than to a specific
role.

set
activates the option that follows it.

passwd expiration
specifies the password expiration interval in days. It can be any value
between 0 and 32767, inclusive.

min passwd length
specifies the minimum length allowed for the specified password.

max failed_logins
specifies the maximum number of failed login attempts allowed for the
specified password.

option_value
specifies the value for passwd expiration, min passwd length, or max
failed_logins. To set all overrides, set the value of option_value to -1.

Examples Example 1 Defines intern_role and specialist_role as mutually exclusive:

alter role intern_role add exclusive membership specialist_role

Example 2 Defines roles as mutually exclusive at the membership level and
at the activation level:

alter role specialist_role add exclusive membership intern_role
alter role intern_role add exclusive activation surgeon_role

Example 3 Adds a password to an existing role:

alter role doctor_role add passwd "physician"

Example 4 Drops a password from an existing role:

alter role doctor_role drop passwd

alter role

14 Adaptive Server Enterprise

Example 5 Locks the role physician_role:

alter role physician_role lock

Example 6 Unlocks the role physician_role:

alter role physician_role unlock

Example 7 Changes the maximum number of failed logins allowed for
physician_role to 5:

alter role physician_role set max failed_logins 5

Example 8 Sets the minimum password length for physician_role, an existing
role, to five characters:

alter role physician_role set min passwd length 5

Example 9 Overrides the minimum password length of all roles:

alter role "all overrides" set min passwd length -1

Example 10 Removes the overrides for the maximum failed logins for all
roles:

alter role "all overrides" set max failed_logins -1

Usage • The alter role command defines mutually exclusive relationships between
roles and adds, drops, and changes passwords for roles.

• The all overrides parameter removes the system overrides that were set
using sp_configure with any of the following parameters:

• passwd expiration

• max failed_logins

• min passwd length

Dropping the role password removes the overrides for the password
expiration and the maximum failed logins options.

Mutually exclusive roles

• You need not specify the roles in a mutually exclusive relationship or role
hierarchy in any particular order.

• You can use mutual exclusivity with role hierarchy to impose constraints
on user-defined roles.

• Mutually exclusive membership is a stronger restriction than mutually
exclusive activation. If you define two roles as mutually exclusive at
membership, they are implicitly mutually exclusive at activation.

CHAPTER 1 Commands

Reference Manual: Commands 15

• If you define two roles as mutually exclusive at membership, defining
them as mutually exclusive at activation has no effect on the membership
definitions. Mutual exclusivity at activation is added and dropped
independently of mutual exclusivity at membership.

• You cannot define two roles as having mutually exclusive after granting
both roles to users or roles. Revoke either granted role from existing
grantees before attempting to define the roles as mutually exclusive on the
membership level.

• If two roles are defined as mutually exclusive at activation, the System
Security Officer can assign both roles to the same user, but the user cannot
activate both roles at the same time.

• If the System Security Officer defines two roles as mutually exclusive at
activation, and users have already activated both roles or, by default, have
set both roles to activate at login, Adaptive Server makes the roles
mutually exclusive, but issues a warning message naming specific users
with conflicting roles. The users’ activated roles do not change.

Changing passwords for roles

• To change the password for a role, first drop the existing password, then
add the new password, as follows:

alter role doctor_role drop passwd
alter role doctor_role add passwd "physician"

Note Passwords attached to user-defined roles do not expire.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only a System Security Officer can execute alter role.

See also Documents For more information on altering roles, see the System
Administration Guide.

Commands create role, drop role, grant, revoke, set

Functions mut_excl_roles, proc_role, role_contain, role_id, role_name

System procedures sp_activeroles, sp_displaylogin, sp_displayroles,
sp_modifylogin

alter table

16 Adaptive Server Enterprise

alter table
Description Adds new columns to a table; drops or modifies existing columns; adds,

changes, or drops constraints; changes properties of an existing table; enables
or disables triggers on a table.

Syntax alter table [[database.][owner].table_name
{ add column_name datatype

[default {constant_expression | user | null}]
{identity | null | not null}
[off row | in row]
[[constraint constraint_name]
{ { unique | primary key }

[clustered | nonclustered]
[asc | desc]
[with { fillfactor = pct,

max_rows_per_page = num_rows,
reservepagegap = num_pages }]

[on segment_name]
| references [[database.]owner.]ref_table

[(ref_column)]
[match full]

| check (search_condition)] ... }
[, next_column]...

| add {[constraint constraint_name]
{ unique | primary key}

[clustered | nonclustered]
(column_name [asc | desc]

[, column_name [asc | desc]...])
[with { fillfactor = pct,

max_rows_per_page = num_rows,
reservepagegap = num_pages}]

[on segment_name]
| foreign key (column_name [{, column_name}...])

references [[database.]owner.]ref_table
[(ref_column [{, ref_column}...])]
[match full]

| check (search_condition)}
| drop {column_name [, column_name]...

| constraint constraint_name }
| modify column_name datatype [null | not null]

[, next_column]...
| replace column_name

default { constant_expression | user | null}
| partition number_of_partitions
| unpartition
| { enable | disable } trigger
| lock {allpages | datarows | datapages } }
| with exp_row_size=num_bytes

CHAPTER 1 Commands

Reference Manual: Commands 17

Parameters table_name
is the name of the table to change. Specify the database name if the table is
in another database, and specify the owner’s name if more than one table of
that name exists in the database. The default value for owner is the current
user, and the default value for database is the current database.

add
specifies the name of the column or constraint to add to the table. If
Component Integration Services is enabled, you cannot use add for remote
servers.

column_name
is the name of a column in that table. If Java is enabled in the database, the
column can be a Java-SQL column.

datatype
is any system datatype except bit or any user-defined datatype except those
based on bit.

If Java is enabled in the database, can be the name of a Java class installed
in the database, either a system class or a user-defined class. Refer to Java
in Adaptive Server Enterprise for more information.

default
specifies a default value for a column. If you specify a default and the user
does not provide a value for this column when inserting data, Adaptive
Server inserts this value. The default can be a constant_expression, user (to
insert the name of the user who is inserting the data), or null (to insert the null
value).

Adaptive Server generates a name for the default in the form of
tabname_colname_objid, where tabname is the first 10 characters of the
table name, colname is the first 5 characters of the column name, and objid
is the object ID number for the default. Setting the default to null drops the
default.

If Component Integration Services is enabled, you cannot use default for
remote servers.

constant_expression
is a constant expression to use as a default value for a column. It cannot
include global variables, the name of any columns, or other database objects,
but can include built-in functions. This default value must be compatible
with the datatype of the column.

alter table

18 Adaptive Server Enterprise

user
specifies that Adaptive Server should insert the user name as the default if
the user does not supply a value. The datatype of the column must be either
char(30), varchar(30), or a type that Adaptive Server implicitly converts to
char; however, if the datatype is not char(30) or varchar(30), truncation may
occur.

null | not null
specifies Adaptive Server’s behavior during data insertion if no default
exists.

null specifies that a column is added that allows nulls. Adaptive Server
assigns a null value during inserts if a user does not provide a value.

not null specifies that a column is added that does not allow nulls. Users must
provide a non-null value during inserts if no default exists.

If you do not specify null or not null, Adaptive Server uses not null by default.
However, you can switch this default using sp_dboption to make the default
compatible with the SQL standards. If you specify (or imply) not null for the
newly added column, a default clause is required. The default value is used
for all existing rows of the newly added column, and applies to future inserts
as well.

identity
indicates that the column has the IDENTITY property. Each table in a
database can have one IDENTITY column of type numeric and scale zero.
IDENTITY columns are not updatable and do not allow nulls.

IDENTITY columns store sequential numbers, such as invoice numbers or
employee numbers, automatically generated by Adaptive Server. The value
of the IDENTITY column uniquely identifies each row in a table.

If Component Integration Services is enabled, you cannot use identity for
remote servers.

off row | in row
specifies whether the Java-SQL column is stored separate from the row or
in storage allocated directly in the row.

The storage for an in row column must not exceed 16K bytes, depending on
the page size of the database server and other variables. The default value is
off row.

constraint
introduces the name of an integrity constraint. If Component Integration
Services is enabled, you cannot use constraint for remote servers.

CHAPTER 1 Commands

Reference Manual: Commands 19

constraint_name
is the name of the constraint. It must conform to the rules for identifiers and
be unique in the database. If you do not specify the name for a table-level
constraint, Adaptive Server generates a name in the form of
tabname_colname_objectid, where tabname is the first 10 characters of the
table name, colname is the first 5 characters of the column name, and
objectid is the object ID number for the constraint. If you do not specify the
name for a unique or primary key constraint, Adaptive Server generates a
name in the format tabname_colname_tabindid, where tabindid is a string
concatenation of the table ID and index ID.

Constraints do not apply to the data that already exists in the table at the time
the constraint is added.

unique
constrains the values in the indicated column or columns so that no two rows
can have the same non-null value. This constraint creates a unique index that
can be dropped only if the constraint is dropped. You cannot use this option
along with the null option described above.

primary key
constrains the values in the indicated column or columns so that no two rows
can have the same value and so that the value cannot be NULL. This
constraint creates a unique index that can be dropped only if the constraint
is dropped.

clustered | nonclustered
specifies that the index created by a unique or primary key constraint is a
clustered or nonclustered index. clustered is the default (unless a clustered
index already exists for the table) for primary key constraints; nonclustered
is the default for unique constraints. There can be only one clustered index
per table. See create index for more information.

asc | desc
specifies whether the index is to be created in ascending (asc) or descending
(desc) order. The default is ascending order.

alter table

20 Adaptive Server Enterprise

with fillfactor=pct
specifies how full to make each page when Adaptive Server creates a new
index on existing data. “pct” stands for percentage. The fillfactor percentage
is relevant only when the index is created. As the data changes, the pages are
not maintained at any particular level of fullness.

 Warning! Creating a clustered index with a fillfactor affects the amount of
storage space your data occupies, since Adaptive Server redistributes the data
as it creates the clustered index.

The default for fillfactor is 0; this is used when you do not include with
fillfactor in the create index statement (unless the value has been changed
with sp_configure). When specifying a fillfactor, use a value between 1 and
100.

A fillfactor of 0 creates clustered indexes with completely full pages and
nonclustered indexes with completely full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both clustered and nonclustered
indexes. There is seldom a reason to change the fillfactor.

If the fillfactor is set to 100, Adaptive Server creates both clustered and
nonclustered indexes with each page 100 percent full. A fillfactor of 100
makes sense only for read-only tables—tables to which no additional data
will ever be added.

fillfactor values smaller than 100 (except 0, which is a special case) cause
Adaptive Server to create new indexes with pages that are not completely
full. A fillfactor of 10 might be a reasonable choice if you are creating an
index on a table that will eventually hold a great deal more data, but small
fillfactor values cause each index (or index and data) to take more storage
space.

CHAPTER 1 Commands

Reference Manual: Commands 21

max_rows_per_page=num_rows
limits the number of rows on data pages and the leaf level pages of indexes.
Unlike fillfactor, the max_rows_per_page value is maintained until it is
changed with sp_chgattribute.

If you do not specify a value for max_rows_per_page, Adaptive Server uses
a value of 0 when creating the index. When specifying max_rows_per_page
for data pages, use a value between 0 and 256. The maximum number of
rows per page for nonclustered indexes depends on the size of the index key;
Adaptive Server returns an error message if the specified value is too high.

For indexes created by constraints, a max_rows_per_page setting of 0
creates clustered indexes with full pages and nonclustered indexes with full
leaf pages. A setting of 0 leaves a comfortable amount of space within the
index B-tree in both clustered and nonclustered indexes.

If max_rows_per_page is set to 1, Adaptive Server creates both clustered and
nonclustered leaf index pages with one row per page at the leaf level. You
can use this to reduce lock contention on frequently accessed data.

Low max_rows_per_page values cause Adaptive Server to create new
indexes with pages that are not completely full, use more storage space, and
may cause more page splits.

 Warning! Creating a clustered index with max_rows_per_page can affect the
amount of storage space your data occupies, since Adaptive Server
redistributes the data as it creates the clustered index.

reservepagegap = num_pages
specifies a ratio of filled pages to empty pages to be left during extent I/O
allocation operations for the index created by the constraint. For each
specified num_pages, an empty page is left for future expansion of the table.
Valid values are 0 – 255. The default value, 0, leaves no empty pages.

on segment_name
specifies that the index is to be created on the named segment. Before the on
segment_name option can be used, the device must be initialized with disk
init, and the segment must be added to the database with the sp_addsegment
system procedure. See your System Administrator or use sp_helpsegment
for a list of the segment names available in your database.

If you specify clustered and use the on segment_name option, the entire table
migrates to the segment you specify, since the leaf level of the index
contains the actual data pages.

alter table

22 Adaptive Server Enterprise

references
specifies a column list for a referential integrity constraint. You can specify
only one column value for a column-constraint. By including this constraint
with a table that references another table, any data inserted into the
referencing table must already exist in the referenced table.

To use this constraint, you must have references permission on the
referenced table. The specified columns in the referenced table must be
constrained by a unique index (created by either a unique constraint or a
create index statement). If no columns are specified, there must be a primary
key constraint on the appropriate columns in the referenced table. Also, the
datatypes of the referencing table columns must exactly match the datatype
of the referenced table columns.

If Component Integration Services is enabled, you cannot use references for
remote servers.

foreign key
specifies that the listed column(s) are foreign keys in this table whose
matching primary keys are the columns listed in the references clause.

ref_table
is the name of the table that contains the referenced columns. You can
reference tables in another database. Constraints can reference up to 192
user tables and internally generated worktables. Use the system procedure
sp_helpconstraint to check a table’s referential constraints.

ref_column
is the name of the column or columns in the referenced table.

match full
specifies that if all values in the referencing columns of a referencing row
are:

• Null – the referential integrity condition is true.

• Non-null values – if there is a referenced row where each corresponding
column is equal in the referenced table, then the referential integrity
condition is true.

If they are neither, then the referential integrity condition is false when:

• All values are non-null and not equal, or

• Some of the values in the referencing columns of a referencing row are
non-null values, while others are null.

CHAPTER 1 Commands

Reference Manual: Commands 23

check
specifies a search_condition constraint that Adaptive Server enforces for all
the rows in the table. If Component Integration Services is enabled, you
cannot use check for remote servers.

search_condition
is a boolean expression that defines the check constraint on the column
values. These constraints can include:

• A list of constant expressions introduced with in.

• A set of conditions, which may contain wildcard characters, introduced
with like.

An expression can include arithmetic operations and Transact-SQL
functions. The search_condition cannot contain subqueries, aggregate
functions, parameters, or host variables.

next_column
includes additional column definitions (separated by commas) using the
same syntax described for a column definition.

drop
specifies the name of a column or constraint to drop from the table. If
Component Integration Services is enabled, you cannot use drop for remote
servers.

modify
specifies the name of the column whose datatype or nullability you are
changing.

replace
specifies the column whose default value you want to change with the new
value specified by a following default clause. If Component Integration
Services is enabled, you cannot use replace for remote servers.

partition number_of_partitions
creates multiple database page chains for the table. Adaptive Server can
perform concurrent insertion operations into the last page of each chain.
number_of_partitions must be a positive integer greater than or equal to 2.
Each partition requires an additional control page; lack of disk space can
limit the number of partitions you can create in a table. Lack of memory can
limit the number of partitioned tables you can access. If Component
Integration Services is enabled, you cannot use partition for remote servers.

alter table

24 Adaptive Server Enterprise

unpartition
creates a single page chain for the table by concatenating subsequent page
chains with the first one. If Component Integration Services is enabled, you
cannot use unpartition for remote servers.

enable | disable trigger
Enables or disables a trigger. For more information, see the System
Administration Guide.

lock datarows | datapages | allpages
changes the locking scheme to be used for the table.

with exp_row_size=num_bytes
specifies the expected row size. Applies only to datarows and datapages
locking schemes, to tables with variable-length rows, and only when alter
table performs a data copy. Valid values are 0, 1, and any value between the
minimum and maximum row length for the table. The default value is 0,
which means a server-wide setting is applied.

Examples Example 1 Adds a column to a table. For each existing row in the table,
Adaptive Server assigns a NULL column value:

alter table publishers
add manager_name varchar(40) null

Example 2 Adds an IDENTITY column to a table. For each existing row in
the table, Adaptive Server assigns a unique, sequential column value. Note that
the IDENTITY column has type numeric and a scale of zero. The precision
determines the maximum value (10 5 - 1, or 99,999) that can be inserted into
the column:

alter table sales_daily
add ord_num numeric(5,0) identity

Example 3 Adds a primary key constraint to the authors table. If there is an
existing primary key or unique constraint on the table, the existing constraint
must be dropped first (see Example 5):

alter table authors
add constraint au_identification
primary key (au_id, au_lname, au_fname)

Example 4 Creates an index on authors; the index has a reservepagegap value
of 16, leaving 1 empty page in the index for each 15 allocated pages:

alter table authors
add constraint au_identification
primary key (au_id, au_lname, au_fname)
with reservepagegap = 16

CHAPTER 1 Commands

Reference Manual: Commands 25

Example 5 Drops the au_identification constraint:

alter table titles
drop constraint au_identification

Example 6 Removes the default constraint on the phone column in the authors
table. If the column allows NULL values, NULL is inserted if no column value
is specified. If the column does not allow NULL values, an insert that does not
specify a column value fails:

alter table authors
replace phone default null

Example 7 Creates four new page chains for the titleauthor table. After the
table is partitioned, existing data remains in the first partition. New rows,
however, are inserted into all five partitions:

alter table titleauthor partition 5

Example 8 Concatenates all page chains of the titleauthor table, then
repartitions it with six partitions:

alter table titleauthor unpartition
alter table titleauthor partition 6

Example 9 Changes the locking scheme for the titles table to datarows locking:

alter table titles lock datarows

Example 10 Adds the not-null column author_type to the authors table with a
default of primary_author:

alter table authors
add author_type varchar(20)
default "primary_author" not null

Example 11 Drops the advance, notes, and contract columns from the titles
table:

alter table titles
drop advance, notes, contract

Example 12 Modifies the city column of the authors table to be a varchar(30)
with a default of NULL:

alter table authors
modify city varchar(30) null

Example 13 Modifies the stor_name column of the stores table to be NOT
NULL. Note that its datatype, varchar(40), remains unchanged:

alter table stores

alter table

26 Adaptive Server Enterprise

modify stor_name not null

Example 14 Modifies the type column of the titles table and changes the
locking scheme of the titles table from allpages to datarows:

alter table titles
modify type varchar(10)
lock datarows

Example 15 Modifies the notes column of the titles table from varchar(200) to
varchar(150), changes the default value from NULL to NOT NULL, and
specifies an exp_row_size of 40:

alter table titles
modify notes varchar(150) not null
with exp_row_size = 40

Example 16 Adds, modifies, and drops a column, and then adds another
column in one query. Alters the locking scheme and specifies the exp_row_size
of the new column:

alter table titles
add author_type varchar(30) null
modify city varchar(30)
drop notes
add sec_advance money default 1000 not null
lock datarows
with exp_row_size = 40

Usage • If stored procedures using select * reference a table that has been altered,
no new columns appear in the result set, even if you use the with recompile
option. You must drop the procedure and re-create it to include these new
columns. Otherwise, the wrong results can be caused by the insert...select
statement of insert into table1 select * from table2 in the procedure when the
tables have been altered and new columns have been added to the tables.

• When the table owner uses alter table, Adaptive Server disables access
rules during the execution of the command and enables them upon
completion of the command. The access rules are disabled to avoid
filtering of the table data during alter table.

Restrictions

 Warning! Do not alter the system tables.

• You cannot add a column of datatype bit to an existing table.

• The maximum number of columns in a table is:

CHAPTER 1 Commands

Reference Manual: Commands 27

• 1024 for fixed-length columns in both all-pages-locked (APL) and
data-only-locked (DOL) tables.

• 254 for variable-length columns in both APL and DOL tables.

• 1024 for variable-length columns in both APL and DOL tables.

• alter table raises an error if the number of variable-length columns in an
APL table exceeds 254.

• The maximum length for in-row Java columns is determined by the
maximum size of a variable-length column for the table’s schema, locking
style, and page size.

• When converting a table to a different locking scheme, the data in the
source table cannot violate the limits of the target table. For example, if
you attempt to convert a DOL with more than 254 variable-length columns
to an APL table, alter table fails because an APL table is restricted to
having no more than 254 columns.

• Columns with fixed-length data (for example char, binary, and so on) have
the maximum sizes shown in the following table:

Table 1-2: Maximum row and column length—APL and DOL

• The maximum number of bytes of variable length data per row depends on
the locking scheme for the table. The following describes the maximum
size columns for an APL table:

Locking scheme Page size Maximum row length Maximum column length

APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes – if table does not include
any variable length columns

16K (16384 bytes) 16300 (subject to a max
start offset of varlen = 8191)

8191-6-2 = 8183 bytes – if table
includes at least on variable length
column.*

* This size includes six bytes for the row overhead and two bytes for the row length field

Page size Maximum row length Maximum column length

2K (2048 bytes) 1960 1960

alter table

28 Adaptive Server Enterprise

The following describes the maximum size columns for a DOL table:

• You cannot partition a system table or a table that is already partitioned.

• You cannot issue the alter table command with a partition or unpartition
clause within a user-defined transaction.

• The maximum value for max_rows_per_page is 256 bytes for APL tables.
max_rows_per_page parameter is not used for DOL tables.

• You cannot partition a system table or a table that is already partitioned.

• You cannot issue the alter table command with a partition or unpartition
clause within a user-defined transaction.

• You cannot use alter table to add a declarative or check constraint and then
insert data into the table in the same batch or procedure. Either separate the
alter and insert statements into two different batches or procedures, or use
execute to perform the actions separately.

• You cannot use the following variable in alter table statements that include
defaults:

declare @a int
select @a = 2
alter table t2 add c3 int
default @a

Doing so results in error message 154, which says, “Variable is not
allowed in default.”

Getting information about tables

• For information about a table and its columns, use sp_help.

• To rename a table, execute the system procedure sp_rename (do not
rename the system tables).

4K (4096 bytes) 4008 4008

8K (8192 bytes) 8104 8157

16K (16384 bytes) 16296 16227

Page size Maximum row length Maximum column length

2K (2048 bytes) 1960 1958

4K (4096 bytes) 4008 4006

8K (8192 bytes) 8157 8102

16K (16384 bytes) 16294 16294

Page size Maximum row length Maximum column length

CHAPTER 1 Commands

Reference Manual: Commands 29

• For information about integrity constraints (unique, primary key,
references, and check) or the default clause, see create table in this chapter.

Specifying ascending or descending ordering in indexes

• Use the asc and desc keywords after index column names to specify the
sort order for the index. Creating indexes so that columns are in the same
order specified in the order by clause of queries eliminates the sorting step
during query processing. For more information, see Chapter 8, “Indexing
for Performance” in the Performance and Tuning Guide.

Using cross-database referential integrity constraints

• When you create a cross-database constraint, Adaptive Server stores the
following information in the sysreferences system table of each database:

Table 1-3: Information stored about referential integrity constraints

• When you drop a referencing table or its database, Adaptive Server
removes the foreign key information from the referenced database.

• Because the referencing table depends on information from the referenced
table, Adaptive Server does not allow you to:

• Drop the referenced table,

• Drop the external database that contains the referenced table, or

• Rename either database with sp_renamedb.

You must first remove the cross-database constraint with alter table.

• Each time you add or remove a cross-database constraint, or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases could cause database
corruption.

Information stored
in sysreferences

Columns with information
about the referenced table

Columns with information
about the referencing table

Key column IDs refkey1 through refkey16 fokey1 through fokey16

Table ID reftabid tableid

Database ID pmrydbid frgndbid

Database name pmrydbname frgndbname

alter table

30 Adaptive Server Enterprise

• The sysreferences system table stores the name and the ID number of the
external database. Adaptive Server cannot guarantee referential integrity
if you use load database to change the database name or to load it onto a
different server.

 Warning! Before dumping a database in order to load it with a different
name or move it to another Adaptive Server, use alter table to drop all
external referential integrity constraints.

Changing defaults

• You can create column defaults in two ways: by declaring the default as a
column constraint in the create table or alter table statement or by creating
the default using the create default statement and binding it to a column
using sp_bindefault.

• You cannot replace a user-defined default bound to the column with
sp_bindefault. Unbind the default with sp_unbindefault first.

• If you declare a default column value with create table or alter table, you
cannot bind a default to that column with sp_bindefault. Drop the default
by altering it to NULL, then bind the user-defined default. Changing the
default to NULL unbinds the default and deletes it from the sysobjects
table.

• Adaptive Server issues error message 154, "Variable is not allowed in
default," if you use a variable as the argument to a default that is part of an
alter table statement. For example:

declare @a int
select @a = 2
alter table t2 add c3 int
default @a

Setting space management properties for indexes

• The space management properties fillfactor, max_rows_per_page, and
reservepagegap in the alter table statement apply to indexes that are
created for primary key or unique constraints. The space management
properties affect the data pages of the table if the constraint creates a
clustered index on an allpages-locked table.

• Use sp_chgattribute to change max_rows_per_page or reservepagegap for
a table or an index, to change the exp_row_size value for a table, or to store
fillfactor values.

• Space management properties for indexes are applied:

CHAPTER 1 Commands

Reference Manual: Commands 31

• When indexes are re-created as a result of an alter table command that
changes the locking scheme for a table from allpages locking to
data-only locking or vice versa. See “Changing locking schemes” on
page 38 for more information.

• When indexes are automatically rebuilt as part of a reorg rebuild
command.

• To see the space management properties currently in effect for a table, use
sp_help. To see the space management properties currently in effect for an
index, use sp_helpindex.

• The space management properties fillfactor, max_rows_per_page, and
reservepagegap help manage space usage for tables and indexes in the
following ways:

• fillfactor leaves extra space on pages when indexes are created, but the
fillfactor is not maintained over time. It applies to all locking schemes.

• max_rows_per_page limits the number of rows on a data or index
page. Its main use is to improve concurrency in allpages-locked
tables.

• reservepagegap specifies the ratio of empty pages to full pages to
apply for commands that perform extent allocation. It applies to all
locking schemes.

Space management properties can be stored for tables and indexes so that
they are applied during alter table and reorg rebuild commands.

• The following table shows the valid combinations of space management
properties and locking schemes. If an alter table command changes the
table so that the combination is not compatible, the values stored in the
stored in system tables remain there, but are not applied during operations
on the table. If the locking scheme for a table changes so that the properties
become valid, then they are used.

• The following table shows the default values and the effects of using the
default values for the space management properties.

Parameter allpages datapages datarows

max_rows_per_page Yes No No

reservepagegap Yes Yes Yes

fillfactor Yes Yes Yes

exp_row_size No Yes Yes

alter table

32 Adaptive Server Enterprise

Conversion of max_rows_per_page to exp_row_size

• If a table has max_rows_per_page set, and the table is converted from
allpages locking to data-only locking, the value is converted to an
exp_row_size value before the alter table...lock command copies the table
to its new location. The exp_row_size is enforced during the copy. The
following table shows how the values are converted.

Using reservepagegap

• Commands that use large amounts of space allocate new space by
allocating an extent rather than allocating single pages. The
reservepagegap keyword causes these commands to leave empty pages so
that future page allocations take place close to the page that is being split
or to the page from which a row is being forwarded.

• The reservepagegap value for a table is stored in sysindexes, and is applied
when the locking scheme for a table is changed from allpages locking to
data-only locking or vice versa. To change the stored value, use the system
procedure sp_chgattribute before running alter table.

• reservepagegap specified with the clustered keyword on an
allpages-locked table overwrites any value previously specified with
create table or alter table.

Parameter Default Effect of using the default

max_rows_per_page 0 Fits as many rows as possible on the page,
up to a maximum of 255

reservepagegap 0 Leaves no gaps

fillfactor 0 Fully packs leaf pages

If max_rows_per_page
is set to Set exp_row_size to

0 Percentage value set by default exp_row_size
percent

255 1, that is, fully packed pages

1–254 The smaller of:

• maximum row size

• 2002/max_rows_per_page value

CHAPTER 1 Commands

Reference Manual: Commands 33

Partitioning tables for improved insert performance

• Partitioning a table with the partition clause of the alter table command
creates additional page chains, making multiple last pages available at any
given time for concurrent insert operations. This improves insert
performance by reducing page contention and, if the segment containing
the table is spread over multiple physical devices, by reducing I/O
contention while the server flushes data from cache to disk.

• If you are copying data into or out of a partitioned table, the Adaptive
Server must be configured for parallel processing.

• When you partition a table, Adaptive Server allocates a control page for
each partition, including the first partition. The existing page chain
becomes part of the first partition. Adaptive Server creates a first page for
each subsequent partition. Since each partition has its own control page,
partitioned tables require slightly more disk space than unpartitioned
tables.

• You can partition both empty tables and those that contain data.
Partitioning a table does not move data; existing data remains where it was
originally stored, in the first partition. For best performance, partition a
table before inserting data.

• You cannot partition a system table or a table that is already partitioned.
You can partition a table that contains text and image columns; however,
partitioning has no effect on the way Adaptive Server stores the text and
image columns.

• After you have partitioned a table, you cannot use the truncate table
command or the sp_placeobject system procedure on it.

• To change the number of partitions in a table, use the unpartition clause of
alter table to concatenate all existing page chains, then use the partition
clause of alter table to repartition the table.

• If you unpartition a table, recompile the query plans of any dependent
procedures. Unpartitioning does not automatically recompile procedures.

• When you unpartition a table with the unpartition clause of the alter table
command, Adaptive Server deallocates all control pages, including that of
the first partition, and concatenates the page chains. The resulting single
page chain contains no empty pages, with the possible exception of the
first page. Unpartitioning a table does not move data.

alter table

34 Adaptive Server Enterprise

Adding IDENTITY columns

• When adding an IDENTITY column to a table, make sure the column
precision is large enough to accommodate the number of existing rows. If
the number of rows exceeds 10 precision - 1, Adaptive Server prints an error
message and does not add the column.

• When adding an IDENTITY column to a table, Adaptive Server:

• Locks the table until all the IDENTITY column values have been
generated. If a table contains a large number of rows, this process may
be time-consuming.

• Assigns each existing row a unique, sequential IDENTITY column
value, beginning with the value 1.

• Logs each insert operation into the table. Use dump transaction to clear
the database’s transaction log before adding an IDENTITY column to
a table with a large number of rows.

• Each time you insert a row into the table, Adaptive Server generates an
IDENTITY column value that is one higher than the last value. This value
takes precedence over any defaults declared for the column in the alter
table statement or bound to it with sp_bindefault.

Altering table schema

• add, drop, or modify, and lock sub-clauses are useful to change an existing
table’s schema. A single statement can contain any number of these
sub-clauses, in any order, as long as the same column name is not
referenced more than once in the statement.

• If stored procedures using select * reference a table that has been altered,
no new columns appear in the result set, even if you use the with recompile
option. You must drop the procedure and re-create it to include these new
columns.

• You cannot drop all the columns in a table. Also, you cannot drop the last
remaining column from a table (for example, if you drop four columns
from a five-column table, you cannot then drop the remaining column). To
remove a table from the database, use drop table.

• Data copy is required:

• To drop a column

• To add a NOT NULL column

• For most alter table ... modify commands

CHAPTER 1 Commands

Reference Manual: Commands 35

Use showplan to determine if a data copy is required for a particular alter
table command.

• You can specify a change in the locking scheme for the modified table with
other alter table commands (add, drop, or modify) when the other alter table
command requires a data copy.

• If alter table performs a data copy, select into /bulkcopy/pllsort must be
turned on in the database that includes the table whose schema you are
changing.

• Adaptive Server must be configured for parallel processing when you alter
the schema of a partitioned table and the change requires a data copy.

• The modified table retains the existing space management properties
(max_rows_per_page, fillfactor, and so on) and indexes of the table.

• alter table that requires a data copy does not fire any triggers.

• You can use alter table to change the schema of remote proxy tables created
and maintained by Component Integration Services (CIS). For
information about CIS, see the Component Integration Services User’s
Guide.

• You cannot perform a data copy and add a table level or referential
integrity constraint in the same statement.

• You cannot perform a data copy and create a clustered index in the same
statement.

• If you add a NOT NULL column, you must also specify a default clause.
This rule has one exception: if you add a user-defined type column, and
the type has a default bound to it, you do not need to specify a default
clause.

• You can always add, drop, or modify a column in an all-pages locked
tables. However, there are restrictions for adding, dropping, or modifying
a column in a data-only locked table, which are described in the following
table:

If you need to add, drop, or modify a column in a data-only locked table
partitioned table with a clustered index, you can:

Type of
index

All pages locked,
partitioned table

All pages locked,
unpartitioned table

Data-only locked,
partitioned table

Data-only locked,
unpartitioned table

Clustered Yes Yes No Yes

Non-clustered Yes Yes Yes Yes

alter table

36 Adaptive Server Enterprise

a Drop the clustered index.

b Alter the (data-only locked) table.

c Re-create the clustered index.

• You cannot add a NOT NULL Java object as a column. By default, all Java
columns always have a default value of NULL, and are stored as either
varbinary strings or as image datatypes.

• You cannot modify a partitioned table that contains a Java column if the
modification requires a data copy. Instead, first unpartition the table, run
the alter table command, then repartition the table.

• You cannot drop the key column from an index or a referential integrity
constraint. To drop a key column, first drop the index or referential
integrity constraint, then drop the key column. See the Transact-SQL
User’s Guide for more information.

• You can drop columns that have defaults or rules bound to them. Any
column-specific defaults are also dropped when you drop the column. You
cannot drop columns that have check constraints or referential constraints
bound to them. Instead, first drop the check constraint or referential
constraint, then drop the column. Use sp_helpconstraint to identify any
constraints on a table, and use sp_depends to identify any column- level
dependencies.

• You cannot drop a column from a system table. Also, you cannot drop
columns from user tables that are created and used by Sybase-provided
tools and stored procedures.

• You can generally modify the datatype of an existing column to any other
datatype if the table is empty. If the table is not empty, you can modify the
datatype to any datatype that is explicitly convertible to the original
datatype.

• You can:

• Add a new IDENTITY column.

• Drop an existing IDENTITY column.

• Modify the size of an existing IDENTITY.

See the Transact-SQL User’s Guide for more information.

CHAPTER 1 Commands

Reference Manual: Commands 37

• Altering the schema of a table increments the schema count, causing
existing stored procedures that access this table to be renormalized the
next time they are executed. Changes in datatype-dependent stored
procedures or views may fail with datatype normalization type errors. You
must update these dependent objects so they refer to the modified schema
of the table.

Restrictions for modifying a table schema

• You cannot run alter table from inside a transaction.

• Altering a table’s schema can invalidate backups that you made using bcp.
These backups may use a tables schema that is no longer compatible with
the table’s current schema.

• You can add NOT NULL columns with check constraints, however,
Adaptive Server does not validate the constraint against existing data.

• You cannot change the locking scheme of a table using the alter table . . .
add, drop, or modify commands if the table has a clustered index and the
operation requires a data copy. Instead you can

a Drop the clustered index.

b Alter the table’s schema.

c Re-create the clustered index.

• You cannot alter a table’s schema if there are any active open cursors on
the table.

Restrictions for modifying text and image columns

• You can only add text or image columns that accept null values.

To add a text or image column so it contains only non-null values, first add
a column that only accepts null values and then update it to the non-null
values.

• You can only modify a column from text datatype to the following
datatypes:

• char

• varchar

• unichar

• univarchar

• nchar

alter table

38 Adaptive Server Enterprise

• nvarchar

• You can only modify a column from image datatype to a varbinary
datatype, and the column can only include non-null data.

• You can modify text or image columns to any other datatypes only if the
table is empty.

• You cannot add a new text or image column and then drop an existing text
or image column in the same statement.

• You cannot modify a column to either text or image datatype.

Changing locking schemes

• alter table supports changing from any locking scheme to any other locking
scheme. You can change:

• From allpages to datapages or vice versa

• From allpages to datarows or vice versa

• From datapages to datarows or vice versa

• Before you change from allpages locking to a data-only locking scheme,
or vice versa, use sp_dboption to set the database option
select into/bulkcopy/pllsort to true, then run checkpoint in the database if any
of the tables are partitioned and the sorts for the indexes require a parallel
sort.

• After changing the locking scheme from allpages-locking to data-only
locking or vice versa, the use of the dump transaction command to back up
the transaction log is prohibited; you must first perform a full database
dump.

• When you use alter table...lock to change the locking scheme for a table
from allpages locking to data-only locking or vice versa, Adaptive Server
makes a copy of the table’s data pages. There must be enough room on the
segment where the table resides for a complete copy of the data pages.
There must be space on the segment where the indexes reside to rebuild
the indexes.

Clustered indexes for data-only-locked tables have a leaf level above the
data pages. If you are altering a table with a clustered index from
allpages-locking to a data-only-locking, the resulting clustered index
requires more space. The additional space required depends on the size of
the index keys.

CHAPTER 1 Commands

Reference Manual: Commands 39

Use sp_spaceused to determine how much space is currently occupied by
the table, and use sp_helpsegment to see the space available to store the
table.

• When you change the locking scheme for a table from allpages locking to
datapages locking or vice versa, the space management properties are
applied to the tables, as the data rows are copied, and to the indexes, as
they are re-created. When you change from one data-only locking scheme
to another, the data pages are not copied, and the space management
properties are not applied.

• If a table is partitioned, changing the locking scheme performs a
partition-to-partition copy of the rows. It does not balance the data on the
partitions during the copy.

• When you change the locking scheme for a table, the alter table...lock
command acquires an exclusive lock on the table until the command
completes.

• When you use alter table...lock to change from datapages locking to
datarows locking, the command does not copy data pages or rebuild
indexes. It only updates system tables.

• Changing the locking scheme while other users are active on the system
may have the following effects on user activity:

• Query plans in the procedure cache that access the table will be
recompiled the next time they are run.

• Active multi-statement procedures that use the table are recompiled
before continuing with the next step.

• Ad hoc batch transactions that use the table are terminated.

 Warning! Changing the locking scheme for a table while a bulk copy
operation is active can cause table corruption. Bulk copy operates by
first obtaining information about the table and does not hold a lock
between the time it reads the table information and the time it starts
sending rows, leaving a small window of time for an alter table...lock
command to start.

Adding Java-SQL columns

• If Java is enabled in the database, you can add Java-SQL columns to a
table. For more information, see Java in Adaptive Server Enterprise.

• The declared class (datatype) of the new Java-SQL column must
implement either the Serializable or Externalizable interface.

alter table

40 Adaptive Server Enterprise

• When you add a Java-SQL column to a table, the Java-SQL column cannot
be specified:

• As a foreign key

• In a references clause

• As having the UNIQUE property

• As the primary key

• If in row is specified, then the value stored cannot exceed 16K bytes,
depending on the page size of the data server.

• If off row is specified, then:

• The column cannot be referenced in a check constraint.

• The column cannot be referenced in a select that specifies distinct.

• The column cannot be specified in a comparison operator, in a
predicate, or in a group by clause.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

See Chapter 1, “System and User-Defined Datatypes” in Reference Manual:
Building Blocks for datatype compliance information.

Permissions alter table permission defaults to the table owner; it cannot be transferred
except to the Database Owner, who can impersonate the table owner by
running the setuser command. A System Administrator can also alter user
tables.

See also Commands create index, create table, dbcc, drop database, dump transaction,
insert, setuser

System procedures sp_chgattribute, sp_help, sp_helpartition, sp_rename

CHAPTER 1 Commands

Reference Manual: Commands 41

begin...end
Description Encloses a series of SQL statements so that control-of-flow language, such as

if...else, can affect the performance of the whole group.

Syntax begin
statement block

end

Parameters statement block
is a series of statements enclosed by begin and end.

Examples Example 1 Without begin and end, the if condition would cause execution of
only one SQL statement:

if (select avg(price) from titles) < $15
begin

update titles
set price = price * $2
select title, price
from titles
where price > $28

end

Example 2 Without begin and end, the print statement would not execute:

create trigger deltitle
on titles
for delete
as
if (select count(*) from deleted, salesdetail
where salesdetail.title_id = deleted.title_id) > 0

begin
rollback transaction
print "You can’t delete a title with sales."

end
else

print "Deletion successful--no sales for this
title."

Usage • begin...end blocks can nest within other begin...end blocks.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions begin...end permission defaults to all users. No permission is required to use it.

See also Commands if...else

begin transaction

42 Adaptive Server Enterprise

begin transaction
Description Marks the starting point of a user-defined transaction.

Syntax begin tran[saction] [transaction_name]

Parameters transaction_name
is the name assigned to this transaction. Transaction names must conform to
the rules for identifiers. Use transaction names only on the outermost pair of
nested begin transaction/commit or begin transaction/rollback statements.

Examples Explicitly begins a transaction for the insert statement:

begin transaction
insert into publishers (pub_id) values ("9999")

commit transaction

Usage • Define a transaction by enclosing SQL statements and/or system
procedures within the phrases begin transaction and commit. If you set
chained transaction mode, Adaptive Server implicitly invokes a begin
transaction before the following statements: delete, insert, open, fetch,
select, and update. You must still explicitly close the transaction with a
commit.

• To cancel all or part of a transaction, use the rollback command. The
rollback command must appear within a transaction; you cannot roll back
a transaction after it is committed.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions begin transaction permission defaults to all users. No permission is required to
use it.

See also Commands commit, rollback, save transaction

CHAPTER 1 Commands

Reference Manual: Commands 43

break
Description Causes an exit from a while loop. break is often activated by an if test.

Syntax while logical_expression
statement

break
statement

continue

Parameters logical_expression
is an expression (a column name, constant, any combination of column
names and constants connected by arithmetic or bitwise operators, or a
subquery) that returns TRUE, FALSE, or NULL. If the logical expression
contains a select statement, enclose the select statement in parentheses.

Examples If the average price is less than $30, double the prices. Then, select the
maximum price. If it is less than or equal to $50, restart the while loop and
double the prices again. If the maximum price is more than $50, exit the while
loop and print a message:

while (select avg(price) from titles) < $30
begin

update titles
set price = price * 2
select max(price) from titles

 if (select max(price) from titles) > $50
break

else
continue

end
begin
print "Too much for the market to bear"

 end

Usage • break causes an exit from a while loop. Statements that appear after the
keyword end, which marks the end of the loop, are then executed.

• If two or more while loops are nested, the inner break exits to the next
outermost loop. First, all the statements after the end of the inner loop run;
then, the next outermost loop restarts.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions break permission defaults to all users. No permission is required to use it.

See also Commands continue, while

case

44 Adaptive Server Enterprise

case
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used.

Syntax case
when search_condition then expression
[when search_condition then expression]...
[else expression]

end

case and values syntax:

case expression
when expression then expression
[when expression then expression]...
[else expression]

end

Parameters case
begins the case expression.

when
precedes the search condition or the expression to be compared.

search_condition
is used to set conditions for the results that are selected. Search conditions
for case expressions are similar to the search conditions in a where clause.
Search conditions are detailed in the Transact-SQL User’s Guide.

then
precedes the expression that specifies a result value of case.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 249 in Chapter 4, “Expressions, Identifiers, and Wildcard Characters”
of Reference Manual: Building Blocks.

Examples Example 1 Selects all the authors from the authors table and, for certain
authors, specifies the city in which they live:

select au_lname, postalcode,
 case

when postalcode = "94705"
then "Berkeley Author"

when postalcode = "94609"
then "Oakland Author"

when postalcode = "94612"

CHAPTER 1 Commands

Reference Manual: Commands 45

then "Oakland Author"
when postalcode = "97330"

then "Corvallis Author"
end

from authors

Example 2 Returns the first occurrence of a non-NULL value in either the
lowqty or highqty column of the discounts table:

select stor_id, discount,
coalesce (lowqty, highqty)

from discounts

Example 3 This is an alternative way of writing Example 2:

select stor_id, discount,
case

when lowqty is not NULL then lowqty
else highqty

end
from discounts

Example 4 Selects the titles and type from the titles table. If the book type is
UNDECIDED, nullif returns a NULL value:

select title,
nullif(type, "UNDECIDED")

from titles

Example 5 This is an alternative way of writing Example 4:

select title,
case

when type = "UNDECIDED" then NULL
else type

end
from titles

Usage • case expression simplifies standard SQL expressions by allowing you to
express a search condition using a when...then construct instead of an if
statement.

• case expressions can be used anywhere an expression can be used in SQL.

• At least one expression must be something other than the null keyword.
This example produces the following error message:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

case

46 Adaptive Server Enterprise

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
“Datatype of mixed-mode expressions” on page 6 in Chapter 1, “System
and User-Defined Datatypes” of Reference Manual: Building Blocks. If
you specify two datatypes that Adaptive Server cannot implicitly convert
(for example, char and int), the query fails.

• coalesce is an abbreviated form of a case expression. Example 3 describes
an alternative way of writing the coalesce statement.

• coalesce must be followed by at least two expressions. This example
produces the following error message:

select stor_id, discount, coalesce (highqty)
from discounts

A single coalesce element is illegal in a COALESCE expression.

• nullif is an abbreviated form of a case expression. Example 5 describes an
alternative way of writing nullif.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions case permission defaults to all users. No permission is required to use it.

See also Commands coalesce, nullif, if...else, select, where clause

CHAPTER 1 Commands

Reference Manual: Commands 47

checkpoint
Description Writes all dirty pages (pages that have been updated since they were last

written) to the database device.

Syntax checkpoint [all | [dbname[, dbname, dbname,]]

Examples Writes all dirty pages in the current database to the database device, regardless
of the system checkpoint schedule:

checkpoint

Usage • Use checkpoint only as a precautionary measure in special circumstances.
For example, Adaptive Server instructs you to issue the checkpoint
command after resetting database options.

• Use checkpoint each time you change a database option with the system
procedure sp_dboption.

• You can specify the database or databases to run checkpoint.

• If you want checkpoint all to run against all databases, including system
and temp databases, you have to have the sa_role or oper_role.

• If you do not have the sa_role or oper_role, the checkpoint all will only run
against those databases you own.

Automatic checkpoints

• Checkpoints caused by the checkpoint command supplement automatic
checkpoints, which occur at intervals calculated by Adaptive Server on the
basis of the configurable value for maximum acceptable recovery time.

• The checkpoint shortens the automatic recovery process by identifying a
point at which all completed transactions are guaranteed to have been
written to the database device. A typical checkpoint takes about 1 second,
although checkpoint time varies depending on the amount of activity on
Adaptive Server.

• The automatic checkpoint interval is calculated by Adaptive Server on the
basis of system activity and the recovery interval value in the system table
syscurconfigs. The recovery interval determines checkpoint frequency by
specifying the maximum amount of time it should take for the system to
recover. Reset this value by executing the system procedure sp_configure.

• If the housekeeper task can flush all active buffer pools in all configured
caches during the server’s idle time, it wakes up the checkpoint task. The
checkpoint task determines whether it can checkpoint the database.

checkpoint

48 Adaptive Server Enterprise

Checkpoints that occur as a result of the housekeeper task are known as
free checkpoints. They do not involve writing many dirty pages to the
database device, since the housekeeper task has already done this work.
They may improve recovery speed for the database.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions checkpoint permission defaults to the Database Owner. It cannot be transferred.

See also System procedures sp_configure, sp_dboption

CHAPTER 1 Commands

Reference Manual: Commands 49

close
Description Deactivates a cursor.

Syntax close cursor_name

Parameters cursor_name
is the name of the cursor to close.

Examples Closes the cursor named authors_crsr:

close authors_crsr

Usage • The close command essentially removes the cursor’s result set. The cursor
position within the result set is undefined for a closed cursor.

• Adaptive Server returns an error message if the cursor is already closed or
does not exist.

Standards ANSI SQL – Compliance level: Entry-level compliant.

Permissions close permission defaults to all users. No permission is required to use it.

See also Commands deallocate cursor, declare cursor, fetch, open

coalesce

50 Adaptive Server Enterprise

coalesce
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used; alternative for a case expression.

Syntax coalesce(expression, expression [, expression]...)

Parameters coalesce
evaluates the listed expressions and returns the first non-null value. If all the
expressions are null, coalesce returns a null.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 249 in Chapter 4, “Expressions, Identifiers, and Wildcard Characters”
of Reference Manual: Building Blocks.

Examples Example 1 Returns the first occurrence of a non-NULL value in either the
lowqty or highqty column of the discounts table:

select stor_id, discount,
coalesce (lowqty, highqty)

from discounts

Example 2 This is an alternative way of writing Example 1:

select stor_id, discount,
case

when lowqty is not NULL then lowqty
else highqty

end
from discounts

Usage • coalesce expression simplifies standard SQL expressions by allowing you
to express a search condition as a simple comparison instead of using a
when...then construct.

• coalesce expressions can be used anywhere an expression can be used in
SQL.

• At least one result of the coalesce expression must return a non-null value.
This example produces the following error message:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

CHAPTER 1 Commands

Reference Manual: Commands 51

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
“Datatype of mixed-mode expressions” on page 6 in Chapter 1, “System
and User-Defined Datatypes” of Reference Manual: Building Blocks. If
you specify two datatypes that Adaptive Server cannot implicitly convert
(for example, char and int), the query fails.

• coalesce is an abbreviated form of a caseexpression. Example 2 describes
an alternative way of writing the coalesce statement.

• coalesce must be followed by at least two expressions. This example
produces the following error message:

select stor_id, discount, coalesce (highqty)
from discounts

A single coalesce element is illegal in a COALESCE expression.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions coalesce permission defaults to all users. No permission is required to use it.

See also Commands case, nullif, select, if...else, where clause

commit

52 Adaptive Server Enterprise

commit
Description Marks the ending point of a user-defined transaction.

Syntax commit [tran | transaction | work] [transaction_name]

Parameters tran | transaction | work
specifies that you want to commit the transaction or the work. If you specify
tran, transaction, or work, you can also specify the transaction_name.

transaction_name
is the name assigned to the transaction. It must conform to the rules for
identifiers. Use transaction names only on the outermost pair of nested begin
transaction/commit or begin transaction/rollback statements.

Examples After updating the royaltyper entries for the two authors, insert the savepoint
percentchanged, then determine how a 10 percent increase in the book’s price
would affect the authors’ royalty earnings. The transaction is rolled back to the
savepoint with the rollback transaction command:

begin transaction royalty_change

update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

update titleauthor
set royaltyper = 35
from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

save transaction percentchanged

update titles
set price = price * 1.1
where title = "The Gourmet Microwave"

select (price * total_sales) * royaltyper
from titles, titleauthor
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id

rollback transaction percentchanged

CHAPTER 1 Commands

Reference Manual: Commands 53

commit transaction

Usage • Define a transaction by enclosing SQL statements and/or system
procedures with the phrases begin transaction and commit. If you set the
chained transaction mode, Adaptive Server implicitly invokes a begin
transaction before the following statements: delete, insert, open, fetch,
select, and update. You must still explicitly enclose the transaction with a
commit.

• To cancel all or part of an entire transaction, use the rollback command.
The rollback command must appear within a transaction. You cannot roll
back a transaction after the commit has been entered.

• If no transaction is currently active, the commit or rollback statement has
no effect on Adaptive Server.

Standards ANSI SQL – Compliance level: Entry-level compliant.

The commit transaction and commit tran forms of the statement are
Transact-SQL extensions.

Permissions commit permission defaults to all users.

See also Commands begin transaction, rollback, save transaction

compute clause

54 Adaptive Server Enterprise

compute clause
Description Generates summary values that appear as additional rows in the query results.

Syntax start_of_select_statement
compute row_aggregate (column_name)

[, row_aggregate(column_name)]...
[by column_name [, column_name]...]

Parameters row_aggregate
is one of the following:

column_name
is the name of a column. It must be enclosed in parentheses. Only numeric
columns can be used with sum and avg.

One compute clause can apply several aggregate functions to the same set of
grouping columns (see Examples 2 and 3). To create more than one group,
use more than one compute clause (see Example 5).

by
calculates the row aggregate values for subgroups. Whenever the value of
the by item changes, row aggregate values are generated. If you use by, you
must use order by.

Listing more than one item after by breaks a group into subgroups and
applies a function at each level of grouping.

Examples Example 1 Calculates the sum of the prices of each type of cook book that
costs more than $12:

select type, price
from titles
where price > $12

and type like "%cook"
order by type, price

compute sum(price) by type

type price
--------- ------------
mod_cook 19.99

Function Meaning

sum Total of values in the (numeric) column

avg Average of values in the (numeric) column

min Lowest value in the column

max Highest value in the column

count Number of values in the column

CHAPTER 1 Commands

Reference Manual: Commands 55

sum

19.99
type price
--------- ------------
trad_cook 14.99
trad_cook 20.95

sum

35.94
(5 rows affected)

Example 2 Calculates the sum of the prices and advances for each type of cook
book that costs more than $12:

select type, price, advance
from titles
where price > $12

and type like "%cook"
order by type, price

compute sum(price), sum(advance) by type

type price advance
--------- --------- ------------
mod_cook 19.99 0.00

sum sum
--------- ------------

19.99 0.00

type price advance
--------- --------- ------------
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

sum sum
--------- ------------

35.94 15,000.00
(5 rows affected)

Example 3 Calculates the sum of the prices and maximum advances of each
type of cook book that costs more than $12:

select type, price, advance
from titles
where price > $12

and type like "%cook"
order by type, price

compute sum(price), max(advance) by type

type price advance

compute clause

56 Adaptive Server Enterprise

--------- --------- -------------
mod_cook 19.99 0.00

sum

19.99
max

 0.00

type price advance
--------- --------- -------------
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

sum

35.94
 max

8,000.00
(5 rows affected)

Example 4 Breaks on type and pub_id and calculates the sum of the prices of
psychology books by a combination of type and publisher ID:

select type, pub_id, price
from titles
where price > $10

and type = "psychology"
order by type, pub_id, price

compute sum(price) by type, pub_id

type pub_id price
------------ --------- -----------
psychology 0736 10.95
psychology 0736 19.99

sum

30.94

type pub_id price
------------ --------- ---------
psychology 0877 21.59

sum

21.59
(5 rows affected)

Example 5 Calculates the grand total of the prices of psychology books that
cost more than $10 in addition to calculating sums by type and pub_id:

CHAPTER 1 Commands

Reference Manual: Commands 57

select type, pub_id, price
from titles
where price > $10

and type = "psychology"
order by type, pub_id, price
compute sum(price) by type, pub_id
compute sum(price) by type

type pub_id price
------------ --------- ---------
psychology 0736 10.95
psychology 0736 19.99

sum

30.94

type pub_id price
------------ --------- ---------
psychology 0877 21.59

sum

21.59
sum

52.53
(6 rows affected)

Example 6 Calculates the grand totals of the prices and advances of cook
books that cost more than $10:

select type, price, advance
from titles
where price > $10

and type like "%cook"
compute sum(price), sum(advance)

type price advance
--------- ----------- --------------
mod_cook 19.99 0.00
trad_cook 20.95 8,000.00
trad_cook 11.95 4,000.00
trad_cook 14.99 7,000.00

sum sum
----------- --------------

 67.88 19,000.00
(5 rows affected)

Example 7 Calculates the sum of the price of cook books and the sum of the
price used in an expression:

compute clause

58 Adaptive Server Enterprise

select type, price, price*2
from titles

where type like "%cook"
compute sum(price), sum(price*2)

type price
------------ -------------- ------------
mod_cook 19.99 39.98
mod_cook 2.99 5.98
trad_cook 20.95 41.90
trad_cook 11.95 23.90
trad_cook 14.99 29.98

 sum sum
 ============= ============

 70.87 141.74

Usage • The compute clause allows you to see the detail and summary rows in one
set of results. You can calculate summary values for subgroups, and you
can calculate more than one aggregate for the same group.

• compute can be used without by to generate grand totals, grand counts, and
so on. order by is optional if you use the compute keyword without by. See
Example 6.

• If you use compute by, you must also use an order by clause. The columns
listed after compute by must be identical to or a subset of those listed after
order by and must be in the same left-to-right order, start with the same
expression, and not skip any expressions. For example, if the order by
clause is order by a, b, c, the compute by clause can be any (or all) of these:

compute by a, b, c
compute by a, b
compute by a

Restrictions

• You cannot use more than 127 aggregate columns in a compute clause.

• You cannot use a compute clause in a cursor declaration.

• Summary values can be computed for both expressions and columns. Any
expression or column that appears in the compute clause must appear in the
select list.

• Aliases for column names are not allowed as arguments to the row
aggregate in a compute clause, although they can be used in the select list,
the order by clause, and the by clause of compute.

• You cannot use select into in the same statement as a compute clause,
because statements that include compute do not generate normal tables.

CHAPTER 1 Commands

Reference Manual: Commands 59

• If a compute clause includes a group by clause:

• The compute clause cannot contain more than 255 aggregates

• The group by clause cannot contain more than 255 columns

• Columns included in a compute clause cannot be longer than 255 bytes.

compute results appear as a new row or rows

• The aggregate functions ordinarily produce a single value for all the
selected rows in the table or for each group, and these summary values are
shown as new columns. For example:

select type, sum(price), sum(advance)
from titles
where type like "%cook"
group by type
type
------------- --------- ----------
mod_cook 22.98 15,000.00
trad_cook 47.89 19,000.00

(2 rows affected)

• The compute clause makes it possible to retrieve detail and summary rows
with one command. For example:

select type, price, advance
from titles
where type like "%cook"
order by type
compute sum(price), sum(advance) by type
type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:
---------------------- -----------------

 22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

Compute Result:
---------------------- -----------------

compute clause

60 Adaptive Server Enterprise

 47.89 19,000.00
(7 rows affected)

• Table 1-4 lists the output and grouping of different types of compute
clauses.

Table 1-4: compute by clauses and detail rows

Case sensitivity

• If your server has a case-insensitive sort order installed, compute ignores
the case of the data in the columns you specify. For example, given this
data:

select * from groupdemo
lname amount
---------- ------------------
Smith 10.00
smith 5.00
SMITH 7.00
Levi 9.00
Lévi 20.00

compute by on lname produces these results:

 select lname, amount from groupdemo
 order by lname
 compute sum(amount) by lname
 lname amount
 ---------- ------------------------
 Levi 9.00

 Compute Result:

 9.00

 lname amount
 ---------- ------------------------

Clauses and grouping Output Examples

One compute clause, same function One detail row 1, 2, 4, 6, 7

One compute clause, different functions One detail row per type of function 3

More than one compute clause, same
grouping columns

One detail row per compute clause;
detail rows together in the output

Same results as having one
compute clause with different
functions

More than one compute clause, different
grouping columns

One detail row per compute clause;
detail rows in different places,
depending on the grouping

5

CHAPTER 1 Commands

Reference Manual: Commands 61

 Lévi 20.00

Compute Result:

20.00

 lname amount
 ---------- ------------------------
 smith 5.00
 SMITH 7.00
 Smith 10.00

Compute Result:

22.00

The same query on a case- and accent-insensitive server produces these
results:

 lname amount
 ---------- ------------------------
 Levi 9.00
 Lévi 20.00

Compute Result:

29.00

 lname amount
 ---------- ------------------------
 smith 5.00
 SMITH 7.00
 Smith 10.00

Compute Result:

22.00

Standards ANSI SQL – Compliance level: Transact-SQL extension.

See also Commands group by and having clauses, select

Functions avg, count, max, min, sum

connect to...disconnect

62 Adaptive Server Enterprise

connect to...disconnect
Description Component Integration Services only Connects to the specified server

and disconnects the connected server.

Syntax connect to server_name
disconnect

Parameters server_name
is the server to which a passthrough connection is required.

Examples Example 1 Establishes a passthrough connection to the server named
SYBASE:

connect to SYBASE

Example 2 Disconnects the connected server:

disconnect

Usage • connect to specifies the server to which a passthrough connection is
required. Passthrough mode enables you to perform native operations on
a remote server.

• server_name must be the name of a server in the sysservers table, with its
server class and network name defined.

• When establishing a connection to server_name on behalf of the user,
Component Integration Services uses one of the following identifiers:

• A remote login alias described in sysattributes, if present

• The user’s name and password

In either case, if the connection cannot be made to the specified server,
Adaptive Server returns an error message.

• For more information about adding remote servers, see sp_addserver.

• After making a passthrough connection, Component Integration Services
bypasses the Transact-SQL parser and compiler when subsequent
language text is received. It passes statements directly to the specified
server, and converts the results into a form that can be recognized by the
Open Client interface and returned to the client program.

• To close the connection created by the connect to command, use the
disconnect command. You can use this command only after the connection
has been made using connect to.

• The disconnect command can be abbreviated to disc.

CHAPTER 1 Commands

Reference Manual: Commands 63

• The disconnect command returns an error unless connect to has been
previously issued and the server is connected to a remote server.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Permission to use the connect to command must be explicitly granted by the
System Administrator. The syntax is:

grant connect to user_name

The System Administrator can grant or revoke connect permission to public
globally while in the master database. If the System Administrator wants to
grant or revoke connect to permission for a particular user, the user must be a
valid user of the master database, and the System Administrator must first
revoke permission from public as follows:

use master
go
revoke connect from public
go
sp_adduser fred
go
grant connect to fred
go

See also Commands create existing table, grant

System procedures sp_addserver, sp_autoconnect, sp_helpserver,
sp_passthru, sp_remotesql, sp_serveroption

continue

64 Adaptive Server Enterprise

continue
Description Restarts the while loop. continue is often activated by an if test.

Syntax while boolean_expression
statement

break
statement

continue

Examples If the average price is less than $30, double the prices. Then, select the
maximum price. If it is less than or equal to $50, restart the while loop and
double the prices again. If the maximum price is more than $50, exit the while
loop and print a message:

while (select avg(price) from titles) < $30
begin

update titles
set price = price * 2
select max(price) from titles

if (select max(price) from titles) > $50
 break

else
 continue
end

begin
print "Too much for the market to bear"
end

Usage • continue restarts the while loop, skipping any statements after continue.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions continue permission defaults to all users. No permission is required to use it.

See also Commands break, while

CHAPTER 1 Commands

Reference Manual: Commands 65

create database
Description Creates a new database.

Syntax create [temporary] database database_name
[on {default | database_device} [= size]

[, database_device [= size]]...]
[log on database_device [= size]

[, database_device [= size]]...]
[with {override | default_location = "pathname"}]
[for {load | proxy_update}]

Parameters temporary
indicates that the you are creating a temporary database.

database_name
is the name of the new database. It must conform to the rules for identifiers
and cannot be a variable.

on
indicates a location and size for the database.

default
indicates that create database can put the new database on any default
database device(s), as shown in sysdevices.status. To specify a size for the
database without specifying a location, use this command:

on default = size

To change a database device’s status to “default,” use sp_diskdefault.

database_device
is the logical name of the device on which to locate the database. A database
can occupy different amounts of space on each of several database devices.
To add database devices to Adaptive Server, use disk init.

size
is the amount of space to allocate to the database extension. Size can be in
the following unit specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes),
and ‘g’ or ‘G’ (gigabytes). Sybase recommends that you always include a
unit specifier. Quotes are optional if you do not include a unit specifier.
However, you must use quotes if you include a unit specifier.

log on
specifies the logical name of the device for the database logs. You can
specify more than one device in the log on clause.

create database

66 Adaptive Server Enterprise

with override
forces Adaptive Server to accept your device specifications, even if they mix
data and transaction logs on the same device, thereby endangering
up-to-the-minute recoverability for your database. If you attempt to mix log
and data on the same device without using this clause, the create database
command fails. If you mix log and data, and use with override, you are
warned, but the command succeeds.

for load
invokes a streamlined version of create database that can be used only for
loading a database dump. See “Using the for load option” on page 70 for
more information.

with default_location
specifies the storage location of new tables. If you also specify the for
proxy_update clause, one proxy table for each remote table or view is
automatically created from the specified location.

for proxy_update
automatically gets metadata from the remote location and creates proxy
tables. You cannot use for proxy_update unless you also specify with
default_location.

Examples Example 1 Creates a database named pubs:

create database pubs

Example 2 Creates a 4MB database named pubs:

create database pubs
on default = 4

If you do not provide a unit specifier for size, the value provided for pubs is
presumed to be in megabytes.

Example 3 Creates a database named pubs with 3MB on the datadev device
and 2MB on the moredatadev device:

create database pubs
on datadev = "3M", moredatadev = '2.0m'

You can use both single and double quotes, and both “m” and “M” as size
specifiers.

Example 4 Creates a database named pubs with 3MB of data on the datadev
device and a 0.5Gb log on the logdev device:

create database pubs
on datadev = '0.3g'
log on logdev = '0.05G'

CHAPTER 1 Commands

Reference Manual: Commands 67

Example 5 Creates a proxy database named proxydb but does not
automatically create proxy tables:

create database proxydb
with default_location
"UNITEST.pubs.dbo."

Example 6 Creates a proxy database named proxydb and automatically creates
proxy tables:

create database proxydb
on default = "4M"
with default_location
"UNITEST.pubs2.dbo."
for proxy_update

Example 7 Creates a proxy database named proxydb and,and brings over all
remote tables from a remote database regardless of who created them:

create database proxydb
on default = 4
with default_location
"UNITEST.pubs2.."
for proxy_update

Example 8 Creates a temporary database called mytempdb1, with 3MB of data
on the datadev device and 1MB of log on the logdev device:

create temporary database mytempdb1
on datadev = '3m' log on logdev = '1M'

Usage • Use create database from the master database.

• You can specify the size as a float datatype, however, the size is rounded
down to the nearest multiple of the allocation unit.

• If the size of the database is not explicitly stated, the size is determined by
the size of the model database. The minimum size that you can create a
database is four allocation units.

• Because Adaptive Server allocates space for databases for create database
and alter database in chunks of 256 logical pages, these commands round
the specified size down to the nearest multiple of allocation units.

• If you do not include a unit specifier, Adaptive Server interprets the size
in terms of megabytes of disk space, and this number is converted to the
logical page size the server uses.

create database

68 Adaptive Server Enterprise

• If you do not specify a location and size for a database, the default location
is any default database device(s) indicated in master..sysdevices. The
default size is the larger of the size of the model database or the default
database size parameter in sysconfigures.

System Administrators can increase the default size by using sp_configure
to change the value of default database size and restarting Adaptive Server.
The default database size parameter must be at least as large as the model
database. If you increase the size of the model database, the default size
must also be increased.

If Adaptive Server cannot give you as much space as you want where you
have requested it, it comes as close as possible, on a per-device basis, and
prints a message telling how much space was allocated and where it was
allocated. The maximum size of a database is system-dependent.

• If a proxy database is created using:

create database mydb on my_device
with default_location = "pathname" for proxy_update

The presence of the device name is enough to bypass size calculation, and
this command may fail if the default database size (the size of the model
database) isn’t large enough to contain all of the proxy tables.

To allow CIS to estimate database size, do not include any device name or
other option with the command:

create database mydb
with default_location = "pathname" for proxy_update

Restrictions

• Adaptive Server can manage as many as 32,767 databases.

• Adaptive Server can create only one database at a time. If two database
creation requests collide, one user sees this message:

model database in use: cannot create new database

• Each time you allocate space on a database device with create database or
alter database, that allocation represents a device fragment, and the
allocation is entered as a row in sysusages.

• The maximum number of named segments for a database is 32. Segments
are named subsets of database devices available to a particular Adaptive
Server. For more information on segments, see the System Administration
Guide.

CHAPTER 1 Commands

Reference Manual: Commands 69

Temporary databases

• The temporary status of a database, which is set during the creation of the
temporary database, is indicated by value 0x00000100 (256 decimal) of
the status3 field of a sysdatabases entry.

• In addition to all options inherited from model, a temporary database, like
the system tempdb, has the following database options set:

• select into/bulkcopy

• trunc log on chkpt

• As with system tempdb, the guest user is added to the temporary database,
and create table permission is granted to PUBLIC.

• Unused pages are not cleared during creation of the temporary database,
since a temporary database is re-created every time the server is restarted.

New databases created from model

• Adaptive Server creates a new database by copying the model database.

• You can customize model by adding tables, stored procedures,
user-defined datatypes, and other objects, and by changing database
option settings. New databases inherit these objects and settings from
model.

• To guarantee recoverability, create database must clear every page that
was not initialized when the model database was copied. This may take
several minutes, depending on the size of the database and the speed of
your system.

If you are creating a database to load a database dump into it, you can use
the for load option to skip the page-clearing step. This makes database
creation considerably faster.

create database

70 Adaptive Server Enterprise

Ensuring database recoverability

• Back up the master database each time you create a new database. This
makes recovery easier and safer if master is damaged.

Note If you create a database and fail to back up master, you may be able
to recover the changes with disk reinit.

• The with override clause allows you to mix log and data segments on a
single device. However, for full recoverability, the device or devices
specified in log on should be different from the physical device that stores
the data. In the event of a hard disk crash, the database can be recovered
from database dumps and transaction logs.

You can create a small database on a single device that is used to store both
the transaction log and the data, but you must rely on the dump database
command for backups.

• The size of the device required for the transaction log varies according to
the amount of update activity and the frequency of transaction log dumps.
As a rule of thumb, allocate to the log device 10 – 25 percent of the space
you allocate to the database itself. It is best to start small, since space
allocated to a transaction log device cannot be reclaimed and cannot be
used for storing data.

Using the for load option

You can use the for load option for recovering from media failure or for moving
a database from one machine to another, if you have not added to the database
with sp_addsegment. Use alter database for load to create a new database in the
image of the database from which the database dump to be loaded was made.
For a discussion of duplicating space allocation when loading a dump into a
new database, see the System Administration Guide.

• When you create a database using the for load option, you can run only the
following commands in the new database before loading a database dump:

• alter database for load

• drop database

• load database

After you load the database dump into the new database, you can also use
some dbcc diagnostic commands in the databases. After you issue the
online database command, there are no restrictions on the commands you
can use.

CHAPTER 1 Commands

Reference Manual: Commands 71

• A database created with the for load option has a status of “don’t recover”
in the output from sp_helpdb.

Getting information about databases

• To get a report on a database, execute the system procedure sp_helpdb.

• For a report on the space used in a database, use sp_spaceused.

Using with default_location and for proxy_update

Without the for proxy_update clause, the behavior of the with default_location
clause is the same as that provided by the stored procedure sp_defaultloc — a
default storage location is established for new and existing table creation, but
automatic import of proxy table definitions is not done during the processing
of the create database command.

• If for proxy_update is specified with no default_location, an error is
reported.

• When a proxy database is created (using the for proxy_update option),
Component Integration Services will be called upon to:

• Provide an estimate of the database size required to contain all proxy
tables representing the actual tables and views found in the primary
server’s database. This estimate is the number of database pages
needed to contain all proxy tables and indexes. The estimate is used if
no size is specified, and no database devices are specified.

• Create all proxy tables representing the actual tables and views found
in the companion server’s database.

• Grant all permissions on proxy tables to public.

• Add the guest user to the proxy database.

• The database status will be set to indicate that this database
‘Is_A_Proxy’. This status is contained in
master.dbo.sysdatabases.status4.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions create database permission defaults to System Administrators, who can
transfer it to users listed in the sysusers table of the master database. However,
create database permission is often centralized in order to maintain control
over database storage allocation.

If you are creating the sybsecurity database, you must be a System Security
Officer.

create database permission is not included in the grant all command.

create database

72 Adaptive Server Enterprise

See also Commands alter database, disk init, drop database, dump database, load
database, online database

System procedures sp_changedbowner, sp_diskdefault, sp_helpdb,
sp_logdevice, sp_renamedb, sp_spaceused

CHAPTER 1 Commands

Reference Manual: Commands 73

create default
Description Specifies a value to insert in a column (or in all columns of a user-defined

datatype) if no value is explicitly supplied at insert time.

Syntax create default [owner.]default_name
as constant_expression

Parameters default_name
is the name of the default. It must conform to the rules for identifiers and
cannot be a variable. Specify the owner’s name to create another default of
the same name owned by a different user in the current database. The default
value for owner is the current user.

constant_expression
is an expression that does not include the names of any columns or other
database objects. It cannot include global variables, but can include built-in
functions that do not reference database objects. Enclose character and date
constants in quotes and use a “0x” prefix for binary constants.

Examples Example 1 Defines a default value. Now, you need to bind it to the appropriate
column or user-defined datatype with sp_bindefault:

create default phonedflt as "UNKNOWN"

sp_bindefault phonedflt, "authors.phone"

The default takes effect only if there is no entry in the phone column of the
authors table. No entry is different from a null value entry. To get the default,
issue an insert command with a column list that does not include the column
that has the default.

Example 2 Creates a default value, todays_date, that inserts the current date
into the columns to which it is bound:

create default todays_date as getdate()

Usage • Bind a default to a column or user-defined datatype—but not a Adaptive
Server-supplied datatype—with sp_bindefault.

• You can bind a new default to a datatype without unbinding the old one.
The new default overrides and unbinds the old one.

• To hide the source test of a default, use sp_hidetext.

Restrictions

• You can create a default only in the current database.

• You cannot combine create default statements with other statements in a
single batch.

create default

74 Adaptive Server Enterprise

• You must drop a default with drop default before you create a new one of
the same name; you must unbind a default with sp_unbindefault, before
you drop it.

Datatype compatibility

• Adaptive Server generates an error message when it tries to insert a default
value that is not compatible with the column’s datatype. For example, if
you bind a character expression such as “N/A” to an integer column, any
insert that does not specify the column value fails.

• If a default value is too long for a character column, Adaptive Server either
truncates the string or generates an exception, depending on the setting of
the string_rtruncation option. For more information, see the set command.

Getting information about defaults

• Default definitions are stored in syscomments.

• After a default is bound to a column, its object ID is stored in syscolumns.
After a default is bound to a user-defined datatype, its object ID is stored
in systypes.

• To rename a default, use sp_rename.

• For a report on the text of a default, use sp_helptext.

Defaults and rules

• If a column has both a default and a rule associated with it, the default
value must not violate the rule. A default that conflicts with a rule cannot
be inserted. Adaptive Server generates an error message each time it
attempts to insert such a default.

Defaults and NULLs

• If a column does not allow nulls, and you do not create a default for the
column, when a user attempts to insert a row but does not include a value
for that column, the insert fails and Adaptive Server generates an error
message.

Table 1-5 illustrates the relationship between the existence of a default and
the definition of a column as NULL or NOT NULL.

Table 1-5: Relationship between nulls and column defaults

Column null
type

No entry,
no default

No entry, default
exists

Entry Is null,
No default

Entry Is null,
default exists

NULL Null inserted Default value inserted Null inserted Null inserted

NOT NULL Error, command fails Default value inserted Error, command fails Error, command fails

CHAPTER 1 Commands

Reference Manual: Commands 75

Specifying a default value in create table

• You can define column defaults using the default clause of the create table
statement as an alternative to using create default. However, these column
defaults are specific to that table; you cannot bind them to other tables. See
create table and alter table for information about integrity constraints.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Use the default clause of the create table statement to create ANSI
SQL-compliant defaults.

Permissions create default permission defaults to the Database Owner, who can transfer it to
other users.

See also Commands alter table, create rule, create table, drop default, drop rule

System procedures sp_bindefault, sp_help, sp_helptext, sp_rename,
sp_unbindefault

create existing table

76 Adaptive Server Enterprise

create existing table
Description Component Integration Services only Creates a proxy table, then retrieves

and stores metadata from a remote table and places the data into the proxy
table. Allows you to map the proxy table to a table, view, or procedure at a
remote location.

Syntax create existing table table_name (column_list)
[on segment_name]
[[external {table | procedure | file}] at pathname
[column delimiter “string”]]

Parameters table_name
specifies the name of the table for which you want to create a proxy table.

column_list
specifies the name of the column list that stores information about the
remote table.

on segment_name
specifies the segment that contains the remote table.

external
specifies that the object is a remote object.

table
specifies that the remote object is a table or a view. The default is external
table.

procedure
specifies that the remote object is a stored procedure.

file
specifies that the remote object is a file.

at pathname
specifies the location of the remote object. pathname takes the form:
server_name.dbname.owner.object, where:

• server_name (required) – is the name of the server that contains the
remote object.

• dbname (optional) – is the name of the database managed by the remote
server that contains this object.

• owner (optional) – is the name of the remote server user that owns the
remote object.

• object (required) – is the name of the remote table, view, or procedure.

CHAPTER 1 Commands

Reference Manual: Commands 77

column delimiter
used to separate fields within each record when accesssing flat files, column
delimiters The column delimiter can be up to 16 bytes long.

string
The column delimiter string can be any character sequencer, but if the string
is longer than 16 bytes, only the first 16 bytes are used. The use of column
delimiter for proxy tables mapped to anything but files will result in a syntax
error.

Examples Example 1 Creates the proxy table authors:

sp_addobjectdef
create existing table authors
(
au_id id,
au_lname varchar(40) NOT NULL,
au_fname varchar(20) NOT NULL,
phone char(12),
address varchar(40) NULL,
city varchar(20) NULL,
state char(2) NULL,
zip char(5) NULL,
contract bit
)

Example 2 Creates the proxy table syb_columns:

sp_addobjectdef
create existing table syb_columns
(
id int,
number smallint,
colid tinyint,
status tinyint,
type tinyint,
length tinyint,
offset smallint,
usertype smallint,
cdefault int,
domain int,
name varchar(30),
printfmt varchar(255) NULL,
prec tinyint NULL,
scale tinyint NULL
)

create existing table

78 Adaptive Server Enterprise

Example 3 Creates a proxy table named blurbs for the blurbs table at the
remote server SERVER_A:

create existing table blurbs
(author_id id not null,
copy text not null)
at "SERVER_A.db1.joe.blurbs"

Example 4 Creates a proxy table named rpc1 for the remote procedure named
p1:

create existing table rpc1
(column_1 int,
column_2 int)
external procedure
at "SERVER_A.db1.joe.p1"

Usage • create existing table does not create a new table, unless the remote object
is a file. Instead, Component Integration Services checks the table
mapping to confirm that the information in column_list matches the
remote table, verifies the existence of the underlying object, and retrieves
and stores metadata about the remote table.

• If the host data file or remote server object does not exist, the command is
rejected with an error message.

• If the object exists, the system tables sysobjects, syscolumns, and
sysindexes are updated. The verification operation requires these steps:

a The nature of the existing object is determined. For host data files, this
requires determining file organization and record format. For remote
server objects, this requires determining whether the object is a table,
a view, or an RPC.

b For remote server objects (other than RPCs), column attributes
obtained for the table or view are compared with those defined in the
column_list.

c Index information from the host data file or remote server table is
extracted and used to create rows for the system table sysindexes. This
defines indexes and keys in Adaptive Server terms and enables the
query optimizer to consider any indexes that might exist on this table.

• The on segment_name clause is processed locally and is not passed to a
remote server.

• After successfully defining an existing table, issue an update statistics
command for the table. This allows the query optimizer to make intelligent
choices regarding index selection and join order.

CHAPTER 1 Commands

Reference Manual: Commands 79

• Component Integration Services allows you to create a proxy table with a
column defined as NOT NULL even though the remote column is defined
as NULL. It displays a warning to notify you of the mismatch.

• The location information provided by the at keyword is the same
information that is provided by the sp_addobjectdef system procedure. The
information is stored in the sysattributes table.

• Component Integration Services inserts or updates a record in the
systabstats catalog for each index of the remote table. Since detailed
structural statistics are irrelevant for remote indexes, only a minimum
number of columns are set in the systabstats record—id, indid, and rowcnt.

• External files cannot be of datatypes text, image or Java ADTs.

Datatype conversions

• When using create existing table, you must specify all datatypes with
recognized Adaptive Server datatypes. If the remote server tables reside
on a class of server that is heterogeneous, the datatypes of the remote table
are automatically converted into the specified Adaptive Server types when
the data is retrieved. If the conversion cannot be made, Component
Integration Services does not allow the table to be defined.

• The Component Integration Services User’s Guide contains a section for
each supported server class and identifies all possible datatype
conversions that are implicitly performed by Component Integration
Services.

Changes by server class

• All server classes allow you to specify fewer columns than there are in the
table on the remote server.

• All server classes match the columns by name.

• All server classes allow the column type to be any datatype that can be
converted to and from the datatype of the column in the remote table.

Remote procedures

• When the proxy table is a procedure-type table, you must provide a
column list that matches the description of the remote procedure’s result
set. create existing table does not verify the accuracy of this column list.

• No indexes are created for procedures.

create existing table

80 Adaptive Server Enterprise

• Component Integration Services treats the result set of a remote procedure
as a virtual table that can be sorted, joined with other tables, or inserted
into another table using insert or select. However, a procedure type table
is considered read-only, which means you cannot issue the following
commands against the table:

• alter table

• create index

• delete

• insert

• truncate table

• update

• Begin the column name with an underscore (_) to specify that the column
is not part of the remote procedure’s result set. These columns are referred
to as parameter columns. For example:

create existing table rpc1
(

a int,
b int,
c int,
_p1 int null,
_p2 int null

)
external procedure
at "SYBASE.sybsystemprocs.dbo.myproc"

In this example, the parameter columns _p1 and _p2 are input parameters.
They are not expected in the result set, but can be referenced in the query:

select a, b, c from t1
where _p1 = 10 and _p2 = 20

Component Integration Services passes the search arguments to the
remote procedure as parameters, using the names @p1 and @p2.

• Parameter column definitions in a create existing table statement must
follow these rules:

• Parameter column definitions must allow a null value.

• Parameter columns cannot precede regular result columns—they
must appear at the end of the column list.

CHAPTER 1 Commands

Reference Manual: Commands 81

• If a parameter column is included in a select list and is passed to the
remote procedure as a parameter, the return value is assigned by the where
clause.

• If a parameter column is included in a select list, but does not appear in the
where clause or cannot be passed to the remote procedure as a parameter,
its value is NULL.

• A parameter column can be passed to a remote procedure as a parameter
if the Adaptive Server query processor considers it a searchable argument.
A parameter column is considered a searchable argument if it is not
included in any or predicates. For example, the or predicate in the second
line of the following query prevents the parameter columns from being
used as parameters:

select a, b, c from t1
where _p1 = 10 or _p2 = 20

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions create existing table permission defaults to the table owner and is not
transferable.

See also Commands alter table, create table, create proxy_table, drop index, insert,
order by clause, set, update

create function (SQLJ)

82 Adaptive Server Enterprise

create function (SQLJ)
Description Creates a user-defined function by adding a SQL wrapper to a Java static

method. Can return a value defined by the method.

Syntax create function [owner.]sql_function_name
([sql_parameter_name sql_datatype

[(length)| (precision[, scale])]
[[, sql_parameter_name sql_datatype

[(length)| (precision[, scale])]]
...]])

returns sql_datatype
[(length)| (precision[, scale])]

[modifies sql data]
[returns null on null input |

called on null input]
[deterministic | not deterministic]
[exportable]
language java
parameter style java
external name 'java_method_name

[([java_datatype[, java_datatype
...]])] '

Parameters sql_function_name
is the Transact-SQL name of the function. It must conform to the rules for
identifiers and cannot be a variable.

sql_parameter_name
is the name of an argument to the function. The value of each input
parameter is supplied when the function is executed. Parameters are
optional; a SQLJ function need not take arguments.

Parameter names must conform to the rules for identifiers. If the value of a
parameter contains non-alphanumeric characters, it must be enclosed in
quotes. This includes object names qualified by a database name or owner
name, since they include a period. If the value of the parameter begins with
a numeric character, it also must be enclosed in quotes.

sql_datatype [(length) | (precision [, scale])]
is the Transact-SQL datatype of the parameter. See create procedure on page
101 for more information about these parameters.

sql_datatype is the SQL procedure signature.

returns sql_datatype
specifies the result datatype of the function.

CHAPTER 1 Commands

Reference Manual: Commands 83

modifies sql data
indicates that the Java method invokes SQL operations, reads, and modifies
SQL data in the database. This is the default and only implementation. It is
included for syntactic compatibility with the ANSI standard.

deterministic | not deterministic
included for syntactic compatibility with the ANSI standard. Not currently
implemented.

exportable
specifies that the procedure is to be run on a remote server using the
Adaptive Server OmniConnect™ feature. Both the procedure and the
method it is built on must reside on the remote server.

language java
specifies that the external routine is written in Java. This is a required clause
for SQLJ functions.

parameter style java
specifies that the parameters passed to the external routine at runtime are
Java parameters. This is a required clause for SQLJ functions.

external
indicates that create function defines a SQL name for an external routine
written in a programming language other than SQL.

name
specifies the name of the external routine (Java method). The specified
name—‘java_method_name [java_datatype[{, java_datatype} ...]]’—is a
character-string literal and must be enclosed in single quotes.

java_method_name
specifies the name of the external Java method.

java_datatype
specifies a Java datatype that is mappable or result-set mappable. This is the
Java method signature.

Examples This example creates a function square_root that invokes the
java.lang.Math.sqrt() method:

create function square_root
(input_number double precision) returns

double precision
language java parameter style java
external name 'java.lang.Math.sqrt'

create function (SQLJ)

84 Adaptive Server Enterprise

Usage • You cannot create a SQLJ function with the same name as an Adaptive
Server built-in function.

• You can create user-defined functions (based on Java static methods) and
SQLJ functions with the same class and method names.

Note Adaptive Server’s searching order ensures that the SQLJ function is
always found first.

• You can include a maximum of 31 parameters in a create function
statement.

Permissions Only the Database Owner or user with sa role can execute create function. The
Database Owner or sa cannot transfer permission for create function.

See also See Java in Adaptive Server Enterprise for more information about create
function.

Commands create function (SQLJ), drop function (SQLJ)

System procedures sp_depends, sp_help, sp_helpjava, sp_helprotect

CHAPTER 1 Commands

Reference Manual: Commands 85

create index
Description Creates an index on one or more columns in a table.

Syntax create [unique] [clustered | nonclustered]
index index_name

on [[database.]owner.]table_name
(column_name [asc | desc]

[, column_name [asc | desc]]...)
[with { fillfactor = pct,

max_rows_per_page = num_rows,
reservepagegap = num_pages,
consumers = x, ignore_dup_key, sorted_data,
[ignore_dup_row | allow_dup_row],

 statistics using num_steps values }]
[on segment_name]

Parameters unique
prohibits duplicate index values (also called “key values”). The system
checks for duplicate key values when the index is created (if data already
exists), and each time data is added with an insert or update. If there is a
duplicate key value or if more than one row contains a null value, the
command fails, and Adaptive Server prints an error message giving the
duplicate entry.

 Warning! Adaptive Server does not detect duplicate rows if a table contains
any non-null text or image columns.

update and insert commands that generate duplicate key values fail, unless
the index was created with ignore_dup_row or ignore_dup_key.

Composite indexes (indexes in which the key value is composed of more
than one column) can also be unique.

The default is nonunique. To create a nonunique clustered index on a table
that contains duplicate rows, specify allow_dup_row or ignore_dup_row. See
“Duplicate rows” on page 94.

clustered
means that the physical order of rows on the current database device is the
same as the indexed order of the rows. The bottom, or leaf level, of the
clustered index contains the actual data pages. A clustered index almost
always retrieves data faster than a nonclustered index. Only one clustered
index per table is permitted. See “Creating clustered indexes” on page 93.

If clustered is not specified, nonclustered is assumed.

create index

86 Adaptive Server Enterprise

nonclustered
means that the physical order of the rows is not the same as their indexed
order. The leaf level of a nonclustered index contains pointers to rows on
data pages. You can have as many as 249 nonclustered indexes per table.

index_name
is the name of the index. Index names must be unique within a table, but
need not be unique within a database.

table_name
is the name of the table in which the indexed column or columns are located.
Specify the database name if the table is in another database, and specify the
owner’s name if more than one table of that name exists in the database. The
default value for owner is the current user, and the default value for database
is the current database.

column_name
is the column or columns to which the index applies. Composite indexes are
based on the combined values of as many as 16 columns. The sum of the
maximum lengths of all the columns depends on the logical page size. See
Table 1-6 on page 91 for actual values. List the columns to be included in
the composite index (in the order in which they should be sorted) inside the
parentheses following table_name.

asc | desc
specifies whether the index is to be created in ascending or descending order
for the column specified. The default is ascending order.

CHAPTER 1 Commands

Reference Manual: Commands 87

fillfactor
specifies how full Adaptive Server makes each page when it creates a new
index on existing data. The fillfactor percentage is relevant only when the
index is created. As the data changes, the pages are not maintained at any
particular level of fullness.

The value you specify is not saved in sysindexes for display by sp_helpindex
or for later use by the reorg command. Use sp_chgattribute to create stored
fillfactor values.

The default for fillfactor is 0; this is used when you do not include with
fillfactor in the create index statement (unless the value has been changed
with sp_configure). When specifying a fillfactor, use a value between 1 and
100.

A fillfactor of 0 creates clustered indexes with completely full pages and
nonclustered indexes with completely full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both the clustered and
nonclustered indexes. There is seldom a reason to change the fillfactor.

If the fillfactor is set to 100, Adaptive Server creates both clustered and
nonclustered indexes with each page 100 percent full. A fillfactor of 100
makes sense only for read-only tables—tables to which no additional data
will ever be added.

fillfactor values smaller than 100 (except 0, which is a special case) cause
Adaptive Server to create new indexes with pages that are not completely
full. A fillfactor of 10 might be a reasonable choice if you are creating an
index on a table that will eventually hold a great deal more data, but small
fillfactor values cause each index (or index and data) to occupy more storage
space.

 Warning! Creating a clustered index with a fillfactor affects the amount of
storage space your data occupies, since Adaptive Server redistributes the data
as it creates the clustered index.

create index

88 Adaptive Server Enterprise

max_rows_per_page
limits the number of rows on data pages and the leaf level pages of indexes.
Unlike fillfactor, the max_rows_per_page value is maintained until it is
changed with sp_chgattribute.

If you do not specify a value for max_rows_per_page, Adaptive Server uses
a value of 0 when creating the table. Values for tables and clustered indexes
are between 0 and 256. The maximum number of rows per page for
nonclustered indexes depends on the size of the index key. Adaptive Server
returns an error message if the specified value is too high.

A max_rows_per_page value of 0 creates clustered indexes with full pages
and nonclustered indexes with full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both clustered and nonclustered
indexes.

If max_rows_per_page is set to 1, Adaptive Server creates both clustered and
nonclustered indexes with one row per page at the leaf level. Use low values
to reduce lock contention on frequently accessed data. However, low
max_rows_per_page values cause Adaptive Server to create new indexes
with pages that are not completely full, uses more storage space, and may
cause more page splits.

If Component Integration Services is enabled, you cannot use
max_rows_per_page for remote servers.

 Warning! Creating a clustered index with max_rows_per_page can affect the
amount of storage space your data occupies, since Adaptive Server
redistributes the data as it creates the clustered index.

with reservepagegap = num_pages
specifies a ratio of filled pages to empty pages to be left during extent I/O
allocation operations. For each specified num_pages, an empty page is left
for future expansion of the index. Valid values are 0 – 255. The default is 0.

CHAPTER 1 Commands

Reference Manual: Commands 89

ignore_dup_key
cancels attempts of duplicate key entry into a table that has a unique index
(clustered or nonclustered). Adaptive Server cancels the attempted insert or
update of a duplicate key with an informational message. After the
cancellation, the transaction containing the duplicate key proceeds to
completion.

You cannot create a unique index on a column that includes duplicate values
or more than one null value, whether or not ignore_dup_key is set. If you
attempt to do so, Adaptive Server prints an error message that displays the
first of the duplicate values. You must eliminate duplicates before Adaptive
Server can create a unique index on the column.

ignore_dup_row
allows you to create a new, nonunique clustered index on a table that
includes duplicate rows. ignore_dup_row deletes the duplicate rows from
the table, and cancels any insert or update that would create a duplicate row,
but does not roll back the entire transaction. See “Duplicate rows” on page
94 for more information.

allow_dup_row
allows you to create a nonunique clustered index on a table that includes
duplicate rows, and allows you to duplicate rows with update and insert
statements. See “Duplicate rows” on page 94 for an explanation of how to
use these options.

sorted_data
speeds creation of clustered indexes or unique nonclustered indexes when
the data in the table is already in sorted order (for example, when you have
used bcp to copy data that has already been sorted into an empty table). See
“Using the sorted_data option to speed sorts” on page 95 for more
information.

with statistics using num_steps values
specifies the number of steps to generate for the histogram used to optimize
queries. If you omit this clause:

• The default value is 20, if no histogram is currently stored for the
leading index column.

• The current number of steps is used, if a histogram for the leading
column of the index column already exists.

If you specify 0 for num_steps, the index is re-created, but the statistics for
the index are not overwritten in the system tables.

create index

90 Adaptive Server Enterprise

on segment_name
creates the index on the named segment. Before using the on segment_name
option, initialize the device with disk init, and add the segment to the
database using sp_addsegment. See your System Administrator, or use
sp_helpsegment for a list of the segment names available in your database.

with consumers
specifies the number of consumer processes that should perform the sort
operation for creating the index. The actual number of consumer processes
used to sort the index may be smaller than the specified number, if fewer
worker processes are available when Adaptive Server executes the sort.

Examples Example 1 Creates an index named au_id_ind on the au_id column of the
authors table:

create index au_id_ind on authors (au_id)

Example 2 Creates a unique clustered index named au_id_ind on the au_id
column of the authors table:

create unique clustered index au_id_ind
on authors(au_id)

Example 3 Creates an index named ind1 on the au_id and title_id columns of
the titleauthor table:

create index ind1 on titleauthor (au_id, title_id)

Example 4 Creates a nonclustered index named zip_ind on the zip column of
the authors table, filling each index page one-quarter full and limiting the sort
to 4 consumer processes:

create nonclustered index zip_ind
on authors(postalcode)
with fillfactor = 25, consumers = 4

Example 5 Creates an index with ascending ordering on pub_id and
descending order on pubdate:

create index pub_dates_ix
on titles (pub_id asc, pubdate desc)

Example 6 Creates an index on title_id, using 50 histogram steps for optimizer
statistics and leaving 1 empty page out of every 40 pages in the index:

create index title_id_ix
on titles (title_id)
with reservepagegap = 40,
statistics using 50 values

CHAPTER 1 Commands

Reference Manual: Commands 91

Usage • Run update statistics periodically if you add data to the table that changes
the distribution of keys in the index. The query optimizer uses the
information created by update statistics to select the best plan for running
queries on the table.

• If the table contains data when you create a nonclustered index, Adaptive
Server runs update statistics on the new index. If the table contains data
when you create a clustered index, Adaptive Server runs update statistics
on all the table’s indexes.

• Index all columns that are regularly used in joins.

• When Component Integration Services is enabled, the create index
command is reconstructed and passed directly to the Adaptive Server
associated with the table.

Restrictions

• You cannot create an index on a column with a datatype of bit, text, or
image.

• Table 1-6 shows the maximum index row size limit for a given logical
page size.

Table 1-6: Maximum index row size

• Although you can create a column that is larger than the maximum row
size of an index for a given logical page size, this makes that column
nonindexable. However, you can maintain statistics on such large columns
up to the first 255 bytes.

• A table can have a maximum of 249 nonclustered indexes.

• A table can have a maximum of one clustered index.

• You can specify up to 31 columns (formerly 16) for the index key. The
maximum total number of bytes must be within the limits shown in the
table above.

• You can create an index on a temporary table. The index disappears when
the table disappears.

Logical page size Index column size limit

2K 600

4K 1250

8K 2600

16K 5300

create index

92 Adaptive Server Enterprise

• You can create an index on a table in another database, as long as you are
the owner of that table.

• You cannot create an index on a view.

• create index runs more slowly while a dump database is taking place.

• You can create a clustered index on a partitioned table, or partition a table
with a clustered index if all the following conditions are true:

• The select into/bulkcopy/pllsort database option is turned on,

• Adaptive Server is configured for parallel processing, and

• There is one more worker process available than the number of
partitions.

For more information about clustered indexes on partitioned tables, see
Chapter 24, “Parallel Sorting,” in the Performance and Tuning Guide.

• The maximum number of indexes allowed on a data-only-locked table
with a clustered index is 249. A table can have one clustered index and 248
nonclustered indexes.

create index and stored procedures

Adaptive Server automatically recompiles stored procedures after executing
create index statements. Although adhoc queries that you start before executing
create index still continue to work, they do not take advantage of the new index.

In Adaptive Server versions 12.5 and earlier, create index was ignored by
cached stored procedures.

Creating indexes efficiently

• Indexes speed data retrieval, but can slow data updates. For better
performance, create a table on one segment and create its nonclustered
indexes on another segment, when the segments are on separate physical
devices.

• Adaptive Server can create indexes in parallel if a table is partitioned and
the server is configured for parallelism. It can also use sort buffers to
reduce the amount of I/O required during sorting. For more information,
see Chapter 24, “Parallel Sorting,” in the Performance and Tuning Guide.

• Create a clustered index before creating any nonclustered indexes, since
nonclustered indexes are automatically rebuilt when a clustered index is
created.

CHAPTER 1 Commands

Reference Manual: Commands 93

• When using parallel sort for data-only-locked tables, the number of
worker processes must be configured to equal or exceed the number of
partitions, even for empty tables. The database option select
into/bulkcopy/pllsort must also be enabled.

Creating clustered indexes

• A table “follows” its clustered index. When you create a table, use the
on segment_name extension to create clustered index, the table migrates to
the segment where the index is created.

If you create a table on a specific segment, then create a clustered index
without specifying a segment, Adaptive Server moves the table to the
default segment when it creates the clustered index there.

Because text and image data is stored in a separate page chain, creating a
clustered index with on segment_name does not move text and image
columns.

• To create a clustered index, Adaptive Server duplicates the existing data;
the server deletes the original data when the index is complete. Before
creating a clustered index, use sp_spaceused to make sure that the
database has at least 120 percent of the size of the table available as free
space.

• The clustered index is often created on the table’s primary key (the column
or columns that uniquely identify the row). The primary key can be
recorded in the database (for use by front-end programs and sp_depends)
using sp_primarykey.

• To allow duplicate rows in a clustered index, specify allow_dup_row.

Specifying ascending or descending ordering in indexes

• Use the asc and desc keywords after index column names to specify the
sorting order for the index keys. Creating indexes so that columns are in
the same order specified in the order by clause of queries eliminates the
sorting step during query processing. For more information, see Chapter
8, “Indexing for Performance,” in the Performance and Tuning Guide.

Space requirements for indexes

• Space is allocated to tables and indexes in increments of one extent, or
eight pages, at a time. Each time an extent is filled, another extent is
allocated. Use sp_spaceused to display the amount of space allocated and
used by an index..

create index

94 Adaptive Server Enterprise

• In some cases, using the sorted_data option allows Adaptive Server to skip
copying the data rows as described in Table 1-9 on page 96. In these cases,
you need only enough additional space for the index structure itself.
Depending on key size, this is usually about 20 percent of the size of the
table.

Duplicate rows

• The ignore_dup_row and allow_dup_row options are not relevant when you
are creating a nonunique, nonclustered index. Adaptive Server attaches a
unique row identification number internally in each nonclustered index;
duplicate rows are not a problem even for identical data values.

• ignore_dup_row and allow_dup_row are mutually exclusive.

• A nonunique clustered index allows duplicate keys, but does not allow
duplicate rows unless you specify allow_dup_row.

• allow_dup_row allows you to create a nonunique, clustered index on a table
that includes duplicate rows. If a table has a nonunique, clustered index
that was created without the allow_dup_row option, you cannot create new
duplicate rows using the insert or update command.

If any index in the table is unique, the requirement for uniqueness takes
precedence over the allow_dup_row option. You cannot create an index
with allow_dup_row if a unique index exists on any column in the table.

• The ignore_dup_row option is also used with a nonunique, clustered index.
The ignore_dup_row option eliminates duplicates from a batch of data.
ignore_dup_row cancels any insert or update that would create a duplicate
row, but does not roll back the entire transaction.

• Table 1-7 illustrates how allow_dup_row and ignore_dup_row affect
attempts to create a nonunique, clustered index on a table that includes
duplicate rows and attempts to enter duplicate rows into a table.

Table 1-7: Duplicate row options for nonunique clustered indexes

Table 1-8 shows which index options can be used with the different types
of indexes:

Option setting
Create an index on a table
that has duplicate rows

Insert duplicate rows into
a table with an index

Neither option set create index fails. insert fails.

allow_dup_row set create index completes. insert completes.

ignore_dup_row set Index is created but duplicate
rows are deleted; error message.

All rows are inserted except
duplicates; error message.

CHAPTER 1 Commands

Reference Manual: Commands 95

Table 1-8: Index options

Using unique constraints in place of indexes

• As an alternative to create index, you can implicitly create unique indexes
by specifying a unique constraint with the create table or alter table
statement. The unique constraint creates a clustered or nonclustered
unique index on the columns of a table. These implicit indexes are named
after the constraint, and they follow the same rules for indexes created
with create index.

• You cannot drop indexes supporting unique constraints using the drop
index statement. They are dropped when the constraints are dropped
through an alter table statement or when the table is dropped. See create
table for more information about unique constraints.

Using the sorted_data option to speed sorts

• The sorted_data option can reduce the time needed to create an index by
skipping the sort step and by eliminating the need to copy the data rows to
new pages in certain cases. The speed increase becomes significant on
large tables and increases to several times faster in tables larger than 1GB.

If sorted_data is specified, but data is not in sorted order, Adaptive Server
displays an error message, and the command fails.

Creating a nonunique, nonclustered index succeeds, unless there are rows
with duplicate keys. If there are rows with duplicate keys, Adaptive Server
displays an error message, and the command fails.

• The effects of sorted_data for creating a clustered index depend on
whether the table is partitioned and whether certain other options are used
in the create index command. Some options require data copying, if used
at all, for nonpartitioned tables and sorts plus data copying for partitioned
tables, while others require data copying only if you:

• Use the ignore_dup_row option

• Use the fillfactor option

• Use the on segmentname clause to specify a segment that is different
from the segment where the table data is located

Index type Options

Clustered ignore_dup_row | allow_dup_row

Unique, clustered ignore_dup_key

Nonclustered None

Unique, nonclustered ignore_dup_key

create index

96 Adaptive Server Enterprise

• Use the max_rows_per_page clause to specify a value that is different
from the value associated with the table

• Table 1-9 shows when the sort is required and when the table is copied for
partitioned and nonpartitioned tables.

Table 1-9: Using the sorted_data option for creating a clustered index

Specifying the number of histogram steps

• Use the with statistics clause to specify the number of steps for a histogram
for the leading column of an index. Histograms are used during query
optimization to determine the number of rows that match search
arguments for a column.

• To re-create an index without updating the values in sysstatistics for a
column, use 0 for the number of steps. This avoids overwriting statistics
that have been changed with optdiag.

Space management properties

• fillfactor, max_rows_per_page, and reservepagegap help manage space on
index pages in different ways:

• fillfactor applies to indexes for all locking schemes. For clustered
indexes on allpages-locked tables, it affects the data pages of the
table. On all other indexes, it affects the leaf level of the index.

• max_rows_per_page applies only to index pages of allpages-locked
tables.

• reservepagegap applies to tables and indexes for all locking schemes.

• reservepagegap affects space usage in indexes when

• The index is created

• reorg commands on indexes are executed

• Nonclustered indexes are rebuilt after creating a clustered index

Options Partitioned table Unpartitioned table

No options specified Parallel sort; copies data, distributing
evenly on partitions; creates index tree.

Either parallel or nonparallel sort;
copies data, creates index tree.

with sorted_data only or with
sorted_data on same_segment

Creates index tree only. Does not
perform the sort or copy data. Does not
run in parallel.

Creates index tree only. Does not
perform the sort or copy data.
Does not run in parallel.

with sorted_data and ignore_dup_row
or fillfactor or on other_segment or
max_rows_per_page

Parallel sort; copies data, distributing
evenly on partitions; creates index tree.

Copies data and creates the index
tree. Does not perform the sort.
Does not run in parallel.

CHAPTER 1 Commands

Reference Manual: Commands 97

• When a reservepagegap value is specified in a create clustered index
command, it applies to:

• The data and index pages of allpages-locked tables

• Only the index pages of data-only-locked tables

• The num_pages value specifies a ratio of filled pages to empty pages on
the leaf level of the index so that indexes can allocate space close to
existing pages, as new space is required. For example, a reservepagegap
of 10 leaves 1 empty page for each 9 used pages.

• reservepagegap specified along with create clustered index on an
allpages-locked table overwrites any value previously specified with
create table or alter table.

• You can change the space management properties for an index with
sp_chgattribute. Changing properties with sp_chgattribute does not
immediately affect storage for indexes on the table. Future large scale
allocations, such as reorg rebuild, use the sp_chgattribute value.

• The fillfactor value set by sp_chgattribute is stored in the fill_factor column
in sysindexes. The fillfactor is applied when an index is recreated as a result
of an alter table...lock command or a reorg rebuild command.

Index options and locking modes

• Table 1-10 shows the index options supported for allpages-locked and
data-only-locked tables. On data-only-locked tables, the ignore_dup_row
and allow_dup_row options are enforced during create index, but are not
enforced during insert and update operations. Data-only-locked tables
always allow the insertion of duplicate rows.

Table 1-10: create index options supported for locking schemes

Table 1-11 shows the behavior of commands that attempt to insert
duplicate rows into tables with clustered indexes, and when the clustered
indexes are dropped and re-created.

Index type Allpages-locked table Data-only-locked table

During index creation During inserts

Clustered allow_dup_row,
ignore_dup_row

allow_dup_row,
ignore_dup_row

allow_dup_row

Unique clustered ignore_dup_key ignore_dup_key ignore_dup_key

Nonclustered None None None

Unique nonclustered ignore_dup_key ignore_dup_key ignore_dup_key

create index

98 Adaptive Server Enterprise

Table 1-11: Enforcement and errors for duplicate row options

Using the sorted_data option on data-only-locked tables

• The sorted_data option to create index can be used only immediately
following a bulk copy operation into an empty table. Once data
modifications to that table cause additional page allocations, the
sorted_data option cannot be used.

• Specifying different values for space management properties may override
the sort suppression functionality of the sorted_data.

Getting information about tables and indexes

• Each index—including composite indexes—is represented by one row in
sysindexes.

• For information about the order of the data retrieved through indexes and
the effects of an Adaptive Server’s installed sort order, see the order by
clause.

• For information about a table’s indexes, execute sp_helpindex.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions create index permission defaults to the table owner and is not transferable.

See also Commands alter table, create table, drop index, insert, order by clause, set,
update

System procedures sp_addsegment, sp_chgattribute, sp_helpindex,
sp_helpsegment, sp_spaceused

Utilities optdiag

Options Allpages-locked table Data-only-locked table

No options specified Insert fails with error message 2615.
Re-creating the index succeeds.

Insert succeeds. Re-creating the index
fails with error message 1508.

allow_dup_row Insert and re-creating the index succeed. Insert and re-creating the index succeed.

ignore_dup_row Insert fails with “Duplicate row was ignored”
message. Re-creating the index succeeds.

Insert succeeds. Re-creating the index
deletes duplicate rows.

CHAPTER 1 Commands

Reference Manual: Commands 99

create plan
Description Creates an abstract plan.

Syntax create plan query plan
[into group_name]
[and set @new_id]

Parameters query
is a string literal, parameter, or local variable containing the SQL text of a
query.

plan
is a string literal, parameter, or local variable containing an abstract plan
expression.

into group_name
specifies the name of an abstract plan group.

and set @new_id
returns the ID number of the abstract plan in the variable.

Examples Example 1 Creates an abstract plan for the specified query:

create plan "select * from titles where price > $20"
"(t_scan titles)"

Example 2 Creates an abstract plan for the query in the dev_plans group, and
returns the plan ID in the variable @id:

declare @id int
create plan "select au_fname, au_lname from authors
where au_id = ’724-08-9931’ "
"(i_scan au_id_ix authors)"
into dev_plans
and set @id
select @id

Usage • create plan saves the abstract plan in the group specified with into. If no
group name is specified, it saves the plan in the currently active plan
group.

• Queries and abstract plans specified with create plan are not checked for
valid SQL syntax and plans are not checked for valid abstract plan syntax.
Also, the plan is not checked for compatibility with the SQL text. All plans
created with create plan should be immediately checked for correctness by
running the query specified in the create plan statement.

create plan

100 Adaptive Server Enterprise

• If another query plan in the group has the same SQL text, the replace mode
must be enabled with set plan replace on. Otherwise, the create plan
command fails.

• You must declare @new_id before using it in the and set clause.

• The abstract plan group you specify with into must already exist.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions create plan permission defaults to all users. No permission is required to use it.

See also Commands set plan

System procedures sp_add_qpgroup, sp_find_qplan, sp_help_qplan,
sp_set_qplan

CHAPTER 1 Commands

Reference Manual: Commands 101

create procedure
Description Creates a stored procedure or an extended stored procedure (ESP) that can take

one or more user-supplied parameters.

Note For syntax and usage information about the SQLJ command for creating
procedures, see create function (SQLJ) on page 82.

Syntax create procedure [owner.]procedure_name[;number]
[[(]@parameter_name

datatype [(length) | (precision [, scale])]
[= default][output]

[, @parameter_name
datatype [(length) | (precision [, scale])]
[= default][output]]...[)]]

[with recompile]
as {SQL_statements | external name dll_name}

Parameters procedure_name
is the name of the procedure. It must conform to the rules for identifiers and
cannot be a variable. Specify the owner’s name to create another procedure
of the same name owned by a different user in the current database. The
default value for owner is the current user.

;number
is an optional integer used to group procedures of the same name so that they
can be dropped together with a single drop procedure statement. Procedures
used in the same application are often grouped this way. For example, if the
procedures used with the application named orders are named orderproc;1,
orderproc;2, and so on, the following statement drops the entire group:

 drop proc orderproc

Once procedures have been grouped, individual procedures within the group
cannot be dropped. For example, the following statement is not allowed:

 drop procedure orderproc;2

You cannot group procedures if you are running Adaptive Server in the
evaluated configuration. The evaluated configuration requires that you
disallow procedure grouping so that every stored procedure has a unique
object identifier and can be dropped individually. To disallow procedure
grouping, a System Security Officer must use sp_configure to reset allow
procedure grouping. For more information about the evaluated
configuration, see the System Administration Guide.

create procedure

102 Adaptive Server Enterprise

parameter_name
is the name of an argument to the procedure. The value of each parameter is
supplied when the procedure is executed. Parameter names are optional in
create procedure statements—a procedure is not required to take any
arguments.

Parameter names must be preceded by the @ sign and conform to the rules
for identifiers. A parameter name, including the @ sign, can be a maximum
of 30 characters. Parameters are local to the procedure: the same parameter
names can be used in other procedures.

If the value of a parameter contains nonalphanumeric characters, it must be
enclosed in quotes. This includes object names qualified by a database name
or owner name, since they include a period. If the value of a character
parameter begins with a numeric character, it also must be enclosed in
quotes.

datatype[(length) | (precision [, scale])]
 is the datatype of the parameter. See “User-defined datatypes” on page 44
in Chapter 1, “System and User-Defined Datatypes”of Reference Manual:
Building Blocks. for more information about datatypes. Stored procedure
parameters cannot have a datatype of text or image or a user-defined
datatype whose underlying type is text or image.

The char, varchar, unichar, univarchar, nchar, nvarchar, binary, and varbinary
datatypes should include a length in parentheses. If you omit the length,
Adaptive Server truncates the parameter value to 1 character.

The float datatype expects a binary precision in parentheses. If you omit the
precision, Adaptive Server uses the default precision for your platform.

The numeric and decimal datatypes expect a precision and scale, enclosed in
parentheses and separated by a comma. If you omit the precision and scale,
Adaptive Server uses a default precision of 18 and a scale of 0.

default
defines a default value for the procedure’s parameter. If a default is defined,
a user can execute the procedure without giving a parameter value. The
default must be a constant. It can include the wildcard characters (%, _, [],
and [^]) if the procedure uses the parameter name with the keyword like (see
Example 2).

The default can be NULL. The procedure definition can specify that some
action be taken if the parameter value is NULL (see Example 3).

CHAPTER 1 Commands

Reference Manual: Commands 103

output
indicates that the parameter is a return parameter. Its value can be returned
to the execute command that called this procedure. Use return parameters to
return information to the calling procedure (see Example 5).

To return a parameter value through several levels of nested procedures,
each procedure must include the output option with the parameter name,
including the execute command that calls the highest level procedure.

The output keyword can be abbreviated to out.

with recompile
means that Adaptive Server never saves a plan for this procedure; a new plan
is created each time it is executed. Use this optional clause when you expect
that the execution of a procedure will be atypical—that is, when you need a
new plan. The with recompile clause has no impact on the execution of an
extended stored procedure.

SQL_statements
specify the actions the procedure is to take. Any number and kind of SQL
statements can be included, with the exception of create view, create default,
create rule, create procedure, create trigger, and use.

create procedure SQL statements often include control-of-flow language,
including one or more of the following: declare; if...else; while; break;
continue; begin...end; goto label; return; waitfor; /* comment */. They can also
refer to parameters defined for the procedure.

The SQL statements can reference objects in another database, as long as
they are properly qualified.

external name
creates an extended stored procedure. If the as external name syntax is used,
you cannot use the number parameter with as external name.

dll_name
specifies the name of the dynamic link library (DLL) or shared library
containing the functions that implement the extended stored procedure. The
dll_name can be specified with no extension or with a platform-specific
extension, such as .dll on Windows NT or .so on Sun Solaris. If you specify
the extension, enclose the entire dll_name in quotation marks.

Examples Example 1 Given a table name, the procedure showind displays its name and
the names and identification numbers of any indexes on any of its columns:

create procedure showind @tabname varchar(30)
as

select sysobjects.name, sysindexes.name, indid

create procedure

104 Adaptive Server Enterprise

from sysindexes, sysobjects
where sysobjects.name = @tabname
and sysobjects.id = sysindexes.id

Here are the acceptable syntax forms for executing showind:

execute showind titles
execute showind @tabname = "titles"

Or, if this is the first statement in a file or batch:

showind titles

Example 2 This procedure displays information about the system tables if the
user does not supply a parameter:

create procedure
showsysind @table varchar(30) = "sys%"
as

select sysobjects.name, sysindexes.name, indid
from sysindexes, sysobjects
where sysobjects.name like @table
and sysobjects.id = sysindexes.id

Example 3 This procedure specifies an action to be taken if the parameter is
NULL (that is, if the user does not give a parameter):

create procedure
showindnew @table varchar(30) = null
as

if @table is null
print "Please give a table name"
else
select sysobjects.name, sysindexes.name, indid
from sysindexes, sysobjects
where sysobjects.name = @table
and sysobjects.id = sysindexes.id

Example 4 This procedure multiplies two integer parameters and returns the
product in the output parameter, @result:

create procedure mathtutor @mult1 int, @mult2 int,
@result int output

as
select @result = @mult1 * @mult2

If the procedure is executed by passing it 3 integers, the select statement
performs the multiplication and assigns the values, but does not print the return
parameter:

mathtutor 5, 6, 32

CHAPTER 1 Commands

Reference Manual: Commands 105

(return status 0)

Example 5 In this example, both the procedure and the execute statement
include output with a parameter name so that the procedure can return a value
to the caller:

declare @guess int
select @guess = 32
exec mathtutor 5, 6, @result = @guess output

(1 row affected)
(return status = 0)

Return parameters:

@result

 30

The output parameter and any subsequent parameters in the execute statement,
@result, must be passed as:

 @parameter = value

• The value of the return parameter is always reported, whether or not its
value has changed.

• @result does not need to be declared in the calling batch because it is the
name of a parameter to be passed to mathtutor.

• Although the changed value of @result is returned to the caller in the
variable assigned in the execute statement (in this case, @guess), it is
displayed under its own heading (@result).

Example 6 Return parameters can be used in additional SQL statements in the
batch or calling procedure. This example shows how to use the value of
@guess in conditional clauses after the execute statement by storing it in
another variable name, @store, during the procedure call. When return
parameters are used in an execute statement that is part of a SQL batch, the
return values are printed with a heading before subsequent statements in the
batch are executed.

declare @guess int
declare @store int
select @guess = 32
select @store = @guess
execute mathtutor 5, 6, @result = @guess output
select Your_answer = @store, Right_answer = @guess
if @guess = @store

create procedure

106 Adaptive Server Enterprise

print "Right-o"
else

print "Wrong, wrong, wrong!"

(1 row affected)
(1 row affected)
(return status = 0)

Return parameters:

@result

 30
Your_answer Right_answer
----------- ------------

 32 30

(1 row affected)
Wrong, wrong, wrong!

Example 7 Creates an extended stored procedure named xp_echo, which takes
an input parameter, @in, and echoes it to an output parameter, @out. The code
for the procedure is in a function named xp_echo, which is compiled and linked
into a DLL named sqlsrvdll.dll:

create procedure xp_echo @in varchar(255),
@out varchar(255) output

as external name "sqlsrvdll.dll"

Usage • After a procedure is created, you can run it by issuing the execute
command along with the procedure’s name and any parameters. If a
procedure is the first statement in a batch, you can give its name without
the keyword execute.

• You can use sp_hidetext to hide the source text for a procedure, which is
stored in syscomments.

• When a stored procedure batch executes successfully, Adaptive Server
sets the @@error global variable to 0.

Restrictions

• The maximum number of parameters that a stored procedure can have is
255.

• The maximum number of local and global variables in a procedure is
limited only by available memory.

• The maximum amount of text in a stored procedure is 16MB.

CHAPTER 1 Commands

Reference Manual: Commands 107

• A create procedure statement cannot be combined with other statements in
a single batch.

• You can create a stored procedure only in the current database, although
the procedure can reference objects from other databases. Any objects
referenced in a procedure must exist at the time you create the procedure.
You can create an object within a procedure, then reference it, provided the
object is created before it is referenced.

You cannot use alter table in a procedure to add a column and then refer to
that column within the procedure.

• If you use select * in your create procedure statement, the procedure (even
if you use the with recompile option to execute) does not pick up any new
columns you may have added to the table. You must drop the procedure
and re-create it. and re-create it. Otherwise, the wrong results can be
caused by the insert...select statement of insert into table1 select * from
table2 in the procedure when new columns have been added to the both
tables.

• Within a stored procedure, you cannot create an object (including a
temporary table), drop it, then create a new object with the same name.
Adaptive Server creates the objects defined in a stored procedure when the
procedure is executed, not when it is compiled.

 Warning! Certain changes to databases, such as dropping and re-creating
indexes, can cause object IDs to change. When object IDs change, stored
procedures recompile automatically, and can increase slightly in size.
Leave some space for this increase.

Extended stored procedures

• If the as external name syntax is used, create procedure registers an
extended stored procedure (ESP). Extended stored procedures execute
procedural language functions rather than Transact-SQL commands.

• On Windows NT – an ESP function should not call a C runtime signal
routine. This can cause XP Server to fail, because Open Server™ does not
support signal handling on Windows NT.

• To support multithreading, ESP functions should use the Open Server
srv_yield function, which suspends and reschedules the XP Server thread
to allow another thread of the same or higher priority to execute.

• The DLL search mechanism is platform-dependent. On Windows NT, the
sequence of a DLL file name search is as follows:

create procedure

108 Adaptive Server Enterprise

a The directory from which the application is loaded

b The current directory

c The system directory (SYSTEM32)

d Directories listed in the PATH environment variable

If the DLL is not in the first three directories, set the PATH to include the
directory in which it is located.

On UNIX platforms, the search method varies with the particular platform.
If it fails to find the DLL or shared library, it searches $SYBASE/lib.

Absolute path names are not supported.

System procedures

• System Administrators can create new system procedures in the
sybsystemprocs database. System procedure names must begin with the
characters “sp_”. These procedures can be executed from any database by
specifying the procedure name; it is not necessary to qualify it with the
sybsystemprocs database name. For more information about creating
system procedures, see the System Administration Guide.

• System procedure results may vary depending on the context in which
they are executed. For example, sp_foo, which executes the db_name()
system function, returns the name of the database from which it is
executed. When executed from the pubs2 database, it returns the value
“pubs2”:

use pubs2
sp_foo

pubs2

When executed from sybsystemprocs, it returns the value
“sybsystemprocs”:

use sybsystemprocs
sp_foo

sybsystemprocs

Nested procedures

• Procedure nesting occurs when one stored procedure calls another.

• If you execute a procedure that calls another procedure, the called
procedure can access objects created by the calling procedure.

CHAPTER 1 Commands

Reference Manual: Commands 109

• The nesting level increments when the called procedure begins execution
and decrements when the called procedure completes execution.
Exceeding the maximum of 16 levels of nesting causes the transaction to
fail.

• You can call another procedure by name or by a variable name in
place of the actual procedure name.

• The current nesting level is stored in the @@nestlevel global variable.

Procedure return status

• Stored procedures can return an integer value called a return status. The
return status either indicates that the procedure executed successfully or
specifies the type of error that occurred.

• When you execute a stored procedure, it automatically returns the
appropriate status code. Adaptive Server currently returns the following
status codes:

Codes -15 through -99 are reserved for future use.

• Users can generate a user-defined return status with the return statement.
The status can be any integer other than 0 through -99. The following
example returns “1” when a book has a valid contract and “2” in all other
cases:

create proc checkcontract @titleid tid

Code Meaning

0 Procedure executed without error

-1 Missing object

-2 Datatype error

-3 Process was chosen as deadlock victim

-4 Permission error

-5 Syntax error

-6 Miscellaneous user error

-7 Resource error, such as out of space

-8 Non-fatal internal problem

-9 System limit was reached

-10 Fatal internal inconsistency

-11 Fatal internal inconsistency

-12 Table or index is corrupt

-13 Database is corrupt

-14 Hardware error

create procedure

110 Adaptive Server Enterprise

as
if (select contract from titles where

title_id = @titleid) = 1
return 1

else
return 2

checkcontract @titleid = "BU1111"
(return status = 1)
checkcontract @titleid = "MC3026"
(return status = 2)

• If more than one error occurs during execution, the code with the highest
absolute value is returned. User-defined return values take precedence
over system-defined values.

Object identifiers

• To change the name of a stored procedure, use sp_rename.

• To change the name of an extended stored procedure, drop the procedure,
rename and recompile the supporting function, then re-create the
procedure.

• If a procedure references table names, column names, or view names that
are not valid identifiers, you must set quoted_identifier on before the
create procedure command and enclose each such name in double quotes.
The quoted_identifier option does not need to be on when you execute the
procedure.

• You must drop and re-create the procedure if any of the objects it
references have been renamed.

• Inside a stored procedure, object names used with the create table and dbcc
commands must be qualified with the object owner’s name if other users
are to make use of the stored procedure. For example, user “mary,” who
owns the table marytab, should qualify the name of her table inside a stored
procedure (when it is used with these commands) if she wants other users
to be able to execute it. This is because the object names are resolved when
the procedure is run. When another user tries to execute the procedure,
Adaptive Server looks for a table called marytab owned by the user
“mary” and not a table called marytab owned by the user executing the
stored procedure.

Object names used with other statements (for example, select or insert)
inside a stored procedure need not be qualified because the names are
resolved when the procedure is compiled.

CHAPTER 1 Commands

Reference Manual: Commands 111

Temporary tables and procedures

• You can create a procedure to reference a temporary table if the temporary
table is created in the current session. A temporary table created within a
procedure disappears when the procedure exits. For more information, see
the Transact-SQL User’s Guide.

• System procedures such as sp_help work on temporary tables, but only if
you use them from tempdb.

Setting options in procedures

• You can use the set command inside a stored procedure. Most set options
remain in effect during the execution of the procedure, then revert to their
former settings.

However, if you use a set option (such as identity_insert) which requires the
user to be the object owner, a user who is not the object owner cannot
execute the stored procedure.

Getting information about procedures

• For a report on the objects referenced by a procedure, use sp_depends.

• To display the text of a create procedure statement, which is stored in
syscomments, use sp_helptext with the procedure name as the parameter.
You must be using the database where the procedure resides when you use
sp_helptext. To display the text of a system procedure, execute sp_helptext
from the sybsystemprocs database.

• To see a list of system extended stored procedures and their supporting
DLLs, use sp_helpextendedproc from the sybsystemprocs database.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions create procedure permission defaults to the Database Owner, who can transfer
it to other users.

Permission to use a procedure must be granted explicitly with the grant
command and may be revoked with the revoke command.

Permissions on objects at procedure creation When you create a
procedure, Adaptive Server makes no permission checks on objects, such as
tables and views, that are referenced by the procedure. Therefore, you can
create a procedure successfully even though you do not have access to its
objects. All permission checks occur when a user executes the procedure.

Permissions on objects at procedure execution When the procedure is
executed, permission checks on objects depend upon whether the procedure
and all referenced objects are owned by the same user.

create procedure

112 Adaptive Server Enterprise

• If the procedure’s objects are owned by different users, the invoker must
have been granted direct access to the objects. For example, if the
procedure performs a select from a table that the user cannot access, the
procedure execution fails.

• If a procedure and its objects are owned by the same user, however, special
rules apply. The invoker automatically has “implicit permission” to access
the procedure’s objects even though the invoker could not access them
directly. Without having to grant users direct access to your tables and
views, you can give them restricted access with a stored procedure. In this
way, a stored procedure can be a security mechanism. For example,
invokers of the procedure might be able to access only certain rows and
columns of your table.

A detailed description of the rules for implicit permissions is discussed in
the System Administration Guide.

See also Commands begin...end, break, continue, declare, drop procedure, execute,
goto label, grant, if...else, return, select, waitfor, while

System procedures sp_addextendedproc, sp_helpextendedproc,
sp_helptext, sp_hidetext, sp_rename

CHAPTER 1 Commands

Reference Manual: Commands 113

create procedure (SQLJ)
Description Creates a SQLJ stored procedure by adding a SQL wrapper to a Java static

method. Can accept user-supplied parameters and return result sets and output
parameters.

Note For syntax and usage information about the Transact-SQL command for
creating procedures, see create procedure on page 101.

Syntax create procedure [owner.]sql_procedure_name
([[in | out | inout] sql_parameter_name

sql_datatype [(length) |
(precision[, scale])]

[, [in | out | inout] sql_parameter_name
sql_datatype [(length) |
(precision[, scale])]]

...])
[modifies sql data]
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name 'java_method_name

[([java_datatype[, java_datatype
...]])]'

Parameters sql_procedure_name
is the Transact-SQL name of the procedure. It must conform to the rules for
identifiers and cannot be a variable. Specify the owner’s name to create
another procedure of the same name owned by a different user in the current
database. The default value for owner is the current user.

in | out | inout
specifies the mode of the listed parameter. in indicates an input parameter;
out indicates an output parameter; and inout indicates a parameter that is both
an input and an output parameter. The default mode is in.

sql_parameter_name
is the name of an argument to the procedure. The value of each input
parameter is supplied when the procedure is executed. Parameters are
optional; a SQLJ stored procedure need not take arguments.

Parameter names must conform to the rules for identifiers. If the value of a
parameter contains nonalphanumeric characters, it must be enclosed in
quotes. This includes object names qualified by a database name or owner
name, since they include a period. If the value of the parameter begins with
a numeric character, it also must be enclosed in quotes.

create procedure (SQLJ)

114 Adaptive Server Enterprise

sql_datatype [(length) | (precision [, scale])]
is the Transact-SQL datatype of the parameter.

sql_datatype is the SQL procedure signature.

modifies sql data
indicates that the Java method invokes SQL operations, reads, and modifies
SQL data in the database. This is the default and only implementation. It is
included for syntactic compatibility with the ANSI standard.

dynamic result sets integer
specifies that the Java method can return SQL result sets. integer specifies
the maximum number of result sets the method can return. This value is
implementation-defined.

deterministic | not deterministic
this syntax is supported for compatibility with other SQLJ-compliant
vendors.

language java
specifies that the external routine is written in Java. This is a required clause
for SQLJ stored procedures.

parameter style java
specifies that the parameters passed to the external routine at runtime are
Java parameters. This is a required clause for SQLJ stored procedures.

external
indicates that create procedure defines a SQL name for an external routine
written in a programming language other than SQL.

name
specifies the name of the external routine (Java method). The specified name
is a character-string literal and must be enclosed in single quotes:

'java_method_name [java_datatype
[{, java_datatype} ...]]'

java_method_name
specifies the name of the external Java method.

java_datatype
specifies a Java datatype that is mappable or result-set mappable. This is the
Java method signature.

Examples This example creates the SQLJ procedure java_multiply, which multiplies two
integers and returns an integer.

create procedure java_multiply (param1 integer,

CHAPTER 1 Commands

Reference Manual: Commands 115

param2 integer, out result integer)
language java parameter style java
external name 'MathProc.multiply'

Usage • You can include a maximum of 31 in, inout, and out parameters in a create
procedure statement.

• To comply with the ANSI standard, do not precede parameter names with
the @ sign. When executing a SQLJ stored procedure from isql or other
non-Java client, however, you must precede parameter names with the @
sign, which preserves the naming order.

• The SQLJ create procedure syntax differs from the Transact-SQL create
procedure syntax for compatibility with the SQLJ ANSI standard.
Adaptive Server executes each type of stored procedure in the same way.

Permissions create procedure permission defaults to the Database Owner, who can transfer
it to other users. Permission to use a procedure must be granted explicitly with
the grant command and may be revoked with the revoke command.

See also Commands create function (SQLJ), drop procedure

System procedures sp_depends, sp_help, sp_helpjava, sp_helprotect

create proxy_table

116 Adaptive Server Enterprise

create proxy_table
Description Component Integration Services only Creates a proxy table without

specifying a column list. Component Integration Services derives the column
list from the metadata it obtains from the remote table.

Syntax create proxy_table table_name
[on segment_name]
[external [table | directory | file]]
at pathname
[column delimiter “<string>”]

Parameters table_name
specifies the local proxy table name to be used by subsequent statements.
table_name takes the form dbname.owner.object, where dbname and owner
are optional and represent the local database and owner name. If dbname is
not specified, the table is created in the current database; if owner is not
specified, the table is owned by the current user. If either dbname or owner
is specified, the entire table_name must be enclosed in quotes. If only
dbname is present, a placeholder is required for owner.

on segment_name
specifies the segment that contains the remote table.

external table
specifies that the object is a remote table or view. external table is the default,
so this clause is optional.

external directory
specifies that the object is a directory with a path in the following format:
"/tmp/directory_name [;R]". “R” indicates “recursive.”

external file
specifies that the object is a file with a path in the following format:
"/tmp/filename".

CHAPTER 1 Commands

Reference Manual: Commands 117

at pathname
specifies the location of the remote object. pathname takes the form
server_name.dbname.owner.object, where:

• server_name (required) – is the name of the server that contains the
remote object.

• dbname (optional) – is the name of the database managed by the remote
server that contains this object.

• owner (optional) – is the name of the remote server user that owns the
remote object.

• object (required) – is the name of the remote table or view.

column delimiter
used to separate fields within each record when accesssing flat files, column
delimiters The column delimiter can be up to 16 bytes long.

string
The column delimiter string can be any character sequencer, but if the string
is longer than 16 bytes, only the first 16 bytes are used. The use of column
delimiter for proxy tables mapped to anything but files will result in a syntax
error.

Examples This example creates a proxy table named t1 that is mapped to the remote table
t1. Component Integration Services derives the column list from the remote
table:

create proxy_table t1
at "SERVER_A.db1.joe.t1"

Usage • create proxy_table is a variant of the create existing table command. You
use create proxy_table to create a proxy table, but (unlike create existing
table) you do not specify a column list. Component Integration Services
derives the column list from the metadata it obtains from the remote table.

• The location information provided by the at keyword is the same
information that is provided by sp_addobjectdef. The information is stored
in the sysattributes table.

• If the remote server object does not exist, the command is rejected with an
error message.

• If the object exists, the local system tables are updated. Every column is
used. Columns and their attributes are obtained for the table or view.

create proxy_table

118 Adaptive Server Enterprise

• Component Integration Services automatically converts the datatype of
the column into an Adaptive Server datatype. If the conversion cannot be
made, the create proxy_table command does not allow the table to be
defined.

• Index information from the remote server table is extracted and used to
create rows for the system table sysindexes. This defines indexes and keys
in Adaptive Server terms and enables the query optimizer to consider any
indexes that may exist on the table.

• After defining the proxy table, issue an update statistics command for the
table. This allows the query optimizer to make intelligent choices
regarding join order.

• When executing create proxy_table table_name at pathname, the table and
column names will assume the same case as table_name, if the server
identified by pathname is case insensitive (such as DB2 and Oracle).

The columns returned by a case insensitive server (typically in upper
case), will be stored in Adaptive Server as lower case, if table_name is
lower case. If table_name is uppercase, then the column names will be
stored as uppercase values. If table_name is in mixed case, then all
column names will be stored as received from the remote site.

Proxy tables and extents

Proxy tables in earlier versions of Adaptive Server occupy one extent (8
pages), as well as one extent for each index on a proxy table. In a pre-12.5.0.1
server with 16K logical page size, each proxy table uses 128K worth of space.

In Adaptive Server 12.5.0.1, proxy tables and indexes do not use extents; they
use space only in the system catalogs, which Sybase estimates to be 1MB per
100 proxy tables (assuming an average of two indexes per table). The normal
upgrade does not reclaim this unused space. To reclaim this space, first drop,
then re-create the proxy table.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions create proxy_table permission defaults to the table owner and is not
transferable.

See also Commands create existing table, create table

CHAPTER 1 Commands

Reference Manual: Commands 119

create role
Description Creates a user-defined role; specifies the password expiration interval, the

minimum password length, and the maximum number of failed logins allowed
for a specified role at creation.

Syntax create role role_name [with passwd "password"
[, {passwd expiration | min passwd length |
max failed_logins} option_value]]

Parameters role_name
is the name of the new role. It must be unique to the server and conform to
the rules for identifiers. It cannot be a variable.

with passwd
attaches a password the user must enter to activate the role.

password
is the password to attach to the role. Passwords must be at least 6 characters
in length and must conform to the rules for identifiers. You cannot use
variables for passwords.

passwd expiration
specifies the password expiration interval in days. It can be any value
between 0 and 32767, inclusive.

min passwd length
specifies the minimum password length required for the specified role.

max failed_logins
specifies the number of allowable failed login attempts for the specified
login.

option_value
specifies the value for passwd expiration, min passwd length, or max
failed_logins.

Examples Example 1 Creates a role named doctor_role:

create role doctor_role

Example 2 Creates a role named doctor_role with the password physician:

create role doctor_role with passwd "physician"

Example 3 Sets the password expiration for intern_role:

create role intern_role, with passwd "temp244",
passwd expiration 7

Example 4 Sets the maximum number of failed logins allowed for intern_role:

create role

120 Adaptive Server Enterprise

create role intern_role with passwd “temp244”,
max failed_logins 20

Example 5 Sets the minimum password length for intern_role:

create role intern_role with passwd "temp244",
min passwd length 0

Usage • The create role command creates a role with privileges, permissions, and
limitations that you design. For more information on how to use create
role, see the System Administration Guide.

For information on monitoring and limiting access to objects, see the set
role command.

• Use create role from the master database.

• Use the with passwd password clause to attach a password to a role at
creation. If you attach a password to the role, the user granted this role
must specify the password to activate the role.

For information on adding a password to a role after creation, see the alter
role command.

Note Passwords attached to user-defined roles do not expire.

• Role names must be unique to the server.

• Role names cannot be the same as user names. You can create a role with
the same name as a user, but when you grant privileges, Adaptive Server
resolves naming conflicts by making the grant to the user instead of the
role.

For more information on naming conflicts, see the grant role command.

Restrictions

• The maximum number of roles that can be created per server session is
1024. However, 32 roles are reserved for Sybase system roles, such as
sa_role and sso_role. Therefore, the maximum number of user-defined
roles that can be created per server session is 992.

• If you create a role with an attached password, a user cannot activate that
role by default at login. Do not create a role with an attached password if
the user to whom you grant that role needs to activate the role by default
at login.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions You must be a System Security Officer to use create role.

CHAPTER 1 Commands

Reference Manual: Commands 121

create role permission is not included in the grant all command.

See also Commands alter role, drop role, grant, revoke, set

System procedures sp_activeroles, sp_displaylogin, sp_displayroles,
sp_helprotect, sp_modifylogin

create rule

122 Adaptive Server Enterprise

create rule
Description Specifies the domain of acceptable values for a particular column or for any

column of a user-defined datatype and creates access rules.

Syntax create [[and | or] access]] rule
[owner.]rule_name
as condition_expression

Parameters access
specifies that you are creating an access rule. For information on access
rules, see Chapter 11, “Managing User Permissions” in the System
Administration Guide.

rule_name
is the name of the new rule. It must conform to the rules for identifiers and
cannot be a variable. Specify the owner’s name to create another rule of the
same name owned by a different user in the current database. The default
value for owner is the current user.

condition_expression
specifies the conditions that define the rule. It can be any expression that is
valid in a where clause, and can include arithmetic operators, relational
operators, in, like, between, and so on. However, it cannot reference a column
or any other database object. Built-in functions that do not reference
database objects can be included.

A condition_expression takes one argument. The argument is prefixed by
the @ sign and refers to the value that is entered via the update or insert
command. You can use any name or symbol to represent the value when you
write the rule, but the first character must be the @ sign. Enclose character
and date constants in quotes, and precede binary constants with “0x”.

Examples Example 1 Creates a rule named limit, which limits the value of advance to less
than $1000:

create rule limit
as @advance < $1000

Example 2 Creates a rule named pubid_rule, which restricts the values of
pub_id to 1389, 0736, or 0877:

create rule pubid_rule
as @pub_id in ('1389', '0736', '0877')

Example 3 Creates a rule named picture, which restricts the value of value to
always begin with the indicated characters:

create rule picture

CHAPTER 1 Commands

Reference Manual: Commands 123

as @value like '_-%[0-9]'

Usage • To hide the text of a rule, use sp_hidetext.

• To rename a rule, use sp_rename.

Restrictions

• You can create a rule only in the current database.

• Rules do not apply to the data that already exists in the database at the time
the rules are created.

• create rule statements cannot be combined with other statements in a single
batch.

• You cannot bind a rule to a Adaptive Server-supplied datatype or to a
column of type text, image, or timestamp.

• You must drop a rule before you create a new one of the same name, and
you must unbind a rule before you drop it. Use:

sp_unbindrule objname [, futureonly]

Binding rules

• Use sp_bindrule to bind a rule to a column or user-defined datatype. Its
syntax is:

sp_bindrule rulename, objname [, futureonly]

• A rule that is bound to a user-defined datatype is activated when you insert
a value into, or update, a column of that type. Rules do not test values
inserted into variables of that type.

• The rule must be compatible with the datatype of the column. For
example, you cannot use:

@value like A%

as a rule for an exact or approximate numeric column. If the rule is not
compatible with the column to which it is bound, Adaptive Server
generates an error message when it tries to insert a value, not when you
bind it.

• You can bind a rule to a column or datatype without unbinding an existing
rule.

• Rules bound to columns always take precedence over rules bound to
user-defined datatypes, regardless of which rule was most recently bound.
Table 1-12 indicates the precedence when binding rules to columns and
user-defined datatypes where rules already exist.

create rule

124 Adaptive Server Enterprise

Table 1-12: Rule binding precedence

Rules and NULLs

• Rules do not override column definitions. If a rule is bound to a column
that allows null values, you can insert NULL into the column, implicitly
or explicitly, even though NULL is not included in the text of the rule. For
example, if you create a rule specifying “@val in (1,2,3)” or “@amount >
10000”, and bind this rule to a table column that allows null values, you
can still insert NULL into that column. The column definition overrides
the rule.

Defaults and rules

• If a column has both a default and a rule associated with it, the default must
fall within the domain defined by the rule. A default that conflicts with a
rule will never be inserted. Adaptive Server generates an error message
each time it attempts to insert the default.

Using integrity constraints in place of rules

• You can define rules using check with the create table statement, which
creates integrity constraints. However, these constraints are specific for
that table; you cannot bind them to other tables. See create table and alter
table for information about integrity constraints.

Getting information about rules

• To get a report on a rule, use sp_help.

• To display the text of a rule, which is stored in the syscomments system
table, execute sp_helptext with the rule name as the parameter.

• After a rule is bound to a particular column or user-defined datatype, its
ID is stored in the syscolumns or systypes system tables.

Standards ANSI SQL – Compliance level: Entry-level compliant.

To create rules using ANSI SQL-compliant syntax, use the check clause of the
create table statement.

Permissions create rule permission defaults to the Database Owner, who can transfer it to
other users.

See also Commands alter table, create default, create table, drop rule, drop table

New rule bound to
Old rule bound to
user-defined datatype

Old rule bound to
column

User-defined datatype New rule replaces old No change

Column New rule replaces old New rule replaces old

CHAPTER 1 Commands

Reference Manual: Commands 125

System procedures sp_bindrule, sp_help, sp_helptext, sp_hidetext,
sp_rename, sp_unbindrule

create schema

126 Adaptive Server Enterprise

create schema
Description Creates a new collection of tables, views, and permissions for a database user.

Syntax create schema authorization authorization_name
create_oject_statement

[create_object_statement ...]
[permission_statement ...]

Parameters authorization_name
must be the name of the current user in the database.

create_object_statement
is a create table or create view statement.

permission_statement
is a grant or revoke command.

Examples Creates the newtitles, newauthors, newtitleauthors tables, the tit_auth_view view,
and the corresponding permissions:

create schema authorization pogo
create table newtitles (

title_id tid not null,
title varchar(30) not null)

create table newauthors (
au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null)

create table newtitleauthors (
au_id id not null,
title_id tid not null)

create view tit_auth_view
as

select au_lname, au_fname
from newtitles, newauthors,

newtitleauthors
where
newtitleauthors.au_id = newauthors.au_id
and
newtitleauthors.title_id =

 newtitles.title_id

grant select on tit_auth_view to public
revoke select on tit_auth_view from churchy

Usage • Schemas can be created only in the current database.

CHAPTER 1 Commands

Reference Manual: Commands 127

• The authorization_name, also called the schema authorization
identifier, must be the name of the current user.

• The user must have the correct command permissions (create table and/or
create view). If the user creates a view on tables owned by another
database user, permissions on the view are checked when a user attempts
to access data through the view, not when the view is created.

• The create schema command is terminated by:

• The regular command terminator (“go” is the default in isql).

• Any statement other than create table, create view, grant, or revoke.

• If any of the statements within a create schema statement fail, the entire
command is rolled back as a unit, and none of the commands take effect.

• create schema adds information about tables, views, and permissions to
the system tables. Use the appropriate drop command (drop table or drop
view) to drop objects created with create schema. Permissions granted or
revoked in a schema can be changed with the standard grant and revoke
commands outside the schema creation statement.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions create schema can be executed by any user of a database. The user must have
permission to create the objects specified in the schema; that is, create table
and/or create view permission.

See also Commands create table, create view, grant, revoke

Utilities isql

create table

128 Adaptive Server Enterprise

create table
Description Creates new tables and optional integrity constraints.

Syntax create table [database .[owner].]table_name (column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]

[off row | [in row [(size_in_bytes)]]
[[constraint constraint_name]

{{unique | primary key}
[clustered | nonclustered] [asc | desc]
[with { fillfactor = pct,

max_rows_per_page = num_rows, }
reservepagegap = num_pages }]

[on segment_name]
| references [[database .]owner .]ref_table

[(ref_column)]
[match full]
| check (search_condition)}]}
[match full]...

| [constraint constraint_name]
{{unique | primary key}

[clustered | nonclustered]
(column_name [asc | desc]

[{, column_name [asc | desc]}...])
[with { fillfactor = pct

max_rows_per_page = num_rows ,
reservepagegap = num_pages }]

[on segment_name]
|foreign key (column_name [{,column_name}...])

references [[database.]owner.]ref_table
[(ref_column [{, ref_column}...])]
[match full]

| check (search_condition) ... }
[{, {next_column | next_constraint}}...])
[lock {datarows | datapages | allpages }]
[with { max_rows_per_page = num_rows,

exp_row_size = num_bytes,
reservepagegap = num_pages,
identity_gap = value }]

[on segment_name]
[[external table] at pathname]

CHAPTER 1 Commands

Reference Manual: Commands 129

Parameters table_name
is the explicit name of the new table. Specify the database name if the table
is in another database, and specify the owner’s name if more than one table
of that name exists in the database. The default value for owner is the current
user, and the default value for database is the current database.

You cannot use a variable for the table name. The table name must be unique
within the database and to the owner. If you have set quoted_identifier on,
you can use a delimited identifier for the table name. Otherwise, it must
conform to the rules for identifiers. For more information about valid table
names, see “Identifiers” on page 259 in Chapter 4, “Expressions,
Identifiers, and Wildcard Characters,” of Reference Manual: Building
Blocks.

You can create a temporary table by preceding the table name with either a
pound sign (#) or “tempdb..”. For more information, see “Tables beginning
with # (temporary tables)” on page 260 in Chapter 4, “Expressions,
Identifiers, and Wildcard Characters,” of Reference Manual: Building
Blocks.

You can create a table in a different database, as long as you are listed in the
sysusers table and have create table permission for that database. For
example, you can use either of the following to create a table called newtable
in the database otherdb:

create table otherdb..newtable
create table otherdb.yourname.newtable

column_name
is the name of the column in the table. It must be unique in the table. If you
have set quoted_identifier on, you can use a delimited identifier for the
column. Otherwise, it must conform to the rules for identifiers. For more
information about valid column names, see Chapter 4, “Expressions,
Identifiers, and Wildcard Characters,” of Reference Manual: Building
Blocks.

datatype
is the datatype of the column. System or user-defined datatypes are
acceptable. Certain datatypes expect a length, n, in parentheses:

 datatype(n)

Others expect a precision, p, and scale, s:

create table

130 Adaptive Server Enterprise

 datatype(p,s)

See “Datatypes” for more information.

If Java is enabled in the database, datatype can be the name of a Java class,
either a system class or a user-defined class, that has been installed in the
database. Refer to Java in Adaptive Server Enterprise for more information.

default
specifies a default value for a column. If you specify a default, and the user
does not provide a value for the column when inserting data, Adaptive
Server inserts the default value. The default can be a constant expression,
user, to insert the name of the user who is performing the insert, or null, to
insert the null value. Adaptive Server generates a name for the default in the
form of tabname_colname_objid, where tabname is the first 10 characters
of the table name, colname is the first 5 characters of the column name, and
objid is the object ID number for the default. Defaults declared for columns
with the IDENTITY property have no effect on column values.

constant_expression
is a constant expression to use as a default value for the column. It cannot
include global variables, the name of any columns, or other database objects,
but can include built-in functions that do not reference database objects.
This default value must be compatible with the datatype of the column, or
Adaptive Server generates a datatype conversion error when attempting to
insert the default.

user | null
specifies that Adaptive Server should insert the user name or the null value
as the default if the user does not supply a value. For user, the datatype of
the column must be either char(30) or varchar(30). For null, the column must
allow null values.

identity
indicates that the column has the IDENTITY property. Each table in a
database can have one IDENTITY column with a type of numeric and a scale
of 0. IDENTITY columns are not updatable and do not allow nulls.

IDENTITY columns are used to store sequential numbers, such as invoice
numbers or employee numbers, that are generated automatically by
Adaptive Server. The value of the IDENTITY column uniquely identifies
each row in a table.

CHAPTER 1 Commands

Reference Manual: Commands 131

null | not null
specifies Adaptive Server’s behavior during data insertion if no default
exists.

null specifies that Adaptive Server assigns a null value if a user does not
provide a value.

not null specifies that a user must provide a non-null value if no default
exists.

If you do not specify null or not null, Adaptive Server uses not null by default.
However, you can switch this default using sp_dboption to make the default
compatible with the SQL standards.

off row | in row
specifies whether a Java-SQL column is stored separate from the row (off
row) or in storage allocated directly in the row (in row).

The default value is off row. For more information, see Java in Adaptive
Server Enterprise.

size_in_bytes
specifies the maximum size of the in-row column. An object stored in-row
can occupy up to approximately 16K bytes, depending on the page size of
the database server and other variables. The default value is 255 bytes.

constraint
introduces the name of an integrity constraint.

constraint_name
is the name of the constraint. It must conform to the rules for identifiers and
be unique in the database. If you do not specify the name for a referential or
check constraint, Adaptive Server generates a name in the form
tabname_colname_objectid where tabname is the first 10 characters of the
table name, colname is the first 5 characters of the column name, and
objectid is the object ID number for the constraint. If you do not specify the
name for a unique or primary key constraint, Adaptive Server generates a
name in the format tabname_colname_tabindid where tabindid is a string
concatenation of the table ID and index ID.

unique
constrains the values in the indicated column or columns so that no two rows
have the same value. This constraint creates a unique index that can be
dropped only if the constraint is dropped using alter table.

create table

132 Adaptive Server Enterprise

primary key
constrains the values in the indicated column or columns so that no two rows
have the same value, and so that the value cannot be NULL. This constraint
creates a unique index that can be dropped only if the constraint is dropped
using alter table.

clustered | nonclustered
specifies that the index created by a unique or primary key constraint is a
clustered or nonclustered index. clustered is the default for primary key
constraints; nonclustered is the default for unique constraints. There can be
only one clustered index per table. See create index for more information.

asc | desc
specifies whether the index created for a constraint is to be created in
ascending or descending order for each column. The default is ascending
order.

CHAPTER 1 Commands

Reference Manual: Commands 133

fillfactor
specifies how full Adaptive Server makes each page when it creates a new
index on existing data. The fillfactor percentage is relevant only when the
index is created. As the data changes, the pages are not maintained at any
particular level of fullness.

The default for fillfactor is 0; this is used when you do not include with
fillfactor in the create index statement (unless the value has been changed
with sp_configure). When specifying a fillfactor, use a value between 1 and
100.

A fillfactor of 0 creates clustered indexes with completely full pages and
nonclustered indexes with completely full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both the clustered and
nonclustered indexes. There is seldom a reason to change the fillfactor.

If the fillfactor is set to 100, Adaptive Server creates both clustered and
nonclustered indexes with each page 100 percent full. A fillfactor of 100
makes sense only for read-only tables—tables to which no additional data
will ever be added.

fillfactor values smaller than 100 (except 0, which is a special case) cause
Adaptive Server to create new indexes with pages that are not completely
full. A fillfactor of 10 might be a reasonable choice if you are creating an
index on a table that will eventually hold a great deal more data, but small
fillfactor values cause each index (or index and data) to take more storage
space.

If Component Integration Services is enabled, you cannot use fillfactor for
remote servers.

 Warning! Creating a clustered index with a fillfactor affects the amount of
storage space your data occupies, since Adaptive Server redistributes the data
as it creates the clustered index.

create table

134 Adaptive Server Enterprise

max_rows_per_page
limits the number of rows on data pages and the leaf-level pages of indexes.
Unlike fillfactor, the max_rows_per_page value is maintained when data is
inserted or deleted.

If you do not specify a value for max_rows_per_page, Adaptive Server uses
a value of 0 when creating the table. Values for tables and clustered indexes
are between 0 and 256. The maximum number of rows per page for
nonclustered indexes depends on the size of the index key; Adaptive Server
returns an error message if the specified value is too high.

A max_rows_per_page of 0 creates clustered indexes with full data pages
and nonclustered indexes with full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both clustered and nonclustered
indexes.

Using low values for max_rows_per_page reduces lock contention on
frequently accessed data. However, using low values also causes Adaptive
Server to create new indexes with pages that are not completely full, uses
more storage space, and may cause more page splits.

If Component Integration Services is enabled, and you create a proxy table,
then max_rows_per_page is ignored. Proxy tables do not contain any data. If
max_rows_per_page is used to create a table, and later a proxy table is
created to reference that table, then the max_rows_per_page limits apply
when you insert or delete through the proxy table.

on segment_name
specifies that the index is to be created on the named segment. Before the on
segment_name option can be used, the device must be initialized with disk
init, and the segment must be added to the database with sp_addsegment. See
your System Administrator or use sp_helpsegment for a list of the segment
names available in your database.

If you specify clustered and use the on segment_name option, the entire table
migrates to the segment you specify, since the leaf level of the index
contains the actual data pages.

CHAPTER 1 Commands

Reference Manual: Commands 135

references
specifies a column list for a referential integrity constraint. You can specify
only one column value for a column constraint. By including this constraint
with a table that references another table, any data inserted into the
referencing table must already exist in the referenced table.

To use this constraint, you must have references permission on the
referenced table. The specified columns in the referenced table must be
constrained by a unique index (created by either a unique constraint or a
create index statement). If no columns are specified, there must be a primary
key constraint on the appropriate columns in the referenced table. Also, the
datatypes of the referencing table columns must match the datatype of the
referenced table columns.

foreign key
specifies that the listed column(s) are foreign keys in this table whose target
keys are the columns listed in the following references clause. The foreign
key syntax is permitted only for table-level constraints, not for column-level
constraints.

ref_table
is the name of the table that contains the referenced columns. You can
reference tables in another database. Constraints can reference as many as
192 user tables and internally generated worktables.

ref_column
is the name of the column or columns in the referenced table.

match full
specifies that if all values in the referencing columns of a referencing row
are:

• Null – the referential integrity condition is true.

• Non-null values – if there is a referenced row where each corresponding
column is equal in the referenced table, then the referential integrity
condition is true.

If they are neither, then the referential integrity condition is false when:

• All values are non-null and not equal, or

• Some of the values in the referencing columns of a referencing row are
non-null values, while others are null.

create table

136 Adaptive Server Enterprise

check
specifies a search_condition constraint that Adaptive Server enforces for all
the rows in the table. You can specify check constraints as table or column
constraints; create table allows multiple check constraints in a column
definition.

search_condition
is the check constraint on the column values. These constraints can include:

• A list of constant expressions introduced with in

• A set of conditions introduced with like, which may contain wildcard
characters

Column and table check constraints can reference any columns in the table.

An expression can include arithmetic operators and functions. The
search_condition cannot contain subqueries, aggregate functions, host
variables, or parameters.

next_column | next_constraint
indicates that you can include additional column definitions or table
constraints (separated by commas) using the same syntax described for a
column definition or table constraint definition.

lock datarows | datapages | allpages
specifies the locking scheme to be used for the table. The default is the
server-wide setting for the configuration parameter lock scheme.

exp_row_size = num_bytes
specifies the expected row size; applies only to datarows and datapages
locking schemes, and only to tables with variable-length rows. Valid values
are 0, 1, and any value between the minimum and maximum row length for
the table. The default value is 0, which means a server-wide setting is
applied.

reservepagegap = num_pages
specifies the ratio of filled pages to empty pages that are to be left during
extent I/O allocation operations. For each specified num_pages, an empty
page is left for future expansion of the table. Valid values are 0 – 255. The
default value is 0.

with identity_gap
specifies the identity gap for the table. This value overrides the system
identity gap setting for this table only.

CHAPTER 1 Commands

Reference Manual: Commands 137

value
is the identity gap amount. For more information about setting the identity
gap, see IDENTITY columns.

external table
specifies that the object is a remote table or view. external table is the default,
so specifying this is optional.

at pathname
specifies the location of the remote object. pathname takes the form
server_name.dbname.owner.object;aux1.aux2, where:

• server_name (required) – is the name of the server that contains the
remote object.

• dbname (optional) – is the name of the database managed by the remote
server that contains this object.

• owner (optional) – is the name of the remote server user that owns the
remote object.

• object (required) – is the name of the remote table or view.

• aux1.aux2 (optional) – is a string of characters that is passed to the
remote server during a create table or create index command. This string
is used only if the server is class db2. aux1 is the DB2 database in which
to place the table, and aux2 is the DB2 table space in which to place the
table.

on segment_name
specifies the name of the segment on which to place the table. When using
on segment_name, the logical device must already have been assigned to the
database with create database or alter database, and the segment must have
been created in the database with sp_addsegment. See your System
Administrator or use sp_helpsegment for a list of the segment names
available in your database.

Examples Example 1 Creates the titles table:

create table titles
(title_id tid not null,
title varchar(80) not null,
type char(12) not null,
pub_id char(4) null,
price money null,
advance money null,
total_sales int null,
notes varchar(200) null,

create table

138 Adaptive Server Enterprise

pubdate datetime not null,
contract bit not null)

Example 2 Creates the compute table. The table name and the column names,
max and min, are enclosed in double quotes because they are reserved words.
The total score column name is enclosed in double quotes because it contains
an embedded blank. Before creating this table, you must set quoted_identifier
on:

create table "compute"
("max" int, "min" int, "total score" int)

Example 3 Creates the sales table and a clustered index in one step with a
unique constraint. (In the pubs2 database installation script, there are separate
create table and create index statements):

create table sales
(stor_id char(4) not null,
ord_num varchar(20) not null,
date datetime not null,
unique clustered (stor_id, ord_num))

Example 4 Creates the salesdetail table with two referential integrity
constraints and one default value. There is a table-level, referential integrity
constraint named salesdet_constr and a column-level, referential integrity
constraint on the title_id column without a specified name. Both constraints
specify columns that have unique indexes in the referenced tables (titles and
sales). The default clause with the qty column specifies 0 as its default value:

create table salesdetail
(stor_id char(4) not null,
ord_num varchar(20) not null,
title_id tid not null

 references titles(title_id),
qty smallint default 0 not null,
discount float not null,

constraint salesdet_constr
foreign key (stor_id, ord_num)
references sales(stor_id, ord_num))

Example 5 Creates the table publishers with a check constraint on the pub_id
column. This column-level constraint can be used in place of the pub_idrule
included in the pubs2 database:

create rule pub_idrule
as @pub_id in ("1389", "0736", "0877", "1622",

"1756")

CHAPTER 1 Commands

Reference Manual: Commands 139

or @pub_id like "99[0-9][0-9]"

create table publishers
(pub_id char(4) not null

check (pub_id in ("1389", "0736", "0877", "1622",
"1756")

or pub_id like "99[0-9][0-9]"),
pub_name varchar(40) null,
city varchar(20) null,
state char(2) null)

Example 6 Specifies the ord_num column as the IDENTITY column for the
sales_daily table. The first time you insert a row into the table, Adaptive Server
assigns a value of 1 to the IDENTITY column. On each subsequent insert, the
value of the column increments by 1:

create table sales_daily
(stor_id char(4) not null,
ord_num numeric(10,0) identity,
ord_amt money null)

Example 7 Specifies the datapages locking scheme for the new_titles table and
an expected row size of 200:

create table new_titles (
title_id tid,
title varchar(80) not null,
type char(12) ,
pub_id char(4) null,
price money null,
advance money null,
total_sales int null,
notes varchar(200) null,
pubdate datetime,
contract bit)

lock datapages
with exp_row_size = 200

Example 8 Specifies the datarows locking scheme and sets a reservepagegap
value of 16 so that extent I/O operations leave 1 blank page for each 15 filled
pages:

create table new_publishers (
pub_id char(4) not null,
pub_name varchar(40) null,
city varchar(20) null,
state char(2) null)
lock datarows
with reservepagegap = 16

create table

140 Adaptive Server Enterprise

Example 9 Creates a constraint supported by a unique clustered index; the
index order is ascending for stor_id and descending for ord_num:

create table sales_south
(stor_id char(4) not null,
ord_num varchar(20) not null,
date datetime not null,
unique clustered (stor_id asc, ord_num desc))

Example 10 Creates a table named t1 at the remote server SERVER_A and
creates a proxy table named t1 that is mapped to the remote table:

create table t1
(a int,
 b char(10))
at "SERVER_A.db1.joe.t1"

Example 11 Creates a table named employees. name is of type varchar,
home_addr is a Java-SQL column of type Address, and mailing_addr is a
Java-SQL column of type Address2Line. Both Address and Address2Line are
Java classes installed in the database:

create table employees
(name varchar(30),
home_addr Address,
mailing_addr Address2Line)

Example 12 Creates a table named mytable with an identity column. The
identity gap is set to 10, which means ID numbers are allocated in memory in
blocks of ten. If the server fails or is shut down with no wait, the maximum gap
between the last ID number assigned to a row and the next ID number assigned
to a row is ten numbers:

create table mytable
(IdNum numeric(12,0) identity)
with identity_gap = 10

Example 13 Creates a table named mytable with an identity column. The
identity gap is set to 10, which means ID numbers will be allocated in memory
in blocks of ten. If the server fails or is shut down with no wait, the maximum
gap between the last ID number assigned to a row and the next ID number
assigned to a row is ten numbers:

create table mytable
(IdNum numeric(12,0) identity)
with identity_gap = 10

CHAPTER 1 Commands

Reference Manual: Commands 141

For more information about identity gaps, see the section “Managing Identity
Gaps in Tables” in Chapter 7, “Creating Databases and Tables” in the
Transact-SQL User’s Guide.

Usage • create table creates a table and optional integrity constraints. The table is
created in the currently open database unless you specify a different
database in the create table statement. You can create a table or index in
another database, if you are listed in the sysusers table and have create
table permission in the database.

• Space is allocated to tables and indexes in increments of one extent, or
eight pages, at a time. Each time an extent is filled, another extent is
allocated. To see the amount of space allocated and used by a table, use
sp_spaceused.

• The maximum length for in-row Java columns is determined by the
maximum size of a variable-length column for the table’s schema, locking
style, and page size.

• When using create table from Component Integration Services with a
column defined as char(n) NULL, Component Integration Services creates
the column as varchar(n) on the remote server.

Restrictions

• The maximum number of columns in a table depends on the width of the
columns and the server’s logical page size:

• The sum of the columns’ sizes cannot exceed the server’s logical page
size.

• The maximum number of columns per table cannot exceed 1024.

• The maximum number of variable length columns for an APL table is
254.

For example, if your server uses a 2K logical page size and includes
a table of integer columns, the maximum number of columns in the
table would be far fewer than 1024. (1024 * 4 bytes exceeds a 2K
logical page size.)

You can mix variable- and fixed-length columns in a single table as
long as the maximum number of columns does not exceed 1024. For
example, if your server uses a 8K logical page size, a table configured
for APL can have 254 nullable integer columns (these are variable
length columns) and 770 non-nullable integers, for a total of 1024
columns.

create table

142 Adaptive Server Enterprise

• There can be as many as 2,000,000,000 tables per database and 250
user-defined columns per table. The number of rows per table is limited
only by available storage.

• Adaptive Server issues error message 154, "Variable is not allowed in
default," if you use a variable in a default that is part of a create table
statement. For example:

declare @p int
select @p = 2
create table t1 (c1 int default @p, c2 int)

• Although Adaptive Server does create tables in the following
circumstances, you will receive errors about size limitations when you
perform DML operations:

• If the total row size for rows with variable-length columns exceeds the
maximum column size.

• If the length of a single variable-length column exceeds the maximum
column size.

• For DOL tables, if the offset of any variable-length column other than
the initial column exceeds the limit of 8191 bytes.

• Adaptive Server reports an error if the total size of all fixed-length
columns, plus the row overhead, is greater than the table’s locking scheme
and page size allows. These limits are described in Table 1-13.

Table 1-13: Maximum row and column length - APL and DOL

Locking scheme Page size Maximum row length Maximum column length

APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes
if table does not include any
variable length columns

16K (16384 bytes) 16300
(subject to a max start
offset of varlen = 8191)

8191-6-2 = 8183 bytes
if table includes at least on
variable length column.*

* This size includes six bytes for the row overhead and two bytes for the row length field

CHAPTER 1 Commands

Reference Manual: Commands 143

• The maximum number of bytes of variable length data per row depends on
the locking scheme for the table. Table 1-14 describes the maximum size
columns for an APL table:

Table 1-14: Maximum size for variable-length columns in an APL table

Table 1-15 describes the maximum size of columns for a DOL table:

Table 1-15: Maximum size for variable-length columns in an DOL table

• If you create a DOL table with a variable-length column that exceeds a
8191-byte offset, you cannot add any rows to the column.

• If you create tables with varchar, nvarchar, univarchar, or varbinary
columns whose total defined width is greater than the maximum allowed
row size, a warning message appears, but the table is created. If you try to
insert more than the maximum number bytes into such a row, or to update
a row so that its total row size is greater than the maximum length,
Adaptive Server produces an error message, and the command fails.

Note When a create table command occurs within an if...else block or a
while loop, Adaptive Server creates the schema for the table before
determining whether the condition is true. This may lead to errors if the
table already exists. To avoid this situation, either make sure a view with
the same name does not already exist in the database or use an execute
statement, as follows:

if not exists
(select * from sysobjects where name="my table")

begin
execute "create table mytable(x int)"
end

Page size Maximum row length Maximum column length

2K (2048 bytes) 1962 1960

4K (4096 bytes) 4010 4008

8K (8192 bytes) 8096 8104

16K (16384 bytes) 16298 16296

Page size Maximum row length Maximum column length

2K (2048 bytes) 1964 1958

4K (4096 bytes) 4012 4006

8K (8192 bytes) 8108 8102

16K (16384 bytes) 16300 16294

create table

144 Adaptive Server Enterprise

• You cannot issue create table with a declarative default or check constraint
and then insert data into the table in the same batch or procedure. Either
separate the create and insert statements into two different batches or
procedures, or use execute to perform the actions separately.

• You cannot use the following variable in create table statements that
include defaults:

declare @p int
select @p = 2
create table t1 (c1 int default @p, c2 int)

Doing so results in error message 154, which says, “Variable is not
allowed in default.”

Column definitions

• When you create a column from a user-defined datatype:

• You cannot change the length, precision, or scale.

• You can use a NULL type to create a NOT NULL column, but not to
create an IDENTITY column.

• You can use a NOT NULL type to create a NULL column or an
IDENTITY column.

• You can use an IDENTITY type to create a NOT NULL column, but
the column inherits the IDENTITY property. You cannot use an
IDENTITY type to create a NULL column.

• Only columns with variable-length datatypes can store null values. When
you create a NULL column with a fixed-length datatype, Adaptive Server
automatically converts it to the corresponding variable-length datatype.
Adaptive Server does not inform the user of the type change.

The following table lists the fixed-length datatypes and the variable-length
datatypes to which they are converted. Certain variable-length datatypes,
such as moneyn, are reserved types that cannot be used to create columns,
variables, or parameters:

CHAPTER 1 Commands

Reference Manual: Commands 145

Table 1-16: Variable-length datatypes used to store nulls

• You can create column defaults in two ways: by declaring the default as a
column constraint in the create table or alter table statement, or by creating
the default using the create default statement and binding it to a column
using sp_bindefault.

• For a report on a table and its columns, execute the system procedure
sp_help.

Temporary tables

• Temporary tables are stored in the temporary database, tempdb.

• The first 13 characters of a temporary table name must be unique per
session. Such tables can be accessed only by the current Adaptive Server
session. They are stored in tempdb..objects by their names plus a
system-supplied numeric suffix, and they disappear at the end of the
current session or when they are explicitly dropped.

• Temporary tables created with the “tempdb..” prefix are shareable among
Adaptive Server user sessions. They exist until they are explicitly dropped
by their owner or until Adaptive Server reboots. Create temporary tables
with the “tempdb..” prefix from inside a stored procedure only if you
intend to share the table among users and sessions. To avoid inadvertent
sharing of temporary tables, use the “#” prefix when creating and dropping
temporary tables in stored procedures.

Original fixed-length datatype Converted to

char varchar

nchar nvarchar

binary varbinary

datetime datetimn

float floatn

int, smallint, and tinyint intn

decimal decimaln

numeric numericn

money and smallmoney moneyn

create table

146 Adaptive Server Enterprise

• Temporary tables can be used by multiple users during an Adaptive Server
session. However, the specific user session usually cannot be identified
because temporary tables are created with the “guest” user ID of 2. If more
than one user runs the process that creates the temporary table, each user
is a “guest” user so the uid values are all the same. Therefore, there is no
way to know which user session in the temporary table is for a specific
user. It is possible that the SA can add the user to the temporary table using
sp_addlogin, in which case the individual uid is available for that user’s
session in the temporary table, but this circumstance is unlikely.

• You can associate rules, defaults, and indexes with temporary tables, but
you cannot create views on temporary tables or associate triggers with
them.

• When you create a temporary table, you can use a user-defined datatype
only if the type is in tempdb..systypes. To add a user-defined datatype to
tempdb for the current session only, execute sp_addtype while using
tempdb. To add the datatype permanently, execute sp_addtype while using
model, then restart Adaptive Server so that model is copied to tempdb.

Using indexes

• A table “follows” its clustered index. If you create a table on one segment,
and then create its clustered index on another segment, the table migrates
to the segment where the index is created.

• You can make inserts, updates, and selects faster by creating a table on one
segment and its nonclustered indexes on another segment, if the segments
are on separate physical devices. For more information, see the
Performance and Tuning Guide.

Renaming a table or its columns

• Use sp_rename to rename a table or column.

• After renaming a table or any of its columns, use sp_depends to determine
which procedures, triggers, and views depend on the table, and redefine
these objects.

 Warning! If you do not redefine these dependent objects, they will no
longer work after Adaptive Server recompiles them.

CHAPTER 1 Commands

Reference Manual: Commands 147

Specifying ascending or descending ordering in indexes

• Use the asc and desc keywords after index column names to specify the
sort order for the index. Creating indexes so that columns are in the same
order specified in the order by clause of queries eliminates the sorting step
during query processing.

Defining integrity constraints

• The create table statement helps control a database’s integrity through a
series of integrity constraints as defined by the SQL standards. These
integrity constraint clauses restrict the data that users can insert into a
table. You can also use defaults, rules, indexes, and triggers to enforce
database integrity.

Integrity constraints offer the advantages of defining integrity controls in
one step during the table creation process and of simplifying the process
to create those integrity controls. However, integrity constraints are more
limited in scope and less comprehensive than defaults, rules, indexes, and
triggers.

• You must declare constraints that operate on more than one column as
table-level constraints; declare constraints that operate on just one column
as column-level constraints. Although the difference is rarely noticed by
users, column-level constraints are only checked if a value in the column
is being modified, while the table-level constraints are checked if there is
any modification to a row, regardless of whether or not it changes the
column in question.

Place column-level constraints after the column name and datatype, before
the delimiting comma (see Example 5). You enter table-level constraints
as separate comma-delimited clauses (see Example 4). Adaptive Server
treats table-level and column-level constraints the same way; neither way
is more efficient than the other.

• You can create the following types of constraints at the table level or the
column level:

• A unique constraint requires that no two rows in a table have the same
values in the specified columns. In addition, a primary key constraint
requires that there be no null values in the column.

• A referential integrity (references) constraint requires that the data
being inserted or updated in specific columns has matching data in the
specified table and columns.

• A check constraint limits the values of the data inserted into the
columns.

create table

148 Adaptive Server Enterprise

You can also enforce data integrity by restricting the use of null values in
a column (the null or not null keywords) and by providing default values for
columns (the default clause).

• You can use the system procedures sp_primarykey, sp_foreignkey, and
sp_commonkey to save information in system tables, which can help
clarify the relationships between tables in a database. These system
procedures do not enforce the key relationships or duplicate the functions
of the primary key and foreign key keywords in a create table statement. For
a report on keys that have been defined, use sp_helpkey. For a report on
frequently used joins, execute sp_helpjoins.

• Transact-SQL provides several mechanisms for integrity enforcement. In
addition to the constraints you can declare as part of create table, you can
create rules, defaults, indexes, and triggers. Table 1-17 summarizes the
integrity constraints and describes the other methods of integrity
enforcement:

Table 1-17: Methods of integrity enforcement

The method you choose depends on your requirements. For example,
triggers provide more complex handling of referential integrity (such as
referencing other columns or objects) than those declared in create table.
Also, the constraints defined in a create table statement are specific for that
table; unlike rules and defaults, you cannot bind them to other tables, and
you can only drop or change them using alter table. Constraints cannot
contain subqueries or aggregate functions, even on the same table.

• The create table command can include many constraints, with these
limitations:

• The number of unique constraints is limited by the number of indexes
that a table can have.

• A table can have only one primary key constraint.

• You can include only one default clause per column in a table, but you
can define different constraints on the same column.

In create table Other methods

unique constraint create unique index (on a column that allows null values)

primary key constraint create unique index (on a column that does not allow null values)

references constraint create trigger

check constraint (table level) create trigger

check constraint (column level) create trigger or create rule and sp_bindrule

default clause create default and sp_bindefault

CHAPTER 1 Commands

Reference Manual: Commands 149

For example:

create table discount_titles
(title_id varchar(6) default "PS7777" not null

unique clustered
references titles(title_id)
check (title_id like "PS%"),

new_price money)

Column title_id of the new table discount_titles is defined with each
integrity constraint.

• You can create error messages and bind them to referential integrity and
check constraints. Create messages with sp_addmessage and bind them to
the constraints with sp_bindmsg. For more information, see
sp_addmessage and sp_bindmsg.

• Adaptive Server evaluates check constraints before enforcing the
referential constraints, and evaluates triggers after enforcing all the
integrity constraints. If any constraint fails, Adaptive Server cancels the
data modification statement; any associated triggers do not execute.
However, a constraint violation does not roll back the current transaction.

• In a referenced table, you cannot update column values or delete rows that
match values in a referencing table. Update or delete from the referencing
table first, then try updating or deleting from the referenced table.

• You must drop the referencing table before you drop the referenced table;
otherwise, a constraint violation occurs.

• For information about constraints defined for a table, use
sp_helpconstraint.

Unique and primary key constraints

• You can declare unique constraints at the column level or the table level.
unique constraints require that all values in the specified columns be
unique. No two rows in the table can have the same value in the specified
column.

create table

150 Adaptive Server Enterprise

• A primary key constraint is a more restrictive form of unique constraint.
Columns with primary key constraints cannot contain null values.

Note The create table statement’s unique and primary key constraints
create indexes that define unique or primary key attributes of columns.
sp_primarykey, sp_foreignkey, and sp_commonkey define logical
relationships between columns. These relationships must be enforced
using indexes and triggers.

• Table-level unique or primary key constraints appear in the create table
statement as separate items and must include the names of one or more
columns from the table being created.

• unique or primary key constraints create a unique index on the specified
columns. The unique constraint in Example 3 creates a unique, clustered
index, as does the statement:

create unique clustered index salesind
on sales (stor_id, ord_num)

The only difference is the index name, which you could set to salesind by
naming the constraint.

• The definition of unique constraints in the SQL standard specifies that the
column definition cannot allow null values. By default, Adaptive Server
defines the column as not allowing null values (if you have not changed
this using sp_dboption) when you omit null or not null in the column
definition. In Transact-SQL, you can define the column to allow null
values along with the unique constraint, since the unique index used to
enforce the constraint allows you to insert a null value.

• unique constraints create unique, nonclustered indexes by default; primary
key constraints create unique, clustered indexes by default. There can be
only one clustered index on a table, so you can specify only one unique
clustered or primary key clustered constraint.

• The unique and primary key constraints of create table offer a simpler
alternative to the create index statement. However, they have the following
limitations:

• You cannot create nonunique indexes.

• You cannot use all the options provided by create index.

• You must drop these indexes using alter table drop constraint.

CHAPTER 1 Commands

Reference Manual: Commands 151

Referential integrity constraints

• Referential integrity constraints require that data inserted into a
referencing table that defines the constraint must have matching values in
a referenced table. A referential integrity constraint is satisfied for either
of the following conditions:

• The data in the constrained column(s) of the referencing table
contains a null value.

• The data in the constrained column(s) of the referencing table
matches data values in the corresponding columns of the referenced
table.

Using the pubs2 database as an example, a row inserted into the salesdetail
table (which records the sale of books) must have a valid title_id in the titles
table. salesdetail is the referencing table and titles table is the referenced
table. Currently, pubs2 enforces this referential integrity using a trigger.
However, the salesdetail table could include this column definition and
referential integrity constraint to accomplish the same task:

title_id tid
references titles(title_id)

• The maximum number of table references allowed for a query is 192. Use
sp_helpconstraint to check a table’s referential constraints.

• A table can include a referential integrity constraint on itself. For example,
the store_employees table in pubs3, which lists employees and their
managers, has the following self-reference between the emp_id and mgr_id
columns:

emp_id id primary key,
mgr_id id null

references store_employees(emp_id),

This constraint ensures that all managers are also employees, and that all
employees have been assigned a valid manager.

• You cannot drop the referenced table until the referencing table is dropped
or the referential integrity constraint is removed (unless it includes only a
referential integrity constraint on itself).

• Adaptive Server does not enforce referential integrity constraints for
temporary tables.

• To create a table that references another user’s table, you must have
references permission on the referenced table. For information about
assigning references permissions, see the grant command.

create table

152 Adaptive Server Enterprise

• Table-level, referential integrity constraints appear in the create table
statement as separate items. They must include the foreign key clause and
a list of one or more column names.

Column names in the references clause are optional only if the columns in
the referenced table are designated as a primary key through a primary key
constraint.

The referenced columns must be constrained by a unique index in that
referenced table. You can create that unique index using either the unique
constraint or the create index statement.

• The datatypes of the referencing table columns must match the datatypes
of the referenced table columns. For example, the datatype of col1 in the
referencing table (test_type) matches the datatype of pub_id in the
referenced table (publishers):

create table test_type
(col1 char(4) not null

references publishers(pub_id),
col2 varchar(20) not null)

• The referenced table must exist at the time you define the referential
integrity constraint. For tables that cross-reference one another, use the
create schema statement to define both tables simultaneously. As an
alternative, create one table without the constraint and add it later using
alter table. See create schema or alter table for more information.

• The create table referential integrity constraints offer a simple way to
enforce data integrity. Unlike triggers, they cannot:

• Cascade changes through related tables in the database

• Enforce complex restrictions by referencing other columns or
database objects

• Perform “what-if” analysis

CHAPTER 1 Commands

Reference Manual: Commands 153

Referential integrity constraints do not roll back transactions when a data
modification violates the constraint. Triggers allow you to choose whether
to roll back or continue the transaction depending on how you handle
referential integrity.

Note Adaptive Server checks referential integrity constraints before it
checks any triggers, so a data modification statement that violates the
constraint does not also fire the trigger.

Using cross-database referential integrity constraints

• When you create a cross-database constraint, Adaptive Server stores the
following information in the sysreferences system table of each database:

Table 1-18: Information stored for referential integrity constraints

• You can drop the referencing table or its database without problems.
Adaptive Server automatically removes the foreign key information from
the referenced database.

• Because the referencing table depends on information from the referenced
table, Adaptive Server does not allow you to:

• Drop the referenced table,

• Drop the external database that contains the referenced table, or

• Rename either database with sp_renamedb.

You must remove the cross-database constraint with alter table before you
can do any of these actions.

• Each time you add or remove a cross-database constraint, or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of databases containing cross-database
constraints could cause database corruption.

Information stored
in sysreferences

Columns with information
about the referenced table

Columns with information
about the referencing table

Key column IDs refkey1 through refkey16 fokey1 through fokey16

Table ID reftabid tableid

Database ID pmrydbid frgndbid

Database name pmrydbname frgndbname

create table

154 Adaptive Server Enterprise

• The sysreferences system table stores the name and the ID number of the
external database. Adaptive Server cannot guarantee referential integrity
if you use load database to change the database name or to load it onto a
different server.

 Warning! Before dumping a database in order to load it with a different
name or move it to another Adaptive Server, use alter table to drop all
external referential integrity constraints.

check constraints

• A check constraint limits the values a user can insert into a column in a
table. A check constraint specifies a search_condition that any non-null
value must pass before it is inserted into the table. A search_condition can
include:

• A list of constant expressions introduced with in

• A range of constant expressions introduced with between

• A set of conditions introduced with like, which can contain wildcard
characters

An expression can include arithmetic operators and Transact-SQL built-in
functions. The search_condition cannot contain subqueries, aggregate
functions, or a host variable or parameter. Adaptive Server does not
enforce check constraints for temporary tables.

• If the check constraint is a column-level check constraint, it can reference
only the column in which it is defined; it cannot reference other columns
in the table. Table-level check constraints can reference any column in the
table.

• create table allows multiple check constraints in a column definition.

• check integrity constraints offer an alternative to using rules and triggers.
They are specific to the table in which they are created, and cannot be
bound to columns in other tables or to user-defined datatypes.

• check constraints do not override column definitions. If you declare a
check constraint on a column that allows null values, you can insert NULL
into the column, implicitly or explicitly, even though NULL is not
included in the search_condition. For example, if you create a check
constraint specifying “pub_id in (“1389”, “0736”, “0877”, “1622”,
“1756”)” or “@amount > 10000” in a table column that allows null values,
you can still insert NULL into that column. The column definition
overrides the check constraint.

CHAPTER 1 Commands

Reference Manual: Commands 155

IDENTITY columns

• The first time you insert a row into the table, Adaptive Server assigns the
IDENTITY column a value of 1. Each new row gets a column value that
is 1 higher than the last value. This value takes precedence over any
defaults declared for the column in the create table statement or bound to
the column with sp_bindefault. The maximum value that can be inserted
into the IDENTITY column is 10 precision - 1.

• Inserting a value into the IDENTITY column allows you to specify a seed
value for the column or to restore a row that was deleted in error. The table
owner, Database Owner, or System Administrator can explicitly insert a
value into an IDENTITY column after using set identity_insert table_name
on for the base table. Unless you have created a unique index on the
IDENTITY column, Adaptive Server does not verify the uniqueness of the
value. You can insert any positive integer.

• You can reference an IDENTITY column using the syb_identity keyword,
qualified by the table name where necessary, in place of the actual column
name.

• System Administrators can use the auto identity database option to
automatically include a 10-digit IDENTITY column in new tables. To turn
on this feature in a database, use:

sp_dboption database_name, "auto identity", "true"

Each time a user creates a table in the database without specifying either a
primary key, a unique constraint, or an IDENTITY column, Adaptive
Server automatically defines an IDENTITY column. This column,
SYB_IDENTITY_COL, is not visible when you retrieve columns with the
select * statement. You must explicitly include the column name in the
select list.

• Server failures can create gaps in IDENTITY column values. Gaps can
also occur due to transaction rollbacks, the deletion of rows, or the manual
insertion of data into the IDENTITY column. The maximum size of the
gap depends on the setting of the identity burning set factor and identity grab
size configuration parameters, the identity_gap value given in the create
table or select into statment. For details about using the different methods
to set the identity gap, see “Managing Identity Gaps in Tables” in Chapter
7, “Creating Databases and Tables” in the Transact-SQL User’s Guide.

Specifying a locking scheme

• To specify the locking scheme for a table, use the keyword lock and one of
the following locking schemes:

create table

156 Adaptive Server Enterprise

• allpages locking, which locks data pages and the indexes affected by
queries

• datapages locking, which locks only data pages

• datarows locking, which locks only data rows

If you do not specify a locking scheme, the default locking scheme for the
server is used. The server-wide default is set with the configuration
parameter lock scheme.

• The locking scheme for a table can be changed with the alter table
command.

Space management properties

• The space management properties fillfactor, max_rows_per_page,
exp_row_size, and reservepagegap help manage space usage for tables in
the following ways:

• fillfactor leaves extra space on pages when indexes are created, but the
fillfactor is not maintained over time.

• max_rows_per_page limits the number of rows on a data or index
page. Its main use is to improve concurrency in allpages-locked
tables, since reducing the number of rows can reduce lock contention.
If you specify a max_rows_per_page value and datapages or datarows
locking, a warning message is printed. The table is created, and the
value is stored in sysindexes, but it is applied only if the locking
scheme is changed later to allpages.

• exp_row_size specifies the expected size of a data row. It applies only
to data rows, not to indexes, and applies only to data-only-locked
tables that have variable-length columns. It is used to reduce the
number of forwarded rows in data-only-locked tables. It is needed
mainly for tables where rows have null or short columns when first
inserted, but increase in size as a result of subsequent updates.
exp_row_size reserves space on the data page for the row to grow to
the specified size. If you specify exp_row_size when you create an
allpages-locked table, a warning message is printed. The table is
created, and the value is stored in sysindexes, but it is only applied if
the locking scheme is changed later to datapages or datarows.

• reservepagegap specifies the ratio of empty pages to full pages to
apply for commands that perform extent allocation. It applies to both
data and index pages, in all locking schemes.

CHAPTER 1 Commands

Reference Manual: Commands 157

• Table 1-19 shows the valid combinations of space management properties
and locking scheme. If a create table command includes incompatible
combinations, a warning message is printed and the table is created. The
values are stored in system tables, but are not applied. If the locking
scheme for a table changes so that the properties become valid, then they
are used.

Table 1-19: Space management properties and locking schemes

• Table 1-20 shows the default values and the effects of using default values
for the space management properties.

Table 1-20: Defaults and effects of space management properties

Using exp_row_size

• If an application inserts short rows into a data-only-locked table and
updates them later so that their length increases, use exp_row_size to
reduce the number of times that rows in data-only-locked tables are
forwarded to new locations.

Using reservepagegap

• Commands that use large amounts of space allocate new space by
allocating an extent rather than allocating single pages. The
reservepagegap keyword causes these commands to leave empty pages so
that subsequent page allocations happen close to the page being split or
close to the page from which a row is being forwarded. Table 1-21 shows
when reservepagegap is applied.

Table 1-21: When reservepagegap is applied

Property allpages datapages datarows

max_rows_per_page Yes No No

exp_row_size No Yes Yes

reservepagegap Yes Yes Yes

fillfactor Yes Yes Yes

Property Default Effect of using the default

max_rows_per_page 0 Fits as many rows as possible on the page, up to a maximum of 255

exp_row_size 0 Uses the server-wide default value, set with the configuration
parameter default exp_row_size percent

reservepagegap 0 Leaves no empty pages during extent allocations

fillfactor 0 Fully packs leaf pages, with space left on index pages

Command Applies to data pages Applies to index pages

Fast bcp Yes Fast bcp is not used if indexes exist

create table

158 Adaptive Server Enterprise

• The reservepagegap value for a table is stored in sysindexes and is applied
when any of the above operations on a table are executed. To change the
stored value, use sp_chgattribute.

• reservepagegap is not applied to worktables or sorts on worktables.

Using at

• The location information provided by the at keyword is the same
information that is provided by sp_addobjectdef. The information is stored
in the sysattributes table.

Java-SQL columns

• If Java is enabled in the database, you can creates tables with Java-SQL
columns. Refer to Java in Adaptive Server Enterprise for detailed
information.

• The declared class (datatype) of the Java-SQL column must implement
either the Serializable or Externalizable interface.

• When you create a table, a Java-SQL column cannot be specified:

• As a foreign key

• In a references clause

• As having the UNIQUE property

• As the primary key

• If in row is specified, the value stored cannot exceed 16K bytes, depending
on the page size of the database server and other variables.

• If off row is specified:

• The column cannot be referenced in a check constraint.

• The column cannot be referenced in a select that specifies distinct.

Slow bcp Only for heap tables, not for
tables with a clustered index

Extent allocation not performed

select into Yes No indexes exist on the target table

create index or alter
table...constraint

Yes, for clustered indexes Yes

reorg rebuild Yes Yes

alter table...lock

(For allpages-locking to data-only
locking, or vice versa)

Yes Yes

Command Applies to data pages Applies to index pages

CHAPTER 1 Commands

Reference Manual: Commands 159

• The column cannot be specified in a comparison operator, in a
predicate, or in a group by clause.

Getting information about tables

• sp_help displays information about tables, listing any attributes (such as
cache bindings) assigned to the specified table and its indexes, giving the
attribute’s class, name, integer value, character value, and comments.

• sp_depends displays information about the view(s), trigger(s), and
procedure(s) in the database that depend on a table.

• sp_helpindex reports information about the indexes created on a table.

Standards ANSI SQL – Compliance level: Entry-level compliant.

The following are Transact-SQL extensions:

• Use of a database name to qualify a table or column name

• IDENTITY columns

• The not null column default

• The asc and desc options

• The reservepagegap option

• The lock clause

• The on segment_name clause

See Chapter 1, “System and User-Defined Datatypes”of Reference
Manual: Building Blocks for datatype compliance information.

Permissions create table permission defaults to the Database Owner, who can transfer it to
other users. Any user can create temporary tables.

See also Commands alter table, create existing table, create index, create rule, create
schema, create view, drop index, drop rule, drop table

System procedures sp_addmessage, sp_addsegment, sp_addtype,
sp_bindmsg, sp_chgattribute, sp_commonkey, sp_depends, sp_foreignkey,
sp_help, sp_helpjoins, sp_helpsegment, sp_primarykey, sp_rename,
sp_spaceused

create trigger

160 Adaptive Server Enterprise

create trigger
Description Creates a trigger, a type of stored procedure that is often used for enforcing

integrity constraints. A trigger executes automatically when a user attempts a
specified data modification statement on a specified table.

Syntax create trigger [owner .]trigger_name
on [owner .]table_name
for {insert , update , delete}
as SQL_statements

Or, using the if update clause:

create trigger [owner .]trigger_name
on [owner .]table_name
for {insert , update}
as

[if update (column_name)
[{and | or} update (column_name)]...]
SQL_statements

[if update (column_name)
[{and | or} update (column_name)]...
SQL_statements]...

Parameters trigger_name
is the name of the trigger. It must conform to the rules for identifiers and be
unique in the database. Specify the owner’s name to create another trigger
of the same name owned by a different user in the current database. The
default value for owner is the current user. If you use an owner name to
qualify a trigger, you must explicitly qualify the table name the same way.

You cannot use a variable for a trigger name.

table_name
is the name of the table on which to create the trigger. If more than one table
of the same name exists in the database, specify the owner’s name. The
default value for owner is the current user.

insert, update, delete
can be included in any combination. delete cannot be used with the if update
clause.

CHAPTER 1 Commands

Reference Manual: Commands 161

SQL_statements
specify trigger conditions and trigger actions. Trigger conditions determine
whether the attempted insert, update, or delete causes the trigger actions to
be carried out. The SQL statements often include a subquery preceded by
the keyword if. In Example 2, below, the subquery that follows the keyword
if is the trigger condition.

Trigger actions take effect when the user action (insert, update, or delete) is
attempted. If multiple trigger actions are specified, they are grouped with
begin and end.

See Triggers and transactions for a list of statements that are not allowed in
a trigger definition. See “The deleted and inserted logical tables” on page
163 for information about the deleted and inserted logical tables that can be
included in trigger definitions.

if update
is used to test whether the specified column is included in the set list of an
update statement or is affected by an insert. This allows specified trigger
actions to be associated with updates to specified columns (see Example 3).
More than one column can be specified, and you can use more than one if
update statement in a create trigger statement (see Example 5).

Examples Example 1 Prints a message when anyone tries to add data or change data in
the titles table:

create trigger reminder
on titles
for insert, update as
print "Don't forget to print a report for accounting."

Example 2 Prevents insertion of a new row into titleauthor if there is no
corresponding title_id in the titles table:

create trigger t1
on titleauthor
for insert as
if (select count(*)

from titles, inserted
where titles.title_id = inserted.title_id) = 0

begin
print "Please put the book's title_id in the

titles table first."
rollback transaction
end

Example 3 If the pub_id column of the publishers table is changed, make the
corresponding change in the titles table:

create trigger

162 Adaptive Server Enterprise

create trigger t2
on publishers
for update as
if update (pub_id) and @@rowcount = 1
begin

update titles
set titles.pub_id = inserted.pub_id
from titles, deleted, inserted
where deleted.pub_id = titles.pub_id

end

Example 4 Deletes title from the titles table if any row is deleted from
titleauthor. If the book was written by more than one author, other references to
it in titleauthor are also deleted:

create trigger t3
on titleauthor
for delete as
begin

delete titles
from titles, deleted
where deleted.title_id = titles.title_id
delete titleauthor
from titleauthor, deleted
where deleted.title_id = titleauthor.title_id
print "All references to this title have been
deleted from titles and titleauthor."

end

Example 5 Prevents updates to the primary key on weekends. Prevents
updates to the price or advance of a title unless the total revenue amount for
that title surpasses its advance amount:

create trigger stopupdatetrig
on titles
for update
as
if update (title_id)

and datename(dw, getdate())
in ("Saturday", "Sunday")
begin

rollback transaction
print "We don't allow changes to"
print "primary keys on the weekend!"

end
if update (price) or update (advance)

if (select count(*) from inserted
where (inserted.price * inserted.total_sales)

CHAPTER 1 Commands

Reference Manual: Commands 163

< inserted.advance) > 0
begin
rollback transaction
print "We don't allow changes to price or"
print "advance for a title until its total"
print "revenue exceeds its latest advance."
end

Usage • A trigger fires only once per data modification statement. A complex
query containing a while loop may repeat an update or insert many times,
and the trigger is fired each time.

Triggers and referential integrity

• Triggers are commonly used to enforce referential integrity (integrity rules
about relationships between the primary and foreign keys of tables or
views), to supply cascading deletes, and to supply cascading updates (see
Examples 2, 3, and 4, respectively).

• A trigger fires only after the data modification statement has completed
and Adaptive Server has checked for any datatype, rule, or integrity
constraint violations. The trigger and the statement that fires it are treated
as a single transaction that can be rolled back from within the trigger. If a
severe error is detected, the entire transaction is rolled back.

• You can also enforce referential integrity using constraints defined with
the create tablestatement as an alternative to using create trigger. See
create table and alter table for information about integrity constraints.

The deleted and inserted logical tables

• deleted and inserted are logical (conceptual) tables. They are structurally
identical to the table for which the trigger is defined—that is, the table on
which the user action is attempted—and hold the old values or new values
of the rows that would be changed by the user action.

• deleted and inserted tables can be examined by the trigger to determine
whether or how the trigger action should be carried out, but the tables
themselves cannot be altered by the trigger’s actions.

• deleted tables are used with delete and update; inserted tables, with insert
and update. An update is a delete followed by an insert: it affects the
deleted table first, and then the inserted table.

Trigger restrictions

• You can create a trigger only in the current database. If you use an owner
name to qualify a trigger, you must explicitly qualify the table name the
same way. A trigger can reference objects outside the current database.

create trigger

164 Adaptive Server Enterprise

• A trigger cannot apply to more than one table. However, the same trigger
action can be defined for more than one user action (for example, insert
and update) in the same create trigger statement. A table can have a
maximum of three triggers—one each for insert, update, and delete.

• Each new trigger in a table or column for the same operation (insert,
update, or delete) overwrites the previous one. No warning message
displays before the overwrite occurs.

• You cannot create a trigger on a temporary table.

• You cannot create a trigger on a view.

• You cannot create a trigger on a system table.

• You cannot use triggers that select from a text or image column of the
inserted or deleted table.

• Sybase recommends that triggers not include select statements that return
results to the user, since special handling for these returned results must be
written into every application program that allows modifications to the
trigger table.

• If a trigger references table names, column names, or view names that are
not valid identifiers, you must set quoted_identifier on before the create
trigger command and enclose each such name in double quotes. The
quoted_identifier option does not need to be on when the trigger fires.

Triggers and performance

• In performance terms, trigger overhead is usually very low. The time
involved in running a trigger is spent mostly in referencing other tables,
which are either in memory or on the database device.

• The deleted and inserted tables often referenced by triggers are always in
memory rather than on the database device, because they are logical
tables. The location of other tables referenced by the trigger determines the
amount of time the operation takes.

Setting options within triggers

• You can use the set command inside a trigger. The set option you invoke
remains in effect during the execution of the trigger, then reverts to its
former setting. In particular, the self_recursion option can be used inside a
trigger so that data modifications by the trigger itself can cause the trigger
to fire again.

CHAPTER 1 Commands

Reference Manual: Commands 165

Dropping a trigger

• You must drop and re-create the trigger if you rename any of the objects
referenced by the trigger. You can rename a trigger with sp_rename.

• When you drop a table, any triggers associated with it are also dropped.

Actions that do not cause triggers to fire

• A truncate table command is not caught by a delete trigger. Although a
truncate table statement is, in effect, like a delete without a where clause (it
removes all rows), changes to the data rows are not logged, and so cannot
fire a trigger.

Since permission for the truncate table command defaults to the table
owner and is not transferable, only the table owner need worry about
inadvertently circumventing a delete trigger with a truncate table
statement.

• The writetext command, whether logged or unlogged, does not cause a
trigger to fire.

Triggers and transactions

• When a trigger is defined, the action it specifies on the table to which it
applies is always implicitly part of a transaction, along with the trigger
itself. Triggers are often used to roll back an entire transaction if an error
is detected, or they can be used roll back the effects of a specific data
modification:

• When the trigger contains the rollback transaction command, the
rollback aborts the entire batch, and any subsequent statements in the
batch are not executed.

• When the trigger contains the rollback trigger, the rollback affects only
the data modification that caused the trigger to fire. The rollback
trigger command can include a raiserror statement. Subsequent
statements in the batch are executed.

• Since triggers execute as part of a transaction, the following statements
and system procedures are not allowed in a trigger:

• All create commands, including create database, create default,
create index, create procedure, create rule, create table, create trigger,
and create view

• All drop commands

• alter database and alter table

• truncate table

create trigger

166 Adaptive Server Enterprise

• grant and revoke

• update statistics

• sp_configure

• load database and load transaction

• disk init, disk refit, disk reinit, disk remirror, disk remirror, disk unmirror

• select into

• If a desired result (such as a summary value) depends on the number of
rows affected by a data modification, use @@rowcount to test for
multirow data modifications (an insert, delete, or update based on a select
statement), and take appropriate actions. Any Transact-SQL statement that
does not return rows (such as an if statement) sets @@rowcount to 0, so
the test of @@rowcount should occur at the beginning of the trigger.

Inserting and updating triggers

• When an insert or update command executes, Adaptive Server adds rows
to both the trigger table and the inserted table at the same time. The rows
in the inserted table are always duplicates of one or more rows in the
trigger table.

• An update or insert trigger can use the if update command to determine
whether the update or insert changed a particular column. if
update(column_name) is true for an insert statement whenever the column
is assigned a value in the select list or in the values clause. An explicit
NULL or a default assigns a value to a column and thus activates the
trigger. An implicit NULL, however, does not.

For example, if you create the following table and trigger:

create table junk
(aaa int null,
bbb int not null)
create trigger trigtest on junk
for insert as
if update (aaa)

print "aaa updated"
if update (bbb)

print "bbb updated"

Inserting values into either column or into both columns fires the trigger
for both column aaa and column bbb:

insert junk (aaa, bbb)
values (1, 2)

CHAPTER 1 Commands

Reference Manual: Commands 167

aaa updated
bbb updated

Inserting an explicit NULL into column aaa also fires the trigger:

insert junk
values (NULL, 2)
aaa updated
bbb updated

If there was a default for column aaa, the trigger would also fire.

However, with no default for column aaa and no value explicitly inserted,
Adaptive Server generates an implicit NULL and the trigger does not fire:

insert junk (bbb)
values(2)
bbb updated

if update is never true for a delete statement.

Nesting triggers and trigger recursion

• Adaptive Server allows nested triggers by default. To prevent triggers
from nesting, use sp_configure to set the allow nested triggers option to 0
(off), as follows:

sp_configure "allow nested triggers", 0

• Triggers can be nested to a depth of 16 levels. If a trigger changes a table
on which there is another trigger, the second trigger fires and can then call
a third trigger, and so forth. If any trigger in the chain sets off an infinite
loop, the nesting level is exceeded and the trigger aborts, rolling back the
transaction that contains the trigger query.

Note Since triggers are put into a transaction, a failure at any level of a set
of nested triggers cancels the entire transaction: all data modifications are
rolled back. Supply your triggers with messages and other error handling
and debugging aids to determine where the failure occurred.

• The global variable @@nestlevel contains the nesting level of the current
execution. Each time a stored procedure or trigger calls another stored
procedure or trigger, the nesting level is incremented. If the maximum of
16 is exceeded, the transaction aborts.

• If a trigger calls a stored procedure that performs actions that would cause
the trigger to fire again, the trigger is reactivated only if nested triggers are
enabled. Unless there are conditions within the trigger that limit the
number of recursions, this causes a nesting-level overflow.

create trigger

168 Adaptive Server Enterprise

For example, if an update trigger calls a stored procedure that performs an
update, the trigger and stored procedure execute once if allow nested
triggers is off. If allow nested triggers is on, and the number of updates is
not limited by a condition in the trigger or procedure, the procedure or
trigger loop continues until it exceeds the 16-level maximum nesting
value.

• By default, a trigger does not call itself in response to a second data
modification to the same table within the trigger, regardless of the setting
of the allow nested triggers configuration parameter. A set option,
self_recursion, enables a trigger to fire again as a result of a data
modification within the trigger. For example, if an update trigger on one
column of a table results in an update to another column, the update trigger
fires only once when self_recursion is disabled, but it can fire up to 16
times if self_recursion is set on. The allow nested triggers configuration
parameter must also be enabled in order for self-recursion to take place.

Getting information about triggers

• The execution plan for a trigger is stored in sysprocedures.

• Each trigger is assigned an identification number, which is stored as a new
row in sysobjects with the object ID for the table to which it applies in the
deltrig column, and also as an entry in the deltrig, instrig, and updtrig
columns of the sysobjects row for the table to which it applies.

• To display the text of a trigger, which is stored in syscomments, use
sp_helptext.

If the System Security Officer has reset the allow select on
syscomments.text column parameter with the system procedure
sp_configure (as required to run Adaptive Server in the evaluated
configuration), you must be the creator of the trigger or a System
Administrator to view the text of the trigger through sp_helptext.

• For a report on a trigger, use sp_help.

• For a report on the tables and views that are referenced by a trigger, use
sp_depends.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only a System Security Officer can grant or revoke permissions to create
triggers. The Database Owner can create triggers on any user table. Users can
create triggers only on tables that they own.

Permission to issue the create trigger command is granted to users by default.

CHAPTER 1 Commands

Reference Manual: Commands 169

When the System Security Officer revokes permission for a user to create
triggers, a revoke row is added in the sysprotects table for that user. To grant
permission to that user to issue create trigger, issue two grant commands: the
first command removes the revoke row from sysprotects; the second inserts a
grant row. If permission to create triggers is revoked, the user cannot create
triggers even on tables that the user owns. Revoking permission to create
triggers from a user affects only the database where the revoke command was
issued.

Permissions on objects at trigger creation When you create a trigger,
Adaptive Server makes no permission checks on objects such as tables or
views that the trigger references. Therefore, you can create a trigger
successfully, even though you do not have access to its objects. All permission
checks occur when the trigger fires.

Permissions on objects at trigger execution When the trigger executes,
permission checks on its objects depend on whether the trigger and its objects
are owned by the same user.

• If the trigger and its objects are not owned by the same user, the user who
caused the trigger to fire must have been granted direct access to the
objects. For example, if the trigger performs a select from a table the user
cannot access, the trigger execution fails. In addition, the data
modification that caused the trigger to fire is rolled back.

• If a trigger and its objects are owned by the same user, special rules apply.
The user automatically has implicit permission to access the trigger’s
objects, even though the user cannot access them directly. A detailed
description of the rules for implicit permissions is discussed in the System
Administration Guide.

See also Commands alter table, create procedure, drop trigger, rollback trigger, set

System procedures sp_commonkey, sp_configure, sp_depends,
sp_foreignkey, sp_help, sp_helptext, sp_primarykey, sp_rename, sp_spaceused

create view

170 Adaptive Server Enterprise

create view
Description Creates a view, which is an alternative way of looking at the data in one or more

tables.

Syntax create view [owner .]view_name
[(column_name [, column_name]...)]
as
select [distinct] select_statement
[with check option]

Parameters view_name
is the name of the view. The name cannot include the database name. If you
have set quoted_identifier on, you can use a delimited identifier. Otherwise,
the view name cannot be a variable and must conform to the rules for
identifiers. For more information about valid view names, see “Identifiers”
on page 259 in Chapter 4, “Expressions, Identifiers, and Wildcard
Characters,” of Reference Manual: Building Blocks. Specify the owner’s
name to create another view of the same name owned by a different user in
the current database. The default value for owner is the current user.

column_name
specifies names to be used as headings for the columns in the view. If you
have set quoted_identifier on, you can use a delimited identifier. Otherwise,
the column name must conform to the rules for identifiers. For more
information about valid column names, see “Identifiers” on page 259 in
Chapter 4, “Expressions, Identifiers, and Wildcard Characters,” of
Reference Manual: Building Blocks.

It is always legal to supply column names, but column names are required
only in the following cases:

• When a column is derived from an arithmetic expression, function,
string concatenation, or constant

• When two or more columns have the same name (usually because of a
join)

• When you want to give a column in a view a different name than the
column from which it is derived (see Example 3)

Column names can also be assigned in the select statement (see Example 4).
If no column names are specified, the view columns acquire the same names
as the columns in the select statement.

select
begins the select statement that defines the view.

CHAPTER 1 Commands

Reference Manual: Commands 171

distinct
specifies that the view cannot contain duplicate rows.

select_statement
completes the select statement that defines the view. The select statement
can use more than one table and other views.

with check option
indicates that all data modification statements are validated against the view
selection criteria. All rows inserted or updated through the view must remain
visible through the view.

Examples Example 1 Creates a view derived from the title, type, price, and pubdate
columns of the base table titles:

create view titles_view
as select title, type, price, pubdate
from titles

Example 2 Creates “new view” from “old view.” Both columns are renamed
in the new view. All view and column names that include embedded blanks are
enclosed in double quotation marks. Before creating the view, you must use set
quoted_identifier on:

create view "new view" ("column 1", "column 2")
as select col1, col2 from "old view"

Example 3 Creates a view that contains the titles, advances, and amounts due
for books with a price less than $5.00:

create view accounts (title, advance, amt_due)
as select title, advance, price * total_sales
from titles
where price > $5

Example 4 Creates a view derived from two base tables, authors and
publishers. The view contains the names and cities of authors who live in a city
in which there is a publisher:

create view cities
(authorname, acity, publishername, pcity)
as select au_lname, authors.city, pub_name,
publishers.city
from authors, publishers
where authors.city = publishers.city

Example 5 Creates a view with the same definition as in example 3, but with
column headings provided in the select statement:

create view cities2

create view

172 Adaptive Server Enterprise

as select authorname = au_lname,
acity = authors.city, publishername = pub_name, pcity =
publishers.city
from authors, publishers
where authors.city = publishers.city

Example 6 Creates a view, author_codes, derived from titleauthor that lists the
unique author identification codes:

create view author_codes
as select distinct au_id
from titleauthor

Example 7 Creates a view, price_list, derived from title that lists the unique
book prices:

create view price_list (price)
as select distinct price
from titles

Example 8 Creates a view of the stores table that excludes information about
stores outside of California. The with check option clause validates each
inserted or updated row against the view’s selection criteria. Rows for which
state has a value other than “CA” are rejected:

create view stores_cal
as select * from stores
where state = "CA"
with check option

Example 9 Creates a view, stores_cal30, which is derived from stores_cal. The
new view inherits the check option from stores_cal. All rows inserted or
updated through stores_cal30 must have a state value of “CA.”. Because
stores_cal30 has no with check option clause, you can insert or update rows
through stores_cal30 for which payterms has a value other than “Net 30”:

create view stores_cal30
as select * from stores_cal
where payterms = "Net 30"

Example 10 Creates a view, stores_cal30_check, derived from stores_cal. The
new view inherits the check option from stores_cal. It also has a with check
option clause of its own. Each row that is inserted or updated through
stores_cal30_check is validated against the selection criteria of both stores_cal
and stores_cal30_check. Rows with a state value other than “CA” or a payterms
value other than “Net 30” are rejected:

create view stores_cal30_check
as select * from stores_cal

CHAPTER 1 Commands

Reference Manual: Commands 173

where payterms = "Net 30"
with check option

Example 11 Uses a SQL derived table in creating a view.

create view psych_titles as
select *

from (select * from titles
where type = "psychology") dt_psych

Usage • You can use views as security mechanisms by granting permission on a
view, but not on its underlying tables.

• You can rename a view with sp_rename.

• When you query through a view, Adaptive Server checks to make sure that
all the database objects referenced anywhere in the statement exist, that
they are valid in the context of the statement, and that data update
commands do not violate data integrity rules. If any of these checks fail,
you get an error message. If the checks are successful, create view
“translates” the view into an action on the underlying table(s).

• For more information about views, see the Transact-SQL User’s Guide.

Restrictions on views

• You can create a view only in the current database.

• The number of columns referenced by a view cannot exceed 1024.

• You cannot create a view on a temporary table.

• You cannot create a trigger or build an index on a view.

• You cannot use readtext or writetext on text or image columns in views.

• You cannot include order by or compute clauses or the keyword into in the
select statements that define views.

• You cannot update or insert into a view whose select statements include
the union operator.

• If you create a view using a local or a global variable, Adaptive Server
issues error message 7351: "Local or global variables not allowed in view
definition." For example:

declare @p int
select @p = 2
create view v2
as
select * from t1 where c1 > @p

create view

174 Adaptive Server Enterprise

• You cannot delete from a view whose select statements include the union
operator.

• create view statements can be combined with other SQL statements in a
single batch.

 Warning! When a create view command occurs within an if...else block or
a while loop, Adaptive Server creates the schema for the view before
determining whether the condition is true. This may lead to errors if the
view already exists. To avoid this, either make sure a view with the same
name does not already exist in the database or use an execute statement, as
follows:

if not exists
(select * from sysobjects where name="mytable")

begin
execute "create table mytable(x int)"
end

• You cannot use the following variable in create view statements:

declare @p int
select @p = 2
create view v2
as
select * from t1 where c1 > @p

Doing so results in error message 7351, which says, “Local or global
variables not allowed in view definition.”

View resolution

• If you alter the structure of a view’s underlying table(s) by adding or
deleting columns, the new columns do not appear in a view defined with a
select * clause unless the view is dropped and redefined. The asterisk
shorthand is interpreted and expanded when the view is first created.

• If a view depends on a table (or view) that has been dropped, Adaptive
Server produces an error message when anyone tries to use the view. If a
new table (or view) with the same name and schema is created to replace
the one that has been dropped, the view again becomes usable.

• You can redefine a view without redefining other views that depend on it,
unless the redefinition makes it impossible for Adaptive Server to translate
the dependent view(s).

Modifying data through views

• delete statements are not allowed on multitable views.

CHAPTER 1 Commands

Reference Manual: Commands 175

• insert statements are not allowed unless all not null columns in the
underlying table or view are included in the view through which you are
inserting new rows (Adaptive Server cannot supply values for not null
columns in the underlying table or view).

• You cannot insert a row through a view that includes a computed column.

• insert statements are not allowed on join views created with distinct or with
check option.

• update statements are allowed on join views with check option. The update
fails if any of the affected columns appear in the where clause, in an
expression that includes columns from more than one table.

• If you insert or update a row through a join view, all affected columns must
belong to the same base table.

• You cannot update or insert into a view defined with the distinct clause.

• Data update statements cannot change any column in a view that is a
computation, and cannot change a view that includes aggregates.

IDENTITY columns and views

• You cannot add a new IDENTITY column to a view with the
column_name = identity(precision) syntax.

• To insert an explicit value into an IDENTITY column, the table owner,
Database Owner, or System Administrator must set identity_insert
table_name on for the column’s base table, not through the view through
which it is being inserted.

group by clauses and views

• When creating a view for security reasons, be careful when using
aggregate functions and the group by clause. A Transact-SQL extension
allows you to name columns that do not appear in the group by clause. If
you name a column that is not in the group by clause, Adaptive Server
returns detailed data rows for the column. For example, this query returns
a row for every (18 rows)—more data than you might intend:

select title_id, type, sum(total_sales)
from titles
group by type

 While this query returns one row for each type (6 rows):

select type, sum(total_sales)
from titles
group by type

create view

176 Adaptive Server Enterprise

For more information about group by, see “group by and having clauses
on page 301.”

distinct clauses and views

• The distinct clause defines a view as a database object that contains no
duplicate rows. A row is defined to be a duplicate of another row if all of
its column values match the same column values in another row. Null
values are considered to be duplicates of other null values.

Querying a subset of a view’s columns can result in what appear to be
duplicate rows. If you select a subset of columns, some of which contain
the same values, the results appear to contain duplicate rows. However, the
underlying rows in the view are still unique. Adaptive Server applies the
distinct requirement to the view’s definition when it accesses the view for
the first time (before it does any projection and selection) so that all the
view’s rows are distinct from each other.

You can specify distinct more than once in the view definition’s select
statement to eliminate duplicate rows, as part of an aggregate function or
a group by clause. For example:

select distinct count(distinct title_id), price
from titles

• The scope of the distinct applies only for that view; it does not cover any
new views derived from the distinct view.

with check option clauses and views

• If a view is created with check option, each row that is inserted or updated
through the view must meet the selection criteria of the view.

• If a view is created with check option, all views derived from the “base”
view must satisfy its check option. Each row inserted or updated through
the derived view must remain visible through the base view.

Getting information about views

• To get a report of the tables or views on which a view depends, and of
objects that depend on a view, execute sp_depends.

• To display the text of a view, which is stored in syscomments, execute
sp_helptext with the view name as the parameter.

Creating views from SQL derived tables

• To create a view using a SQL derived table, add the derived table
expression in the from clause of the select part of the create view statement
(see Example 11).

CHAPTER 1 Commands

Reference Manual: Commands 177

• A view created using a SQL derived table can be updated if the derived
table expression can be updated. The update rules for the derived table
expression follow the update rules for the select part of the create view
statement.

• Data can be inserted through a view that contains a SQL derived table if
the insert rules and permission settings for the derived table expression
follow the insert rules and permission settings for the select part of the
create view statement.

• Temporary tables and local variables are not permitted in a derived table
expression that is part of a create view statement.

• For more information about derived table expressions, see select.

Standards ANSI SQL – Compliance level: Entry-level compliant.

The use of more than one distinct keyword and the use of
“column_heading = column_name” in the select list are Transact-SQL
extensions.

Permissions create view permission defaults to the Database Owner, who can transfer it to
other users.

Permissions on objects at view reation When you create a view, Adaptive
Server makes no permission checks on objects, such as tables and views, that
are referenced by the view. Therefore, you can create a view successfully even
if you do not have access to its objects. All permission checks occur when a
user invokes the view.

Permissions on objects at view execution When a view is invoked,
permission checks on its objects depend on whether the view and all referenced
objects are owned by the same user.

• If the view and its objects are not owned by the same user, the invoker
must have been granted direct access to the objects. For example, if the
view performs a select from a table the invoker cannot access, the select
statement fails.

• If the view and its objects are owned by the same user, special rules apply.
The invoker automatically has implicit permission to access the view’s
objects even though the invoker could not access them directly. Without
having to grant users direct access to your tables, you can give them
restricted access with a view. In this way, a view can be a security
mechanism. For example, invokers of the view might be able to access
only certain rows and columns of your table. A detailed description of the
rules for implicit permissions is discussed in the System Administration
Guide.

create view

178 Adaptive Server Enterprise

See also Commands create schema, drop view, select, update

System procedures sp_depends, sp_help, sp_helptext, sp_rename

CHAPTER 1 Commands

Reference Manual: Commands 179

dbcc
Description Database Consistency Checker (dbcc) checks the logical and physical

consistency of a database and provides statistics, planning, and repair
functionality.

Syntax dbcc addtempdb(dbid | databbase_name)

dbcc checkalloc [(database_name [, fix | nofix])]

dbcc checkcatalog [(database_name)]

dbcc checkdb [(database_name [, skip_ncindex])]

dbcc checkstorage [(database_name)]

dbcc checktable({table_name | table_id}[, skip_ncindex])

dbcc checkverify [(database_name)]

dbcc complete_xact (xid, {"commit" | "rollback"})

dbcc forget_xact (xid)

dbcc dbrepair (database_name, dropdb)

dbcc engine({offline , [enginenum] | "online" })

dbcc fix_text ({table_name | table_id})

dbcc indexalloc ({table_name | table_id}, index_id
[, {full | optimized | fast | null}
[, fix | nofix]])

dbcc pravailabletempdbs

dbcc rebuild_text (table [, column
[, text_page_number]])

dbcc reindex ({table_name | table_id})

dbcc tablealloc ({table_name | table_id}
[, {full | optimized | fast | null}
[, fix | nofix]])|

dbcc { traceon | traceoff } (flag [, flag ...])

dbcc tune ({ ascinserts, {0 | 1 } , tablename |
cleanup, {0 | 1 } |
cpuaffinity, start_cpu {, on| off } |
des_greedyalloc, dbid, object_name,

" { on | off }" |
deviochar vdevno, "batch_size" |
doneinproc { 0 | 1 }})

dbcc

180 Adaptive Server Enterprise

Parameters addtempdb
adds a temporary database to the global list of available temporary
databases. If the database does not exist or is not a temporary database, an
error is generated. If the database is already a member of the list, an
informational message prints.

dbid
is the database ID.

database_name
is the name of the database to check. If no database name is given, dbcc uses
the current database.

checkalloc
checks the specified database to see that all pages are correctly allocated and
that no page that is allocated is not used.
If no database name is given, checkalloc checks the current database. It
always uses the optimized report option (see tablealloc).

checkalloc reports on the amount of space allocated and used.

fix | nofix
determines whether dbcc fixes the allocation errors found. The default mode
for checkalloc is nofix. You must put the database into single-user mode to
use the fix option.

For a discussion of page allocation in Adaptive Server, see the System
Administration Guide.

checkcatalog
checks for consistency in and between system tables. For example,
checkcatalog makes sure that every type in syscolumns has a matching entry
in systypes, that every table and view in sysobjects has at least one column
in syscolumns, and that the last checkpoint in syslogs is valid. checkcatalog
also reports on any segments that have been defined. If no database name is
given, checkcatalog checks the current database.

checkdb
runs the same checks as checktable, but on each table, including syslogs, in
the specified database. If no database name is given, checkdb checks the
current database.

skip_ncindex
causes dbcc checktable or dbcc checkdb to skip checking the nonclustered
indexes on user tables. The default is to check all indexes.

CHAPTER 1 Commands

Reference Manual: Commands 181

checkstorage
checks the specified database for allocation, OAM page entries, page
consistency, text valued columns, allocation of text valued columns, and text
column chains. The results of each dbcc checkstorage operation are stored in
the dbccdb database. For details on using dbcc checkstorage, and on
creating, maintaining, and generating reports from dbccdb, see the System
Administration Guide.

checktable
checks the specified table to see that index and data pages are correctly
linked, that indexes are in properly sorted order, that all pointers are
consistent, that the data information on each page is reasonable, and that
page offsets are reasonable. If the log segment is on its own device, running
dbcc checktable on the syslogs table reports the log(s) used and free space.
For example:

Checking syslogs
The total number of data pages in this table is 1.
*** NOTICE: Space used on the log segment is 0.20 Mbytes, 0.13%.
*** NOTICE: Space free on the log segment is 153.4 Mbytes, 99.87%.

DBCC execution completed. If dbcc printed error messages, see your System
Administrator.

If the log segment is not on its own device, the following message appears:

*** NOTICE: Notification of log space used/free cannot be reported because the
log segment is not on its own device.

table_name | table_id
is the name or object ID of the table to check.

checkverify
verifies the results of the most recent run of dbcc checkstorage for the
specified database. For details on using dbcc checkverify, see the System
Administration Guide.

dbcc

182 Adaptive Server Enterprise

complete_xact
heuristically completes a transaction by either committing or rolling back its
work. Adaptive Server retains information about all heuristically completed
transactions in the master.dbo.systransactions table, so that the external
transaction coordinator may have some knowledge of how the transaction
was completed.

 Warning! Heuristically completing a transaction in the prepared state can
cause inconsistent results for an entire distributed transaction. The System
Administrator’s decision to heuristically commit or roll back a transaction may
contradict the decision made by the coordinating Adaptive Server or protocol.

forget_xact
removes the commit status of a heuristically completed transaction from
master.dbo.systransactions. forget_xact can be used when the System
Administrator does not want the coordinating service to have knowledge
that a transaction was heuristically completed, or when an external
coordinator will not be available to clear commit status in systransactions.

 Warning! Never use dbcc forget_xact in a normal DTP environment, since the
external transaction coordinator should be permitted to detect
heuristically-completed transactions. X/Open XA-compliant transaction
managers and Adaptive Server transaction coordination services automatically
clear the commit status in systransactions.

xid
is a transaction name from the systransactions.xactname column. You can
also determine valid xid values using sp_transactions.

dbrepair (database_name, dropdb)
drops a damaged database. drop database does not work on a damaged
database.

Users cannot be using the database being dropped when this dbcc statement
is issued (including the user issuing the statement).

fengine
takes Adaptive Server engines offline or brings them online. If enginenum
is not specified, dbcc engine (offline) takes the highest-numbered engine
offline. For more information, see Chapter 8, “Managing Multiprocessor
Servers,” in the System Administration Guide.

CHAPTER 1 Commands

Reference Manual: Commands 183

fix_text
upgrades text values after an Adaptive Server’s character set has been
changed from any character set to a new multibyte character set.

Changing to a multibyte character set makes the internal management of text
data more complicated. Since a text value can be large enough to cover
several pages, Adaptive Server must be able to handle characters that span
page boundaries. To do so, the server requires additional information on
each of the text pages. The System Administrator or table owner must run
dbcc fix_text on each table that has text data to calculate the new values
needed. For more information, see the System Administration Guide.

indexalloc
checks the specified index to see that all pages are correctly allocated and
that no page that is allocated is not used. This is a smaller version of
checkalloc, providing the same integrity checks on an individual index.

indexalloc produces the same three types of reports as tablealloc: full,
optimized, and fast. If no type is indicated, or if you use null, Adaptive Server
uses optimized. The fix | nofix option functions the same with indexalloc as
with tablealloc.

Note You can specify fix or nofix only if you include a value for the type of
report (full, optimized, fast, or null).

table_name | table_id, index_id
is the table name or the table’s object ID (the id column from sysobjects) plus
the index’s indid from sysindexes.

full
reports all types of allocation errors.

optimized
produces a report based on the allocation pages listed in the object allocation
map (OAM) pages for the index. It does not report and cannot fix
unreferenced extents on allocation pages that are not listed in the OAM
pages. The optimized option is the default.

fast
does not produce an allocation report, but produces an exception report of
pages that are referenced but not allocated in the extent (2521-level errors).

pravailabletempdbs
prints the global list of available temporary databases.

dbcc

184 Adaptive Server Enterprise

fix | nofix
determines whether indexalloc fixes the allocation errors found in the table.
The default is fix for all indexes except indexes on system tables, for which
the default is nofix. To use the fix option with system tables, you must first
put the database in single-user mode.

You can specify fix or nofix only if you include a value for the type of report
(full, optimized, fast, or null).

rebuild_text
rebuilds or creates an internal Adaptive Server 12.x data structure for text or
image data. This data structure enables Adaptive Server to perform random
access and asynchronous prefetch during data queries.

reindex
checks the integrity of indexes on user tables by running a fast version of
dbcc checktable. It can be used with the table name or the table’s object ID
(the id column from sysobjects). reindex prints a message when it discovers
the first index-related error, then drops and re-creates the suspect indexes.
The System Administrator or table owner must run dbcc reindex after
Adaptive Server’s sort order has been changed and indexes have been
marked “suspect” by Adaptive Server.

When dbcc finds corrupt indexes, it drops and re-creates the appropriate
indexes. If the indexes for a table are already correct, or if the table has no
indexes, dbcc reindex does not rebuild the index, but prints an informational
message instead.

dbcc reindex aborts if a table is suspected of containing corrupt data. When
that happens, an error message instructs the user to run dbcc checktable. dbcc
reindex does not allow reindexing of system tables. System indexes are
checked and rebuilt, if necessary, as an automatic part of recovery after
Adaptive Server is restarted following a sort order change.

tablealloc
checks the specified table to see that all pages are correctly allocated and that
no page that is allocated is not used. This is a smaller version of checkalloc,
providing the same integrity checks on an individual table. It can be used
with the table name or the table’s object ID (the id column from sysobjects).
For an example of tablealloc output, see the System Administration Guide.

Three types of reports can be generated with tablealloc: full, optimized, and
fast. If no type is indicated, or if you use null, Adaptive Server uses
optimized.

CHAPTER 1 Commands

Reference Manual: Commands 185

full
is equivalent to checkalloc at a table level; it reports all types of allocation
errors.

optimized
produces a report based on the allocation pages listed in the object allocation
map (OAM) pages for the table. It does not report and cannot fix
unreferenced extents on allocation pages that are not listed in the OAM
pages. The optimized option is the default.

fast
does not produce an allocation report, but produces an exception report of
pages that are referenced but not allocated in the extent (2521-level errors).

fix | nofix
determines whether or not tablealloc fixes the allocation errors found in the
table. The default is fix for all tables except system tables, for which the
default is nofix. To use the fix option with system tables, you must first put
the database in single user mode.

You can specify fix or nofix only if you include a value for the type of report
(full, optimized, fast, or null).

traceon | traceoff
toggles the printing of diagnostics during query optimization (flag values
302, 310, and 317). Values 3604 and 3605 toggle sending trace output to the
user session and to the error log, respectively. For more information, see
Chapter 37, “Tuning with dbcc traceon” in the Performance and Tuning
Guide.

tune
enables or disables tuning flags for special performance situations. For more
information on the individual options, see the Performance and Tuning
Guide.

Examples Example 1 Checks pubs2 for page allocation errors:

dbcc checkalloc(pubs2)

Example 2 Checks database consistency for pubs2 and places the information
in the dbccdb database:

dbcc checkstorage(pubs2)

Example 3 checks the salesdetail table:.

dbcc checktable(salesdetail)

Checking salesdetail

dbcc

186 Adaptive Server Enterprise

The total number of pages in partition 1 is 3.
The total number of pages in partition 2 is 1.
The total number of pages in partition 3 is 1.
The total number of pages in partition 4 is 1.
The total number of data pages in this table is 10.
Table has 116 data rows.
DBCC execution completed. If DBCC printed error
messages, contact a user with System Administrator (SA)
role.

Example 4 Heuristically aborts the transaction, “distributedxact1”:

dbcc complete_xact (distributedxact1, "rollback")

Example 5 Upgrades text values for blurbs after a character set change:

dbcc fix_text(blurbs)

Example 6 Removes information for the transaction, “distributedxact1” from
master.dbo.systransactions:

dbcc forget_xact (distributedxact1)

Example 7 Adaptive Server returns a full report of allocation for the index
with an indid of 2 on the titleauthor table and fixes any allocation errors:

dbcc indexalloc ("pubs..titleauthor", 2, full)

Example 8 Prints the global list of available temporary databases:

dbcc pravailabletempdbs

Available temporary databases are:
Dbid: 2
Dbid: 4
Dbid: 5
Dbid: 6
Dbid: 7
DBCC execution completed. If DBCC printed error
messages, contact a user with System Administrator (SA)
role.

Example 9 Rebuilds or creates an internal Adaptive Server 12.x data structure
for all text and image columns in the blurbs table:

dbcc rebuild_text (blurbs)

Example 10 dbcc reindex has discovered one or more corrupt indexes in the
titles table:

dbcc reindex(titles)

One or more indexes are corrupt. They will be rebuilt.

CHAPTER 1 Commands

Reference Manual: Commands 187

Example 11 Adaptive Server returns an optimized report of allocation for this
table, but does not fix any allocation errors:

dbcc tablealloc(publishers, null, nofix)

Usage • dbcc, the Database Consistency Checker, can be run while the database is
active, except for the dbrepair(database_name, dropdb) option and dbcc
checkalloc with the fix option.

• dbcc locks database objects as it checks them. For information on
minimizing performance problems while using dbcc, see the dbcc
discussion in the System Administration Guide.

• To qualify a table or an index name with a user name or database name,
enclose the qualified name in single or double quotation marks. For
example:

dbcc tablealloc("pubs2.pogo.testtable")

• dbcc reindex cannot be run within a user-defined transaction.

• dbcc fix_text can generate a large number of log records, which may fill up
the transaction log. dbcc fix_text is designed so that updates are done in a
series of small transactions: in case of a log space failure, only a small
amount of work is lost. If you run out of log space, clear your log and
restart dbcc fix_text using the same table that was being upgraded when the
original dbcc fix_text failed.

• If you attempt to use select, readtext, or writetext on text values after
changing to a multibyte character set, and you have not run dbcc fix_text,
the command fails, and an error message instructs you to run dbcc fix_text
on the table. However, you can delete text rows after changing character
sets without running dbcc fix_text.

• dbcc output is sent as messages or errors, rather than as result rows. Client
programs and scripts should check the appropriate error handlers.

• If a table is partitioned, dbcc checktable returns information about each
partition.

• text and image data that has been upgraded to Adaptive Server version 12.x
is not automatically upgraded to the new storage format. To improve query
performance and enable prefetch for this data, use the rebuild_text keyword
against the upgraded text and image columns.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only the table owner can execute dbcc with the checktable, fix_text, rebuild_text,
or reindex keywords.

dbcc

188 Adaptive Server Enterprise

Only the Database Owner can use the checkstorage, checkdb, checkcatalog,
checkalloc, indexalloc, and tablealloc keywords.

Only a System Administrator can use the dbrepair, complete_xact, and
forget_xact keywords.

Only a System Administrator can use dbcc traceon and dbcc traceoff
commands.

Only a System Administrator can use dbcc engine.

See also Commands drop database

System procedures sp_configure, sp_helpdb

CHAPTER 1 Commands

Reference Manual: Commands 189

deallocate cursor
Description Makes a cursor inaccessible and releases all memory resources committed to

that cursor.

Syntax deallocate cursor cursor_name

Parameters cursor_name
is the name of the cursor to deallocate.

Examples Deallocates the cursor named “authors_crsr”:

deallocate cursor authors_crsr

Usage • Adaptive Server returns an error message if the cursor does not exist.

• You must deallocate a cursor before you can use its cursor name as part of
another declare cursor statement.

• deallocate cursor has no effect on memory resource usage when specified
in a stored procedure or trigger.

• You can deallocate a cursor whether it is open or closed.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions deallocate cursor permission defaults to all users. No permission is required to
use it.

See also Commands close, declare cursor

declare

190 Adaptive Server Enterprise

declare
Description Declares the name and type of local variables for a batch or procedure.

Syntax Variable declaration:

declare @variable_name datatype
[, @variable_name datatype]...

Variable assignment:

select @variable = {expression | select_statement}
[, @variable = {expression | select_statement} ...]
[from table_list]
[where search_conditions]
[group by group_by_list]
[having search_conditions]
[order by order_by_list]
[compute function_list [by by_list]]

Parameters @variable_name
must begin with @ and must conform to the rules for identifiers.

datatype
can be either a system datatype or a user-defined datatype.

Examples Example 1 Declares two variables and prints strings according to the values in
the variables:

declare @one varchar(18), @two varchar(18)
select @one = "this is one", @two = "this is two"
if @one = "this is one"

print "you got one"
if @two = "this is two"

print "you got two"
else print "nope"

you got one
you got two

Example 2 Prints “Ouch!” if the maximum book price in the titles table is more
than $20.00:

declare @veryhigh money
select @veryhigh = max(price)

from titles
if @veryhigh > $20

print "Ouch!"

Usage • Assign values to local variables with a select statement.

CHAPTER 1 Commands

Reference Manual: Commands 191

• The maximum number of parameters in a procedure is 2048. The number
of local or global variables is limited only by available memory. The @
sign denotes a variable name.

• Local variables are often used as counters for while loops or if...else blocks.
In stored procedures, they are declared for automatic, noninteractive use
by the procedure when it executes. Local variables must be used in the
batch or procedure in which they are declared.

• The select statement that assigns a value to the local variable usually
returns a single value. If there is more than one value to return, the variable
is assigned the last one. The select statement that assigns values to
variables cannot be used to retrieve data in the same statement.

• The print and raiserror commands can take local variables as arguments.

• Users cannot create global variables and cannot update the value of global
variables directly in a select statement.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions declare permission defaults to all users. No permission is required to use it.

See also Commands print, raiserror, select, while

declare cursor

192 Adaptive Server Enterprise

declare cursor
Description Defines a cursor.

Syntax declare cursor_name cursor
for select_statement
[for {read only | update [of column_name_list]}]

Parameters cursor_name
is the name of the cursor being defined.

select_statement
is the query that defines the cursor result set. See select for more
information.

for read only
specifies that the cursor result set cannot be updated.

for update
specifies that the cursor result set is updatable.

of column_name_list
is the list of columns from the cursor result set (specified by the
select_statement) defined as updatable. Adaptive Server also allows you to
include columns that are not specified in the list of columns of the cursor’s
select_statement (and excluded from the result set), but that are part of the
tables specified in the select_statement.

Examples Example 1 Defines a result set for the authors_crsr cursor that contains all
authors from the authors table who do not reside in California:

declare authors_crsr cursor
for select au_id, au_lname, au_fname
from authors
where state != 'CA'

Example 2 Defines a read-only result set for the titles_crsr cursor that contains
the business-type books from the titles table:

declare titles_crsr cursor
for select title, title_id from titles
where title_id like "BU%"
for read only

Example 3 Defines an updatable result set for the pubs_crsr cursor that
contains all of the rows from the publishers table. It defines the address of each
publisher (cityand state columns) for update:

declare pubs_crsr cursor
for select pub_name, city, state

CHAPTER 1 Commands

Reference Manual: Commands 193

from publishers
for update of city, state

Usage Restrictions on cursors

• A declare cursor statement must precede any open statement for that
cursor.

• You cannot include other statements with declare cursor in the same
Transact-SQL batch.

• You can include up to 1024 columns in an update clause of a client’s
declare cursor statement.

• cursor_name must be a valid Adaptive Server identifier.

Cursor select statements

• select_statement can use the full syntax and semantics of a Transact-SQL
select statement, with these restrictions:

• Must contain a from clause.

• Cannot contain a compute, for browse, or into clause.

• Can contain the holdlock keyword.

• The select_statement can contain references to Transact-SQL parameter
names or Transact-SQL local variables (for all cursor types except
language). The names must reference the Transact-SQL parameters and
local variables defined in the procedure, trigger, or statement batch that
contains the declare cursor statement.

The parameters and local variables referenced in the declare cursor
statement do not have to contain valid values until the cursor is opened.

• The select_statement can contain references to the inserted and deleted
temporary tables that are used in triggers.

Cursor scope

• A cursor’s existence depends on its scope. The scope refers to the context
in which the cursor is used, that is, within a user session, within a stored
procedure, or within a trigger.

Within a user session, the cursor exists only until the user ends the session.
The cursor does not exist for any additional sessions started by other users.
After the user logs off, Adaptive Server deallocates the cursors created in
that session.

declare cursor

194 Adaptive Server Enterprise

If a declare cursor statement is part of a stored procedure or trigger, the
cursor created within it applies to stored procedure or trigger scope and to
the scope that launched the stored procedure or trigger. Cursors declared
inside a trigger on an inserted or a deleted table are not accessible to any
nested stored procedures or triggers. However, cursors declared inside a
trigger on an inserted or a deleted table are accessible within the scope of
the trigger. Once the stored procedure or trigger completes, Adaptive
Server deallocates the cursors created within it.

Figure 1-1 illustrates how cursors operate between scopes.

Figure 1-1: How cursors operate within scopes

• A cursor name must be unique within a given scope. Adaptive Server
detects name conflicts within a particular scope only during runtime. A
stored procedure or trigger can define two cursors with the same name if
only one is executed. For example, the following stored procedure works
because only one names_crsr cursor is defined in its scope:

create procedure proc2 @flag int

1 – User Session

declare cursor c1
go
exec sp_proc1 2 – Within proc1

Can access cursor c1 from
User Session

declare cursor c2
go
update command
fires trigger1

4 – User Session

Can access cursor c1, but not
cursor c2 or c3, since they no
longer exist

 3 – Within trigger1

Can access cursor c2 from
proc1 and cursor c1 from
User Session

declare cursor c3
go
exit trigger1 back to User
Session (Scope 1)

CHAPTER 1 Commands

Reference Manual: Commands 195

as
if @flag > 0

declare names_crsr cursor
for select au_fname from authors

else
declare names_crsr cursor
for select au_lname from authors

return

Result set

• Cursor result set rows may not reflect the values in the actual base table
rows. For example, a cursor declared with an order by clause usually
requires the creation of an internal table to order the rows for the cursor
result set. Adaptive Server does not lock the rows in the base table that
correspond to the rows in the internal table, which permits other clients to
update these base table rows. In that case, the rows returned to the client
from the cursor result set would not be in sync with the base table rows.

• A cursor result set is generated as the rows are returned through a fetch of
that cursor. This means that a cursor select query is processed like a normal
select query. This process, known as a cursor scan, provides a faster
turnaround time and eliminates the need to read rows that are not required
by the application.

A restriction of cursor scans is that they can only use the unique indexes
of a table. However, if none of the base tables referenced by the cursor
result set are updated by another process in the same lock space as the
cursor, the restriction is unnecessary. Adaptive Server allows the
declaration of cursors on tables without unique indexes, but any attempt to
update those tables in the same lock space closes all cursors on the tables.

Updatable cursors

• After defining a cursor using declare cursor, Adaptive Server determines
whether the cursor is updatable or read-only. If a cursor is updatable, you
can update or delete rows within the cursor result set. If a cursor is
read-only, you cannot change the result set.

• Use the for update or for read only clause to explicitly define a cursor as
updatable or read-only. You cannot define an updatable cursor if its
select_statement contains one of the following constructs:

• distinct option

• group by clause

• Aggregate function

declare cursor

196 Adaptive Server Enterprise

• Subquery

• union operator

• at isolation read uncommitted clause

If you omit either the for update or the read only clause, Adaptive Server
checks to see whether the cursor is updatable.

Adaptive Server also defines a cursor as read-only if you declare a
language- or server-type cursor that includes an order by clause as part of
its select_statement. Adaptive Server handles updates differently for
client- and execute-type cursors, thereby eliminating this restriction.

• If you do not specify a column_name_list with the for update clause, all the
specified columns in the query are updatable. Adaptive Server attempts to
use unique indexes for updatable cursors when scanning the base table.
For cursors, Adaptive Server considers an index containing an IDENTITY
column to be unique, even if it is not so declared.

If you do not specify the for update clause, Adaptive Server chooses any
unique index, although it can also use other indexes or table scans if no
unique index exists for the specified table columns. However, when you
specify the for update clause, Adaptive Server must use a unique index
defined for one or more of the columns to scan the base table. If none
exists, it returns an error.

• In most cases, include only columns to be updated in the
column_name_list of the for update clause. If the table has only one unique
index, you do not need to include its column in the for update
column_name_list; Adaptive Server will find it when it performs the cursor
scan. If the table has more than one unique index, include its column in the
for update column_name_list, so that Adaptive Server can find it quickly for
the cursor scan.

This allows Adaptive Server to use that unique index for its cursor scan,
which helps prevent an update anomaly called the Halloween problem.
Another way to prevent the Halloween problem is to create tables with the
unique auto_identity index database option. For more information, see the
System Administration Guide.

CHAPTER 1 Commands

Reference Manual: Commands 197

The Halloween problem occurs when a client updates a column of a cursor
result set row that defines the order in which the rows are returned from
the base tables. For example, if Adaptive Server accesses a base table
using an index, and the index key is updated by the client, the updated
index row can move within the index and be read again by the cursor. This
is a result of an updatable cursor only logically creating a cursor result set.
The cursor result set is actually the base tables that derive the cursor.

• If you specify the read only option, the cursor result set cannot be updated
using the delete or update statement.

Standards ANSI SQL – Compliance level: Entry-level compliant.

The for update and for read only options are Transact-SQL extensions.

Permissions declare cursor permission defaults to all users. No permission is required to use
it.

See also Commands open

delete

198 Adaptive Server Enterprise

delete
Description Removes rows from a table.

Syntax delete [from]
[[database.]owner.]{view_name|table_name}
[where search_conditions]
[plan "abstract plan"]

delete [[database.]owner.]{table_name | view_name}
[from [[database.]owner.]{view_name [readpast]|

table_name [readpast]
[(index {index_name | table_name }
[prefetch size][lru|mru])]}

[, [[database.]owner.]{view_name [readpast]|
table_name [readpast]

[(index {index_name | table_name }
[prefetch size][lru|mru])]} ...]

[where search_conditions]]
[plan "abstract plan"]

delete [from] [[database.]owner.]{table_name|view_name}
where current of cursor_name

Parameters from (after delete)
is an optional keyword used for compatibility with other versions of SQL.

view_name | table_name
is the name of the view or table from which to remove rows. Specify the
database name if the view or table is in another database, and specify the
owner’s name if more than one view or table of that name exists in the
database. The default value for owner is the current user, and the default
value for database is the current database.

where
is a standard where clause. See where clause for more information.

from (after table_name or view_name)
lets you name more than one table or view to use with a where clause when
specifying which rows to delete. This from clause allows you to delete rows
from one table based on data stored in other tables, giving you much of the
power of an embedded select statement.

readpast
specifies that the delete command skip all pages or rows on which
incompatible locks are held, without waiting for locks or timing out. For
datapages-locked tables, the command skips all rows on pages on which
incompatible locks are held; for datarows-locked tables, it skips all rows on
which incompatible locks are held.

CHAPTER 1 Commands

Reference Manual: Commands 199

index index_name
specifies an index to use for accessing table_name. You cannot use this
option when you delete from a view.

prefetch size
specifies the I/O size, in kilobytes, for tables that are bound to caches with
large I/Os configured. You cannot use this option when you delete from a
view. sp_helpcache shows the valid sizes for the cache an object is bound to
or for the default cache.

When using prefetch and designating the prefetch size (size), the minimum
is 2K and any power of two on the logical page size up to 16K. prefetch size
options in kilobytes are:

The prefetch size specified in the query is only a suggestion. To allow the
size specification, configure the data cache at that size. If you do not
configure the data cache to a specific size, the default prefetch size is used.

To configure the data cache size, use sp_cacheconfigure.

Note If Component Integration Services is enabled, you cannot use the
prefetch keyword for remote servers.

lru | mru
specifies the buffer replacement strategy to use for the table. Use lru to force
the optimizer to read the table into the cache on the MRU/LRU (most
recently used/least recently used) chain. Use mru to discard the buffer from
cache, and replace it with the next buffer for the table. You cannot use this
option when you delete from a view.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. See Chapter 22,
“Creating and Using Abstract Plans,” in the Performance and Tuning Guide
for more information.

Logical page size Prefetch size options

2 2, 4, 8 16

4 4, 8, 16, 32

8 8, 16, 32, 64

16 16, 32, 64, 128

delete

200 Adaptive Server Enterprise

where current of cursor_name
causes Adaptive Server to delete the row of the table or view indicated by
the current cursor position for cursor_name.

Examples Example 1 Deletes all rows from the authors table:

delete authors

Example 2 Deletes a row or rows from the authors table:

delete from authors
where au_lname = "McBadden"

Example 3 Deletes rows for books written by Bennet from the titles table.

delete titles
from titles, authors, titleauthor
where authors.au_lname = 'Bennet'

and authors.au_id = titleauthor.au_id
and titleauthor.title_id = titles.title_id

The pubs2 database includes a trigger (deltitle) that prevents the deletion of the
titles recorded in the sales table; drop this trigger for this example to work.

Example 4 Deletes a row from the titles table currently indicated by the cursor
title_crsr:

delete titles where current of title_crsr

Example 5 Determines which row has a value of 4 for the IDENTITY column
and deletes it from the authors table. Note the use of the syb_identity keyword
instead of the actual name of the IDENTITY column:

delete authors
where syb_identity = 4

Example 6 Deletes rows from authors, skipping any locked rows:

delete from authors from authors readpast
where state = "CA"

Example 7 Deletes rows from stores, skipping any locked rows. If any rows
in authors are locked, the query blocks on these rows, waiting for the locks to
be released:

delete stores from stores readpast, authors
where stores.city = authors.city

Usage • delete removes rows from the specified table.

• You can refer to as many as 15 tables in a delete statement.

CHAPTER 1 Commands

Reference Manual: Commands 201

Restrictions

• You cannot use delete with a multitable view (one whose from clause
names more than one table), even though you may be able to use update
or insert on that same view. Deleting a row through a multitable view
changes multiple tables, which is not permitted. insert and update
statements that affect only one base table of the view are permitted.

• Adaptive Server treats two different designations for the same table in a
delete as two tables. For example, the following delete issued in pubs2
specifies discounts as two tables (discounts and pubs2..discounts):

delete discounts
from pubs2..discounts, pubs2..stores
where pubs2..discounts.stor_id =

pubs2..stores.stor_id

In this case, the join does not include discounts, so the where condition
remains true for every row; Adaptive Server deletes all rows in discounts
(which is not the desired result). To avoid this problem, use the same
designation for a table throughout the statement.

• If you are deleting a row from a table that is referenced from other tables
via referential constraints, Adaptive Server checks all the referencing
tables before permitting the delete. If the row you are attempting to delete
contains a primary key that is being used as a foreign key by one of the
referencing tables, the delete is not allowed.

Deleting all rows from a table

• If you do not use a where clause, all rows in the table named after delete
[from] are removed. The table, though empty of data, continues to exist
until you issue a drop table command.

• truncate table and delete without a row specification are functionally
equivalent, but truncate table is faster. delete removes rows one at a time
and logs these transactions. truncate table removes whole data pages, and
the rows are not logged.

Both delete and truncate table reclaim the space occupied by the data and
its associated indexes.

• You cannot use the truncate table command on a partitioned table. To
remove all rows from a partitioned table, either use the delete command
without a where clause, or unpartition the table before issuing the truncate
table command.

delete

202 Adaptive Server Enterprise

delete and transactions

• In chained transaction mode, each delete statement implicitly begins a new
transaction if no transaction is currently active. Use commit to complete
any deletes, or use rollback to undo the changes. For example:

delete from sales where date < ’01/01/89’
if exists (select stor_id

from stores
where stor_id not in
(select stor_id from sales))

rollback transaction
else

commit transaction

This batch begins a transaction (using the chained transaction mode) and
deletes rows with dates earlier than Jan. 1, 1989 from the sales table. If it
deletes all sales entries associated with a store, it rolls back all the changes
to sales and ends the transaction. Otherwise, it commits the deletions and
ends the transaction. For more information about the chained mode, see
the Transact-SQL User’s Guide.

delete triggers

• You can define a trigger to take a specified action when a delete command
is issued on a specified table.

Using delete where current of

• Use the clause where current of with cursors. Before deleting rows using
the clause where current of, you must first define the cursor with declare
cursor and open it using the open statement. Position the cursor on the row
you want to delete using one or more fetch statements. The cursor name
cannot be a Transact-SQL parameter or local variable. The cursor must be
an updatable cursor or Adaptive Server returns an error. Any deletion to
the cursor result set also affects the base table row from which the cursor
row is derived. You can delete only one row at a time using the cursor.

• You cannot delete rows in a cursor result set if the cursor’s select statement
contains a join clause, even though the cursor is considered updatable. The
table_name or view_name specified with a delete...where current of must
be the table or view specified in the first from clause of the select statement
that defines the cursor.

CHAPTER 1 Commands

Reference Manual: Commands 203

• After the deletion of a row from the cursor’s result set, the cursor is
positioned before the next row in the cursor’s result set. You must issue a
fetch to access the next row. If the deleted row is the last row of the cursor
result set, the cursor is positioned after the last row of the result set. The
following describes the position and behavior of open cursors affected by
a delete:

• If a client deletes a row (using another cursor or a regular delete) and
that row represents the current cursor position of other opened cursors
owned by the same client, the position of each affected cursor is
implicitly set to precede the next available row. However, one client
cannot delete a row representing the current cursor position of another
client’s cursor.

• If a client deletes a row that represents the current cursor position of
another cursor defined by a join operation and owned by the same
client, Adaptive Server accepts the delete statement. However, it
implicitly closes the cursor defined by the join.

Using readpast

• The readpast option allows delete commands on data-only-locked tables
to proceed without being blocked by incompatible locks held by other
tasks.

• On datarows-locked tables, readpast skips all rows on which shared,
update, or exclusive locks are held by another task.

• On datapages-locked tables, readpast skips all pages on which shared,
update, or exclusive locks are held by another task.

• Commands specifying readpast block if there is an exclusive table lock.

• If the readpast option is specified for an allpages-locked table, the readpast
option is ignored. The command blocks as soon as it finds an incompatible
lock.

• If the session-wide isolation level is 3, the readpast option is silently
ignored. The command executes at level 3. The command blocks on any
rows or pages with incompatible locks.

• If the transaction isolation level for a session is 0, a delete command using
readpast does not issue warning messages. For datapages-locked tables,
delete with readpast modifies all rows on all pages that are not locked with
incompatible locks. For datarows-locked tables, it affects all rows that are
not locked with incompatible locks.

delete

204 Adaptive Server Enterprise

• If the delete command applies to a row with two or more text columns, and
any text column has an incompatible lock on it, readpast locking skips the
row.

Using index, prefetch, or lru | mru

• The index, prefetch, and lru | mru options override the choices made by the
Adaptive Server optimizer. Use these options with caution, and always
check the performance impact with set statistics io on. For more
information about using these options, see the Performance and Tuning
Guide.

Standards ANSI SQL – Compliance level: Entry-level compliant.

The use of more than one table in the from clause and qualification of table
name with database name are Transact-SQL extensions.

readpast is a Transact-SQL extension.

Permissions delete permission defaults to the table or view owner, who can transfer it to
other users.

If set ansi_permissions is on, you must have select permission on all columns
appearing in the where clause, in addition to the regular permissions required
for delete statements. By default, ansi_permissions is off.

See also Commands create trigger, drop table, drop trigger, truncate table, where
clause

CHAPTER 1 Commands

Reference Manual: Commands 205

delete statistics
Description Removes statistics from the sysstatistics system table.

Syntax delete [shared] statistics table_name [(column_name
[, column_name]...)]

Parameters shared
removes simulated statistics information from sysstatistics in the master
database.

table_name
removes statistics for all columns in the table.

column_name
removes statistics for the specified column.

Examples Example 1 Delete the densities, selectivities, and histograms for all columns in
the titles table:

delete statistics titles

Example 2 Deletes densities, selectivities, and histograms for the pub_id
column in the titles table:

delete statistics titles(pub_id)

Example 3 Deletes densities, selectivities, and histograms for pub_id, pubdate,
without affecting statistics on the single-column pub_id or the single-column
pubdate:

delete statistics titles(pub_id, pubdate)

Usage • delete statistics removes statistics for the specified columns or table from
the sysstatistics table. It does not affect statistics in the systabstats table.

• When you issue the drop table command, the corresponding rows in
sysstatistics are dropped. When you use the drop index command, the rows
in sysstatistics are not deleted. This allows the query optimizer to continue
to use index statistics without incurring the overhead of maintaining the
index on the table.

 Warning! Densities, selectivities, and histograms are essential to good
query optimization. The delete statistics command is provided as a tool to
remove statistics not used by the optimizer. If you inadvertently delete
statistics needed for query optimization, run update statistics on the table,
index, or column.

delete statistics

206 Adaptive Server Enterprise

• Loading simulated statistics with the optdiag utility command adds a small
number of rows to master..sysstatistics table. If the simulated statistics are
no longer in use, the information in master..sysstatistics can be dropped
with the delete shared statistics command.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only the table owner or a System Administrator can use delete statistics.

See also Commands create index, update

Utilities optdiag

CHAPTER 1 Commands

Reference Manual: Commands 207

disk init
Description Makes a physical device or file usable by Adaptive Server.

Syntax disk init
name = "device_name" ,
physname = "physicalname" ,
[vdevno = virtual_device_number ,]
size = number_of_blocks
[, vstart = virtual_address

, cntrltype = controller_number]
[, contiguous]
[, dsync = { true | false }]

Parameters name
is the name of the database device or file. The name must conform to the
rules for identifiers and must be enclosed in single or double quotes. This
name is used in the create database and alter database commands.

physname
is the full specification of the database device. This name must be enclosed
in single or double quotes.

vdevno
is the virtual device number, which must be unique among the database
devices associated with Adaptive Server. The device number 0 is reserved
for the master device. Valid device numbers are between 1 and 255, but the
highest number must be one less than the number of database devices for
which your Adaptive Server is configured. For example, for an Adaptive
Server with the default configuration of 10 devices, the available device
numbers are 1 – 9. To see the maximum number of devices available on
Adaptive Server, run sp_configure, and check the number of devices value.

To determine the virtual device number, look at the device_number column
of the sp_helpdevice report, and use the next unused integer.

size
is the amount of space to allocate to the database extension. size can be in
the following unit specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes),
and ‘g’ or ‘G’ (gigabytes). Sybase recommends that you always include a
unit specifier. Quotes are optional if you do not include a unit specifier.
However, you must use quotes if you include a unit specifier.

disk init

208 Adaptive Server Enterprise

vstart
is the starting virtual address, or the offset, for Adaptive Server to begin
using the database device. vstart accepts the following optional unit
specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes), and ‘g’ or ‘G’
(gigabytes). The size of the offset depends on how you enter the value for
vstart.

• If you do not specify a unit size, vstart uses 2K pages for its starting
address. For example, if you specify vstart = 13, Adaptive Server
uses 13 * 2K pages as the offset for the starting address.

• If you specify a unit value, vstart uses this as the starting address. For
example, if you specify vstart = "13M", Adaptive Server sets the
starting address offset at 13 megabytes.

The default value (and usually the preferred value) of vstart is 0. If the
specified device does not have the sum of vstart + size blocks available, the
disk init command fails. If you are running the Logical Volume Manager on
an AIX operating system. vstart should be 2. Specify vstart only if instructed
to do so by Sybase Technical Support.

cntrltype
specifies the disk controller. Its default value is 0. Reset cntrltype only if
instructed to do so by Sybase Technical Support.

dsync
UNIX platforms only – specifies whether writes to the database device take
place directly to the storage media, or are buffered when using UNIX
operating system files. This option is meaningful only when you are
initializing a UNIX operating system file; it has no effect when initializing
devices on a raw partition. By default, all UNIX operating system files are
initialized with dsync set to true.

Examples Example 1 Initializes 5MB of a disk on a UNIX system:

disk init
name = "user_disk",
physname = "/dev/rxy1a",
vdevno = 2, size = 5120

Example 2 Initializes 10MB of a disk on a UNIX operating system file.
Adaptive Server opens the device file with the dsync setting, and writes to the
file are guaranteed to take place directly on the storage media:

disk init
name = "user_file",
physname = "/usr/u/sybase/data/userfile1.dat",
vdevno = 2, size = 5120, dsync = true

CHAPTER 1 Commands

Reference Manual: Commands 209

Usage • The master device is initialized by the installation program; you need not
initialize this device with disk init.

• To successfully complete disk initialization, the “sybase” user must have
the appropriate operating system permissions on the device that is being
initialized.

• You can specify the size as a float, but the size is rounded down to the
nearest multiple of 2K.

• If you do not use a unit specifier for size:

• disk init uses the virtual page size of 2K.

• The size argument for create database and alter database is in terms
of megabytes of disk space. This value is converted to the number of
logical pages the master device was built with

.

• The minimum size of a disk piece that you can initialize using disk init is
the larger of:

• One megabyte

• One allocation unit of the server’s logical page size

• Use disk init for each new database device. Each time disk init is issued, a
row is added to master..sysdevices. A new database device does not
automatically become part of the pool of default database storage. Assign
default status to a database device with sp_diskdefault.

• Back up the master database with the dump database or dump transaction
command after each use of disk init. This makes recovery easier and safer
in case master is damaged. If you add a device with disk init and fail to back
up master, you may be able to recover the changes by using disk reinit, then
stopping and restarting Adaptive Server.

• Assign user databases to database devices with the name clause of the
create database or alter database command.

disk init

210 Adaptive Server Enterprise

• The preferred method for placing a database’s transaction log (the system
table syslogs) on a different device than the one on which the rest of the
database is stored, is to use the log on extension to create database.
Alternatively, you can name at least two devices when you create the
database, then execute sp_logdevice. You can also use alter database to
extend the database onto a second device, then run sp_logdevice. The log
on extension immediately moves the entire log to a separate device. The
sp_logdevice method retains part of the system log on the original database
device until transaction activity causes the migration to become complete.

• For a report on all Adaptive Server devices on your system (both database
and dump devices), execute sp_helpdevice.

• Remove a database device with sp_dropdevice. You must first drop all
existing databases on that device.

• If disk unit failed because the size value is too large for the database device,
use a different virtual device number or restart Adaptive Server before
executing disk unit again.

Using dsync

Note Do not set dsync to false for any device that stores critical data. The only
exception is tempdb, which can safely be stored on devices for which dsync is
set to false.

• When dsync is on, writes to the database device are guaranteed to take
place on the physical storage media, and Adaptive Server can recover data
on the device in the event of a system failure.

• When dsync is off, writes to the database device may be buffered by the
UNIX file system. The UNIX file system may mark an update as being
completed, even though the physical media has not yet been modified. In
the event of a system failure, there is no guarantee that data updates have
ever taken place on the physical media, and Adaptive Server may be
unable to recover the database.

• dsync is always on for the master device file.

• The dsync value should be turned off only when databases on the device
need not be recovered after a system failure. For example, you may
consider turning dsync off for a device that stores only the tempdb
database.

CHAPTER 1 Commands

Reference Manual: Commands 211

• Adaptive Server ignores the dsync setting for devices stored on raw
partitions—writes to those device are guaranteed to take place on the
physical storage media, regardless of the dsync setting.

• The dsync setting is not used on the Windows NT platform.

• disk reinit ensures that master..sysdevices is correct if the master database
has been damaged or if devices have been added since the last dump of
master.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions disk init permission defaults to System Administrators and is not transferable.
You must be using the master database to use disk init.

See also Commands alter database, create database, disk refit, disk reinit, dump
database, dump transaction, load database, load transaction

System procedures sp_diskdefault, sp_dropdevice, sp_helpdevice,
sp_logdevice

disk mirror

212 Adaptive Server Enterprise

disk mirror
Description Creates a software mirror that immediately takes over when the primary device

fails.

Syntax disk mirror
name = "device_name" ,
mirror = "physicalname"
[, writes = { serial | noserial }]

Parameters name
is the name of the database device that you want to mirror. This is recorded
in the name column of the sysdevices table. The name must be enclosed in
single or double quotes.

mirror
is the full path name of the database mirror device that is to be your
secondary device. It must be enclosed in single or double quotes. If the
secondary device is a file, physicalname should be a path specification that
clearly identifies the file, which Adaptive Server creates. The value of
physicalname cannot be an existing file.

writes
allows you to choose whether to enforce serial writes to the devices. In the
default case (serial), the write to the primary database device is guaranteed
to finish before the write to the secondary device begins. If the primary and
secondary devices are on different physical devices, serial writes can ensure
that at least one of the disks will be unaffected in the event of a power
failure.

Examples disk mirror
name = "user_disk",
mirror = "/server/data/mirror.dat"

Creates a software mirror for the database device user_disk on the file
mirror.dat.

Usage • Disk mirroring creates a software mirror of a user database device, the
master database device, or a database device used for user database
transaction logs. If a database device fails, its mirror immediately takes
over.

Disk mirroring does not interfere with ongoing activities in the database.
You can mirror or unmirror database devices without shutting down
Adaptive Server.

CHAPTER 1 Commands

Reference Manual: Commands 213

• Back up the master database with the dump database command after each
use of disk mirror. This makes recovery easier and safer in case master is
damaged.

• When a read or write to a mirrored device is unsuccessful, Adaptive Server
unmirrors the bad device and prints error messages. Adaptive Server
continues to run, unmirrored. The System Administrator must use the disk
remirror command to restart mirroring.

• You can mirror the master device, devices that store data, and devices that
store transaction logs. However, you cannot mirror dump devices.

• Devices are mirrored; databases are not.

• A device and its mirror constitute one logical device. Adaptive Server
stores the physical name of the mirror device in the mirrorname column of
the sysdevices table. It does not require a separate entry in sysdevices and
should not be initialized with disk init.

• To retain use of asynchronous I/O, always mirror devices that are capable
of asynchronous I/O to other devices capable of asynchronous I/O. In most
cases, this means mirroring raw devices to raw devices and operating
system files to operating system files.

If the operating system cannot perform asynchronous I/O on files,
mirroring a raw device to a regular file produces an error message.
Mirroring a regular file to a raw device works, but does not use
asynchronous I/O.

• Mirror all default database devices so that you are still protected if a create
database or alter database command affects a database device in the
default list.

• For greater protection, mirror the database device used for transaction
logs.

• Always put user database transaction logs on a separate database device.
To put a database’s transaction log (that is, the system table syslogs) on a
device other than the one on which the rest of the database is stored, name
the database device and the log device when you create the database.
Alternatively, use alter database to extend the database onto a second
device, then run sp_logdevice.

disk mirror

214 Adaptive Server Enterprise

• If you mirror the database device for the master database, you can use the
-r option and the name of the mirror for UNIX, when you restart Adaptive
Server with the dataserver utility program. Add this to the
RUN_servername file for that server so that the startserver utility program
knows about it. For example, to start a master device named master.dat and
its mirror, mirror.dat enter:

dataserver -dmaster.dat -rmirror.dat

 For more information, see dataserver and startserver in the Utility Guide.

• If you mirror a database device that has unallocated space (room for
additional create database and alter database statements to allocate part of
the device), disk mirror begins mirroring these allocations when they are
made, not when the disk mirror command is issued.

• For a report on all Adaptive Server devices on your system (user database
devices and their mirrors, as well as dump devices), execute
sp_helpdevice.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions disk mirror permission defaults to the System Administrator and is not
transferable. You must be using the master database to use disk mirror.

See also Commands alter database, create database, disk init, disk refit, disk reinit, disk
remirror, disk unmirror, dump database, dump transaction, load database, load
transaction

System procedures sp_diskdefault, sp_helpdevice, sp_logdevice

Utilities dataserver, startserver

CHAPTER 1 Commands

Reference Manual: Commands 215

disk refit
Description Rebuilds the master database’s sysusages and sysdatabases system tables from

information contained in sysdevices.

Syntax disk refit

Examples disk refit

Usage • Adaptive Server automatically shuts down after disk refit rebuilds the
system tables.

• Use disk refit after disk reinit as part of the procedure to restore the master
database.

Note You must start Adaptive Server with trace flag 3608 before you run disk
refit. However, make sure you read the information in the Troubleshooting and
Error Messages Guide before you start Adaptive Server with any trace flag.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions disk refit permission defaults to System Administrators and is not transferable.
You must be in the master database to use disk refit.

See also Documents For more information, see the System Administration Guide.

Commands disk init, disk reinit

System procedures sp_addumpdevice, sp_helpdevice

disk reinit

216 Adaptive Server Enterprise

disk reinit
Description Rebuilds the master database’s sysdevices system table. Use disk reinit as part

of the procedure to restore the master database.

Syntax disk reinit
name = "device_name",
physname = "physicalname" ,
[vdevno = virtual_device_number ,]
size = number_of_blocks
[, vstart = virtual_address

, cntrltype = controller_number]
[, dsync = { true | false }]

Parameters name
is the name of the database device. It must conform to the rules for
identifiers, and it must be enclosed in single or double quotes. This name is
used in the create database and alter database commands.

physname
is the name of the database device. The physical name must be enclosed in
single or double quotes.

vdevno
is the virtual device number. It must be unique among devices used by
Adaptive Server. The device number 0 is reserved for the master database
device. Legal numbers are between 1 and 255, but cannot be greater than the
number of database devices for which your system is configured. The
default is 50 devices.

size
is the amount of space to allocate to the database extension. size can be in
the following unit specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes),
and ‘g’ or ‘G’ (gigabytes). Sybase recommends that you always include a
unit specifier. Quotes are optional if you do not include a unit specifier.
However, you must use quotes if you include a unit specifier.

CHAPTER 1 Commands

Reference Manual: Commands 217

vstart
is the starting virtual address, or the offset, for Adaptive Server to begin
using the database device. vstart accepts the following optional unit
specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes), and ‘g’ or ‘G’
(gigabytes). The size of the offset depends on how you enter the value for
vstart.

• If you do not specify a unit size, vstart uses 2K pages for its starting
address. For example, if you specify vstart = 13, Adaptive Server
uses 13 * 2K pages as the offset for the starting address.

• If you specify a unit value, vstart uses this as the starting address. For
example, if you specify vstart = "13M", Adaptive Server sets the
starting address offset at 13 megabytes.

The default value (and usually the preferred value) of vstart is 0. If the
specified device does not have the sum of vstart + size blocks available, the
disk reinit command fails.

Note If you are running the Logical Volume Manager on an AIX operating
system, vstart should be 2.

Specify vstart only if instructed to do so by Sybase Technical Support.

cntrltype
specifies the disk controller. Its default value is 0. Reset it only if instructed
to do so by Sybase Technical Support.

dsync
UNIX platforms only – specifies whether writes to the database device take
place directly to the storage media, or are buffered when using UNIX
operating system files. This option is meaningful only when you are
initializing a UNIX operating system file; it has no effect when initializing
devices on a raw partition. By default, all UNIX operating system files are
initialized with dsync set to true.

Examples Initializes 10MB of a disk on a UNIX operating system file. Adaptive Server
opens the device file with the dsync setting, and writes to the file are guaranteed
to take place directly on the storage media:

disk reinit
name = "user_file",
physname = "/usr/u/sybase/data/userfile1.dat",
vdevno = 2, size = 5120, dsync = true

disk reinit

218 Adaptive Server Enterprise

Usage • disk reinit ensures that master..sysdevices is correct if the master database
has been damaged or if devices have been added since the last dump of
master.

• disk reinit is similar to disk init, but does not initialize the database device.

• You can specify the size as a float, but the size is rounded down to the
nearest multiple of 2K.

• If you do not use a unit specifier for size, disk reinit uses the virtual page
size of 2K.

• For complete information on restoring the master database, see the System
Administration Guide.

Using dsync

Note Do not set dsync to false for any device that stores critical data. The only
exception is tempdb, which can safely be stored on devices for which dsync is
set to false.

• When dsync is on, writes to the database device are guaranteed to take
place on the physical storage media, and Adaptive Server can recover data
on the device in the event of a system failure.

• When dsync is off, writes to the database device may be buffered by the
UNIX file system. The UNIX file system may mark an update as being
completed, even though the physical media has not yet been modified. In
the event of a system failure, there is no guarantee that data updates have
ever taken place on the physical media, and Adaptive Server may be
unable to recover the database.

• dsync is always on for the master device file.

• The dsync value should be turned off only when databases on the device
need not be recovered after a system failure. For example, you may
consider turning dsync off for a device that stores only the tempdb
database.

• Adaptive Server ignores the dsync setting for devices stored on raw
partitions—writes to those device are guaranteed to take place on the
physical storage media, regardless of the dsync setting.

• The dsync setting is not used on the Windows NT platform.

• disk reinit ensures that master..sysdevices is correct if the master database
has been damaged or if devices have been added since the last dump of
master.

CHAPTER 1 Commands

Reference Manual: Commands 219

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions disk reinit permission defaults to System Administrators and is not transferable.
You must be in the master database to use disk reinit.

See also Commands alter database, create database, dbcc, disk init, disk refit

System procedures sp_addumpdevice, sp_helpdevice

disk remirror

220 Adaptive Server Enterprise

disk remirror
Description Restarts disk mirroring after it is stopped by failure of a mirrored device or

temporarily disabled by the disk unmirror command.

Syntax disk remirror
name = "device_name"

Parameters name
is the name of the database device that you want to remirror. The name is
recorded in the name column of the sysdevices table, and must be enclosed
in single or double quotes.

Examples Resumes software mirroring on the database device user_disk:

disk remirror
name = "user_disk"

Usage • Disk mirroring creates a software mirror of a user database device, the
master database device, or a database device used for user database
transaction logs. If a database device fails, its mirror immediately takes
over.

Use the disk remirror command to reestablish mirroring after it has been
temporarily stopped by failure of a mirrored device or temporarily
disabled with the mode = retain option of the disk unmirror command. The
disk remirror command copies data on the retained disk to the mirror.

• It is important to back up the master database with the dump database
command after each use of disk remirror. This makes recovery easier and
safer in case master is damaged.

• If mirroring was permanently disabled with the mode = remove option, you
must remove the operating system file that contains the mirror before
using disk remirror.

• Database devices, not databases, are mirrored.

• You can mirror, remirror, or unmirror database devices without shutting
down Adaptive Server. Disk mirroring does not interfere with ongoing
activities in the database.

• When a read or write to a mirrored device is unsuccessful, Adaptive Server
unmirrors the bad device and prints error messages. Adaptive Server
continues to run, unmirrored. The System Administrator must use disk
remirror to restart mirroring.

CHAPTER 1 Commands

Reference Manual: Commands 221

• In addition to mirroring user database devices, always put user database
transaction logs on a separate database device. The database device used
for transaction logs can also be mirrored for even greater protection. To put
a database’s transaction log (that is, the system table syslogs) on a different
device than the one on which the rest of the database is stored, name the
database device and the log device when you create the database.
Alternatively, alter database to a second device, then run sp_logdevice.

• If you mirror the database device for the master database, you can use the
-r option and the name of the mirror for UNIX, when you restart Adaptive
Server with the dataserver utility program. Add this option to the
RUN_servername file for that server so that the startserver utility program
knows about it. For example, the following command starts a master
device named master.dat and its mirror, mirror.dat:

dataserver -dmaster.dat -rmirror.dat

For more information, see dataserver and startserver in the Utility Guide.

• For a report on all Adaptive Server devices on your system (user database
devices and their mirrors, as well as dump devices), execute
sp_helpdevice.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions disk remirror permission defaults to the System Administrator and is not
transferable. You must be using the master database to use disk remirror.

See also Commands alter database, create database, disk init, disk mirror, disk refit,
disk reinit, disk unmirror, dump database, dump transaction, load database, load
transaction

System procedures sp_diskdefault, sp_helpdevice, sp_logdevice

Utilities dataserver, startserver

disk resize

222 Adaptive Server Enterprise

disk resize
Description Dynamically increases the size of the device used by Adaptive Server.

Syntax disk resize
name = “device_name”,
size = additional_space

Parameters name
The name of the device whose size you are increasing.

additional_space
The additional space you are adding to the device.

Examples To increase the size of testdev by 4MB, enter:

disk resize
name = "test_dev",
size = "4M"

Usage • The disk resize command allows you to dynamically increase the size of
your disks.

• After you resize a device, dump the master device, which maintains the
size of the device in the sysdevices table. If you attempt a recovery from
an old dump of the master device, the information stored in sysdevices will
not be current.

• Any properties that are set on the device continue to be set after you
increase its size.

• During the physical initialization of the disk, if any error occurs due to
insufficient disk space, disk resize extends the database device to the point
before the error occurs.

For example, on a server that uses 4K logical pages, if you try to increase
the size of the device by 40MB, but only 39.5MB is available, then the
device is extended only by 39.5MB. From the extended size (39.5MB),
only 39MB is used by Adaptive Server. The last 0.5MB is allocated but not
used, as 4K servers configure devices in one MB minimums.

To utilize the last 0.5MB, make sure that at least another 1.5MB is
available for the device, then re-run disk resize, specifying 1.5MB as the
incremental size.

• You cannot decrease the size of a device with disk resize.

• device_name must have a valid identifier. The device is initialized using
the disk init command and, it must refer to a valid Adaptive Server device,
not a dump or load device.

CHAPTER 1 Commands

Reference Manual: Commands 223

• Use the following unit specifiers to indicate the size of the device: “k” or
“K” to indicate kilobytes, “m” or “M” to indicate megabytes and “g”or
“G” to indicate gigabytes. Although it is optional, Sybase recommends
that you always include the unit specifier with the disk resize command to
avoid confusion in the actual number of pages allocated.

You must enclose the unit specifier in single or double quotes. If you do
not use a unit specifier, the size defaults to the number of disk pages.

• Permanently disable mirroring while the resize operation is in progress.
You can reestablish mirroring when the resize operation is completed.

Standards ANSI SQL – compliance level: Transact-SQL extension

Permissions Only a user with the sa role can execute the disk resize command.

See also Commands create database, disk init, drop database, load database

System procedures sp_addsegment, sp_dropsegment, sp_helpdb,
sp_helpsegment, sp_logdevice, sp_renamedb, sp_spaceused

disk unmirror

224 Adaptive Server Enterprise

disk unmirror
Description Suspends disk mirroring initiated with the disk mirror command to allow

hardware maintenance or the changing of a hardware device.

Syntax disk unmirror
name = "device_name"
[,side = { "primary" | secondary }]
[,mode = { retain | remove }]

Parameters name
is the name of the database device that you want to unmirror. The name must
be enclosed in single or double quotes.

side
specifies whether to disable the primary device or the secondary device (the
mirror). By default, the secondary device is unmirrored.

mode
determines whether the unmirroring is temporary (retain) or permanent
(remove). By default, unmirroring is temporary.

Specify retain when you plan to remirror the database device later in the
same configuration. This option mimics what happens when the primary
device fails:

• I/O is directed only at the device not being unmirrored.

• The status column of sysdevices indicates that mirroring is deactivated.
remove eliminates all sysdevices references to a mirror device.

• The status column indicates that the mirroring feature is ignored.

• The phyname column is replaced by the name of the secondary device
in the mirrorname column if the primary device is the one being
deactivated.

• The mirrorname column is set to NULL.

Examples Example 1 Suspends software mirroring for the database device user_disk:

disk unmirror
name = "user_disk"

Example 2 Suspends software mirroring for the database device user_disk on
the secondary side:

disk unmirror name = "user_disk", side = secondary

Example 3 Suspends software mirroring for the database device user_disk and
removes all device references to the mirror device:

CHAPTER 1 Commands

Reference Manual: Commands 225

disk unmirror name = "user_disk", mode = remove

Usage • Disk mirroring creates a software mirror of a user database device, the
master database device, or a database device used for user database
transaction logs. If a database device fails, its mirror immediately takes
over.

disk unmirror disables either the original database device or the mirror,
either permanently or temporarily, so that the device is no longer available
to Adaptive Server for reads or writes. It does not remove the associated
file from the operating system.

• Disk unmirroring alters the sysdevices table in the master database. It is
important to back up the master database with the dump database
command after each use of disk unmirror. This makes recovery easier and
safer in case master is damaged.

• You can unmirror a database device while it is in use.

• You cannot unmirror any of a database’s devices while a dump database,
load database, or load transaction is in progress. Adaptive Server displays
a message asking whether to abort the dump or load or to defer the disk
unmirror until after the dump or load completes.

• You cannot unmirror a database’s log device while a dump transaction is in
progress. Adaptive Server displays a message asking whether to abort the
dump or defer the disk unmirror until after the dump completes.

Note dump transaction with truncate_only and dump transaction with no_log
are not affected when a log device is unmirrored.

• You should mirror all the default database devices so that you are still
protected if a create or alter database command affects a database device
in the default list.

• When a read or write to a mirrored device is unsuccessful, Adaptive Server
automatically unmirrors the bad device and prints error messages.
Adaptive Server continues to run, unmirrored. A System Administrator
must restart mirroring with the disk remirror command.

• For a report on all Adaptive Server devices on your system (user database
devices and their mirrors, as well as dump devices), execute
sp_helpdevice.

disk unmirror

226 Adaptive Server Enterprise

• Use disk remirror to reestablish mirroring after it is temporarily stopped
with the mode = retain option of the disk unmirror command. If mirroring is
permanently disabled with the mode = remove option, you must remove
the operating system file that contains the mirror before using disk
remirror.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions disk unmirror permission defaults to the System Administrator, and is not
transferable. You must be using the master database to use disk unmirror.

See also Commands alter database, create database, disk init, disk mirror, disk refit,
disk reinit, disk remirror, dump database, dump transaction, load database, load
transaction

System procedures sp_diskdefault, sp_helpdevice, sp_logdevice

Utilities dataserver, startserver

CHAPTER 1 Commands

Reference Manual: Commands 227

drop database
Description Removes one or more databases from Adaptive Server.

Syntax drop database database_name [, database_name] ...

Parameters database_name
is the name of a database to remove. Use sp_helpdb to get a list of databases.

Examples Removes the publishing database and all its contents:

drop database publishing

Usage • Removing a database deletes the database and all its objects, frees its
storage allocation, and erases its entries from the sysdatabases and
sysusages system tables in the master database.

• drop database clears the suspect page entries pertaining to the dropped
database from master..sysattributes.

Restrictions

• You must be using the master database to drop a database.

• You cannot drop a database that is in use (open for reading or writing by
any user).

• You cannot use drop database to remove a database that is referenced by a
table in another database. Execute the following query to determine which
tables and external databases have foreign key constraints on primary key
tables in the current database:

select object_name(tableid), frgndbname
from sysreferences
where frgndbname is not null

Use alter table to drop these cross-database constraints, then reissue the
drop database command.

• You cannot use drop database to remove a damaged database. Use the dbcc
dbrepair command:

dbcc dbrepair (database_name, dropdb)

• You cannot drop the sybsecurity database if auditing is enabled. When
auditing is disabled, only the System Security Officer can drop sybsecurity.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only the Database Owner can execute drop database, except for the sybsecurity
database, which can be dropped only by the System Security Officer.

See also Commands alter database, create database, dbcc, use

drop database

228 Adaptive Server Enterprise

Procedures sp_changedbowner, sp_helpdb, sp_renamedb, sp_spaceused

CHAPTER 1 Commands

Reference Manual: Commands 229

drop default
Description Removes a user-defined default.

Syntax drop default [owner.]default_name
[, [owner.]default_name] ...

Parameters default_name
is the name of an existing default. Execute sp_help to get a list of existing
defaults. Specify the owner’s name to drop a default of the same name
owned by a different user in the current database. The default value for
owner is the current user.

Examples Removes the user-defined default datedefault from the database:

drop default datedefault

Usage • You cannot drop a default that is currently bound to a column or to a
user-defined datatype. Use sp_unbindefault to unbind the default before
you drop it.

• You can bind a new default to a column or user-defined datatype without
unbinding its current default. The new default overrides the old one.

• When you drop a default for a NULL column, NULL becomes the
column’s default value. When you drop a default for a NOT NULL
column, an error message appears if users do not explicitly enter a value
for that column when inserting data.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions drop default permission defaults to the owner of the default and is not
transferable.

See also Commands create default

System procedures sp_help, sp_helptext, sp_unbindefault

drop function (SQLJ)

230 Adaptive Server Enterprise

drop function (SQLJ)
Description Removes a SQLJ function.

Syntax drop func[tion] [owner.]function_name
[, [owner.]function_name] ...

Parameters [owner.]function_name
is the SQL name of a SQLJ function.

Examples Removes the SQLJ function square_root:

drop function square_root

Usage drop function removes only user-created functions from the current database. It
does not remove system functions.

Permissions Only the Database Owner or user with the sa role can execute drop function.

See also Documents See Java in Adaptive Server Enterprise for more information
about SQLJ functions.

Commands create function (SQLJ)

CHAPTER 1 Commands

Reference Manual: Commands 231

drop index
Description Removes an index from a table in the current database.

Syntax drop index table_name.index_name
[, table_name.index_name] ...

Parameters table_name
is the table in which the indexed column is located. The table must be in the
current database.

index_name
is the index to drop. In Transact-SQL, index names need not be unique in a
database, though they must be unique within a table.

Examples Removes au_id_ind from the authors table:

drop index authors.au_id_ind

Usage • Once the drop index command is issued, you regain all the space that was
previously occupied by the index. This space can be used for any database
objects.

• You cannot use drop index on system tables.

• drop index cannot remove indexes that support unique constraints. To drop
such indexes, drop the constraints through alter table or drop the table. See
create table for more information about unique constraint indexes.

• You cannot drop indexes that are currently used by any open cursor. For
information about which cursors are open and what indexes they use, use
sp_cursorinfo.

• To get information about what indexes exist on a table, use the following,
where objname is the name of the table:

sp_helpindex objname

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions drop index permission defaults to the index owner and is not transferable.

See also Commands create index

System procedures sp_cursorinfo, sp_helpindex, sp_spaceused

drop procedure

232 Adaptive Server Enterprise

drop procedure
Description Removes a procedure.

Syntax drop proc[edure] [owner.]procedure_name
[, [owner.]procedure_name] ...

Parameters procedure_name
is the name of the Transact-SQL or SQLJ procedure to drop. Specify the
owner’s name to drop a procedure of the same name owned by a different
user in the current database. The default value for owner is the current user.

Examples Example 1 Deletes the stored procedure showind:

drop procedure showind

Example 2 Unregisters the extended stored procedure xp_echo:

drop procedure xp_echo

Usage • drop procedure drops user-defined stored procedures, system procedures,
and extended stored procedures (ESPs).

• Adaptive Server checks the existence of a procedure each time a user or a
program executes that procedure.

• A procedure group (more than one procedure with the same name but with
different number suffixes) can be dropped with a single drop procedure
statement. For example, if the procedures used with the application named
orders were named orderproc;1, orderproc;2, and so on, the following
statement drops the entire group:

drop proc orderproc

Once procedures have been grouped, individual procedures within the
group cannot be dropped. For example, the following statement is not
allowed:

drop procedure orderproc;2

You cannot drop extended stored procedures as a procedure group.

• sp_helptext displays the procedure’s text, which is stored in syscomments.

• sp_helpextendedproc displays ESPs and their corresponding DLLs.

• Dropping an ESP unregisters the procedure by removing it from the
system tables. It has no effect on the underlying DLL.

• drop procedure drops only user-created procedures from your current
database.

CHAPTER 1 Commands

Reference Manual: Commands 233

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions drop procedure permission defaults to the procedure owner and is not
transferable.

See also Commands create procedure, create procedure (SQLJ)

System procedures sp_depends, sp_dropextendedproc,
sp_helpextendedproc, sp_helptext, sp_rename

drop role

234 Adaptive Server Enterprise

drop role
Description Drops a user-defined role.

Syntax drop role role_name [with override]

Parameters role_name
is the name of the role you want to drop.

with override
overrides any restrictions on dropping a role. When you use the with override
option, you can drop any role without having to check whether the role
permissions have been dropped in each database.

Examples Example 1 Drops the named role only if all permissions in all databases have
been revoked. The System Administrator or object owner must revoke
permissions granted in each database before dropping a role, or the command
fails:

drop role doctor_role

Example 2 Drops the named role and removes permission information and any
other reference to the role from all databases:

drop role doctor_role with override

Usage • You need not drop memberships before dropping a role. Dropping a role
automatically removes any user’s membership in that role, regardless of
whether you use the with override option.

• Use drop role from the master database.

Restrictions

• You cannot use drop role to drop system roles.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions You must be a System Security Officer to use drop role.

drop role permission is not included in the grant all command.

See also Commands alter role, create role, grant, revoke, set

System procedures sp_activeroles, sp_displaylogin, sp_displayroles,
sp_helprotect, sp_modifylogin

CHAPTER 1 Commands

Reference Manual: Commands 235

drop rule
Description Removes a user-defined rule.

Syntax drop rule [owner.]rule_name [, [owner.]rule_name] ...

Parameters rule_name
is the name of the rule to drop. Specify the owner’s name to drop a rule of
the same name owned by a different user in the current database. The default
value for owner is the current user.

Examples Removes the rule pubid_rule from the current database:

drop rule pubid_rule

Usage • Before dropping a rule, you must unbind it using the system procedure
sp_unbindrule. If the rule has not been unbound, an error message appears,
and the drop rule command fails.

• You can bind a new rule to a column or user-defined datatype without
unbinding its current rule. The new rule overrides the old one.

• After you drop a rule, Adaptive Server enters new data into the columns
that were previously governed by the rule without constraints. Existing
data is not affected in any way.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions drop rule permission defaults to the rule owner and is not transferable.

See also Commands create rule

System procedures sp_bindrule, sp_help, sp_helptext, sp_unbindrule

drop table

236 Adaptive Server Enterprise

drop table
Description Removes a table definition and all of its data, indexes, triggers, and

permissions from the database.

Syntax drop table [[database.]owner.]table_name
[, [[database.]owner.]table_name] ...

Parameters table_name
is the name of the table to drop. Specify the database name if the table is in
another database, and specify the owner’s name if more than one table of
that name exists in the database. The default value for owner is the current
user, and the default value for database is the current database.

Examples Removes the table roysched and its data and indexes from the current database:

drop table roysched

Usage • When you use drop table, any rules or defaults on the table lose their
binding, and any triggers associated with it are automatically dropped. If
you re-create a table, you must rebind the appropriate rules and defaults
and re-create any triggers.

• The system tables affected when a table is dropped are sysobjects,
syscolumns, sysindexes, sysprotects, and syscomments.

• If Component Integration Services is enabled, and if the table being
dropped was created with create existing table, the table is not dropped
from the remote server. Instead, Adaptive Server removes references to the
table from the system tables.

Restrictions

• You cannot use the drop table command on system tables.

• You can drop a table in any database, as long as you are the table owner.
For example, use either of the following to drop a table called newtable in
the database otherdb:

drop table otherdb..newtable
drop table otherdb.yourname.newtable

• If you delete all the rows in a table or use the truncate table command, the
table still exists until you drop it.

Dropping tables with cross-database referential integrity constraints

• When you create a cross-database constraint, Adaptive Server stores the
following information in the sysreferences system table of each database:

CHAPTER 1 Commands

Reference Manual: Commands 237

Table 1-22: Information stored about referential integrity constraints

• Because the referencing table depends on information from the referenced
table, Adaptive Server does not allow you to:

• Drop the referenced table,

• Drop the external database that contains it, or

• Rename either database with sp_renamedb.

Use sp_helpconstraint to determine which tables reference the table you
want to drop. Use alter table to drop the constraints before reissuing the
drop table command.

• You can drop a referencing table or its database without problems.
Adaptive Server automatically removes the foreign key information from
the referenced database.

• Each time you add or remove a cross-database constraint or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases can cause database
corruption. For more information about loading databases with
cross-database referential integrity constraints, see the System
Administration Guide.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions drop table permission defaults to the table owner and is not transferable.

See also Commands alter table, create table, delete, truncate table

System procedures sp_depends, sp_help, sp_spaceused

Information stored in
sysreferences

Columns with information about
referenced table

Columns with information about
referencing table

Key column IDs refkey1 through refkey16 fokey1 through fokey16

Table ID reftabid tableid

Database name pmrydbname frgndbname

drop trigger

238 Adaptive Server Enterprise

drop trigger
Description Removes a trigger.

Syntax drop trigger [owner.]trigger_name
[, [owner.]trigger_name] ...

Parameters trigger_name
is the name of the trigger to drop. Specify the owner’s name to drop a trigger
of the same name owned by a different user in the current database. The
default value for owner is the current user.

Examples Removes the trigger trigger1 from the current database:

drop trigger trigger1

Usage • drop trigger drops a trigger in the current database.

• You do not need to explicitly drop a trigger from a table to create a new
trigger for the same operation (insert, update, or delete). In a table or
column each new trigger for the same operation overwrites the previous
one.

• When a table is dropped, Adaptive Server automatically drops any triggers
associated with it.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions drop trigger permission defaults to the trigger owner and is not transferable.

See also Commands create trigger

System procedures sp_depends, sp_help, sp_helptext

CHAPTER 1 Commands

Reference Manual: Commands 239

drop view
Description Removes one or more views from the current database.

Syntax drop view [owner.]view_name [, [owner.]view_name] ...

Parameters view_name
is the name of the view to drop. Specify the owner’s name to drop a view of
the same name owned by a different user in the current database. The default
value for owner is the current user.

Examples Removes the view new_price from the current database:

drop view new_price

Usage • When you use drop view, the definition of the view and other information
about it, including privileges, is deleted from the system tables sysobjects,
syscolumns, syscomments, sysdepends, sysprocedures, and sysprotects.

• Existence of a view is checked each time the view is referenced, for
example, by another view or by a stored procedure.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions drop view permission defaults to the view owner and is not transferable.

See also Commands create view

System procedures sp_depends, sp_help, sp_helptext

dump database

240 Adaptive Server Enterprise

dump database
Description Makes a backup copy of the entire database, including the transaction log, in a

form that can be read in with load database. Dumps and loads are performed
through Backup Server.

Syntax dump database database_name
to [compress::[compression_level::]]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]

[[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
notify = {client | operator_console}
}]

Parameters database_name
is the name of the database from which you are copying data. The database
name can be specified as a literal, a local variable, or a stored procedure
parameter.

CHAPTER 1 Commands

Reference Manual: Commands 241

compress::compression_level
is a number between 0 and 9, with 0 indicating no compression, and 9
providing the highest level of compression. If you do not specify
compression_level, the default is 1. See Chapter 27, “Backing Up and
Restoring User Databases” in the System Administration Guide for more
information about the compress option.

Note The compress option works only with local archives; you cannot use the
backup_server_name option.

to stripe_device
is the device to which to copy the data. See “Specifying dump devices” in
this section for information about what form to use when specifying a dump
device.

at backup_server_name
is the name of the Backup Server. Do not specify this parameter when
dumping to the default Backup Server. Specify this parameter only when
dumping over the network to a remote Backup Server. You can specify as
many as 32 remote Backup Servers with this option. When dumping across
the network, specify the network name of a remote Backup Server running
on the machine to which the dump device is attached. For platforms that use
interfaces files, the backup_server_name must appear in the interfaces file.

density = density_value
overrides the default density for a tape device. Valid densities are 800, 1600,
6250, 6666, 10000, and 38000. Not all values are valid for every tape drive;
use the correct density for your tape drive.

blocksize = number_bytes
overrides the default block size for a dump device. The block size must be
at least one database page (2048 bytes for most systems) and must be an
exact multiple of the database page size. For optimal performance, specify
the blocksize as a power of 2, for example, 65536, 131072, or 262144.

dump database

242 Adaptive Server Enterprise

capacity = number_kilobytes
is the maximum amount of data that the device can write to a single tape
volume. The capacity must be at least five database pages and should be less
than the recommended capacity for your device.

A general rule for calculating capacity is to use 70 percent of the
manufacturer’s maximum capacity for the device, allowing 30 percent for
overhead such as inter-record gaps and tape marks. The maximum capacity
is the capacity of the device on the drive, not the drive itself. This rule works
in most cases, but may not work in all cases due to differences in overhead
across vendors and across devices.

On UNIX platforms that cannot reliably detect the end-of-tape marker,
indicate how many kilobytes can be dumped to the tape. You must supply a
capacity for dump devices specified as a physical path name. If a dump
device is specified as a logical device name, the Backup Server uses the size
parameter stored in the sysdevices system table unless you specify a
capacity.

dumpvolume = volume_name
establishes the name that is assigned to the volume. The maximum length of
volume_name is 6 characters. Backup Server writes the volume_name in the
ANSI tape label when overwriting an existing dump, dumping to a brand
new tape, or dumping to a tape whose contents are not recognizable. The
load database command checks the label and generates an error message if
the wrong volume is loaded.

 Warning! Label each tape volume as you create it so that the operator can load
the correct tape.

stripe on stripe_device
is an additional dump device. You can use as many as 32 devices, including
the device named in the to stripe_device clause. The Backup Server splits
the database into approximately equal portions, and sends each portion to a
different device. Dumps are made concurrently on all devices, reducing the
time required to make a dump and requiring fewer volume changes during
the dump. See “Specifying dump devices” on page 247 for information
about how to specify a dump device.

dismount | nodismount
on platforms that support logical dismount, determines whether tapes
remain mounted. By default, all tapes used for a dump are dismounted when
the dump completes. Use nodismount to keep tapes available for additional
dumps or loads.

CHAPTER 1 Commands

Reference Manual: Commands 243

nounload | unload
determines whether tapes rewind after the dump completes. By default,
tapes do not rewind, allowing you to make additional dumps to the same
tape volume. Specify unload for the last dump file to be added to a
multidump volume. This rewinds and unloads the tape when the dump
completes.

retaindays= number_days
on UNIX systems – when dumping to disk, specifies the number of days that
Backup Server protects you from overwriting the dump. If you try to
overwrite the dump before it expires, Backup Server requests confirmation
before overwriting the unexpired volume.

Note This option is meaningful only when dumping to a disk. It is not
meaningful for tape dumps.

The number_days must be a positive integer or 0, for dumps that you can
overwrite immediately. If you do not specify a retaindays value, Backup
Server uses the tape retention in days value set by sp_configure.

noinit | init
determines whether to append the dump to existing dump files or reinitialize
(overwrite) the tape volume. By default, Adaptive Server appends dumps
following the last end-of-tape mark, allowing you to dump additional
databases to the same volume. New dumps can be appended only to the last
volume of a multivolume dump. Use init for the first database you dump to
a tape to overwrite its contents.

Use init when you want Backup Server to store or update tape device
characteristics in the tape configuration file. For more information, see the
System Administration Guide.

file = file_name
is the name of the dump file. The name cannot exceed 17 characters and
must conform to operating system conventions for file names. For more
information, see “Dump files” on page 248.

dump database

244 Adaptive Server Enterprise

notify = {client | operator_console}
overrides the default message destination.

On operating systems that offer an operator terminal feature, volume change
messages are always sent to the operator terminal on the machine on which
Backup Server is running. Use client to route other Backup Server messages
to the terminal session that initiated the dump database.

On operating systems that do not offer an operator terminal feature, such as
UNIX, messages are sent to the client that initiated the dump database. Use
operator_console to route messages to the terminal on which Backup Server
is running.

Examples Example 1 Dumps the database pubs2 to a tape device. If the tape has an ANSI
tape label, this command appends this dump to the files already on the tape,
since the init option is not specified:

dump database pubs2
to "/dev/nrmt0"

Example 2 For UNIX – dumps the pubs2 database, using the
REMOTE_BKP_SERVER Backup Server. The command names three dump
devices, so the Backup Server dumps approximately one-third of the database
to each device. This command appends the dump to existing files on the tapes.
On UNIX systems, the retaindays option specifies that the tapes cannot be
overwritten for 14 days:

dump database pubs2
to "/dev/rmt4" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt5" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt0" at REMOTE_BKP_SERVER

with retaindays = 14

Example 3 The init option initializes the tape volume, overwriting any existing
files:

dump database pubs2
to "/dev/nrmt0"
with init

Example 4 Rewinds the dump volumes upon completion of the dump:

dump database pubs2
to "/dev/nrmt0"
with unload

CHAPTER 1 Commands

Reference Manual: Commands 245

Example 5 For UNIX – the notify clause sends Backup Server messages
requesting volume changes to the client which initiated the dump request,
rather than sending them to the default location, the console of the Backup
Server machine:

dump database pubs2
to "/dev/nrmt0"
with notify = client

Example 6 Creates a compressed dump of the pubs2 database into a file called
dmp090100.dmp using a compression level of 4:

dump database pubs2 to
"compress::4::/opt/bin/Sybase/dumps/dmp090100.dmp"

Usage • Table 1-23 describes the commands and system procedures used to back
up databases:

Table 1-23: Commands used to back up databases and logs

Restrictions

• If proxy tables are in the database they are be part of the database saveset.
The content data of proxy tables is not included in the save; only the
pointer is saved and restored.

• You cannot dump from an 11.x Adaptive Server to a 10.x Backup Server.

• You cannot have Sybase dumps and non-Sybase data (for example, UNIX
archives) on the same tape.

To do this Use this command

Make routine dumps of the entire database, including the transaction log. dump database

Make routine dumps of the transaction log, then truncate the inactive
portion.

dump transaction

Dump the transaction log after failure of a database device. dump transaction with no_truncate

Truncate the log without making a backup, then copy the entire database. dump transaction with truncate_only

dump database

Truncate the log after your usual method fails due to insufficient log space,
then copy the entire database.

dump transaction with no_log

dump database

Respond to the Backup Server’s volume change messages. sp_volchanged

dump database

246 Adaptive Server Enterprise

• If a database has cross-database referential integrity constraints, the
sysreferences system table stores the name—not the ID number—of the
external database. Adaptive Server cannot guarantee referential integrity
if you use load database to change the database name or to load it onto a
different server.

 Warning! Before dumping a database to load it with a different name or
move it to another Adaptive Server, use alter table to drop all external
referential integrity constraints.

• You cannot use dump database in a user-defined transaction.

• If you issue dump database on a database where a dump transaction is
already in progress, dump database sleeps until the transaction dump
completes.

• When using 1/4-inch cartridge tape, you can dump only one database or
transaction log per tape.

• You cannot dump a database if it has offline pages. To force offline pages
online, use sp_forceonline_db or sp_forceonline_page.

Scheduling dumps

• Adaptive Server database dumps are dynamic—they can take place while
the database is active. However, they may slow the system down slightly,
so you may want to run dump database when the database is not being
heavily updated.

• Back up the master database regularly and frequently. In addition to your
regular backups, dump master after each create database, alter database,
and disk init command is issued.

• Back up the model database each time you make a change to the database.

• Use dump database immediately after creating a database, to make a copy
of the entire database. You cannot run dump transaction on a new database
until you have run dump database.

• Each time you add or remove a cross-database constraint or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases can cause database
corruption.

CHAPTER 1 Commands

Reference Manual: Commands 247

• Develop a regular schedule for backing up user databases and their
transaction logs.

• Use thresholds to automate backup procedures. To take advantage of
Adaptive Server’s last-chance threshold, create user databases with log
segments on a device that is separate from data segments. For more
information about thresholds, see the System Administration Guide.

Dumping the system databases

• The master, model, and sybsystemprocs databases do not have separate
segments for their transaction logs. Use dump transaction with
truncate_only to purge the log, then use dump database to back up the
database.

• Backups of the master database are needed for recovery procedures in case
of a failure that affects the master database. See the System Administration
Guide for step-by-step instructions for backing up and restoring the master
database.

• If you are using removable media for backups, the entire master database
must fit on a single volume unless you have another Adaptive Server that
can respond to volume change messages.

Specifying dump devices

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

• You cannot dump to the null device (on UNIX, /dev/null).

• Dumping to multiple stripes is supported for tape and disk devices. Placing
multiple dumps on a device is supported only for tape devices.

• You can specify a local dump device as:

• A logical device name from the sysdevices system table

• An absolute path name

• A relative path name

Backup Server resolves relative path names using Adaptive Server’s
current working directory.

• When dumping across the network, you must specify the absolute path
name of the dump device. The path name must be valid on the machine on
which Backup Server is running. If the name includes any characters
except letters, numbers, or the underscore (_), you must enclose it in
quotes.

dump database

248 Adaptive Server Enterprise

• Ownership and permissions problems on the dump device may interfere
with the use of dump commands. sp_addumpdevice adds the device to the
system tables, but does not guarantee that you can dump to that device or
create a file as a dump device.

• You can run more than one dump (or load) at the same time, as long as each
uses different dump devices.

• If the device file already exists, Backup Server overwrites it; it does not
truncate it. For example, suppose you dump a database to a device file and
the device file becomes 10MB. If the next dump of the database to that
device is smaller, the device file is still 10MB.

Determining tape device characteristics

• If you issue a dump command without the init qualifier and Backup Server
cannot determine the device type, the dump command fails. For more
information, see the System Administration Guide.

Backup servers

• You must have a Backup Server running on the same machine as Adaptive
Server. The Backup Server must be listed in the master..sysservers table.
This entry is created during installation or upgrade, and should not be
deleted.

• If your backup devices are located on another machine so that you dump
across a network, you must also have a Backup Server installed on the
remote machine.

Dump files

• Dumping a database with the init option overwrites any existing files on the
tape or disk.

• If you perform two or more dumps to a tape device and use the same file
name for both dumps (specified with the FILENAME parameter), Adaptive
Server appends the second dump to the archive device. You will not be
able to restore the second dump because Adaptive Server locates the first
instance of the dump image with the specified file name and restores this
image instead. Adaptive Server does not search for subsequent dump
images with the same file name.

• Backup Server sends the dump file name to the location specified by the
with notify clause. Before storing a backup tape, the operator should label
it with the database name, file name, date, and other pertinent information.
When loading a tape without an identifying label, use the with headeronly
and with listonly options to determine the contents.

CHAPTER 1 Commands

Reference Manual: Commands 249

File names and archive names

• The name of a dump file identifies the database that was dumped and when
the dump was made. However, in the syntax, file_name has different
meanings depending on whether you are dumping to disk or to a UNIX
tape:

file = file_name

In a dump to disk, the path name of a disk file is also its file name.

In a dump to a UNIX tape, the path name is not the file name. The ANSI
Standard Format for File Interchange contains a file name field in the
HDR1 label. For tapes conforming to the ANSI specification, this field in
the label identifies the file name. The ANSI specification only applies
these labels to tape; it does not apply to disk files.

This creates two problems:

• UNIX does not follow the ANSI convention for tape file names.
UNIX considers the tape’s data to be unlabeled. Although it can be
divided into files, those files have no name.

• In Backup Server, the ANSI tape labels are used to store information
about the archive, negating the ANSI meanings. Therefore, disk files
also have ANSI labels, because the archive name is stored there.

The meaning of filename changes depending on the kind of dump you are
performing. For example, in the following syntax:

dump database database_name to 'filename' with file='filename'

• The first filename refers to the path name you enter to display the file.

• The second filename is actually the archive name, the name stored in
the HDR1 label in the archive, which the user can specify with the
file=filename parameter of the dump or load command.

When the archive name is specified, the server uses that name during a
database load to locate the selected archive.

If the archive name is not specified, the server loads the first archive it
encounters.

In both cases, file='archivename' establishes the name that is stored in the
HDR1 label, and which the subsequent load uses to validate that it is
looking at the correct data.

If the archive name is not specified, a dump creates one; a load uses the first
name it encounters.

dump database

250 Adaptive Server Enterprise

The meaning of filename in the to ’filename’ clause changes according to
whether this is a disk or tape dump:

• If the dump is to tape, ‘filename’ is the name of the tape device,

• If the dump is to disk, it is the name of a disk file.

If this is a disk dump and the ‘filename’ is not a complete path, it is
modified by prepending the server’s current working directory.

• If you are dumping to tape and you do not specify a file name, Backup
Server creates a default file name by concatenating the following:

• Last seven characters of the database name

• Two-digit year number

• Three-digit day of the year (1–366)

• Hexadecimal-encoded time at which the dump file was created

For example, the file cations980590E100 contains a copy of the
publications database made on the 59th day of 1998:

Figure 1-2: File naming convention for database dumps to tape

Volume names

• Dump volumes are labeled according to the ANSI tape-labeling standard.
The label includes the logical volume number and the position of the
device within the stripe set.

cations 98 059 0E100

last 7 characters
of database name

last 2
digits of
year

day of
year

number of seconds
since midnight

CHAPTER 1 Commands

Reference Manual: Commands 251

• During loads, Backup Server uses the tape label to verify that volumes are
mounted in the correct order. This allows you to load from a smaller
number of devices than you used at dump time.

Note When dumping and loading across the network, you must specify
the same number of stripe devices for each operation.

Changing dump volumes

• On UNIX systems – Backup Server requests a volume change when the
tape capacity has been reached. After mounting another volume, the
operator notifies Backup Server by executing sp_volchanged on any
Adaptive Server that can communicate with Backup Server.

• If Backup Server detects a problem with the currently mounted volume, it
requests a volume change by sending messages to either the client or its
operator console. The operator responds to these messages with the
sp_volchanged system procedure.

Appending to or overwriting a volume

• By default (noinit), Backup Server writes successive dumps to the same
tape volume, making efficient use of high-capacity tape media. Data is
added following the last end-of-tape mark. New dumps can be appended
only to the last volume of a multivolume dump. Before writing to the tape,
Backup Server verifies that the first file has not yet expired. If the tape
contains non-Sybase data, Backup Server rejects it to avoid destroying
potentially valuable information.

• Use the init option to reinitialize a volume. If you specify init, Backup
Server overwrites any existing contents, even if the tape contains
non-Sybase data, the first file has not yet expired, or the tape has ANSI
access restrictions.

• Figure 1-3 illustrates how to dump three databases to a single volume
using:

• init to initialize the tape for the first dump

• noinit (the default) to append subsequent dumps

• unload to rewind and unload the tape after the last dump

dump database

252 Adaptive Server Enterprise

Figure 1-3: Dumping several databases to the same volume

Dumping from a 32-bit OS to a 64-bit OS

Database dumps from a 32-bit version of Adaptive Server are fully compatible
with a 64-bit version of Adaptive Server of the same platform, and vice-versa.

Dumping databases whose devices are mirrored

• At the beginning of a dump database, Adaptive Server passes Backup
Server the primary device name of all database and log devices. If the
primary device has been unmirrored, Adaptive Server passes the name of
the secondary device instead. If any named device fails before the Backup
Server completes its data transfer, Adaptive Server aborts the dump.

• If a user attempts to unmirror any of the named database devices while a
dump database is in progress, Adaptive Server displays a message. The
user executing the disk unmirror command can abort the dump or defer the
disk unmirror until after the dump is complete.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only the System Administrator, the Database Owner, and users with the
Operator role can execute dump database.

See also Commands dump transaction, load database, load transaction

System procedures sp_addthreshold, sp_addumpdevice, sp_dropdevice,
sp_dropthreshold, sp_helpdb, sp_helpdevice, sp_helpthreshold, sp_logdevice,
sp_spaceused, sp_volchanged

dump database mydb
to /dev/nrmt4
with init

dump database yourdb
to /dev/nrmt4

dump database pubs2
to /dev/nrmt4
with unload

CHAPTER 1 Commands

Reference Manual: Commands 253

dump transaction
Description Makes a copy of a transaction log and removes the inactive portion.

Syntax To make a routine log dump:

dump tran[saction] database_name
to [compress::[compression_level::]]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]

[[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
notify = {client | operator_console},
standby_access }]

To truncate the log without making a backup copy:

dump tran[saction] database_name
with truncate_only

To truncate a log that is filled to capacity. Use only as a last resort:

dump tran[saction] database_name
with no_log

To back up the log after a database device fails:

dump transaction

254 Adaptive Server Enterprise

dump tran[saction] database_name
to [compress::[compression_level::]]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]

[[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
no_truncate,
notify = {client | operator_console}}]

Parameters database_name
is the name of the database from which you are copying data. The name can
be given as a literal, a local variable, or a parameter to a stored procedure.

compress::compression_level
is a number between 0 and 9, with 0 indicating no compression, and 9
providing the highest level of compression. If you do not specify
compression_level, the default is 1. For more information about the
compress option, see Chapter 27, “Backing Up and Restoring User
Databases” in the System Administration Guide.

Note The compress option works only with local archives; you cannot use the
backup_server_name option.

CHAPTER 1 Commands

Reference Manual: Commands 255

truncate_only
removes the inactive part of the log without making a backup copy. Use on
databases without log segments on a separate device from data segments, Do
not specify a dump device or Backup Server name.

no_log
removes the inactive part of the log without making a backup copy and
without recording the procedure in the transaction log. Use no_log only
when you are completely out of log space and cannot run the usual dump
transaction command. Use no_log as a last resort and use it only once after
dump transaction with truncate_only fails. For additional information, see the
System Administration Guide.

to stripe_device
is the device to which data is being dumped. See “Specifying dump devices”
on page 247 for information about what form to use when specifying a dump
device.

at backup_server_name
is the name of the Backup Server. Do not specify this parameter if you are
dumping to the default Backup Server. Specify this parameter only if you are
dumping over the network to a remote Backup Server. You can specify up
to 32 different remote Backup Servers using this option. When dumping
across the network, specify the network name of a remote Backup Server
running on the machine to which the dump device is attached. For platforms
that use interfaces files, the backup_server_name must appear in the
interfaces file.

density = density_value
overrides the default density for a tape device. Valid densities are 800, 1600,
6250, 6666, 10000, and 38000. Not all values are valid for every tape drive;
use the correct density for your tape drive.

blocksize = number_bytes
overrides the default block size for a dump device. The block size must be
at least one database page (2048 bytes for most systems) and must be an
exact multiple of the database page size.

Note Whenever possible, use the default block size; it is the best block size for
your system.

dump transaction

256 Adaptive Server Enterprise

capacity = number_kilobytes
is the maximum amount of data that the device can write to a single tape
volume. The capacity must be at least five database pages, and should be
slightly less than the recommended capacity for your device.

A general rule for calculating capacity is to use 70 percent of the
manufacturer’s maximum capacity for the device, leaving 30 percent for
overhead such as inter-record gaps and tape marks. This rule works in most
cases, but may not work in all cases because of differences in overhead
across vendors and devices.

On UNIX platforms that cannot reliably detect the end-of-tape marker, you
must indicate how many kilobytes can be dumped to the tape. You must
supply a capacity for dump devices specified as a physical path name. If a
dump device is specified as a logical device name, the Backup Server uses
the size parameter stored in the sysdevices system table, unless you specify
a capacity.

dumpvolume = volume_name
establishes the name that is assigned to the volume. The maximum length of
volume_name is 6 characters. The Backup Server writes the volume_name
in the ANSI tape label when overwriting an existing dump, dumping to a
brand new tape, or dumping to a tape whose contents are not recognizable.
The load transaction command checks the label and generates an error
message if the wrong volume is loaded.

stripe on stripe_device
is an additional dump device. You can use up to 32 devices, including the
device named in the to stripe_device clause. The Backup Server splits the
log into approximately equal portions and sends each portion to a different
device. Dumps are made concurrently on all devices, reducing the time and
the number of volume changes required. See “Specifying dump devices” on
page 247 for information about how to specify a dump device.

dismount | nodismount
on platforms that support logical dismount – determines whether tapes
remain mounted. By default, all tapes used for a dump are dismounted when
the dump completes. Use nodismount to keep tapes available for additional
dumps or loads.

CHAPTER 1 Commands

Reference Manual: Commands 257

nounload | unload
determines whether tapes rewind after the dump completes. By default,
tapes do not rewind, allowing you to make additional dumps to the same
tape volume. Specify unload for the last dump file to be added to a
multidump volume. This rewinds and unloads the tape when the dump
completes.

retaindays = number_days
on UNIX platforms – specifies the number of days that Backup Server
protects you from overwriting a dump. If you try to overwrite a dump before
it expires, Backup Server requests confirmation before overwriting the
unexpired volume.

Note This option is meaningful for disk, 1/4-inch cartridge, and single-file
media. On multifile media, this option is meaningful for all volumes except the
first.

The number_days must be a positive integer or 0, for dumps you can
overwrite immediately. If you do not specify a retaindays value, Backup
Server uses the server-wide tape retention in days value, set by sp_configure.

noinit | init
determines whether to append the dump to existing dump files or reinitialize
(overwrite) the tape volume. By default, Adaptive Server appends dumps
following the last end-of-tape mark, allowing you to dump additional
databases to the same volume. New dumps can be appended only to the last
volume of a multivolume dump. Use init for the first database you dump to
a tape, to overwrite its contents.

Use init when you want Backup Server to store or update tape device
characteristics in the tape configuration file. For more information, see the
System Administration Guide.

file = file_name
is the name of the dump file. The name cannot exceed 17 characters and
must conform to operating system conventions for file names. If you do not
specify a file name, Backup Server creates a default file name. For more
information, see “Dump files” on page 248.

dump transaction

258 Adaptive Server Enterprise

no_truncate
dumps a transaction log, even if the disk containing the data segments for a
database is inaccessible, using a pointer to the transaction log in the master
database. The with no_truncate option provides up-to-the-minute log
recovery when the transaction log resides on an undamaged device, and the
master database and user databases reside on different physical devices.

If you use dump tran with no_truncate you must follow it with dump
database, not with another dump tran. Adaptive Server will not force you to
follow dump tran with no_truncate with dump database, but if you load a
dump generated using the no_truncate option, Adaptive Server prevents you
from loading any subsequent dump.

notify = {client | operator_console}
overrides the default message destination.

• On operating systems that offer an operator terminal feature, volume
change messages are always sent to the operator terminal on the
machine on which the Backup Server is running. Use client to route
other Backup Server messages to the terminal session that initiated the
dump database.

• On operating systems (such as UNIX) that do not offer an operator
terminal feature, messages are sent to the client that initiated the dump
database. Use operator_console to route messages to the terminal on
which the Backup Server is running.

with standby_access
specifies that only completed transactions are to be dumped. The dump
continues to the furthest point it can find at which a transaction has just
completed and there are no other active transactions.

Examples Example 1 Dumps the transaction log to a tape, appending it to the files on the
tape, since the init option is not specified:

dump transaction pubs2
to "/dev/nrmt0"

Example 2 Dumps the transaction log for the mydb database, using the Backup
Server REMOTE_BKP_SERVER. The Backup Server dumps approximately
half the log to each of the two devices. The init option overwrites any existing
files on the tape. The retaindays option specifies that the tapes cannot be
overwritten for 14 days:

dump transaction mydb
to "/dev/nrmt4" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt5" at REMOTE_BKP_SERVER

with init, retaindays = 14

CHAPTER 1 Commands

Reference Manual: Commands 259

Example 3 Dumps completed transactions from the inventory_db transaction
log file to device dev1:

dump tran inventory_db to dev1 with standby_access

Usage • Table 1-24 describes the commands and system procedures used to back
up databases and logs.

Table 1-24: Commands used to back up databases and logs

Restrictions

• You cannot dump to the null device (on UNIX, /dev/null).

• You cannot use the dump transaction command in a transaction.

• When using 1/4-inch cartridge tape, you can dump only one database or
transaction log per tape.

• You cannot issue dump the transaction log while the trunc log on chkpt
database option is enabled or after enabling select into/bulk copy/pllsort and
making minimally logged changes to the database with select into, fast
bulk copy operations, default unlogged writetext operations, or a parallel
sort. Use dump database instead.

 Warning! Never modify the log table syslogs with a delete, update, or
insert command.

• If a database does not have a log segment on a separate device from data
segments, you cannot use dump transaction to copy the log and truncate it.

• If a user or threshold procedure issues a dump transaction command on a
database where a dump database or another dump transaction is in
progress, the second command sleeps until the first completes.

To do this Use this command

Make routine dumps of the entire database, including the transaction log. dump database

Make routine dumps of the transaction log, then truncate the inactive portion. dump transaction

Dump the transaction log after failure of a database device. dump transaction with no_truncate

Truncate the log without making a backup.

Then copy the entire database.

dump transaction with truncate_only

dump database

Truncate the log after your usual method fails due to insufficient log space.

Then copy the entire database.

dump transaction with no_log

dump database

Respond to the Backup Server’s volume change messages. sp_volchanged

dump transaction

260 Adaptive Server Enterprise

• To restore a database, use load database to load the most recent database
dump; then use load transaction to load each subsequent transaction log
dump in the order in which it was made.

• Each time you add or remove a cross-database constraint, or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases can cause database
corruption.

• You cannot dump from an 11.x Adaptive Server to a 10.x Backup Server.

• You cannot have Sybase dumps and non-Sybase data (for example, UNIX
archives) on the same tape.

• You cannot dump a transaction with no_log or with truncate_only if the
database has offline pages.

Copying the log after device failure

• After device failure, use dump transaction with no_truncate to copy the log
without truncating it. You can use this option only if your log is on a
separate segment and your master database is accessible.

• The backup created by dump transaction with no_truncate is the most recent
dump for your log. When restoring the database, load this dump last.

Dumping databases without separate log segments

• When a database does not have a log segment on a separate device from
data segments, use dump transaction with truncate_only to remove
committed transactions from the log without making a backup copy.

 Warning! dump transaction with truncate_only provides no means to
recover your databases. Run dump database at the earliest opportunity to
ensure recoverability.

• Use with truncate_only on the master, model, and sybsystemprocs
databases, which do not have log segments on a separate device from data
segments.

• You can also use this option on very small databases that store the
transaction log and data on the same device.

CHAPTER 1 Commands

Reference Manual: Commands 261

• Mission-critical user databases should have log segments on a separate
device from data segments. Use the log on clause of create database to
create a database with a separate log segment, or alter database and
sp_logdevice to transfer the log to a separate device.

Dumping only complete transactions

• Use the with standby_access option to dump transaction logs for loading
into a server that acts as a warm standby server for the database.

• When you use with standby_access to dump the transaction log, the dump
proceeds to the furthest point in the log at which all earlier transactions
have completed and there are no records belonging to open transactions.

• You must use dump tran[saction]...with standby_access in all situations
where you will be loading two or more transaction logs in sequence and
you want the database to be online between loads.

• After loading a dump made with the with standby_access option, use the
online database command with the for standby_access option to make the
database accessible.

 Warning! If a transaction log contains open transactions and you dump it
without the with standby_access option, version 11.9.2 does not allow you
to load the log, bring the database online, then load a subsequent
transaction dump. If you are going to load a series of transaction dumps,
you can bring the database online only after a load that was originally
dumped with standby_access or after loading the entire series.

Dumping without the log

 Warning! Use dump transaction with no_log only as a last resort, after your
usual method of dumping the transaction log (dump transaction or dump
transaction with truncate_only) fails because of insufficient log space. dump
transaction with no_log provides no means to recover your databases. Run dump
database at the earliest opportunity to ensure recoverability.

• dump transaction...with no_log truncates the log without logging the dump
transaction event. Because it copies no data, it requires only the name of
the database.

• Every use of dump transaction...with no_log is considered an error and is
recorded in Adaptive Server’s error log.

dump transaction

262 Adaptive Server Enterprise

• If you have created your databases with log segments on a separate device
from data segments, written a last-chance threshold procedure that dumps
your transaction log often enough, and allocated enough space to your log
and database, you should not have to use this option. If you must use with
no_log, increase the frequency of your dumps and the amount of log space.

Scheduling dumps

• Transaction log dumps are dynamic—they can take place while the
database is active. They may slow the system slightly, so run dumps when
the database is not being heavily updated.

• Use dump database immediately after creating a database to make a copy
of the entire database. You cannot run dump transaction on a new database
until you have run dump database.

• Develop a regular schedule for backing up user databases and their
transaction logs.

• dump transaction uses less storage space and takes less time than dump
database. Typically, transaction log dumps are made more frequently than
database dumps.

Using thresholds to automate dump transaction

• Use thresholds to automate backup procedures. To take advantage of
Adaptive Server’s last-chance threshold, create user databases with log
segments on a separate device from data segments.

• When space on the log segment falls below the last-chance threshold,
Adaptive Server executes the last-chance threshold procedure. Including a
dump transaction command in your last-chance threshold procedure helps
protect you from running out of log space. For more information, see
sp_thresholdaction.

• You can use sp_addthreshold to add a second threshold to monitor log
space. For more information about thresholds, see the System
Administration Guide.

Specifying dump devices

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

• You can specify a local dump device as:

• A logical device name from the sysdevices system table

• An absolute path name

• A relative path name

CHAPTER 1 Commands

Reference Manual: Commands 263

The Backup Server resolves relative path names using Adaptive Server’s
current working directory.

• Dumping to multiple stripes is supported for tape and disk devices. Placing
multiple dumps on a device is supported only for tape devices.

• When dumping across the network, specify the absolute path name of the
dump device. The path name must be valid on the machine on which the
Backup Server is running. If the name includes any characters except
letters, numbers, or the underscore (_), enclose it in quotes.

• Ownership and permissions problems on the dump device may interfere
with use of dump commands. sp_addumpdevice adds the device to the
system tables, but does not guarantee that you can dump to that device or
create a file as a dump device.

• You can run more than one dump (or load) at the same time, as long as they
use different dump devices.

Determining tape device characteristics

• If you issue a dump transaction command without the init qualifier and
Backup Server cannot determine the device type, the dump transaction
command fails. For more information, see the System Administration
Guide.

Backup servers

• You must have a Backup Server running on the same machine as your
Adaptive Server. The Backup Server must be listed in the
master..sysservers table. This entry is created during installation or
upgrade and should not be deleted.

• If your backup devices are located on another machine so that you dump
across a network, you must also have a Backup Server installed on the
remote machine.

Dump files

• Dumping a log with the init option overwrites any existing files on the tape
or disk.

• Dump file names identify which database was dumped and when the dump
was made. If you do not specify a file name, Backup Server creates a
default file name by concatenating the following:

• Last seven characters of the database name

• Two-digit year number

• Three-digit day of the year (1– 366)

dump transaction

264 Adaptive Server Enterprise

• Hexadecimal-encoded time at which the dump file was created

For example, the file cations930590E100 contains a copy of the
publications database made on the 59th day of 1993:

Figure 1-4: File naming convention for transaction log dumps

• The Backup Server sends the dump file name to the location specified by
the with notify clause. Before storing a backup tape, the operator should
label it with the database name, file name, date, and other pertinent
information. When loading a tape without an identifying label, use the with
headeronly and with listonly options to determine the contents.

Volume names

• Dump volumes are labeled according to the ANSI tape-labeling standard.
The label includes the logical volume number and the position of the
device within the stripe set.

• During loads, Backup Server uses the tape label to verify that volumes are
mounted in the correct order. This allows you to load from a smaller
number of devices than you used at dump time.

Note When dumping and loading across the network, you must specify
the same number of stripe devices for each operation.

Changing dump volumes

• On UNIX systems – the Backup Server requests a volume change when the
tape capacity has been reached. After mounting another volume, the
operator notifies the Backup Server by executing the sp_volchanged
system procedure on any Adaptive Server that can communicate with the
Backup Server.

cations 93 059 0E100

last 7 characters
of database name

last 2
digits of
year

day of
year

number of seconds
since midnight

CHAPTER 1 Commands

Reference Manual: Commands 265

• If the Backup Server detects a problem with the currently mounted volume
(for example, if the wrong volume is mounted), it requests a volume
change by sending messages to either the client or its operator console.
The operator responds to these messages with the sp_volchanged system
procedure.

Appending to or overwriting a volume

• By default (noinit), Backup Server writes successive dumps to the same
tape volume, making efficient use of high-capacity tape media. Data is
added following the last end-of-tape mark. New dumps can be appended
only to the last volume of a multivolume dump. Before writing to the tape,
Backup Server verifies that the first file has not yet expired. If the tape
contains non-Sybase data, Backup Server rejects it to avoid destroying
potentially valuable information.

• Use the init option to reinitialize a volume. If you specify init, Backup
Server overwrites any existing contents, even if the tape contains
non-Sybase data, the first file has not yet expired, or the tape has ANSI
access restrictions.

• Figure 1-5 illustrates how to dump three transaction logs to a single
volume. Use:

• init to initialize the tape for the first dump

• noinit (the default) to append subsequent dumps

• unload to rewind and unload the tape after the last dump

dump transaction

266 Adaptive Server Enterprise

Figure 1-5: Dumping three transaction logs to a single volume

Dumping logs stored on mirrored devices

• At the beginning of a dump transaction, Adaptive Server passes the
primary device name of each logical log device to the Backup Server. If
the primary device has been unmirrored, Adaptive Server passes the name
of the secondary device instead. If the named device fails before Backup
Server completes its data transfer, Adaptive Server aborts the dump.

• If you attempt to unmirror a named log device while a dump transaction is
in progress, Adaptive Server displays a message. The user executing the
disk unmirror command can abort the dump or defer the disk unmirror until
after the dump completes.

• dump transaction with truncate_only and dump transaction with no_log do not
use the Backup Server. These commands are not affected when a log
device is unmirrored, either by a device failure or by a disk unmirror
command.

• dump transaction copies only the log segment. It is not affected when a
data-only device is unmirrored, either by a device failure or by a disk
unmirror command.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only System Administrators, users who have been granted the Operator role,
and the Database Owner can execute dump transaction.

See also Commands dump database, load database, load transaction, online database

dump tran mydb
to /dev/nrmt4
with init

dump tran yourdb
to /dev/nrmt4

dump tran pubs2
to /dev/nrmt4
with unload

CHAPTER 1 Commands

Reference Manual: Commands 267

System procedures sp_addumpdevice, sp_dboption, sp_dropdevice,
sp_helpdevice, sp_logdevice, sp_volchanged

execute

268 Adaptive Server Enterprise

execute
Description Runs a procedure or dynamically executes Transact-SQL commands.

Syntax [exec[ute]] [@return_status =]
[[[server .]database.]owner.]procedure_name[;number]

[[@parameter_name =] value |
[@parameter_name =] @variable [output]

[,[@parameter_name =] value |
[@parameter_name =] @variable [output]...]]

[with recompile]

or

exec[ute] ("string" | char_variable
[+ "string" | char_variable]...)

Parameters execute | exec
is used to execute a stored procedure or an extended stored procedure (ESP).
This parameter is necessary only if the stored procedure call is not the first
statement in a batch.

@return_status
is an optional integer variable that stores the return status of a stored
procedure. @return_status must be declared in the batch or stored procedure
before it is used in an execute statement.

server
is the name of a remote server. You can execute a procedure on another
Adaptive Server as long as you have permission to use that server and to
execute the procedure in that database. If you specify a server name, but do
not specify a database name, Adaptive Server looks for the procedure in
your default database.

database
is the database name. Specify the database name if the procedure is in
another database. The default value for database is the current database. You
can execute a procedure in another database as long as you are its owner or
have permission to execute it in that database.

owner
is the procedure owner’s name. Specify the owner’s name if more than one
procedure of that name exists in the database. The default value for owner is
the current user. The owner name is optional only if the Database Owner
owns the procedure or if you own it.

procedure_name
is the name of a procedure defined with create procedure.

CHAPTER 1 Commands

Reference Manual: Commands 269

;number
is an optional integer used to group procedures of the same name so that they
can be dropped together with a single drop procedure statement. Procedures
used in the same application are often grouped this way. For example, if the
procedures used with an application named orders are named orderproc;1,
orderproc;2, and so on, the following statement drops the entire group:

drop proc orderproc

After procedures have been grouped, individual procedures within the group
cannot be dropped. For example, you cannot execute the statement:

drop procedure orderproc;2

parameter_name
is the name of an argument to the procedure, as defined in create procedure.
Parameter names must be preceded by the @ sign.

If the “@parameter_name = value” form is used, parameter names and
constants need not be supplied in the order defined in create procedure.
However, if this form is used for any parameter, it must be used for all
subsequent parameters.

value
is the value of the parameter or argument to the procedure. If you do not use
the “@parameter_name = value” form, you must supply parameter values in
the order defined in create procedure.

@variable
is the name of a variable used to store a return parameter.

output
indicates that the stored procedure is to return a return parameter. The
matching parameter in the stored procedure must also have been created
with the keyword output.

The output keyword can be abbreviated to out.

execute

270 Adaptive Server Enterprise

with recompile
forces compilation of a new plan. Use this option if the parameter you are
supplying is atypical or if the data has significantly changed. The changed
plan is used on subsequent executions. Adaptive Server ignores this option
when executing an extended system procedure (ESP).

Note Using execute procedure with recompile many times can adversely affect
the procedure cache performance. Since a new plan is generated every time you
use with recompile, a useful performance plan may age out of the cache if there
is insufficient space for new plans.

string
is a literal string containing part of a Transact-SQL command to execute.
There are no restrictions to the number of characters supplied with the literal
string.

char_variable
is the name of a variable that supplies the text of a Transact-SQL command.

Examples Example 1 All three examples execute showind with a parameter value titles:

execute showind titles
exec showind @tabname = titles

If this is the only statement in a batch or file:

showind titles

Example 2 Executes checkcontract on the remote server GATEWAY. Stores
the return status indicating success or failure in @retstat:

declare @retstat int
execute @retstat = GATEWAY.pubs.dbo.checkcontract
"409-56-4008"

Example 3 Executes roy_check, passing three parameters. The third
parameter, @pc, is an output parameter. After execution of the procedure, the
return value is available in the variable @percent:

declare @percent int
select @percent = 10
execute roy_check "BU1032", 1050, @pc = @percent output
select Percent = @percent

Example 4 This procedure displays information about the system tables if you
do not supply a parameter:

create procedure

CHAPTER 1 Commands

Reference Manual: Commands 271

showsysind @table varchar(30) = "sys%"
as

select sysobjects.name, sysindexes.name, indid
from sysindexes, sysobjects
where sysobjects.name like @table
and sysobjects.id = sysindexes.id

Example 5 Executes xp_echo, passing in a value of “Hello World!”. The
returned value of the extended stored procedure is stored in a variable named
result:

declare @input varchar(12), @in varchar(12),
@out varchar(255), @result varchar(255)

select @input="Hello World!"
execute xp_echo @in = @input, @out= @result output

Example 6 The final execute command concatenates string values and
character variables to issue the Transact-SQL command:

select name from sysobjects where id=3

declare @tablename char(20)
declare @columname char(20)
select @tablename="sysobjects”
select @columname="name"
execute ('select ' + @columname + ' from ' + @tablename
+ ' where id=3')

Example 7 Executes sp_who:

declare @sproc varchar(255)
select @sproc = "sp_who"
execute @sproc

Usage • Procedure results may vary, depending on the database in which they are
executed. For example, the user-defined system procedure sp_foo, which
executes the db_name() system function, returns the name of the database
from which it is executed. When executed from the pubs2 database, it
returns the value “pubs2”:

exec pubs2..sp_foo

pubs2
(1 row affected, return status = 0)

When executed from sybsystemprocs, it returns the value
“sybsystemprocs”:

exec sybsystemprocs..sp_foo

execute

272 Adaptive Server Enterprise

sybsystemprocs
(1 row affected, return status = 0)

• There are two ways to supply parameters—by position, or by using:

@parameter_name = value

If you use the second form, you do not have to supply the parameters in
the order defined in create procedure.

If you are using the output keyword and intend to use the return parameters
in additional statements in your batch or procedure, the value of the
parameter must be passed as a variable. For example:

parameter_name = @variable_name

When executing an extended stored procedure, pass all parameters by
either name or value. You cannot mix parameters by value and parameters
by name in a single invocation of the execute command for an ESP.

• The Dynamic SQL syntax of exec (@parameter_name) is also valid;
however, it may take more keystrokes. For example, the dynamic SQL
command exec (@sproc ="7") passes the integer value 7 to the procedure,
but this can be accomplished with fewer keystrokes as exec @sproc 7.

• You cannot use text and image columns as parameters to stored procedures
or as values passed to parameters.

• Executing a procedure specifying output for a parameter that is not defined
as a return parameter in create procedure causes an error.

• You cannot pass constants to stored procedures using output; the return
parameter requires a variable name. You must declare the variable’s
datatype and assign it a value before executing the procedure. Return
parameters cannot have a datatype of text or image.

• It is not necessary to use the keyword execute if the statement is the first
one in a batch. A batch is a segment of an input file terminated by the word
“go” on a line by itself.

• Since the execution plan for a procedure is stored the first time it is run,
subsequent run time is much shorter than for the equivalent set of
standalone statements.

• Nesting occurs when one stored procedure calls another. The nesting level
is incremented when the called procedure begins execution and it is
decremented when the called procedure completes execution. Exceeding
the maximum of 16 levels of nesting causes the transaction to fail. The
current nesting level is stored in the @@nestlevel global variable.

CHAPTER 1 Commands

Reference Manual: Commands 273

• Return values 0 and -1 through -14 are currently used by Adaptive Server
to indicate the execution status of stored procedures. Values from -15
through -99 are reserved for future use. See return for a list of values.

• Parameters are not part of transactions, so if a parameter is changed in a
transaction that is later rolled back, its value does not revert to its previous
value. The value that is returned to the caller is always the value at the time
the procedure returns.

• If you use select * in create procedure, the procedure does not pick up any
new columns you may have added to the table (even if you use the with
recompile option to execute). You must drop the procedure and re-create it.

• Commands executed via remote procedure calls cannot be rolled back.

• The with recompile option is ignored when Adaptive Server executes an
extended stored procedure.

Dynamically executing Transact-SQL

• When used with the string or char_variable options, execute concatenates
the supplied strings and variables to execute the resulting Transact-SQL
command. This form of the execute command may be used in SQL
batches, procedures, and triggers.

• You cannot supply string and char_variable options to execute the
following commands: begin transaction, commit, connect to, declare cursor,
rollback, dump transaction, dbcc, set, use, or nested execute commands.

• The create view command can be specified using execute(), but only in
SQL batches. create view cannot be used in procedures, either as a static
command or as a string parameter to execute().

• The contents of the string or char_variable options cannot reference local
variables declared in the SQL batch or procedure.

• string and char_variable options can be concatenated to create new tables.
Within the same SQL batch or procedure, however, the table created with
execute() is visible only to other execute() commands. After the SQL batch
or procedure has completed, the dynamically-created table is persistent
and visible to other commands.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions execute permission defaults to the owner of the procedure, who can transfer it
to other users.

execute

274 Adaptive Server Enterprise

The permission to execute Transact-SQL commands defined with the string or
char_variable options is checked against the user executing the command.
This is true even when execute() is defined within a procedure or trigger that
belongs to another user.

See also Commands create procedure, drop procedure, return

System procedures sp_addextendedproc, sp_depends,
sp_dropextendedproc, sp_helptext

CHAPTER 1 Commands

Reference Manual: Commands 275

fetch
Description Returns a row or a set of rows from a cursor result set.

Syntax fetch cursor_name [into fetch_target_list]

Parameters cursor_name
the name of the cursor

into fetch_target_list
is a comma-separated list of parameters or local variables into which cursor
results are placed. The parameters and variables must be declared prior to
the fetch.

Examples Example 1 Returns a row of information from the cursor result set defined by
the authors_crsr cursor:

fetch authors_crsr

Example 2 Returns a row of information from the cursor result set defined by
the pubs_crsr cursor into the variables @name, @city, and @state:

fetch pubs_crsr into @name, @city, @state

Usage Restrictions

• Before you can use fetch, you must declare the cursor and open it.

• The cursor_name cannot be a Transact-SQL parameter or local variable.

• You cannot fetch a row that has already been fetched. There is no way to
backtrack through the result set, but you can close and reopen the cursor
to create the cursor result set again and start from the beginning.

• Adaptive Server expects a one-to-one correspondence between the
variables in the fetch_target_list and the target list expressions specified
by the select_statement that defines the cursor. The datatypes of the
variables or parameters must be compatible with the datatypes of the
columns in the cursor result set.

• When you set chained transaction mode, Adaptive Server implicitly
begins a transaction with the fetch statement if no transaction is currently
active. However, this situation occurs only when you set the close on
endtran option and the cursor remains open after the end of the transaction
that initially opened it, since the open statement also automatically begins
a transaction.

fetch

276 Adaptive Server Enterprise

Cursor position

• After you fetch all the rows, the cursor points to the last row of the result
set. If you fetch again, Adaptive Server returns a warning through the
@@sqlstatus variable indicating there is no more data, and the cursor
position moves beyond the end of the result set. You can no longer update
or delete from that current cursor position.

• With fetch into, Adaptive Server does not advance the cursor position when
an error occurs because the number of variables in the fetch_target_list
does not equal the number of target list expressions specified by the query
that defines the cursor. However, it does advance the cursor position, even
if a compatibility error occurs between the datatypes of the variables and
the datatypes of the columns in the cursor result set.

Determining the number of rows fetched

• You can fetch one or more rows at a time. Use the cursor rows option of the
set command to specify the number of rows to fetch.

Getting information about fetches

• The @@sqlstatus global variable holds status information (warning
exceptions) resulting from the execution of a fetch statement. The value of
@@sqlstatus is 0, 1, or 2, as shown in Table 1-25.

Table 1-25: @@sqlstatus values

Only a fetch statement can set @@sqlstatus. Other statements have no
effect on @@sqlstatus.

• The @@rowcount global variable holds the number of rows returned from
the cursor result set to the client up to the last fetch. In other words, it
represents the total number of rows seen by the client at any one time.

Once all the rows have been read from the cursor result set, @@rowcount
represents the total number of rows in the cursor results set. Each open
cursor is associated with a specific @@rowcount variable, which is
dropped when you close the cursor. Check @@rowcount after a fetch to
get the number of rows read for the cursor specified in that fetch.

Standards ANSI SQL – Compliance level: Entry-level compliant.

The use of variables in a target list and fetch of multiple rows are Transact-SQL
extensions.

0 Indicates successful completion of the fetch statement.

1 Indicates that the fetch statement resulted in an error.

2 Indicates that there is no more data in the result set. This warning can occur if the current cursor
position is on the last row in the result set and the client submits a fetch statement for that cursor.

CHAPTER 1 Commands

Reference Manual: Commands 277

Permissions fetch permission defaults to all users.

See also Commands declare cursor, open, set

goto label

278 Adaptive Server Enterprise

goto label
Description Branches to a user-defined label.

Syntax label:
goto label

Examples Shows the use of a label called restart:

declare @count smallint
select @count = 1
restart:

print "yes"
select @count = @count + 1
while @count <=4

goto restart

Usage • The label name must conform to the rules for identifiers and must be
followed by a colon (:) when it is declared. It is not followed by a colon
when it is used with goto.

• Make the goto dependent on an if or while test, or some other condition, to
avoid an endless loop between goto and the label.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions goto permission defaults to all users. No permission is required to use it.

See also Commands if...else, while

CHAPTER 1 Commands

Reference Manual: Commands 279

grant
Description Assigns permissions to users or to user-defined roles. Assigns roles to users or

system or user-defined roles.

Syntax To grant permission to access database objects:

grant {all [privileges]| permission_list}
on { table_name [(column_list)]

| view_name[(column_list)]
| stored_procedure_name}

to {public | name_list | role_name}
[with grant option]

To grant permission to select built-in functions:

grant select
on [builtin] built-in
to { name_list | role_name }

To grant permission to execute certain commands:

grant {all [privileges] | command_list}
to {public | name_list | role_name}

To grant a role to a user or a role:

grant {role role_granted [, role_granted ...]}
to grantee [, grantee...]

To grant and revoke access on certain dbcc commands:

grant dbcc {dbcc_command [on {all | database }]
[, dbcc_command [on {all | database }], ...]}

to { user_list | role_list }

Parameters all
when used to assign permission to access database objects (the first syntax
format), all specifies that all permissions applicable to the specified object
are granted. All object owners can use grant all with an object name to grant
permissions on their own objects.

Only a System Administrator or the Database Owner can assign permission
to create database objects (the second syntax format). When used by a
System Administrator, grant all assigns all create permissions (create
database, create default, create procedure, create rule, create table, and create
view). When the Database Owner uses grant all, Adaptive Server grants all
create permissions except create database, and prints an informational
message.

Specifying all does not include permission to execute set proxy or set session
authorization.

grant

280 Adaptive Server Enterprise

permission_list
is a list of object access permissions granted. If more than one permission is
listed, separate them with commas. The following table illustrates the access
permissions that can be granted on each type of object:

function_list
is a built-in function. Specifying built-in functions allows you to
differentiate between a table and a grantable built-in function with the same
name. The functions are set_appcontext, get_appcontext, list_appcontext, and
rm_appcontext.

command_list
is a list of commands that the user can execute. If more than one command
is listed, separate them with commas. The command list can include create
database, create default, create procedure, create rule, create table, create
view, set proxy, and set session authorization.

create database permission can be granted only by a System Administrator,
and only from within the master database.

Only a System Security Officer can grant users permission to execute set
proxy or set session authorization. Granting permission to execute set proxy
or set session authorization allows the grantee to impersonate another login
in the server. set proxy and set session authorization are identical, except that
set session authorization follows the ANSI92 standard, and set proxy is a
Transact-SQL extension.

table_name
is the name of the table on which you are granting permissions. The table
must be in your current database. Only one object can be listed for each grant
statement.

column_list
is a list of columns, separated by commas, to which the permissions apply.
If columns are specified, only select, references, and update permissions can
be granted.

Object permission_list can include

Table select, insert, delete, update, references

View select, insert, delete, update

Column select, update, references

Column names can be specified in either permission_list or
column_list (see Example 2).

Stored procedure execute

CHAPTER 1 Commands

Reference Manual: Commands 281

view_name
is the name of the view on which you are granting permissions. The view
must be in your current database. Only one object can be listed for each grant
statement.

stored_procedure_name
is the name of the stored procedure on which you are granting permissions.
The stored procedure must be in your current database. Only one object can
be listed for each grant statement.

public
is all users. For object access permissions, public excludes the object owner.
For object creation permissions or set proxy authorizations, public excludes
the Database Owner. You cannot grant permissions with grant option to
“public” or to other groups or roles.

name_list
is a list of users’ database names and/or group names, separated by commas.

with grant option
allows the users specified in name_list to grant object access permissions to
other users. You can grant permissions with grant option only to individual
users, not to “public” or to a group or role.

role
grants a role to a user or to a system or user-defined role.

role_granted
is the name of a system or user-defined role that the System Security Officer
is granting to a user or a role.

grantee
is the name of a system role, user-defined role, or a user, to whom you are
granting a role.

role_name
is the name of a system or user-defined role to which you are granting the
permission.

dbcc_command
is the name of the dbcc command you are granting. It cannot be a variable.
Table 1-27 on page 298 lists the valid grant dbcc commands.

grant

282 Adaptive Server Enterprise

database
is the name of the database on which you are granting permissions. It is used
with database-specific dbcc commands to grant permission only on the
target database. The grantee must be a valid user in the target database.
database conforms to the rules for identifiers and cannot be a variable.

If there are multiple granted actions in the same command, database must
be unique.

See “on all | database parameter and server-level commands” on page 299
for more information.

user_list
is a list of users to whom you are granting the permission, and cannot be a
variable.

role_list
is a list of the name of system or user-defined roles to whom you are granting
the permission, and cannot be a variable.

Note You cannot grant or revoke dbcc commands to public or groups.

Examples Example 1 Grants Mary and the “sales” group permission to use the insert and
delete commands on the titles table:

grant insert, delete
on titles
to mary, sales

Example 2 Grants select permission on the get_appcontext function to
“public” (which includes all users):

grant select on builtin get_appcontext to public

Compare this to the following, which grants select permission on a table called
get_appcontext, if a table with that name exists:

grant select on get_appcontext to public

Example 3 Two ways to grant update permission on the price and advance
columns of the titles table to “public” (which includes all users):

grant update
on titles (price, advance)
to public

or:

grant update (price, advance)

CHAPTER 1 Commands

Reference Manual: Commands 283

on titles
to public

Example 4 Grants Harry and Billy permission to execute either set proxy or
set session authorization to impersonate another user in the server:

grant set proxy to harry, billy

Example 5 Grants users with sso_role permission to execute either set proxy
or set session authorization to impersonate another user in the server:

grant set session authorization to sso_role

Example 6 Grants users with vip_role the ability to impersonate another user
in the server. vip_role must be a role defined by a System Security Officer with
the create role command:

grant set proxy to vip_role

Example 7 Grants Mary and John permission to use the create database and
create table commands. Because create database permission is being granted,
this command can be executed only by a System Administrator within the
master database. Mary and John’s create table permission applies only to the
master database:

grant create database, create table
to mary, john

Example 8 Grants complete access permissions on the titles table to all users:

grant all on titles
to public

Example 9 Grants all object creation permissions in the current database to all
users. If this command is executed by a System Administrator from the master
database, it includes create database permission:

grant all
to public

Example 10 Gives Mary permission to use the update command on the authors
table and to grant that permission to others:

grant update on authors
to mary
with grant option

Example 11 Gives Bob permission to use the select and update commands on
the price column of the titles table and to grant that permission to others:

grant select, update on titles(price)
to bob

grant

284 Adaptive Server Enterprise

with grant option

Example 12 Grants permission to execute the new_sproc stored procedure to
all System Security Officers:

grant execute on new_sproc
to sso_role

Example 13 Grants James permission to create a referential integrity
constraint on another table that refers to the price column of the titles table:

grant references on titles(price)
to james

Example 14 Grants the role “specialist”, with all its permissions and
privileges, to the role “doctor”:

grant role specialist_role to doctor_role

Example 15 Grants the role “doctor” to Mary:

grant role doctor_role to mary

On a user database called pubs2 owned by Jane, only Jane or the System
Administrator can execute the dbcc checkdb command. Others encounter the
following error:

1> dbcc checkdb(pubs2)
2> go

Msg 10302, Level 14, State 1:
Line 1:
Only the DBO of database 'test' or a user with System
Administrator (SA) role can run this command. DBCC
execution completed. If DBCC printed error messages,
contact a user with System Administrator (SA) role.

If Walter needs to be a maintenance user for pubs2 but the System
Administrator does not want to grant him administrator-level privileges
elsewhere, the System Administrator executes the following:

1> use pubs2
2> go
1> grant dbcc checkdb on pubs2 to walter
2> go

Note The System Administrator must be in the target database—in this case
pubs2—and Walter must be a valid user in this target database.

CHAPTER 1 Commands

Reference Manual: Commands 285

Walter can now execute the dbcc checkdb command on the customers database
without encountering an error:

%isql -Uwalter -Pwalterpassword -SSERVER
1> use pubs2
2> go
1> dbcc checkdb(pubs2)
2> go

Checking sysobjects: Logical pagesize is 2048 bytes
The total number of data pages in this table is 2.
Table has 27 data rows.
...
Table has 1 data rows.
DBCC execution completed. If DBCC printed error
messages, contact a user with System Administrator (SA)
role.

Example 16 Grants the use of dbcc to a role instead of a user. This lets System
Administrators assign the ability to execute dbcc to individual users based on
their role:

1> use master
2> go
1> create role checkdb_role
2> go
1> use pubs2
2> go
1> grant dbcc checkdb on pubs2 to checkdb_role
2> go

Next, the System Administrator grants the role to Joe:

1> sp_addlogin joe, joepassword
2> go

Password correctly set.
Account unlocked.
New login created.
(return status = 0)

1> use pubs2
2> sp_adduser joe
3> go

1> grant role checkdb_role to joe
2> go

Joe can now execute the dbcc checkdb command on the pubs2 database when
activating checkdb_role. Joe must be a valid user in pubs2:

grant

286 Adaptive Server Enterprise

% isql -Ujoe -Pjoepassword -SSERVER
1> use pubs2
2> go
1> dbcc checkdb(pubs2)
2> go

Msg 10302, Level 14, State 1:
Line 1:
Only the DBO of database 'pubs2' or a user with System
Administrator (SA) role can run this command. DBCC
execution completed. If DBCC printed error messages,
contact a user with System Administrator (SA) role.

1> set role checkdb_role on
2> go
1> dbcc checkdb(pubs2)
2> go

Checking sysobjects: Logical pagesize is 2048 bytes
The total number of data pages in this table is 2.
...
The total number of data pages in this table is 1.
Table has 1 data rows. DBCC execution completed. If DBCC
printed error messages, contact a user with System
Administrator (SA) role.

Example 17 Through the use of a role, the System Administrator allows
Carlos to run dbcc checkalloc on any database where he is a valid user, or where
a database allows a “guest” user.

Note You do not need to add Carlos as an actual user in the master database if
the user “guest” already exists in master.

1> use master
2> go
1> create role checkalloc_role
2> go
1> grant dbcc checkalloc on all to checkalloc_role
2> go
1> sp_addlogin carlos, carlospassword
2> go
1> grant role checkalloc_role to carlos
2> go

Example 18 Gives Frank, a valid user in the master database, the ability to
execute dbcc for all databases in the server:

CHAPTER 1 Commands

Reference Manual: Commands 287

1> use master
2> go
1> sp_addlogin frank, frankpassword
2> go

Password correctly set.
Account unlocked.
New login created.
(return status = 0)

1> sp_adduser frank
2> go

New user added.
(return status = 0)

1> grant dbcc checkdb on all to frank
2> go

Now Frank can execute the dbcc checkdb command on each database in the
server where he is a valid user:

% isql -Ufrank -Pfrankpassword -SSERVER
1> dbcc checkdb(tempdb)
2> go

Checking tempdb: Logical pagesize is 2048 bytes
Checking sysobjects: Logical pagesize is 2048 bytes
...
The total number of data pages in this table is 1. DBCC
execution completed. If DBCC printed error messages,
contact a user with System Administrator (SA) role.

Note You cannot grant or revoke dbcc commands to public or groups.

Example 19 Grants Alex permission to use the dbcc tune command on pubs2.
This example returns an error because server-level dbcc commands cannot be
granted at the database level:

grant dbcc tune on pubs2 to alex

Msg 4626, Level 16, State 1:
Line 1:
DBCC command 'tune' cannot be assigned at
database-level.

grant

288 Adaptive Server Enterprise

Example 20 Grants dbcc tune on the master database to Alex. This returns an
error because even if the current database is master, a server-level command
cannot be granted at the database level. The on database parameter shows the
intention to restrict the access to the current database scope, and this is not
possible for server-level commands:

grant dbcc tune on master to alex

Msg 4626, Level 16, State 1:
Line 1:
DBCC command 'tune' cannot be assigned at the
database-level.

Example 21 Grants dbcc tune to Alex. This returns an error because
server-level commands require that master be the current database:

grant dbcc tune to alex

Msg 4627, Level 16, State 1:
Line 1:
The user must be in the master database to GRANT/REVOKE
this command.

Example 22 Grants dbcc checkalloc on the pubs2 database to “nonuser.” This
returns an error because a user must be a valid user in the database to be granted
database-level access:

grant dbcc checkalloc on pubs2 to nonuser

Msg 11105, Level 11, State 1:
Line 1:
No such user/role 'nonuser' exists.

Example 23 Grants dbcc tune on all to Alex. The on all parameter is ignored
because any access granted in the master database is granted for any database
by default. The command however, does not display any error:

grant dbcc tune on all to alex

Example 24 Grants dbcc checkalloc on all and dbcc checkdb on pubs2 to Alex.
Although several commands can be granted under the same statement, they
must all affect the same database, so you must be in master if one of them is on
all:

grant dbcc checkalloc on all,
dbcc checkdb on pubs2 to alex

Msg 4627, Level 16, State 1:
Line 1:
The user must be in the master database in order to
grant/revoke server-wide DBCC access.

CHAPTER 1 Commands

Reference Manual: Commands 289

Example 25 You cannot apply grant and revoke to groups or public:

1> grant dbcc tablealloc on pubs2 to public

Msg 4629, Level 16, State 1:
Line 1:
GRANT/REVOKE DBCC does not apply to groups or PUBLIC.

1> sp_addgroup gr

New group added.
(return status = 0)

1> grant dbcc tablealloc on pubs2 to gr

Msg 4629, Level 16, State 1:
Line 1:
GRANT/REVOKE DBCC does not apply to groups or PUBLIC.

Example 26 You cannot grant a database-level command at the database level
if a server-wide permission exists.

1> grant dbcc checkalloc on all to alex
1> use pubs2
1> grant dbcc checkalloc on pubs2, dbcc tablealloc on pubs2 to alex
1> exec sp_helprotect

grantor grantee type action object column grantable
------- ------- ---- ------ ------- ------- ---------
dbo alex Grant DBCC DBCC dbcc tablealloc FALSE
(return status = 0)

Example 27 Only the System Administrator can grant the privilege:

set role sa_role off
grant dbcc tablealloc on all to alex

Msg 10353, Level 14, State 1:
Line 1:
You must have the following role(s) to execute this command/procedure:
'sa_role'. Please contact a user with the appropriate role for help.

Example 28 Granting a dbcc traceon results in an error message because
dbcc traceon is not a grantable command:

grant dbcc traceon to joe
go

Msg 4607, Level 16, State 2:
Line 12:
Privilege DBCC traceon may not be GRANTed or REVOKEd.

See Table 1-27 on page 298 for a list of commands you can grant.

grant

290 Adaptive Server Enterprise

Example 29 The col_name function displays only the dbcc commands that can
be granted, and returns the string dbcc internal for all the dbcc commands
that cannot be granted.

1> declare @a int
2> select @a=1
3> while (@a<200)
4> begin
5> insert #t values(@a, col_name(-317, @a))
6> select @a=@a+1
7> end
8> select dbcc_id=a, dbcc_command=b from #t where b!="dbcc internal"

 dbcc_id dbcc_command
-------- ------------------------------

1 dbcc catalogcheck
2 dbcc checktable
3 dbcc checkalloc
4 dbcc checkdb
6 dbcc reindex
9 dbcc fix_text
11 dbcc tablealloc
12 dbcc indexalloc
13 dbcc textalloc
18 dbcc tune
37 dbcc checkstorage
40 dbcc checkverify

Example 30 You cannot use the grant dbcc command using the grant option:

grant dbcc tune to alex with grant option

Msg 156, Level 15, State 1:
Line 1:
Incorrect syntax near the keyword 'with'.

Usage • You can substitute the word from for to in the grant syntax.

• Table 1-26 summarizes default permissions on Transact-SQL commands
in Adaptive Server. The user listed under the “Defaults to” heading is the
lowest level of user that is automatically granted permission to execute a
command. This user can grant or revoke the permission if it is transferable.
Users at higher levels than the default are either automatically assigned
permission or (in the case of Database Owners) can get permission by
using the setuser command.

CHAPTER 1 Commands

Reference Manual: Commands 291

For example, the owner of a database does not automatically receive
permission on objects owned by other users. A Database Owner can gain
such permission by assuming the identity of the object owner with the
setuser command, and then issuing the appropriate grant or revoke
statement. System Administrators have permission to access all
commands and objects at any time.

The Adaptive Server installation script assigns a set of permissions to the
default group “public.” grant and revoke statements need not be written for
these permissions.

Table 1-26 does not include the System Security Officer, who does not
have any special permissions on commands and objects, but only on
certain system procedures.

Table 1-26: Command and object permissions

Statement Defaults to
Can be
granted/revoked

System
Admin Operator

Database
Owner

Object
owner Public Yes No N/A

alter database X (1)

alter role X

alter table X X

begin transaction X X

checkpoint X X

commit X X

connect to X

create database X X

create default X X

create index X X

create procedure X X

create role X

create rule X X

create table X (2) X (2)

create trigger X X

create view X X

dbcc Varies depending upon options. See dbcc in this manual. X

delete X (3) X

disk init X X

disk mirror X

disk refit X

grant

292 Adaptive Server Enterprise

disk reinit X

disk remirror X

disk unmirror X X

drop any object X X

dump database X X X

dump transaction X X X

execute X (4) X

grant on object X X

grant command X X

insert X (3) X

kill X X

load database X X X

load transaction X X X

print X X

raiserror X X

readtext X (5)

revoke on object X X

revoke command X X

rollback X X

save transaction X X

select X (3) X

set X X

setuser X X

shutdown X X

truncate table X X

update X (3) X

update all statistics X X

update partition
statistics

X X

update statistics X X

writetext X (6)

Statement Defaults to
Can be
granted/revoked

System
Admin Operator

Database
Owner

Object
owner Public Yes No N/A

CHAPTER 1 Commands

Reference Manual: Commands 293

• You can grant permissions only on objects in your current database.

• Before you create a table that includes a referential integrity constraint to
reference another user’s table, you must be granted references permission
on that referenced table (see example 10). The table must also include a
unique constraint or unique index on the referenced columns. See create
table for more information about referential integrity constraints.

• grant and revoke commands are order-sensitive. The command that takes
effect when there is a conflict is the one issued most recently.

• A user can be granted permission on a view or stored procedure even if he
or she has no permissions on objects referenced by the procedure or view.
For more information, see the System Administration Guide.

• Adaptive Server grants all users permission to declare cursors, regardless
of the permissions defined for the base tables or views referenced in the
declare cursor statement. Cursors are not defined as Adaptive Server
objects (such as tables), so no permissions can be applied against a cursor.
When a user opens a cursor, Adaptive Server determines whether the user
has select permissions on the objects that define that cursor’s result set. It
checks permissions each time a cursor is opened.

If the user has permission to access the objects defined by the cursor,
Adaptive Server opens the cursor and allows the user to fetch row data
through the cursor. Adaptive Server does not apply permission checking
for each fetch. However, if the user performs a delete or an update through
that cursor, the regular permission checking applies for deleting and
updating the data of objects referenced in the cursor result set.

(1) Transferred with database ownership
(2) Public can create temporary tables, no
permission required
(3) If a view, permission defaults to view
owner

(4) Defaults to stored procedure owner
(5) Transferred with select permission
(6) Transferred with update permission
“No” means use of the command is never restricted
“N/A” means use of the command is always restricted

Statement Defaults to
Can be
granted/revoked

System
Admin Operator

Database
Owner

Object
owner Public Yes No N/A

grant

294 Adaptive Server Enterprise

• A grant statement adds one row to the sysprotects system table for each
user, group, or role that receives the permission. If you subsequently
revoke the permission from the user or group, Adaptive Server removes
the row from sysprotects. If you revoke the permission from selected
group members only, but not from the entire group to which it was granted,
Adaptive Server retains the original row and adds a new row for the
revoke.

• If a user inherits a particular permission by virtue of being a member of a
group, and the same permission is explicitly granted to the user, no row is
added to sysprotects. For example, if “public” has been granted select
permission on the phone column in the authors table, then John, a member
of “public,” is granted select permission on all columns of authors. The
row added to sysprotects as a result of the grant to John contains references
to all columns in the authors table except for the phone column, on which
he already had permission.

• Permission to issue the create trigger command is granted to users by
default. When you revoke permission for a user to create triggers, a revoke
row is added in the sysprotects table for that user. To grant permission to
that user to issue create trigger, you must issue two grant commands. The
first command removes the revoke row from sysprotects; the second
inserts a grant row. If you revoke permission to create triggers, the user
cannot create triggers even on tables that the user owns. Revoking
permission to create triggers from a user affects only the database where
the revoke command was issued.

• You can get information about permissions with these system procedures:

• sp_helprotect reports permissions information for a database object or
a user.

• sp_column_privileges reports permissions information for one or more
columns in a table or view.

• sp_table_privileges reports permissions information for all columns in
a table or view.

• sp_activeroles displays all active roles for the current login session of
Adaptive Server.

• sp_displayroles displays all roles granted to another role, or displays
the entire hierarchy tree of roles in table format.

• You can view permissions using sp_helprotect:

1> use pubs2
2> go

CHAPTER 1 Commands

Reference Manual: Commands 295

1> sp_helprotect
2> go

grantor grantee type action object column grantable
------- ------- ---- ------ ------- ------- ---------
dbo public Grant Select sysalternates All FALSE
...
dbo Walter Grant DBCC DBCC dbcc checkdb FALSE

(1 row affected)
(return status = 0)

• You cannot use the grant with grant parameter with grant dbcc.

grant all object creation permissions

• When used with only user or group names (no object names), grant all
assigns these permissions: create database, create default, create
procedure, create rule, create table, and create view. create database
permission can be granted only by a System Administrator and only from
within the master database.

• Only the Database Owner and a System Administrator can use the grant all
syntax without an object name to grant create command permissions to
users or groups. When the grant all command is used by the Database
Owner, an informational message is printed, stating that only a System
Administrator can grant create database permission. All other permissions
noted above are granted.

• All object owners can use grant all with an object name to grant
permissions on their own objects. When used with a table or view name
plus user or group names, grant all enables delete, insert, select, and update
permissions on the table.

grant with grant option rules

• You cannot grant permissions with grant option to “public” or to a group or
role.

• In granting permissions, a System Administrator is treated as the object
owner. If a System Administrator grants permission on another user’s
object, the owner‘s name appears as the grantor in sysprotects and in
sp_helprotect output.

• Information for each grant is kept in the system table sysprotects with the
following exceptions:

grant

296 Adaptive Server Enterprise

• Adaptive Server displays an informational message if a specific
permission is granted to a user more than once by the same grantor.
Only the first grant is kept.

• If two grants are exactly same except that one of them is granted with
grant option, the grant with grant option is kept.

• If two grant statements grant the same permissions on a particular
table to a specific user, but the columns specified in the grants are
different, Adaptive Server treats the grants as if they were one
statement. For example, the following grant statements are
equivalent:

grant select on titles(price, contract)
to keiko

grant select on titles(advance) to keiko
grant select on titles(price, contract,

advance)
to keiko

Granting proxies and session authorizations

• Granting permission to execute set proxy or set session authorization
allows the grantee to impersonate another login in Adaptive Server. set
proxy and set session authorization are identical with one exception: set
session authorization follows the SQL standard, and set proxy is a
Transact-SQL extension.

• To grant set proxy or set session authorization permission, you must be a
System Security Officer, and you must be in the master database.

• The name you specify in the grant set proxy command must be a valid user
in the database; that is, the name must be in the sysusers table in the
database.

• grant all does not include the set proxy or set session authorization
permissions.

Granting permission to roles

• You can use the grant command to grant permissions to all users who have
been granted a specified role. The role can be either a system role, like
sso_role or sa_role, or a user-defined role. For a user-defined role, the
System Security Officer must create the role with a create role command.

CHAPTER 1 Commands

Reference Manual: Commands 297

However, grant execute permission does not prevent users who do not
have a specified role from being individually granted permission to
execute a stored procedure. If you want to ensure, for example, that only
System Security Officers can ever be granted permission to execute a
stored procedure, use the proc_role system function within the stored
procedure itself. It checks to see whether the invoking user has the correct
role to execute the procedure. For more information, see proc_role.

• Permissions that are granted to roles override permissions that are granted
to users or groups. For example, say John has been granted the System
Security Officer role, and sso_role has been granted permission on the
sales table. If John’s individual permission on sales is revoked, he can still
access sales because his role permissions override his individual
permissions.

Users and user groups

• User groups allow you to grant or revoke permissions to more than one
user with a single statement. Each user can be a member of only one group
and is always a member of “public”.

• The Database Owner or System Administrator can add new users with
sp_adduser and create groups with sp_addgroup. To allow users with
logins on Adaptive Server to use the database with limited privileges, you
can add a “guest” user with sp_adduser and assign limited permissions to
“guest”. All users with logins can access the database as “guest”.

• To remove a user, use sp_dropuser. To remove a group, use sp_dropgroup.

To add a new user to a group other than “public,” use sp_adduser. To
change an established user’s group, use sp_changegroup.

To display the members of a group, use sp_helpgroup.

• When sp_changegroup is executed to change group membership, it clears
the in-memory protection cache by executing:

grant all to null

so that the cache can be refreshed with updated information from the
sysprotects table. To modify sysprotects directly, contact Sybase Technical
Support.

grant dbcc command options

 Table 1-27 lists the valid grant dbcc commands.

grant

298 Adaptive Server Enterprise

Table 1-27: dbcc command options

All of the options in Table 1-27 are database-level commands except for tune,
which is a server-level command.

See Chapter 25, “Checking Database Consistency” in the System
Administration Guide for more information on these dbcc commands.

Command
name Description

checkalloc Checks the specified database to make sure all of its pages are correctly allocated, and that there
are no unused allocated pages.

checkcatalog Checks for consistency in and between system tables.

checkdb Runs the same checks as checktable, but on each table in the specified database, including syslogs.

checkstorage Checks the specified database for:

• Allocation

• OAM page entries

• Page consistency

• Text-valued columns

• Allocation of text-valued columns

• Text-column chains

checktable Checks the specified table to make sure that:

• Index and data pages are correctly linked.

• Indexes are correctly sorted.

• All pointers are consistent.

• Data information on each page is reasonable.

• Page offsets are reasonable.

checkverify Verifies the results of the most recent run of dbcc checkstorage for the specified database.

fix_text Upgrades text values after any Adaptive Server character set is converted to a new multibyte
character set.

indexalloc Checks the specified index to make sure all pages are correctly allocated, and that there are no
unused allocated pages.

reindex Checks the integrity of indexes on user tables by running a fast version of dbcc checktable.

tablealloc Checks the specified table to make sure that all pages are correctly allocated, and that there are no
unused allocated pages.

textalloc Checks for a violation of the format of the root page of a text or image index.

tune Enables or disables tuning flags for special performance situations.

CHAPTER 1 Commands

Reference Manual: Commands 299

on all | database parameter and server-level commands

The on database parameter specifies the database on which to invoke the
database-level grant dbcc command. Because on master grants the ability to use
dbcc commands on all databases, on master is the same as on all. You must be
in the master database to use either the on all and on master parameters.

Neither the on database nor on all parameters work when invoking a
server-level grant dbcc command such as dbcc tune, because by doing so, you
are forcing a server-level command to restrict itself to individual databases. For
this reason, using the server-level grant dbcc tune on master command raises an
error.

on all and guest

Before you grant dbcc permission for a database to a user, that user must first
be a valid user in the database, and cannot be a “guest” user. However, if you
grant dbcc through roles, the users can then execute that dbcc command in any
database twhere they are a valid user, including the user “guest.”

Standards ANSI SQL – Compliance level: Entry-level compliant.

Granting permissions to groups and granting set proxy are Transact-SQL
extensions. Granting set session authorization (identical in function to set
proxy) follows the ANSI standard.

Permissions Database object access grant permission for database objects defaults to
object owners. An object owner can grant permission to other users on his or
her own database objects.

Command execution Only a System Administrator can grant create
database permission, and only from the master database. Only a System
Security Officer can grant create trigger permission.

Proxy and session authorization Only a System Security Officer can grant
set proxy or set session authorization, and only from the master database.

Roles You can grant roles only from the master database. Only a System
Security Officer can grant sso_role, oper_role or a user-defined role to a user or
a role. Only System Administrators can grant sa_role to a user or a role. Only
a user who has both sa_role and sso_role can grant a role which includes
sa_role.

Database consistency checking Only System Administrators can run
grant dbcc commands. Database Owners cannot run grant dbcc.

See also Catalog stored procedures sp_column_privileges

Commands revoke, setuser, set

grant

300 Adaptive Server Enterprise

Functions proc_role

System procedures sp_addgroup, sp_adduser, sp_changedbowner,
sp_changegroup, sp_dropgroup, sp_dropuser, sp_helpgroup, sp_helprotect,
sp_helpuser, sp_role

CHAPTER 1 Commands

Reference Manual: Commands 301

group by and having clauses
Description Used in select statements to divide a table into groups and to return only groups

that match conditions in the having clause.

Syntax Start of select statement

[group by [all] aggregate_free_expression
[, aggregate_free_expression]...]

[having search_conditions]

End of select statement

Parameters group by
specifies the groups into which the table will be divided, and if aggregate
functions are included in the select list, finds a summary value for each
group. These summary values appear as columns in the results, one for each
group. You can refer to these summary columns in the having clause.

You can use the avg, count, max, min, and sum aggregate functions in the
select list before group by (the expression is usually a column name). For
more information, see “Aggregate functions” on page 52 in Chapter 2,
“Transact-SQL Functions” of Reference Manual: Building Blocks.

A table can be grouped by any combination of columns—that is, groups can
be nested within each other, as in Example 2.

all
is a Transact-SQL extension that includes all groups in the results, even
those excluded by a where clause. For example:

select type, avg(price)
from titles
where advance > 7000
group by all type

type
----------------- ----------
UNDECIDED NULL
business 2.99
mod_cook 2.99
popular_comp 20.00
psychology NULL
trad_cook 14.99

(6 rows affected)

“NULL” in the aggregate column indicates groups that would be excluded
by the where clause. A having clause negates the meaning of all.

group by and having clauses

302 Adaptive Server Enterprise

aggregate_free_expression
is an expression that includes no aggregates. A Transact-SQL extension
allows grouping by an aggregate-free expression as well as by a column
name.

You cannot group by column heading or alias. This example is correct:

select Price=avg(price), Pay=avg(advance),
Total=price * $1.15
from titles
group by price * $1.15

having
sets conditions for the group by clause, similar to the way in which where
sets conditions for the select clause.

having search conditions can include aggregate expressions; otherwise,
having search conditions are identical to where search conditions. Following
is an example of a having clause with aggregates:

select pub_id, total = sum(total_sales)
from titles
where total_sales is not null
group by pub_id
having count(*)>5

When Adaptive Server optimizes queries, it evaluates the search conditions
in where and having clauses, and determines which conditions are search
arguments (SARGs) that can be used to choose the best indexes and query
plan. All of the search conditions are used to qualify the rows. For more
information on search arguments, see the Performance and Tuning Guide.

Examples Example 1 Calculates the average advance and the sum of the sales for each
type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type

Example 2 Groups the results by type, then by pub_id within each type:

select type, pub_id, avg(advance), sum(total_sales)
from titles
group by type, pub_id

Example 3 Calculates results for all groups, but displays only groups whose
type begins with “p”:

select type, avg(price)
from titles

CHAPTER 1 Commands

Reference Manual: Commands 303

group by type
having type like 'p%'

Example 4 Calculates results for all groups, but displays results for groups
matching the multiple conditions in the having clause:

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $15000
and avg(price) < $10
and pub_id > "0700"

Example 5 Calculates the total sales for each group (publisher) after joining
the titles and publishers tables:

select p.pub_id, sum(t.total_sales)
from publishers p, titles t
where p.pub_id = t.pub_id
group by p.pub_id

Example 6 Displays the titles that have an advance of more than $1000 and a
price that is more than the average price of all titles:

select title_id, advance, price
from titles
where advance > 1000
having price > avg(price)

Usage • You can use a column name or any expression (except a column heading
or alias) after group by. You can use group by to calculate results or display
a column or an expression that does not appear in the select list (a
Transact-SQL extension described in “Transact-SQL extensions to group
by and having” on page 305).

• The maximum number of columns or expressions allowed in a group by
clause is 31, the same as the maximum number of indexes allowed on a
table.

• The group by clause on large columns, and on all columns specified by the
group by clause, is limited by the maximum size of the index for a given
logical page size. This is because Adaptive Server generates a worktable
with a key when grouping data results. For more information on index
sizes, see create index.

An index size limitation may cause errors when you process a group by
clause. For instance, a group by clause in a 1024-byte column on a 2K page
size server causes an error if the index size limitation is 600 bytes.

group by and having clauses

304 Adaptive Server Enterprise

• Null values in the group by column are put into a single group.

• You cannot name text or image columns in group by and having clauses.

• You cannot use a group by clause in the select statement of an updatable
cursor.

• Aggregate functions can be used only in the select list or in a having clause.
They cannot be used in a where or group by clause.

Aggregate functions are of two types. Aggregates applied to all the
qualifying rows in a table (producing a single value for the whole table per
function) are called scalar aggregates. An aggregate function in the select
list with no group by clause applies to the whole table; it is one example of
a scalar aggregate.

Aggregates applied to a group of rows in a specified column or expression
(producing a value for each group per function) are called vector
aggregates. For either aggregate type, the results of the aggregate
operations are shown as new columns that the having clause can refer to.

You can nest a vector aggregate inside a scalar aggregate. See “Aggregate
functions” on page 52 in Chapter 2, “Transact-SQL Functions” of
Reference Manual: Building Blocks for more information.

How group by and having queries with aggregates work

• The where clause excludes rows that do not meet its search conditions; its
function remains the same for grouped or nongrouped queries.

• The group by clause collects the remaining rows into one group for each
unique value in the group by expression. Omitting group by creates a single
group for the whole table.

• Aggregate functions specified in the select list calculate summary values
for each group. For scalar aggregates, there is only one value for the table.
Vector aggregates calculate values for the distinct groups.

• The having clause excludes groups from the results that do not meet its
search conditions. Even though the having clause tests only rows, the
presence or absence of a group by clause may make it appear to be
operating on groups:

• When the query includes group by, having excludes result group rows.
This is why having seems to operate on groups.

• When the query has no group by, having excludes result rows from the
(single-group) table. This is why having seems to operate on rows (the
results are similar to where clause results).

CHAPTER 1 Commands

Reference Manual: Commands 305

Standard group by and having queries

• All group by and having queries in the Examples section adhere to the SQL
standard. It dictates that queries using group by, having, and vector
aggregate functions produce one row and one summary value per group,
using these guidelines:

• Columns in a select list must also be in the group by expression, or
they must be arguments of aggregate functions.

• A group by expression can contain only column names that are in the
select list. However, columns used only as arguments of aggregate
functions in the select list do not qualify.

• Columns in a having expression must be single-valued —arguments
of aggregates, for instance — and they must be in the select list or
group by clause. Queries with a select list aggregate and a having
clause must have a group by clause. If you omit the group by for a
query without a select list aggregate, all the rows not excluded by the
where clause are considered to be a single group (see Example 6).

In nongrouped queries, the principle that “where excludes rows” seems
straightforward. In grouped queries, the principle expands to “where
excludes rows before group by, and having excludes rows from the display
of results.”

• The SQL standard allows queries that join two or more tables to use group
by and having, if they also adhere to the above guidelines. When specifying
joins or other complex queries, use the standard syntax of group by and
having until you fully comprehend the effect of the Transact-SQL
extensions to both clauses, as described in “Transact-SQL extensions to
group by and having.”

To help you avoid problems with extensions, Adaptive Server provides the
fipsflagger option to the set command that issues a nonfatal warning for
each occurrence of a Transact-SQL extension in a query. See set for more
information.

Transact-SQL extensions to group by and having

• Transact-SQL extensions to standard SQL make displaying data more
flexible, by allowing references to columns and expressions that are not
used for creating groups or summary calculations:

• A select list that includes aggregates can include extended columns
that are not arguments of aggregate functions and are not included in
the group by clause. An extended column affects the display of final
results, since additional rows are displayed.

group by and having clauses

306 Adaptive Server Enterprise

• The group by clause can include columns or expressions that are not
in the select list.

• The group by all clause displays all groups, even those excluded from
calculations by a where clause. See the example for the keyword all in
the “Parameters” section.

• The having clause can include columns or expressions that are not in
the select list and not in the group by clause.

When the Transact-SQL extensions add rows and columns to a display, or
if group by is omitted, query results can be hard to interpret. The examples
that follow can help you understand how Transact-SQL extensions can
affect query results.

• The following examples illustrate the differences between queries that use
standard group by and having clauses and queries that use the
Transact-SQL extensions:

a An example of a standard grouping query:

select type, avg(price)
from titles
group by type

type
---------------------- ----------
UNDECIDED NULL
business 13.73
mod_cook 11.49
popular_comp 21.48
psychology 13.50
trad_cook 15.96

(6 rows affected)

b The Transact-SQL extended column, price (in the select list, but not
an aggregate and not in the group by clause), causes all qualified rows
to display in each qualified group, even though a standard group by
clause produces a single row per group. The group by still affects the
vector aggregate, which computes the average price per group
displayed on each row of each group (they are the same values that
were computed for example a):

select type, price, avg(price)
from titles
group by type

type price

CHAPTER 1 Commands

Reference Manual: Commands 307

------------ ---------------- --------------
business 19.99 13.73
business 11.95 13.73
business 2.99 13.73
business 19.99 13.73
mod_cook 19.99 11.49
mod_cook 2.99 11.49
UNDECIDED NULL NULL
popular_comp 22.95 21.48
popular_comp 20.00 21.48
popular_comp NULL 21.48
psychology 21.59 13.50
psychology 10.95 13.50
psychology 7.00 13.50
psychology 19.99 13.50
psychology 7.99 13.50
trad_cook 20.95 15.96
trad_cook 11.95 15.96
trad_cook 14.99 15.96

(18 rows affected)

c The way Transact-SQL extended columns are handled can make it
look as if a query is ignoring a where clause. This query computes the
average prices using only those rows that satisfy the where clause, but
it also displays rows that do not match the where clause.

Adaptive Server first builds a worktable containing only the type and
aggregate values using the where clause. This worktable is joined
back to the titles table in the grouping column type to include the price
column in the results, but the where clause is not used in the join.

The only row in titles that is not in the results is the lone row with type
= “UNDECIDED” and a NULL price, that is, a row for which there
were no results in the worktable. If you also want to eliminate the
rows from the displayed results that have prices of less than $10.00,
you must add a having clause that repeats the where clause, as shown
in Example 4:

select type, price, avg(price)
from titles
where price > 10.00
group by type

type price
------------ ---------------- --------------
business 19.99 17.31

group by and having clauses

308 Adaptive Server Enterprise

business 11.95 17.31
business 2.99 17.31
business 19.99 17.31
mod_cook 19.99 19.99
mod_cook 2.99 19.99
popular_comp 22.95 21.48
popular_comp 20.00 21.48
popular_comp NULL 21.48
psychology 21.59 17.51
psychology 10.95 17.51
psychology 7.00 17.51
psychology 19.99 17.51
psychology 7.99 17.51
trad_cook 20.95 15.96
trad_cook 11.95 15.96
trad_cook 14.99 15.96

(17 rows affected)

d If you are specifying additional conditions, such as aggregates, in the
having clause, be sure to also include all conditions specified in the
where clause. Adaptive Server will appear to ignore any where clause
conditions that are missing from the having clause:

select type, price, avg(price)
from titles
where price > 10.00
group by type
having price > 10.00

type price
----------- ---------------- --------------
business 19.99 17.31
business 11.95 17.31
business 19.99 17.31
mod_cook 19.99 19.99
popular_comp 22.95 21.48
popular_comp 20.00 21.48
psychology 21.59 17.51
psychology 10.95 17.51
psychology 19.99 17.51
trad_cook 20.95 15.96
trad_cook 11.95 15.96
trad_cook 14.99 15.96

(12 rows affected)

CHAPTER 1 Commands

Reference Manual: Commands 309

e This is an example of a standard grouping query using a join between
two tables. It groups by pub_id, then by type within each publisher ID,
to calculate the vector aggregate for each row:

select p.pub_id, t.type, sum(t.total_sales)
from publishers p, titles t
where p.pub_id = t.pub_id
group by p.pub_id, t.type

pub_id type
------ ------------ --------
0736 business 18722
0736 psychology 9564
0877 UNDECIDED NULL
0877 mod_cook 24278
0877 psychology 375
0877 trad_cook 19566
1389 business 12066
1389 popular_comp 12875

(8 rows affected)

It may seem that it is only necessary to specify group by for the pub_id
and type columns to produce the results, and add extended columns as
follows:

select p.pub_id, p.pub_name, t.type,
sum(t.total_sales)

from publishers p, titles t
where p.pub_id = t.pub_id
group by p.pub_id, t.type

However, the results for the above query are much different from the
results for the first query in this example. After joining the two tables
to determine the vector aggregate in a worktable, Adaptive Server
joins the worktable to the table (publishers) of the extended column
for the final results. Each extended column from a different table
invokes an additional join.

As you can see, using the extended column extension in queries that
join tables can easily produce results that are difficult to comprehend.
In most cases, you should use the standard group by to join tables in
your queries.

group by and having clauses

310 Adaptive Server Enterprise

f This example uses the Transact-SQL extension to group by to include
columns that are not in the select list. Both the pub_id and type
columns are used to group the results for the vector aggregate.
However, the final results do not include the type within each
publisher. In this case, you may only want to know how many distinct
title types are sold for each publisher:

select p.pub_id, sum(t.total_sales)
from publishers p, titles t
where p.pub_id = t.pub_id
group by p.pub_id, t.type

pub_id
------ --------
0736 18722
0736 9564
0877 NULL
0877 24278
0877 375
0877 19566
1389 12066
1389 12875

(8 rows affected)

g This example combines two Transact-SQL extension effects. First, it
omits the group by clause while including an aggregate in the select
list. Second, it includes an extended column. By omitting the group by
clause:

• The table becomes a single group. The scalar aggregate counts
three qualified rows.

• pub_id becomes a Transact-SQL extended column because it
does not appear in a group by clause. No having clause is present,
so all rows in the group are qualified to be displayed.

select pub_id, count(pub_id)
from publishers

pub_id
---------- ---------
0736 3
0877 3
1389 3

(3 rows affected)

CHAPTER 1 Commands

Reference Manual: Commands 311

h The where clause excludes publishers with a pub_id of 1000 or more
from the single group, so the scalar aggregate counts two qualified
rows. The extended column pub_id displays all qualified rows from
the publishers table:

select pub_id, count(pub_id)
from publishers
where pub_id < "1000"

pub_id
-------------- -----------
0736 2
0877 2
1389 2

(3 rows affected)

i This example illustrates an effect of a having clause used without a
group by clause.

• The table is considered a single group. No where clause excludes
rows, so all the rows in the group (table) are qualified to be
counted.

• The rows in this single-group table are tested by the having
clause.

• These combined effects display the two qualified rows.

select pub_id, count(pub_id)
from publishers
having pub_id < "1000"

pub_id
-------------- ---------
0736 3
0877 3
(2 rows affected)

j This example uses the extension to having that allows columns or
expressions not in the select list and not in the group by clause. It
determines the average price for each title type, but it excludes those
types that do not have more than $10,000 in total sales, even though
the sum aggregate does not appear in the results:

select type, avg(price)
from titles
group by type
having sum(total_sales) > 10000

group by and having clauses

312 Adaptive Server Enterprise

type
------------ ----------
business 13.73
mod_cook 11.49
popular_comp 21.48
trad_cook 15.96

(4 rows affected)

group by and having and sort orders

• If your server has a case-insensitive sort order, group by ignores the case
of the grouping columns. For example, given this data on a
case-insensitive server:

select lname, amount
from groupdemo
lname amount
---------- ------------------
Smith 10.00
smith 5.00
SMITH 7.00
Levi 9.00
Lévi 20.00

grouping by lname produces these results:

select lname, sum(amount)
from groupdemo

 lname
lname
---------- ------------------
Levi 9.00
Lévi 20.00
Smith 22.00

The same query on a case- and accent-insensitive server produces these
results:

 lname
 ---------- ------------------
 Levi 29.00
 Smith 22.00

Standards ANSI SQL – Compliance level: Entry-level compliant.

The use of columns within the select list that are not in the group by list and
have no aggregate functions is a Transact-SQL extension.

CHAPTER 1 Commands

Reference Manual: Commands 313

The use of the all keyword is a Transact-SQL extension.

See also Commands compute clause, declare, select, where clause

Functions Aggregate functions

if...else

314 Adaptive Server Enterprise

if...else
Description Imposes conditions on the execution of a SQL statement.

Syntax if logical_expression [plan "abstract plan"]
statements

[else
[if logical_expression] [plan "abstract plan"]

statement]

Parameters logical_expression
is an expression (a column name, a constant, any combination of column
names and constants connected by arithmetic or bitwise operators, or a
subquery) that returns TRUE, FALSE, or NULL. If the expression contains
a select statement, the select statement must be enclosed in parentheses.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. Plans can only be
specified for optimizable SQL statements, that is, select queries that access
tables.

statements
is either a single SQL statement or a block of statements delimited by begin
and end.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. Plans can only be
specified for optimizable expressions in if clauses, that is, queries that access
tables. For more information, see Chapter 30, “Creating and Using Abstract
Plans,” in the Performance and Tuning Guide.

Examples Example 1 Prints “yes” if 3 is larger than 2:

if 3 > 2
print "yes"

Example 2 The if...else condition tests for the presence of authors whose postal
codes are 94705, then prints “Berkeley author” for the resulting set:

if exists (select postalcode from authors
where postalcode = "94705")
print "Berkeley author"

Example 3 The if...else condition tests for the presence of user-created objects
(all of which have ID numbers greater than 100) in a database. Where user
tables exist, the else clause prints a message and selects their names, types, and
ID numbers:

CHAPTER 1 Commands

Reference Manual: Commands 315

if (select max(id) from sysobjects) < 100
print "No user-created objects in this database"

else
 begin

print "These are the user-created objects"
select name, type, id
from sysobjects
where id > 100

 end

Example 4 Since the value for total sales for PC9999 in the titles table is
NULL, this query returns FALSE. The else portion of the query is performed
when the if portion returns FALSE or NULL. For more information on truth
values and logical expressions, see “Expressions” on page 249 in Chapter 4,
“Expressions, Identifiers, and Wildcard Characters” of Reference Manual:
Building Blocks.

if (select total_sales
from titles
where title_id = "PC9999") > 100

select "true"
else
select "false"

Usage • The statement following an if keyword and its condition is executed if the
condition is satisfied (when the logical expression returns TRUE). The
optional else keyword introduces an alternate SQL statement that executes
when the if condition is not satisfied (when the logical expression returns
FALSE).

• The if or else condition affects the performance of only a single SQL
statement, unless statements are grouped into a block between the
keywords begin and end (see Example 3).

The statement clause can be an execute command or any other legal SQL
statement or statement block.

• If a select statement is used as part of the boolean expression, it must return
a single value.

• if...else constructs can be used either in a stored procedure (where they are
often used to test for the existence of some parameter) or in ad hoc queries
(see Examples 1 and 2).

if...else

316 Adaptive Server Enterprise

• if tests can be nested either within another if or following an else. The
maximum number of if tests you can nest varies with the complexity of any
select statements (or other language constructs) that you include with each
if...else construct.

Note When an alter table, create table, or create view command occurs
within an if...else block, Adaptive Server creates the schema for the table
or view before determining whether the condition is true. This may lead to
errors if the table or view already exists.

• If you create tables with varchar, nvarchar, univarchar, or varbinary
columns whose total defined width is greater than the maximum allowed
row size, a warning message appears, but the table is created. If you try to
insert more than the maximum number bytes into such a row, or to update
a row so that its total row size is greater than the maximum length,
Adaptive Server produces an error message, and the command fails.

Note When a create table command occurs within an if...else block or a while
loop, Adaptive Server creates the schema for the table before determining
whether the condition is true. This may lead to errors if the table already exists.
To avoid this situation, either make sure a view with the same name does not
already exist in the database or use an execute statement, as follows:

if not exists
(select * from sysobjects where name="my table")

begin
execute "create table mytable(x int)"
end

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions if...else permission defaults to all users. No permission is required to use it.

See also Commands begin...end,create procedure

CHAPTER 1 Commands

Reference Manual: Commands 317

insert
Description Adds new rows to a table or view.

Syntax insert [into] [database.[owner.]]{table_name|view_name}
[(column_list)]
{values (expression [, expression]...)

|select_statement [plan "abstract plan"] }

Parameters into
is optional.

table_name | view_name
is the name of the table or view from which you want to remove rows.
Specify the database name if the table or view is in another database, and
specify the owner’s name if more than one table or view of that name exists
in the database. The default value for owner is the current user, and the
default value for database is the current database.

column_list
is a list of one or more columns to which data is to be added. Enclose the list
in parentheses. The columns can be listed in any order, but the incoming data
(whether in a values clause or a select clause) must be in the same order. If
a column has the IDENTITY property, you can substitute the syb_identity
keyword for the actual column name.

The column list is necessary when some, but not all, of the columns in the
table are to receive data. If no column list is given, Adaptive Server assumes
that the insert affects all columns in the receiving table (in create table order).

See “The column list” on page 319 for more information.

values
is a keyword that introduces a list of expressions.

insert

318 Adaptive Server Enterprise

expression
specifies constant expressions, variables, parameters, or null values for the
indicated columns. Enclose character and datetime constants in single or
double quotes.

You cannot use a subquery as an expression.

The values list:

• Must be enclosed in parentheses

• Must match the explicit or implicit column list

• Can use “default” as a value

See “Datatypes” for more information about data entry rules.

select_statement
is a standard select statement used to retrieve the values to be inserted.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. Plans can only be
specified for insert...select statements. See Chapter 30, “Creating and Using
Abstract Plans,” in the Performance and Tuning Guide for more
information.

Examples Example 1

insert titles
values("BU2222", "Faster!", "business", "1389",

null, null, null, "ok", "06/17/87", 0)

Example 2

insert titles
(title_id, title, type, pub_id, notes, pubdate,

contract)
values ('BU1237', 'Get Going!', 'business',

'1389', 'great', '06/18/86', 1)

Example 3

insert newauthors
select *
from authors
where city = "San Francisco"

Example 4

insert test
select *

CHAPTER 1 Commands

Reference Manual: Commands 319

from test
where city = "San Francisco"

Example 5

insert table1 (col1, col2, col3, col4)
values (10, 4, default, 34)

Usage • Use insert only to add new rows. Use update to modify column values in a
row you have already inserted.

The column list

• The column list determines the order in which values are entered. For
example, suppose that you have a table called newpublishers that is
identical in structure and content to the publishers table in pubs2. In the
example below, the columns in the column list of the newpublishers table
match the columns of the select list in the publishers table.

insert newpublishers (pub_id, pub_name)
select pub_id, pub_name

from publishers
where pub_name="New Age Data"

The pub_id and pub_name for “New Age Data” are stored in the pub_id
and pub_name columns of newpublishers.

In the next example, the order of the columns in the column list of the
newpublishers table does not match the order of the columns of the select
list of the publishers table.

insert newpublishers (pub_id, pub_name)
select pub_name, pub_id
from publishers
where pub_name="New Age Data"

The result is that the pub_id for “New Age Data” is stored in the pub_name
column of the newpublishers table, and the pub_name for “New Age Data”
is stored in the pub_id column of the newpublishers table.

• You can omit items from the column and values lists as long as the omitted
columns allow null values (see Example 2).

Validating column values

• insert interacts with the ignore_dup_key, ignore_dup_row, and
allow_dup_row options, which are set with the create index command. See
create index for more information.

insert

320 Adaptive Server Enterprise

• A rule or check constraint can restrict the domain of legal values that can
be entered into a column. Rules are created with the create rule command
and bound with sp_bindrule. check constraints are declared with create
table.

• A default can supply a value if you do not explicitly enter one. Defaults
are created with the create default command and bound with sp_bindefault,
or they are declared with create table.

• If an insert statement violates domain or integrity rules (see create rule and
create trigger), or if it is the wrong datatype (see create table and Chapter
1, “System and User-Defined Datatypes” in Reference Manual: Building
Blocks), the statement fails, and Adaptive Server displays an error
message.

Treatment of blanks

• Inserting an empty string ("") into a variable character type or text column
inserts a single space. char columns are padded to the defined length.

• All trailing spaces are removed from data that is inserted into varchar and
univarchar columns, except in the case of a string that contains only spaces.
Strings that contain only spaces are truncated to a single space. Strings that
are longer than the specified length of a char, nchar, unichar, univarchar,
varchar, or nvarchar column are silently truncated unless the
string_rtruncation option is set to on.

Inserting into text and image columns

• An insert of a NULL into a text or an image column does not create a valid
text pointer, nor does it a text page as would otherwise occur. Use update
to get a valid text pointer for that column.

insert triggers

• You can define a trigger that takes a specified action when an insert
command is issued on a specified table.

Using insert when Component Integration Services is enabled

• You can send an insert as a language event or as a parameterized dynamic
statement to remote servers.

Inserting rows selected from another table

• You can select rows from a table and insert them into the same table in a
single statement (see Example 4).

CHAPTER 1 Commands

Reference Manual: Commands 321

• To insert data with select from a table that has null values in some fields
into a table that does not allow null values, provide a substitute value for
any NULL entries in the original table. For example, to insert data into an
advances table that does not allow null values, substitute 0 for the NULL
fields:

insert advances
select pub_id, isnull(advance, 0) from titles

Without the isnull function, this command inserts all the rows with
non-null values into the advances table, which produces error messages
for all the rows where the advance column in the titles table contained
NULL.

If you cannot make this kind of substitution for your data, you cannot
insert data containing null values into the columns that have a NOT NULL
specification.

Two tables can be identically structured, and yet be different as to whether
null values are permitted in some fields. Use sp_help to see the null types
of the columns in your table.

Transactions and insert

• When you set chained transaction mode, Adaptive Server implicitly
begins a transaction with the insert statement if no transaction is currently
active. To complete any inserts, you must commit the transaction, or roll
back the changes. For example:

insert stores (stor_id, stor_name, city, state)
 values ('999', 'Books-R-Us', 'Fremont', 'AZ')
if exists (select t1.city
 from stores t1, stores t2
 where t1.city = t2.city
 and t1.state = t2.state
 and t1.stor_id < t2.stor_id)
 rollback transaction
else
 commit transaction

In chained transaction mode, this batch begins a transaction and inserts a
new row into the stores table. If it inserts a row containing the same city
and state information as another store in the table, it rolls back the changes
to stores and ends the transaction. Otherwise, it commits the insertions and
ends the transaction. For more information about chained transaction
mode, see the Transact-SQL User’s Guide.

insert

322 Adaptive Server Enterprise

Inserting values into IDENTITY columns

• When inserting a row into a table, do not include the name of the
IDENTITY column in the column list or its value in the values list. If the
table consists of only one column, an IDENTITY column, omit the
column list and leave the values list empty as follows:

insert id_table values()

• The first time you insert a row into a table, Adaptive Server assigns the
IDENTITY column a value of 1. Each new row gets a column value that
is one higher than the last. This value takes precedence over any defaults
declared for the column in the create table or alter table statement or
defaults bound to the column with sp_bindefault.

Server failures can create gaps in IDENTITY column values. The
maximum size of the gap depends on the setting of the identity burning set
factor configuration parameter. Gaps can also result from manual insertion
of data into the IDENTITY column, deletion of rows, and transaction
rollbacks.

• Only the table owner, Database Owner, or System Administrator can
explicitly insert a value into an IDENTITY column after setting
identity_insert table_name on for the column’s base table. A user can set
identity_insert table_name on for one table at a time in a database. When
identity_insert is on, each insert statement must include a column list and
must specify an explicit value for the IDENTITY column.

Inserting a value into the IDENTITY column allows you to specify a seed
value for the column or to restore a row that was deleted in error. Unless
you have created a unique index on the IDENTITY column, Adaptive
Server does not verify the uniqueness of the value; you can insert any
positive integer.

To insert an explicit value into an IDENTITY column, the table owner,
Database Owner, or System Administrator must set identity_insert
table_name on for the column’s base table, not for the view through which
it is being inserted.

• The maximum value that can be inserted into an IDENTITY column is
10 precision - 1. Once an IDENTITY column reaches this value, any
additional insert statements return an error that aborts the current
transaction.

CHAPTER 1 Commands

Reference Manual: Commands 323

When this happens, use the create table statement to create a new table that
is identical to the old one, but that has a larger precision for the IDENTITY
column. Once you have created the new table, use either the insert
statement or the bcp utility to copy the data from the old table to the new
one.

• Use the @@identity global variable to retrieve the last value that you
inserted into an IDENTITY column. If the last insert or select into
statement affected a table with no IDENTITY column, @@identity
returns the value 0.

• An IDENTITY column selected into a result table observes the following
rules with regard to inheritance of the IDENTITY property:

• If an IDENTITY column is selected more than once, it is defined as
NOT NULL in the new table. It does not inherit the IDENTITY
property.

• If an IDENTITY column is selected as part of an expression, the
resulting column does not inherit the IDENTITY property. It is
created as NULL if any column in the expression allows nulls;
otherwise, it is created as NOT NULL.

• If the select statement contains a group by clause or aggregate
function, the resulting column does not inherit the IDENTITY
property. Columns that include an aggregate of the IDENTITY
column are created NULL; others are created NOT NULL.

• An IDENTITY column that is selected into a table with a union or join
does not retain the IDENTITY property. If the table contains the union
of the IDENTITY column and a NULL column, the new column is
defined as NULL; otherwise, it is defined as NOT NULL.

Inserting data through views

• If a view is created with check option, each row that is inserted through the
view must meet the selection criteria of the view.

For example, the stores_cal view includes all rows of the stores table for
which state has a value of “CA”:

create view stores_cal
as select * from stores
where state = "CA"
with check option

The with check option clause checks each insert statement against the
view’s selection criteria. Rows for which state has a value other than “CA”
are rejected.

insert

324 Adaptive Server Enterprise

• If a view is created with check option, all views derived from the base view
must satisfy the view’s selection criteria. Each new row inserted through a
derived view must be visible through the base view.

Consider the view stores_cal30, which is derived from stores_cal. The new
view includes information about stores in California with payment terms
of “Net 30”:

create view stores_cal30
as select * from stores_cal
where payterms = "Net 30"

Because stores_cal was created with check option, all rows inserted or
updated through stores_cal30 must be visible through stores_cal. Any row
with a state value other than “CA” is rejected.

Notice that stores_cal30 does not have a with check option clause of its
own. This means that you can insert or update a row with a payterms value
other than “Net 30” through stores_cal30. The following update statement
would be successful, even though the row would no longer be visible
through stores_cal30:

update stores_cal30
set payterms = "Net 60"
where stor_id = "7067"

• insert statements are not allowed on join views created with check option.

• If you insert or update a row through a join view, all affected columns must
belong to the same base table.

Partitoning tables for improved insert performance

• An unpartitioned table with no clustered index consists of a single doubly
linked chain of database pages, so each insertion into the table uses the last
page of the chain. Adaptive Server holds an exclusive lock on the last page
while it inserts the rows, blocking other concurrent transactions from
inserting data into the table.

Partitioning a table with the partition clause of the alter table command
creates additional page chains. Each chain has its own last page, which can
be used for concurrent insert operations. This improves insert performance
by reducing page contention. If the table is spread over multiple physical
devices, partitioning also improves insert performance by reducing I/O
contention while the server flushes data from cache to disk. For more
information about partitioning tables for insert performance, see the
Performance and Tuning Guide.

Standards ANSI SQL – Compliance level: Entry-level compliant.

CHAPTER 1 Commands

Reference Manual: Commands 325

The following are Transact-SQL extensions:

• A union operator in the select portion of an insert statement.

• Qualification of a table or column name by a database name.

• Insertion through a view that contains a join.

Note The FIPS flagger does not detect insertions through a view that contains
a join.

Permissions • insert permission defaults to the table or view owner, who can transfer it to
other users.

• insert permission for a table’s IDENTITY column is limited to the table
owner, Database Owner, and System Administrator.

See also Commands alter table, create default, create index, create rule, create table,
create trigger, dbcc, delete, select, update

Datatypes Chapter 1, “System and User-Defined Datatypes” of Reference
Manual: Building Blocks.

System procedures sp_bindefault, sp_bindrule, sp_help, sp_helpartition,
sp_unbindefault, sp_unbindrule

Utilities bcp

kill

326 Adaptive Server Enterprise

kill
Description Kills a process.

Syntax kill spid

Parameters spid
is the identification number of the process you want to kill. spid must be a
constant; it cannot be passed as a parameter to a stored procedure or used as
a local variable. Use sp_who to see a list of processes and other information.

Examples kill 1378

Usage To get a report on the current processes, execute sp_who. Following is a typical
report:

fid spid status loginame origname hostname blk dbname cmd
--- ---- -------- -------- -------- -------- --- ------ -----------
0 1 recv sleep bird bird jazzy 0 master AWAITING COMMAND
0 2 sleeping NULL NULL 0 master NETWORK HANDLER
0 3 sleeping NULL NULL 0 master MIRROR HANDLER
0 4 sleeping NULL NULL 0 master AUDIT PROCESS
0 5 sleeping NULL NULL 0 master CHECKPOINT SLEEP
0 6 recv sleep rose rose petal 0 master AWAITING COMMAND
0 7 running robert sa helos 0 master SELECT
0 8 send sleep daisy daisy chain 0 pubs2 SELECT
0 9 alarm sleep lily lily pond 0 master WAITFOR
0 10 lock sleep viola viola cello 7 pubs2 SELECT

The spid column contains the process identification numbers used in the
Transact-SQL kill command. The blk column contains the process ID of a
blocking process, if there is one. A blocking process (which may have an
exclusive lock) is one that is holding resources that are needed by another
process. In this example, process 10 (a select on a table) is blocked by process
7 (a begin transaction followed by an insert on the same table).

The status column reports the state of the command. The following table shows
the status values and the effects of sp_who:

Table 1-28: Status values reported by sp_who

Status Description Effect of kill command

recv sleep Waiting on a network read. Immediate.

send sleep Waiting on a network send. Immediate.

alarm sleep Waiting on an alarm, such as waitfor delay
"10:00".

Immediate.

lock sleep Waiting on a lock acquisition. Immediate.

CHAPTER 1 Commands

Reference Manual: Commands 327

To get a report on the current locks and the spids of the processes holding them,
use sp_lock.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions kill permission defaults to System Administrators and is not transferable.

See also Commands shutdown

System procedures sp_lock, sp_who

sleeping Waiting on disk I/O or some other resource.
Probably indicates a process that is running,
but doing extensive disk I/O.

Process is killed when it “wakes up,” usually
immediately. A few sleeping processes do not
wake up, and require an Adaptive Server reboot
to clear.

runnable In the queue of runnable processes. Immediate.

running Actively running on one of the server
engines.

Immediate.

infected Adaptive Server has detected a serious error
condition; extremely rare.

kill command not recommended. Adaptive
Server restart probably required to clear process.

background A process, such as a threshold procedure, run
by Adaptive Server rather than by a user
process.

Immediate; use kill with extreme care.
Recommend a careful check of sysprocesses
before killing a background process.

log suspend Processes suspended by reaching the
last-chance threshold on the log.

Immediate.

Status Description Effect of kill command

load database

328 Adaptive Server Enterprise

load database
Description Loads a backup copy of a user database, including its transaction log, that was

created with dump database.

Syntax load database database_name
from [compress::]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

[[stripe on [compress::]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
listonly [= full],
headeronly,
notify = {client | operator_console}
}]]

Parameters database_name
is the name of the database that will receive the backup copy. It can be either
a database created with the for load option, or an existing database. Loading
dumped data to an existing database overwrites all existing data. The
receiving database must be at least as large as the dumped database. The
database name can be specified as a literal, a local variable, or a stored
procedure parameter.

compress::
 invokes the decompression of the archived database. For more information
about the compress option, see Chapter 27, “Backing Up and Restoring User
Databases” in the System Administration Guide.

CHAPTER 1 Commands

Reference Manual: Commands 329

from stripe_device
is the device from which data is being loaded. See “Specifying dump
devices” on page 342 for information about what form to use when
specifying a dump device. For a list of supported dump devices, see the
Adaptive Server installation and configuration guides.

at backup_server_name
is the name of a remote Backup Server running on the machine to which the
dump device is attached. For platforms that use interfaces files, the
backup_server_name must appear in the interfaces file.

density = density_value
is ignored. For more information, see the dump database command.

blocksize = number_bytes
overrides the default block size for a dump device. If you specify a block
size on UNIX systems, it should be identical to that used to make the dump.
For more information, see the dump database command.

dumpvolume = volume_name
is the volume name field of the ANSI tape label. load database checks this
label when the tape is opened and generates an error message if the wrong
volume is loaded.

Note When using load database, the dumpvolume option does not provide an
error messages if an incorrect file name is given for the file=filename option.
The backup server searches the entire tape looking for that file, regardless of
an incorrect tape mounted.

stripe on stripe_device
is an additional dump device. You can use up to 32 devices, including the
device named in the to stripe_device clause. The Backup Server loads data
from all devices concurrently, reducing the time and the number of volume
changes required. See “Specifying dump devices” on page 342 for
information about how to specify a dump device.

dismount | nodismount
on platforms that support logical dismount – determines whether tapes
remain mounted. By default, all tapes used for a load are dismounted when
the load completes. Use nodismount to keep tapes available for additional
loads or dumps.

load database

330 Adaptive Server Enterprise

nounload | unload
determines whether tapes rewind after the load completes. By default, tapes
do not rewind, allowing you to make additional loads from the same tape
volume. Specify unload for the last dump file to be loaded from a multidump
volume. This rewinds and unloads the tape when the load completes.

file = file_name
is the name of a particular database dump on the tape volume. If you did not
record the dump file names at the time you made the dump, use listonly to
display information about all dump files.

listonly [= full]
displays information about all dump files on a tape volume, but does not
load the database. listonly identifies the database and device, the date and
time the dump was made, and the date and time it can be overwritten. listonly
= full provides additional details about the dump. Both reports are sorted by
ANSI tape label.

After listing the files on a volume, the Backup Server sends a volume change
request. The operator can either mount another tape volume or terminate the
list operation for all dump devices.

Due to current implementation, the listonly option overrides the headeronly
option.

 Warning! Do not use load database with listonly on 1/4-inch cartridge tape.

headeronly
displays header information for a single dump file, but does not load the
database. headeronly displays information about the first file on the tape
unless you use the file = file_name option to specify another file name. The
dump header indicates:

• Type of dump (database or transaction log)

• Database ID

• File name

• Date the dump was made

• Character set

• Sort order

• Page count

• Next object ID

CHAPTER 1 Commands

Reference Manual: Commands 331

notify = {client | operator_console}
overrides the default message destination.

• On operating systems that offer an operator terminal feature, volume
change messages are always sent to the operator terminal on the
machine on which the Backup Server is running. Use client to route
other Backup Server messages to the terminal session that initiated the
dump database.

• On operating systems (such as UNIX) that do not offer an operator
terminal feature, messages are sent to the client that initiated the dump
database. Use operator_console to route messages to the terminal on
which the Backup Server is running.

Examples Example 1 Reloads the database pubs2 from a tape device:

load database pubs2
from "/dev/nrmt0"

Example 2 Loads the pubs2 database, using the Backup Server
REMOTE_BKP_SERVER. This command names three devices:

load database pubs2
from "/dev/nrmt4" at REMOTE_BKP_SERVER

stripe on "/dev/nrmt5" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt0" at REMOTE_BKP_SERVER

Example 3 Loads the pubs2 database from a compressed dump file called
dmp090100.dmp located at /opt/bin/Sybase/dumps:

load database pubs2 from
"compress::/opt/bin/Sybase/dumps/dmp090100.dmp"

Usage • The listonly and headeronly options display information about the dump
files without loading them.

• Dumps and loads are performed through Backup Server.

• To make sure databases are synchronized correctly so that all the proxy
tables have the correct schema to the content of the primary database you
just reloaded, you may need to run the alter database dbname for
proxy_update command on the server hosting the proxy database.

• Table 1-29 describes the commands and system procedures used to restore
databases from backups:

Table 1-29: Commands used to restore databases from dumps

Use this command To do this

create database for load Create a database for the purpose of loading a dump.

load database

332 Adaptive Server Enterprise

Restrictions

• If proxy tables are in the database they are be part of the database saveset.
The content data of proxy tables is not included in the save; only the
pointer is saved and restored.

• You cannot load a dump that was made on a different platform.

• You cannot load a dump that was generated on a server version before
version 10.0.

• If a database has cross-database referential integrity constraints, the
sysreferences system table stores the name—not the ID number—of the
external database. Adaptive Server cannot guarantee referential integrity
if you use load database to change the database name or to load it onto a
different server.

• Each time you add or remove a cross-database constraint or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases can cause database
corruption. Before dumping a database to load it with a different name or
move it to another Adaptive Server, use alter table to drop all external
referential integrity constraints.

• load database clears the suspect page entries pertaining to the loaded
database from master..sysattributes.

• load database overwrites any existing data in the database.

• After a database dump is loaded, two processes may require additional
time before the database can be brought online:

load database Restore a database from a dump.

load transaction Apply recent transactions to a restored database.

online database Make a database available for public use after a normal load sequence or
after upgrading the database to the current version of Adaptive Server.

load { database | transaction }
with {headeronly | listonly}

Identify the dump files on a tape.

sp_volchanged Respond to Backup Server’s volume change messages.

Use this command To do this

CHAPTER 1 Commands

Reference Manual: Commands 333

• All unused pages in the database must be zeroed after the load
completes. The time required depends on the number of unused
pages. If the target database is the same size as the database that is
loaded, the Backup Server performs this step. If the target database is
larger than the database that is loaded, Adaptive Server performs this
step after the Backup Server completes the load. The time required for
this step depends on the number of empty pages.

• All transactions in the transaction log included in the database dump
must be rolled back or rolled forward. The time required depends on
the number and type of transactions in the log. This step is performed
by Adaptive Server.

• The receiving database must be as large as or larger than the database to
be loaded. If the receiving database is too small, Adaptive Server displays
an error message that gives the required size.

• You cannot load from the null device (on UNIX, /dev/null).

• You cannot use load database in a user-defined transaction.

Locking out users during loads

• While you are loading a database, it cannot be in use. load database sets
the status of the database to “offline.” No one can use the database while
its status is “offline.” The “offline” status prevents users from accessing
and changing the database during a load sequence.

• A database loaded by load database remains inaccessible until online
database is issued.

Upgrading database and transaction log dumps

• To restore and upgrade a user database dump from a version 10.0 or later
server to the current version of Adaptive Server:

a Load the most recent database dump.

b Load, in order, all transaction log dumps made since the last database
dump.

Adaptive Server checks the timestamp on each dump to make sure
that it is being loaded to the correct database and in the correct
sequence.

c Issue online database to do the upgrade and make the database
available for public use.

d Dump the newly upgraded database immediately after upgrade, to
create a dump consistent with the current version of Adaptive Server.

load database

334 Adaptive Server Enterprise

Specifying dump devices

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

• You can specify a local device as:

• A logical device name from the sysdevices system table

• An absolute path name

• A relative path name

The Backup Server resolves relative path names using Adaptive Server’s
current working directory.

• When loading across the network, specify the absolute path name of the
dump device. The path name must be valid on the machine on which the
Backup Server is running. If the name includes characters other than
letters, numbers, or the underscore (_), enclose the entire name in quotes.

• Ownership and permissions problems on the dump device may interfere
with use of load commands.

• You can run more than one load (or dump) at the same time, as long as each
load uses a different physical device.

Backup Servers

• You must have a Backup Server running on the same machine as Adaptive
Server. The Backup Server must be listed in the master..sysservers table.
This entry is created during installation or upgrade and should not be
deleted.

• If your backup devices are located on another machine, so that you load
across a network, you must also have a Backup Server installed on the
remote machine.

Volume names

• Dump volumes are labeled according to the ANSI tape labeling standard.
The label includes the logical volume number and the position of the
device within the stripe set.

CHAPTER 1 Commands

Reference Manual: Commands 335

• During loads, Backup Server uses the tape label to verify that volumes are
mounted in the correct order. This allows you to load from a smaller
number of devices than you used at dump time.

Note When dumping and loading across the network, you must specify
the same number of stripe devices for each operation.

Changing dump volumes

• If the Backup Server detects a problem with the currently mounted
volume, it requests a volume change by sending messages to either the
client or its operator console. After mounting another volume, the operator
notifies the Backup Server by executing sp_volchanged on any Adaptive
Server that can communicate with the Backup Server.

Restoring the system databases

• See the System Administration Guide for step-by-step instructions for
restoring the system databases from dumps.

Disk mirroring

• At the beginning of a load, Adaptive Server passes Backup Server the
primary device name of each logical database and log device. If the
primary device has been unmirrored, Adaptive Server passes the name of
the secondary device instead. If any named device fails before Backup
Server completes its data transfer, Adaptive Server aborts the load.

• If you attempt to unmirror any named device while a load database is in
progress, Adaptive Server displays a message. The user executing disk
unmirror can abort the load or defer the disk unmirror until after the load
completes.

• Backup Server loads the data onto the primary device, then load database
copies it to the secondary device. load database takes longer to complete
if any database device is mirrored.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only a System Administrator, Database Owner, or user with the Operator role
can execute load database.

See also Commands alter database, dbcc, dump database, dump transaction, load
transaction, online database

System procedures sp_helpdb, sp_helpdevice, sp_volchanged

load transaction

336 Adaptive Server Enterprise

load transaction
Description Loads a backup copy of the transaction log that was created with dump

transaction.

Syntax load tran[saction] database_name
from [compress::]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

[[stripe on [compress::]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
listonly [= full],
headeronly,
notify = {client | operator_console}
until_time = datetime}]]

Parameters database_name
is the name of the database to receive data from a dumped backup copy of
the transaction log. The log segment of the receiving database must be at
least as large as the log segment of the dumped database. The database name
can be specified as a literal, a local variable, or a parameter of a stored
procedure.

compress::
 invokes the decompression of the archived transaction log. See Chapter 27,
“Backing Up and Restoring User Databases” in the System Administration
Guide for more information about the compress option.

CHAPTER 1 Commands

Reference Manual: Commands 337

from stripe_device
is the name of the dump device from which you are loading the transaction
log. For information about the form to use when specifying a dump device,
see “Specifying dump devices” on page 342. For a list of supported dump
devices, see the Adaptive Server installation and configuration guides.

at backup_server_name
is the name of a remote Backup Server running on the machine to which the
dump device is attached. For platforms that use interfaces files, the
backup_server_name must appear in the interfaces file.

density = density_value
overrides the default density for a tape device. This option is ignored.

blocksize = number_bytes
overrides the default block size for a dump device. If you specify a block
size on UNIX systems, it should be identical to that used to make the dump.

dumpvolume = volume_name
is the volume name field of the ANSI tape label. load transaction checks this
label when the tape is opened and generates an error message if the wrong
volume is loaded.

stripe on stripe_device
is an additional dump device. You can use up to 32 devices, including the
device named in the to stripe_device clause. The Backup Server loads data
from all devices concurrently, reducing the time and the number of volume
changes required. See “Specifying dump devices” on page 342 for
information about how to specify a dump device.

dismount | nodismount
on platforms that support logical dismount – determines whether tapes
remain mounted. By default, all tapes used for a load are dismounted when
the load completes. Use nodismount to keep tapes available for additional
loads or dumps.

nounload | unload
determines whether tapes rewind after the load completes. By default, tapes
do not rewind, allowing you to make additional loads from the same tape
volume. Specify unload for the last dump file to be loaded from a multidump
volume. This rewinds and unloads the tape when the load completes.

file = file_name
is the name of a particular database dump on the tape volume. If you did not
record the dump file names at the time you made the dump, use listonly to
display information about all the dump files.

load transaction

338 Adaptive Server Enterprise

listonly [= full]
displays information about all the dump files on a tape volume, but does not
load the transaction log. listonly identifies the database and device, the date
and time the dump was made, and the date and time it can be overwritten.
listonly = full provides additional details about the dump. Both reports are
sorted by ANSI tape label.

After listing the files on a volume, the Backup Server sends a volume change
request. The operator can either mount another tape volume or terminate the
list operation for all dump devices.

In the current implementation, listonly overrides headeronly.

 Warning! Do not use load transaction with listonly on 1/4-inch cartridge tape.

headeronly
displays header information for a single dump file, but does not load the
database. headeronly displays information about the first file on the tape
unless you use the file = file_name option to specify another file name. The
dump header indicates:

• Type of dump (database or transaction log)

• Database ID

• File name

• Date the dump was made

• Character set

• Sort order

• Page count

• Next object ID

• Checkpoint location in the log

• Location of the oldest begin transaction record

• Old and new sequence dates

CHAPTER 1 Commands

Reference Manual: Commands 339

notify = {client | operator_console}
overrides the default message destination.

• On operating systems that offer an operator terminal feature, volume
change messages are always sent to the operator terminal on the
machine on which the Backup Server is running. Use client to route
other Backup Server messages to the terminal session that initiated the
dump database.

• On operating systems (such as UNIX) that do not offer an operator
terminal feature, messages are sent to the client that initiated the dump
database. Use operator_console to route messages to the terminal on
which the Backup Server is running.

until_time
loads the transaction log up to a specified time in the transaction log. Only
transactions committed before the specified time are saved to the database.

Examples Example 1 Loads the transaction log for the database pubs2 tape:

load transaction pubs2
from "/dev/nrmt0"

Example 2 Loads the transaction log for the pubs2 database, using the Backup
Server REMOTE_BKP_SERVER:

load transaction pubs2
from "/dev/nrmt4" at REMOTE_BKP_SERVER

stripe on "/dev/nrmt5" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt0" at REMOTE_BKP_SERVER

Example 3 Loads the transaction log for pubs2, up to March 20, 1997, at
10:51:43:866 a.m:

load transaction pubs2
from "/dev/ntmt0"
with until_time = "mar 20, 1997 10:51:43:866am"

Usage • The listonly and headeronly options display information about the dump
files without loading them.

• Dumps and loads are performed through Backup Server.

• Table 1-30 describes the commands and system procedures used to restore
databases from backups:

Table 1-30: Commands used to restore databases

Use this command To do this

create database for load Create a database for the purpose of loading a dump.

load transaction

340 Adaptive Server Enterprise

Restrictions

• You cannot load a dump that was made on a different platform.

• You cannot load a dump that was generated on a version before 10.0
server.

• The database and transaction logs must be at the same release level.

• Load transaction logs in chronological order.

• You cannot load from the null device (on UNIX, /dev/null).

• You cannot use load transaction after an online database command that
does an upgrade. The correct sequence for upgrading a database is load
database, load transaction, online database.

• Do not issue online database until all transaction logs are loaded. The
command sequence is:

a Load database

b Load transaction (repeat as needed)

c Online database

However, to load additional transaction logs while retaining read-only
access to the database (a typical “warm backup” situation), use the dump
tran for standby_access option to generate the transaction dumps. You can
then issue online database for standby_access for read-only access.

• You cannot use the load transaction command in a user-defined
transaction.

Restoring a database

• To restore a database:

• Load the most recent database dump

load database Restore a database from a dump.

load transaction Apply recent transactions to a restored database.

online database Make a database available for public use after a normal load sequence or
after upgrading the database to the current version of Adaptive Server.

load { database | transaction }
with {headeronly | listonly}

Identify the dump files on a tape.

sp_volchanged Respond to the Backup Server’s volume change messages.

Use this command To do this

CHAPTER 1 Commands

Reference Manual: Commands 341

• Load, in order, all transaction log dumps made since the last database
dump

• Issue online database to make the database available for public use

• Each time you add or remove a cross-database constraint, or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases can cause database
corruption.

• For more information on backup and recovery of Adaptive Server
databases, see the System Administration Guide.

Recovering a database to a specified time

• You can use the until_time option for most databases that can be loaded or
dumped. It does not apply to databases such as master, in which the data
and logs are on the same device. Also, you cannot use it on any database
that has had a truncated log since the last dump database, such as tempdb.

• The until_time option is useful for the following reasons:

• It enables you to have a database consistent to a particular time. For
example, in an environment with a decision support system (DSS)
database and an online transaction processing (OLTP) database, the
System Administrator can roll the DSS database to an earlier
specified time to compare data between the earlier version and the
current version.

• If a user inadvertently destroys data, such as dropping an important
table, you can use the until_time option to back out the errant
command by rolling forward the database to a point just before the
data was destroyed.

• To effectively use the until_time option after data has been destroyed, you
must know the exact time the error took place. You can find out by
executing a select getdate() command immediately after the error. For a
more precise time using milliseconds, use the convert function, for
example:

select convert(char(26), getdate(), 109)

Feb 26 1997 12:45:59:650PM

load transaction

342 Adaptive Server Enterprise

• After you load a transaction log using until_time, Adaptive Server restarts
the database’s log sequence. This means that until you dump the database
again, you cannot load subsequent transaction logs after the load
transaction using until_time. Dump the database before you dump another
transaction log.

• Only transactions that committed before the specified time are saved to the
database. However, in some cases, transactions committed shortly after
the until_time specification are applied to the database data. This may occur
when several transactions are committing at the same time. The ordering
of transactions may not be written to the transaction log in time-ordered
sequence. In this case, the transactions that are out of time sequence
reflected in the data that has been recovered. The time should be less than
a second.

• For more information on recovering a database to a specified time, see the
System Administration Guide.

Locking users out during loads

• While you are loading a database, it cannot be in use. load transaction,
unlike load database, does not change the offline/online status of the
database. load transaction leaves the status of the database the way it found
it. load database sets the status of the database to “offline”. No one can use
the database while it is “offline.” The “offline” status prevents users from
accessing and changing the database during a load sequence.

• A database loaded by load database remains inaccessible until online
database is issued.

Upgrading database and transaction log dumps

• To restore and upgrade a user database dump from a version 10.0 or later
server to the current version of Adaptive Server:

a Load the most recent database dump.

b Load, in order, all transaction logs generated after the last database
dump.

c Use online database to do the upgrade.

d Dump the newly upgraded database immediately after the upgrade, to
create a dump that is consistent with the current version of Adaptive
Server.

Specifying dump devices

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

CHAPTER 1 Commands

Reference Manual: Commands 343

• When loading from a local device, you can specify the dump device as:

• An absolute path name

• A relative path name

• A logical device name from the sysdevices system table

Backup Server resolves relative path names, using Adaptive Server’s
current working directory.

• When loading across the network, specify the absolute path name of the
dump device. (You cannot use a relative path name or a logical device
name from the sysdevices system table.) The path name must be valid on
the machine on which the Backup Server is running. If the name includes
any characters other than letters, numbers or the underscore (_), you must
enclose it in quotes.

• Ownership and permissions problems on the dump device may interfere
with use of load commands. sp_addumpdevice adds the device to the
system tables, but does not guarantee that you can load from that device or
create a file as a dump device.

• You can run more than one load (or dump) at the same time, as long as each
one uses a different physical device.

Backup Servers

• You must have a Backup Server running on the same machine as your
Adaptive Server. The Backup Server must be listed in the
master..sysservers table. This entry is created during installation or
upgrade and should not be deleted.

• If your backup devices are located on another machine so that you load
across a network, you must also have a Backup Server installed on the
remote machine.

Volume names

• Dump volumes are labeled according to the ANSI tape-labeling standard.
The label includes the logical volume number and the position of the
device within the stripe set.

load transaction

344 Adaptive Server Enterprise

• During loads, Backup Server uses the tape label to verify that volumes are
mounted in the correct order. This allows you to load from a smaller
number of devices than you used at dump time.

Note When dumping and loading across a network, you must specify the
same number of stripe devices for each operation.

Changing dump volumes

• If Backup Server detects a problem with the currently mounted volume, it
requests a volume change by sending messages to either the client or its
operator console. After mounting another volume, the operator notifies
Backup Server by executing sp_volchanged on any Adaptive Server that
can communicate with Backup Server.

Restoring the system databases

• For step-by-step instructions for restoring the system databases from
dumps, see the System Administration Guide.

Disk mirroring

• At the beginning of a load, Adaptive Server passes the primary device
name of each logical database device and each logical log device to the
Backup Server. If the primary device has been unmirrored, Adaptive
Server passes the name of the secondary device instead. If any named
device fails before the Backup Server completes its data transfer, Adaptive
Server aborts the load.

• If you attempt to unmirror any of the named devices while a load
transaction is in progress, Adaptive Server displays a message. The user
executing disk unmirror can abort the load, or defer disk unmirror until after
the load completes.

• Backup Server loads the data onto the primary device, then load transaction
copies it to the secondary device. load transaction takes longer to complete
if any database device is mirrored.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions load transaction permission defaults to the Database Owner and operators. It is
not transferable.

See also Commands disk unmirror, dump database, dump transaction, load database,
online database

System procedures sp_dboption, sp_helpdb, sp_helpdevice, sp_volchanged

CHAPTER 1 Commands

Reference Manual: Commands 345

lock table
Description Explicitly locks a table within a transaction.

Syntax lock table table_name in {share | exclusive } mode
[wait [numsecs] | nowait]

Parameters table_name
specifies the name of the table to be locked.

share | exclusive
specifies the type of lock, shared or exclusive, to be applied to the table.

wait numsecs
specifies the number of seconds to wait, if a lock cannot be acquired
immediately. If numsecs is omitted, specifies that the lock table command
should wait until lock is granted.

nowait
causes the command to fail if the lock cannot be acquired immediately.

Examples Example 1 Tries to acquire a shared table lock on the titles table. If a
session-level wait has been set with set lock wait, the lock table command waits
for that period of time; otherwise, the server-level wait period is used:

begin transaction
lock table titles in share mode

Example 2 Tries to acquire an exclusive table lock on the authors table. If the
lock cannot be acquired within 5 seconds, the command returns an
informational message. Subsequent commands within the transaction continue
as they would have without lock table:

begin transaction
lock table authors in exclusive mode wait 5

Example 3 If a table lock is not acquired within 5 seconds, the procedure
checks the user’s role. If the procedure is executed by a user with sa_role, the
procedure prints an advisory message and proceeds without a table lock. If the
user does not have sa_role, the transaction is rolled back:

create procedure bigbatch
as
begin transaction
lock table titles in share mode wait 5
if @@error = 12207
begin

/*
** Allow SA to run without the table lock
** Other users get an error message

lock table

346 Adaptive Server Enterprise

*/
if (proc_role("sa_role") = 0)
begin
print "You cannot run this procedure at

this time, please try again later"
rollback transaction
return 100
end

else
begin
print "Couldn't obtain table lock,

proceeding with default locking."
end

end
/* more SQL here */
commit transaction

Usage • If you use lock table as the first statement after the set chained on
command, this creates a new transaction.

• You can use lock table only within a transaction. The table lock is held for
the duration of the transaction.

• The behavior of lock table depends on the wait-time options that are
specified in the command or that are active at the session level or server
level.

• If the wait and nowait option are not specified, lock table uses either the
session-level wait period or the server-level wait period. If a session-level
wait has been set using set lock wait, it is used, otherwise, the server-level
wait period is used.

• If the table lock cannot be obtained with the time limit (if any), the lock
table command returns message 12207. The transaction is not rolled back.
Subsequent commands in the transaction proceed as they would have
without the lock table command.

• You cannot use lock table on system tables or temporary tables.

• You can issue multiple lock table commands in the same transaction.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions You must have select access permission on the table to use lock table in share
mode. You must have delete, insert, or update access permission on the table to
use lock table in exclusive mode.

See also Commands set

CHAPTER 1 Commands

Reference Manual: Commands 347

mount
Description Use the mount command to attach the database to the destination or secondary

Adaptive Server. The mount command decodes the information in the manifest
file and makes the set of databases available. All the required supporting
activities are executed, including adding database devices, if necessary, and
activating them, creating the catalog entries for the new databases, and
recovering them.

Before mounting the databases, use mount with listonly and modify the device
pathnames at the destination Adaptive Server. Then use mount to actually
mount the databases.

The mount limits the number of databases to eight in a single command.

 Warning! For every login that is allowed access to a database on the original
Adaptive Server, a corresponding login for the same suid must exist at the
destination Adaptive Server.

For permissions to remain unchanged, the login maps at the destination
Adaptive Server must be identical to that on the source Adaptive Server.

Syntax mount database all from <manifest_file> [with listonly]

Parameters manifest_file
The manifest file is the binary file that describes the databases that are
present on a set of database devices.

Operations that can perform character translations of the file contents (such
as ftp) corrupt the manifest file unless done in binary mode.

Examples Example 1 Finds the path names listed on the manifest file from the source
Adaptive Server:

mount database all from "/data/sybase2/mfile1" with listonly
go

"/data/sybase1/d0.dbs" = "1dev1"
"/data/sybase2/d14.dbs" = "1dev13"

When you have the path names, you can verify or modify them to meet your
criteria at the destination Adaptive Server.

Example 2 When the database is loaded to the secondary Adaptive Server, you
then mount it.

mount database all from "/data/sybase2/mfile1" using
"/data/sybase2/d0.dbs" = "1dev1",

mount

348 Adaptive Server Enterprise

"/data/sybase2/d14.dbs" = "1dev13"

When the mount process has completed, the database is still offline. Use the
online database command to bring the database online. You do not have to
reboot the server.

Usage Destination changes

Once databases are mounted on the destination Adaptive Server, certain
settings are cleared on the mounted database:

• Replication is turned off.

• Audit settings are cleared and turned off.

• Omni options, default remote location, and type are cleared.

• Cache bindings are dropped for both the mounted databases and their
objects.

• Recovery order is dropped for the mounted databases and becomes the
default dbid order.

System considerations

• You cannot use the mount command in a transaction.

• You cannot mount a database on an HA-configured server.

Performance considerations

When you mount databases onto an Adaptive Server:

• Database IDs for the transported databases must be on the destination
Adaptive Server. If the database ID is already in use in the destination
Adaptive Server, the mount command displays a warning that dbcc
checkalloc must be run on the database. Run checkalloc if the database is
not being mounted for temporary use.

• If the dbid is changed, all procedures are marked for recompiling in the
database. This increases the time it takes to recover the database at the
destination and delays the first execution of the procedure.

Renaming devices

The manifest file contains the device paths known to the source Adaptive
Server that created the manifest file. If the destination Adaptive Server
accesses the devices with a different path, you can specify the new path to the
mount command.

1 Use the mount command with listonly to display the old path:

mount database all from "/work2/Mpubs_file" with listonly

CHAPTER 1 Commands

Reference Manual: Commands 349

go

"/work2/Devices/pubsdat.dat" = "pubs2dat"

2 If the new path for the device pubs2dat is /work2/Devices/pubsdevice.dat,
(the Devices path in Windows) specify the new device in the mount
command:

mount database all from "/work2/Mpubs_file" using
"/work2/datadevices/pubsdevice.dat" = "pubs2dat"

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions mount requires an sa or dba role.

See also Commands unmount, quiesce database

nullif

350 Adaptive Server Enterprise

nullif
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used; alternative for a case expression.

Syntax nullif(expression, expression)

Parameters nullif
compares the values of the two expressions. If the first expression equals the
second expression, nullif returns NULL. If the first expression does not equal
the second expression, nullif returns the first expression.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 249 in Chapter 4, “Expressions, Identifiers, and Wildcard Characters”
of Reference Manual: Building Blocks.

Examples Example 1 Selects the titles and type from the titles table. If the book type is
UNDECIDED, nullif returns a NULL value:

select title,
nullif(type, "UNDECIDED")

from titles

Example 2 This is an alternative way of writing Example 1:

select title,
case

when type = "UNDECIDED" then NULL
else type

end
from titles

Usage • nullif expression alternate for a case expression.

• nullif expression simplifies standard SQL expressions by allowing you to
express a search condition as a simple comparison instead of using a
when...then construct.

• nullif expressions can be used anywhere an expression can be used in SQL.

• At least one result of the case expression must return a non-null value. For
example the following results in an error message:

select price, coalesce (NULL, NULL, NULL)
from titles
All result expressions in a CASE expression must not be NULL.

CHAPTER 1 Commands

Reference Manual: Commands 351

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
“Datatype of mixed-mode expressions” on page 6 in Chapter 1, “System
and User-Defined Datatypes” of Reference Manual: Building Blocks. If
you specify two datatypes that Adaptive Server cannot implicitly convert
(for example, char and int), the query fails.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions nullif permission defaults to all users. No permission is required to use it.

See also Commands case, coalesce, select, if...else, where clause

online database

352 Adaptive Server Enterprise

online database
Description Marks a database available for public use after a normal load sequence; if

needed, upgrades a loaded database to the current version of Adaptive Server;
brings a database online after loading a transaction log dumped with the for
standby_access option.

Syntax online database database_name [for standby_access]

Parameters database_name
specifies the name of the database to be brought online.

for standby_access
brings the database online on the assumption that the database contains no
open transactions.

Examples Example 1 Makes the pubs2 database available for public use after a load
sequence completes:

online database pubs2

Example 2 Brings the database inventory_db online. Used after loading
inventory_db with a transaction-log dump obtained through dump tran...with
standby_access:

online database inventory_db for standby_access

Usage • online database brings a database online for general use after a normal
database or transaction log load sequence.

• When load database is issued, the database’s status is set to “offline.” The
offline status is set in the sysdatabases system table and remains set until
online database completes.

• Do not issue online database until all transaction logs are loaded. The
command sequence is:

• load database

• load transaction (there may be more than one load transaction)

• online database

• If you execute online database against a currently online database, no
processing occurs and no error messages are generated.

• online database...for standby_access can only be used with a transaction
log that was dumped using dump transaction...with standby_access. If you
use online database...for standby_access after loading a transaction log that
was dumped without using dump transaction...with standby access, online
database generates an error message and fails.

CHAPTER 1 Commands

Reference Manual: Commands 353

• You can use sp_helpdb to find out whether a database is currently online,
online for standby access, or offline.

Upgrading databases

• online database initiates, if needed, the upgrade of a loaded database and
transaction log dumps to make the database compatible with the current
version of Adaptive Server. After the upgrade completes, the database is
made available for public use. If errors occur during processing, the
database remains offline.

• online database is required only after a database or transaction log load
sequence. It is not required for new installations or upgrades. When
Adaptive Server is upgraded to a new version, all databases associated
with that server are automatically upgraded.

• online database only upgrades version 10.0 or later user databases.

• After you upgrade a database with online database, dump the newly
upgraded database to create a dump that is consistent with the current
version of Adaptive Server. You must dump the upgraded database before
you can issue a dump transaction command.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only a System Administrator, Database Owner, or user with the Operator role
can execute online database.

See also Commands dump database, dump transaction, load database, load
transaction

System procedures sp_helpdb

open

354 Adaptive Server Enterprise

open
Description Opens a cursor for processing.

Syntax open cursor_name

Parameters cursor_name
is the name of the cursor to open.

Examples Opens the cursor named authors_crsr:

open authors_crsr

Usage • open opens a cursor. Cursors allow you to modify or delete rows on an
individual basis. You must first open a cursor to use the fetch, update, and
delete statements. For more information about cursors, see the
Transact-SQL User’s Guide.

• Adaptive Server returns an error message if the cursor is already open or
if the cursor has not been created with the declare cursor statement.

• Opening the cursor causes Adaptive Server to evaluate the select statement
that defines the cursor (specified in the declare cursor statement) and
makes the cursor result set available for processing.

• When the cursor is first opened, it is positioned before the first row of the
cursor result set.

• When you set the chained transaction mode, Adaptive Server implicitly
begins a transaction with the open statement if no transaction is currently
active.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions open permission defaults to all users.

See also Commands close, declare cursor, fetch

CHAPTER 1 Commands

Reference Manual: Commands 355

order by clause
Description Returns query results in the specified column(s) in sorted order.

Syntax [Start of select statement]

[order by {[table_name.| view_name.]column_name
| select_list_number | expression} [asc | desc]

[,{[table_name.| view_name.] column_name
select_list_number|expression} [asc

|desc]]...]

[End of select statement]

Parameters order by
sorts the results by columns.

asc
sorts the results in ascending order. If you do not specify asc or desc, asc is
assumed.

desc
sorts the results in descending order.

Examples Example 1 Selects the titles whose price is greater than $19.99 and lists them
with the titles in alphabetical order:

select title, type, price
from titles
where price > $19.99
order by title

title
type price

--
------------ -------------------------

But Is It User Friendly?
popular_comp 22.95

Computer Phobic and Non-Phobic Individuals: Behavior Variations
psychology 21.59

Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean
trad_cook 20.95

Secrets of Silicon Valley
popular_comp 20.00

Example 2 Lists the books from the titles table, in descending alphabetical
order of the type, and calculates the average price and advance for each type:

select type, price, advance
from titles
order by type desc

order by clause

356 Adaptive Server Enterprise

compute avg(price), avg(advance) by type

Example 3 Lists the title IDs from the titles table, with the advances divided
by the total sales, ordered from the lowest calculated amount to the highest:

select title_id, advance/total_sales
from titles
order by advance/total_sales

 title_id
 -------- ------------------------
 MC3026 NULL
 PC9999 NULL
 MC2222 0.00
 TC4203 0.26
 PS3333 0.49
 BU2075 0.54
 MC3021 0.67
 PC1035 0.80
 PS2091 1.11
 PS7777 1.20
 BU1032 1.22
 BU7832 1.22
 BU1111 1.29
 PC8888 1.95
 TC7777 1.95
 PS1372 18.67
 TC3218 18.67
 PS2106 54.05

Example 4 Lists book titles and types in order by the type, renaming the
columns in the output:

select title as BookName, type as Type
from titles
order by Type

Usage • order by returns query results in the specified column(s) in sorted order.
order by is part of the select command.

• In Transact-SQL, you can use order by to sort items that do not appear in
the select list. You can sort by a column heading, a column name, an
expression, an alias name (if specified in the select list), or a number
representing the position of the item in the select list (select_list_number).

• If you sort by select_list_number, the columns to which the order by clause
refers must be included in the select list, and the select list cannot be *
(asterisk).

CHAPTER 1 Commands

Reference Manual: Commands 357

• Use order by to display your query results in a meaningful order. Without
an order by clause, you cannot control the order in which Adaptive Server
returns results.

Restrictions

• The maximum number of columns allowed in an order by clause is 31.

• order by cannot be used on text or image datatype columns.

• Subqueries and view definitions cannot include an order by clause (or a
compute clause or the keyword into). Conversely, you cannot use a
subquery in an order by list.

• You cannot update the result set of a server- or language- type cursor if it
contains an order by clause in its select statement. For more information
about the restrictions applied to updatable cursors, see the Transact-SQL
User’s Guide.

• If you use compute by, you must also use an order by clause. The
expressions listed after compute by must be identical to or a subset of those
listed after order by, must be in the same left-to-right order, must start with
the same expression, and must not skip any expressions. For example, if
the order by clause is:

order by a, b, c

the compute by clause can be any (or all) of these:

compute by a, b, c
compute by a, b
compute by a

The keyword compute can be used without by to generate grand totals,
grand counts, and so on. In this case, order by is optional.

Collating sequences

• With order by, null values precede all others.

• The sort order (collating sequence) on your Adaptive Server determines
how your data is sorted. The sort order choices are binary, dictionary,
case-insensitive, case-insensitive with preference, and case- and
accent-insensitive. Sort orders that are specific to specific national
languages may also be provided.

order by clause

358 Adaptive Server Enterprise

Table 1-31: Effect of sort order choices

• sp_helpsort reports the sort order installed on Adaptive Server.

Sort rules

• When two rows have equivalent values in Adaptive Server’s sort order, the
following rules are used to order the rows:

• The values in the columns named in the order by clause are compared.

• If two rows have equivalent column values, the binary value of the
entire rows is compared byte by byte. This comparison is performed
on the row in the order in which the columns are stored internally, not
the order of the columns as they are named in the query or in the
original create table clause. In brief, data is stored with all the
fixed-length columns, in order, followed by all the variable length
columns, in order.

• If rows are equal, row IDs are compared.

Given this table:

create table sortdemo (lname varchar(20),
init char(1) not null)

and this data:

lname init
---------- ----
Smith B
SMITH C

Adaptive Server sort order Effects on order by results

Binary order Sorts all data according to the numeric byte-value of each character in the
character set. Binary order sorts all uppercase letters before lowercase letters.
Binary sort order is the only option for multibyte character sets.

Dictionary order Sorts uppercase letters before their lowercase counterparts (case-sensitive).
Dictionary order recognizes the various accented forms of a letter and sorts
them after the unaccented form.

Dictionary order, case-insensitive Sorts data in dictionary order but does not recognize case differences.
Uppercase letters are equivalent to their lowercase counterparts and are sorted
as described in “Sort rules” in the following section.

Dictionary order, case-insensitive
with preference

Sorts an uppercase letter in the preferred position, before its lowercase version.
It does not recognize case difference when performing comparisons (for
example, in where clauses).

Dictionary order, case- and
accent-insensitive

Sorts data in dictionary order, but does not recognize case differences; treats
accented forms of a letter as equivalent to the associated unaccented letter. It
intermingles accented and unaccented letters in sorting results.

CHAPTER 1 Commands

Reference Manual: Commands 359

smith A

you get these results when you order by lname:

lname init
---------- ----
smith A
Smith B
SMITH C

Since the fixed-length char data (the init column) is stored first
internally, the order by sorts these rows based on the binary values
“Asmith”, “BSmith” and “CSMITH”.

However, if the init is of type varchar, the lname column is stored first,
and then the init column. The comparison takes place on the binary
values “SMITHC”, “SmithB”, and “smithA”, and the rows are
returned in that order.

Descending scans

• Use of the keyword desc in an order by clause allows the query optimizer
to choose a strategy that eliminates the need for a worktable and a sort step
to return results in descending order. This optimization scans the page
chain of the index in reverse order, following the previous page pointers
on each index page.

To use this optimization, the columns in the order by clause must match the
index order. They can be a subset of the keys, but must be a prefix subset,
that is, they must include the first key(s). The descending scan
optimization cannot be used if the columns named in the order by clause
are a superset of the index keys.

If the query involves a join, all tables can be scanned in descending key
order, as long as the requirements for a prefix subset of keys are met.
Descending scan optimization can also be used for one or more tables in a
join, while other tables are scanned in ascending order.

• If other user processes are scanning forward to perform updates or deletes,
performing descending scans can cause deadlocks. Deadlocks may also be
encountered during page splits and shrinks. You can use sp_sysmon to
track deadlocks on your server, or you can use the configuration parameter
print deadlock information to send deadlock information to the error log.

• If your applications need to return results in descending order, but the
descending scans optimization creates deadlock problems, some possible
workarounds are:

order by clause

360 Adaptive Server Enterprise

• Use transaction isolation level 0 scans for descending scans. For more
information on the effect of isolation level 0 reads, see the
Performance and Tuning Guide.

• Disable descending scan optimization with the configuration
parameter allow backward scans so that all queries that use desc scan
the table in ascending order and sort the result set into descending
order. For more information, see the System Administration Guide.

• Break problematical descending scans into two steps, selecting the
required rows into a temporary table in ascending order in the first
step, and selecting from the temporary table in descending order in the
second step.

• If a backward scan uses a clustered index that contains overflow pages
because duplicate key values are present, the result set returned by the
descending scan may not be in exact reverse order of the result set that is
returned with an ascending scan. The specified key values are returned in
order, but the order of the rows for the identical keys on the overflow pages
may be different. For an explanation of how overflow pages in clustered
indexes are stored, see the Performance and Tuning Guide.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Specifying new column headings in the order by clause of a select statement
when the union operator is used is a Transact-SQL extension.

See also Commands compute clause, declare, group by and having clauses, select,
where clause

System procedures sp_configure, sp_helpsort, sp_lock, sp_sysmon

CHAPTER 1 Commands

Reference Manual: Commands 361

prepare transaction
Description Used by DB-Library in a two-phase commit application to see if a server is

prepared to commit a transaction.

Syntax prepare tran[saction]

Usage • For more information, see the Open Client DB-Library Reference Manual.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

See also Commands begin transaction, begin transaction, rollback, save transaction

print

362 Adaptive Server Enterprise

print
Description Prints a user-defined message on the user’s screen.

Syntax print
{format_string | @local_variable |
@@global_variable}

[, arg_list]

Parameters format_string
can be either a variable or a string of characters. The maximum length of
format_string is 1023 bytes.

Format strings can contain up to 20 unique placeholders in any order. These
placeholders are replaced with the formatted contents of any arguments that
follow format_string when the text of the message is sent to the client.

To allow reordering of the arguments when format strings are translated to
a language with a different grammatical structure, the placeholders are
numbered. A placeholder for an argument appears in this format:
“ %nn !”—a percent sign (%), followed by an integer from 1 to 20, followed
by an exclamation point (!). The integer represents the argument number in
the string in the argument list. “%1!” is the first argument in the original
version, “%2!” is the second argument, and so on.

Indicating the position of the argument in this way makes it possible to
translate correctly, even when the order in which the arguments appear in the
target language is different.

For example, assume the following is an English message:

%1! is not allowed in %2!.

The German version of this message is:

%1! ist in %2! nicht zulassig.

@local_variable
must be of type char, nchar, varchar, or nvarchar, and must be declared
within the batch or procedure in which it is used.

@@global_variable
must be of type char or varchar, or be automatically convertible to these
types, such as @@version. Currently, @@version is the only character-type
global variable.

CHAPTER 1 Commands

Reference Manual: Commands 363

arg_list
may be a series of either variables or constants separated by commas.
arg_list is optional unless a format string containing placeholders of the
form “%nn !” is provided. In that case, the arg_list must have at least as
many arguments as the highest numbered placeholder. An argument can be
any datatype except text or image; it is converted to a character datatype
before being included in the final message.

Examples Example 1 Prints “Berkeley author” if any authors in the authors table live in
the 94705 ZIP code:

if exists (select postalcode from authors
where postalcode = '94705')
print "Berkeley author"

Example 2 Declares a variable, assigns a value to the variable, and prints the
value:

declare @msg char(50)
select @msg = "What's up, doc?"
print @msg

What's up, doc?

Example 3 Demonstrates the use of variables and placeholders in messages:

declare @tabname varchar(30)
select @tabname = "titles"

declare @username varchar(30)
select @username = "ezekiel"

print "The table '%1!' is not owned by the user '%2!'.",
@tabname, @username

The table 'titles' is not owned
by the user 'ezekiel.'

Usage • The maximum output string length of format_string plus all arguments
after substitution is 1024 bytes.

• If you use placeholders in a format string, keep this in mind: for each
placeholder n in the string, the placeholders 1 through n- 1 must also exist
in the same string, although they do not have to be in numerical order. For
example, you cannot have placeholders 1 and 3 in a format string without
having placeholder 2 in the same string. If you omit a number in a format
string, an error message is generated when print is executed.

print

364 Adaptive Server Enterprise

• The arg_list must include an argument for each placeholder in the
format_string, or the transaction is aborted. You can use more arguments
than placeholders.

• To include a literal percent sign as part of the error message, use two
percent signs (‘‘%%’’) in the format_string. If you include a single percent
sign (‘‘%’’) in the format_string that is not used as a placeholder, Adaptive
Server returns an error message.

• If an argument evaluates to NULL, it is converted into a zero-length
character string. If you do not want zero-length strings in the output, use
the isnull function. For example, if @arg is null, the following statement
prints I think we have nothing here.:

declare @arg varchar(30)
select @arg = isnull(col1, "nothing") from
table_a where ...
print "I think we have %1! here", @arg

• User-defined messages can be added to the system table sysusermessages
for use by any application. Use sp_addmessage to add messages to
sysusermessages; use sp_getmessage to retrieve messages for use by print
and raiserror.

• Use raiserror instead of print to print a user-defined error message and have
the error number stored in @@error.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions print permission defaults to all users. No permission is required to use it.

See also Commands declare, raiserror

System procedures sp_addmessage, sp_getmessage

CHAPTER 1 Commands

Reference Manual: Commands 365

quiesce database
Description Suspends and resumes updates to a specified list of databases.

Syntax quiesce database < tag_name > hold < dbname list > [for external dump]
[to <manifest_file> [with override]]

or:

quiesce database tag_name release

Parameters tag_name
is a user-defined name that designates the list of databases to hold or release.
The tag_name must conform to the rules for identifiers.

database
is a database name.

for external dump
specifies that while updates to the databases in the list are suspended, you
will physically copy all affected database devices, using some facility
external to Adaptive Server. The copy operation is to serve as a replacement
for the combination of dump database and load database.

manifest_file
the binary file which describes the databases that are present on a set of
database devices. It can be created only if the set of databases that occupy
those devices are isolated, self-contained on those devices.

Since the manifest file is a binary file, operations that can do character
translations of the file contents (such as ftp) will corrupt the file unless done
in binary mode

Examples Example 1 Suspends update activity on salesdb and ordersdb:

quiesce database report_dbs hold salesdb, ordersdb

Example 2 Resumes update activity on the databases labeled report_dbs:

quiesce database report_dbs release

Example 3 Suspends update activity to the pubs2 database and signifies your
intent to make an external copy of this database:

quiesce database pubs_tag hold pubs2 for external dump

Example 4 Used to create a manifest file for a database that is going to be
copied to another Adaptive Server:

quiesce database pubs_tag hold pubs2 for external dump to
"/work2/sybase1/mpubs_file", with override

quiesce database

366 Adaptive Server Enterprise

Usage • quiesce database used with the hold keyword suspends all updates to the
specified database. Transactions cannot update data in suspended
databases, and background tasks such as the checkpoint process and
housekeeper process skip all databases that are in the suspended state.

• quiesce database used with the release keyword allows updates to resume
on databases that were previously suspended.

• quiesce database used with the for external dump clause signifies that you
intend to make an external copy of the database. It serves to replace a
combination of dump and load database.

• The quiesce database hold and release commands need not be executed
from the same user session.

• If the databases specified in the quiesce database hold command contain
distributed or multidatabase transactions that are in the prepared state,
Adaptive Server waits during a five-second timeout period for those
transactions to complete. If the transactions do not complete during the
timeout period, quiesce database hold fails.

• If Adaptive Server is executing a dump database or dump transaction
command on a database specified in quiesce database hold, the database is
suspended only after the dump command completes.

• If you execute a dump database or dump transaction command on a
database while updates to the database are suspended, Adaptive Server
blocks those commands until the database is released with quiesce
database release.

• You can specify a maximum of eight databases in a single quiesce
database hold command. If you must suspend updates to additional
databases, execute additional quiesce database hold commands.

• To duplicate or copy databases, use quiesce database with the extension
for creating the manifest file. The quiesce database effects the quiesce hold
by blocking writes in the database, and then creates the manifest file. The
command then returns control of the database to the user. You can now use
a utility to copy the database to another Adaptive Server. These rules for
quiesce database hold must be followed for the copy operation:

• The copy operation cannot begin until the quiesce database hold
process has completed.

• Every device for every database in the quiesce database command
must be copied.

CHAPTER 1 Commands

Reference Manual: Commands 367

• The copy process must complete before you invoke the quiesce
database release.

Permissions quiesce database permission defaults to System Administrators.

See also Commands dump database, dump transaction, mount, unmount

System procedures sp_helpdb, sp_who

raiserror

368 Adaptive Server Enterprise

raiserror
Description Prints a user-defined error message on the user’s screen and sets a system flag

to record that an error condition has occurred.

Syntax raiserror error_number
[{format_string | @local_variable}] [, arg_list]
[with errordata restricted_select_list]

Parameters error_number
is a local variable or an integer with a value greater than 17,000. If the
error_number is between 17,000 and 19,999, and format_string is missing
or empty (""), Adaptive Server retrieves error message text from the
sysmessages table in the master database. These error messages are used
chiefly by system procedures.

If error_number is 20,000 or greater and format_string is missing or empty,
raiserror retrieves the message text from the sysusermessages table in the
database from which the query or stored procedure originates. Adaptive
Server attempts to retrieve messages from either sysmessages or
sysusermessages in the language defined by the current setting of
@@langid.

format_string
is a string of characters with a maximum length of 1024 bytes. Optionally,
you can declare format_string in a local variable and use that variable with
raiserror (see @local_variable).

raiserror recognizes placeholders in the character string that is to be printed
out. Format strings can contain up to 20 unique placeholders in any order.
These placeholders are replaced with the formatted contents of any
arguments that follow format_string, when the text of the message is sent to
the client.

To allow reordering of the arguments, when format strings are translated to
a language with a different grammatical structure, the placeholders are
numbered. A placeholder for an argument appears in this format: “%nn!”—
a percent sign (%), followed by an integer from 1 to 20, followed by an
exclamation point (!). The integer represents the argument number in the
string in the argument list. “%1!” is the first argument in the original version,
“%2!” is the second argument, and so on.

Indicating the position of the argument in this way makes it possible to
translate correctly, even when the order in which the arguments appear in the
target language is different from their order in the source language.

For example, assume the following is an English message:

CHAPTER 1 Commands

Reference Manual: Commands 369

%1! is not allowed in %2!.

The German version of this message is:

%1! ist in %2! nicht zulassig.

@local_variable
is a local variable containing the format_string value. It must be of type char
or varchar and must be declared within the batch or procedure in which it is
used.

arg_list
is a series of variables or constants separated by commas. arg_list is optional
unless a format string containing placeholders of the form “%nn !” is
provided. An argument can be any datatype except text or image; it is
converted to the char datatype before being included in the final string.

If an argument evaluates to NULL, Adaptive Server converts it to a
zero-length char string.

with errordata
supplies extended error data for Client-Library™ programs.

restricted_select_list
consists of one or more of the following items:

• “*”, representing all columns in create table order.

• A list of column names in the order in which you want to see them.
When selecting an existing IDENTITY column, you can substitute the
syb_identity keyword, qualified by the table name, where necessary, for
the actual column name.

• A specification to add a new IDENTITY column to the result table:

column_name = identity(precision)

• A replacement for the default column heading (the column name), in
the following forms:

column_heading = column_name
column_name column_heading

raiserror

370 Adaptive Server Enterprise

column_name as column_heading

The column heading may be enclosed in quotation marks for any of
these forms. The heading must be enclosed in quotation marks if it is
not a valid identifier (that is, if it is a reserved word, if it begins with a
special character, or if it contains spaces or punctuation marks).

• An expression (a column name, constant, function, or any combination
of column names, constants, and functions connected by arithmetic or
bitwise operators, or a subquery).

• A built-in function or an aggregate.

• Any combination of the items listed above.

The restricted_select_list can also perform variable assignment, in the form:

@variable = expression
[, @variable = expression ...]

Restrictions to restricted_select_list are:

• You cannot combine variable assignment with any of the other
restricted_select_list options.

• You cannot use from, where, or other select clauses in
restricted_select_list.

• You cannot use “*” to represent all columns in restricted_select_list.

For more information, see the Transact-SQL User’s Guide.

Examples Example 1 This stored procedure example returns an error if it does not find
the table supplied with the @tabname parameter:

create procedure showtable_sp @tabname varchar(18)
as
if not exists (select name from sysobjects

where name = @tabname)
begin

raiserror 99999 "Table %1! not found.",
@tabname

end
else

begin
select sysobjects.name, type, crdate, indid
from sysindexes, sysobjects
where sysobjects.name = @tabname
and sysobjects.id = sysindexes.id

end

CHAPTER 1 Commands

Reference Manual: Commands 371

Example 2 This example adds a message to sysusermessages, then tests the
message with raiserror, providing the substitution arguments:

sp_addmessage 25001,
"There is already a remote user named '%1!'
for remote server '%2!'."

raiserror 25001, jane, myserver

Example 3 This example uses the with errordata option to return the extended
error data column and server to a client application, to indicate which column
was involved and which server was used:

raiserror 20100 "Login must be at least 5
characters long" with errordata "column" =
"login", "server" = @@servername

Usage • User-defined messages can be generated ad hoc, as in Example 1 and
Example 3, or they can be added to the system table sysusermessages for
use by any application, as shown in Example 2. Use sp_addmessage to
add messages to sysusermessages; use sp_getmessage to retrieve
messages for use by print and raiserror.

• Error numbers for user-defined error messages must be greater than
20,000. The maximum value is 2,147,483,647 (231 -1).

• The severity level of all user-defined error messages is 16. This level
indicates that the user has made a a nonfatal error.

• The maximum output string length of format_string plus all arguments
after substitution is 1024 bytes.

• If you use placeholders in a format string, keep this in mind: for each
placeholder n in the string, the placeholders 1 through n-1 must exist in the
same string, although they do not have to be in numerical order. For
example, you cannot have placeholders 1 and 3 in a format string without
having placeholder 2 in the same string. If you omit a number in a format
string, an error message is generated when raiserror is executed.

• If there are too few arguments relative to the number of placeholders in
format_string, an error message displays and the transaction is aborted.
You can have more arguments than placeholders in format_string.

• To include a literal percent sign as part of the error message, use two
percent signs (‘‘%%’’) in the format_string. If you include a single percent
sign (‘‘%’’) in the format_string that is not used as a placeholder, Adaptive
Server returns an error message.

raiserror

372 Adaptive Server Enterprise

• If an argument evaluates to NULL, it is converted into a zero-length char
string. If you do not want zero-length strings in the output, use the isnull
function.

• When raiserror is executed, the error number is placed in the global
variable @@error, which stores the error number that was most recently
generated by the system.

• Use raiserror instead of print if you want an error number stored in
@@error.

• To include an arg_list with raiserror, put a comma after error_number or
format_string before the first argument. To include extended error data,
separate the first extended_value from error_number, format_string, or
arg_list using a space (not a comma).

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions raiserror permission defaults to all users. No permission is required to use it.

See also Commands declare, print

System procedures sp_addmessage, sp_getmessage

CHAPTER 1 Commands

Reference Manual: Commands 373

readtext
Description Reads text and image values, starting from a specified offset and reading a

specified number of bytes or characters.

Syntax readtext [[database.]owner.]table_name.column_name
text_pointer offset size
[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {

[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3] }]

Parameters table_name.column_name
is the name of the text or image column. You must include the table name.
Specify the database name if the table is in another database, and specify the
owner’s name if more than one table of that name exists in the database. The
default value for owner is the current user, and the default value for database
is the current database.

text_pointer
is a varbinary(16) value that stores the pointer to the text or image data. Use
the textptr function to determine this value (see Example 1). text and image
data is not stored in the same set of linked pages as other table columns. It
is stored in a separate set of linked pages. A pointer to the actual location is
stored with the data; textptr returns this pointer.

offset
specifies the number of bytes or characters to skip before starting to read text
or image data.

size
specifies the number of bytes or characters of data to read.

holdlock
causes the text value to be locked for reads until the end of the transaction.
Other users can read the value, but they cannot modify it.

noholdlock
prevents the server from holding any locks acquired during the execution of
this statement, regardless of the transaction isolation level currently in
effect. You cannot specify both a holdlock and a noholdlock option in a query.

readpast
specifies that readtext should silently skip rows with exclusive locks,
without waiting and without generating a message.

readtext

374 Adaptive Server Enterprise

using
specifies whether readtext interprets the offset and size parameters as a
number of bytes (bytes) or as a number of textptr characters (chars or
characters are synonymous). This option has no effect when used with a
single-byte character set or with image values (readtext reads image values
byte by byte). If the using option is not given, readtext interprets the size and
offset arguments as bytes.

at isolation
specifies the isolation level (0, 1, or 3) of the query. If you omit this clause,
the query uses the isolation level of the session in which it executes
(isolation level 1 by default). If you specify holdlock in a query that also
specifies at isolation read uncommitted, Adaptive Server issues a warning and
ignores the at isolation clause. For the other isolation levels, holdlock takes
precedence over the at isolation clause.

read uncommitted
specifies isolation level 0 for the query. You can specify 0 instead of read
uncommitted with the at isolation clause.

read committed
specifies isolation level 1 for the query. You can specify “1” instead of read
committed with the at isolation clause.

repeatable read
specifies isolation level 2 for the query. You can specify “2” instead of
serializable with the at isolation clause.

serializable
specifies isolation level 3 for the query. You can specify “3” instead of
serializable with the at isolation clause.

Examples Example 1 Selects the second through the sixth character of the copy column:

declare @val varbinary(16)
select @val = textptr(copy) from blurbs
where au_id = "648-92-1872"
readtext blurbs.copy @val 1 5 using chars

Example 2

declare @val varbinary(16)
select @val = textptr(copy) from blurbs readpast
where au_id = "648-92-1872"
readtext blurbs.copy @val 1 5 readpast using chars

CHAPTER 1 Commands

Reference Manual: Commands 375

Usage • The textptr function returns a 16-byte binary string (text pointer) to the text
or image column in the specified row or to the text or image column in the
last row returned by the query, if more than one row is returned. It is best
to declare a local variable to hold the text pointer, then use the variable
with readtext.

• The value in the global variable @@textsize, which is the limit on the
number of bytes of data to be returned, supersedes the size specified for
readtext if it is less than that size. Use set textsize to change the value of
@@textsize.

• When using bytes as the offset and size, Adaptive Server may find partial
characters at the beginning or end of the text data to be returned. If it does,
and character set conversion is on, the server replaces each partial
character with a question mark (?) before returning the text to the client.

• Adaptive Server must determine the number of bytes to send to the client
in response to a readtext command. When the offset and size are in bytes,
determining the number of bytes in the returned text is simple. When the
offset and size are in characters, the server must calculate the number of
bytes being returned to the client. As a result, performance may be slower
when using characters as the offset and size. The using characters option is
useful only when Adaptive Server is using a multibyte character set: it
ensures that readtext will not return partial characters.

• You cannot use readtext on text and image columns in views.

• If you attempt to use readtext on text values after changing to a multibyte
character set, and you have not run dbcc fix_text, the command fails, and
an error message instructs you to run dbcc fix_text on the table.

Using the readpast option

• readpast applies only to data-only-locked tables. readpast is ignored if it
is specified for an allpages-locked table.

• The readpast option is incompatible with the holdlock option. If both are
specified in a command, an error is generated and the command
terminates.

• If readtext specifies at isolation read uncommitted, readpast generates a
warning, but does not terminate the command.

• If the statement isolation level is set to 3, readpast generates an error and
terminates the command.

• If the session-wide isolation level is 3, readpast is silently ignored.

readtext

376 Adaptive Server Enterprise

• If the session-wide isolation level is 0, readpast generates a warning, but
does not terminate the command.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions readtext requires select permission on the table. readtext permission is
transferred when select permission is transferred.

See also Commands set, writetext

System procedures text and image datatypes

CHAPTER 1 Commands

Reference Manual: Commands 377

reconfigure
Description The reconfigure command currently has no effect; it is included to allow

existing scripts to run without modification. In earlier version, reconfigure was
required after sp_configure to implement new configuration parameter settings.

Syntax reconfigure

Usage Note If you have scripts that include reconfigure, change them at your earliest
convenience. Although reconfigure is included in this version, it may not
continue to be supported in subsequent versions.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions reconfigure permission defaults to System Administrators and is not
transferable.

See also System procedures sp_configure

remove java

378 Adaptive Server Enterprise

remove java
Description Removes one or more Java-SQL classes, packages, or JARs from a database.

Use when Java classes are installed in the database. Refer to Java in Adaptive
Server Enterprise for more information.

Syntax remove java
class class_name [, class_name]...

| package package_name [, package_name]...
| jar jar_name [, jar_name]...[retain classes]

Parameters class class_name
the name of one or more Java classes to be removed from the database. The
classes must be installed in the current database.

package package_name
the name of one or more Java packages to be removed. The packages must
be stored in the current database.

jar jar_name
either a SQL identifier or character string value of up to 30 bytes that
contains a valid SQL identifier.

Each jar_name must be equal to the name of a retained JAR in the current
database.

retain classes
specifies that the named JARs are no longer retained in the database, and the
retained classes have no associated JAR.

Usage • If a remove java statement is contained in a stored procedure, the current
database is the database that is current when the procedure is created, not
the database that is current when the procedure is called.

If a remove java statement is not contained in a stored procedure, the
current database is the database that is current when the remove statement
is executed.

• If class or package is specified and any removed class has an associated
JAR, then an exception is raised.

• If any stored procedure, table, or view contains a reference to a removed
class as the datatype of a column, variable, or parameter, then an exception
is raised.

• All removed classes are:

• Deleted from the current database.

CHAPTER 1 Commands

Reference Manual: Commands 379

• Unloaded from the Java Virtual Machine (Java VM) of the current
connection. The removed classes are not unloaded from the Java VMs
of other connections.

• If any exception is raised during the execution of remove java, then all
actions of remove java are cancelled.

• You cannot remove a Java-SQL class if that class is directly referenced by
a SQLJ stored procedure or function.

• To remove a Java-SQL class from the database, you must:

a Delete all SQLJ stored procedures or functions that directly reference
the class using drop procedure and/or drop function.

b Delete the Java-SQL class from the database using remove java.

Locks

• When you use remove java, an exclusive table lock is placed on sysxtypes.

• If jar is specified, then an exclusive table lock is placed on sysjars.

Permissions You must be a System Administrator or Database Owner to use remove java.

See also System procedures – sp_helpjava

System tables – sysjars, sysxtypes

Utilities – extractjava, installjava

reorg

380 Adaptive Server Enterprise

reorg
Description Reclaims unused space on pages, removes row forwarding, or rewrites all rows

in the table to new pages, depending on the option used.

Syntax reorg reclaim_space tablename [indexname]
[with {resume, time = no_of_minutes}]

reorg forwarded_rows tablename
[with {resume,time = no_of_minutes}]

reorg compact tablename
[with {resume, time = no_of_minutes}]

reorg rebuild tablename [indexname]

Parameters reclaim_space
reclaims unused space left by deletes and updates. For each data page in a
table, if there is unused space resulting from committed deletes or
row-shortening updates, reorg reclaim_space rewrites the current rows
contiguously, leaving all unused space at the end of the page. If there are no
rows on the page, the page is deallocated.

tablename
specifies the name of the table to be reorganized. If indexname is specified,
only the index is reorganized.

indexname
specifies the name of the index to be reorganized.

with resume
initiates reorganization from the point at which a previous reorg command
terminated. Used when the previous reorg command specified a time limit
(time = no_of_minutes).

with time = no_of_minutes
specifies the number of minutes that the reorg command is to run.

forwarded_rows
removes row forwarding.

compact
combines the functions of reorg reclaim_space and reorg forwarded_rows to
both reclaim space and undo row forwarding in the same pass.

CHAPTER 1 Commands

Reference Manual: Commands 381

rebuild
if a table name is specified, rewrites all rows in a table to new pages, so that
the table is arranged according to its clustered index (if one exists), with all
pages conforming to current space management settings and with no
forwarded rows and no gaps between rows on a page. If an index name is
specified, reorg rebuilds that index while leaving the table accessible for
read and update activities.

Examples Example 1 Reclaims unused page space in the titles table:

reorg reclaim_space titles

Example 2 Reclaims unused page space in the index titleind:

reorg reclaim_space titles titleind

Example 3 Initiates reorg compact on the titles table. reorg starts at the
beginning of the table and continues for 120 minutes. If the reorg completes
within the time limit, it returns to the beginning of the table and continues until
the full time period has elapsed:

reorg compact titles with time = 120

Example 4 Initiates reorg compact at the point where the previous reorg
compact stopped and continues for 30 minutes:

reorg compact titles with resume, time = 30

Usage • The table specified in reorg must have a datarows or datapages locking
scheme.

• You cannot issue reorg within a transaction.

• reorg rebuild requires that you set the database option select
into/bulkcopy/pllsort to true and run checkpoint in the database.

• reorg rebuild requires additional disk space equal to the size of the table and
its indexes. You can find out how much space a table currently occupies
by using sp_spaceused. You can use sp_helpsegment to check the amount
of space available.

• After running reorg rebuild, you must dump the database before you can
dump the transaction log.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions You must be a System Administrator or the object owner to issue the reorg
command.

See also Documents For more information, see the System Administration Guide.

System procedures sp_chgattribute

return

382 Adaptive Server Enterprise

return
Description Exits from a batch or procedure unconditionally and provides an optional

return status. Statements following return are not executed.

Syntax return [integer_expression] [plan "abstract plan"]

Parameters integer_expression
is the integer value returned by the procedure. Stored procedures can return
an integer value to a calling procedure or an application program.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan specified in the abstract plan language. Plans can only be
specified for optimizable SQL statements, that is, queries that access tables.
See Chapter 30, “Creating and Using Abstract Plans,” in the Performance
and Tuning Guide for more information.

Examples Example 1 If no user name is given as a parameter, the return command causes
the procedure to exit after a message has been sent to the user’s screen. If a user
name is given, the names of the rules created by that user in the current
database are retrieved from the appropriate system tables:

create procedure findrules @nm varchar(30) = null as
if @nm is null
begin

print "You must give a user name"
return

end
else
begin

select sysobjects.name, sysobjects.id,
sysobjects.uid
from sysobjects, master..syslogins

where master..syslogins.name = @nm
and sysobjects.uid = master..syslogins.suid
and sysobjects.type = "R"

end

Example 2 If the updates cause the average price of business titles to exceed
$15, the return command terminates the batch before any more updates are
performed on titles:

print "Begin update batch"
update titles

set price = price + $3
where title_id = 'BU2075'

update titles

CHAPTER 1 Commands

Reference Manual: Commands 383

set price = price + $3
where title_id = 'BU1111'

if (select avg(price) from titles
where title_id like 'BU%') > $15

begin
print "Batch stopped; average price over $15"

return
end
update titles

set price = price + $2
where title_id = 'BU1032'

Example 3 This procedure creates two user-defined status codes: a value of 1
is returned if the contract column contains a 1; a value of 2 is returned for any
other condition (for example, a value of 0 on contract or a title_id that did not
match a row):

create proc checkcontract @param varchar(11)
as
declare @status int
if (select contract from titles where title_id = @param)
= 1

return 1
else

return 2

Usage • The return status value can be used in subsequent statements in the batch
or procedure that executed the current procedure, but must be given in the
form:

execute @retval = procedure_name

See execute for more information.

• Adaptive Server reserves 0 to indicate a successful return, and negative
values in the range -1 to -99 to indicate different reasons for failure. If no
user-defined return value is provided, the Adaptive Server value is used.
User-defined return status values must not conflict with those reserved by
Adaptive Server. Numbers 0 and -1 through -14 are currently in use:

return

384 Adaptive Server Enterprise

Table 1-32: Adaptive Server error return values

Values -15 to -99 are reserved for future Adaptive Server use.

• If more than one error occurs during execution, the status with the highest
absolute value is returned. User-defined return values always take
precedence over Adaptive Server-supplied return values.

• The return command can be used at any point where you want to exit from
a batch or procedure. Return is immediate and complete: statements after
return are not executed.

• A stored procedure cannot return a NULL return status. If a procedure
attempts to return a null value, for example, using return @status where
@status is NULL, a warning message is generated, and a value in the
range of 0 to -14 is returned.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions return permission defaults to all users. No permission is required to use it.

See also Commands begin...end, execute, if...else, while

Value Meaning

0 Procedure executed without error

-1 Missing object

-2 Datatype error

-3 Process was chosen as deadlock victim

-4 Permission error

-5 Syntax error

-6 Miscellaneous user error

-7 Resource error, such as out of space

-8 Nonfatal internal problem

-9 System limit was reached

-10 Fatal internal inconsistency

-11 Fatal internal inconsistency

-12 Table or index is corrupt

-13 Database is corrupt

-14 Hardware error

CHAPTER 1 Commands

Reference Manual: Commands 385

revoke
Description Revokes permissions or roles from users or roles.

Syntax To revoke permission to access database objects:

revoke [grant option for]
{all [privileges] | permission_list}
on { table_name [(column_list)]

| view_name [(column_list)]
| stored_procedure_name}

from {public | name_list | role_name}
[cascade]

To revoke permission to select built-in functions:

revoke select
on [builtin] built-in
to { name_list | role_name }

To revoke permission to create database objects, execute set proxy, or execute
set session authorization:

revoke {all [privileges] | command_list }
from {public | name_list | role_name}

To revoke a role from a user or another role:

revoke role {role_name [, role_name ...]} from
{grantee [, grantee ...]}

To revoke access on some dbcc commands.

revoke dbcc {dbcc_command [on {all | database }]
[, dbcc_command [on {all | database }], ...]}

from { user_list | role_list }

Parameters all
when used to revoke permission to access database objects (the first syntax
format), all revokes all permissions applicable to the specified object. All
object owners can use revoke all with an object name to revoke permissions
on their own objects.

Only the System Administrator or the Database Owner can revoke
permission to revoke create command permissions (the second syntax
format). When used by the System Administrator, revoke all revokes all
create permissions (create database, create default, create procedure, create
rule, create table, and create view). When the Database Owner uses revoke
all, Adaptive Server revokes all create permissions except create database,
and prints an informational message.

all does not apply to set proxy or set session authorization.

revoke

386 Adaptive Server Enterprise

permission_list
is a list of permissions to revoke. If more than one permission is listed,
separate them with commas. The following table illustrates the access
permissions that can be granted and revoked on each type of object:

Permissions can be revoked only by the user who granted them.

function_list
is a built-in function. Specifying built-in functions allows you to
differentiate between a table and a grantable built-in function with the same
name. The functions are set_appcontext, get_appcontext, list_appcontext, and
rm_appcontext.

command_list
is a list of commands. If more than one command is listed, separate them
with commas. The command list can include create database, create default,
create procedure, create rule, create table, create view, set proxy, or set
session authorization. create database permission can be revoked only by a
System Administrator and only from within the master database.

set proxy and set session authorization are identical; the only difference is
that set session authorization follows the SQL standard, and set proxy is a
Transact-SQL extension. Revoking permission to execute set proxy or set
session authorization revokes permission to become another user in the
server. Permissions for set proxy or set session authorization can be revoked
only by a System Security Officer, and only from within the master
database.

table_name
is the name of the table on which you are revoking permissions. The table
must be in your current database. Only one object can be listed for each
revoke statement.

column_list
is a list of columns, separated by commas, to which the privileges apply. If
columns are specified, only select and update permissions can be revoked.

Object permission_list can include

Table select, insert, delete, update, references

View select, insert, delete, update

Column select, update, references

Column names can be specified in either
permission_list or column_list (see Example 2).

Stored procedure execute

CHAPTER 1 Commands

Reference Manual: Commands 387

view_name
is the name of the view on which you are revoking permissions. The view
must be in your current database. Only one object can be listed for each
revoke statement.

stored _procedure_name
is the name of the stored procedure on which you are revoking permissions.
The stored procedure must be in your current database. Only one object can
be listed for each revoke statement.

public
is all users. For object access permissions, public excludes the object owner.
For object creation permissions or set proxy authorizations, public excludes
the Database Owner. You cannot grant permissions with grant option to
“public” or to other groups or roles.

name_list
is a list of user and/or group names, separated by commas.

role
is the name of a system or user-defined role. Use revoke role to revoke
granted roles from roles or users.

role_name
is the name of a system or user-defined role. This allows you to revoke
permissions from all users who have been granted a specific role. The role
name can be either a system role or a user-defined role created by a System
Security Officer with create role. Either type of role can be granted to a user
with the grant role command. In addition, sp_role can be used to grant system
roles.

grantee
is the name of a system role, user-defined role, or a user, from whom you are
revoking a role.

grant option for
revokes with grant option permissions, so that the user(s) specified in
name_list can no longer grant the specified permissions to other users. If
those users have granted permissions to other users, you must use the
cascade option to revoke permissions from those users. The user specified
in name_list retains permission to access the object, but can no longer grant
access to other users. grant option for applies only to object access
permissions, not to object creation permissions.

revoke

388 Adaptive Server Enterprise

cascade
revokes the specified object access permissions from all users to whom the
revokee granted permissions. Applies only to object access permissions, not
to object creation permissions. When you use revoke without grant option for,
permissions granted to other users by the revokee are also revoked: the
cascade occurs automatically.

dbcc_command
is the name of the dbcc command you are granting. It cannot be a variable.
Table 1-33 on page 393 lists the valid revoke dbcc commands.

database
is the name of the database on which you are granting permissions. It is used
with database-specific dbcc commands to grant permission only on the
target database. The grantee must be a valid user in the target database.
database conforms to the rules for identifiers and cannot be a variable.

If there are multiple granted actions in the same command, database must
be unique.

See “on all | database parameter and server-level commands” on page 394
for more information.

user_list
is a list of users to whom you are granting the permission, and cannot be a
variable.

role_list
is a list of the name of system or user-defined roles to whom you are granting
the permission, and cannot be a variable.

Note You cannot grant or revoke dbcc commands to public or groups.

Examples Example 1 Revokes insert and delete permissions on the titles table from Mary
and the “sales” group:

revoke insert, delete
on titles
from mary, sales

Example 2 Revokes select permission on the get_appcontext function to
“public” (which includes all users):

revoke select on builtin get_appcontext to public

Compare this to the following, which revokes select permission on a table
called get_appcontext, if a table with that name exists:

CHAPTER 1 Commands

Reference Manual: Commands 389

revoke select on get_appcontext to public

Example 3 Two ways to revoke update permission on the price and advance
columns of the titles table from “public”:

revoke update
on titles (price, advance)
from public

or:

revoke update (price, advance)
on titles
from public

Example 4 Revokes permission from Mary and John to use the create
database and create table commands. Because create database permission is
being revoked, this command must be executed by a System Administrator
from within the master database. Mary and John’s create table permission is
revoked only within the master database:

revoke create database, create table from mary, john

Example 5 Revokes permission from Harry and Billy to execute either set
proxy or set session authorization to impersonate another user in the server:

revoke set proxy from harry, billy

Example 6 Revokes permission from users with sso_role to execute either set
proxy or set session authorization:

revoke set session authorization from sso_role

Example 7 Revokes permission from users with vip_role to impersonate
another user in the server. vip_role must be a role defined by a System Security
Officer with the create role command:

revoke set proxy from vip_role

Example 8 Revokes all object creation permissions from Mary in the current
database:

revoke all from mary

Example 9 Revokes all object access permissions on the titles table from
Mary:

revoke all on titles from mary

Example 10 Two ways to revoke Tom’s permission to create a referential
integrity constraint on another table that refers to the price and advance
columns in the titles table:

revoke

390 Adaptive Server Enterprise

revoke references
on titles (price, advance)
from tom

or:

revoke references (price, advance)
on titles
from tom

Example 11 Revokes permission to execute new_sproc from all users who
have been granted the “operator” role:

revoke execute on new_sproc from oper_role

Example 12 Revokes John’s permission to grant insert, update, and delete
permissions on the authors table to other users. Also revokes from other users
any such permissions that John has granted:

revoke grant option for
insert, update, delete
on authors
from john
cascade

Example 13 Revokes “doctor_role” from “specialist_role”:

revoke role doctor_role from specialist_role

Example 14 Revokes “doctor_role” and “surgeon_role” from
“specialist_role” and “intern_role”, and from users Mary and Tom:

revoke role doctor_role, surgeon_role from
specialist_role, intern_role, mary, tom

Example 15 Revokes dbcc privileges from Frank:

1> use pubs2
2> go
1> revoke dbcc checkdb on pubs2 from checkdb_role
2> go
1> use master
2> go
1> revoke dbcc checkdb on all to frank
2> go
...

Usage • See the grant command for more information about permissions.

• You can revoke permissions only on objects in your current database.

• You can revoke only permissions that were granted by you.

CHAPTER 1 Commands

Reference Manual: Commands 391

• You cannot revoke a role from a user while the user is logged in.

• grant and revoke commands are order sensitive. When there is a conflict,
the command issued most recently takes effect.

• The word to can be substituted for the word from in the revoke syntax.

• If you do not specify grant option for in a revoke statement, with grant option
permissions are revoked from the user along with the specified object
access permissions. In addition, if the user has granted the specified
permissions to any other users, all of those permissions are revoked. In
other words, the revoke cascades.

• A grant statement adds one row to the sysprotects system table for each
user, group, or role that receives the permission. If you subsequently
revoke the permission from the user or group, Adaptive Server removes
the row from sysprotects. If you revoke the permission from only selected
group members, but not from the entire group to which it was granted,
Adaptive Server retains the original row and adds a new row for the
revoke.

• Permission to issue create trigger is granted to users by default. When you
revoke permission for a user to create triggers, a revoke row is added in
the sysprotects table for that user. To grant permission to issue create
trigger, you must issue two grant commands. The first command removes
the revoke row from sysprotects; the second inserts a grant row. If you
revoke permission to create triggers, the user cannot create triggers even
on tables that the user owns. Revoking permission to create triggers from
a user affects only the database where the revoke command was issued.

Using the cascade option

• revoke grant option revokes the user’s ability to grant the specified
permission to other users, but does not revoke the permission itself from
that user. If the user has granted that permission to others, you must use the
cascade option; otherwise, you receive an error message and the revoke
fails.

For example, say you revoke the with grant option permissions from the
user Bob on titles, with this statement:

revoke grant option for select
on titles
from bob
cascade

revoke

392 Adaptive Server Enterprise

• If Bob has not granted this permission to other users, this command
revokes his ability to do so, but he retains select permission on the
titles table.

• If Bob has granted this permission to other users, you must use the
cascade option. If you do not, you receive an error message and the
revoke fails. cascade revokes this select permission from all users to
whom Bob has granted it, as well as their ability to grant it to others.

• You cannot use revoke with the cascade option to revoke privileges
granted by the table owner. For example, the owner of a table (UserA) can
grant privileges to another user (UserB) as in this scenario:

create table T1 (...)
grant select on T1 to UserB

However, the System Administrator cannot revoke UserB’s privileges
using the revoke privileges command with the cascade option as in this
statement:

revoke select on T1 from UserA cascade

This statement revokes the select privileges of the table owner, but does
not revoke those privileges from UserB.

By default, all data manipulation language (DML) operations are revoked
implicitly for users other than the table owner. Because the sysprotects
table contains no records indicating that the table owner has granted and
then revoked privileges, the cascade option is not invoked.

You must revoke explicitly the select privilege from UserB.

Revoking set proxy and set session authorization

• To revoke set proxy or set session authorization permission, or to revoke
roles, you must be a System Security Officer, and you must be in the
master database.

• set proxy and set session authorization are identical, with one exception: set
session authorization follows the SQL standard. If you are concerned about
using only SQL standard commands and syntax, use set session
authorization.

• revoke all does not include set proxy or set session authorization
permissions.

CHAPTER 1 Commands

Reference Manual: Commands 393

Revoking from roles, users and groups

• Permissions granted to roles override permissions granted to individual
users or groups. Therefore, if you revoke a permission from a user who has
been granted a role, and the role has that same permission, the user retains
it. For example, say John has been granted the System Security Officer
role, and sso_role has been granted permission on the sales table. If John’s
individual permission on sales is revoked, he can still access sales because
his role permissions override his individual permissions.

• Revoking a specific permission from “public” or from a group also
revokes it from users who were individually granted the permission.

• Database user groups allow you to grant or revoke permissions to more
than one user at a time. A user is always a member of the default group,
“public” and can be a member of only one other group. Adaptive Server’s
installation script assigns a set of permissions to “public.”

Create groups with sp_addgroup and remove groups with sp_dropgroup.
Add new users to a group with sp_adduser. Change a user’s group
membership with sp_changegroup. To display the members of a group, use
sp_helpgroup.

revoke dbcc command options

 Table 1-33 lists the valid revoke dbcc commands.

Table 1-33: dbcc command options

Command
name Description

checkalloc Checks the specified database to make sure all of its pages are correctly allocated, and that there
are no unused allocated pages.

checkcatalog Checks for consistency in and between system tables.

checkdb Runs the same checks as checktable, but on each table in the specified database, including syslogs.

checkstorage Checks the specified database for:

• Allocation

• OAM page entries

• Page consistency

• Text-valued columns

• Allocation of text-valued columns

• Text-column chains

revoke

394 Adaptive Server Enterprise

All of the options in Table 1-33 on page 393 are database-level commands
except for tune, which is a server-level command.

See Chapter 25, “Checking Database Consistency” in the System
Administration Guide for more information on these dbcc commands.

on all | database parameter and server-level commands

The on database parameter specifies the database on which to invoke the
database-level revoke dbcc command. Because on master grants the ability to
use dbcc commands on all databases, on master is the same as on all. You must
be in the master database to use either the on all and on master parameters.

Neither the on database nor on all parameters work when invoking a
server-level grant dbcc command such as dbcc tune, because by doing so, you
are forcing a server-level command to restrict itself to individual databases. For
this reason, using the server-level revoke dbcc tune on master command raises
an error.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Database object access revoke permission for database objects defaults to
object owners. An object owner can revoke permission from other users on his
or her own database objects.

checktable Checks the specified table to make sure that:

• Index and data pages are correctly linked.

• Indexes are correctly sorted.

• All pointers are consistent.

• Data information on each page is reasonable.

• Page offsets are reasonable.

checkverify Verifies the results of the most recent run of dbcc checkstorage for the specified database.

fix_text Upgrades text values after any Adaptive Server character set is converted to a new multibyte
character set.

indexalloc Checks the specified index to make sure all pages are correctly allocated, and that there are no
unused allocated pages.

reindex Checks the integrity of indexes on user tables by running a fast version of dbcc checktable.

tablealloc Checks the specified table to make sure that all pages are correctly allocated, and that there are no
unused allocated pages.

textalloc Checks for a violation of the format of the root page of a text or image index.

tune Enables or disables tuning flags for special performance situations.

Command
name Description

CHAPTER 1 Commands

Reference Manual: Commands 395

Command execution Only a System Administrator can revoke create
database permission, and only from the master database. Only a System
Security Officer can revoke create trigger permission.

Proxy and session authorization Only a System Security Officer can
revoke set proxy or set session authorization, and only from the master database.

Roles You can revoke roles only from the master database. Only a System
Security Officer can revoke sso_role, oper_role, or a user-defined role from a
user or a role. Only System Administrators can revoke sa_role from a user or a
role. Only a user who has both sa_role and sso_role can revoke a role that
includes sa_role.

Database consistency checking Only System Administrators can run
revoke dbcc commands. Database Owners cannot run revoke dbcc.

See also Commands grant, setuser, set

Functions proc_role

System procedures sp_activeroles, sp_adduser, sp_changedbowner,
sp_changegroup, sp_displaylogin, sp_displayroles, sp_dropgroup, sp_dropuser,
sp_helpgroup, sp_helprotect, sp_helpuser, sp_modifylogin, sp_role

rollback

396 Adaptive Server Enterprise

rollback
Description Rolls back a user-defined transaction to the named savepoint in the transaction

or to the beginning of the transaction.

Syntax rollback [tran | transaction | work]
[transaction_name | savepoint_name]

Parameters tran | transaction | work
specifies that you want to roll back the transaction or the work. If you
specify tran, transaction, or work, you can also specify the transaction_name
or the savepoint_name.

transaction_name
is the name assigned to the outermost transaction. It must conform to the
rules for identifiers.

savepoint_name
is the name assigned to the savepoint in the save transaction statement. The
name must conform to the rules for identifiers.

Examples Rolls back the transaction:

begin transaction
delete from publishers where pub_id = "9906"
rollback transaction

Usage • rollback transaction without a transaction_name or savepoint_name rolls
back a user-defined transaction to the beginning of the outermost
transaction.

• rollback transaction transaction_name rolls back a user-defined transaction
to the beginning of the named transaction. Though you can nest
transactions, you can roll back only the outermost transaction.

• rollback transaction savepoint_name rolls a user-defined transaction back
to the matching save transaction savepoint_name.

Restrictions

• If no transaction is currently active, the commit or rollback statement has no
effect.

• The rollback command must appear within a transaction. You cannot roll
back a transaction after commit has been entered.

Rolling back an entire transaction

• rollback without a savepoint name cancels an entire transaction. All the
transaction’s statements or procedures are undone.

CHAPTER 1 Commands

Reference Manual: Commands 397

• If no savepoint_name or transaction_name is given with the rollback
command, the transaction is rolled back to the first begin transaction in the
batch. This also includes transactions that were started with an implicit
begin transaction using the chained transaction mode.

Rolling back to a savepoint

• To cancel part of a transaction, use rollback with a savepoint_name. A
savepoint is a marker set within a transaction by the user with the
command save transaction. All statements or procedures between the
savepoint and the rollback are undone.

After a transaction is rolled back to a savepoint, it can proceed to
completion (executing any SQL statements after that rollback) using
commit, or it can be canceled altogether using rollback without a savepoint.
There is no limit on the number of savepoints within a transaction.

Rollbacks within triggers and stored procedures

• In triggers or stored procedures, rollback statements without transaction or
savepoint names roll back all statements to the first explicit or implicit
begin transaction in the batch that called the procedure or fired the trigger.

• When a trigger contains a rollback command without a savepoint name, the
rollback aborts the entire batch. Any statements in the batch following the
rollback are not executed.

• A remote procedure call (RPC) is executed independently from any
transaction in which it is included. In a standard transaction (that is, not
using Open Client™ DB-Library two-phase commit), commands
executed via an RPC by a remote server are not rolled back with rollback
and do not depend on commit to be executed.

• For complete information on using transaction management statements
and on the effects of rollback on stored procedures, triggers, and batches,
see the Transact-SQL User’s Guide.

Standards ANSI SQL – Compliance level: Entry-level compliant.

Transact-SQL extensions Tthe rollback transaction and rollback tran forms
of the statement and the use of a transaction name.

Permissions rollback permission defaults to “public.” No permission is required to use it.

See also Commands begin transaction, commit, create trigger, save transaction

rollback trigger

398 Adaptive Server Enterprise

rollback trigger
Description Rolls back the work done in a trigger, including the data modification that

caused the trigger to fire, and issues an optional raiserror statement.

Syntax rollback trigger
[with raiserror_statement]

Parameters with raiserror_statement
specifies a raiserror statement, which prints a user-defined error message and
sets a system flag to record that an error condition has occurred. This
provides the ability to raise an error to the client when the rollback trigger is
executed so that the transaction state in the error reflects the rollback. For
information about the syntax and rules defining raiserror_statement, see the
raiserror command.

Examples Rolls back a trigger and issues the user-defined error message 25002:

rollback trigger with raiserror 25002
"title_id does not exist in titles table."

Usage • When rollback trigger is executed, Adaptive Server aborts the currently
executing command and halts execution of the rest of the trigger.

• If the trigger that issues rollback trigger is nested within other triggers,
Adaptive Server rolls back all work done in these triggers up to and
including the update that caused the first trigger to fire.

• Adaptive Server ignores a rollback trigger statement that is executed
outside a trigger and does not issue a raiserror associated with the
statement. However, a rollback trigger statement executed outside a trigger
but inside a transaction generates an error that causes Adaptive Server to
roll back the transaction and abort the current statement batch.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions rollback trigger permission defaults to “public.” No permission is required to
use it.

See also Commands create trigger, raiserror, rollback

CHAPTER 1 Commands

Reference Manual: Commands 399

save transaction
Description Sets a savepoint within a transaction.

Syntax save transaction savepoint_name

Parameters savepoint_name
is the name assigned to the savepoint. It must conform to the rules for
identifiers.

Examples After updating the royaltyper entries for the two authors, insert the savepoint
percentchanged, then determine how a 10 percent increase in the book’s price
would affect the authors’ royalty earnings. The transaction is rolled back to the
savepoint with rollback transaction:

begin transaction royalty_change

update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

update titleauthor
set royaltyper = 35
from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

save transaction percentchanged

update titles
set price = price * 1.1
where title = "The Gourmet Microwave"

select (price * total_sales) * royaltyper
from titles, titleauthor
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id

rollback transaction percentchanged

commit transaction

Usage • For complete information on using transaction statements, see the
Transact-SQL User’s Guide.

save transaction

400 Adaptive Server Enterprise

• A savepoint is a user-defined marker within a transaction that allows
portions of a transaction to be rolled back. rollback savepoint_name rolls
back to the indicated savepoint; all statements or procedures between the
savepoint and the rollback are undone.

Statements preceding the savepoint are not undone—but neither are they
committed. After rolling back to the savepoint, the transaction continues
to execute statements. A rollback without a savepoint cancels the entire
transaction. A commit allows it to proceed to completion.

• If you nest transactions, save transaction creates a savepoint only in the
outermost transaction.

• There is no limit on the number of savepoints within a transaction.

• If no savepoint_name or transaction_name is given with the rollback
command, all statements back to the first begin transaction in a batch are
rolled back, and the entire transaction is canceled.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions save transaction permission defaults to “public.” No permission is required to
use it.

See also Commands begin transaction, commit, rollback

CHAPTER 1 Commands

Reference Manual: Commands 401

select
Description Retrieves rows from database objects.

Syntax select ::=
select [all | distinct] select_list
[into_clause]
[from_clause]
[where_clause]
[group_by_clause]
[having_clause]
[order_by_clause]
[compute_clause]
[read_only_clause]
[isolation_clause]
[browse_clause]
[plan_clause]

select_list ::=

Note For details on select_list, see the parameters description.

into_clause ::=
into [[database.]owner.]table_name
[lock {datarows | datapages | allpages }]

[with into_option [, into_option] ...]

into_option ::=
| max_rows_per_page = num_rows
| exp_row_size = num_bytes
| reservepagegap = num_pages
| identity_gap = gap
[existing table table_name]
[[external type] at “path_name”
[column delimiter delimiter]]

from_clause ::=
from table_reference [,table_reference]...

table_reference ::=
table_view_name | ANSI_join

table_view_name ::=
[[database.]owner.] {{table_name | view_name}
[as] [correlation_name]
[index {index_name | table_name }]
[parallel [degree_of_parallelism]]
[prefetch size][lru | mru]}

[holdlock | noholdlock]
[readpast]
[shared]

select

402 Adaptive Server Enterprise

ANSI_join ::=
table_reference join_type join table_reference

join_conditions
join_type ::= inner | left [outer] | right [outer]
join_conditions ::= on search_conditions

where_clause ::=
where search_conditions

group_by_clause ::=
group by [all] aggregate_free_expression

[, aggregate_free_expression]...

having_clause ::=
having search_conditions

order_by_clause ::=
order by sort_clause [, sort_clause]...

sort_clause ::=
{ [[[database.]owner.]{table_name.|view_name.}]column_name
| select_list_number
| expression }
[asc | desc]

compute_clause ::=
compute row_aggregate(column_name)

[, row_aggregate(column_name)]...
[by column_name [, column_name]...]

read_only_clause ::=
for {read only | update [of column_name_list]}

isolation_clause ::=
at isolation

{ read uncommitted | 0 }
| { read committed | 1 }
| { repeatable read | 2 }
| { serializable | 3 }

browse_clause ::=
for browse

plan_clause ::=
plan "abstract plan"

Parameters all
includes all rows in the results. all is the default.

distinct
includes only unique rows in the results. distinct must be the first word in the
select list. distinct is ignored in browse mode.

Null values are considered equal for the purposes of the keyword distinct:
only one NULL is selected, no matter how many are encountered.

CHAPTER 1 Commands

Reference Manual: Commands 403

select_list
consists of one or more of the following items:

• “*”, representing all columns in create table order.

• A list of column names in the order in which you want to see them.
When selecting an existing IDENTITY column, you can substitute the
syb_identity keyword, qualified by the table name, where necessary, for
the actual column name.

• A specification to add a new IDENTITY column to the result table:

column_name = identity(precision)

• A replacement for the default column heading (the column name), in
one of these forms:

column_heading = column_name
column_name column_heading
column_name as column_heading

The column heading can be enclosed in quotation marks for any of
these forms. The heading must be enclosed in quotation marks if it is
not a valid identifier (that is, if it is a reserved word, if it begins with a
special character, or if it contains spaces or punctuation marks).

• An expression (a column name, constant, function, or any combination
of column names, constants, and functions connected by arithmetic or
bitwise operators, or a subquery).

• A built-in function or an aggregate.

• Any combination of the items listed above.

The select_list can also assign values to variables, in the form:

@variable = expression
[, @variable = expression ...]

You cannot combine variable assignment with any other select_list option.

into
creates a new table based on the columns specified in the select list and the
rows chosen in the where clause. See “Using select into” in this section.

lock datarows | datapages | allpages
specifies the locking scheme to be used for a table created with a select into
command. The default is the server-wide

ting for the configuration parameter lock scheme.

select

404 Adaptive Server Enterprise

max_rows_per_page
limits the number of rows on data pages for a table created with select into.
Unlike fillfactor, the max_rows_per_page value is maintained when data is
inserted or deleted. max_rows_per_page is not supported on
data-only-locked tables.

existing table table_name
indicates that you are selecting data into a proxy table. You cannot use this
select into any other table type except proxy. The column list in the select list
must match the type, length, and number in the proxy table.

at "path_name"
indicates the full path name of the external file you are selecting into. You
can only use the at parameter to select into a proxy table.

external [table | file]
indicates that the type of the external object is either a file or a table. If you
do indicate either a file or a table, select into assumes that you are using a
table.

column delimeter “delimiter”
indicates the delimiter that you are using to separate columns. If you do not
specify a delimiter, select into uses the tab character.

exp_row_size = num_bytes
specifies the expected row size for a table created with the select into
command. Valid only for datarows and datapages locking schemes and only
for tables that have variable-length rows. Valid values are 0, 1, and any value
greater than the minimum row length and less than the maximum row length
for the table. The default value is 0, which means that a server-wide default
is used.

reservepagegap = num_pages
specifies a ratio of filled pages to empty pages that is to be left as select into
allocates extents to store data. This option is valid only for the select into
command. For each specified num_pages, one empty page is left for future
expansion of the table. Valid values are 0 – 255. The default value is 0.

readpast
specifies that the query should silently skip rows with exclusive locks,
without waiting and without generating a message.

with identity_gap
specifies the identity gap for the table. This value overrides the system
identity gap setting for this table only.

CHAPTER 1 Commands

Reference Manual: Commands 405

value
is the identity gap amount.

If you are creating a table in a select into statement from a table that has a
specific identity gap setting, the new table does not inherit the identity gap
setting from the parent table. Instead, the new table uses the identity burning
set factor setting. To give the new table a specific identity_gap setting,
specify the identity gap in the select into statement. You can give the new
table an identity gap that is the same as or different from the parent table.

from
indicates which tables and views to use in the select statement. It is required
except when the select list contains no column names (that is, it contains
constants and arithmetic expressions only):

select 5 x, 2 y, "the product is", 5*2 Result

x y Result
------- ------- ------------------ -----------

5 2 the product is 10

At most, a query can reference 50 tables and 14 worktables (such as those
created by aggregate functions). The 50-table limit includes:

• Tables (or views on tables) listed in the from clause

• Each instance of multiple references to the same table (self-joins)

• Tables referenced in subqueries

• Tables being created with into

• Base tables referenced by the views listed in the from clause

select

406 Adaptive Server Enterprise

view_name, table_name
lists tables and views used in the select statement. Specify the database name
if the table or view is in another database, and specify the owner’s name if
more than one table or view of that name exists in the database. The default
value for owner is the current user, and the default value for database is the
current database.

If there is more than one table or view in the list, separate their names by
commas. The order of the tables and views following the keyword from does
not affect the results.

You can query tables in different databases in the same statement.

Table names and view names can be given correlation names (aliases), either
for clarity or to distinguish the different roles that tables or views play in
self-joins or subqueries. To assign a correlation name, give the table or view
name, then a space, then the correlation name, like this:

select pub_name, title_id
from publishers pu, titles t
where t.pub_id = pu.pub_id

All other references to that table or view (for example in a where clause)
must use the correlation name. Correlation names cannot begin with a
numeral.

index index_name
specifies the index to use to access table_name. You cannot use this option
when you select from a view, but you can use it as part of a select clause in
a create view statement.

parallel
specifies a parallel partition or index scan, if Adaptive Server is configured
to allow parallel processing.

degree_of_parallelism
specifies the number of worker processes that will scan the table or index in
parallel. If set to 1, the query executes serially.

CHAPTER 1 Commands

Reference Manual: Commands 407

prefetch size
specifies the I/O size, in kilobytes, for tables bound to caches with large I/Os
configured. You cannot use this option when you select from a view, but you
can use it as part of a select clause in a create view statement. sp_helpcache
shows the valid sizes for the cache an object is bound to or for the default
cache. To configure the data cache size, use sp_cacheconfigure.

When using prefetch and designating the prefetch size (size), the minimum
is 2K and any power of two on the logical page size up to 16K. prefetch size
options in kilobytes are:

The prefetch size specified in the query is only a suggestion. To allow the
size specification, configure the data cache at that size. If you do not
configure the data cache to a specific size, the default prefetch size is used.

If Component Integration Services is enabled, you cannot use prefetch for
remote servers.

lru | mru
specifies the buffer replacement strategy to use for the table. Use lru to force
the optimizer to read the table into the cache on the MRU/LRU (most
recently used/least recently used) chain. Use mru to discard the buffer from
cache and replace it with the next buffer for the table. You cannot use this
option when you select from a view, but you can use it as part of a select
clause in a create view statement.

Logical page size Prefetch size options

2 2, 4, 8 16

4 4, 8, 16, 32

8 8, 16, 32, 64

16 16, 32, 64, 128

select

408 Adaptive Server Enterprise

holdlock
makes a shared lock on a specified table or view more restrictive by holding
it until the transaction completes (instead of releasing the shared lock as
soon as the required data page is no longer needed, whether or not the
transaction has completed).

The holdlock option applies only to the table or view for which it is specified,
and only for the duration of the transaction defined by the statement in
which it is used. Setting the transaction isolation level 3 option of the set
command implicitly applies a holdlock for each select statement within a
transaction. The keyword holdlock is not permitted in a select statement that
includes the for browse option. You cannot specify both a holdlock and a
noholdlock option in a query.

If Component Integration Services is enabled, you cannot use holdlock for
remote servers.

noholdlock
prevents the server from holding any locks acquired during the execution of
this select statement, regardless of the transaction isolation level currently in
effect. You cannot specify both a holdlock and a noholdlock option in a query.

shared
instructs Adaptive Server to use a shared lock (instead of an update lock) on
a specified table or view. This allows other clients to obtain an update lock
on that table or view. You can use the shared keyword only with a select
clause included as part of a declare cursor statement. For example:

declare shared_crsr cursor
for select title, title_id
from titles shared
where title_id like "BU%"

You can use the holdlock keyword in conjunction with shared after each table
or view name, but holdlock must precede shared.

ANSI join
an inner or outer join that uses the ANSI syntax. The from clause specifies
which tables are to be joined.

inner
includes only the rows of the inner and outer tables that meet the conditions
of the on clause. The result set of a query that includes an inner join does not
include any null supplied rows for the rows of the outer table that do not
meet the conditions of the on clause.

CHAPTER 1 Commands

Reference Manual: Commands 409

outer
includes all the rows from the outer table whether or not they meet the
conditions of the on clause. If a row does not meet the conditions of the on
clause, values from the inner table are stored in the joined table as null
values. The where clause of an ANSI outer join restricts the rows that are
included in the query result.

left
left joins retain all the rows of the table reference listed on the left of the join
clause. The left table reference is referred to as the outer table or
row-preserving table.

In the queries below, T1 is the outer table and T2 is the inner table:

T1 left join T2
T2 right join T1

right
right joins retain all the rows of the table reference on the right of the join
clause (see example above).

search_conditions
used to set the conditions for the rows that are retrieved. A search condition
can include column names, expressions, arithmetic operators, comparison
operators, the keywords not, like, is null, and, or, between, in, exists, any, and
all, subqueries, case expressions, or any combination of these items. See
where clause on page 487 for more information.

group by
finds a value for each group. These values appear as new columns in the
results, rather than as new rows.

When group by is used with standard SQL, each item in the select list must
either have a fixed value in every row in the group or be used with aggregate
functions, which produce a single value for each group. Transact-SQL has
no such restrictions on the items in the select list. Also, Transact-SQL allows
you to group by any expression (except by a column alias); with standard
SQL, you can group by a column only.

You can use the aggregates listed in Table 1-34 with group by (expression is
almost always a column name):

select

410 Adaptive Server Enterprise

Table 1-34: Results of using aggregates with group by

See group by and having clauses on page 301 for more information.

A table can be grouped by any combination of columns—that is, groups can
be nested within each other. You cannot group by a column heading; you
must use a column name, an expression, or a number representing the
position of the item in the select list.

group by all
includes all groups in the results, even those that do not have any rows that
meet the search conditions. See group by and having clauses on page 301 for
an example.

aggregate_free_expression
is an expression that includes no aggregates.

having
sets conditions for the group by clause, similar to the way that where sets
conditions for the select clause. There is no limit on the number of
conditions that can be included.

You can use a having clause without a group by clause.

If any columns in the select list do not have aggregate functions applied to
them and are not included in the query’s group by clause (illegal in standard
SQL), the meanings of having and where are somewhat different.

In this situation, a where clause restricts the rows that are included in the
calculation of the aggregate, but does not restrict the rows returned by the
query. Conversely, a having clause restricts the rows returned by the query,
but does not affect the calculation of the aggregate. See group by and having
clauses on page 301 for examples.

Aggregate function Result

sum([all | distinct] expression) Total of the values in the numeric column.

avg([all | distinct] expression) Average of the values in the numeric column.

count([all | distinct] expression) Number of (distinct) non-null values in the column.

count(*) Number of selected rows.

max(expression) Highest value in the column.

min(expression) Lowest value in the column.

CHAPTER 1 Commands

Reference Manual: Commands 411

order by
sorts the results by columns. In Transact-SQL, you can use order by for items
that do not appear in the select list. You can sort by a column name, a column
heading (or alias), an expression, or a number representing the position of
the item in the select list (the select_list_number). If you sort by select list
number, the columns to which the order by clause refers must be included in
the select list, and the select list cannot be * (asterisk).

asc
sorts results in ascending order (the default).

desc
sorts results in descending order.

compute
used with row aggregates (sum, avg, min, max, and count) to generate control
break summary values. The summary values appear as additional rows in the
query results, allowing you to see detail and summary rows with one
statement.

You cannot use a select into clause with compute.

If you use compute by, you must also use an order by clause. The columns
listed after compute by must be identical to or a subset of those listed after
order by, and must be in the same left-to-right order, start with the same
expression, and not skip any expressions.

For example, if the order by clause is order by a, b, c, the compute by
clause can be any (or all) of these:

compute by a, b, c
compute by a, b
compute by a

The keyword compute can be used without by to generate grand totals, grand
counts, and so on. order by is optional if you use compute without by. See
compute clause on page 54 for details and examples.

If Component Integration Services is enabled, compute is not forwarded to
remote servers.

select

412 Adaptive Server Enterprise

for {read only | update}
specifies that a cursor result set is read-only or updatable. You can use this
option only within a stored procedure and only when the procedure defines
a query for a cursor. In this case, the select is the only statement allowed in
the procedure. It defines the for read only or for update option (instead of the
declare cursor statement). This method of declaring cursors provides the
advantage of page-level locking while fetching rows.

If the select statement in the stored procedure is not used to define a cursor,
Adaptive Server ignores the for read only | update option. See the Embedded
SQL™ documentation for more information about using stored procedures
to declare cursors. For information about read-only or updatable cursors, see
the Transact-SQL User’s Guide.

of column_name_list
is the list of columns from a cursor result set defined as updatable with the
for update option.

at isolation
specifies the isolation level (0, 1, 2 or 3) of the query. If you omit this clause,
the query uses the isolation level of the session in which it executes
(isolation level 1 by default). The at isolation clause is valid only for single
queries or within the declare cursor statement. Adaptive Server returns a
syntax error if you use at isolation:

• With a query using the into clause

• Within a subquery

• With a query in the create view statement

• With a query in the insert statement

• With a query using the for browse clause

If there is a union operator in the query, you must specify the at isolation
clause after the last select. If you specify holdlock, noholdlock, or shared in a
query that also specifies at isolation read uncommitted, Adaptive Server
issues a warning and ignores the at isolation clause. For the other isolation
levels, holdlock takes precedence over the at isolation clause. For more
information about isolation levels, see the Transact-SQL User’s Guide.

If Component Integration Services is enabled, you cannot use at isolation for
remote servers.

read uncommitted | 0
specifies isolation level 0 for the query.

CHAPTER 1 Commands

Reference Manual: Commands 413

read committed | 1
specifies isolation level 1 for the query.

repeatable read | 2
specifies transaction isolation level 2 for the query.

serializable | 3
specifies isolation level 3 for the query.

for browse
must be attached to the end of a SQL statement sent to Adaptive Server in a
DB-Library browse application. See the Open Client DB-Library Reference
Manual for details.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. See Chapter 30,
“Creating and Using Abstract Plans,” in the Performance and Tuning Guide
for more information.

Examples Example 1 Selects all rows and columns from the publishers table:

select * from publishers

pub_id pub_name city state
------ --------------------------- -------------------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

Example 2 Selects all rows from specific columns of the publishers table:

select pub_id, pub_name, city, state from publishers

Example 3 Selects all rows from specific columns of the publishers table,
substituting one column name and adding a string to the output:

select "The publisher's name is",
Publisher = pub_name, pub_id
from publishers

Publisher pub_id
----------------------- ----------------------------- ------
The publisher’s name is New Age Books 0736
The publisher’s name is Binnet & Hardley 0877
The publisher’s name is Algodata Infosystems 1389

select

414 Adaptive Server Enterprise

Example 4 Selects all rows from specific columns of the titles table,
substituting column names:

select type as Type, price as Price
from titles

Example 5 Specifies the locking scheme and the reserve page gap for select
into:

select title_id, title, price
into bus_titles
lock datarows with reservepagegap = 10
from titles
where type = "business"

Example 6 Selects only the rows that are not exclusively locked. If any other
user has an exclusive lock on a qualifying row, that row is not returned:

select title, price
from titles readpast

where type = "news"
and price between $20 and $30

Example 7 Selects specific columns and rows, placing the results into the
temporary table #advance_rpt:

select pub_id, total = sum (total_sales)
into #advance_rpt

from titles
where advance < $10000

and total_sales is not null
group by pub_id
having count(*) > 1

Example 8 Concatenates two columns and places the results into the
temporary table #tempnames:

select "Author_name" = au_fname + " " + au_lname
into #tempnames
from authors

Example 9 Selects specific columns and rows, returns the results ordered by
type from highest to lowest, and calculates summary information:

select type, price, advance from titles
order by type desc
compute avg(price), sum(advance) by type
compute sum(price), sum(advance)

Example 10 Selects specific columns and rows, and calculates totals for the
price and advance columns:

CHAPTER 1 Commands

Reference Manual: Commands 415

select type, price, advance from titles compute sum(price), sum(advance)

Example 11 Creates the coffeetabletitles table, a copy of the titles table which
includes only books priced over $20:

select * into coffeetabletitles from titles
where price > $20

Example 12 Creates the newtitles table, an empty copy of the titles table:

select * into newtitles from titles
where 1 = 0

Example 13 Updates the existing authors table to include only books priced
over $20:

select * into authors from titles
where price > $20

Example 14 Gives an optimizer hint:

select title_id, title
from titles (index title_id_ind prefetch 16)
where title_id like "BU%"

Example 15 Selects the IDENTITY column from the sales_east and
sales_west tables by using the syb_identity keyword:

select sales_east.syb_identity,
sales_west.syb_identity
from sales_east, sales_west

Example 16 Creates the newtitles table, a copy of the titles table with an
IDENTITY column:

select *, row_id = identity(10)
into newtitles from titles

Example 17 Specifies a transaction isolation level for the query.

select pub_id, pub_name
from publishers
at isolation read uncommitted

Example 18 Selects from titles using the repeatable read isolation level. No
other user can change values in or delete the affected rows until the transaction
completes:

begin tran
select type, avg(price)

from titles
group by type

select

416 Adaptive Server Enterprise

at isolation repeatable read

Example 19 Gives an optimizer hint for the parallel degree for the query:

select ord_num from salesdetail
(index salesdetail parallel 3)

Example 20 Joins the titleauthor and the titles tables on their title_id columns.
The result set only includes those rows that contain a price greater than 15:

select au_id, titles.title_id, title, price
from titleauthor inner join titles
on titleauthor.title_id = titles.title_id
and price > 15

Example 21 The result set contains all the authors from the authors table. The
authors who do not live in the same city as their publishers produce null values
in the pub_name column. Only the authors who live in the same city as their
publishers, Cheryl Carson and Abraham Bennet, produce a non-null value in
the pub_name column:

select au_fname, au_lname, pub_name
from authors left join publishers
on authors.city = publishers.city

Example 22 Create a new table (newtable) from the existing table (oldtable)
with an identity gap, you specify it in the select into statement:

select identity into newtable
with identity_gap = 20
from oldtable

For more information about identity gaps, see “Managing Identity Gaps in
Tables” in Chapter 7, “Creating Databases and Tables” in the Transact-SQL
User’s Guide.

Usage • The keywords in the select statement, as in all other statements, must be
used in the order shown in the syntax statement.

• The maximum number of expressions in a select statement is 4096.

• The keyword all can be used after select for compatibility with other
implementations of SQL. all is the default. Used in this context, all is the
opposite of distinct. All retrieved rows are included in the results, whether
or not some are duplicates.

CHAPTER 1 Commands

Reference Manual: Commands 417

• Except in create table, create view, and select into statements, column
headings may include any characters, including blanks and Adaptive
Server keywords, if the column heading is enclosed in quotes. If the
heading is not enclosed in quotes, it must conform to the rules for
identifiers.

• The character string indicated by like cannot be longer than 255 bytes.

• You cannot use the select...for browse option on tables containing more
than 255 columns.

• Column headings in create table, create view, and select into statements, as
well as table aliases, must conform to the rules for identifiers.

• To insert data with select from a table that has null values in some fields
into a table that does not allow null values, you must provide a substitute
value for any NULL entries in the original table. For example, to insert
data into an advances table that does not allow null values, this example
substitutes “0” for the NULL fields:

insert advances
select pub_id, isnull(advance, 0) from titles

Without the isnull function, this command would insert all the rows with
non-null values into the advances table, and produce error messages for all
rows where the advance column in the titles table contained NULL.

If you cannot make this kind of substitution for your data, you cannot
insert data containing null values into the columns with the NOT NULL
specification.

Two tables can be identically structured, and yet be different as to whether
null values are permitted in some fields. Use sp_help to see the null types
of the columns in your table.

• The default length of the text or image data returned with a select statement
is 32K. Use set textsize to change the value. The size for the current
session is stored in the global variable @@textsize. Certain client software
may issue a set textsize command on logging in to Adaptive Server.

• Data from remote Adaptive Servers can be retrieved through the use of
remote procedure calls. See create procedure and execute for more
information.

• A select statement used in a cursor definition (through declare cursor) must
contain a from clause, but it cannot contain a compute, for browse, or into
clause. If the select statement contains any of the following constructs, the
cursor is considered read-only and not updatable:

select

418 Adaptive Server Enterprise

• distinct option

• group by clause

• Aggregate functions

• union operator

If you declare a cursor inside a stored procedure with a select statement
that contains an order by clause, that cursor is also considered read-only.
Even if it is considered updatable, you cannot delete a row using a cursor
that is defined by a select statement containing a join of two or more tables.
See declare cursor for more information.

• If a select statement that assigns a value to a variable returns more than one
row, the last returned value is assigned to the variable. For example:

declare @x varchar(40)
select @x = pub_name from publishers
print @x
(3 rows affected)
Algodata Infosystems

Using ANSI join syntax

• Before you write queries using the ANSI inner and outer join syntax, read
“Outer Joins” in Chapter 4, “Joins: Retrieving Data From Several Tables,”
in the Transact-SQL User’s Guide.

Using select into

• select into is a two-step operation. The first step creates the new table, and
the second step inserts the specified rows into the new table.

Note You can select into a Component Integration Services existing table.

Because the rows inserted by select into operations are not logged, select
into commands cannot be issued within user-defined transactions, even if
the ddl in tran database option is set to true. Page allocations during select
into operations are logged, so large select into operations may fill the
transaction log.

If a select into statement fails after creating a new table, Adaptive Server
does not automatically drop the table or deallocate its first data page. This
means that any rows inserted on the first page before the error occurred
remain on the page. Check the value of the @@error global variable after
a select into statement to be sure that no error occurred. Use the drop table
statement to remove the new table, then reissue the select into statement.

CHAPTER 1 Commands

Reference Manual: Commands 419

• The name of the new table must be unique in the database and must
conform to the rules for identifiers. You can also select into temporary
tables (see Examples 7, 8, and 11).

• Any rules, constraints, or defaults associated with the base table are not
carried over to the new table. Bind rules or defaults to the new table using
sp_bindrule and sp_bindefault.

• select into does not carry over the base table’s max_rows_per_page value,
and it creates the new table with a max_rows_per_page value of 0. Use
sp_chgattribute to set the max_rows_per_page value.

• The select into/bulkcopy/pllsort option must be set to true (by executing
sp_dboption) in order to select into a permanent table. You do not have to
set the select into/bulkcopy/pllsort option to true in order to select into a
temporary table, since the temporary database is never recovered.

After you have used select into in a database, you must perform a full
database dump before you can use the dump transaction command. select
into operations log only page allocations and not changes to data rows.
Therefore, changes are not recoverable from transaction logs. In this
situation, issuing the dump transaction statement produces an error
message instructing you to use dump database instead.

By default, the select into/bulkcopy/pllsort option is set to false in newly
created databases. To change the default situation, set this option to true in
the model database.

• select into runs more slowly while a dump database is taking place.

• You can use select into to create a duplicate table with no data by having a
false condition in the where clause (see Example 12).

• You must provide a column heading for any column in the select list that
contains an aggregate function or any expression. The use of any constant,
arithmetic or character expression, built-in functions, or concatenation in
the select list requires a column heading for the affected item. The column
heading must be a valid identifier or must be enclosed in quotation marks
(see Examples 7 and 8).

• Datatypes and nullability are implicitly assigned to literal values when
select into is used, such as:

select x = getdate() into mytable

This results in a non-nullable column, regardless of whether allow nulls by
default is on or not. It depends upon how the select commands are used and
with what other commands within the syntax.

select

420 Adaptive Server Enterprise

The convert syntax allows you to explicitly specify the datatype and
nullability of the resulting column, not the default.

Wrap getdate with a function that does result in a null, such as:

select x = nullif(getdate(), "1/1/1900") into
mytable

Or, use the convert syntax:

select x = convert(datetime null, getdate()) into
mytable

• You cannot use select into inside a user-defined transaction or in the same
statement as a compute clause.

• To select an IDENTITY column into a result table, include the column
name (or the syb_identity keyword) in the select statement’s column_list.
The new column observes the following rules:

• If an IDENTITY column is selected more than once, it is defined as
NOT NULL in the new table. It does not inherit the IDENTITY
property.

• If an IDENTITY column is selected as part of an expression, the
resulting column does not inherit the IDENTITY property. It is
created as NULL if any column in the expression allows nulls;
otherwise, it is created as NOT NULL.

• If the select statement contains a group by clause or aggregate
function, the resulting column does not inherit the IDENTITY
property. Columns that include an aggregate of the IDENTITY
column are created NULL; others are NOT NULL.

• An IDENTITY column that is selected into a table with a union or join
does not retain the IDENTITY property. If the table contains the union
of the IDENTITY column and a NULL column, the new column is
defined as NULL. Otherwise, it is defined as NOT NULL.

• You cannot use select into to create a new table with multiple IDENTITY
columns. If the select statement includes both an existing IDENTITY
column and a new IDENTITY specification of the form column_name =
identity(precision), the statement fails.

• If Component Integration Services is enabled, and if the into table resides
on Adaptive Server, Adaptive Server uses bulk copy routines to copy the
data into the new table. Before doing a select into with remote tables, set
the select into/bulkcopy database option to true.

CHAPTER 1 Commands

Reference Manual: Commands 421

• For information about the Embedded SQL command select into
host_var_list, see the Open Client Embedded SQL Reference Manual.

Converting the NULL properties of a target column with select...into

• Use the convert command to change the nullability of a target column into
which you are selecting data. For example, the following selects data from
the titles table into a target table named temp_titles, but converts the
total_sales column from null to not null:

select title, convert (char(100) not null,
total_sales)
total_sales
into #tempsales
from titles

Specifying a lock scheme with select...into

• The lock option, used with select...into, allows you to specify the locking
scheme for the table created by the command. If you do not specify a
locking scheme, the default locking scheme, as set by the configuration
parameter lock scheme, is applied.

• When you use the lock option, you can also specify the space management
properties max_rows_per_page, exp_row_size, and reservepagegap.

You can change the space management properties for a table created with
select into, using sp_chgattribute.

Using index, prefetch, and lru | mru

• The index, prefetch and lru | mru options specify the index, cache and I/O
strategies for query execution. These options override the choices made by
the Adaptive Server optimizer. Use them with caution, and always check
the performance impact with set statistics io on. For more information
about using these options, see the Performance and Tuning Guide.

Using parallel

• The parallel option reduces the number of worker threads that the Adaptive
Server optimizer can use for parallel processing. The
degree_of_parallelism cannot be greater than the configured max parallel
degree. If you specify a value that is greater than the configured max
parallel degree, the optimizer ignores the parallel option.

• When multiple worker processes merge their results, the order of rows that
Adaptive Server returns may vary from one execution to the next. To get
rows from partitioned tables in a consistent order, use an order by clause,
or override parallel query execution by using parallel 1 in the from clause
of the query.

select

422 Adaptive Server Enterprise

• A from clause specifying parallel is ignored if any of the following
conditions is true:

• The select statement is used for an update or insert.

• The from clause is used in the definition of a cursor.

• parallel is used in the from clause within any inner query blocks of a
subquery.

• The select statement creates a view.

• The table is the inner table of an outer join.

• The query specifies min or max on the table and specifies an index.

• An unpartitioned clustered index is specified or is the only parallel
option.

• The query specifies exists on the table.

• The value for the configuration parameter max scan parallel degree is
1 and the query specifies an index.

• A nonclustered index is covered. For information on index covering,
see Chapter 9, “How Indexes Work” in the Performance and Tuning
Guide.

• The table is a system table or a virtual table.

• The query is processed using the OR strategy. For an explanation of
the OR strategy, see the Performance and Tuning Guide.

• The query returns a large number of rows to the user.

Using readpast

• The readpast option allows a select command to access the specified table
without being blocked by incompatible locks held by other tasks. readpast
queries can only be performed on data-only-locked tables.

• If the readpast option is specified for an allpages-locked table, the readpast
option is ignored. The command operates at the isolation level specified
for the command or session. If the isolation level is 0, dirty reads are
performed, and the command returns values from locked rows and does
not block. If the isolation level is 1 or 3, the command blocks when pages
with incompatible locks must be read.

• The interactions of session-level isolation levels and readpast on a table in
a select command are shown in Table 1-35.

CHAPTER 1 Commands

Reference Manual: Commands 423

Table 1-35: Effects of session-level isolation levels and readpast

• select commands that specify readpast fail with an error message if they
also include any of the following:

• An at isolation clause, specifying 0 or read uncommitted

• An at isolation clause, specifying 3 or serializable

• The holdlock keyword on the same table

• If at isolation 2 or at isolation repeatable read is specified in a select query
that specifies readpast, shared locks are held on the readpast tables until
the statement or transaction completes.

• If a select command with the readpast option encounters a text column that
has an incompatible lock on it, readpast locking retrieves the row, but
returns the text column with a value of null. No distinction is made, in this
case, between a text column containing a null value and a null value
returned because the column is locked.

Standards ANSI SQL – Compliance level: Entry-level compliant.

The following are Transact-SQL extensions:

• select into to create a new table

• lock clauses

• compute clauses

• Global and local variables

• index clause, prefetch, parallel and lru | mru

Session isolation level Effects

0, read uncommitted
(dirty reads)

readpast is ignored, and rows containing uncommitted transactions are returned to
the user. A warning message is printed.

1, read committed Rows or pages with incompatible locks are skipped; no locks are held on the rows
or pages read

Using readpast may produce duplicates and adding the distinct clause does not clear
this problem.

To resolve this, when using readpast, use a group by clause in addition to a distinct
clause to avoid duplicates.

2, repeatable read Rows or pages with incompatible locks are skipped; shared locks are held on all
rows or pages that are read until the end of the statement or transaction; holds locks
on all pages read by the statement until the transaction completes.

3, serializable readpast is ignored, and the command executes at level 3. The command blocks on
any rows or pages with incompatible locks.

select

424 Adaptive Server Enterprise

• holdlock, noholdlock, and shared keywords

• “column_heading = column_name”

• Qualified table and column names

• select in a for browse clause

• The use, within the select list, of columns that are not in the group by list
and have no aggregate functions

• at isolation repeatable read | 2 option

Permissions select permission defaults to the owner of the table or view, who can transfer it
to other users.

See also Commands compute clause, create index, create trigger, delete, group by and
having clauses, insert, order by clause, set, union operator, update, where clause

Functions avg, count, isnull, max, min, sum

System procedures sp_cachestrategy, sp_chgattribute, sp_dboption

CHAPTER 1 Commands

Reference Manual: Commands 425

set
Description Sets Adaptive Server query-processing options for the duration of the user’s

work session; sets some options inside a trigger or stored procedure.

Syntax set @variable = expression [, @variable = expression...]

set ansinull {on | off}

set ansi_permissions {on | off}

set arithabort [arith_overflow | numeric_truncation]
{on | off}

set arithignore [arith_overflow] {on | off}

set bulk array size number

set bulk batch size number

set {chained, close on endtran, nocount, noexec, parseonly, procid,
self_recursion, showplan, sort_resources} {on | off}

set char_convert {off | on [with {error | no_error}] |
charset [with {error | no_error}]}

set cis_rpc_handling {on | off}

set [clientname client_name | clienthostname
host_name | clientapplname application_name]

set cursor rows number for cursor_name

set {datefirst number, dateformat format,
language language}

set fipsflagger {on | off}

set flushmessage {on | off}

set forceplan {on | off}

set identity_insert [database.[owner.]]table_name
{on | off}

set identity_update table_name {on | off}

set jtc {on | off}

set lock { wait [numsecs] | nowait }

set offsets {select, from, order, compute, table,
procedure, statement, param, execute} {on | off}

set parallel_degree number

set plan {dump | load } [group_name] {on | off}

set plan exists check {on | off}

set plan replace {on | off}

set prefetch [on|off]

set

426 Adaptive Server Enterprise

set proc_output_params on | off

set proc_return_status on | off

set process_limit_action {abort | quiet | warning}

set proxy login_name

set quoted_identifier {on | off}

set role {"sa_role" | "sso_role" | "oper_role" |
role_name [with passwd "password"]} {on | off}

set {rowcount number, textsize number}

set scan_parallel_degree number

set session authorization login_name

set sort_merge {on | off}

set statistics {io, subquerycache, time} {on | off}

set statistics simulate { on | off }

set strict_dtm_enforcement {on | off}

set string_rtruncation {on | off}

set table count number

set textsize {number}

set transaction isolation level {
[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3] }

set transactional_rpc {on | off}

Parameters @variable
allows multiple variable assignments in one statement. The
set @variable = expression command is an identical — and an alternative —
command to select @variable = expression in Transact-SQL.

expression
includes constant, function, any combination of constants, and functions
connected by arithmetic or bitwise operators, or a subquery.

ansinull
impacts on both aggregate and comparison behaviors:

CHAPTER 1 Commands

Reference Manual: Commands 427

Aggregate behavior ansinull determines whether evaluation of
NULL-valued operands in aggregate functions is compliant with the ANSI
SQL standard. If you use set ansinull on, Adaptive Server generates a warning
when an aggregate function eliminates a null-valued operand from the
calculation.

For example, if you perform the following query on the titles table with set
ansinull off (the default value):

select max(total_sales) from titles

Adaptive Server returns:

22246

However, if you perform the same query with set ansinull on, Adaptive
Server returns the same value and an error message because the total_sales
column contains NULL values:

22246

Warning - null value eliminated in set function

This message indicates that some entries in total_sales contain NULL
instead of a real amount, so you do not have complete data on total sales for
all books in this table. However, of the available data, the value returned is
the highest.

set

428 Adaptive Server Enterprise

Comparison behavior The SQL standard requires that if either one of the
two operands of an equality comparison is NULL, the result is UNKNOWN.
Transact-SQL treats NULL values differently. If one of the operands is a
column, parameter, or variable, and the other operand is the NULL constant or
a parameter or variable whose value is NULL, the result is either TRUE or
FALSE:

• Sybase NULL mode – “val = NULL” is true when “val” is NULL

• ANSI NULL mode – “val = NULL” is unknown when “val” is NULL

The ANSI rule for the where and on clauses return rows that are true, and
rejects rows that are both false and unknown.

The ANSI rule for a check constraint rejects values that are false. For this
reason, unknown or true results are not rejected.

If you:

• Enable ansinull mode – do not use the Sybase NULL comparisons
(val = NULL or val != NULL).

• Expect to use ANSI-null mode during insert and update – do not use the
Sybase NULL comparisons in check constraints.

Instead, use the ANSI IS NULL or IS NOT NULL syntax to prevent from
having unexpected results.

ansi_permissions
determines whether ANSI SQL permission requirements for delete and
update statements are checked. The default is off. Table 1-36 summarizes
permission requirements:

Table 1-36: Permissions required for update and delete

Command
Permissions required with
set ansi_permissions off Permissions required with set ansi_permissions on

update • update permission on columns
where values are being set

• update permission on columns where values are being set

• select permission on all columns appearing in where clause

• select permission on all columns on right side of set clause

delete • delete permission on table • delete permission on table

• select permission on all columns appearing in where clause

CHAPTER 1 Commands

Reference Manual: Commands 429

arithabort
determines how Adaptive Server behaves when an arithmetic error occurs.
The two arithabort options, arithabort arith_overflow and arithabort
numeric_truncation, handle different types of arithmetic errors. You can set
each option independently or set both options with a single set arithabort on
or set arithabort off statement.

• arithabort arith_overflow specifies Adaptive Server’s behavior following
a divide-by-zero error or a loss of precision during an explicit or
implicit datatype conversion. This type of error is serious. The default
setting, arithabort arith_overflow on, rolls back the entire transaction in
which the error occurs. If the error occurs in a batch that does not
contain a transaction, arithabort arith_overflow on does not roll back
earlier commands in the batch; however, Adaptive Server does not
execute any statements in the batch that follow the error-generating
statement.

If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error, but continues to process other
statements in the transaction or batch.

• arithabort numeric_truncation specifies Adaptive Server’s behavior
following a loss of scale by an exact numeric type during an implicit
datatype conversion. (When an explicit conversion results in a loss of
scale, the results are truncated without warning.) The default setting,
arithabort numeric_truncation on, aborts the statement that causes the
error, but Adaptive Server continues to process other statements in the
transaction or batch. If you set arithabort numeric_truncation off,
Adaptive Server truncates the query results and continues processing.

arithignore arith_overflow
determines whether Adaptive Server displays a message after a
divide-by-zero error or a loss of precision. By default, the arithignore option
is set to off. This causes Adaptive Server to display a warning message after
any query that results in numeric overflow. To have Adaptive Server ignore
overflow errors, use set arithignore on. You can omit the optional
arith_overflow keyword without any effect.

set

430 Adaptive Server Enterprise

bulk array size number
establishes the number of rows that are buffered in local server memory
before being transferred using the bulk copy interface.

Use this option only with Component Integration Services for transferring
rows to a remote server using select into.

View your current setting using the @@bulkarraysize global variable.

number indicates the number of rows to buffer. If the rows being transferred
contain text, image or java ADTs, then the bulk copy interface ignores the
current setting for array size and uses a value of 1. Also, the array size
actually used will never exceed the value of @@bulkbatchzise. If
@@bulkbatchsize is smaller than array size, then the smaller value is used.

The initial value of the array size is inherited by new connections from the
current setting of the configuration property cis bulk insert array size, which
defaults to 50. Setting this value to 0 will reset the value to the default.

bulk batch size number
establishes the number of rows transferred to a remote server via select into
proxy_table when the bulk interface is used. The bulk interface is available
to all Adaptive Servers, as well as DirectConnect for Oracle version 12.5.1.

Use this option only with Component Integration Services for transferring
rows to a remote server using select into.

View your current setting using the @@bulkbatchsize global variable.

The bulk interface allows a commit after a specified number of rows. This
allows the remote server to free any log space being consumed by the bulk
transfer operation, and enables the transfer of large data sets from one server
to another without filling the transaction log.

The initial value of the batch size is inherited by new connections from the
current setting of the configuration property cis bulk insert batch size, which
by default is 0. A value of 0 indicates that no rows should be committed until
after the last row is transferred.

chained
begins a transaction just before the first data retrieval or data modification
statement at the beginning of a session and after a transaction ends. In
chained mode, Adaptive Server implicitly executes a begin transaction
command before the following statements: delete, fetch, insert, lock table,
open, select, and update. You cannot execute set chained within a
transaction.

CHAPTER 1 Commands

Reference Manual: Commands 431

char_convert
enables or disables character set conversion between Adaptive Server and a
client. If the client is using Open Client DB-Library release 4.6 or later, and
the client and server use different character sets, conversion is turned on
during the login process and is set to a default based on the character set the
client is using. You can also use set char_convert charset to start conversion
between the server character set and a different client character set.

charset can be either the character set’s ID or a name from syscharsets with
a type value of less than 2000.

set char_convert off turns conversion off so that characters are sent and
received unchanged. set char_convert on turns conversion on if it is turned
off. If character set conversion was not turned on during the login process or
by the set char_convert command, set char_convert on generates an error
message.

If you request character set conversion with set char_convert charset, and
Adaptive Server cannot perform the requested conversion, the conversion
state remains the same as it was before the request. For example, if
conversion is set to off prior to the set char_convert charset command,
conversion remains turned off if the request fails.

When the with no_error option is included, Adaptive Server does not notify
an application when characters from Adaptive Server cannot be converted
to the client’s character set. Error reporting is initially turned on when a
client connects with Adaptive Server: if you do not want error reporting, you
must turn it off for each session with set char_convert {on | charset} with
no_error. To turn error reporting back on within a session, use set
char_convert {on | charset} with error.

Whether or not error reporting is turned on, the bytes that cannot be
converted are replaced with ASCII question marks (?).

See the System Administration Guide for a more complete discussion of
error handling in character set conversion.

cis_rpc_handling
determines whether Component Integration Services handles outbound
remote procedure call (RPC) requests by default.

clientapplname
assigns an application an individual name. This is useful for differentiating
among clients in a system where many clients connect to Adaptive Server
using the same application name. After you assign a new name to an
application, it appears in the sysprocesses table under the new name.

set

432 Adaptive Server Enterprise

clienthostname
assigns a host an individual name. This is useful for differentiating among
clients in a system where many clients connect to Adaptive Server using the
same host name. After you assign a new name to a host, it appears in the
sysprocesses table under the new name.

clientname
assigns a client an individual name. This is useful for differentiating among
clients in a system where many clients connect to Adaptive Server using the
same client name. After you assign a new name to a user, they appear in the
sysprocesses table under the new name.

close on endtran
causes Adaptive Server to close all cursors opened within a transaction at the
end of that transaction. A transaction ends by the use of either the commit or
rollback statement. However, only cursors declared within the scope that sets
this option (stored procedure, trigger, and so on) are affected. For more
information about cursor scopes, see the Transact-SQL User’s Guide.

For more information about the evaluated configuration, see the System
Administration Guide.

cursor rows
causes Adaptive Server to return the number of rows for each cursor fetch
request from a client application. The number can be a numeric literal with
no decimal point or a local variable of type integer. If the number is less than
or equal to zero, the value is set to 1. You can set the cursor rows option for
a cursor, whether it is open or closed. However, this option does not affect a
fetch request containing an into clause. cursor_name specifies the cursor for
which to set the number of rows returned.

datefirst
uses numeric settings to specify the first day of the week. The us_english
language default is Sunday. To set the first day of the week, use the
following:

To set the first day of the week as Use this setting

Monday 1

Tuesday 2

Wednesday 3

Thursday 4

Friday 5

Saturday 6

Sunday (us_english language default) 7

CHAPTER 1 Commands

Reference Manual: Commands 433

Note Regardless of which day you set as the first day of the week, the value of
that first day becomes 1. This value is not the same as the numeric setting you
use in set datefirst n. For example, if you set Sunday as your first day of the
week, its value is 1. If you set Monday as your first day of the week, Monday’s
value becomes 1. If you set Wednesday as your first day of the week,
Wednesday’s value becomes 1, and so on.

dateformat
sets the order of the date parts month/day/year for entering datetime ,
smalldatetime, date or time data. Valid arguments are mdy, dmy, ymd, ydm,
myd, and dym. The us_english language default is mdy.

explicit_transaction_required
when set to true, causes any attempts to start an implicit transaction, or send
an RPC to a remote server outside a transaction, to fail.

All other commands succeed.

fipsflagger
determines whether Adaptive Server displays a warning message when
Transact-SQL extensions to entry-level ANSI SQL are used. By default,
Adaptive Server does not tell you when you use nonstandard SQL. This
option does not disable SQL extensions. Processing completes when you
issue the non-ANSI SQL command.

flushmessage
determines when Adaptive Server returns messages to the user. By default,
messages are stored in a buffer until the query that generated them is
completed or the buffer is filled to capacity. Use set flushmessage on to
return messages to the user immediately, as they are generated.

forceplan
causes the query optimizer to use the order of the tables in the from clause of
a query as the join order for the query plan. forceplan is generally used when
the optimizer fails to choose a good plan. Forcing an incorrect plan can have
severely bad effects on I/O and performance. For more information, see the
Performance and Tuning Guide.

set

434 Adaptive Server Enterprise

identity_insert
determines whether explicit inserts into a table’s IDENTITY column are
allowed. (Updates to an IDENTITY column are never allowed.) This option
can be used only with base tables. It cannot be used with views or set within
a trigger.

Setting identity_insert table_name on allows the table owner, Database
Owner, or System Administrator to explicitly insert a value into an
IDENTITY column. Inserting a value into the IDENTITY column allows
you to specify a seed value for the column or to restore a row that was
deleted in error. Unless you have created a unique index on the IDENTITY
column, Adaptive Server does not verify the uniqueness of the inserted
value; you can insert any positive integer.

The table owner, Database Owner, or System Administrator can use the set
identity_insert table_name on command on a table with an IDENTITY
column to enable the manual insertion of a value into an IDENTITY
column. However, only the following users can actually insert a value into
an IDENTITY column, when identity_insert is on:

• Table owner

• Database Owner:

• if granted explicit insert permission on the column by the table
owner

• impersonating the table owner by using the setuser command

Setting identity_insert table_name off restores the default behavior by
prohibiting explicit inserts to IDENTITY columns. At any time, you can use
set identity_insert table_name on for a single database table within a session.

identity_update
With set identity_update on, you can explicitly update the value of the
IDENTITY column on a table. identity_update changes the identity column
value for the qualified rows. When identity_update is enabled, you can
update the identity value to any value greater than 0. However, if the input
value is greater than the identity burn max value, a new set of ID values is
allocated, and the identity burn max value on the OAM page is updated
accordingly. If update is included in a transaction, the new identity burn max
value cannot be rolled back. You can use syb_identity to point to the identity
column for update. For example:

update table_name set syb_identity = value

CHAPTER 1 Commands

Reference Manual: Commands 435

where clause

Adaptive Server does not check for duplicates entries or verify that entries
are unique. You can update an existing value to any positive integer within
the range allowed by the column's declared precision. You can check for
duplicate entries by creating a unique index on the identity column

jtc
toggles join transitive closure. For more information, see the Performance
and Tuning Guide.

language
is the official name of the language that displays system messages. The
language must be installed on Adaptive Server. The default is us_english.

nocount
controls the display of rows affected by a statement. set nocount on disables
the display of rows; set nocount off reenables the count of rows.

noexec
compiles each query but does not execute it. noexec is often used with
showplan. After you set noexec on, no subsequent commands are executed
(including other set commands) until you set noexec off.

compiles each subsequent query but does not execute it. set fmtonly on is
often used with showplan for troubleshooting. Set noexec on immediately
after executing a query. After you set noexec on, no subsequent commands
are executed (including other set commands) until you set noexec off. set
noexec can be used in stored procedures.

lock wait
specifies the length of time that a command waits to acquire locks before
aborting and returning an error.

numsecs
specifies the number of seconds a command is to wait to acquire a lock.
Valid values are from 0 to 2147483647, the maximum value for an integer.

lock nowait
specifies that if a command cannot acquire a lock immediately, it returns an
error and fails. set lock nowait is equivalent to set lock wait 0.

set

436 Adaptive Server Enterprise

offsets
returns the position of specified keywords (with relation to the beginning of
the query) in Transact-SQL statements. The keyword list is a
comma-separated list that can include any of the following Transact-SQL
constructs: select, from, order, compute, table, procedure, statement, param,
and execute. Adaptive Server returns offsets if there are no errors. This
option is used in Open Client DB-Library only.

parallel_degree
specifies an upper limit for the number of worker processes used in the
parallel execution of a query. This number must be less than or equal to the
number of worker processes per query, as set by the max parallel degree
configuration parameter. The @@parallel_degree global variable stores the
current setting.

parseonly
checks the syntax of each query and returns any error messages without
compiling or executing the query. Do not use parseonly inside a stored
procedure or trigger.

plan
introduces an abstract plan command. For more information, see Chapter
30, “Creating and Using Abstract Plans,” in the Performance and Tuning
Guide.

dump
enables or disables capturing abstract plans for the current connection. If a
group_name is not specified, the plans are stored in the default group,
ap_stdout.

load
enables or disables loading abstract plans for the current connection. If a
group_name is not specified, the plans are loaded from the default group,
ap_stdin.

group_name
is the name of the abstract plan group to use for loading or storing plans.

exists check
when used with set plan load, stores hash keys for up to 20 queries from an
abstract plan group in a per-user cache.

replace
enables or disables replacing existing abstract plans during plan capture
mode. By default, plan replacement is off.

CHAPTER 1 Commands

Reference Manual: Commands 437

prefetch
enables or disables large I/Os to the data cache.

proc_output_params
controls sending of output parameters that a stored procedure generates back
to the client. set proc_output_params off suppresses sending the output
parameters back to the client. The default for this parameter is on.

proc_return_status
controls sending of a return status TDS token back to the client. set
proc_return_status off suppresses sending the return status token to the client,
and isql client does not display the (return status = 0) message. The
default for this parameter is on.

 Warning! If the client application that executes a procedure relies on the
success or failure of the procedure based on the return status, then do not use
the set proc_return_status off option.

process_limit_action
specifies whether Adaptive Server executes parallel queries when an
insufficient number of worker processes is available. Under these
circumstances, when process_limit_action is set to quiet, Adaptive Server
silently adjusts the plan to use a degree of parallelism that does not exceed
the number of available processes. If process_limit_action is set to warning
when an insufficient number of worker processes are available, Adaptive
Server issues a warning message when adjusting the plan; and if
process_limit_action is set to abort, Adaptive Server aborts the query and
issues an explanatory message an insufficient number of worker processes
are available.

procid
returns the ID number of the stored procedure to Open Client DB-Library/C
(not to the user) before sending rows generated by the stored procedure.

set

438 Adaptive Server Enterprise

proxy
allows you to assume the permissions, login name, and suid (server user ID)
of login_name. For login_name, specify a valid login from
master..syslogins, enclosed in quotation marks. To revert to your original
login name and suid, use set proxy with your original login_name.

Note Without explicit permission, neither the “sa_role” nor the “sso_role” can
issue the set proxy login_name command. To use set proxy login_name, any user,
including the System Security Officer, must have permission explicitly granted
by the System Security Officer.

See “Using proxies” on page 452 for more information.

quoted_identifier
determines whether Adaptive Server recognizes delimited identifiers. By
default, quoted_identifier is off and all identifiers must conform to the rules
for valid identifiers. If you use set quoted_identifier on, you can use table,
view, and column names that begin with a nonalphabetic character, include
characters that would not otherwise be allowed, or are reserved words, by
enclosing the identifiers within double quotation marks. Delimited
identifiers cannot exceed 28 bytes, may not be recognized by all front-end
products, and may produce unexpected results when used as parameters to
system procedures.

When quoted_identifier is on, all character strings enclosed within double
quotes are treated as identifiers. Use single quotes around character or
binary strings.

role
turns the specified role on or off during the current session. When you log
in, all system roles that have been granted to you are turned on. Use set role
role_name off to turn a role off, and set role role_name on to turn it back on
again, as needed. System roles are “sa_role”, “sso_role”, and “oper_role”. If
you are not a user in the current database, and if there is no “guest” user, you
cannot set sa_role off, because there is no server user ID for you to assume.

role_name
is the name of any user-defined role created by the System Security Officer.
User-defined roles are not turned on by default. To set user-defined roles to
activate at login, the user or the System Security Officer must use set role on.

with passwd
specifies the password to activate the role. If a user-defined role has an
attached password, you must specify the password to activate the role.

CHAPTER 1 Commands

Reference Manual: Commands 439

rowcount
causes Adaptive Server to stop processing the query (select, insert, update,
or delete) after the specified number of rows are affected. The number can
be a numeric literal with no decimal point or a local variable of type integer.
To turn this option off, use:

set rowcount 0

scan_parallel_degree
specifies the maximum session-specific degree of parallelism for
hash-based scans (parallel index scans and parallel table scans on
nonpartitioned tables). This number must be less than or equal to the current
value of the max scan parallel degree configuration parameter. The
@@scan_parallel_degree global variable stores the current setting.

self_recursion
determines whether Adaptive Server allows triggers to cause themselves to
fire again (this is called self recursion). By default, Adaptive Server does not
allow self recursion in triggers. You can turn this option on only for the
duration of a current client session; its effect is limited by the scope of the
trigger that sets it. For example, if the trigger that sets self_recursion on
returns or causes another trigger to fire, this option reverts to off. This option
works only within a trigger and has no effect on user sessions.

session authorization
is identical to set proxy, with this exception: set session authorization follows
the SQL standard, while set proxy is a Transact-SQL extension.

showplan
generates a description of the processing plan for the query. The results of
showplan are of use in performance diagnostics. showplan does not print
results when it is used inside a stored procedure or trigger. For parallel
queries, showplan output also includes the adjusted query plan at runtime, if
applicable. For more information, see the Performance and Tuning Guide.

sort_merge
enables or disables the use of sort-merge joins during a session. For more
information, see the Performance and Tuning Guide.

sort_resources
generates a description of the sorting plan for a create index statement. The
results of sort_resources are of use in determining whether a sort operation
will be done serially or in parallel. When sort_resouces is on, Adaptive
Server prints the sorting plan but does not execute the create index
statement. For more information, see Chapter 24, “Parallel Sorting,” in the
Performance and Tuning Guide.

set

440 Adaptive Server Enterprise

statistics io
displays the following statistics information for each table referenced in the
statement:

• the number of times the table is accessed (scan count)

• the number of logical reads (pages accessed in memory)

• and the number of physical reads (database device accesses)

For each command, statistics io displays the number of buffers written.

If Adaptive Server has been configured to enforce resource limits, statistics
io also displays the total I/O cost. For more information, see Chapter 34,
“Using the set statistics Commands” in the Performance and Tuning Guide.

statistics subquerycache
displays the number of cache hits, misses, and the number of rows in the
subquery cache for each subquery.

statistics time
displays the amount of time Adaptive Server used to parse and compile for
each command. For each step of the command, statistics time displays the
amount of time Adaptive Server used to execute the command. Times are
given in milliseconds and timeticks, the exact value of which is
machine-dependent.

statistics simulate
specifies that the optimizer should use simulated statistics to optimize the
query.

strict_dtm_enforcement
determines whether the server propagates transactions to servers that do not
support Adaptive Server transaction coordination services. The default
value is inherited from the value of the strict dtm enforcement configuration
parameter.

string_rtruncation
determines whether Adaptive Server raises a SQLSTATE exception when
an insert or update command truncates a char, unichar, varchar or univarchar
string. If the truncated characters consist only of spaces, no exception is
raised. The default setting, off, does not raise the SQLSTATE exception, and
the character string is silently truncated.

CHAPTER 1 Commands

Reference Manual: Commands 441

table count
sets the number of tables that Adaptive Server considers at one time while
optimizing a join. The default used depends on the number of tables in the
join:

Valid values are 0 – 8. A value of 0 resets the default behavior. A value
greater than 8 defaults to 8. table count may improve the optimization of
certain join queries, but it increases the compilation cost.

textsize
specifies the maximum size in bytes of text or image type data that is
returned with a select statement. The @@textsize global variable stores the
current setting. To reset textsize to the default size (32K), use:

set textsize 0

The default setting is 32K in isql. Some client software sets other default
values.

transaction isolation level
sets the transaction isolation level for your session. After you set this option,
any current or future transactions operate at that isolation level.

read uncommitted | 0
scans at isolation level 0 do not acquire any locks. Therefore, the result set
of a level 0 scan may change while the scan is in progress. If the scan
position is lost due to changes in the underlying table, a unique index is
required to restart the scan. In the absence of a unique index, the scan may
be aborted.

By default, a unique index is required for a level 0 scan on a table that does
not reside in a read-only database. You can override this requirement by
forcing the Adaptive Server to choose a nonunique index or a table scan, as
follows:

select * from table_name (index table_name)

Activity on the underlying table may cause the scan to be aborted before
completion.

Tables joined Tables considered at a time

2 – 25 4

26 – 37 3

38 – 50 2

set

442 Adaptive Server Enterprise

read committed | 1
By default, Adaptive Server’s transaction isolation level is read committed
or 1, which allows shared read locks on data.

repeatable read | 2
prevents nonrepeatable reads.

serializable | 3
specify isolation level 3, Adaptive Server applies a holdlock to all select and
readtext operations in a transaction, which holds the queries’ read locks until
the end of that transaction. If you also set chained mode, that isolation level
remains in effect for any data retrieval or modification statement that
implicitly begins a transaction.

transactional_rpc
controls the handling of remote procedure calls. If this option is set to on,
when a transaction is pending, the RPC is coordinated by Adaptive Server.
If this option is set to off, the remote procedure call is handled by the
Adaptive Server site handler. The default value is inherited from the value
of the enable xact coordination configuration parameter.

Examples Example 1 Tells Adaptive Server to evaluate NULL-valued operands of
equality (=) and inequality (!=) comparisons and aggregate functions in
compliance with the entry level ANSI SQL standard:

set ansinull on

When you use set ansinull on, aggregate functions and row aggregates raise the
following SQLSTATE warning when Adaptive Server finds null values in one
or more columns or rows:

Warning - null value eliminated in set function

If the value of either the equality or the inequality operands is NULL, the
comparison’s result is UNKNOWN. For example, the following query returns
no rows in ansinull mode:

select * from titles where price = null

If you use set ansinull off, the same query returns rows in which price is NULL.

Example 2 Activates character set conversion, setting it to a default based on
the character set the client is using. Adaptive Server also notifies the client or
application when characters cannot be converted to the client’s character set:

set char_convert on with error

Example 3 Specifies that Component Integration Services handles outbound
RPC requests by default:

CHAPTER 1 Commands

Reference Manual: Commands 443

set cis_rpc_handling on

Example 4 Assigns this user:

• The client name alison

• The host name money1

• The application name webserver2

set clientname 'alison'
set clienthostname 'money1'
set clientapplname 'webserver2'

Example 5 Returns five rows for each succeeding fetch statement requested by
a client using test_cursor:

set cursor rows 5 for test_cursor

Example 6 Inserts a value of 100 into the IDENTITY column of the
stores_south table, then prohibits further explicit inserts into this column. Note
the use of the syb_identity keyword; Adaptive Server replaces the keyword with
the name of the IDENTITY column:

set identity_insert stores_south on
go
insert stores_south (syb_identity)
values (100)
go
set identity_insert stores_south off
go

Example 7 Enables idenity_update and updates tables with values 1 and 10,
respectively, then disables identity_update:

set identity_update t1 on
update t1 set c2 = 10 where c1 =1
select * from t1
c1 c2
_ _ _ _ _ _ _ _ _
1 10

set identity_update t1 off

Example 8 Tells Adaptive Server to display a warning message if you use a
Transact-SQL extension:

set fipsflagger on

Then, if you use nonstandard SQL, like this:

use pubs2

set

444 Adaptive Server Enterprise

go

Adaptive Server displays:

SQL statement on line number 1 contains Non-ANSI text.
The error is caused due to the use of use database.

Example 9 Subsequent commands in the session or stored procedure return an
error and fail if they cannot get requested locks immediately:

set lock nowait

Example 10 Subsequent commands in the current session or stored procedure
wait indefinitely long to acquire locks:

set lock wait

Example 11 Subsequent commands in the session or stored procedure wait 5
seconds to acquire locks before generating an error message and failing:

set lock wait 5

Example 12 Enables capturing abstract plans to the dev_plans group:

set plan dump dev_plans on

Example 13 Enables loading of abstract plans from the dev_plans group for
queries in the current session:

set plan load dev_plans on

Example 14 Suppresses the output of parameter information:

1> create procedure sp_pout (@x int output) as select @x = @x + 1
2> go

1> set proc_output_params off
2> go

1> declare @x int
2> select @x = 1
3> exec sp_pout @x output
4> print "Value of @x returned from sproc is: %1!", @x
5> go

(1 row affected)
(return status = 0)
Value of @x returned from sproc is: 2

If you do not perform set proc_output_params off, the output after (return
status = 0) includes the following:

Return parameters:

CHAPTER 1 Commands

Reference Manual: Commands 445

2

Example 15 Suppresses the output of both parameters and the return status
TDS token:

set proc_output_params OFF
go

set proc_return_status OFF
go

declare @x int
select @x = 2
exec sp_pout @x output
print "Value of @x returned from sproc is: %1!", @x
go

(1 row affected)
Value of @x returned from sproc is: 3
(1 row affected)

In addition, you can also suppress the lines reporting the number of rows
affected to generate output with no extra messages using the set nocount on
option before running this batch.

Example 16 The user executing this command now operates within the server
as the login “mary” and Mary’s server user ID:

set proxy "mary"

Example 17 For each insert, update, delete, and select statement, Adaptive
Server stops processing the query after it affects the first four rows. For
example:

select title_id, price from titles
title_id price
-------- ----------
BU1032 19.99
BU1111 11.95
BU2075 2.99
BU7832 19.99

(4 rows affected)

set rowcount 4

set

446 Adaptive Server Enterprise

Example 18 Tells Adaptive Server to treat any character string enclosed in
double quotes as an identifier. The table name “!*&strange_table” and the
column name “emp’s_name” are legal identifier names while quoted_identifier
is on:

set quoted_identifier on
go
create table "!*&strange_table"

("emp’s_name" char(10),
age int)

go
set quoted_identifier off
go

Example 19 Activates the “doctor” role. This command is used by users to
specify the roles they want activated:

set role doctor_role on

Example 20 Deactivates the user’s System Administrator role for the current
session:

set role "sa_role" off

Example 21 Activates the “doctor” role when the user enters the password:

set role doctor_role with passwd "physician" on

Example 22 Deactivates the “doctor” role:

set role doctor_role off

Example 23 Specifies a maximum degree of parallelism of 4 for parallel index
scans and parallel table scans on nonpartitioned tables:

set scan_parallel_degree 4

Example 24 An alternative way of stating example 5:

set session authorization "mary"

Example 25 For each query, returns a description of the processing plan, but
does not execute it:

set showplan, noexec on
go
select * from publishers
go

Example 26 Causes Adaptive Server to generate an exception when truncating
a char, unichar, or nchar string:

set string_rtruncation on

CHAPTER 1 Commands

Reference Manual: Commands 447

If an insert or update statement would truncate a string, Adaptive Server
displays:

string data, right truncation

Example 27 Sets the limit on text or image data returned with a select
statement to 100 bytes:

set textsize 100

Example 28 Specifies that when a transaction is pending, the RPC is handled
by the Component Integration Services access methods rather than by the
Adaptive Server site handler:

set transactional_rpc on

Example 29 All subsequent queries in the session run at the repeatable reads
transaction isolation level:

set transaction isolation level 2

Example 30 Implements read-locks with each select statement in a transaction
for the duration of that transaction:

set transaction isolation level 3

Usage • Some set options can be grouped together, as follows:

• parseonly, noexec, prefetch, showplan, rowcount, and nocount control
the way a query is executed. It does not make sense to set both
parseonly and noexec on. The default setting for rowcount is 0 (return
all rows); the default for the others is off.

• The statistics options display performance statistics after each query.
The default setting for the statistics options is off. For more
information about noexec, prefetch, showplan and statistics, see the
Performance and Tuning Guide.

• You can update up to 1024 columns in the set clause using literals,
variables, or expressions returned from a subquery.

• offsets and procid are used in DB-Library to interpret results from
Adaptive Server. The default setting for these options is on.

• datefirst, dateformat, and language affect date functions, date order,
and message display. If used within a trigger or stored procedure,
these options do not revert to their previous settings.

set

448 Adaptive Server Enterprise

In the default language, us_english, datefirst is 1 (Sunday), dateformat
is mdy, and messages are displayed in us_english. Some language
defaults (including us_english) produce Sunday=1, Monday=2, and
so on; others produce Monday=1, Tuesday=2, and so on.

set language implies that Adaptive Server should use the first
weekday and date format of the language it specifies, but does not
override an explicit set datefirst or set dateformat command issued
earlier in the current session.

• cursor rows and close on endtran affect the way Adaptive Server
handles cursors. The default setting for cursor rows with all cursors is
1. The default setting for close on endtran is off.

• chained and transaction isolation level allow Adaptive Server to handle
transactions in a way that is compliant with the SQL standards.

fipsflagger, string_rtruncation, ansinull, ansi_permissions, arithabort, and
arithignore affect aspects of Adaptive Server error handling and compliance to
SQL standards.

Note The arithabort and arithignore options were redefined for version 10.0 and
later. If you use these options in your applications, examine them to verify they
are still producing the desired effect.

• You can use the cis_rpc_handling and transactional_rpc options only when
Component Integration Services is enabled.

• When the quoted_identifier option is set to on, you do not need to use
double quotes around an identifier if the syntax of the statement requires
that a quoted string contain an identifier. For example:

set quoted_identifier on
create table "1one" (c1 int)

However, object_id requires a string, so you must include the table name
in quotes to select the information:

select object_id('1one')

896003192

You can include an embedded double quote in a quoted identifier by
doubling the quote:

create table "embedded""quote" (c1 int)

CHAPTER 1 Commands

Reference Manual: Commands 449

However, there is no need to double the quote when the statement syntax
requires the object name to be expressed as a string:

select object_id('embedded"quote')

• parallel_degree and scan_parallel_degree limit the degree of parallelism
for queries, if Adaptive Server is configured for parallelism. When you use
these options, you give the optimizer a hint to limit parallel queries to use
fewer worker processes than allowed by the configuration parameters.
Setting these parameters to 0 restores the server-wide configuration
values.

If you specify a number that is greater than the numbers allowed by the
configuration parameters, Adaptive Server issues a warning message and
uses the value set by the configuration parameter.

• If you use the set command inside a trigger or stored procedure, most set
options revert to their former settings after the trigger or procedure
executes.

The following options do not revert to their former settings after the
procedure or trigger executes, but remain for the entire Adaptive Server
session or until you explicitly reset them:

• datefirst

• dateformat

• identity_insert

• language

• quoted_identifier

• If you specify more than one set option, the first syntax error causes all
following options to be ignored. However, the options specified before the
error are executed, and the new option values are set.

• If you assign a user a client name, host name, or application name, these
assignments are only active for the current session. You must reassign
these the next time the user logs in. Although the new names appear in
sysprocesses, they are not used for permission checks, and sp_who still
shows the client connection as belonging to the original login. For more
information about setting user processes, see the System Administration
Guide.

• All set options except showplan and char_convert take effect immediately.
showplan takes effect in the following batch. Here are two examples that
use set showplan on:

set

450 Adaptive Server Enterprise

set showplan on
select * from publishers
go

pub_id pub_name city state
------- --------------------- ----------- ---
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

But:

set showplan on
go
select * from publishers
go
QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT

FROM TABLE
publishers

Nested iteration
Table Scan
Ascending Scan.
Positioning at start of table.

pub_id pub_name city state
------ -------------------- ---------- ----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

Roles and set options

• When you log in to Adaptive Server, all system-defined roles granted to
you are automatically activated. User-defined roles granted to you are not
automatically activated. To automatically activate user-defined roles
granted to you, use sp_modifylogin. See sp_modifylogin in Reference
Manual: Procedures. Use set role role_name on or set role role_name off to
turn roles on and off.

CHAPTER 1 Commands

Reference Manual: Commands 451

For example, if you have been granted the System Administrator role, you
assume the identity (and user ID) of Database Owner in the current
database. To assume your real user ID, execute this command:

set role "sa_role" off

If you are not a user in the current database, and if there is no “guest” user,
you cannot set sa_role off.

• If the user-defined role you intend to activate has an attached password,
you must specify the password to turn the role on. Thus, you would enter:

set role "role_name" with passwd "password" on

Distributed transactions, CIS, and set options

• The behavior of the cis rpc handling configuration property and the set
transactional_rpc commands changed with the introduction of ASTC. In
versions earlier than 12.0, enabling cis rpc handling caused all RPCs to be
routed through CIS’s Client-Library connection. As a result, whenever cis
rpc handling was enabled, transactional_rpc behavior occurred whether or
not it had been specifically set. As of Adaptive Server 12.0, this behavior
has changed. If cis rpc handling is enabled and transactional_rpc is off, RPCs
within a transaction are routed through the site handler. RPCs executed
outside a transaction are sent via CIS’s Client-Library connection.

• When Adaptive Server distributed transaction management services are
enabled, you can place RPCs within transactions. These RPCs are called
transactional RPCs. A transactional RPC is an RPC whose work can be
included in the context of a current transaction. This remote unit of work
can be committed or rolled back along with the work performed by the
local transaction.

To use transactional RPCs, enable CIS and distributed transaction
management with sp_configure, then issue the set transactional_rpc
command. When set transactional_rpc is on and a transaction is pending,
the Adaptive Server (as opposed to the Adaptive Server site handler)
coordinates the RPC.

The set transactional_rpc command default is off. The set cis_rpc_handling
command overrides the set transactional_rpc command. If you set
cis_rpc_handling on, all outbound RPCs are handled by Component
Integration Services.

• See the Component Integration Services User’s Guide for a discussion of
using set transactional_rpc, set cis_rpc_handling, and sp_configure.

set

452 Adaptive Server Enterprise

Using proxies

Note Without explicit permission, neither the “sa_role” nor the “sso_role” can
issue the set proxy login_name command. To use set proxy login_name, any user,
including the System Security Officer, must have permission explicitly granted
by the System Security Officer.

• Before you can use the set proxy or set session authorization command, a
System Security Officer must grant permission to execute set proxy or set
session authorization from the master database.

• Executing set proxy or set session authorization with the original
login_name reestablishes your previous identity.

• You cannot execute set proxy or set session authorization from within a
transaction.

• Adaptive Server permits only one level of login identity change.
Therefore, after you use set proxy or set session authorization to change
identity, you must return to your original identity before changing it again.
For example, assume that your login name is “ralph”. To create a table as
“mary”, create a view as “joe”, then return to your own login identity. Use
the following statements:

set proxy "mary"
create table mary_sales
(stor_id char(4),
ord_num varchar(20),
date datetime)

grant select on mary_sales to public
set proxy "ralph"
set proxy "joe"

create view joes_view (publisher, city,
state)

as select stor_id, ord_num, date
from mary_sales

set proxy "ralph"

Using lock wait

• By default, an Adaptive Server task that cannot immediately acquire a lock
waits until incompatible locks are released, then continues processing.
This is equivalent to set lock wait with no value specified in the numsecs
parameter.

• You can set a server-wide lock wait period by using sp_configure with the
lock wait period option.

CHAPTER 1 Commands

Reference Manual: Commands 453

• lock wait period, with the session-level setting set lock wait nnn, is only
applicable for user-defined tables. These settings have no influence on
system tables.

• A lock wait period defined at the session level or in a stored procedure
with the set lock command overrides a server-level lock-wait period.

• If set lock wait is used by itself, with no value for numsecs, all subsequent
commands in the current session wait indefinitely to acquire requested
locks.

• sp_sysmon reports the number of times that tasks waiting for a lock could
not acquire the lock within the waiting period.

Repeatable-reads transaction isolation level

• The repeatable-reads isolation level, also known as transaction isolation
level 2, holds locks on all pages read by the statement until the transaction
completes.

• A nonrepeatable read occurs when one transaction reads rows from a table
and a second transaction can modify the same rows and commit the
changes before the first transaction completes. If the first transaction
rereads the rows, they now have different values, so the initial read is not
repeatable. Repeatable reads hold shared locks for the duration of a
transaction, blocking transactions that update the locked rows or rows on
the locked pages.

Using simulated statistics

• You can load simulated statistics into a database using the simulate mode
of the optdiag utility program. If set statistics simulate on has been issued
in a session, queries are optimized using simulated statistics, rather than
the actual statistics for a table.

Global variables affected by set options

• Table 1-37 lists the global variables that contain information about the
session options controlled by the set command.

Table 1-37: Global variables containing session options

Global variable Description

@@char_convert Contains 0 if character set conversion not in effect. Contains 1 if character set
conversion is in effect.

@@isolation Contains the current isolation level of the Transact-SQL program. @@isolation takes
the value of the active level (0, 1, or 3).

@@options Contains a hexadecimal representation of the session’s set options.

@@parallel_degree Contains the current maximum parallel degree setting.

set

454 Adaptive Server Enterprise

Using fipsflagger with Java in the database

• When fipsflagger is on, Adaptive Server displays a warning message when
these extensions are used:

• The installjava utility

• The remove java command

• Column and variable declarations that reference Java classes as
datatypes

• Statements that use Java-SQL expressions for member references

• The status of fipsflagger does not affect arithmetic expressions performed
by Java methods.

• For more information about Java in the database, see Java in Adaptive
Server Enterprise.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

The ANSI SQL standard specifies behavior that differs from Transact-SQL
behavior in earlier Adaptive Server versions. Compliant behavior is enabled by
default for all Embedded-SQL precompiler applications. Other applications
needing to match this standard of behavior can use the set options listed in
Table 1-38.

@@rowcount Contains the number of rows affected by the last query. @@rowcount is set to 0 by any
command that does not return rows, such as an if, update, or delete statement. With
cursors, @@rowcount represents the cumulative number of rows returned from the
cursor result set to the client, up to the last fetch request.

@@rowcount is updated even when nocount is on.

@@scan_parallel_degree Contains the current maximum parallel degree setting for nonclustered index scans.

@@textsize Contains the limit on the number of bytes of text or image data a select returns. Default
limit is 32K bytes for isql; the default depends on the client software. Can be changed
for a session with set textsize.

@@tranchained Contains the current transaction mode of the Transact-SQL program. @@tranchained
returns 0 for unchained or 1 for chained.

Global variable Description

CHAPTER 1 Commands

Reference Manual: Commands 455

Table 1-38: Options to set for entry level ANSI SQL compliance

Permissions In general, set permission defaults to all users and no special permissions are
required to use it. Exceptions include set role, set proxy, and set session
authorization.

To use set role, a System Administrator or System Security Officer must have
granted you the role. If you gain entry to a database only because you have a
certain role, you cannot turn that role off while you are using the database. For
example, if you are not normally authorized to use a database info_plan, but you
use it as a System Administrator, Adaptive Server returns an error message if
you try to set sa_role off while you are still in info_plan.

To use set proxy or set session authorization, you must have been granted
permission by a System Security Officer.

See also Commands create trigger, fetch, grant, insert, lock table, revoke

Functions convert

Utilities isql, optdiag

Option Setting

ansi_permissions on

ansinull on

arithabort off

arithabort numeric_truncation on

arithignore off

chained on

close on endtran on

fipsflagger on

quoted_identifier on

string_rtruncation on

transaction isolation level 3

setuser

456 Adaptive Server Enterprise

setuser
Description Allows a Database Owner to impersonate another user.

Syntax setuser ["user_name"]

Examples The Database Owner temporarily adopts Mary’s identity in the database in
order to grant Joe permissions on authors, a table owned by Mary:

setuser "mary"
go
grant select on authors to joe
setuser
go

Usage • The Database Owner uses setuser to adopt the identity of another user in
order to use another user’s database object, to grant permissions, to create
an object, or for some other reason.

• When the Database Owner uses the setuser command, Adaptive Server
checks the permissions of the user being impersonated instead of the
permissions of the Database Owner. The user being impersonated must be
listed in the sysusers table of the database.

• setuser affects permissions only in the local database. It does not affect
remote procedure calls or accessing objects in other databases.

• The setuser command remains in effect until another setuser command is
given or until the current database is changed with the use command.

• Executing the setuser command with no user name reestablishes the
Database Owner’s original identity.

• System Administrators can use setuser to create objects that will be owned
by another user. However, since a System Administrator operates outside
the permissions system, she or he cannot use setuser to acquire another
user’s permissions.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions setuser permission defaults to the Database Owner and is not transferable.

See also Commands grant, revoke, use

CHAPTER 1 Commands

Reference Manual: Commands 457

shutdown
Description Shuts down the Adaptive Server from which the command is issued, its local

Backup Server, or a remote Backup Server. This command can be issued only
by a System Administrator.

Syntax shutdown [srvname] [with {wait | nowait}]

Parameters srvname
 is the logical name by which the Backup Server is known in the Adaptive
Server’s sysservers system table. This parameter is not required when
shutting down the local Adaptive Server.

with wait
is the default. This shuts down the Adaptive Server or Backup Server
gracefully.

with nowait
shuts down the Adaptive Server or Backup Server immediately, without
waiting for currently executing statements to finish.

Note Use of shutdown with nowait can lead to gaps in IDENTITY column
values.

Examples Example 1 Shuts down the Adaptive Server from which the shutdown
command is issued:

shutdown

Example 2 Shuts down the Adaptive Server immediately:

shutdown with nowait

Example 3 Shuts down the local Backup Server:

shutdown SYB_BACKUP

Example 4 Shuts down the remote Backup Server REM_BACKUP:

shutdown REM_BACKUP

Usage • Unless you use the nowait option, shutdown attempts to bring Adaptive
Server down gracefully by:

• Disabling logins (except for the System Administrator)

• Performing a checkpoint in every database

• Waiting for currently executing SQL statements or stored procedures
to finish

shutdown

458 Adaptive Server Enterprise

Shutting down the server without the nowait option minimizes the amount
of work that must be done by the automatic recovery process.

• Unless you use the nowait option, shutdown backup_server waits for active
dumps and/or loads to complete. Once you issue a shutdown command to
a Backup Server, no new dumps or loads that use this Backup Server can
start.

• Use shutdown with nowait only in extreme circumstances. In Adaptive
Server, issue a checkpoint command before executing a shutdown with
nowait.

• You can halt only the local Adaptive Server with shutdown; you cannot
halt a remote Adaptive Server.

• You can halt a Backup Server only if:

• It is listed in your sysservers table. Use sp_addserver to add entries to
sysservers.

• It is listed in the interfaces file for the Adaptive Server where you
execute the command.

• Use sp_helpserver to determine the name by which a Backup Server is
known to the Adaptive Server. Specify the Backup Server’s name— not
its network_name—as the srvname parameter. For example:

sp_helpserver
name network_name status id
---------- ------------- ------------------------------------ --
REM_BACKUP WHALE_BACKUP timeouts, no net password encryption 3
SYB_BACKUP SLUG_BACKUP timeouts, net password encryption 1
eel eel 0
whale whale timeouts, no net password encryption 2

To shut down the remote Backup Server named WHALE_BACKUP, use:

shutdown REM_BACKUP

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions shutdown permission defaults to System Administrators and is not transferable.

See also Commands alter database

System procedures sp_addserver, sp_helpserver

CHAPTER 1 Commands

Reference Manual: Commands 459

truncate table
Description Removes all rows from a table.

Syntax truncate table [[database.]owner.]table_name

Parameters table_name
is the name of the table to truncate. Specify the database name if the table is
in another database, and specify the owner’s name if more than one table of
that name exists in the database. The default value for owner is the current
user, and the default value for database is the current database.

Examples Removes all data from the authors table:

truncate table authors

Usage • truncate table deletes all rows from a table. The table structure and all the
indexes continue to exist until you issue a drop table command. The rules,
defaults, and constraints that are bound to the columns remain bound, and
triggers remain in effect.

• Adaptive Server no longer uses distribution pages; statistical information
is now stored in the tables sysstatistics and systabstats.

During truncate table, statistical information is no longer deleted
(deallocated), so you need not run update statistics after adding data.

truncate table does not delete statistical information for the table.

• truncate table is equivalent to—but faster than—a delete command without
a where clause. delete removes rows one at a time and logs each deleted
row as a transaction; truncate table deallocates whole data pages and
makes fewer log entries. Both delete and truncate table reclaim the space
occupied by the data and its associated indexes.

• Because the deleted rows are not logged individually, truncate table cannot
fire a trigger.

• You cannot use truncate table if another table has rows that reference it.
Delete the rows from the foreign table, or truncate the foreign table, then
truncate the primary table.

• You cannot use the truncate table command on a partitioned table.
Unpartition the table with the unpartition clause of the alter table command
before issuing the truncate table command.

You can use the delete command without a where clause to remove all
rows from a partitioned table without first unpartitioning it. This method
is generally slower than truncate table, since it deletes one row at a time
and logs each delete operation.

truncate table

460 Adaptive Server Enterprise

Standards ANSI SQL – Compliance level: Entry-level compliant.

Permissions truncate table permission defaults to the table owner and is not transferable. To
truncate a system audit table (sysaudits_01, sysaudits_02, sysaudits_03, and so
on, through sysaudits_08), you must be a System Security Officer.

See also Commands create trigger, delete, drop table

CHAPTER 1 Commands

Reference Manual: Commands 461

union operator
Description Returns a single result set that combines the results of two or more queries.

Duplicate rows are eliminated from the result set unless the all keyword is
specified.

Syntax select select_list [into clause]
[from clause] [where clause]
[group by clause] [having clause]

[union [all]
select select_list

[from clause] [where clause]
[group by clause] [having clause]]...

[order by clause]
[compute clause]

Parameters union
creates the union of data specified by two select statements.

all
includes all rows in the results; duplicates are not removed.

into
creates a new table based on the columns specified in the select list and the
rows chosen in the where clause. The first query in the union operation is the
only one that can contain an into clause.

Examples Example 1 The result set includes the contents of the stor_id and stor_name
columns of both the sales and sales_east tables:

select stor_id, stor_name from sales
union
select stor_id, stor_name from sales_east

Example 2 The into clause in the first query specifies that the results table
holds the final result set of the union of the specified columns of the publishers,
stores, and stores_east tables:

select pub_id, pub_name, city into results
from publishers
union
select stor_id, stor_name, city from stores
union
select stor_id, stor_name, city from stores_east

Example 3 First, the union of the specified columns in the sales and sales_east
tables is generated. Then, the union of that result with publishers is generated.
Finally, the union of the second result and authors is generated:

select au_lname, city, state from authors

union operator

462 Adaptive Server Enterprise

union
((select stor_name, city, state from sales
union
select stor_name, city, state from sales_east)
union
select pub_name, city, state from publishers)

Usage • The total number of tables that can appear on all sides of a union query is
256.

• You can use union in select statements, for example:

create view
select * from Jan1998Sales
union all
select * from Feb1998Sales
union all

• The order by and compute clauses are allowed only at the end of the union
statement to define the order of the final results or to compute summary
values.

• The group by and having clauses can be used only within individual queries
and cannot be used to affect the final result set.

• The default evaluation order of a SQL statement containing union
operators is left-to-right.

• Since union is a binary operation, parentheses must be added to an
expression involving more than two queries to specify evaluation order.

• The first query in a union statement may contain an into clause that creates
a table to hold the final result set. The into statement must be in the first
query, or you receive an error message (see Example 2).

• The union operator can appear within an insert...select statement. For
example:

insert into sales.overall
select * from sales
union
select * from sales_east

• All select lists in a SQL statement must have the same number of
expressions (column names, arithmetic expressions, aggregate functions,
and so on). For example, the following statement is invalid because the
first select list contains more expressions than the second:

/* Example of invalid command--shows imbalance */ /*
in select list items */

CHAPTER 1 Commands

Reference Manual: Commands 463

select au_id, title_id, au_ord from titleauthor
union
select stor_id, date from sales

• Corresponding columns in the select lists of union statements must occur
in the same order, because union compares the columns one-to-one in the
order given in the individual queries.

• The column names in the table resulting from a union are taken from the
first individual query in the union statement. To define a new column
heading for the result set, do it in the first query. Also, to refer to a column
in the result set by a new name (for example, in an order by statement),
refer to it by that name in the first select statement. For example, the
following query is correct:

select Cities = city from stores
union
select city from stores_east
order by Cities

• The descriptions of the columns that are part of a union operation do not
have to be identical. Table 1-39 lists the rules for the datatypes and the
corresponding column in the result table.

Table 1-39: Resulting datatypes in union operations

Restrictions

• You cannot use the union operator in a subquery.

Datatype of columns in union operation Datatype of corresponding column in result table

Not datatype-compatible (data conversion is not
handled implicitly by Adaptive Server)

Error returned by Adaptive Server.

Both are fixed-length character with lengths L1
and L2

Fixed-length character with length equal to the greater of L1
and L2.

Both are fixed-length binary with lengths L1 and
L2

Fixed-length binary with length equal to the greater of L1 and
L2.

Either or both are variable-length character Variable-length character with length equal to the maximum of
the lengths specified for the column in the union.

Either or both are variable-length binary Variable-length binary with length equal to the maximum of
the lengths specified for the columns in the union.

Both are numeric datatypes (for example, smallint,
int, float, money)

A datatype equal to the maximum precision of the two
columns. For example, if a column in table A is of type int and
the corresponding column in table B is of type float, then the
datatype of the corresponding column of the result table is float,
because float is more precise than int.

Both column descriptions specify NOT NULL Specifies NOT NULL.

union operator

464 Adaptive Server Enterprise

• You cannot use the union operator with the for browse clause.

• You cannot use the union operator on queries that select text or image data.

Standards ANSI SQL – Compliance level: Entry-level compliant

The following are Transact-SQL extensions:

• The use of union in the select clause of an insert statement

• Specifying new column headings in the order by clause of a select
statement when the union operator is present in the select statement

See also Commands compute clause, declare, group by and having clauses, order by
clause, select, where clause

Functions convert

CHAPTER 1 Commands

Reference Manual: Commands 465

unmount
Description The unmount command shuts down the database and drops it from the Adaptive

Server. The devices are also deactivated and dropped. The database and its
pages are not altered when they are unmounted. The database pages remain on
the OS devices. Once the unmount command completes, you can disconnect
and move the devices at the source Adaptive Server if necessary. Use the
manifest_file extension to create the manifest file for use at the secondary
Adaptive Server.

The unmount command limits the number of databases to eight in a single
command.

 Warning! The unmount command removes a database and all its information
from the Adaptive Server. Use the unmount command only when you want to
remove the database from one Adaptive Server to another Adaptive Server.

Syntax unmount database <dbname list> to <manifest_file>

Parameters dbname list
the database being unmounted. You can unmount more than one database.

manifest_file
the binary file that describes the databases that are present on a set of
database devices. It can be created only if the set of databases that occupy
those devices are isolated and self-contained on those devices.

Since the manifest file is a binary file, operations that perform character
translations of the file contents (such as ftp) will corrupt the file unless done
in binary mode.

Examples unmount databases from an Adaptive Server and create the manifest file for the
database:

unmount database pubs2 to "/work2/Devices/Mpubs2_file"

Usage You cannot:

• Unmount system databases. However, you can unmount sybsystemprocs.

• Unmount proxy databases or user created temporary databases.

• Use the unmount command in a transaction.

• Unmount a database on an HA-configured server.

Standards ANSI SQL – Compliance level: Entry-level compliant.

See also Commands mount, quiesce database

update

466 Adaptive Server Enterprise

update
Description Changes data in existing rows, either by adding data or by modifying existing

data.

Syntax update [[database.]owner.]{table_name | view_name}
set [[[database.]owner.]{table_name.|view_name.}]

column_name1 =
{expression1 | NULL | (select_statement)} |

variable_name1 =
{expression1 | NULL | (select_statement)}

[, column_name2 =
{expression2 | NULL | (select_statement)}]... |

[, variable_name2 =
{expression2 | NULL | (select_statement)}]...

[from [[database.]owner.]{view_name [readpast]|
table_name [readpast]

[(index {index_name | table_name}
[prefetch size][lru|mru])]}

[,[[database.]owner.]{view_name [readpast]|
table_name [readpast]

[(index {index_name | table_name }
[prefetch size][lru|mru])]}]

...]
[where search_conditions]
[plan "abstract plan"]

update [[database.]owner.]{table_name | view_name}
set [[[database.]owner.]{table_name.|view_name.}]

column_name1 =
{expression1 | NULL | (select_statement)} |

variable_name1 =
{expression1 | NULL | (select_statement)}

[, column_name2 =
{expression2 | NULL | (select_statement)}]... |

[, variable_name2 =
{expression2 | NULL | (select_statement)}]...

where current of cursor_name

Parameters table_name | view_name
is the name of the table or view to update. Specify the database name if the
table or view is in another database, and specify the owner’s name if more
than one table or view of that name exists in the database. The default value
for owner is the current user, and the default value for database is the current
database.

CHAPTER 1 Commands

Reference Manual: Commands 467

set
specifies the column name or variable name and assigns the new value. The
value can be an expression or a NULL. When more than one column name
or variable name and value are listed, they must be separated by commas.

from
uses data from other tables or views to modify rows in the table or view you
are updating.

readpast
causes the update command to modify unlocked rows only on
datarows-locked tables, or rows on unlocked pages, for datapages-locked
tables. update...readpast silently skips locked rows or pages rather than
waiting for the locks to be released.

where
is a standard where clause (see where clause).

index {index_name | table_name}
 index_name specifies the index to be used to access table_name. You
cannot use this option when you update a view.

prefetch size
specifies the I/O size, in kilobytes, for tables bound to caches with large I/Os
configured. You cannot use this option when you update a view.
sp_helpcache shows the valid sizes for the cache to which an object is bound
or for the default cache. To configure the data cache size, use
sp_cacheconfigure.

When using prefetch and designating the prefetch size (size), the minimum
is 2K and any power of two on the logical page size up to 16K. prefetch size
options in kilobytes are:

The prefetch size specified in the query is only a suggestion. To allow the
size specification configure the data cache at that size. If you do not
configure the data cache to a specific size, the default prefetch size is used.

If Component Integration Services is enabled, you cannot use prefetch for
remote servers.

Logical page size Prefetch size options

2 2, 4, 8 16

4 4, 8, 16, 32

8 8, 16, 32, 64

16 16, 32, 64, 128

update

468 Adaptive Server Enterprise

lru | mru
specifies the buffer replacement strategy to use for the table. Use lru to force
the optimizer to read the table into the cache on the MRU/LRU (most
recently used/least recently used) chain. Use mru to discard the buffer from
cache and replace it with the next buffer for the table. You cannot use this
option when you update a view.

where current of
causes Adaptive Server to update the row of the table or view indicated by
the current cursor position for cursor_name.

index_name
is the name of the index to be updated. If an index name is not specified, the
distribution statistics for all the indexes in the specified table are updated.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. See Chapter 30,
“Creating and Using Abstract Plans,” in the Performance and Tuning Guide
for more information.

Examples Example 1 All the McBaddens in the authors table are now MacBaddens:

update authors
set au_lname = "MacBadden"
where au_lname = "McBadden"

Example 2 Modifies the total_sales column to reflect the most recent sales
recorded in the sales and salesdetail tables. This assumes that only one set of
sales is recorded for a given title on a given date, and that updates are current:

update titles
set total_sales = total_sales + qty
from titles, salesdetail, sales
where titles.title_id = salesdetail.title_id

and salesdetail.stor_id = sales.stor_id
and salesdetail.ord_num = sales.ord_num
and sales.date in

(select max(sales.date) from sales)

Example 3 Changes the price of the book in the titles table that is currently
pointed to by title_crsr to $24.95:

update titles
set price = 24.95
where current of title_crsr

CHAPTER 1 Commands

Reference Manual: Commands 469

Example 4 Finds the row for which the IDENTITY column equals 4 and
changes the price of the book to $18.95. Adaptive Server replaces the
syb_identity keyword with the name of the IDENTITY column:

update titles
set price = 18.95
where syb_identity = 4

Example 5 Updates the titles table using a declared variable:

declare @x money
select @x = 0
update titles

set total_sales = total_sales + 1,
@x = price
where title_id = "BU1032"

Example 6 Updates rows on which another task does not hold a lock:

update salesdetail set discount = 40
from salesdetail readpast

where title_id like "BU1032"
and qty > 100

Usage • Use update to change values in rows that have already been inserted. Use
insert to add new rows.

• You can refer to as many as 15 tables in an update statement.

• update interacts with the ignore_dup_key, ignore_dup_row, and
allow_dup_row options set with the create index command. See create index
for more information.

• You can define a trigger that takes a specified action when an update
command is issued on a specified table or on a specified column in a table.

Using variables in update statements

• You can assign variables in the set clause of an update statement, similarly
to setting them in a select statement.

• Before you use a variable in an update statement, you must declare the
variable using declare, and initialize it with select, as shown in Example 5.

• Variable assignment occurs for every qualified row in the update.

• When a variable is referenced on the right side of an assignment in an
update statement, the current value of the variable changes as each row is
updated. The current value is the value of the variable just before the
update of the current row. The following example shows how the current
value changes as each row is updated.

update

470 Adaptive Server Enterprise

Suppose you have the following statement:

declare @x int
select @x=0
update table1

set C1=C1+@x, @x=@x+1
where column2=xyz

The value of C1 before the update begins is 1. The following table shows
how the current value of the @x variable changes after each update:

• When multiple variable assignments are given in the same update
statement, the values assigned to the variables can depend on their order
in the assignment list, but they might not always do so. For best results, do
not rely on placement to determine the assigned values.

• If multiple rows are returned and a nonaggregating assignment of a
column to a variable occurs, then the final value of the variable is the last
row processed; therefore, it might not be useful.

• An update statement that assigns values to variables need not set the value
of any qualified row.

• If no rows qualify for the update, the variable is not assigned.

• A variable that is assigned a value in the update statement cannot be
referenced in subquery in that same update statement, regardless of where
the subquery appears in that update statement.

• A variable that is assigned a value in the update statement cannot be
referenced in a where or having clause in that same update statement.

• In an update driven by a join, a variable that is assigned a value in the right
hand side of the update statement uses columns from the table that is not
being updated. The result value depends on the join order chosen for the
update and the number of rows that qualify from the joined table.

• Updating a variable is not affected by a rollback of the update statement
because the value of the updated variable is not stored on disk.

Row
Initial C1
value

Initial @x
value

Calculations:
C1+@x= updated C1

Updated
C1 value

Calculations:
@x+1= updated @x

Updates
value

A 1 0 1+0 1 0+1 1

B 1 1 1+1 2 1+1 2

C 2 2 2+2 4 2+1 3

D 4 3 4+3 7 3+1 4

CHAPTER 1 Commands

Reference Manual: Commands 471

Using update with transactions

• When you set chained transaction mode on, and no transaction is currently
active, Adaptive Server implicitly begins a transaction with the update
statement. To complete the update, you must either commit the transaction
or rollback the changes. For example:

update stores set city = 'Concord'
where stor_id = '7066'

if exists (select t1.city, t2.city
from stores t1, stores t2
where t1.city = t2.city
and t1.state = t2.state
and t1.stor_id < t2.stor_id)

rollback transaction
else

commit transaction

This batch begins a transaction (using chained transaction mode) and
updates a row in the stores table. If it updates a row containing the same
city and state information as another store in the table, it rolls back the
changes to the stores table and ends the transaction. Otherwise, it commits
the updates and ends the transaction.

• Adaptive Server does not prevent you from issuing an update statement
that updates a single row more than once in a given transaction. For
example, both of these updates affect the price of the book with title_id
MC2022, since its type id “mod_cook”:

begin transaction
update titles
set price = price + $10
where title_id = "MC2222"
update titles
set price = price * 1.1
where type = "mod_cook"

Using joins in updates

• Performing joins in the from clause of an update is an Transact-SQL
extension to the ANSI standard SQL syntax for updates. Because of the
way an update statement is processed, updates from a single statement do
not accumulate. That is, if an update statement contains a join, and the
other table in the join has more the one matching value in the join column,
the second update is not based on the new values from the first update but
on the original values. The results are unpredictable, since they depend on
the order of processing. Consider this join:

update

472 Adaptive Server Enterprise

update titles set total_sales = total_sales + qty
from titles t, salesdetail sd
where t.title_id = sd.title_id

The total_sales value is updated only once for each title_id in titles, for one
of the matching rows in salesdetail. Depending on the join order for the
query, on table partitioning, or on the indexes available, the results can
vary each time. But each time, only a single value from salesdetail is added
to the total_sales value.

If the intention is to return the sum of the values that match the join
column, the following query, using a subquery, returns the correct result:

update titles set total_sales = total_sales +
(select isnull(sum(qty),0)

from salesdetail sd
where t.title_id = sd.title_id)

from titles t

Using update with character data

• Updating variable-length character data or text columns with the empty
string ("") inserts a single space. Fixed-length character columns are
padded to the defined length.

• All trailing spaces are removed from variable-length column data, except
when a string contains only spaces. Strings that contain only spaces are
truncated to a single space. Strings longer than the specified length of a
char, nchar, unichar, varchar, univarchar, or nvarchar column are silently
truncated unless you set string_rtruncation on.

• An update to a text column initializes the text column, assigns it a valid text
pointer, and allocates at least one text page.

Using update with cursors

• To update a row using a cursor, define the cursor with declare cursor, then
open it. The cursor name cannot be a Transact-SQL parameter or a local
variable. The cursor must be updatable, or Adaptive Server returns an
error. Any update to the cursor result set also affects the base table row
from which the cursor row is derived.

• The table_name or view_name specified with an update...where current of
must be the table or view specified in the first from clause of the select
statement that defines the cursor. If that from clause references more than
one table or view (using a join), you can specify only the table or view
being updated.

CHAPTER 1 Commands

Reference Manual: Commands 473

After the update, the cursor position remains unchanged. You can continue
to update the row at that cursor position, provided another SQL statement
does not move the position of that cursor.

• Adaptive Server allows you to update columns that are not specified in the
list of columns of the cursor’s select_statement, but that are part of the
tables specified in the select_statement. However, when you specify a
column_name_list with for update, and you are declaring the cursor, you
can update only those specific columns.

Updating IDENTITY columns

• You cannot update a column with the IDENTITY property, either through
its base table or through a view. To determine whether a column was
defined with the IDENTITY property, use sp_help on the column’s base
table.

• An IDENTITY column selected into a result table observes the following
rules with regard to inheritance of the IDENTITY property:

• If an IDENTITY column is selected more than once, it is defined as
NOT NULL in the new table. It does not inherit the IDENTITY
property.

• If an IDENTITY column is selected as part of an expression, the
resulting column does not inherit the IDENTITY property. It is
created as NULL if any column in the expression allows nulls;
otherwise, it is NOT NULL.

• If the select statement contains a group by clause or aggregate
function, the resulting column does not inherit the IDENTITY
property. Columns that include an aggregate of the IDENTITY
column are created NULL; others are created NOT NULL.

• An IDENTITY column that is selected into a table with a union or join
does not retain the IDENTITY property. If the table contains the union
of the IDENTITY column and a NULL column, the new column is
defined as NULL. Otherwise, it is defined as NOT NULL.

Updating data through views

• You cannot update views defined with the distinct clause.

• If a view is created with check option, each row that is updated through the
view must remain visible through the view. For example, the stores_cal
view includes all rows of the stores table where state has a value of “CA”.
The with check option clause checks each update statement against the
view’s selection criteria:

update

474 Adaptive Server Enterprise

create view stores_cal
as select * from stores
where state = "CA"
with check option

An update statement such as this one fails if it changes state to a value
other than “CA”:

update stores_cal
set state = "WA"
where store_id = "7066"

• If a view is created with check option, all views derived from the base view
must satisfy the view’s selection criteria. Each row updated through a
derived view must remain visible through the base view.

Consider the view stores_cal30, which is derived from stores_cal. The new
view includes information about stores in California with payment terms
of “Net 30”:

create view stores_cal30
as select * from stores_cal
where payterms = "Net 30"

Because stores_cal was created with check option, all rows updated through
stores_cal30 must remain visible through stores_cal. Any row that changes
state to a value other than “CA” is rejected.

Notice that stores_cal30 does not have a with check option clause of its
own. Therefore, you can update a row with a payterms value other than
“Net 30” through stores_cal30. For example, the following update
statement would be successful, even though the row would no longer be
visible through stores_cal30:

update stores_cal30
set payterms = "Net 60"
where stor_id = "7067"

• You cannot update a row through a view that joins columns from two or
more tables, unless both of the following conditions are true:

• The view has no with check option clause, and

• All columns being updated belong to the same base table.

• update statements are allowed on join views that contain a with check
option clause. The update fails if any of the affected columns appear in the
where clause in an expression that includes columns from more than one
table.

CHAPTER 1 Commands

Reference Manual: Commands 475

• If you update a row through a join view, all affected columns must belong
to the same base table.

Using index, prefetch, or lru | mru

• index, prefetch, and lru | mru override the choices made by the Adaptive
Server optimizer. Use them with caution, and always check the
performance impact with set statistics io on. For more information about
using these options, see the Performance and Tuning Guide.

Using readpast

• The readpast option applies only to data-only-locked tables. readpast is
ignored if it is specified for an allpages-locked table.

• The readpast option is incompatible with the holdlock option. If both are
specified in the same select command, an error is generated and the
command terminates.

• If the session-wide isolation level is 3, the readpast option is ignored.

• If the transaction isolation level for a session is 0, update commands using
readpast do not issue warning messages. For datapages-locked tables,
these commands modify all rows on all pages that are not locked with
incompatible locks. For datarows-locked tables, they affect all rows that
are not locked with incompatible locks.

• If an update command with the readpast option applies to two or more text
columns, and the first text column checked has an incompatible lock on it,
readpast locking skips the row. If the column does not have an
incompatible lock, the command acquires a lock and modifies the column.
Then, if any subsequent text column in the row has an incompatible lock
on it, the command blocks until it can obtain a lock and modify the
column.

• For more information on readpast locking, see the Performance and
Tuning Guide.

Standards ANSI SQL – Compliance level: Entry-level compliant.

The following are Transact-SQL extensions:

• The use of a from clause or a qualified table or column name are
Transact-SQL extensions detected by the FIPS flagger. Updates through a
join view or a view of which the target list contains an expression are
Transact-SQL extensions that cannot be detected until run time and are not
flagged by the FIPS flagger.

• The use of variables.

update

476 Adaptive Server Enterprise

• readpast

Permissions update permission defaults to the table or view owner, who can transfer it to
other users.

If set ansi_permissions is on, you need update permission on the table being
updated and, in addition, you must have select permission on all columns
appearing in the where clause and on all columns following the set clause. By
default, ansi_permissions is off.

See also Commands alter table, create default, create index, create rule, create trigger,
insert, where clause

Functions ptn_data_pgs

System procedures sp_bindefault, sp_bindrule, sp_help, sp_helpartition,
sp_helpindex, sp_unbindefault, sp_unbindrule

CHAPTER 1 Commands

Reference Manual: Commands 477

update all statistics
Description Updates all statistics information for a given table.

Syntax update all statistics table_name

Parameters table_name
is the name of the table for which statistics are being updated.

Examples Updates index and partition statistics for the salesdetail table:

update all statistics salesdetail

Usage • update all statistics updates all statistics information for a given table.
Adaptive Server keeps statistics about the distribution of pages within a
table, and uses these statistics when considering whether or not to use a
parallel scan in query processing on partitioned tables, and which
index(es) to use in query processing. The optimization of your queries
depends on the accuracy of the stored statistics.

• update all statistics updates statistics for all columns in a table and updates
partition statistics, if the table is partitioned.

• If the table is not partitioned, update all statistics runs only update statistics
on the table.

• If the table is partitioned and has no indexes, update all statistics runs
update partition statistics on the table. If the table is partitioned and has
indexes, update all statistics runs update statistics and update partition
statistics on the table.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions update all statistics permission defaults to the table owner and is not
transferrable.

See also Commands – update statistics, update partition statistics

update partition statistics

478 Adaptive Server Enterprise

update partition statistics
Description Updates information about the number of pages in each partition for a

partitioned table.

Syntax update partition statistics table_name [partition_number]

Parameters table_name
is the name of a partitioned table.

partition_number
is the number of the partition for which you are updating information. If you
do not specify a partition number, update partition statistics updates the
number of data pages in all partitions in the specified table.

Usage • Adaptive Server keeps statistics about the distribution of pages within a
partitioned table and uses these statistics when considering whether to use
a parallel scan in query processing. The optimization of your queries
depends on the accuracy of the stored statistics. If Adaptive Server
crashes, the distribution information could be inaccurate.

To see if the distribution information is accurate, use the data_pgs function
to determine the number of pages in the table, as follows:

select data_pgs(sysindexes.id, doampg)
from sysindexes
where sysindexes.id = object_id("table_name")

Then, use sp_helpartition on the table and add up the numbers in the
“ptn_data_pgs” column of the output. The sum of the total of the number
of pages that sp_helpartition reports should be slightly greater than the
number returned by data_pgs because sp_helpartition’s page count includes
OAM pages.

If the distribution information is inaccurate, run update partition statistics
on the table. While updating the distribution information, update partition
statistics locks the OAM page and the control page of the partition.

• When you run update partition statistics on a table that contains data, or you
create an index on a table that contains data, the controlpage column in
syspartitions is updated to point to the control page for the partition.

• update partition statistics updates control page values used to estimate the
number of pages in a table. These statistics are used by sp_helpartition.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions update partition statistics permission defaults to the table owner and is not
transferable.

CHAPTER 1 Commands

Reference Manual: Commands 479

See also Commands alter table, update all statistics

Functions ptn_data_pgs

System procedures sp_helpartition

update statistics

480 Adaptive Server Enterprise

update statistics
Description Updates information about the distribution of key values in specified indexes

or for specified columns, for all columns in an index or for all columns in a
table.

Syntax update statistics table_name
[[index_name] | [(column_list)]]
[using step values]
[with consumers = consumers]

update index statistics table_name [index_name]
[using step values]
[with consumers = consumers]

Parameters table_name
When used with update statistics, table_name is the name of the table with
which the index is associated. table_name is required, since Transact-SQL
does not require index names to be unique in a database.

index_name
is the name of the index to be updated. If an index name is not specified, the
distribution statistics for all the indexes in the specified table are updated.

column_list
is a comma-separated list of columns.

using step values
specifies the number of histogram steps. The default value is 20, for columns
where no statistics exist. If you need to change the default for the this, use
sp_configure. If statistics for a column already exist in sysstatistics, the
default value is the current number of steps.

with consumers = consumers
specifies the number of consumer processes to be used for a sort when
column_list is provided and parallel query processing is enabled.

index
specifies that statistics for all columns in an index are to be updated.

Examples Example 1 Generates statistics for the price column of the titles table:

update statistics titles (price) using 40 values

Example 2 Generates statistics for all columns in all indexes of the authors
table:

update index statistics authors

Example 3 Generates statistics for all columns in the au_names_ix index of the
authors table:

CHAPTER 1 Commands

Reference Manual: Commands 481

update index statistics authors au_names_ix

Usage • Adaptive Server keeps statistics about the distribution of the key values in
each index, and uses these statistics in its decisions about which index(es)
to use in query processing.

• When you create a nonclustered index on a table that contains data, update
statistics is automatically run for the new index. When you create a
clustered index on a table that contains data, update statistics is
automatically run for all indexes.

• The optimization of your queries depends on the accuracy of the statistics.
If there is significant change in the key values in your index, you should
rerun update statistics on that index or column. Use the update statistics
command if a great deal of data in an indexed column has been added,
changed, or removed (that is, if you suspect that the distribution of key
values has changed).

• update statistics, when used with a table name and an index name, updates
statistics for the leading column of an index. If update statistics is used
with just a table name, it updates statistics for the leading columns of all
indexes on the table.

• update index statistics, when used with a table name and an index name,
updates statistics for all columns in the specified index. If update index
statistics is used with just a table name, it updates statistics for all columns
in all indexes of the table.

• Specifying the name of an unindexed column or the nonleading column of
an index generates statistics for that column without creating an index.

• Specifying more than one column in a column list generates or updates a
histogram for the first column, and density statistics for all prefix subsets
of the list of columns.

• If you use update statistics to generate statistics for a column or list of
columns, update statistics must scan the table and perform a sort.

• The with consumers clause is designed for use on partitioned tables on
RAID devices, which appear to Adaptive Server as a single I/O device, but
which are capable of producing the high throughput required for parallel
sorting. For more information, see Chapter 24, “Parallel Sorting,” in the
Performance and Tuning Guide.

• Table 1-40 shows the types of scans performed during update statistics, the
types of locks acquired, and when sorts are needed.

update statistics

482 Adaptive Server Enterprise

Table 1-40: Locking, scans, and sorts during update statistics

• The update index statistics command generates a series of update statistics
operations that use the same locking, scanning, and sorting as the
equivalent index-level and column-level command. For example, if the
salesdetail table has a nonclustered index named sales_det_ix on
salesdetail(stor_id, ord_num, title_id), this command:

update index statistics salesdetail

performs these update statistics operations:

update statistics salesdetail sales_det_ix
update statistics salesdetail (ord_num)
update statistics salesdetail (title_id)

• The update all statistics commands generates a series of update statistics
operations for each index on the table, followed by a series of update
statistics operations for all unindexed columns, followed by an update
partition statistics operation.

update statistics specifying Scans and sorts performed Locking

Table name

Allpages-locked table Table scan, plus a leaf-level scan of each
nonclustered index

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan, plus a leaf-level scan of each
nonclustered index and the clustered index,
if one exists

Level 0; dirty reads

Table name and clustered index name

Allpages-locked table Table scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and nonclustered index name

Allpages-locked table Leaf level index scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable and sorts
the worktable

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan; creates a worktable and sorts
the worktable

Level 0; dirty reads

CHAPTER 1 Commands

Reference Manual: Commands 483

• update statistics is not run on system tables in the master database during
upgrade from earlier versions. Indexes exist on columns queried by most
system procedures, and running update statistics on these tables is not
required for normal usage. However, running update statistics is allowed
on all system tables in all databases, except those that are not normal
tables. These tables, which are built from internal structures when queried,
include syscurconfigs, sysengines, sysgams, syslisteners, syslocks, syslogs,
syslogshold, sysmonitors, sysprocesses, syssecmechs, systestlog and
systransactions.

create index and stored procedures

Adaptive Server automatically recompiles stored procedures after executing
update statistics statements. Although adhoc queries that you start before
executing update statistics still continue to work, they do not take advantage of
the new statistics.

In Adaptive Server versions 12.5 and earlier, update statistics was ignored by
cached stored procedures.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions update statistics permission defaults to the table owner and is not transferable.
The command can also be executed by the Database Owner, who can
impersonate the table owner by running the setuser command.

See also Commands – delete statistics

use

484 Adaptive Server Enterprise

use
Description Specifies the database with which you want to work.

Syntax use database_name

Parameters database_name
is the name of the database to open.

Examples use pubs2
go

The current database is now pubs2.

Usage • The use command must be executed before you can reference objects in a
database.

• use cannot be included in a stored procedure or a trigger.

• sp_addalias adds an alias, which permits a user to use a database under
another name to gain access to that database.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions If the database has a “guest” account, all users can use the database. If the
database does not have a “guest” account, you must be a valid user in the
database, have an alias in the database, or be a System Administrator or System
Security Officer.

See also Commands create database, drop database

System procedures sp_addalias, sp_adduser, sp_modifylogin

CHAPTER 1 Commands

Reference Manual: Commands 485

waitfor
Description Specifies a specific time, a time interval, or an event for the execution of a

statement block, stored procedure, or transaction.

Syntax waitfor { delay time | time time | errorexit | processexit | mirrorexit }

Parameters delay
instructs Adaptive Server to wait until the specified amount of time has
passed, up to a maximum of 24 hours.

time
instructs Adaptive Server to wait until the specified time.

time
a time in one of the acceptable formats for date/time data, or a variable of
character type. You cannot specify dates—the date portion of the date/time
value is not allowed. You can use the datatype time for this information.

errorexit
instructs Adaptive Server to wait until a kernel or user process terminates
abnormally.

processexit
instructs Adaptive Server to wait until a kernel or user process terminates for
any reason.

mirrorexit
instructs Adaptive Server to wait for a mirror failure.

Examples Example 1 At 2:20 p.m., the chess table is updated with my next move, and a
procedure called sendmail inserts a row in a table owned by Judy, notifying her
that a new move now exists in the chess table:

begin
waitfor time "14:20"
insert chess(next_move)

values('Q-KR5')
execute sendmail 'judy'

end

Example 2 After 10 seconds, Adaptive Server prints the message specified:

declare @var char(8)
select @var = "00:00:10"
begin

waitfor delay @var
print "Ten seconds have passed. Your time

is up."

waitfor

486 Adaptive Server Enterprise

end

Example 3 After any process exits abnormally, Adaptive Server prints the
message specified:

begin
waitfor errorexit
print "Process exited abnormally!"

end

Usage • After issuing the waitfor command, you cannot use your connection to
Adaptive Server until the time or event that you specified occurs.

• You can use waitfor errorexit with a procedure that kills the abnormally
terminated process, to free system resources that would otherwise be taken
up by an infected process.

• To find out which process terminated, check the sysprocesses table with
sp_who.

• The time you specify with waitfor time or waitfor delay can include hours,
minutes, and seconds. Use the format “hh:mi:ss”, as described in “Date
and time datatypes” on page 19 in Chapter 1, “System and User-Defined
Datatypes” of Reference Manual: Building Blocks.

The following example instructs Adaptive Server to wait until 4:23 p.m:

waitfor time "16:23"

 This statement instructs Adaptive Server to wait for 1 hour and 30
minutes:

waitfor delay "01:30"

• Changes in system time (such as setting the clock back for Daylight
Savings Time) can delay the waitfor command.

• You can use waitfor mirrorexit within a DB-Library program to notify users
when there is a mirror failure.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions waitfor permission defaults to all users. No permission is required to use it.

See also Commands begin...end

Datatypes Date and time datatypes

System procedures sp_who

CHAPTER 1 Commands

Reference Manual: Commands 487

where clause
Description Sets the search conditions in a select, insert, update, or delete statement.

Syntax Search conditions immediately follow the keyword where in a select, insert,
update, or delete statement. If you use more than one search condition in a
single statement, connect the conditions with and or or.

where [not] expression comparison_operator expression

where [not] expression [not] like "match_string"
[escape "escape_character "]

where [not] expression is [not] null

where [not]
expression [not] between expression and expression

where [not]
expression [not] in ({value_list | subquery})

where [not] exists (subquery)

where [not]
expression comparison_operator
{any | all} (subquery)

where [not] column_name join_operator column_name

where [not] logical_expression

where [not] expression {and | or} [not] expression

where [not] time_period1 overlaps time_period2

Parameters not
negates any logical expression or keywords such as like, null, between, in,
and exists.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 249 in Chapter 4, “Expressions, Identifiers, and Wildcard Characters”
of Reference Manual: Building Blocks.

where clause

488 Adaptive Server Enterprise

comparison_operator
is one of the following:

In comparing char, nchar, unichar, varchar, univarchar, and nvarchar data, <
means closer to the beginning of the alphabet and > means closer to the end
of the alphabet.

Case and special character evaluations depend on the collating sequence of
the operating system on the machine on which Adaptive Server is located.
For example, lowercase letters may be greater than uppercase letters, and
uppercase letters may be greater than numbers.

Trailing blanks are ignored for the purposes of comparison. For example,
“Dirk” is the same as “Dirk ”.

In comparing dates, < means earlier and > means later. Put quotes around all
character and date data used with a comparison operator. For example:

 = "Bennet"
 > "94609"

 See “User-defined datatypes” on page 44 in Chapter 1, “System and
User-Defined Datatypes” of Reference Manual: Building Blocks for more
information about data entry rules.

Operator Meaning

 = Equal to

 > Greater than

 < Less than

 >= Greater than or equal to

 <= Less than or equal to

 != Not equal to

 <> Not equal to

 !> Not greater than

 !< Not less than

CHAPTER 1 Commands

Reference Manual: Commands 489

like
is a keyword indicating that the following character string (enclosed by
single or double quotes) is a matching pattern. like is available for char,
varchar, unichar, univarchar, nchar, nvarchar, datetime, date and time
columns, but not to search for seconds or milliseconds.

You can use the keyword like and wildcard characters with datetime and date
data as well as with char and varchar. When you use like with datetime or date
and time values, Adaptive Server converts the dates to standard datetime
format, then to varchar. Since the standard storage format does not include
seconds or milliseconds, you cannot search for seconds or milliseconds with
like and a pattern.

It is a good idea to use like when you search for date/ time values, since
date/time entries may contain a variety of date parts. For example, if you
insert the value “9:20” into a column named arrival_time, the following
clause would not find it because Adaptive Server converts the entry into
“Jan 1, 1900 9:20AM.”:

where arrival_time = '9:20'

However, the following clause would find it:

where arrival_time like '%9:20%'

match_string
is a string of characters and wildcard characters enclosed in quotes. Table 1-
41 lists the wildcard characters.

Table 1-41: Wildcard characters

escape
specifies an escape character with which you can search for literal
occurrences of wildcard characters.

escape_character
is any single character. For more information, see “Using the escape clause”
on page 270 in Chapter 4, “Expressions, Identifiers, and Wildcard
Characters” of Reference Manual: Building Blocks.

is null
searches for null values.

Wildcard character Meaning

 % Any string of 0 or more characters

 _ Any single character

 [] Any single character within the specified range ([a-f]) or set ([abcdef])

 [^] Any single character that is not within the specified range ([^a-f]) or set ([^abcdef])

where clause

490 Adaptive Server Enterprise

between
is the range-start keyword. Use and for the range-end value. The following
range is inclusive:

where @val between x and y

The following range is not:

x and @val < y

Queries using between return no rows if the first value specified is greater
than the second value.

and
joins two conditions and returns results when both of the conditions are true.

When more than one logical operator is used in a statement, and operators
are usually evaluated first. However, you can change the order of execution
with parentheses.

in
allows you to select values that match any one of a list of values. The
comparator can be a constant or a column name, and the list can be a set of
constants or, more commonly, a subquery. For information on using in with
a subquery, see the Transact-SQL User’s Guide. Enclose the list of values in
parentheses.

value_list
is a list of values. Put single or double quotes around character values, and
separate each value from the following one with a comma (see example 7).
The list can be a list of variables, for example:

in (@a, @b, @c)

However, you cannot use a variable containing a list, such as the following,
for a values list:

@a = "'1', '2', '3'"

exists
is used with a subquery to test for the existence of some result from the
subquery. For more information, see the Transact-SQL User’s Guide.

subquery
is a restricted select statement (order by and compute clauses and the
keyword into are not allowed) inside the where or having clause of a select,
insert, delete, or update statement, or a subquery. For more information, see
the Transact-SQL User’s Guide.

CHAPTER 1 Commands

Reference Manual: Commands 491

any
is used with >, <, or = and a subquery. It returns results when any value
retrieved in the subquery matches the value in the where or having clause of
the outer statement. For more information, see the Transact-SQL User’s
Guide.

all
is used with > or < and a subquery. It returns results when all values retrieved
in the subquery match the value in the where or having clause of the outer
statement. For more information, see the Transact-SQL User’s Guide.

column_name
is the name of the column used in the comparison. Qualify the column name
with its table or view name if there is any ambiguity. For columns with the
IDENTITY property, you can specify the syb_identity keyword, qualified by
a table name where necessary, rather than the actual column name.

join_operator
is a comparison operator or one of the join operators =* or *=. For more
information, see the Transact-SQL User’s Guide.

logical_expression
is an expression that returns TRUE or FALSE.

or
joins two conditions and returns results when either of the conditions is true.

When more than one logical operator is used in a statement, or operators are
normally evaluated after and operators. However, you can change the order
of execution with parentheses.

Examples Example 1

where advance * $2 > total_sales * price

Example 2 Finds all the rows in which the phone number does not begin with
415:

where phone not like '415%'

Example 3 Finds the rows for authors named Carson, Carsen, Karsen, and
Karson:

where au_lname like "[CK]ars[eo]n"

Example 4 Finds the row of the sales_east table in which the IDENTITY
column has a value of 4:

where sales_east.syb_identity = 4

where clause

492 Adaptive Server Enterprise

Example 5

where advance < $5000 or advance is null

Example 6

where (type = "business" or type = "psychology") and advance > $5500

Example 7

where total_sales between 4095 and 12000

Example 8 Finds the rows in which the state is one of the three in the list:

where state in ('CA', 'IN', 'MD')

Example 9 Compares two time periods and determines whether they overlap
each other. The first period begins March 16, 1994 and lasts for one month. The
second period begins March 31, 1994 and lasts until December 31, 1994. The
predicate returns a value of TRUE because the two periods have points in
common:

where (date "1994-03-16", interval +"1" month) overlaps
(date "1994-03-31", date "1994-12-31")

Usage • where and having search conditions are identical, except that aggregate
functions are not permitted in where clauses. For example, this clause is
legal:

having avg(price) > 20

This clause is not legal:

where avg(price) > 20

For examples, see Chapter 2, “Transact-SQL Functions” in Reference
Manual: Building Blocks for information on the use of aggregate
functions, and group by and having clauses on page 301.

• Joins and subqueries are specified in the search conditions: see the
Transact-SQL User’s Guide for full details.

• The number of and and or conditions in a where clause is limited only by
the amount of memory available to run the query.

• The pattern string included in the like predicate is limited only by the size
of string that can be placed in a varchar.

• There are two ways to specify literal quotes within a char or varchar entry.
The first method is to use two quotes. For example, if you began a
character entry with a single quote, and you want to include a single quote
as part of the entry, use two single quotes:

CHAPTER 1 Commands

Reference Manual: Commands 493

'I don''t understand.'

Or use double quotes:

"He said, ""It's not really confusing."""

The second method is to enclose a quote in the opposite kind of quotation
mark. In other words, surround an entry containing double quotes with
single quotes (or vice versa). Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn"t there a better way?"'

• To enter a character string that is longer than the width of your screen,
enter a backslash (\) before going to the next line.

• If a column is compared to a constant or variable in a where clause,
Adaptive Server converts the constant or variable into the datatype of the
column so that the optimizer can use the index for data retrieval. For
example, float expressions are converted to int when compared to an int
column. For example:

where int_column = 2

 selects rows where int_column = 2.

• When Adaptive Server optimizes queries, it evaluates the search
conditions in where and having clauses, and determines which conditions
are search arguments (SARGs) that can be used to choose the best indexes
and query plan. All of the search conditions are used to qualify the rows.
For more information on search arguments, see the Performance and
Tuning Guide.

Standards ANSI SQL – Compliance level: Entry-level compliant.

See also Commands delete, execute, group by and having clauses, insert, select,
update

Datatypes Date and time datatypes

System procedures sp_helpjoins

while

494 Adaptive Server Enterprise

while
Description Sets a condition for the repeated execution of a statement or statement block.

The statement(s) are executed repeatedly, as long as the specified condition is
true.

Syntax while logical_expression [plan "abstract plan"]
statement

Parameters logical_expression
is any expression that returns TRUE, FALSE, or NULL.

plan “abstract plan”
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. Plans can only be
specified for optimizable SQL statements, that is, queries that access tables.
See Chapter 30, “Creating and Using Abstract Plans,” in the Performance
and Tuning Guide for more information.

statement
can be a single SQL statement, but is usually a block of SQL statements
delimited by begin and end.

Examples If the average price is less than $30, double the prices of all books in the titles
table. As long as it is still less than $30, the while loop keeps doubling the
prices. In addition to determining the titles whose price exceeds $20, the select
inside the while loop indicates how many loops were completed (each average
result returned by Adaptive Server indicates one loop):

while (select avg(price) from titles) < $30
begin

select title_id, price
from titles
where price > $20

update titles
set price = price * 2

end

Usage • The execution of statements in the while loop can be controlled from inside
the loop with the break and continue commands.

• The continue command causes the while loop to restart, skipping any
statements after the continue. The break command causes an exit from the
while loop. Any statements that appear after the keyword end, which marks
the end of the loop, are executed. The break and continue commands are
often activated by if tests.

For example:

CHAPTER 1 Commands

Reference Manual: Commands 495

while (select avg(price) from titles) < $30
begin

update titles
set price = price * 2

if (select max(price) from titles) > $50
break

else
if (select avg(price) from titles) > $30

continue
print "Average price still under $30"

end

select title_id, price from titles
where price > $30

This batch continues to double the prices of all books in the titles table as
long as the average book price is less than $30. However, if any book price
exceeds $50, the break command stops the while loop. The continue
command prevents the print statement from executing if the average
exceeds $30. Regardless of how the while loop terminates (either normally
or because of the break command), the last query indicates which books
are priced over $30.

• If two or more while loops are nested, the break command exits to the next
outermost loop. All the statements after the end of the inner loop run, then
the next outermost loop restarts.

 Warning! If a create table or create view command occurs within a while
loop, Adaptive Server creates the schema for the table or view before
determining whether the condition is true. This may lead to errors if the
table or view already exists.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions while permission defaults to all users. No permission is required to use it.

See also Commands begin...end, break, continue, goto label

writetext

496 Adaptive Server Enterprise

writetext
Description Permits minimally logged, interactive updating of an existing text or image

column.

Syntax writetext [[database.]owner.]table_name.column_name
text_pointer [readpast] [with log] data

Parameters table_name.column_name
is the name of the table and text or image column to update. Specify the
database name if the table is in another database, and specify the owner’s
name if more than one table of that name exists in the database. The default
value for owner is the current user, and the default value for database is the
current database.

text_pointer
a varbinary(16) value that stores the pointer to the text or image data. Use the
textptr function to determine this value, as shown in example 1. text and
image data is not stored in the same set of linked pages as other table
columns. It is stored in a separate set of linked pages. A pointer to the actual
location is stored with the data; textptr returns this pointer.

readpast
specifies that the command should modify only unlocked rows. If the
writetext command finds locked rows, it skips them, rather than waiting for
the locks to be released.

with log
logs the inserted text or image data. The use of this option aids media
recovery, but logging large blocks of data quickly increases the size of the
transaction log, so make sure that the transaction log resides on a separate
database device. See create database, sp_logdevice, and the System
Administration Guide for details.

data
is the data to write into the text or image column. text data must be enclosed
in quotes. image data must be preceded by “0x”. Check the information
about the client software you are using to determine the maximum length of
text or image data that can be accommodated by the client.

Examples Example 1 This example puts the text pointer into the local variable @val.
Then, writetext places the text string “hello world” into the text field pointed to
by @val:

declare @val varbinary(16)
select @val = textptr(copy) from blurbs

where au_id = "409-56-7008"

CHAPTER 1 Commands

Reference Manual: Commands 497

writetext blurbs.copy @val with log "hello world"

Example 2

declare @val varbinary(16)
select @val = textptr(copy)
from blurbs readpast

where au_id = "409-56-7008"
writetext blurbs.copy @val readpast with log "hello
world"

Usage • The maximum length of text that can be inserted interactively with
writetext is approximately 120K bytes for text and image data.

• By default, writetext is a minimally logged operation; only page allocations
and deallocations are logged, but the text or image data is not logged when
it is written into the database. To use writetext in its default, minimally
logged state, a System Administrator must use sp_dboption to set select
into/bulkcopy/pllsort to true.

• writetext updates text data in an existing row. The update completely
replaces all of the existing text.

• writetext operations are not caught by an insert or update trigger.

• writetext requires a valid text pointer to the text or image column. For a
valid text pointer to exist, a text column must contain either actual data or
a null value that has been explicitly entered with update.

Given the table textnull with columns textid and x, where x is a text column
that permits nulls, this update sets all the text values to NULL and assigns
a valid text pointer in the text column:

update textnull
set x = null

No text pointer results from an insert of an explicit null:

insert textnull values (2,null)

And, no text pointer results from an insert of an implicit null:

insert textnull (textid)
values (2)

• insert and update on text columns are logged operations.

• You cannot use writetext on text and image columns in views.

writetext

498 Adaptive Server Enterprise

• If you attempt to use writetext on text values after changing to a multibyte
character set, and you have not run dbcc fix_text, the command fails, and
an error message is generated, instructing you to run dbcc fix_text on the
table.

• writetext in its default, non-logged mode runs more slowly while a dump
database is taking place.

• The Client-Library functions dbwritetext and dbmoretext are faster and use
less dynamic memory than writetext. These functions can insert up to 2GB
of text data.

Using the readpast option

• The readpast option applies only to data-only-locked tables. readpast is
ignored if it is specified for an allpages-locked table.

• If the session-wide isolation level is 3, the readpast option is silently
ignored.

• If the transaction isolation level for a session is 0, writetext commands
using readpast do not issue warning messages. These commands at session
isolation level 0 modify the specified text column if the text column is not
locked with incompatible locks.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions writetext permission defaults to the table owner, who can transfer it to other
users.

See also Commands readtext

Datatypes Converting text and image datatypes

Reference Manual: Commands 499

Symbols
* (asterisk)

select and 174
@ (at sign)

local variable name 190–191
procedure parameters and 269
rule arguments and 122

\ (backslash)
character string continuation with 493

::= (BNF notation)
in SQL statements xii

, (comma)
in SQL statements xiii

{} (curly braces)
in SQL statements xii

= (equals sign)
for assigning variables 403
for renaming column headings 403

! (exclamation point)
error message placeholder 362

() (parentheses)
in SQL statements xii

% (percent sign)
error message literal 364
error message placeholder 362

%nn! (placeholder format) 362
(pound sign), temporary table identifier prefix 129
?? (question marks)

for partial characters 375
“ ” (quotation marks)

literal specification of 492
[] (square brackets)

in SQL statements xiii
<ix_italics>See also default para font> mount
<ix_italics>See also default para font> quiesce

database
<ix_italics>See also default para font> unmount

Numerics
0 return status

stored procedures 109
“0x”

in defaults 73
in rules 122
writetext command and image data 496

2 isolation level (repeatable reads) 413

A
abbreviations

chars for characters, readtext 374
exec for execute 268
out for output 103, 269
tran for transaction, rollback command 396

abstract plans
creating with create plan 99

accent sensitivity
compute and 61
dictionary sort order and 358
group by and 312

access
ANSI restrictions on tapes 265

access, object. See permissions; users
activation keyword, alter role 12
add keyword

alter role 12
alter table 17, 23

adding
columns to a table 16
constraints for tables 16
messages to sysusermessages 364
mirror device 212–214
mutually exclusive user-defined roles 12
objects to tempdb 146
passwords to roles 12
roles 120

Index

Index

500 Adaptive Server Enterprise

rows to a table or view 317–325
space to a database 6–11
table constraints 16
user-defined roles 120

aggregate functions
group by clause and 301, 304
having clause and 302, 304
scalar aggregates 304
vector aggregates, group by and 304

aggregate-free expression, grouping by 302
aliases

table correlation names 406
aliases, column

compute clauses allowing 58
prohibited after group by 302, 303

all keyword
grant 279, 295
group by 301
negated by having clause 301
revoke 385
select 402, 416
union 461, 465
where 491

allocation map. See object allocation Map (OAM)
allow nested triggers configuration parameter 167
allow_dup_row option, create index 89
alter database command 6–11

default keyword 6
dumping databases and 9
for load keyword 7
for proxy_update keyword 7
log on keyword 7
offline databases and 9
on keyword 6
with override keyword 7

alter role command 12–15
activation keyword 12
add keyword 12
drop keyword 12
exclusive keyword 12
membership keyword 12
passwd keyword 12

alter table command 16–40
add keyword 17, 23
asc option 19
check option 23

clustered constraint 19
constraint keyword 18
default keyword 17
desc option 19
drop keyword 23
exp_row_size option 24
fillfactor option 20
foreign key constraint 22
identity keyword 18
lock allpages option 24
lock datapages option 24
lock datarows option 24
locking scheme 16
max_rows_per_page option 21
nonclustered constraint 19
on keyword 21
partition clause 23
primary key constraint 19
references constraint 22
replace keyword 23
reservepagegap option 21
sp_dboption and changing lock scheme 38
unique constraint 19
unpartition clause 24
user keyword 18
when is data copy required 34

and keyword
range-end 490
in search conditions 490

ANSI tape label
dumpvolume option to dump database 242
dumpvolume option to dump transaction 256
listonly option to load database 330
listonly option to load transaction 338

ansinull option, set 426
any keyword

where clause 491
arguments

See also logical expressions
numbered placeholders for, in print command 362,

363
in user-defined error messages 369
where clause, number allowed 493

arithabort option, set
arith_overflow and 429

arithignore option, set

Index

Reference Manual: Commands 501

arith_overflow and 429
as keyword for renaming column headings 403
asc index option

alter table command 19, 29
create index command 86
create table command 132

ascending index order, specifying 16
ascending indexes 19
ascending order, asc keyword 355, 411
asterisk (*)

select and 174
at option

create existing table 76
create proxy_table 117
create table 137
dump database 241
dump transaction 255
load database 329
load transaction 337

at sign (@)
local variable name 190–191
procedure parameters and 269
rule arguments and 122

@@char_convert global variable 453
@@error global variable

select into and 418
stored procedures and 106
user-defined error messages and 364, 372

@@identity global variable 323
@@isolation global variable 453
@@langid global variable 368
@@nestlevel global variable 272

nested procedures and 109
nested triggers and 167

@@options global variable 453
@@parallel_degree global variable 453

set parallel_degree and 436
@@rowcount global variable 454

cursors and 276
set nocount and 454
triggers and 166

@@scan_parallel_degree global variable 454
set scan_parallel_degree and 439

@@sqlstatus global variable
fetch and 276

@@textsize global variable 454

readtext and 375
set textsize and 441

@@tranchained global variable 454
@@version global variable 362
attributes

remote tables 78
authority. See permissions
automatic operations

checkpoints 47
datatype conversion 144
triggers 160

B
backslash (\)

for character string continuation 493
backups

See also dump, database; dump, transaction log;
load, database; load, transaction log

disk mirroring and 213, 225
disk remirroring and 220
incremental. See dump, transaction log
master database 9

Backus Naur Form (BNF) notation xii
base tables. See tables
batch processing

create default and 73
execute 268, 272
return status 382–384
set options for 449

bcp (bulk copy utility)
changing locking scheme during 39

begin transaction command 42
commit and 53
rollback to 397

begin...end commands 41
if...else and 314
triggers and 161

between keyword
check constraint using 154
where 490

binary datatypes
“0x” prefix 73, 122

binary operation, union 462
binary sort order of character sets

Index

502 Adaptive Server Enterprise

order by and 358
binding

defaults 73
rules 124
unbinding and 229

blanks
character datatypes and 320, 472

blocking process 326
blocksize option

dump database 241
dump transaction 255
load database 329
load transaction 337

BNF notation in SQL statements xii
boolean (logical) expressions

select statements in 315
brackets. See square brackets []
branching 278
break command 43, 494–495
browse mode

select 413
B-trees, index

fillfactor and 87
bulk array size option, set

bulk array size and 430
bulk batch size option, set

bulk batch size and 430
by row aggregate subgroup 54
bytes

See also size
per row 26

bytes option, readtext 374

C
canceling

See also rollback command
command at rowcount 439
duplicate updates or inserts 89
queries with adjusted plans 437
transactions with arithmetic errors 429
triggers 398

capacity option
dump database 242
dump transaction 256

cascade option, revoke 388, 391
cascading changes (triggers) 163
case expressions 44–46, 50–51, 350–351

null values and 45, 50, 350
case sensitivity

compute and 60
group by and 312
in SQL xiv
sort order and 358

chained option, set 430
chained transaction mode

commit and 53
delete and 202
fetch and 275
insert and 321
open and 354
update and 471

chains of pages
partitions 23, 33
unpartitioning 24

changes, canceling. See rollback command
changing

See also updating
constraints for tables 16
database size 6–11
locking scheme 16, 24
passwords for user-defined roles 15
table constraints 16
tables 16–40
user-defined roles 12
view definitions 174

changing database size 222–223
char datatype

row sort order and 359
@@char_convert global variable 453
char_convert option, set 431
character sets

conversion between client and server 431
fix_text upgrade after change in 183
multibyte, changing to 183
set char_convert 431

character strings
empty 320
truncation 320, 440

characters
“0x” 122

Index

Reference Manual: Commands 503

not converted with char_convert 431
chars or characters option, readtext 374
check constraints

column definition conflict with 154
insert and 320

check option
alter table 23
create table 136

checkalloc option, dbcc 180
checkcatalog option, dbcc 180
checkdb option, dbcc 180
checker, consistency. See dbcc (Database Consistency

Checker)
checkpoint command 47–48
checkpoint process 47–48

See also recovery; savepoints
checkstorage option, dbcc 181
checktable option, dbcc 181
checkverify option, dbcc 181
cis_rpc_handling option, set command 431
client

character set conversion 431
clientapplname option, set command 431
clienthostname option, set command 432
clientname option, set command 432
close command 49
close on endtran option, set 432
closing cursors 49
clustered constraint

alter table 19
create table 132

clustered indexes
See also indexes
creating 85
fillfactor and 87
migration of tables to 92, 146
segments and 90, 93

cntrltype option
disk init 208
disk reinit 217

coalesce keyword, case 50
collating sequence. See sort order
collision of database creation requests 68
column name

aliasing 369, 403
grouping by 302, 303

union result set 463
views and 170

columns
adding data with insert 319
adding to table 16
check constraints conflict with definitions of 154
creating indexes on 85–98
defaults for 73–75, 320
group by and 302
list and insert 317
maximum number per table 26
null values and check constraints 154
null values and default 74, 124
number allowed in create index command 91
order by 411
per table 26
permissions on 280
permissions revoked 386
rules 320
rules conflict with definitions of 124
union of 463
variable-length, and sort order 358
views and 170

columns per table 26
comma (,)

in SQL statements xiii
command execution delay. See waitfor command
command permissions 291–292

See also object permissions; permissions
grant all 295
grant assignment of 279–299
levels 290
revoking 386

commands
create function 82
disk resize 222–223
order-sensitive 293, 391
rowcount range for 439
statistics io for 440
statistics time information on 440
Transact-SQL, summary table 1–5

commit command 52–53
begin transaction and 42, 53
rollback and 53, 397

commit work command. See commit command
common keys

Index

504 Adaptive Server Enterprise

See also foreign keys; joins; primary keys
compact option, reorg command 380
comparing values

datatype conversion for 493
for sort order 358–359
in where clause 493

comparison operators
where clause 488

compatibility, data
create default and 74
of rule to column datatype 123

compiling
exec with recompile and 270
joins and table count 441
time (statistics time) 440
without execution (noexec) 435

complete_xact option, dbcc 182
Component Integration Services

constraints for remote servers and 18, 23
composite indexes 85, 98
compressed backups

making 241, 254
unloading 328, 336

compute clause 54–61
order by and 357, 411
select 411
without by 58

conceptual (logical) tables 163, 164
configuration parameters 4, 377
conflicting roles 14
connect to command 62
consistency check. See dbcc (Database Consistency

Checker)
constants

return parameters in place of 272
constraint keyword

alter table 18
create table 131

constraints
adding table 16
changing table 16
create table 147
cross-database 153, 236
dropping table 16
error messages 149
indexes created by and max_rows_per_page 21

referential integrity 151
unique 149

consumer process 90
consumers option, update statistics command 480
continuation lines, character string 493
continue command 64

while loop 494
control pages for partitioned tables 33

updating statistics on 478
control-of-flow language

begin...end and 41
create procedure and 103

conventions
See also syntax
Transact-SQL syntax xii
used in the Reference Manual xii

conversion
columns 144
dates used with like keyword 489
null values and automatic 144
where clause and datatype 493

copying
databases with create database 69–71
the model database 68
rows with insert...select 318
tables with select into 418

correlation names
table names 406

corrupt indexes. See reindex option, dbcc
counters, while loop. See while loop
create database command 65–72

default option 65
disk init and 210
for load keyword 66
for proxy_update keyword 66
log on keyword 65
on keyword 65
permission 295
with default_location keyword 66
with override keyword 66

create default command 73–75
batches and 73

create existing table command 76–81
datatype conversions and 79
defining remote procedures 79
mapping to remote tables 76

Index

Reference Manual: Commands 505

server class changes 79
create function command 82
create index command 85–98

index options and locking modes 97
insert and 319
space management properties 96

create plan command 99
create procedure (SQLJ) command 113–115
create procedure command 101–112

See also stored procedures; extended stored
procedures (ESPs)

order of parameters in 269, 272
return status and 109–110
select * in 107

create proxy_table command 116–118
mapping proxy tables to remote tables 116

create role command 119
grant all and 121

create rule command 122–125
create schema command 126–127
create table command 128–159

column order and 358
locking scheme specification 155
mapping proxy tables to remote tables 158
null values and 18, 131
space management properties 156

create trigger command 160–178, 294, 391
create view command 170–178

SQL derived tables and 173
creating

databases 65–72
defaults 73–75
extended stored procedures 101–112
indexes 85–98
rules 122–124
schemas 126–127
tables 128–159, 403
tables, with identity column 155
triggers 160–169, 294, 391
user-defined roles 119
views 170–178
views from SQL derived tables 176

curly braces ({}) in SQL statements xii
current database

changing 484
current locks, sp_lock system procedure 327

current processes. See processes (server tasks)
cursor result set 195

datatypes and 275
returning rows 275

cursor rows option, set 432
cursors

closing 49
compute clause and 58
datatype compatibility 275
deallocating 189
declaring 192–197
deleting rows 202
fetching 275–277
grant and 293
group by and 304
Halloween problem 196
opening 354
order by and 357
read-only 195
scans 195
scope 193
select and 417
union prohibited in updatable 462
updatable 195
updating rows 472

D
damaged database, removing and repairing 182
data dictionary. See system tables
data integrity 320

See also referential integrity constraints
dbcc check for 179

data modification
text and image with writetext 496
update 466

database devices
alter database and 6
new database 65
transaction logs on separate 213, 221

database dump. See dump, database; dump devices
database object owners

See also database owners; ownership
database objects

adding to tempdb 145

Index

506 Adaptive Server Enterprise

permissions on 292
permissions when creating procedures 111
permissions when creating triggers 169
permissions when creating views 177
permissions when executing procedures 111
permissions when executing triggers 169
permissions when invoking views 177
referencing, create procedure and 107
select_list 369–370, 403

database owners
See also database object owners; permissions
permissions granted by 279
use of setuser 290

databases
backing up 240–252
checkalloc option (dbcc) 180
checkdb option (dbcc) 180
checkstorage option (dbcc) 181
creating 65
creating with separate log segment 261
creation permission 71
default size 68
dropping 227
dumping 240–252
increasing size of 6
loading 328–335
number of server 68
offline, altering 9
recovering 328–335
removing and repairing damaged 182
selecting 484
suspending 365
upgrading database dumps 333, 342
use command 484

data-only locked tables
restrictions for adding, dropping, or modifying columns

35
dataserver utility command

See also Utility Programs manual
disk mirror and 214
disk remirror and 221

datatype conversions
column definitions and 144

datatypes
comparison in union operations 463
compatibility of column and default 74

cursor result set and 275
invalid in group by and having clauses 304
local variables and 190

date parts
order of 433

datefirst option, set 432
dateformat option, set 433
dates

display formats 432
display formats, waitfor command 486

datetime datatype
See also set command

dbcc
command options 297
on all and guest 299
permissions 299
server-level commands and on all | database 299

dbcc (Database Consistency Checker)
See also individual dbcc options
readtext and 375

dbcc (database consistency checker) 179–188
dbcc pravailabletempdbs and tempdbs 183
dbcc traceon 185
dbcc tune 185
DB-Library programs

browse mode 413
dbwritetext and dbmoretext, writetext compared to

498
prepare transaction 361
set options for 436, 447
waitfor mirrorexit and 486

dbrepair option, dbcc 182
deactivation of disk mirroring 224–226
deadlocks

descending scans and 359
deallocate cursor command 189
deallocating cursors 189
debugging aids

set showplan on 439
set sort_resources on 439
set statistics io on 440
triggers and 167

declare command 190–191
declare cursor command 192–197
declaring

local variables 190

Index

Reference Manual: Commands 507

parameters 102
default database size configuration parameter

in sysconfigures 68
default keyword

alter database 6
alter table 17
create table 130

default option
create database command 65

default segment
extending 10

default settings
parameters for stored procedures 102
set command options 447
weekday order 448

default values
datatypes when no length specified 102

defaults 320
column 17
creating 73–75
definitions and create default 73–75
dropping 229
IDENTITY columns and 34
rules and 74, 124

defining local variables 190–191
degree of parallelism

select and parallel 406
delayed execution (waitfor) 485
delete command 198–204

readpast option 198
triggers and 164
truncate table compared to 459

delete shared statistics command 205
delete statistics command 205
deleted table

triggers and 163, 164
deleting

See also dropping
unlocked rows 198

density option
dump database 241
dump transaction 255
load database 329
load transaction 337

dependencies, database object
sp_depends system procedure 145

desc index option
alter table command 29
create index command 86
create table command 132

desc option
alter table 19

descending index order, specifying 16
descending indexes 19
descending order (desc keyword) 355, 411
descending scans 359

deadlocks and 359
overflow pages and 360

descriptions
grant dbcc 279
revoke dbcc 385

device failure
dumping transaction log after 258, 260

device fragments
number of 68

device initialization. See initializing
devices

disk mirroring to 212–214
master 9
numbering 207, 216
secondary 213

dictionary sort order 358
dirty pages

updating 47–48
disabling mirroring. See disk mirroring
disconnect command 62
disk controllers 208, 217
disk devices

adding 207–211
mirroring 212–214
unmirroring 224–226

disk init command 207–211
master database backup after 209

disk mirror command 212–214
disk mirroring 212–214

database dump and 252
database load and 335
restarting 220–221
transaction log dump and 266
transaction log load and 344
unmirroring and 224–226
waitfor mirrorexit 485

Index

508 Adaptive Server Enterprise

disk refit command 215
create database and 70

disk reinit command 216–219
See also disk init command

disk remirror command 220–221
See also disk mirroring

disk resize command 222–223
disk unmirror command 224–226

See also disk mirroring
dismount option

dump database 242
dump transaction 256
load database 329
load transaction 337

display
create procedure statement text 111
procedures for information 104
setting for command-affected rows 435

distinct keyword
create view 171
select 402, 416

distributed transaction processing (DTP) 182
dividing tables into groups. See group by clause
domain rules 320

create rule command 122
violations 320

“don’t recover” status of databases created for load 71
doubling quotes

in character strings 492
drop database command 227–228

damaged databases and 182
drop default command 229
drop index command 231
drop keyword

alter role 12
alter table 23

drop procedure command 232–233
grouped procedures and 232, 269

drop role command 234
drop rule command 235
drop table command 236–237
drop trigger command 238
drop view command 239
dropdb option, dbcc dbrepair 182
dropping

constraints for tables 16

corrupt indexes 184
damaged database 182
databases 227–228
dbcc dbrepair database 182
defaults 74, 229
grouped procedures 101
indexes 231
passwords from roles 12
procedures 232–233
roles in a mutually exclusive relationship 12
rows from a table 198–204, 236
rows from a table using truncate table 459
rules 235
table constraints 16
tables 236–237
tables with triggers 165
triggers 165, 238
user-defined roles 234
views 239

dump database
compress option 241

dump database command 240–252
See also dump, database
after using create database 70
after using disk init 209
after using dump transaction with no_log 255
dump transaction and 246
master database and 246
select into and 419

dump devices
See also database devices; log device
dump, database and 241
dump, transaction log and 255
naming 241, 255, 262–263
number required 334

dump striping
database dumps and 242
transaction dumps and 256

dump transaction
compress option 254

dump transaction command 253–267
See also dump, transaction log
after using disk init 209
permissions for execution 266
select into/bulkcopy/pllsort and 259
standby_access option 258

Index

Reference Manual: Commands 509

trunc log on chkpt and 259
with no_log option 261–262
with no_truncate option 258, 260
with truncate_only option 260

dump, database
across networks 246
appending to volume 251–252
Backup Server and 248
Backup Server, remote 241
block size 241
commands used for 260
dismounting tapes 242
dump devices 241, 247
dump striping 242
dynamic 246
expiration date 243
file name 243, 248
initializing/appending 243
loading 70, 328–335
master database 247
message destination 244
new databases and 246
overwriting 243, 251–252
remote 248
rewinding tapes after 243
scheduling 246–247
successive 251, 264
system databases 247
tape capacity 242
tape density 241
thresholds and 247
volume changes 251
volume name 242, 250

dump, transaction log
across networks 262
appending dumps 257
appending to volume 265–266
Backup Server, remote 263
command used for 260
dismounting tapes 256
dump striping 256
expiration date 257
file name 257, 263–264
initializing tape 257
initializing volume 265–266
insufficient log space option 261–262

loading 336–344
message destination 258
permissions problems 259
remote 263, 264
rewinding tapes after 257
scheduling 262
tape capacity 256
thresholds and 262
volume name 256, 264

dumpvolume option
dump database 242
dump transaction 256
load database 329
load transaction 337

duplicate rows
indexes and 85, 89
removing with union 461

duplication
of space for a new database 70
of a table with no data 419

dynamic dumps 246, 262
dynamic execution of Transact-SQL commands 268

E
else keyword. See if...else conditions
empty string (“ ”) or (’ ’)

as a single space 320
updating an 471

enable xact coordination configuration parameter
442

end keyword 41
engine option, dbcc 182
@@error global variable

select into and 418
stored procedures and 106
user-defined error messages and 364, 372

error handling
in character set conversion 431
dbcc and 187
triggers and 167

error messages
12207 345, 346
character conversion 431
printing user-defined 364

Index

510 Adaptive Server Enterprise

user-defined 368–372
errorexit keyword, waitfor 485
errors

See also error messages; SQLSTATE codes
allocation 180, 184, 185
datatype conversion 130
numbers for user-defined 368
return status values 383

escape keyword
where 489

evaluation order 462
examples

grant dbcc 284
revoke dbcc 390

exception report, dbcc tablealloc 183, 185
exclamation point (!)

error message placeholder 362
exclusive keyword

alter role 12
exclusive option, lock table 345
execute command 268–274

create procedure and 106
executing

extended stored procedures 268
procedures 268
Transact-SQL commands 268
user-defined procedures 268

execution
specifying times for 485

execution delay. See waitfor command
exists keyword

where 490
exit

unconditional, and return command 382–384
waitfor command 485

exp_row_size option
create table 136, 156
select into 404
setting before alter table...lock 32
specifying with create table 136
specifying with select into 404

explicit values for IDENTITY columns 322, 434
expressions

evaluation order in 462
grouping by 303
insert and 318

summary values for 58
extended columns, Transact-SQL 305, 307
extended stored procedures

C runtime signals not allowed 107
creating 101–112
dropping 232
executing 268

extending
database storage 6

extensions, Transact-SQL 305
extents 92

create table and 141
dbcc indexalloc report on index 183
dbcc report on table 185

external option
create existing table 76
create proxy_table 116
create table 137

F
failures, media

See also recovery
automatic failover and 224
disk remirror and 220

fast option
dbcc indexalloc 183
dbcc tablealloc 183, 185

fetch command 275–277
fetching cursors 275–277
file names

database dumps 248
DLL 103
listing database dump with listonly 330
listing transaction log with listonly 338
transaction log dumps 257, 337

file option
dump database 243
dump transaction 257
load database 330
load transaction 337

files
See also tables; transaction log
mirror device 212

fillfactor

Index

Reference Manual: Commands 511

create index and 87
fillfactor option

alter table 20
create index 87, 96
create table 133, 156

fillfactor values
alter table...lock 30

FIPS flagger
insert extension not detected by 325
set option for 433
update extensions not detected by 475

fipsflagger option, set 433
first column parameter. See keys
fix option

dbcc 180, 184, 185
dbcc indexalloc 183
dbcc tablealloc 180

fix_text option, dbcc 183, 187
fixed-length columns

stored order of 358
flushmessage option, set 433
for browse option, select 413

union prohibited in 464
for load keyword

alter database 7
create database command 66

for load option
create database 70

for proxy_update keyword
alter database 7
create database command 66

for read only option, declare cursor 192
for update option, declare cursor 192
forceplan option, set 433
forcing offline pages online 246
foreign key constraint

alter table 22
create table 135

foreign keys 149
forget_xact option, dbcc 182
format strings

print 362
raiserror 368
in user-defined error messages 368

forwarded_rows option, reorg command 380
fragmentation, reducing 16

from keyword
delete 198
grant 290
load database 329
load transaction 337
select 405
update 467

full option
dbcc indexalloc 183
dbcc tablealloc 183, 185

G
German language print message example 362
goto keyword 278
grammatical structure, numbered placeholders and

362
grand totals

compute 58
order by 357

grant command 63, 279–299
all keyword 279
drop role permission not included in 234
public group and 281
roles and 296

grant dbcc
described 279
examples 284
parameters 281
syntax 279
uses 294

grant option for option, revoke 387
granting

create trigger permission 168, 294, 391
group by clause 301–313

aggregate functions and 301, 304
having clause and 301–313
having clause and, in standard SQL 305
having clause and, in Transact-SQL 305
having clause and, sort orders 312
select 409–410
views and 175
without having clause 311

grouping
multiple trigger actions 161

Index

512 Adaptive Server Enterprise

procedures of the same name 101, 232, 269
table rows 304

groups
See also “public” group
grant and 297
revoke and 393
table rows 301

guest users
permissions 297

H
Halloween problem 196
having clause 301–313

aggregate functions and 302, 304
group by and 301–313
group by extensions in Transact-SQL and 305
negates all 301
select 410

headings, column 302
in views 170

heuristic completion 182
hexadecimal numbers

“0x” prefix for 73
hierarchy of permissions. See permissions
histograms

specifying steps with create index 96
specifying steps with update statistics 480

holdlock keyword
readtext 373
select 408

I
I/O

devices, disk mirroring to 212
displaying total actual cost (statistics io) 440
prefetch and delete 199
prefetch and select 407
prefetch and update 467

identifiers
select 417

identities
sa_role and Database Owner 451

set proxy and 452
set session authorization and 452
setuser command 456

identity burning set factor configuration parameter
322

IDENTITY columns
adding, dropping, or modifying with alter table 36
creating tables with 155
defaults and 34
inserting values into 317
inserts into tables with 322
maximum value of 322
null values and 323
selecting 323, 420
updates not allowed 473
views and 175

identity gap
setting 155

@@identity global variable 323
identity keyword

alter table 18
create table 130

identity of user. See aliases; logins; users
identity_insert option, set 434
IDs, user

stored procedure (procid) 437
if update clause, create trigger 160, 161, 166
if...else conditions 314–316

continue and 64
local variables and 191

ignore_dup_key option, create index 89
ignore_dup_row option, create index 89
image datatype

length of data returned 417, 441
order by not allowed 357
pointer values in readtext 373
storage on separate device 373
triggers and 164
union not allowed on 464
writetext to 496

immediate shutdown 457
impersonating a user. See setuser command
in keyword

alter table and 23
check constraint using 154
where 490

Index

Reference Manual: Commands 513

inactive transaction log space 255
included groups, group by query 306
incremental backups. See dump, transaction log
index keys

asc option for ordering 93
desc option for ordering 93
maximum number of bytes 91
number of 91
ordering 93

index pages
fillfactor effect on 20, 87, 133
leaf level 20, 85, 87, 133

indexalloc option, dbcc 183
indexes

ascending 19
composite 98
creating 85–98
dbcc indexalloc and 183
descending 19
dropping 231
integrity checks (dbcc) 184
joins and 91
key values 481
listing 231
max_rows_per_page and 21, 134
naming 86
nonclustered 86
number allowed 91
object allocation maps of 183
page allocation check 183
specifying order of 16
specifying sort order with alter table 29
specifying sort order with create index 93
specifying sort order with create table 147
truncate table and 459
types of 85
update index statistics on 480
update statistics on 91, 480
views and 92

infected processes
waitfor errorexit and 486

information (server)
display procedures 104
space usage 98
text 111

information messages (server). See error messages;
severity levels, error

init option
dump database 243
dump transaction 257

initializing
disk reinit and 209, 216–219
disk space 207–211

in-memory map 9
insert command 317–325

create default and 73
IDENTITY columns and 322
null/not null columns and 175
triggers and 164, 166
update and 319
views and 175, 323–324

inserted table
triggers and 163, 164

integrity of data
constraints 147
methods 148

integrity. See dbcc (database consistency checker);
referential integrity

internal datatypes of null columns 144
interval, automatic checkpoint 47
into keyword

fetch 275
insert 317
select 403, 418
union 461, 465

is null keyword
where 489

isnull system function
insert and 321
print and 364
select and 417

@@isolation global variable 453
isolation levels

readpast option and 422
repeatable reads 413

J
Java columns, adding 36
Java items

Index

514 Adaptive Server Enterprise

remove java command 378
joins

indexes and 91
number of tables considered by optimizer 441
table groups and 307

jtc option, set 435

K
key columns

dropping with alter table 36
key values 481
keys, index. See index keys
keys, table 149

See also common keys; indexes
kill command 326–327

L
labels

dump volumes 250, 334, 343
goto label 278

@@langid global variable 368
language option, set 435
languages, alternate

structure and translation 362
system messages and 435
weekday order and 448

leaf levels of indexes
clustered index 20, 85, 87, 133

leaving a procedure. See return command
levels

nested procedures and 108, 272
nesting triggers 167
@@nestlevel 109
permission assignment 290

like keyword
alter table and 23
check constraint using 154
where 489

listing
existing defaults 229
user group members 297

listonly option

load database 330
load transaction 338

lists
commands 1–5
error return values 384
reserved return status value 384
sort order choices and effects 358

load database
compress option 328

load database command 328–335
load transaction

compress option 336
load transaction command 336–344
load, database 328–335

across networks 334
Backup Server and 334
block size 329
cross-platform not supported 332, 340
disk mirroring and 335
dismounting tapes after 329
file name, listing 330
header, listing 330
load striping 329
message destination 330, 331, 344
new database 70
remote 334
restricting use 333, 342
rewinding tapes after 330
size required 333
updates prohibited during 333
volume name 329

load, transaction log 336–344
disk mirroring and 344
dismounting tape after 337
dump devices 337
file name, listing 338
header, listing 338
load striping 337
message destination 339
point-in-time recovery 339
rewinding tape after 337
until_time 339
volume name 337

local variables
declare (name and datatype) 190
raiserror and 369

Index

Reference Manual: Commands 515

in screen messages 362
in user-defined error messages 369

location of new database 65
lock allpages option

alter table 24
create table command 136
select into command 403

lock datapages option
alter table 24
create table command 136
select into command 403

lock datarows option
alter table 24
alter table command 38
create table command 136
select into command 403

lock nowait option, set lock command 435
lock table command 345
lock wait option, set command 435
locking

tables with lock table command 345
text for reads 373

locking scheme
changing 16, 24
changing with alter table 16
create table and 155
modifying 24
specifying with select into 403

locks
deletes skipping locked rows 198
selects skipping locked rows 421
updates skipping locked rows 466

log device
See also transaction logs
purging a 247
space allocation 70, 187

log on keyword
alter database 7
create database 65

log segment
dbcc checktable report on 181
not on its own device 181

logging
select into 418
text or image data 496
triggers and unlogged operations 165

writetext command 496
logical (conceptual) tables 163, 164
logical consistency. See dbcc (database consistency

checker)
logical device name

disk mirroring 212
disk remirroring 220
disk unmirroring 224
new database 65

logical expressions
if...else 314
syntax 43
when...then 44, 50, 350

logical reads (statistics io) 440
logins

See also remote logins; users
char_convert setting for 431
disabling 457

logs. See segments; transaction logs
loops

break and 43
continue and 64
goto label 278
trigger chain infinite 167
while 43, 494

lowercase letters, sort order and 358

M
making compressed backups 241, 254
mapping

system and default segments 10
markers, user-defined. See placeholders; savepoints
master database

See also recovery of master database; databases
alter database and 9
backing up 260
create database and 70
disk init and 209
disk mirror and 213
disk refit and 215
disk reinit and 216
disk remirror and 220
disk unmirror and 225
dropping databases and 227

Index

516 Adaptive Server Enterprise

transaction log purging 247, 260
master device 9
max_rows_per_page option

alter table 21, 30
create index 88, 96
create table 134, 156
select into 404

maximum number of columns 26
maximum row size 26
membership keyword

alter role 12
memory

See also space
releasing with deallocate cursor 189

messages
language setting for 435
printing user-defined 362–364
revoke 392
screen 362–364
trigger 164, 238

migration
of system log to another device 210
of tables to clustered indexes 93, 146

mirror keyword, disk mirror 212
mirrorexit keyword

waitfor 485
mistakes, user. See errors
mode option, disk unmirror 224
model database

copying the 68
modifying

databases 6
locking scheme 24
roles 12
tables 16

mount 347
multibyte character sets

changing to 183
fix_text upgrade for 183, 187
readtext and 375
readtext using characters for 375
writetext and 498

multicolumn index. See composite indexes
multiple trigger actions 161
multitable views 474

See also views

delete and 174, 201
mutually exclusive roles 12

N
name of device

disk mirroring and 212
disk remirroring and 220
disk unmirroring and 224
dump device 241, 255
physical, disk reinit and 216
remote dump device 334

name option
disk init 207
disk reinit 216

names
alias for table 406
column, in views 170
parameter, in create procedure 102
segment 21, 90, 134, 137
setuser 456
sorting groups of 312
view 239

naming
columns in views 170
cursors 193
database device 207
file 207
indexes 86
stored procedures 107
tables 129
temporary tables 145
triggers 160
views 170

nested select statements. See select command;
subqueries

nesting
begin...end blocks 41
if...else conditions 316
levels 108
levels of triggers 167
stored procedures 107, 272
triggers 167
while loops 495
while loops, break and 43

Index

Reference Manual: Commands 517

@@nestlevel global variable 272
nested procedures and 109
nested triggers and 167

%nn! (placeholder format) 362
no_log option, dump transaction 255
no_truncate option, dump transaction 258
nocount option, set 435
nodismount option

dump database 242
dump transaction 256
load database 329
load transaction 337

noexec option, set 435
nofix option, dbcc

checkalloc and 180
indexalloc and 184
tablealloc and 185

noholdlock keyword, select 373, 408
noinit option

dump database 243
dump transaction 257

nonclustered constraint
alter table 19
create table 132

nonclustered indexes 86
noserial option, disk mirror 212
not keyword

where 487
not null keyword

create table 18, 131
not null values

dropping defaults for 229
insert and 321
select statements and 417
views and 175

notify option
dump database 244
dump transaction 258
load database 331
load transaction 339

nounload option
dump database 243
dump transaction 257
load database 330
load transaction 337

nowait option

lock table command 345
set lock command 435

nowait option, shutdown 457
null keyword

create table 18, 130, 131
null values

check constraints and 154
column defaults and 74, 124
defining 74, 144
dropping defaults for 229
group by and 304
inserting substitute values for 321
new column 74
new rules and column definition 124
null defaults and 74, 124
select statements and 417
sort order of 357
stored procedures cannot return 384
text and image columns 320
triggers and 166

nullif expressions 350–351
nullif keyword 350
number (quantity of)

active dumps or loads 248, 263, 334, 343
arguments and placeholders 363
arguments, in a where clause 493
bytes in returned text 375
bytes per row 26
clustered indexes 85
columns for index key 91
databases server can manage 68
device fragments 68
different triggers 164
having clause search arguments 302
logical reads (statistics io) 440
named segments 68
nesting levels 109
nesting levels, for triggers 167
nonclustered indexes 86, 91
parameters in a procedure 191
physical reads (statistics io) 440
placeholders in a format string 363
scans (statistics io) 440
steps for distribution histogram 89
stored procedure parameters 106
tables allowed in a query 405

Index

518 Adaptive Server Enterprise

tables per database 141
updates 168
user-defined roles 120

number of columns
in an order by clause 357
per table 26, 141
in a view 173

number of pages
in an extent 92, 141
statistics io and 440
written (statistics io) 440

numbers
error return values (server) 383
placeholder (%nn!) 362
procid setting 437
same name group procedure 101, 232, 269
select list 411
statistics io 440
virtual device 207, 216
weekday names and 432

O
object allocation map (OAM) pages

dbcc indexalloc and 183
dbcc report on table 185

object names, database
as parameters 102
in stored procedures 108, 110

object owners. See database object owners
object permissions

See also command permissions; permissions
grant 279–299
grant all 295

of option, declare cursor 192
offline databases and alter database command 9
offset position, readtext command 373
offsets option, set 436
on keyword

alter database 6
alter table 21
create database command 65
create index 90, 93
create table 134, 137

online database command 333, 352, 352–353

bringing databases online 333
dump transaction and 340
load transaction and 340
upgrades and 342

Open Client applications
keywords 436
procid setting 437
set options for 436, 447

open command 354
opening cursors 354
optdiag utility

loading simulated statistics 206, 453
overwriting statistics with create index 96

optimized report
dbcc indexalloc 183
dbcc tablealloc 185

optimizer
join selectivity 441

@@options global variable 453
or keyword

where 491
order

of arguments in translated strings 362
ascending sort 355, 411
of column list and insert data 317
of columns (fixed- and variable-length) 358
of creating indexes 92
of date parts 433
descending sort 355, 411
error message arguments 362
of evaluation 462
of names in a group 312
of null values 357
of parameters in create procedure 269, 272
for unbinding a rule 123

order by clause 355–360
compute by and 58, 357, 411
select and 411

order of commands 293, 391
original identity, resuming an (setuser command) 456
output

dbcc 187
zero-length string 364

output option
create procedure 103, 269
execute 269

Index

Reference Manual: Commands 519

return parameter 269
overflow errors

set arithabort and 429
overhead

triggers 164
override. See with override option
overwriting triggers 164, 238
owners. See Database Owners; database object owners
ownership

See also permissions; setuser command
of command and object permissions 290
of rules 124
of stored procedures 112
of triggers 169
of views 177

P
padding, data

blanks and 320
page splits 21, 88, 134
pages

ratio of filled to empty 16
pages, control

updating statistics on 478
pages, data

See also index pages; table pages
chain of 23, 33
extents and 93, 141
extents and dbcc tablealloc 185
extents reported by dbcc indexalloc 183
multibyte characters and 183
statistics io and 440

pages, OAM (object allocation map)
dbcc indexalloc report on 183
dbcc report on table 185

pages, overflow
descending scans and 360

pair, mirrored 224
parallel keyword, select command 406
@@parallel_degree global variable 453

set parallel_degree and 436
parallel_degree option, set command 436
parameters

grant dbcc 281

revoke dbcc 388
parameters, procedure

datatypes 102
defaults 102
execute and 269
naming 102
not part of transactions 273
ways to supply 269, 272

parentheses ()
in SQL statements xii

parseonly option, set 436
partial characters, reading 375
partition clause, alter table command 23
partition statistics

updating with update partition statistics 478
updating with update statistics 477

partitioned tables
alter table 23

partitioning
tables 16

passthrough mode
connect to command 62

passwd keyword
alter role 12

passwords
adding to roles 12
adding to user-defined roles 14
changing for user-defined roles 15
dropping from roles 12
dropping from user-defined roles 14
roles and 12
user-defined roles and 119, 438

path name
DLL and extended stored procedures 103
mirror device 212
remote dump device 334

percent sign (%)
error message placeholder 362
literal in error messages 364

performance
select into and 419
showplan and diagnostics 439
sort_resources and diagnostics 439
triggers and 164
writetext during dump database 498

permissions

Index

520 Adaptive Server Enterprise

assigned by database owner 279
assigning 279
changing with setuser 456
command 291–292
creating with create schema 126–127
for creating triggers 168, 294, 391
grant 279–299
grant dbcc 299
object 292
“public” group 291–292
revoke command 385–395
revoke dbcc 395

physical database consistency. See dbcc (database
consistency checker)

physical reads (statistics io) 440
physname option

disk init 207
disk reinit 216

placeholders
print message 362

plan
create procedure and 103
set showplan on and 439
set sort_resources on and 439

plans
creating with create plan 99

pointers
text or image column 373

pointers, device. See segments
pound sign (#) temporary table name prefix 129
precedence

order-sensitive commands and 293, 391
rule binding 124
of user-defined return values 384

preference, uppercase letter sort order 358
prefetch keyword

delete 199
select 407
set 437
update 467

prepare transaction command 361
primary key constraint

alter table 19
create table 132

primary keys 149
updating 162

primary option, disk unmirror 224
print command 362–364

local variables and 191
using raiserror or 364

printing user-defined messages 362–364
privileges. See permissions
procedure groups 232, 269
procedure option

create existing table 76
procedure plan, create procedure and 103
procedures. See stored procedures; system procedures
process logical name. See logical device name
process_limit_action option, set 437
processes (server tasks)

See also servers
ID number 326
infected, waitfor errorexit 486
killing 326–327
sp_who report on 326

processexit keyword, waitfor 485
procid option, set 437
protection system

command and object permissions 290
hierarchy of roles, groups and users 297
stored procedures 111
user-defined roles 120

proxy option, set 438
granting 280
revoking 386

proxy table 118
proxy tables

mapping to remote tables 76
mapping to remote tables with create proxy_table

116
mapping to remote tables with create table 158

“public” group 297, 393
See also groups
grant and 281
permissions 291–292
revoke and 387

public keyword
grant 281
revoke 387

Index

Reference Manual: Commands 521

Q
queries

compilation without execution 435, 436
execution settings 425–455
keywords list 436
syntax check (set parseonly) 436
trigger firing by 163
union 461–464
views and 173
with/without group by and having 304

query analysis
set noexec 435
set statistics io 440
set statistics time 440

query plans
set showplan on and 439

query processing
set options for 425

question marks (??)
for partial characters 375

quiesce database command 365–367
quotation marks (“ ”)

literal specification of 492
quoted_identifier option, set 438

R
raiserror command 368–372

compared to print 372
local variables and 191
using print or 364

range
set rowcount 439

ratio of filled to empty pages 16
read-only cursors 195
readpast option

delete command 198
isolation levels and 422
readtext command 373
select command 404
update command 467
writetext command 496

readtext command 373–376
rebuild option, reorg command 381
rebuild_text option, dbcc 184

rebuilding
automatic, of nonclustered index 92
indexes 184
system tables 184, 185
text and image data 184

reclaim_space option, reorg command 380
recompilation

create procedure with recompile option 103, 107
execute with recompile option 270
stored procedures 107

reconfigure command 377
recovery

dump transaction and 262
to specified time in transaction log 341
time and checkpoint 47

recovery of master database 247
after using create database 70
after using disk init 209

re-creating
indexes 184
procedures 110
tables 236
text and image data 184

recursions, limited 167
reducing

storage fragmentation 16
reference information

Transact-SQL commands 1–5
references constraint

alter table 22
create table 135

referencing, object. See dependencies, database object
referential integrity

triggers for 160–169
referential integrity constraints 16, 151, 246

create table and 147
cross-database 153, 236

regulations
sort order ties 358–359

reindex option, dbcc 184
reinitializing, disk reinit and 216–219
remirroring. See disk mirroring
remote procedure calls 417

execute and 273
rollback and 397

remote procedures, defining 79

Index

522 Adaptive Server Enterprise

remote servers 417
constraints for 18, 23

remove java command 378–379
remove option, disk unmirror 224
removing. See dropping; deleting
renaming

identity of object owner 291
stored procedures 107
triggers 165
views 173

reorg command 380–381
repairing a damaged database 182
repeatable reads isolation level 413
repeated execution. See while loop
replace keyword, alter table 23
reports

sp_who 326
types of dbcc 184

reserved return status values 383
reservepagegap option

alter table 21, 30
create index 88, 96
create table 136, 156
select into 404

restarting while loops 64
restarts, Server

after using disk refit 215
before using create database 68
using dataserver utility 214, 221

restoring
See also recovery
a damaged master database 215, 216
database with load database 328–335

results
See also output
of aggregate operations 304
cursor result set 195, 275
order by and sorting 355–360

resume option, reorg 380
retain option, disk unmirror 224
retaindays option

dump database 243
dump transaction 257

retrieving
error message text 362

return command 382–384

return parameters
output keyword 103, 269

return status
stored procedure 268, 382

revoke command 385–395
object and command permissions 291
public group and 387

revoke dbcc
described 385
examples 390
parameters 388
permissions 395
syntax 385
uses 393

revoking
create trigger permission 168, 294, 391
role privileges using with override 234

role option
grant 281
revoke 387
set command 438

roles
adding passwords to 12
creating (user-defined) 119
dropping passwords from 12
granting 296
mutually exclusive 12
permissions and 297
stored procedure permissions and 296
turning on and off with set role 438

roles, system
revoking 387

roles, user-defined
limitations 120
revoking 387
turning on and off 438

rollback command 396–397
begin transaction and 42
commit and 53
triggers and 165, 167

rollback transaction command. See rollback command
rollback trigger command 165, 398
rollback work command. See rollback command
rolling back processes

checkpoint and 47
parameter values and 273

Index

Reference Manual: Commands 523

row aggregates
compute and 54

row length 26
row size 26
@@rowcount global variable 454

cursors and 276
set nocount and 454
triggers and 166

rowcount option, set 439
rows, table

See also select command
aggregate functions applied to 304
comparison order of 358
create index and duplication of 85, 89
deleting unlocked 198
deleting with truncate table 459
displaying command-affected 435
grouping 301
insert 319
rowcount setting 439
scalar aggregates applied to 304
selecting unlocked 421
update 466
updating unlocked 466
ways to group 304

rules
binding 124
column definition conflict with 124
creating new 122–125
default violation of 74
dropping user-defined 235
insert and 320
naming user-created 122

running a procedure with execute 268

S
save transaction command 399–400
savepoints

See also checkpoint process
rollback and 396
setting using save transaction 400

scalar aggregates
group by and 304

@@scan_parallel_degree global variable 454

set scan_parallel_degree and 439
scan_parallel_degree option, set 439
scans

cursor 195
number of (statistics io) 440

schemas 126–127
permissions 127

scope of cursors 193
search conditions

group by and having query 302, 306
select 409
where clause 487–493

secondary option, disk unmirror 224
security

See also permissions
command and object permissions 290
views and 173

seed values
set identity_insert and 434

segments
See also database devices; log segment; space

allocation
changing table locking schemes 38
clustered indexes on 93
creating indexes on 21, 90, 93, 134
dbcc checktable report on 181
dbcc indexalloc report on 183
mapping to a new device 10
names of 21, 134, 137
number of named 68
placing objects on 90
separation of table and index 92, 146

select command 401–424
altered rows and 26, 34
create procedure and 107
create view and 171
group by and having clauses 301
insert and 320
local variables and 191
size of text data to be returned with 441
variables and 190

select into command 403–419
not allowed with compute 58, 411

select into/bulkcopy/pllsort database option
select into and 419
transaction log dumping and 259

Index

524 Adaptive Server Enterprise

select list 369–370, 403
order by and 411
union statements 462

select option, create view 170
selecting

unlocked rows 421
self_recursion option, set 168, 439
sentence order and numbered placeholders 362
separation, physical

of table and index segments 92, 146
of transaction log device 213, 221

sequence. See order by clause; sort order
serial option, disk mirror 212
server process ID number. See processes (server tasks)
servers

See also processes (server tasks); remote servers
capacity for databases 68

session authorization option, set 439
revoking 280, 386

set command 425–455
See also individual set options
default settings 447
inside a stored procedure 111
inside a trigger 164
lock wait 435
roles and 438
statistics simulate 440
strict_dtm_enforcement 440
transaction isolation level 442
within update 467

setting
identity gap 155

setuser command 456
user impersonation using 291

severity levels, error
user-defined messages 371

share option, lock table 345
shared keyword

select 408
showplan option, set 439
shutdown command 457–458
side option, disk unmirror 224
size

columns in table 26
compiled stored procedure 107
composite index 86

database extension 7
estimation of a compiled stored procedure 107
image data to be returned with writetext 497
initialized database device 210
log device 210
new database 65
readtext data 373, 375
recompiled stored procedures 107
row 26
set textsize function 441
tables 141
text data to be returned with select 441
text data to be returned with writetext 497
transaction log device 70, 210

size limit
columns allowed per table 141
print command 363
tables per database 141

size option
disk init 208, 217

skip_ncindex option, dbcc 180
sort operations (order by)

sorting plan for 439
sort order

See also order
ascending 355
choices and effects 357
descending 355
group by and having and 312
groups of names 312
order by and 357
rebuilding indexes after changing 184
specifying index with alter table 29
specifying index with create index 93
specifying index with create table 147

sort_merge option, set 439
sort_resources option, set 439
sp_bindefault system procedure

create default and 73
sp_bindrule system procedure

create rule and 123
sp_dboption system procedure

checkpoints and 47
sp_depends system procedure 145
sp_transactions system procedure 182
sp_unbindefault system procedure 229

Index

Reference Manual: Commands 525

sp_unbindrule system procedure
create rule and 123
drop rule and 235

space
See also size; space allocation
adding to database 6–11
for a clustered index 20, 87, 93, 133
clustered indexes and max_rows_per_page 21,

88
database storage 20, 87, 93, 133
dbcc checktable reporting free 181
extents 92, 141
extents for indexes 183
for index pages 20, 87, 133
max_rows_per_page and 21, 88, 134
new database 65
for recompiled stored procedures 107
required for alter table...lock 38
required for reorg rebuild 381
retrieving inactive log 255
running out of 255
for stored procedures 106
used on the log segment 181, 255

space allocation
dbcc commands for checking 180–183
log device 70
pages 184
table 141, 180

space management properties
create index and 96
create table and 156

space reclamation
reorg reclaim_space for 380

spaces, character
update of 472

speed (server)
create database for load 69
create index with sorted_data 89
dump transaction compared to dump database

262
execute 272
truncate table compared to delete 459
writetext compared to dbwritetext and dbmoretext

498
SQL derived tables

create view command and 173

creating views from 176
SQL standards

set options for 455
set session authorization and 439

@@sqlstatus global variable
fetch and 276

square brackets []
in SQL statements xiii

standby_access option
dump transaction 258
online database 352

starting servers
disk mirroring of master device and 214
disk remirroring of master device and 221

startserver utility command
See also Utility Programs manual
disk mirror and 214
disk remirror and 221

statements
create trigger 161
in create procedure 103

statistics
deleting table and column with delete statistics

205
generating for unindexed columns 481
simulated, loading 206, 453

statistics clause, create index command 89
statistics io option, set 440
statistics simulate option, set command 440
statistics subquerycache option, set 440
statistics time option, set 440
status

stored procedures execution 273
stopping

procedures. See return command
servers 457

storage fragmentation, reducing 16
stored procedure triggers. See triggers
stored procedures

creating 101–112
dropping 101, 232–233
dropping groups 232
executing 268
grouping 101, 269
ID numbers 437
naming 101

Index

526 Adaptive Server Enterprise

nesting 107, 272
parseonly not used with 436
permissions granted 280
permissions revoked 386
procid option 437
renaming 107
return status 109–110, 268, 273, 382
set commands in 425
storage maximums 106

strict dtm enforcement configuration parameter 440
strict_dtm_enforcement option, set command 440
string_rtruncation option, set 440

insert and 320
update and 472

strings
print message 362
truncating 320, 472

stripe on option
dump database 242
dump transaction 256
load database 329
load transaction 337

structure
See also order
clustered and nonclustered index 85

subgroups, summary values for 58
subqueries

order by and 357
union prohibited in 463

summary values
generation with compute 58

suspect indexes
See also reindex option, dbcc

suspending databases 365
syb_identity keyword

select and 420
sybsecurity database

dropping 227
symbols

in SQL statements xii
synonyms

chars for characters, readtext 374
out for output 103, 269
tran, transaction, and work, commit command 52
tran, transaction, and work, rollback command 396

syntax

check using set parseonly 436
grant dbcc 279
revoke dbcc 385

syntax conventions, Transact-SQL xii
syscolumns table 180
syscomments table

default definitions in 74
procedure definitions in 111
rule definitions in 124
trigger definitions in 168, 176

sysconfigures table
database size parameter 68

sysdevices table
disk init and 209
mirror names in 224

sysindexes table
composite indexes and 98

syslogs table
See also recovery; transaction logs
put on a separate device 213, 221
running dbcc checktable on 181

sysmessages table
raiserror and 368

sysobjects table
trigger IDs and 168

sysprocedures table
trigger execution plans in 168

sysprotects table
grant/revoke statements and 294, 391
sp_changegroup and 297

sysservers table
Backup Server and 248, 263
load database and 334

sysstatistics table
removing statistics with delete statistics 205

system activities
setting query-processing options for 425–455
shutdown 457

system databases
dumping 247

system logical name. See logical device name
system messages

See also error messages; messages
language setting for 435

system messages, language setting for 435
system procedures

Index

Reference Manual: Commands 527

See also create procedure command; individual
procedure names

create procedure and 101–112
dropping user-defined 232–233

system roles
revoking 387
stored procedures and 296

system segment
alter database 10

system tables
See also tables; individual table names
affected by drop table 236
affected by drop view 239
dbcc checkcatalog and 180
default definitions in 74
fixing allocation errors found in 184, 185
lock table prohibited on 346
rebuilding of 184, 185
rule information in 123
triggers and 164

systransactions table 182
sysusermessages table

raiserror and 368

T
table count option, set 441
table option

create table 137
table pages

allocation with dbcc tablealloc 184
table, proxy 118
tablealloc option, dbcc 184
tables

allowed in a from clause 405
changing 16–40
creating duplicate 419
creating new 128–159, 403
creating with create schema 126–127
creating with identity column 155
dbcc checkdb and 180
dividing, with group by and having clauses 301–

313
dropping 236–237
external 116

index location 231, 481
migration to a clustered index 92, 146
with no data 419
number considered in joins 441
object allocation maps of 185
partitioning 16, 23, 33
permissions on 280
permissions revoked 386
proxy 76
single-group 304
Transact-SQL extension effects and querying 305
unpartitioning 16, 24

tape labels
listonly option to load database 330
listonly option to load transaction 338

tempdb database
adding objects to 146
sysobjects table and 145
systypes table and 146

tempdbs
create database usage 69
dbcc pravailabletempdbs and 183

temporary tables
create procedure and 111
create table and 129, 145
identifier prefix (#) 129
indexing 91
lock table prohibited on 346
naming 145

text datatype
initializing with update 472
length of data returned 417, 441
order by not allowed 357
storage on separate device 373
textsize setting 441
triggers and 164
union not allowed on 464

text pointer values
readtext and 373

textptr function 373, 375
@@textsize global variable 454

readtext and 375
set textsize and 441

textsize option, set 441
then keyword. See when...then conditions
thresholds

Index

528 Adaptive Server Enterprise

database dumps and 247
transaction log dumps and 262

ties, regulations for sort order 358–359
time interval

See also timing
automatic checkpoint 47
elapsed execution (statistics time) 440
reorg 380
for running a trigger 164
waitfor 485

time option
reorg 380
waitfor 485

timestamps, order of transaction log dumps 333
timing

See also time interval
automatic checkpoint 47

to option
dump database 241
dump transaction 255
revoke 391

totals
compute command 357

@@tranchained global variable 454
transaction isolation level option, set 441
transaction isolation levels

readpast option and 422
transaction logs

See also dump transaction command; syslogs table
backing up 240
of deleted rows 201
dump database and 240
dumping 253
inactive space 255
loading 336–344
master database 247, 260
placing on separate segment 261
purging 247
on a separate device 210, 213, 221, 259
space extension 10
space, monitoring 262
syslogs table trunc log on chkpt 259
writetext with log and 496

transactional_rpc option, set 442
transactions

See also batch processing; rollback command; user-

defined transactions
begin 42
canceling. See rollback command
chained 53
dump transaction command 253–267
ending with commit 52
fetch and 275
isolation levels 442
parameters not part of 273
preparing 361
save transaction and 399–400
update iteration within given 471

Transact-SQL commands
executing 268
extensions for 305
summary table 1–5

translation
of arguments 362

trigger tables 165
triggers

creating 160–169, 294, 391
delete and 202
dropping 238
enabling self-recursion 168
insert and 320
nested 167–168
nested, and rollback trigger 398
@@nestlevel and 167
on image columns 164
on text columns 164
parseonly not used with 436
recursion 168
renaming 165
rollback in 165, 397
rolling back 398
@@rowcount and 166
self-recursion 168
set commands in 425
stored procedures and 167
system tables and 164
time interval 164
truncate table command and 459
update and 469

truncate table command 459–460
delete triggers and 165
faster than delete command 201

Index

Reference Manual: Commands 529

truncate_only option, dump transaction 255, 260
truncation

datatypes with no length specified 102
default values 74
insert and 320
log, prohibited on mixed device 66
set string_rtruncation and 440
spaces to a single space 472
transaction log 253

U
unbinding

defaults 74, 229
rules 235

unconditional branching to a user-defined label 278
undoing changes. See rollback command
union operator 461–464

maximum number of tables 462
restrictions on use 463

unique constraints 149
unique keyword

alter table 19
create index 85
create table 131

unload option
dump database 243
dump transaction 257
load database 330
load transaction 337

unloading compressed backups 328, 336
unmirroring devices. See disk mirroring
unmount 465
unpartition clause, alter table 24
unpartitioning

tables 16
updatable cursors 195
update all statistics command 477, 480
update command 466–476

ignore_dup_key and 89
ignore_dup_row and 94
insert and 319
readpast option 467
triggers and 164
triggers and if update 166

views and 175, 474
update index statistics command 480
update partition statistics command 478–479
update statistics command 480–483

create index and 91
locking during 481
scan type 481
sort requirements 481

updating
data in views 174
“dirty” pages 47–48
ignore_dup_key and 89
primary keys 162
trigger firing by 168
unlocked rows 466
writetext 496

upgrade, incorporating proxy tables 118
uppercase letter preference 358
us_english language

weekdays setting 448
usage

grant dbcc 294
revoke dbcc 393

use command 484
user errors. See errors; severity levels
user groups. See groups; “public” group
user keyword

alter table 18
create table 130

user permissions. See database owners; permissions
user-defined procedures

creating 101–112
executing 268

user-defined roles
adding passwords to 12
conflicting 14
creating 119
revoking 387
system procedures and 296
turning on and off 438

user-defined transactions
See also transactions
begin transaction 42
ending with commit 52

users
guest permissions 297

Index

530 Adaptive Server Enterprise

impersonating (setuser) 290
system procedure permissions and 293

using option, readtext 374, 375
using...values option, update statistics command 480

V
values

IDENTITY columns 322
procedure parameter or argument 269

values option, insert 317
varchar datatype

spaces in and insert 320
variable-length columns

empty strings in 320
stored order of 358

variables
assigning as part of a select list 403
in update statements 469
local 190–191
in print messages 362
return values and 272

vdevno option
disk init 207
disk reinit 216

vector aggregates
group by and 304

@@version global variable 362
views

See also database objects; multitable views
allowed in a from clause 405
changes to underlying tables of 174
check option and 473–474
creating 170–178
creating with create schema 126–127
dropping 239
inserting data through 323
permissions on 280, 291
permissions revoked 386
readtext and 375
renaming 173
update and 175, 473–475
updating restrictions 474
with check option 175, 323–324

violation of domain or integrity rules 320

virtual device number 207, 216
volume names, database dumps 250

W
wait option, lock table command 345
wait option, shutdown 457
waitfor command 485–486
waiting for shutdown 457
weekday date value

names and numbers 432
when keyword. See when...then conditions
when...then conditions 44
where clause 487–493

aggregate functions not permitted in 492
delete 198
group by clause and 306
having and 492
repeating a 308

where current of clause
delete 200
update 468

while keyword 494–495
continue and 64
exiting loop with break 43
loops 494

with check option option
create view 171
views and 176

with consumers clause, create index 90
with consumers option, update statistics command

480
with default_location keyword

create database command 66
with grant option option, grant 281
with keyword

rollback trigger 398
set role command 438

with log option, writetext 496
with no_error option, set char_convert 431
with no_log option, dump transaction 255
with no_truncate option, dump transaction 258
with nowait option, shutdown 457
with override keyword

alter database 7

Index

Reference Manual: Commands 531

create database command 66
with override option 234
with recompile option

create procedure 103
execute 270

with resume option, reorg 380
with standby_access option

dump transaction 258
with statistics clause, create index command 89
with time option, reorg 380
with truncate_only option, dump transaction 255,

260
with wait option, shutdown 457
work session, set options for 425–455
write operations

logging text or image 496
writes option, disk mirror 212
writetext command 496–498

triggers and 165

X
X/Open XA 182

Z
zero-length string output 364

532 Adaptive Server Enterprise

	Reference Manual: Commands
	About This Book
	CHAPTER 1 Commands
	Overview
	alter database
	alter role
	alter table
	begin...end
	begin transaction
	break
	case
	checkpoint
	close
	coalesce
	commit
	compute clause
	connect to...disconnect
	continue
	create database
	create default
	create existing table
	create function (SQLJ)
	create index
	create plan
	create procedure
	create procedure (SQLJ)
	create proxy_table
	create role
	create rule
	create schema
	create table
	create trigger
	create view
	dbcc
	deallocate cursor
	declare
	declare cursor
	delete
	delete statistics
	disk init
	disk mirror
	disk refit
	disk reinit
	disk remirror
	disk resize
	disk unmirror
	drop database
	drop default
	drop function (SQLJ)
	drop index
	drop procedure
	drop role
	drop rule
	drop table
	drop trigger
	drop view
	dump database
	dump transaction
	execute
	fetch
	goto label
	grant
	group by and having clauses
	if...else
	insert
	kill
	load database
	load transaction
	lock table
	mount
	nullif
	online database
	open
	order by clause
	prepare transaction
	print
	quiesce database
	raiserror
	readtext
	reconfigure
	remove java
	reorg
	return
	revoke
	rollback
	rollback trigger
	save transaction
	select
	set
	setuser
	shutdown
	truncate table
	union operator
	unmount
	update
	update all statistics
	update partition statistics
	update statistics
	use
	waitfor
	where clause
	while
	writetext

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

