
Reference Manual

Adaptive Server® Enterprise

12.5

DOCUMENT ID: 36271-01-1250-02

LAST REVISED: September 2002

Copyright © 1989-2002 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup
Server, BizTracker, ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench,
DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, MainframeConnect, Maintenance Express, MDI Access Server, MDI Database
Gateway, media.splash, MetaWorks, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips,
Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Rapport, Report Workbench,
Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Resource
Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10,
System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UNIBOM, Unilib,
Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP Server are
trademarks of Sybase, Inc. 07/02

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

iii

About This Book ... xxi

CHAPTER 1 System and User-Defined Datatypes .. 1
Datatype categories ... 2
Range and storage size ... 2
Declaring the datatype of a column, variable, or parameter............. 4

Declaring the datatype for a column in a table 4
Declaring the datatype for a local variable in a batch or procedure

4
Declaring the datatype for a parameter in a stored procedure.. 5
Determining the datatype of a literal.. 5

Datatype of mixed-mode expressions.. 6
Determining the datatype hierarchy .. 6
Determining precision and scale ... 7

Converting one datatype to another ... 8
Automatic conversion of fixed-length NULL columns................ 8
Handling overflow and truncation errors.................................... 9

Standards and compliance... 10
Exact numeric datatypes .. 10

Function... 10
Integer types.. 11
Decimal datatypes... 12
Standards and compliance.. 13

Approximate numeric datatypes... 14
Function... 14
Understanding approximate numeric datatypes...................... 14
Range, precision, and storage size ... 15
Entering approximate numeric data .. 15
Values that may be entered by Open Client clients 16
Standards .. 16

Money datatypes.. 16
Function... 16
Accuracy.. 16
Range and storage size .. 16

Contents

iv

Entering monetary values.. 17
Standards .. 17

Timestamp datatype... 17
Function... 17
Creating a timestamp column.. 17

Date and time datatypes .. 18
Function... 18
Range and storage requirements.. 18
Entering datetime and smalldatetime data 19
Standards and compliance.. 22

Character datatypes... 23
Function... 23
Length and storage size .. 23
Entering character data ... 25
Treatment of blanks... 25
Manipulating character data .. 26
Standards .. 27

Binary datatypes .. 27
Function... 27
Valid binary and varbinary entries ... 27
Entries of more than the max column size 28
Treatment of trailing zeroes... 28
Platform dependence .. 29
Standards .. 29

bit datatype... 30
Function... 30
Entering data into bit columns ... 30
Storage size .. 30
Restrictions.. 30
Standards .. 30

sysname datatype .. 31
Function... 31
Using the sysname datatype ... 31
Standards .. 31

text and image datatypes ... 31
Function... 31
Data structures used for storing text and image data.............. 32
Initializing text and image columns.. 36
Saving space by allowing NULL.. 36
Getting information from sysindexes 37
Using readtext and writetext.. 37
Determining how much space a column uses......................... 38
Restrictions on text and image columns.................................. 38
Selecting text and image data ... 38

Contents

v

Converting text and image datatypes...................................... 39
Pattern matching in text data... 39
Duplicate rows... 39
Standards .. 40

User-defined datatypes .. 40
Function... 40
Creating frequently used datatypes in the model database 40
Creating a user-defined datatypes .. 40
Renaming a user-defined datatype ... 41
Dropping a user-defined datatype ... 41
Getting help on datatypes ... 41
Standards and compliance.. 41

CHAPTER 2 Transact-SQL Functions .. 43
Types of functions .. 43
Aggregate functions ... 47

Aggregates used with group by... 48
Aggregate functions and NULL values.................................... 48
Vector and scalar aggregates ... 48
Aggregate functions as row aggregates.................................. 51

Datatype conversion functions ... 53
Converting character data to a non-character type 55
Converting from one character type to another....................... 56
Converting numbers to a character type 56
Rounding during conversion to and from money types 56
Converting date/time information .. 57
Converting between numeric types ... 57
Arithmetic overflow and divide-by-zero errors 58
Conversions between binary and integer types 59
Converting between binary and numeric or decimal types...... 60
Converting image columns to binary types 60
Converting other types to bit ... 60
Converting NULL value ... 61

Date functions .. 61
Date parts.. 61

Mathematical functions .. 62
Security functions... 64
String functions .. 64

Limits on string functions... 66
System functions.. 66
Text and image functions ... 67
abs ... 69
acos.. 70
ascii .. 71

Contents

vi

asin... 72
atan .. 73
atn2 .. 74
avg ... 75
ceiling ... 77
char .. 79
charindex.. 81
char_length .. 82
col_length... 84
col_name.. 85
compare ... 86
convert ... 89
cos.. 93
cot .. 94
count .. 95
curunreservedpgs .. 97
data_pgs .. 99
datalength .. 101
dateadd .. 102
datediff ... 104
datename ... 106
datepart .. 107
db_id .. 110
db_name .. 111
degrees .. 112
difference ... 113
exp ... 115
floor .. 116
get_appcontext... 118
getdate ... 120
hextoint... 121
host_id.. 122
host_name ... 123
index_col .. 124
index_colorder.. 125
inttohex... 126
isnull ... 127
is_sec_service_on.. 128
lct_admin.. 129
license_enabled ... 132
list_appcontext ... 133
lockscheme .. 134
log .. 135
log10 .. 136

Contents

vii

lower... 137
ltrim .. 138
max .. 139
min ... 141
mut_excl_roles ... 142
object_id... 143
object_name... 144
pagesize... 145
patindex.. 147
pi .. 150
power ... 151
proc_role .. 152
ptn_data_pgs ... 153
radians ... 154
rand .. 155
replicate.. 156
reserved_pgs ... 157
reverse ... 158
right .. 159
rm_appcontext ... 161
role_contain.. 162
role_id .. 163
role_name .. 164
round .. 165
rowcnt... 167
rtrim .. 169
set_appcontext... 170
show_role... 172
show_sec_services .. 173
sign... 174
sin... 175
sortkey.. 176
soundex.. 180
space.. 181
sqrt ... 182
str ... 183
stuff .. 185
substring... 187
sum .. 189
suser_id.. 191
suser_name ... 192
syb_quit() ... 193
syb_sendmsg ... 194
tan .. 195

Contents

viii

textptr ... 196
textvalid .. 197
to_unichar .. 198
tsequal.. 199
uhighsurr .. 201
ulowsurr.. 202
upper .. 203
uscalar.. 204
used_pgs.. 205
user .. 207
user_id ... 208
user_name ... 209
valid_name... 210
valid_user... 211

CHAPTER 3 Global Variables... 213
Adaptive Server’s global variables ... 213

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters.................. 219
Expressions.. 219

Size of expressions ... 220
Arithmetic and character expressions 220
Relational and logical expressions .. 220
Operator precedence .. 221
Arithmetic operators .. 221
Bitwise operators... 222
String concatenation operator ... 223
Comparison operators... 224
Nonstandard operators.. 224
Using any, all and in .. 225
Negating and testing ... 225
Ranges .. 225
Using nulls in expressions... 225
Connecting expressions .. 227
Using parentheses in expressions .. 228
Comparing character expressions... 228
Using the empty string... 229
Including quotation marks in character expressions 229
Using the continuation character... 229

Identifiers.. 229
Tables beginning with # (temporary tables) 230
Case sensitivity and identifiers .. 230
Uniqueness of object names ... 231

Contents

ix

Using delimited identifiers ... 231
Identifying tables or columns by their qualified object name . 232
Determining whether an identifier is valid.............................. 234
Renaming database objects.. 234
Using multibyte character sets .. 235

Pattern matching with wildcard characters................................... 235
Using not like... 236
Case and accent insensitivity .. 237
Using wildcard characters ... 237
Using multibyte wildcard characters...................................... 239
Using wildcard characters as literal characters 239
Using wildcard characters with datetime data 241

CHAPTER 5 Reserved Words.. 243
Transact-SQL reserved words ... 243
SQL92 reserved words .. 244
Potential SQL92 reserved words ... 245

CHAPTER 6 SQLSTATE Codes and Messages ... 247
Warnings .. 247
Exceptions.. 248

Cardinality violations ... 248
Data exceptions... 249
Integrity constraint violations ... 250
Invalid cursor states .. 250
Syntax errors and access rule violations............................... 251
Transaction rollbacks .. 252
with check option violation... 252

CHAPTER 7 Commands .. 253
Overview .. 253
alter database .. 257
alter role ... 263
alter table ... 267
begin...end ... 292
begin transaction.. 293
break .. 294
case.. 295
checkpoint .. 298
close... 300
coalesce ... 301
commit.. 303

Contents

x

compute clause .. 305
connect to...disconnect .. 313
continue.. 315
create database ... 316
create default ... 323
create existing table ... 326
create function (SQLJ) ... 332
create index.. 335
create plan ... 349
create procedure .. 351
create procedure (SQLJ).. 363
create proxy_table.. 366
create role .. 368
create rule .. 371
create schema.. 375
create table .. 377
create trigger .. 408
create view ... 418
dbcc.. 426
deallocate cursor.. 435
declare ... 436
declare cursor .. 438
delete ... 444
delete statistics... 451
disk init ... 453
disk mirror .. 458
disk refit .. 461
disk reinit .. 462
disk remirror ... 466
disk unmirror .. 468
drop database .. 471
drop default .. 473
drop function (SQLJ) .. 474
drop index .. 475
drop procedure... 476
drop role ... 478
drop rule ... 479
drop table ... 480
drop trigger... 482
drop view.. 483
dump database .. 484
dump transaction.. 497
execute... 511
fetch ... 518

Contents

xi

goto label.. 521
grant ... 522
group by and having clauses ... 534
if...else.. 547
insert .. 550
kill ... 559
load database... 561
load transaction.. 570
lock table .. 579
nullif .. 581
online database.. 583
open ... 585
order by clause... 586
prepare transaction .. 592
print .. 593
quiesce database ... 596
raiserror.. 598
readtext .. 604
reconfigure ... 608
remove java.. 609
reorg... 611
return.. 613
revoke .. 616
rollback... 625
rollback trigger.. 627
save transaction ... 628
select.. 630
set .. 654
setuser ... 681
shutdown.. 682
truncate table ... 684
union operator .. 686
update .. 690
update all statistics... 702
update partition statistics.. 703
update statistics ... 705
use ... 709
waitfor... 710
where clause .. 712
while ... 719
writetext.. 721

CHAPTER 8 System Procedures .. 725
Introduction to system procedures ... 725

Contents

xii

Permissions on system procedures ... 726
Executing system procedures .. 726
Entering parameter values ... 727
Messages... 728
System procedure tables ... 728
List of system procedures .. 729
sp_activeroles .. 738
sp_addalias .. 739
sp_addauditrecord ... 740
sp_addaudittable.. 742
sp_addengine... 744
sp_addexeclass ... 745
sp_addextendedproc.. 746
sp_addexternlogin.. 747
sp_addgroup .. 750
sp_addlanguage... 751
sp_addlogin.. 754
sp_addmessage... 757
sp_addobjectdef... 759
sp_add_qpgroup .. 762
sp_addremotelogin... 763
sp_add_resource_limit ... 766
sp_addsegment.. 771
sp_addserver ... 773
sp_addthreshold... 775
sp_add_time_range ... 779
sp_addtype... 782
sp_addumpdevice .. 786
sp_adduser .. 788
sp_altermessage.. 790
sp_audit.. 791
sp_autoconnect.. 796
sp_bindcache ... 798
sp_bindefault.. 802
sp_bindexeclass... 804
sp_bindmsg.. 807
sp_bindrule... 808
sp_cacheconfig .. 810
sp_cachestrategy ... 819
sp_changedbowner.. 822
sp_changegroup .. 823
sp_checknames ... 825
sp_checkreswords ... 826
sp_checksource ... 839

Contents

xiii

sp_chgattribute... 841
sp_clearpsexe .. 845
sp_clearstats .. 846
sp_client_addr.. 847
sp_cmp_all_qplans .. 849
sp_cmp_qplans .. 851
sp_commonkey .. 853
sp_companion.. 855
sp_configure... 858
sp_copy_all_qplans.. 863
sp_copy_qplan ... 864
sp_countmetadata.. 865
sp_cursorinfo.. 867
sp_dboption.. 870
sp_dbrecovery_order ... 878
sp_dbremap ... 880
sp_defaultloc .. 881
sp_depends.. 884
sp_deviceattr .. 890
sp_diskdefault .. 892
sp_displayaudit .. 894
sp_displaylevel... 898
sp_displaylogin... 899
sp_displayroles .. 902
sp_dropalias... 904
sp_drop_all_qplans .. 905
sp_dropdevice.. 906
sp_dropengine ... 907
sp_dropexeclass .. 908
sp_dropextendedproc .. 909
sp_dropexternlogin... 910
sp_dropglockpromote... 911
sp_dropgroup ... 912
sp_dropkey... 913
sp_droplanguage ... 915
sp_droplogin... 916
sp_dropmessage.. 917
sp_dropobjectdef.. 918
sp_drop_qpgroup ... 920
sp_drop_qplan ... 921
sp_dropremotelogin ... 922
sp_drop_resource_limit .. 923
sp_droprowlockpromote... 926
sp_dropsegment .. 927

Contents

xiv

sp_dropserver .. 929
sp_dropthreshold ... 930
sp_drop_time_range .. 931
sp_droptype ... 932
sp_dropuser ... 933
sp_dumpoptimize ... 934
sp_engine... 939
sp_estspace ... 942
sp_export_qpgroup .. 947
sp_extendsegment... 948
sp_extengine.. 949
sp_familylock.. 950
sp_find_qplan... 953
sp_fixindex ... 955
sp_flushstats .. 956
sp_forceonline_db.. 957
sp_forceonline_object .. 958
sp_forceonline_page.. 960
sp_foreignkey... 962
sp_freedll.. 964
sp_getmessage.. 965
sp_grantlogin.. 966
sp_ha_admin.. 968
sp_help... 969
sp_helpartition.. 975
sp_helpcache ... 978
sp_helpconfig ... 979
sp_helpconstraint ... 984
sp_helpdb... 988
sp_helpdevice .. 991
sp_helpextendedproc... 993
sp_helpexternlogin ... 994
sp_helpgroup ... 995
sp_helpindex .. 996
sp_helpjava .. 998
sp_helpjoins ... 1000
sp_helpkey ... 1002
sp_helplanguage.. 1004
sp_helplog.. 1005
sp_helpobjectdef .. 1006
sp_help_qpgroup ... 1007
sp_help_qplan.. 1009
sp_helpremotelogin.. 1010
sp_help_resource_limit .. 1011

Contents

xv

sp_helprotect.. 1014
sp_helpsegment... 1018
sp_helpserver... 1021
sp_helpsort... 1022
sp_helptext... 1024
sp_helpthreshold.. 1026
sp_helpuser.. 1027
sp_hidetext... 1028
sp_import_qpgroup .. 1030
sp_indsuspect .. 1032
sp_listsuspect_db... 1033
sp_listsuspect_object ... 1034
sp_listsuspect_page... 1035
sp_lock ... 1036
sp_locklogin ... 1040
sp_logdevice .. 1042
sp_loginconfig .. 1044
sp_logininfo .. 1046
sp_logiosize ... 1048
sp_modifylogin ... 1051
sp_modify_resource_limit .. 1054
sp_modify_time_range... 1057
sp_modifystats ... 1059
sp_modifythreshold .. 1062
sp_monitor ... 1066
sp_monitorconfig.. 1069
sp_object_stats .. 1074
sp_passthru.. 1077
sp_password .. 1079
sp_placeobject ... 1081
sp_plan_dbccdb ... 1083
sp_poolconfig ... 1085
sp_primarykey.. 1090
sp_processmail .. 1091
sp_procqmode ... 1093
sp_procxmode.. 1095
sp_recompile.. 1097
sp_remap ... 1098
sp_remoteoption .. 1099
sp_remotesql.. 1101
sp_rename ... 1103
sp_renamedb ... 1105
sp_rename_qpgroup .. 1108
sp_reportstats .. 1109

Contents

xvi

sp_revokelogin ... 1111
sp_role ... 1112
sp_sendmsg... 1113
sp_serveroption.. 1115
sp_setlangalias .. 1119
sp_setpglockpromote ... 1120
sp_setpsexe ... 1123
sp_set_qplan.. 1124
sp_setrowlockpromote ... 1125
sp_setsuspect_granularity ... 1128
sp_setsuspect_threshold ... 1131
sp_showcontrolinfo .. 1132
sp_showexeclass ... 1134
sp_showplan .. 1135
sp_showpsexe ... 1137
sp_spaceused .. 1138
sp_ssladmin ... 1141
sp_syntax ... 1143
sp_sysmon ... 1145
sp_thresholdaction ... 1148
sp_transactions .. 1150
sp_unbindcache ... 1157
sp_unbindcache_all ... 1159
sp_unbindefault.. 1160
sp_unbindexeclass... 1162
sp_unbindmsg.. 1164
sp_unbindrule... 1165
sp_volchanged ... 1167
sp_who... 1171

CHAPTER 9 Catalog Stored Procedures .. 1175
Overview .. 1175
Specifying optional parameters.. 1176
Pattern matching .. 1177
System procedure tables ... 1177
ODBC datatypes .. 1178
sp_column_privileges... 1179
sp_columns .. 1181
sp_databases... 1183
sp_datatype_info.. 1184
sp_fkeys ... 1185
sp_pkeys .. 1187
sp_server_info.. 1188
sp_special_columns... 1192

Contents

xvii

sp_sproc_columns ... 1194
sp_statistics.. 1196
sp_stored_procedures ... 1198
sp_table_privileges .. 1199
sp_tables.. 1200

CHAPTER 10 System Extended Stored Procedures..................................... 1203
Overview .. 1203
Permissions on system ESPs .. 1204
DLLs associated with system ESPs... 1204
Using system ESPs.. 1204
xp_cmdshell ... 1205
xp_deletemail ... 1207
xp_enumgroups ... 1208
xp_findnextmsg .. 1209
xp_logevent.. 1210
xp_readmail.. 1211
xp_sendmail ... 1214
xp_startmail .. 1218
xp_stopmail .. 1219

CHAPTER 11 dbcc Stored Procedures .. 1221
Overview .. 1221
Specifying the object name and date ... 1222

Specifying the object name ... 1222
Specifying the date.. 1222

sp_dbcc_alterws .. 1224
sp_dbcc_configreport... 1225
sp_dbcc_createws ... 1226
sp_dbcc_deletedb .. 1228
sp_dbcc_deletehistory ... 1229
sp_dbcc_differentialreport .. 1230
sp_dbcc_evaluatedb .. 1232
sp_dbcc_faultreport.. 1234
sp_dbcc_fullreport.. 1237
sp_dbcc_runcheck ... 1238
sp_dbcc_statisticsreport... 1239
sp_dbcc_summaryreport.. 1242
sp_dbcc_updateconfig ... 1245

CHAPTER 12 System Tables... 1249
Locations of system tables... 1249

Contents

xviii

System tables in master .. 1249
System tables in sybsecurity ... 1250
System table in sybsystemdb.. 1250
System tables in all databases.. 1251
About the sybdiagdb database.. 1252
About the syblicenseslog table.. 1252

Rules for using system tables .. 1252
Permissions on system tables... 1252
Locking schemes used for system tables............................ 1253
Reserved columns... 1253
Updating system tables ... 1253
Triggers on system tables ... 1253
Aggregate functions and virtual tables 1254

sysalternates .. 1255
sysattributes ... 1256
sysauditoptions .. 1258
sysaudits_01 – sysaudits_08 ... 1259
syscharsets .. 1275
syscolumns .. 1276
syscomments ... 1278
sysconfigures ... 1279
sysconstraints .. 1281
syscoordinations .. 1282
syscurconfigs ... 1283
sysdatabases ... 1285
sysdepends .. 1288
sysdevices.. 1289
sysengines ... 1291
sysgams ... 1292
sysindexes ... 1293
sysjars .. 1296
syskeys .. 1297
syslanguages ... 1298
syslisteners .. 1299
syslocks.. 1300
sysloginroles .. 1302
syslogins .. 1303
syslogs ... 1305
syslogshold .. 1306
sysmessages ... 1307
sysmonitors .. 1308
sysobjects .. 1309
syspartitions ... 1311
sysprocedures.. 1312

Contents

xix

sysprocesses ... 1313
sysprotects ... 1315
sysqueryplans .. 1316
sysreferences... 1317
sysremotelogins ... 1318
sysresourcelimits.. 1319
sysroles .. 1320
syssecmechs.. 1321
syssegments .. 1322
sysservers .. 1323
syssessions.. 1325
syssrvroles ... 1326
sysstatistics .. 1327
systabstats ... 1328
systhresholds ... 1330
systimeranges .. 1331
systransactions .. 1332
systypes ... 1335
sysusages .. 1337
sysusermessages .. 1338
sysusers ... 1339
sysxtypes ... 1340
syblicenseslog.. 1341

CHAPTER 13 dbccdb Tables... 1343
dbccdb workspaces.. 1343
dbccdb log.. 1345
dbcc_config .. 1346
dbcc_counters.. 1347
dbcc_fault_params... 1348
dbcc_faults ... 1349
dbcc_operation_log.. 1350
dbcc_operation_results .. 1351
dbcc_types ... 1352

Index ... 1359

xx

xxi

About This Book

The Adaptive Server Reference Manual is a guide to Sybase® Adaptive
Server™ Enterprise and the Transact-SQL® language. This book
describes the “building blocks” of Transact-SQL, which are datatypes,
built-in functions, expressions and identifiers, SQLSTATE errors, and
reserved words. Before you can use Transact-SQL successfully, you need
to understand the function of each of these building blocks and how its use
affects the results of Transact-SQL statements.

This book provides reference information about the Transact-SQL
commands, which you use to create statements. It also provides reference
information about system procedures, catalog stored procedures, extended
stored procedures, and dbcc stored procedures. All procedures are created
using Transact-SQL statements.

Reference information is also provided for the system tables, which store
information about your server, databases, users, and other elements of
your server.

Audience The Adaptive Server Reference Manual is intended as a reference tool for
Transact-SQL users of all levels.

How to use this book This manual contains the following:

• Chapter 1, “System and User-Defined Datatypes,” describes the
system and user-defined datatypes that are supplied with Adaptive
Server and indicates how to use them to create user-defined
datatypes.

• Chapter 2, “Transact-SQL Functions,” serves as an introduction to
the Adaptive Server aggregate functions, datatype conversion
functions, date functions, mathematical functions, row aggregate
functions, string functions, system functions, and text and image
functions.

• Chapter 3, “Global Variables,” contains information about system-
defined variables updated by Adaptive Server on an ongoing basis.

• Chapter 4, “Expressions, Identifiers, and Wildcard Characters,”
contains information about using the Transact-SQL language.

xxii

• Chapter 5, “Reserved Words,” contains information about the Transact-
SQL and SQL92 keywords.

• Chapter 6, “SQLSTATE Codes and Messages,” contains information
about Adaptive Server’s SQLSTATE status codes and the associated
messages.

• Chapter 7, “Commands,” serves as an introduction to every Transact-SQL
command. Particularly complex commands, such as select, are divided
into subsections. For example, there are reference pages on the compute
clause and on the group by and having clauses of the select command.

• Chapter 8, “System Procedures,” serves as an introduction to Adaptive
Server system procedures.

• Chapter 9, “Catalog Stored Procedures,” contains reference pages for
Adaptive Server catalog stored procedures.

• Chapter 10, “System Extended Stored Procedures,” contains reference
pages for Adaptive Server system extended stored procedures.

• Chapter 11, “dbcc Stored Procedures,” contains reference pages for
Adaptive Server dbcc stored procedures.

• Chapter 12, “System Tables,” contains information about all of the system
tables in the master database, the auditing database, and in any user
databases (such as pubs2).

• Chapter 13, “dbccdb Tables,” contains information about the tables in the
dbccdb and dbccalt databases.

Related documents The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
Sybase Web site. To check for critical product or document information
that was added after the release of the product CD, see the Technical
Library.

• The Adaptive Server installation documentation for your platform –
describes installation, upgrade, and configuration procedures for all
Adaptive Server and related Sybase products.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12, the system changes added to support those
features, and the changes that may affect your existing applications.

 About This Book

xxiii

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Adaptive Server Reference Manual – contains detailed information about
all Transact-SQL commands, functions, procedures, and datatypes. This
manual also contains a list of the Transact-SQL reserved words and
definitions of system tables.

• Performance and Tuning Guide – explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issues that affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

• The Utility Programs manual for your platform – documents the Adaptive
Server utility programs, such as isql and bcp, which are executed at the
operating system level.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes and user-defined functions in the Adaptive Server
database.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
Features in distributed transaction processing environments.

xxiv

• XA Interface Integration Guide for CICS, Encina, and TUXEDO provides
instructions for using Sybase’s DTM XA Interface with X/Open XA
transaction managers.

• Adaptive Server Glossary – defines technical terms used in the Adaptive
Server documentation.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals web site to learn more about your product:

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals web site is an HTML version of
the Technical Library CD that you can access using a standard web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the web

Technical documentation at the Sybase web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase web pages.

1 Point your web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

 About This Book

xxv

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software updates

1 Point your web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

Conventions The following sections describe conventions used in this manual.

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names, command options, utility
names, utility options, and other keywords are
bold.

select
sp_configure

Database names, datatypes, file names and
path names are in italics.

master database

Variables, or words that stand for values that
you fill in, are in italics.

select column_name
from table_name
where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the
syntax is written in BNF notation. Do not type
this symbol. Indicates “is defined as”.

::=

xxvi

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

or, for a command with more options:

select column_name
 from table_name
 where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

Curly braces mean that you must choose at
least one of the enclosed options. Do not type
the braces.

{cash, check, credit}

Brackets mean that to choose one or more of
the enclosed options is optional. Do not type
the brackets.

[cash | check | credit]

The comma means you may choose as many
of the options shown as you want. Separate
your choices with commas as part of the
command.

cash, check, credit

The pipe or vertical bar(|) means you may
select only one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the
last unit as many times as you like.

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose
a method of payment: one of the items enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

Element Example

 About This Book

xxvii

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see Chapter 19,” Configuring
Character Sets, Sort Orders, and Languages,” in the System Administration
Guide.

Adaptive Server syntax statements use several different types of expressions.
For details, see Chapter 4, “Expressions, Identifiers, and Wildcard
Characters.”

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xxviii

1

C H A P T E R 1 System and User-Defined
Datatypes

This chapter describes the Transact-SQL datatypes. Datatypes specify the
type, size, and storage format of columns, stored procedure parameters,
and local variables.

 Topics covered are:

Topics Page
Datatype categories 2

Range and storage size 2

Declaring the datatype of a column, variable, or parameter 4

Datatype of mixed-mode expressions 6

Converting one datatype to another 8

Standards and compliance 10

Exact numeric datatypes 10

Approximate numeric datatypes 14

Money datatypes 16

Timestamp datatype 17

Date and time datatypes 18

Character datatypes 23

Binary datatypes 27

bit datatype 30

sysname datatype 31

text and image datatypes 31

User-defined datatypes 40

Datatype categories

2

Datatype categories
Adaptive Server provides several system datatypes and the user-defined
datatypes timestamp and sysname. Table 1-1 lists the categories of Adaptive
Server datatypes. Each category is described in a section of this chapter.

Table 1-1: Datatype categories

Range and storage size
Table 1-2 lists the system-supplied datatypes and their synonyms and provides
information about the range of valid values and storage size for each. For
simplicity, the datatypes are printed in lowercase characters, although Adaptive
Server allows you to use either uppercase or lowercase characters for system
datatypes. User-defined datatypes, such as timestamp, are case sensitive. Most
Adaptive Server-supplied datatypes are not reserved words and can be used to
name other objects.

Table 1-2: Range and storage size for system datatypes

Category Used for

Exact numeric datatypes Numeric values (both integers and numbers with a decimal portion) that must be
represented exactly

Approximate numeric datatypes Numeric data that can tolerate rounding during arithmetic operations

Money datatypes Monetary data

Timestamp datatype Tables that are browsed in Client-Library™ applications

Date and time datatypes Date and time information

Character datatypes Strings consisting of letters, numbers, and symbols

Binary datatypes Raw binary data, such as pictures, in a hexadecimal-like notation

bit datatype True/false and yes/no type data

sysname datatype System tables

text and image datatypes Printable characters or hexadecimal-like data that requires more than the
maximum column size provided by you server’s logical page size.

User-defined datatypes Defining objects that inherit the rules, default, null type, IDENTITY property,
and base datatype

Datatypes Synonyms Range Bytes of storage

Exact numeric datatypes

tinyint 0 to 255 1

smallint -215 (-32,768) to 215 -1 (32,767) 2

CHAPTER 1 System and User-Defined Datatypes

3

int integer -231 (-2,147,483,648) to
231 -1 (2,147,483,647)

4

numeric (p, s) -1038 to 1038 -1 2 to 17

decimal (p, s) dec -1038 to 1038 -1 2 to 17

Approximate numeric datatypes

float
(precision)

Machine dependent 4 or 8

double
precision

Machine dependent 8

real Machine dependent 4

Money datatypes

smallmoney -214,748.3648 to 214,748.3647 4

money -922,337,203,685,477.5808 to
 922,337,203,685,477.5807

8

Date/time datatypes

smalldatetime January 1, 1900 to June 6, 2079 4

datetime January 1, 1753 to
December 31, 9999

8

Character datatypes

char(n) character Determined by your server's logical
page size

n

varchar(n) char[acter] varying Determined by your server's logical
page size

actual entry length

unichar Unicode character Determined by your server's logical
page size

n*@@unicharsize
(@@unicharsize equals 2)

univarchar Unicode character
varying

Determined by your server's logical
page size

actual number of characters
*@@unicharsize

nchar(n) national char[acter] Determined by your server's logical
page size

n * @@ncharsize

nvarchar(n) nchar varying, national
char[acter] varying

Determined by your server's logical
page size

n

Binary datatypes

binary(n) Determined by your server's logical
page size

n

varbinary(n) Determined by your server's logical
page size

actual entry length

Bit datatype

bit 0 or 1 1 (1 byte holds up to 8 bit
columns)

Datatypes Synonyms Range Bytes of storage

Declaring the datatype of a column, variable, or parameter

4

Declaring the datatype of a column, variable, or
parameter

You must declare the datatype for a column, local variable, or parameter. The
datatype can be any of the system-supplied datatypes or any user-defined
datatype in the database.

Declaring the datatype for a column in a table
Use the following syntax to declare the datatype of a new column in a create
table or an alter table statement:

create table [[database.]owner.]table_name
(column_name datatype [identity | not null | null]

[, column_name datatype [identity | not null |
null]]...)

alter table [[database.]owner.]table_name
add column_name datatype [identity | null
[, column_name datatype [identity | null]...

For example:

create table sales_daily
 (stor_id char(4)not null,
 ord_num numeric(10,0)identity,
 ord_amt money null)

Declaring the datatype for a local variable in a batch or procedure
Use the following syntax to declare the datatype for a local variable in a batch
or stored procedure:

Text and image datatypes

text 231 -1 (2,147,483,647) bytes or fewer 0 until initialized, then a
multiple of the logical page size

image 231 -1 (2,147,483,647) bytes or fewer 0 until initialized, then a
multiple of the logical page size

Datatypes Synonyms Range Bytes of storage

CHAPTER 1 System and User-Defined Datatypes

5

declare @variable_name datatype
[, @variable_name datatype]...

For example:

declare @hope money

Declaring the datatype for a parameter in a stored procedure
Use the following syntax to declare the datatype for a parameter in a stored
procedure:

create procedure [owner.]procedure_name [;number]
[[(]@parameter_name datatype [= default] [output]

[,@parameter_name datatype [= default]
[output]]...[)]]

[with recompile]
as SQL_statements

For example:

create procedure auname_sp @auname varchar(40)
as
 select au_lname, title, au_ord
 from authors, titles, titleauthor
 where @auname = au_lname
 and authors.au_id = titleauthor.au_id
 and titles.title_id = titleauthor.title_id

Determining the datatype of a literal
You cannot declare the datatype of a literal. Adaptive Server treats all character
literals as varchar. Numeric literals entered with E notation are treated as float;
all others are treated as exact numerics:

• Literals between 231 - 1 and -231 with no decimal point are treated as
integer.

Datatype of mixed-mode expressions

6

• Literals that include a decimal point, or that fall outside the range for
integers, are treated as numeric.

Note To preserve backward compatibility, use E notation for numeric
literals that should be treated as float.

Datatype of mixed-mode expressions
When you perform concatenation or mixed-mode arithmetic on values with
different datatypes, Adaptive Server must determine the datatype, length, and
precision of the result.

Determining the datatype hierarchy
Each system datatype has a datatype hierarchy, which is stored in the systypes
system table. User-defined datatypes inherit the hierarchy of the system
datatype on which they are based.

The following query ranks the datatypes in a database by hierarchy. In addition
to the information shown below, your query results will include information
about any user-defined datatypes in the database:

select name,hierarchy
from systypes
order by hierarchy

name hierarchy
------------------------------ ---------
floatn 1
float 2
datetimn 3
datetime 4
real 5
numericn 6
numeric 7
decimaln 8
decimal 9
moneyn 10
money 11
smallmoney 12

CHAPTER 1 System and User-Defined Datatypes

7

smalldatetime 13
intn 14
int 15
smallint 16
tinyint 17
bit 18
univarchar 19
unichar 20
sysname 22
varchar 22
nvarchar 22
char 23
nchar 23
timestamp 24
varbinary 24
binary 25
text 26
image 27
extended type 99
(31 rows affected)

The datatype hierarchy determines the results of computations using values of
different datatypes. The result value is assigned the datatype that is closest to
the top of the list.

In the following example, qty from the sales table is multiplied by royalty from
the roysched table. qty is a smallint, which has a hierarchy of 16; royalty is an int,
which has a hierarchy of 15. Therefore, the datatype of the result is an int:

smallint(qty) * int(royalty) = int

Determining precision and scale
For numeric and decimal datatypes, each combination of precision and scale is
a distinct Adaptive Server datatype. If you perform arithmetic on two numeric
or decimal values:

• n1 with precision p1 and scale s1, and

• n2 with precision p2 and scale n2

Adaptive Server determines the precision and scale of the results as shown in
Table 1-3:

Converting one datatype to another

8

Table 1-3: Precision and scale after arithmetic operations

Converting one datatype to another
Many conversions from one datatype to another are handled automatically by
Adaptive Server. These are called implicit conversions. Other conversions
must be performed explicitly with the convert, inttohex, and hextoint functions.
See “Datatype conversion functions” for details about datatype conversions
supported by Adaptive Server.

Automatic conversion of fixed-length NULL columns
Only columns with variable-length datatypes can store null values. When you
create a NULL column with a fixed-length datatype, Adaptive Server
automatically converts it to the corresponding variable-length datatype.
Adaptive Server does not inform the user of the datatype change.

Table 1-4 lists the fixed- and variable-length datatypes to which they are
converted. Certain variable-length datatypes, such as moneyn, are reserved
datatypes; you cannot use them to create columns, variables, or parameters:

Operation Precision Scale

n1 + n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 - n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 * n2 s1 + s2 + (p1 - s1) + (p2 - s2) + 1 s1 + s2

n1 / n2 max(s1 + p2 + 1, 6) + p1 - s1 + p2 max(s1 + p2 -s2 + 1, 6)

CHAPTER 1 System and User-Defined Datatypes

9

Table 1-4: Automatic conversion of fixed-length datatypes

Handling overflow and truncation errors
The arithabort option determines how Adaptive Server behaves when an
arithmetic error occurs. The two arithabort options, arithabort arith_overflow and
arithabort numeric_truncation, handle different types of arithmetic errors. You
can set each option independently, or set both options with a single set
arithabort on or set arithabort off statement.

• arithabort arith_overflow specifies behavior following a divide-by-zero
error or a loss of precision during either an explicit or an implicit datatype
conversion. This type of error is considered serious. The default setting,
arithabort arith_overflow on, rolls back the entire transaction in which the
error occurs. If the error occurs in a batch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier
commands in the batch, but Adaptive Server does not execute any
statements that follow the error-generating statement in the batch.

If you set arithabort arith_overflow off, Adaptive Server aborts the statement
that causes the error, but continues to process other statements in the
transaction or batch.

Original fixed-length datatype Converted to

char varchar

unichar univarchar

nchar nvarchar

binary varbinary

datetime datetimn

float floatn

int, smallint, and tinyint intn

decimal decimaln

numeric numericn

money and smallmoney moneyn

Standards and compliance

10

• arithabort numeric_truncation specifies behavior following a loss of scale
by an exact numeric datatype during an implicit datatype conversion.
(When an explicit conversion results in a loss of scale, the results are
truncated without warning.) The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error but
continues to process other statements in the transaction or batch. If you set
arithabort numeric_truncation off, Adaptive Server truncates the query
results and continues processing.

The arithignore option determines whether Adaptive Server prints a warning
message after an overflow error. By default, the arithignore option is turned off.
This causes Adaptive Server to display a warning message after any query that
results in numeric overflow. To ignore overflow errors, use set arithignore on.

Note The arithabort and arithignore options were redefined for release 10.0. If
you use these options in your applications, examine them to be sure they still
produce the desired effects.

Standards and compliance
SQL92 – Compliance level: Transact-SQL provides the smallint, int, numeric,
decimal, float, double precision, real, char, and varchar SQL92 datatypes. The
tinyint, binary, varbinary, image, bit, datetime, smalldatetime, money,
smallmoney, nchar, nvarchar,unichar, univarchar, sysname, text, timestamp, and
user-defined datatypes are Transact-SQL extensions.

Exact numeric datatypes

Function
Use the exact numeric datatypes when it is important to represent a value
exactly. Adaptive Server provides exact numeric types for both integers (whole
numbers) and numbers with a decimal portion.

CHAPTER 1 System and User-Defined Datatypes

11

Integer types
Adaptive Server provides three exact numeric datatypes to store integers: int
(or integer), smallint, and tinyint. Choose the integer type based on the expected
size of the numbers to be stored. Internal storage size varies by type, as shown
in Table 1-5:

Table 1-5: Integer datatypes

Entering integer data

Enter integer data as a string of digits without commas. Integer data can include
a decimal point as long as all digits to the right of the decimal point are zeros.
The smallint and integer datatypes can be preceded by an optional plus or minus
sign. The tinyint datatype can be preceded by an optional plus sign.

Table 1-6 shows some valid entries for a column with a datatype of integer and
indicates how isql displays these values:

Table 1-6: Valid integer values

Table 1-7 lists some invalid entries for an integer column:

Datatype Stores Bytes of storage

int[eger] Whole numbers between-231 and 231 - 1
(-2,147,483,648 and 2,147,483,647), inclusive.

4

smallint Whole numbers between -215 and 215 -1
(-32,768 and 32,767), inclusive.

2

tinyint Whole numbers between 0 and 255, inclusive.
(Negative numbers are not permitted.)

1

Value entered Value displayed

2 2

+2 2

-2 -2

2. 2

2.000 2

Exact numeric datatypes

12

Table 1-7: Invalid integer values

Decimal datatypes
Adaptive Server provides two other exact numeric datatypes, numeric and
dec[imal], for numbers that include decimal points. Data stored in numeric and
decimal columns is packed to conserve disk space, and preserves its accuracy
to the least significant digit after arithmetic operations. The numeric and
decimal datatypes are identical in all respects but one: only numeric datatypes
with a scale of 0 can be used for the IDENTITY column.

Specifying precision
and scale

The numeric and decimal datatypes accept two optional parameters, precision
and scale, enclosed in parentheses and separated by a comma:

datatype [(precision [, scale])]

Adaptive Server treats each combination of precision and scale as a distinct
datatype. For example, numeric(10,0) and numeric(5,0) are two separate
datatypes. The precision and scale determine the range of values that can be
stored in a decimal or numeric column:

• The precision specifies the maximum number of decimal digits that can be
stored in the column. It includes all digits, both to the right and to the left
of the decimal point. You can specify precisions ranging from 1 digit to 38
digits or use the default precision of 18 digits.

• The scale specifies the maximum number of digits that can be stored to the
right of the decimal point. The scale must be less than or equal to the
precision. You can specify a scale ranging from 0 digits to 38 digits or use
the default scale of 0 digits.

Storage size The storage size for a numeric or decimal column depends on its precision. The
minimum storage requirement is 2 bytes for a 1- or 2-digit column. Storage size
increases by approximately 1 byte for each additional 2 digits of precision, up
to a maximum of 17 bytes.

Use the following formula to calculate the exact storage size for a numeric or
decimal column:

ceiling (precision / log 256) + 1

For example, the storage size for a numeric(18,4) column is 9 bytes.

Value entered Type of error

2,000 Commas not allowed.

2- Minus sign should precede digits.

3.45 Digits to the right of the decimal point are nonzero digits.

CHAPTER 1 System and User-Defined Datatypes

13

Entering decimal data Enter decimal and numeric data as a string of digits preceded by an optional plus
or minus sign and including an optional decimal point. If the value exceeds
either the precision or scale specified for the column, Adaptive Server returns
an error message. Exact numeric types with a scale of 0 are displayed without
a decimal point.

Table 1-8 shows some valid entries for a column with a datatype of
numeric(5,3) and indicates how these values are displayed by isql:

Table 1-8: Valid decimal values

Table 1-9 shows some invalid entries for a column with a datatype of
numeric(5,3):

Table 1-9: Invalid decimal values

Standards and compliance
Transact-SQL provides the smallint, int, numeric, and decimal SQL92 exact
numeric datatypes. The tinyint type is a Transact-SQL extension.

Value entered Value displayed

12.345 12.345

+12.345 12.345

-12.345 -12.345

12.345000 12.345

12.1 12.100

12 12.000

Value entered Type of error

1,200 Commas not allowed.

12- Minus sign should precede digits.

12.345678 Too many nonzero digits to the right of the decimal point.

Approximate numeric datatypes

14

Approximate numeric datatypes

Function
Use the approximate numeric types, float, double precision, and real, for
numeric data that can tolerate rounding during arithmetic operations. The
approximate numeric types are especially suited to data that covers a wide
range of values. They support all aggregate functions and all arithmetic
operations except modulo.

Understanding approximate numeric datatypes
Approximate numeric datatypes, used to store floating-point numbers, are
inherently slightly inaccurate in their representation of real numbers—hence
the name “approximate numeric”. To use these datatypes, you must understand
their limitations.

When a floating-point number is printed or displayed, the printed
representation is not quite the same as the stored number, and the stored
number is not quite the same as the number that the user entered. Most of the
time, the stored representation is close enough, and software makes the printed
output look just like the original input, but you must understand the inaccuracy
if you plan to use floating-point numbers for calculations, particularly if you
are doing repeated calculations using approximate numeric datatypes—the
results can be surprisingly and unexpectedly inaccurate.

The inaccuracy occurs because floating-point numbers are stored in the
computer as binary fractions (that is, as a representative number divided by a
power of 2), but the numbers we use are decimal (powers of 10). This means
that only a very small set of numbers can be stored accurately: 0.75 (3/4) can
be stored accurately because it is a binary fraction (4 is a power of 2); 0.2 (2/10)
can not (10 is not a power of 2).

Some numbers contain too many digits to store accurately. double precision is
stored as 8 binary bytes and can represent about 17 digits with reasonable
accuracy. real is stored as 4 binary bytes and can represent only about 6 digits
with reasonable accuracy.

CHAPTER 1 System and User-Defined Datatypes

15

If you begin with numbers that are almost correct, and do computations with
them using other numbers that are almost correct, you can easily end up with a
result that is not even close to being correct. If these considerations are
important to your application, use an exact numeric datatype.

Range, precision, and storage size
The real and double precision types are built on types supplied by the operating
system. The float type accepts an optional binary precision in parentheses. float
columns with a precision of 1–15 are stored as real; those with higher precision
are stored as double precision.

The range and storage precision for all three types is machine dependent.

Table 1-10 shows the range and storage size for each approximate numeric
type. Note that isql displays only 6 significant digits after the decimal point and
rounds the remainder:

Table 1-10: Approximate numeric datatypes

Entering approximate numeric data
Enter approximate numeric data as a mantissa followed by an optional
exponent:

• The mantissa is a signed or unsigned number, with or without a decimal
point. The column’s binary precision determines the maximum number of
binary digits allowed in the mantissa.

• The exponent, which begins with the character “e” or “E,” must be a whole
number.

The value represented by the entry is the following product:

mantissa * 10EXPONENT

For example, 2.4E3 represents the value 2.4 times 103, or 2400.

Datatype Bytes of storage

float[(default precision)] 4 for default precision < 16

8 for default precision >= 16

double precision 8

real 4

Money datatypes

16

Values that may be entered by Open Client clients
“NaN” and “Inf” are special values that the floating point number standard uses
to represent values that are “not a number” and “infinity,” respectively.
Adaptive Server does not usually permit these values, but Open Client clients
can sometimes stuff these values into tables.

Standards
SQL92 – Compliance level: The float, double precision, and real datatypes are
entry level compliant.

Money datatypes

Function
Use the money and smallmoney datatypes to store monetary data. You can use
these types for U.S. dollars and other decimal currencies, but Adaptive Server
provides no means to convert from one currency to another. You can use all
arithmetic operations except modulo, and all aggregate functions, with money
and smallmoney data.

Accuracy
Both money and smallmoney are accurate to one ten-thousandth of a monetary
unit, but they round values up to two decimal places for display purposes. The
default print format places a comma after every three digits.

Range and storage size
Table 1-11 summarizes the range and storage requirements for money
datatypes:

CHAPTER 1 System and User-Defined Datatypes

17

Table 1-11: Money datatypes

Entering monetary values
Monetary values entered with E notation are interpreted as float. This may
cause an entry to be rejected or to lose some of its precision when it is stored
as a money or smallmoney value.

money and smallmoney values can be entered with or without a preceding
currency symbol, such as the dollar sign ($), yen sign (¥), or pound sterling sign
(£). To enter a negative value, place the minus sign after the currency symbol.
Do not include commas in your entry.

Standards
SQL92 – The money and smallmoney datatypes are Transact-SQL extensions.

Timestamp datatype

Function
Use the user-defined timestamp datatype in tables that are to be browsed in
Client-Library™ applications (see “Browse Mode” for more information).
Adaptive Server updates the timestamp column each time its row is modified.
A table can have only one column of timestamp datatype.

Creating a timestamp column
If you create a column named timestamp without specifying a datatype,
Adaptive Server defines the column as a timestamp datatype:

Datatype Range Bytes of storage

money Monetary values between +922,337,203,685,477.5807 and
-922,337,203,685,477.5808

8

smallmoney Monetary values between +214,748.3647 and -214,748.3648 4

Date and time datatypes

18

create table testing
(c1 int, timestamp, c2 int)

You can also explicitly assign the timestamp datatype to a column named
timestamp:

create table testing
(c1 int, timestamp timestamp, c2 int)

or to a column with another name:

create table testing
(c1 int, t_stamp timestamp,c2 int)

You can create a column named timestamp and assign it another datatype
(although this could be confusing to other users and would not allow the use of
the browse functions in Open Client™ or with the tsequal function):

create table testing
(c1 int, timestamp datetime)

Date and time datatypes

Function
Use datetime and smalldatetime to store absolute date and time information.
Use timestamp to store binary-type information

Range and storage requirements
Table 1-12 summarizes the range and storage requirements for the datetime and
smalldatetime datatypes:

CHAPTER 1 System and User-Defined Datatypes

19

Table 1-12: Transact-SQL datatypes for storing dates and times

Entering datetime and smalldatetime data
The datetime and smalldatetime datatypes consist of a date portion either
followed by or preceded by a time portion. (You can omit either the date or the
time, or both.) Both datetime and smalldatetime values must be enclosed in
single or double quotes.

• datetime columns hold dates between January 1, 1753 and December 31,
9999. datetime values are accurate to 1/300 of a second on platforms that
support this level of granularity. Storage size is 8 bytes: 4 bytes for the
number of days since the base date of January 1, 1900 and 4 bytes for the
time of day.

• smalldatetime columns hold dates from January 1, 1900 to June 6, 2079,
with accuracy to the minute. Storage size is 4 bytes: 2 bytes for the number
of days since January 1, 1900 and 2 bytes for the number of minutes since
midnight.

Entering the date
portion of a datetime
or smalldatetime value

Dates consist of a month, day, and year and can be entered in a variety of
formats:

• You can enter the entire date as an unseparated string of 4, 6, or 8 digits,
or use slash (/), hyphen (-), or period (.) separators between the date parts.

• When entering dates as unseparated strings, use the appropriate
format for that string length. Use leading zeros for single-digit years,
months, and days. Dates entered in the wrong format may be
misinterpreted or result in errors.

• When entering dates with separators, use the set dateformat option to
determine the expected order of date parts. If the first date part in a
separated string is four digits, Adaptive Server interprets the string as
yyyy-mm-dd format.

• Some date formats accept 2-digit years (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is
2001, 32 is 2032, and 49 is 2049.

Datatype Range Bytes of storage

datetime January 1, 1753 through December 31, 9999 8

smalldatetime January 1, 1900 through June 6, 2079 4

Date and time datatypes

20

• Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is 1974, and 99 is 1999.

• You can specify the month as either a number or a name. Month names and
their abbreviations are language-specific and can be entered in uppercase,
lowercase, or mixed case.

• If you omit the date portion of a datetime or smalldatetime value, Adaptive
Server uses the default date of January 1, 1900.

Table 1-13 describes the acceptable formats for entering the date portion of a
datetime or smalldatetime value:

Table 1-13: Date formats for datetime and smalldatetime datatypes

Date format Interpretation Sample entries Meaning

4-digit string with no separators Interpreted as yyyy. Date defaults to
Jan 1 of the specified year.

“1947” Jan 1 1947

6-digit string with no separators Interpreted as yymmdd.
For yy < 50, year is 20yy.
For yy >= 50, year is 19yy.

“450128”

“520128”

Jan 28 2045

Jan 28 1952

8-digit string with no separators Interpreted as yyyymmdd. “19940415” Apr 15 1994

String consisting of 2-digit
month, day, and year separated
by slashes, hyphens, or periods,
or a combination of the above.

The dateformat and language set
options determine the expected order
of date parts. For us_english, the
default order is mdy.

For yy < 50, year is interpreted as
20yy. For yy >= 50, year is interpreted
as 19yy.

“4/15/94”
“4.15.94”
“4-15-94”
“04.15/94”

All of these entries
are interpreted as
Apr 15 1994 when
the dateformat
option is set to
mdy.

String consisting of 2-digit
month, 2-digit day, and 4-digit
year separated by slashes,
hyphens, or periods, or a
combination of the above.

The dateformat and language set
options determine the expected order
of date parts. For us_english, the
default order is mdy.

“04/15.1994” Interpreted as Apr
15 1994 when the
dateformat option
is set to mdy.

Month is entered in character
form (either full month name or
its standard abbreviation),
followed by an optional
comma.

If 4-digit year is entered, date parts
can be entered in any order.

“April 15, 1994”
“1994 15 apr”
“1994 April 15”
“15 APR 1994”

All of these entries
are interpreted as
Apr 15 1994.

If day is omitted, all 4 digits of year
must be specified. Day defaults to the
first day of the month.

“apr 1994” Apr 1 1994

CHAPTER 1 System and User-Defined Datatypes

21

Entering the time
portion of a datetime
or smalldatetime value

The time component of a datetime or smalldatetime value must be specified as
follows:

hours[:minutes[:seconds[:milliseconds]] [AM | PM]

• Use 12AM for midnight and 12PM for noon.

• A time value must contain either a colon or an AM or PM signifier. The
AM or PM can be entered in uppercase, lowercase, or mixed case.

• The seconds specification can include either a decimal portion preceded
by a decimal point or a number of milliseconds preceded by a colon. For
example, “12:30:20:1” means twenty seconds and one millisecond past
12:30; “12:30:20.1” means twenty and one-tenth of a second past 12:30.

• If you omit the time portion of a datetime or smalldatetime value, Adaptive
Server uses the default time of 12:00:00:000AM.

Displaying formats for
datetime and
smalldatetime values

The display format for datetime and smalldatetime values is “Mon dd yyyy
hh:mmAM” (or “PM”); for example, “Apr 15 1988 10:23PM”. To display
seconds and milliseconds, and to obtain additional date styles and date-part
orders, use the convert function to convert the data to a character string.
Adaptive Server may round or truncate millisecond values.

Table 1-14 lists some examples of datetime entries and their display values:

Table 1-14: Examples of datetime entries

Finding datetime
values that match a
pattern

Use the like keyword to look for dates that match a particular pattern. If you use
the equality operator (=) to search datetime values for a particular month, day,
and year, Adaptive Server returns only those values for which the time is
precisely 12:00:00:000AM.

If year is only 2 digits (yy), it is
expected to appear after the day.
For yy < 50, year is interpreted as
20yy. For yy >= 50, year is interpreted
as 19yy.

“mar 16 17”

“apr 15 94”

Mar 16 2017

Apr 15 1994

The empty string, “” Date defaults to Jan 1 1900. “” Jan 1 1900

Date format Interpretation Sample entries Meaning

Entry Value Displayed

“1947” Jan 1 1947 12:00AM

“450128 12:30:1PM” Jan 28 2045 12:30PM

“12:30.1PM 450128” Jan 28 2045 12:30PM

“14:30.22” Jan 1 1900 2:30PM

“4am” Jan 1 1900 4:00AM

Date and time datatypes

22

For example, if you insert the value “9:20” into a column named arrival_time,
Adaptive Server converts the entry into “Jan 1 1900 9:20AM”. If you look for
this entry using the equality operator, it is not found:

where arrival_time = "9:20" /* does not match */

You can find the entry using the like operator:

where arrival_time like "%9:20%"

When using like, Adaptive Server first converts the dates to datetime format and
then to varchar. The display format consists of the 3-character month in the
current language, 2 characters for the day, 4 characters for the year, the time in
hours and minutes, and “AM” or “PM.”

When searching with like, you cannot use the wide variety of input formats that
are available for entering the date portion of datetime and smalldatetime values.
Since the standard display formats do not include seconds or milliseconds, you
cannot search for seconds or milliseconds with like and a match pattern, unless
you are also using style 9 or 109 and the convert function.

If you are using like, and the day of the month is a number between 1 and 9,
insert 2 spaces between the month and the day to match the varchar conversion
of the datetime value. Similarly, if the hour is less than 10, the conversion
places 2 spaces between the year and the hour. The following clause with 1
space between “May” and “2”) finds all dates from May 20 through May 29,
but not May 2:

like May 2%

You do not need to insert the extra space with other date comparisons, only
with like, since the datetime values are converted to varchar only for the like
comparison.

Manipulating dates You can do some arithmetic calculations on datetime values with the built-in
date functions. See “Date functions” on page 61.

Standards and compliance
SQL92 – Compliance level: The datetime and smalldatetime datatypes are
Transact-SQL extensions.

CHAPTER 1 System and User-Defined Datatypes

23

Character datatypes

Function
Which datatype you use for a situation depends on the type of data you are
storing:

• Use the character datatypes to store strings consisting of letters, numbers,
and symbols.

• Use varchar(n) and char (n) for both single-byte character sets such as
us_english and for multibyte character sets such as Japanese.

• Use the unichar(n) and univarchar(n) datatypes to store unicode characters.
They are useful for single-byte or multibyte characters when you need a
fixed number of bytes per character.

• Use the fixed-length datatype, nchar(n) , and the variable-length datatype,
nvarchar(n), for both singlebyte and multibyte character sets, such as
Japanese. The difference between nchar(n) and char(n) and nvarchar(n) and
varchar(n) is that both nchar(n) and nvarchar(n) allocate storage based on n
times the number of bytes per character (based on the default character
set). char(n) and varchar(n) allocate just n bytes of storage.

• Character datatypes can store a maximum of a pagesize worth of data

• Use the text datatype (described in text and image datatypes) – or multiple
rows in a subtable – for strings longer than the char or varchar dataype
allow.

Length and storage size
Character variables strip the trailing spaces from strings when the variable is
populated in a varchar column of a cursor.

Use n to specify the number of bytes of storage for char and varchar datatypes.
For unichar, use n to specify the number of unicode characters (the amount of
storage allocated is 2 bytes per character). For nchar and nvarchar, n is the
number of characters (the amount of storage allocated is n times the number of
bytes per characer for the server’s current default character set).

If you do not use n to specify the length:

Character datatypes

24

• The default length is 1 byte for columns created with create table, alter
table, and variables created with declare.

• The default length is 30 bytes for values created with the convert function.

Entries shorter than the assigned length are blank-padded; entries longer than
the assigned length are truncated without warning, unless the string_rtruncation
option to the set command is set to on. Fixed-length columns that allow nulls
are internally converted to variable-length columns.

Use n to specify the maximum length in characters for the variable-length
datatypes, varchar(n), univarchar(n), and nvarchar(n) . Data in variable-length
columns is stripped of trailing blanks; storage size is the actual length of the
data entered. Data in variable-length variables and parameters retains all
trailing blanks, but is not padded to the defined length. Character literals are
treated as variable-length datatypes.

Fixed-length columns tend to take more storage space than variable-length
columns, but are accessed somewhat faster. Table 1-15 summarizes the storage
requirements of the different character datatypes:

Table 1-15: Character datatypes

Determining column
length with system
functions

Use the char_length string function and datalength system function to
determine column length:

• char_length returns the number of characters in the column, stripping
trailing blanks for variable-length datatypes.

• datalength returns the number of bytes, stripping trailing blanks for data
stored in variable-length columns.

When a char value is declared to allow NULLS, Adaptive Server stores it
internally as a varchar.

If the min or max aggregate functions are used on a char column, the result
returned is varchar, and is therefore stripped of all trailing spaces.

Datatype Stores Bytes of storage

char(n) Character n

unichar(n) Unicode character n*@@unicharsize (@@unicharsize equals 2)

nchar(n) National character n * @@ncharsize

varchar(n) Character varying Actual number of characters entered

univarchar(n) Unicode character varying Actual number of characters * @@unicharsize

nvarchar(n) National character varying Actual number of characters * @@ncharsize

CHAPTER 1 System and User-Defined Datatypes

25

Entering character data
Character strings must be enclosed in single or double quotes. If you use set
quoted_identifier on, use single quotes for character strings; otherwise,
Adaptive Server treats them as identifiers.

Strings that include the double-quote character should be surrounded by single
quotes. Strings that include the single-quote character should be surrounded by
double quotes. For example:

'George said, "There must be a better way."'
"Isn't there a better way?"

An alternative is to enter two quotation marks for each quotation mark you
want to include in the string. For example:

"George said, ""There must be a better way.""
'Isn''t there a better way?'

To continue a character string onto the next line of your screen, enter a
backslash (\) before going to the next line.

For more information about quoted identifiers, see the section “Delimited
identifiers”of the Transact SQL User’s Guide.

Treatment of blanks
The following example creates a table named spaces that has both fixed- and
variable-length character columns:

create table spaces (cnot char(5) not null,
 cnull char(5) null,
 vnot varchar(5) not null,
 vnull varchar(5) null,
 explanation varchar(25) not null)

insert spaces values ("a", "b", "c", "d",
 "pads char-not-null only")
insert spaces values ("1 ", "2 ", "3 ",
 "4 ", "truncates trailing blanks")
insert spaces values (" e", " f", " g",
 " h", "leading blanks, no change")
insert spaces values (" w ", " x ", " y ",
 " z ", "truncates trailing blanks")
insert spaces values ("", "", "", "",
 "empty string equals space")

Character datatypes

26

select "[" + cnot + "]",
 "[" + cnull + "]",
 "[" + vnot + "]",
 "[" + vnull + "]",
 explanation from spaces

 explanation
 ------- ------- ------- ------- --------------------
 [a] [b] [c] [d] pads char-not-null only
 [1] [2] [3] [4] truncates trailing blanks
 [e] [f] [g] [h] leading blanks, no change
 [w] [x] [y] [z] truncates trailing blanks
 [] [] [] [] empty string equals space

(5 rows affected)

This example illustrates how the column’s datatype and null type interact to
determine how blank spaces are treated:

• Only char not null and nchar not null columns are padded to the full width
of the column; char null columns are treated like varchar and nchar null
columns are treated like nvarchar.

• Only unichar not null columns are padded to the full width of the column;
unichar null columns are treated like univarchar.

• Preceding blanks are not affected.

• Trailing blanks are truncated except for char, unichar and nchar not null
columns.

• The empty string (“ ”) is treated as a single space. In char, nchar and
unichar not null columns, the result is a column-length field of spaces.

Manipulating character data
You can use the like keyword to search character strings for particular
characters and the built-in string functions to manipulate their contents. Strings
consisting of numbers can be used for arithmetic after being converted to exact
and approximate numeric datatypes with the convert function.

CHAPTER 1 System and User-Defined Datatypes

27

Standards
SQL92 – Compliance level: Transact-SQL provides the char and varchar
SQL92 datatypes. The nchar, nvarchar, unichar, and univarchar datatypes are
Transact-SQL extensions.

Binary datatypes

Function
Use the binary datatypes, binary(n) and varbinary(n), to store raw binary data,
such as pictures, in a hexadecimal-like notation, up to the maximum column
size for your server’s logical page size.

Valid binary and varbinary entries
Binary data begins with the characters “0x” and can include any combination
of digits and the uppercase and lowercase letters A through F.

Use n to specify the column length in bytes, or use the default length of 1 byte.
Each byte stores 2 binary digits. If you enter a value longer than n, Adaptive
Server truncates the entry to the specified length without warning or error.

Use the fixed-length binary type, binary(n), for data in which all entries are
expected to be approximately equal in length.

Use the variable-length binary type, varbinary(n), for data that is expected to
vary greatly in length.

Because entries in binary columns are zero-padded to the column length (n),
they may require more storage space than those in varbinary columns, but they
are accessed somewhat faster.

If you do not use n to specify the length:

• The default length is 1 byte for columns created with create table, alter
table, and variables created with declare.

• The default length is 30 bytes for values created with the convert function.

Binary datatypes

28

Entries of more than the max column size
Use the image datatype to store larger blocks of binary data (up to
2,147,483,647 bytes) on external data pages. You cannot use the image
datatype for variables or for parameters in stored procedures. For more
information, see the section “text and image datatypes.”

Treatment of trailing zeroes
All binary not null columns are padded with zeros to the full width of the
column. Trailing zeros are truncated in all varbinary data and in binary null
columns, since columns that accept null values must be treated as
variable-length columns.

The following example creates a table with all four variations of binary and
varbinary datatypes, NULL and NOT NULL. The same data is inserted in all
four columns and is padded or truncated according to the datatype of the
column.

create table zeros (bnot binary(5) not null,
 bnull binary(5) null,
 vnot varbinary(5) not null,
 vnull varbinary(5) null)

insert zeros values (0x12345000, 0x12345000, 0x12345000, 0x12345000)
insert zeros values (0x123, 0x123, 0x123, 0x123)

select * from zeros

bnot bnull vnot vnull
------------ --------- ---------- ---------
0x1234500000 0x123450 0x123450 0x123450
0x0123000000 0x0123 0x0123 0x0123

Because each byte of storage holds 2 binary digits, Adaptive Server expects
binary entries to consist of the characters “0x” followed by an even number of
digits. When the “0x” is followed by an odd number of digits, Adaptive Server
assumes that you omitted the leading 0 and adds it for you.

CHAPTER 1 System and User-Defined Datatypes

29

Input values “0x00” and “0x0” are stored as “0x00” in variable-length binary
columns (binary null, image and varbinary columns). In fixed-length binary
(binary not null) columns, the value is padded with zeros to the full length of the
field:

insert zeros values (0x0, 0x0,0x0, 0x0)
select * from zeros where bnot = 0x00
bnot bnull vnot vnull
---------- ------ ----- ------------
0x0000000000 0x00 0x00 0x00

If the input value does not include the “0x”, Adaptive Server assumes that the
value is an ASCII value and converts it. For example:

create table sample (col_a binary(8))

insert sample values (’002710000000ae1b’)

select * from sample
col_a

0x3030323731303030

Platform dependence
The exact form in which you enter a particular value depends upon the platform
you are using. Therefore, calculations involving binary data can produce
different results on different machines.

You cannot use the aggregate functions sum or avg with the binary datatypes.

For platform-independent conversions between hexadecimal strings and
integers, use the inttohex and hextoint functions rather than the
platform-specific convert function. For details, see “Datatype conversion
functions”.

Standards
SQL92 – Compliance level: The binary and varbinary datatypes are
Transact-SQL extensions.

bit datatype

30

bit datatype

Function
Use the bit datatype for columns that contain true/false and yes/no types of data.
The status column in the syscolumns system table indicates the unique offset
position for bit datatype columns.

Entering data into bit columns
bit columns hold either 0 or 1. Integer values other than 0 or 1 are accepted, but
are always interpreted as 1.

Storage size
Storage size is 1 byte. Multiple bit datatypes in a table are collected into bytes.
For example, 7 bit columns fit into 1 byte; 9 bit columns take 2 bytes.

Restrictions
Columns with a datatype of bit cannot be NULL and cannot have indexes on
them.

Standards
SQL92 – Compliance level: Transact-SQL extension.

CHAPTER 1 System and User-Defined Datatypes

31

sysname datatype

Function
sysname is a user-defined datatype that is distributed on the Adaptive Server
installation tape and used in the system tables. Its definition is:

varchar(30) "not null"

Using the sysname datatype
You cannot declare a column, parameter, or variable to be of type sysname. It
is possible, however, to create a user-defined datatype with a base type of
sysname. You can then define columns, parameters, and variables with the
user-defined datatype.

Standards
SQL92 – Compliance level: All user-defined datatypes, including sysname, are
Transact-SQL extensions.

text and image datatypes

Function
text columns are variable-length columns that can hold up to 2,147,483,647
(231 - 1) bytes of printable characters.

image columns are variable-length columns that can hold up to 2,147,483,647
(231 - 1) bytes of hexadecimal-like data.

Defining a text or
image column

You define a text or image column as you would any other column, with a
create table or alter table statement. text and image datatype definitions do not
include lengths. They do permit null values. The column definition takes the
form:

text and image datatypes

32

column_name {text | image} [null]

For example, the create table statement for the author’s blurbs table in the pubs2
database with a text column, blurb, that permits null values, is:

create table blurbs
(au_id id not null,
copy text null)

To create the au_pix table in the pubs2 database with an image column:

create table au_pix
(au_id char(11) not null,
pic image null,
format_type char(11) null,
bytesize int null,
pixwidth_hor char(14) null,
pixwidth_vert char(14) null)

How Adaptive Server
stores text and image
data

Adaptive Server stores text and image data in a linked list of data pages that are
separate from the rest of the table. Each text or image page stores one logical
page size worth of data (2, 4, 8, or 16K). All text and image data for a table is
stored in a single page chain, regardless of the number of text and image
columns the table contains.

Putting additional
pages on another
device

You can place subsequent text and image data pages on a different logical
device with sp_placeobject.

Zero padding image values that have an odd number of hexadecimal digits are padded with a
leading zero (an insert of “0xaaabb” becomes “0x0aaabb”).

Effect of partitioning
on data storage

You can use the partition option of the alter table command to partition a table
that contains text and image columns. Partitioning the table creates additional
page chains for the other columns in the table, but has no effect on the way the
text and image columns are stored.

Data structures used for storing text and image data
When you allocate text or image data, a 16-byte text pointer is inserted into the
row you allocated. Part of this text pointer refers to a text page number at the
head of the text or image data. This text pointer is known as the first text page
(FTP).

The FTP contains two parts:

• The text data page chain, which contains the your text and image data and
is a double-linked list of text pages.

CHAPTER 1 System and User-Defined Datatypes

33

• The optional text-node structure, which is used to access the user text data

Once an FTP is allocated for text or image data, it is never deallocated. If an
update to an existing text or image data row results in fewer text pages than are
currently allocated for this text or image data, Adaptive Server deallocates the
extra text pages. If an update to text or image data sets the value to NULL, all
pages except the FTP are deallocated.

Figure 1-1 shows the relationship between the datarow and the text pages

Figure 1-1: Relationship between the textpointer and datarows

In Figure 1-1, columns c_text and c_image are text and image columns
containing the pages at the bottom of the picture.

Format of text data pages

Each text data page contains user text and image data, and a section known as
the text and image pages stats area (TIPSA).

The TIPSA contains information about the text and image data that is
contained on the current text page. For instance, in a server configured for
multibyte character sets, the TIPSA contains the number of whole characters
that are on the current page.

On the FTP, there is an additional area with contains the head of the text node
data structure. This area is known as the L0 cache. The text node data structure
is descibed below.

Figure 1-2 descibes the format of a FTP:

Datarow

Te
xt

 a
nd

 im
ag

e
pa

ge
s

C_int
C

_t
ex

t
C_float

C
_i

m
ag

e

C_char includes
5 columns

FTPFTP

text and image datatypes

34

Figure 1-2: Description of the text or image page layout

Text nodes

A text node is a hierachical tree data structure that maps byte offsets (and
character offsets for multibyte servers) to text pages for text data. Text nodes
are used for:

• Text-page prefetch

• Indexing to text or image data when starting offsets are specified for
readtext()

Each entry in the text node points to the text or image data page where a byte
offset (or character for multibyte servers) begins. Using this data structure,
when given an offset into text/image data, the starting page can be determined,
and the text or image data is read starting at that offset. This eliminates the need
of having to start at the beginning of the text or image data and discarding all
of the data the comes before the offset.

Text nodes take advantage of the fact that text or image data pages are typically
allocated with multiple runs of consecutive page numbers. This means there
does not need to be a one to one correspondence between the pages allocated
to the text or image data, and the number of entries in the text node, which
results in reducing the number of pages that are allocated to the text or image
data.

Page header

Text or image data

Head of text node

Text or image page
stats area

Text or image page layout

CHAPTER 1 System and User-Defined Datatypes

35

Figure 1-3 describes this compression:

Figure 1-3: How text or image page numbers are allocated

In this example, the text or image data is made up of 87 text or image pages, but
because there are three separate runs of consecutive page numbers, (300 to
310), (330 to 345), and (392 to 411), only three text node entries are needed,
not 87.

The text node is saved with the text or image data. Depending on the size of the
text node, extra text or image pages may be required to store the text node. The
size of the text node depends on the size of the text or image data, and the
amount of 'compression' achieved. Although smaller text nodes do not require
extra text or image pages, larger text nodes will require them.

The head of the text node, the L0-cache, is stored on the FTP.

Figure 1-4 describes the structure of a text node. L0 cache is the text node, and
L1 and L2 are indirect nodes that point to text or image data pages.

Figure 1-4: Structure of the text node

Pages 300 to 310 Pages 330 to 345 Pages 392 to 411

FTP

L0-main

L1

L2 L1

Direct pointers to
text or image data
pages

L1 indirect nodes

L2 indirect node

L0-cache,
saved as
FTP

L1

text and image datatypes

36

Initializing text and image columns
text and image columns are not initialized until you update them or insert a
non-null value. Initialization allocates at least one data page for each non-null
text or image data value. It also creates a pointer in the table to the location of
the text or image data.

For example, the following statements create the table testtext and initialize the
blurb column by inserting a non-null value. The column now has a valid text
pointer, and the first text page has been allocated.

create table texttest
(title_id varchar(6), blurb text null, pub_id char(4))
insert texttest values
("BU7832", "Straight Talk About Computers is an
annotated analysis of what computers can do for you: a
no-hype guide for the critical user.", "1389")

The following statements create a table for image values and initialize the
image column:

create table imagetest
(image_id varchar(6), imagecol image null, graphic_id
char(4))
insert imagetest values
("94732", 0x0000008300000000000100000000013c, "1389")

Note Remember to surround text values with quotation marks and precede
image values with the characters “0x”.

For information on inserting and updating text and image data with
Client-Library programs, see the Client-Library/C Reference Manual.

Saving space by allowing NULL
To save storage space for empty text or image columns, define them to permit
null values and insert nulls until you use the column. Inserting a null value does
not initialize a text or image column and, therefore, does not create a text
pointer or allocate storage. For example, the following statement inserts values
into the title_id and pub_id columns of the testtext table created above, but does
not initialize the blurb text column:

insert texttest
(title_id, pub_id) values ("BU7832", "1389")

CHAPTER 1 System and User-Defined Datatypes

37

After a text or image row is given a non-null value, it always contains at least
one data page. Resetting the value to null does not deallocate its data page.

Getting information from sysindexes
Each table with text or image columns has an additional row in sysindexes that
provides information about these columns. The name column in sysindexes
uses the form “tablename”. The indid is always 255. These columns provide
information about text storage:

Table 1-16: Storage of text and image data

You can query the sysindexes table for information about these columns. For
example, the following query reports the number of data pages used by the
blurbs table in the pubs2 database:

select name, data_pgs(object_id("blurbs"), ioampg)
from sysindexes
where name = "tblurbs"
name
------------------------------ -----------
tblurbs 7

Note The system tables poster shows a one-to-one (1-1) relationship between
sysindexes and systabstats. This is correct, except for text and image columns,
for which information is not kept in systabstats.

Using readtext and writetext
Before you can use writetext to enter text data or readtext to read it, you must
initialize the text column. For details, see readtext and writetext.

Column Description

ioampg Pointer to the allocation page for the text page chain

first Pointer to the first page of text data

root Pointer to the last page

segment Number of the segment where the object resides

text and image datatypes

38

Using update to replace existing text and image data with NULL reclaims all
allocated data pages except the first page, which remains available for future
use of writetext. To deallocate all storage for the row, use delete to remove the
entire row.

Determining how much space a column uses
sp_spaceused provides information about the space used for text data as
index_size:

sp_spaceused blurbs
name rowtotal reserved data index_size unused
--------------- -------- --------- ------- ---------- ------
blurbs 6 32 KB 2 KB 14 KB 16 KB

Restrictions on text and image columns
text and image columns cannot be used:

• As parameters to stored procedures or as values passed to these parameters

• As local variables

• In order by, compute, group by, and union clauses

• In an index

• In subqueries or joins

• In a where clause, except with the keyword like

• With the + concatenation operator

• In the if update clause of a trigger

Selecting text and image data
The following global variables return information on text and image data:

Table 1-17: text and image global variables

Variable Explanation

@@textptr The text pointer of the last text or image column inserted or updated by a process. Do not confuse
this global variable with the textptr() function.

CHAPTER 1 System and User-Defined Datatypes

39

Converting text and image datatypes
You can explicitly convert text values to char, unichar, varchar, and univarchar,
and image values to binary or varbinary with the convert function, but you are
limited to the maximum length of the character and binary datatypes, which is
determined by the maximum column size for your server’s logical page size. If
you do not specify the length, the converted value has a default length of 30
bytes. Implicit conversion is not supported.

Pattern matching in text data
Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in a text, varchar, univarchar, unichar or char
column. The % wildcard character must precede and follow the pattern (except
when you are searching for the first or last character).

You can also use the like keyword to search for a particular pattern. The
following example selects each text data value from the copy column of the
blurbs table that contains the pattern “Net Etiquette”.

select copy from blurbs
where copy like "%Net Etiquette%"

Duplicate rows
The pointer to the text or image data uniquely identifies each row. Therefore, a
table that contains text or image data cannot contain duplicate rows unless all
text and image data is NULL. If this is the case, the pointer has not been
initialized.

@@textcolid ID of the column referenced by @@textptr.

@@textdbid ID of a database containing the object with the column referenced by @@textptr.

@@textobjid ID of the object containing the column referenced by @@textptr.

@@textsize Current value of the set textsize option, which specifies the maximum length, in bytes, of text or
image data to be returned with a select statement. It defaults to 32K. The maximum size for
@@textsize is 231 - 1 (that is, 2,147,483,647).

@@textts Text timestamp of the column referenced by @@textptr.

Variable Explanation

User-defined datatypes

40

Standards
SQL92 – Compliance level: The text and image datatypes are Transact-SQL
extensions.

User-defined datatypes

Function
User-defined datatypes are built from the system datatypes and from the
sysname user-defined datatype. After you create a user-defined datatype, you
can use it to define columns, parameters, and variables. Objects that are created
from user-defined datatypes inherit the rules, defaults, null type, and
IDENTITY property of the user-defined datatype, as well as inheriting the
defaults and null type of the system datatypes on which the user-defined
datatype is based.

Creating frequently used datatypes in the model database
A user-defined datatype must be created in each database in which it will be
used. It is a good practice to create frequently used types in the model database.
These types are automatically added to each new database (including tempdb,
which is used for temporary tables) as it is created.

Creating a user-defined datatypes
Adaptive Server allows you to create user-defined datatypes, based on any
system datatype, with the sp_addtype system procedure. You cannot create a
user-defined datatype based on another user-defined datatype, such as
timestamp or the tid datatype in the pubs2 database.

The sysname datatype is an exception to this rule. Though sysname is a
user-defined datatype, you can use it to build user-defined datatypes.

User-defined datatypes are database objects. Their names are case-sensitive
and must conform to the rules for identifiers.

CHAPTER 1 System and User-Defined Datatypes

41

You can bind rules to user-defined datatypes with sp_bindrule and bind defaults
with sp_bindefault.

By default, objects built on a user-defined datatype inherit the user-defined
datatype’s null type or IDENTITY property. You can override the null type or
IDENTITY property in a column definition.

Renaming a user-defined datatype
Use sp_rename to rename a user-defined datatype.

Dropping a user-defined datatype
Use sp_droptype to remove a user-defined datatype from a database.

Note You cannot drop a datatype that is already in use in a table.

Getting help on datatypes
Use the sp_help system procedure to display information about the properties
of a system datatype or a user-defined datatype. You can also use sp_help to
display the datatype, length, precision, and scale for each column in a table.

Standards and compliance
SQL92 – Compliance level: User-defined datatypes are a Transact-SQL
extension.

User-defined datatypes

42

43

C H A P T E R 2 Transact-SQL Functions

This chapter describes the Transact-SQL functions. Functions are used to
return information from the database. They are allowed in the select list,
in the where clause, and anywhere an expression is allowed. They are
often used as part of a stored procedure or program.

Topics covered are:

Types of functions
Table 2-1 lists the different types of Transact-SQL functions and describes
the type of information each returns.

Table 2-1: Types of Transact-SQL functions

Topics Page
Types of functions 43

Aggregate functions 47

Datatype conversion functions 53

Date functions 61

Mathematical functions 62

Security functions 64

String functions 64

System functions 66

Text and image functions 67

Type of function Description

Aggregate functions Generate summary values that appear as new columns or as additional rows in the
query results.

Datatype conversion functions Change expressions from one datatype to another and specify new display formats
for date/time information.

Date functions Do computations on datetime and smalldatetime values and their components,
date parts.

Mathematical functions Return values commonly needed for operations on mathematical data.

Security functions Return security-related information.

Types of functions

44

Table 2-2 lists the functions in alphabetical order.

Table 2-2: List of Transact-SQL functions

String functions Operate on binary data, character strings, and expressions.

System functions Return special information from the database.

Text and image functions Supply values commonly needed for operations on text and image data.

Type of function Description

Function Type Return value

abs Mathematical The absolute value of an expression.

acos Mathematical The angle (in radians) whose cosine is specified.

ascii String The ASCII code for the first character in an expression.

asin Mathematical The angle (in radians) whose sine is specified.

atan Mathematical The angle (in radians) whose tangent is specified.

atn2 Mathematical The angle (in radians) whose sine and cosine are specified.

avg Aggregate The numeric average of all (distinct) values.

ceiling Mathematical The smallest integer greater than or equal to the specified value.

char String The character equivalent of an integer.

charindex String Returns an integer representing the starting position of an expression.

char_length String The number of characters in an expression.

col_length System The defined length of a column.

col_name System The name of the column whose table and column IDs are specified.

compare System Returns the following values, based on the collation rules that you chose:

• 1 – indicates that char_expression1 is greater than char_expression2

• 0 – indicates that char_expression1 is equal to char_expression2

• -1 – indicates that char_expression1 is less than char_expression2

convert Datatype
Conversion

The specified value, converted to another datatype or a different datetime
display format.

cos Mathematical The cosine of the specified angle (in radians).

cot Mathematical The cotangent of the specified angle (in radians).

count Aggregate The number of (distinct) non-null values.

curunreservedpgs System The number of free pages in the specified disk piece.

data_pgs System The number of pages used by the specified table or index.

datalength System The actual length, in bytes, of the specified column or string.

dateadd Date The date produced by adding a given number of years, quarters, hours, or
other date parts to the specified date.

datediff Date The difference between two dates.

datename Date The name of the specified part of a datetime value.

datepart Date The integer value of the specified part of a datetime value.

CHAPTER 2 Transact-SQL Functions

45

db_id System The ID number of the specified database.

db_name System The name of the database whose ID number is specified.

degrees Mathematical The size, in degrees, of an angle with a specified number of radians.

difference String The difference between two soundex values.

exp Mathematical The value that results from raising the constant e to the specified power.

floor Mathematical The largest integer that is less than or equal to the specified value.

getdate Date The current system date and time.

hextoint Datatype
Conversion

The platform-independent integer equivalent of the specified
hexadecimal string.

host_id System The host process ID of the client process.

host_name System The current host computer name of the client process.

index_col System The name of the indexed column in the specified table or view.

inttohex Datatype
Conversion

The platform-independent, hexadecimal equivalent of the specified
integer.

isnull System Substitutes the value specified in expression2 when expression1
evaluates to NULL.

is_sec_service_on Security “1” if the security service is active; “0” if it is not.

isnull String The specified expression, trimmed of leading blanks.

lct_admin System Manages the last-chance threshold.

license_enabled System “1” if the feature’s license is enabled; “0” if it is not.

log Mathematical The natural logarithm of the specified number.

log10 Mathematical The base 10 logarithm of the specified number.

lower String The uppercase equivalent of the specified expression.

max Aggregate The highest value in a column.

min Aggregate The lowest value in a column.

mut_excl_roles System The mutual exclusivity between two roles.

object_id System The object ID of the specified object.

object_name System The name of the object whose object ID is specified.

patindex String, Text
and Image

The starting position of the first occurrence of a specified pattern.

pi Mathematical The constant value 3.1415926535897936.

power Mathematical The value that results from raising the specified number to a given power.

proc_role System 1 if the user has the correct role to execute the procedure; 0 if the user
does not have this role.

ptn_data_pgs System The number of data pages used by a partition.

radians Mathematical The size, in radians, of an angle with a specified number of degrees.

rand Mathematical A random value between 0 and 1, generated using the specified seed
value.

Function Type Return value

Types of functions

46

replicate String A string consisting of the specified expression repeated a given number
of times.

reserved_pgs System The number of pages allocated to the specified table or index.

reverse String The specified string, with characters listed in reverse order.

right String The part of the character expression, starting the specified number of
characters from the right.

role_contain System 1 if role2 contains role1.

role_id System The system role ID of the role whose name you specify.

role_name System The name of a role whose system role ID you specify.

round Mathematical The value of the specified number, rounded to a given number of decimal
places.

rowcnt System An estimate of the number of rows in the specified table.

rtrim String The specified expression, trimmed of trailing blanks.

show_role System The login’s currently active roles.

show_sec_services Security A list of the user’s currently active security services.

sign Mathematical The sign (+1 for positive, 0, or -1 for negative) of the specified value.

sin Mathematical The sine of the specified angle (in radians).

sortkey System Values that can be used to order results based on collation behavior,
which allows you to work with character collation behaviors beyond the
default set of Latin-character-based dictionary sort orders and case or
accent sensitivity.

soundex String A 4-character code representing the way an expression sounds.

space String A string consisting of the specified number of single-byte spaces.

sqrt Mathematical The square root of the specified number.

str String The character equivalent of the specified number.

stuff String The string formed by deleting a specified number of characters from one
string and replacing them with another string.

substring String The string formed by extracting a specified number of characters from
another string.

sum Aggregate The total of the values.

suser_id System The server user’s ID number from the syslogins system table.

suser_name System The name of the current server user, or the user whose server user ID is
specified.

syb_sendmsg Sends a message to a User Datagram Protocol (UDP) port.

tan Mathematical The tangent of the specified angle (in radians).

textptr Text and
Image

The pointer to the first page of the specified text column.

textvalid Text and
Image

1 if the pointer to the specified text column is valid; 0 if it is not.

Function Type Return value

CHAPTER 2 Transact-SQL Functions

47

The following sections describe the types of functions in detail. The remainder
of the chapter contains descriptions of the individual functions in alphabetical
order.

Aggregate functions
The aggregate functions generate summary values that appear as new columns
in the query results. The aggregate functions are:

• avg

• count

• max

• min

• sum

Aggregate functions can be used in the select list or the having clause of a select
statement or subquery. They cannot be used in a where clause.

to_unichar String A unichar expression having the value of the integer expression.

tsequal System Compares timestamp values to prevent update on a row that has been
modified since it was selected for browsing.

uhighsurr String 1 if the Unicode value at position start is the high half of a surrogate pair
(which should appear first in the pair); otherwise 0.

ulowsurr String 1 if the Unicode value at position start is the low half of a surrogate pair
(which should appear second in the pair); otherwise 0.

upper String The uppercase equivalent of the specified string.

uscalar String The Unicode scalar value for the first Unicode character in an expression.

used_pgs System The number of pages used by the specified table and its clustered index.

user System The name of the current server user.

user_id System The ID number of the specified user or the current user.

user_name System The name within the database of the specified user or the current user.

valid_name System 0 if the specified string is not a valid identifier; a number other than 0 if
the string is valid.

valid_user System 1 if the specified ID is a valid user or alias in at least one database on this
Adaptive Server.

Function Type Return value

Aggregate functions

48

Each aggregate in a query requires its own worktable. Therefore, a query using
aggregates cannot exceed the maximum number of worktables allowed in a
query (12).

When an aggregate function is applied to a char datatype value, it implicitly
converts the value to varchar, stripping all trailing blanks. Likewise, a unichar
datatype value is implicitly converted to univarchar.

The max, min, and count aggregate functions now have semantics that include
the unichar data type.

Aggregates used with group by
Aggregates are often used with group by. With group by, the table is divided
into groups. Aggregates produce a single value for each group. Without group
by, an aggregate function in the select list produces a single value as a result,
whether it is operating on all the rows in a table or on a subset of rows defined
by a where clause.

Aggregate functions and NULL values
Aggregate functions calculate the summary values of the non-null values in a
particular column. If the ansinull option is set off (the default), there is no
warning when an aggregate function encounters a null. If ansinull is set on, a
query returns the following SQLSTATE warning when an aggregate function
encounters a null:

Warning- null value eliminated in set function

Vector and scalar aggregates
Aggregate functions can be applied to all the rows in a table, in which case they
produce a single value, a scalar aggregate. They can also be applied to all the
rows that have the same value in a specified column or expression (using the
group by and, optionally, the having clause), in which case, they produce a value
for each group, a vector aggregate. The results of the aggregate functions are
shown as new columns.

You can nest a vector aggregate inside a scalar aggregate. For example:

select type, avg(price), avg(avg(price))

CHAPTER 2 Transact-SQL Functions

49

from titles
group by type
type
------------ ------------ ------------
UNDECIDED NULL 15.23
business 13.73 15.23
mod_cook 11.49 15.23
popular_comp 21.48 15.23
psychology 13.50 15.23
trad_cook 15.96 15.23

(6 rows affected)

The group by clause applies to the vector aggregate—in this case, avg(price).
The scalar aggregate, avg(avg(price)), is the average of the average prices by
type in the titles table.

In standard SQL, when a select_list includes an aggregate, all the select_list
columns must either have aggregate functions applied to them or be in the
group by list. Transact-SQL has no such restrictions.

Example 1 shows a select statement with the standard restrictions. Example 2
shows the same statement with another item (title_id) added to the select list.
order by is also added to illustrate the difference in displays. These “extra”
columns can also be referenced in a having clause.

Example 1 select type, avg(price), avg(advance)
from titles
group by type

type
------------ ------------ ------------
UNDECIDED NULL NULL
business 13.73 6,281.25
mod_cook 11.49 7,500.00
popular_comp 21.48 7,500.00
psychology 13.50 4,255.00
trad_cook 15.96 6,333.33

(6 rows affected)

Example 2 You can use either a column name or any other expression (except a column
heading or alias) after group by.

Null values in the group by column are put into a single group.

select type, title_id, avg(price), avg(advance)
from titles
group by type

Aggregate functions

50

order by type

type title_id
----------- -------- ---------- ---------
UNDECIDED MC3026 NULL NULL
business BU1032 13.73 6,281.25
business BU1111 13.73 6,281.25
business BU2075 13.73 6,281.25
business BU7832 13.73 6,281.25
mod_cook MC2222 11.49 7,500.00
mod_cook MC3021 11.49 7,500.00
popular_comp PC1035 21.48 7,500.00
popular_comp PC8888 21.48 7,500.00
popular_comp PC9999 21.48 7,500.00
psychology PS1372 13.50 4,255.00
psychology PS2091 13.50 4,255.00
psychology PS2106 13.50 4,255.00
psychology PS3333 13.50 4,255.00
psychology PS7777 13.50 4,255.00
trad_cook TC3218 15.96 6,333.33
trad_cook TC4203 15.96 6,333.33
trad_cook TC7777 15.96 6,333.33

Example 3 The compute clause in a select statement uses row aggregates to produce
summary values. The row aggregates make it possible to retrieve detail and
summary rows with one command. Example 3 illustrates this feature:

select type, title_id, price, advance
from titles
where type = "psychology"
order by type
compute sum(price), sum(advance) by type

type title_id price advance
----------- ------- ---------- ---------
psychology PS1372 21.59 7,000.00
psychology PS2091 10.95 2,275.00
psychology PS2106 7.00 6,000.00
psychology PS3333 19.99 2,000.00
psychology PS7777 7.99 4,000.00
 sum sum
 ------- ----------
 67.52 21,275.00

Note the difference in display between Example 3 and the examples without
compute (Example 1 and Example 2).

CHAPTER 2 Transact-SQL Functions

51

Aggregate functions cannot be used on virtual tables such as sysprocesses and
syslocks.

If you include an aggregate function in the select clause of a cursor, that cursor
cannot be updated.

Aggregate functions as row aggregates
Row aggregate functions generate summary values that appear as additional
rows in the query results.

To use the aggregate functions as row aggregates, use the following syntax:

Start of select statement

compute row_aggregate(column_name)
[, row_aggregate(column_name)]...

[by column_name [, column_name]...]

where:

• column_name is the name of a column. It must be enclosed in parentheses.
Only exact numeric, approximate numeric, and money columns can be
used with sum and avg.

One compute clause can apply the same function to several columns.
When using more than one function, use more than one compute clause.

• by indicates that row aggregate values are to be calculated for subgroups.
Whenever the value of the by item changes, row aggregate values are
generated. If you use by, you must use order by.

Listing more than one item after by breaks a group into subgroups and
applies a function at each level of grouping.

The row aggregates make it possible to retrieve detail and summary rows with
one command. The aggregate functions, on the other hand, ordinarily produce
a single value for all the selected rows in the table or for each group, and these
summary values are shown as new columns.

The following examples illustrate the differences:

select type, sum(price), sum(advance)
from titles
where type like "%cook"
group by type

type
---------- ---------- ----------------

Aggregate functions

52

mod_cook 22.98 15,000.00
trad_cook 47.89 19,000.00

(2 rows affected)

select type, price, advance
from titles
where type like "%cook"
order by type
compute sum(price), sum(advance) by type

type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00
 sum sum
 ---------- ----------------
 22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00
 sum sum
 ---------- ----------------
 47.89 19,000.00
(7 rows affected)
type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:
---------------------- -----------------
 22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

Compute Result:
---------------------- -----------------
 47.89 19,000.00
(7 rows affected)

The columns in the compute clause must appear in the select list.

CHAPTER 2 Transact-SQL Functions

53

The order of columns in the select list overrides the order of the aggregates in
the compute clause. For example:

create table t1 (a int, b int, c int null)
insert t1 values(1,5,8)
insert t1 values(2,6,9)

(1 row affected)

compute sum(c), max(b), min(a)
select a, b, c from t1

 a b c
----------- ----------- -----------

1 5 8
2 6 9

Compute Result:
----------- ----------- -----------

1 6 17

If the ansinull option is set off (the default), there is no warning when a row
aggregate encounters a null. If ansinull is set on, a query returns the following
SQLSTATE warning when a row aggregate encounters a null:

Warning- null value eliminated in set function

You cannot use select into in the same statement as a compute clause because
statements that include compute generate tables that include the summary
results, which are not stored in the database.

Datatype conversion functions
Datatype conversion functions change expressions from one datatype to
another and specify new display formats for date/time information. The
datatype conversion functions are:

• convert()

• inttohex()

• hextoint()

The datatype conversion functions can be used in the select list, in the where
clause, and anywhere else an expression is allowed.

Datatype conversion functions

54

Adaptive Server performs certain datatype conversions automatically. These
are called implicit conversions. For example, if you compare a char expression
and a datetime expression, or a smallint expression and an int expression, or char
expressions of different lengths, Adaptive Server automatically converts one
datatype to another.

You must request other datatype conversions explicitly, using one of the
built-in datatype conversion functions. For example, before concatenating
numeric expressions, you must convert them to character expressions.

Adaptive Server does not allow you to convert certain datatypes to certain
other datatypes, either implicitly or explicitly. For example, you cannot convert
smallint data to datetime or datetime data to smallint. Unsupported conversions
result in error messages.

Figure 2-1 indicates whether individual datatype conversions are performed
implicitly, explicitly, or are not supported.

CHAPTER 2 Transact-SQL Functions

55

Figure 2-1: Explicit, implicit, and unsupported datatype conversions

Converting character data to a non-character type
Character data can be converted to a non-character type—such as a money,
date/time, exact numeric, or approximate numeric type—if it consists entirely
of characters that are valid for the new type. Leading blanks are ignored.
However, if a char expression that consists of a blank or blanks is converted to
a datetime expression, SQL Server converts the blanks into the default datetime
value of “Jan 1, 1900”.

Syntax errors are generated when the data includes unacceptable characters.
Following are some examples of characters that cause syntax errors:

• Commas or decimal points in integer data

Datatype conversion functions

56

• Commas in monetary data

• Letters in exact or approximate numeric data or bit stream data

• Misspelled month names in date/time data

Converting from one character type to another
When converting from a multibyte character set to a single-byte character set,
characters with no single-byte equivalent are converted to question marks.

text columns can be explicitly converted to char, nchar, varchar, unichar,
univarchar, or nvarchar. You are limited to the maximum length of the character
datatypes, which is determined by the maximum column size for your server’s
logical page size. If you do not specify the length, the converted value has a
default length of 30 bytes.

Converting numbers to a character type
Exact and approximate numeric data can be converted to a character type. If
the new type is too short to accommodate the entire string, an insufficient space
error is generated. For example, the following conversion tries to store a
5-character string in a 1-character type:

select convert(char(1), 12.34)
Insufficient result space for explicit conversion
of NUMERIC value ’12.34’ to a CHAR field.

Note When converting float data to a character type, the new type should be at
least 25 characters long.

Rounding during conversion to and from money types
The money and smallmoney types store 4 digits to the right of the decimal point,
but round up to the nearest hundredth (.01) for display purposes. When data is
converted to a money type, it is rounded up to four places.

CHAPTER 2 Transact-SQL Functions

57

Data converted from a money type follows the same rounding behavior if
possible. If the new type is an exact numeric with less than three decimal
places, the data is rounded to the scale of the new type. For example, when
$4.50 is converted to an integer, it yields 5:

select convert(int, $4.50)

 5

Data converted to money or smallmoney is assumed to be in full currency units
such as dollars rather than in fractional units such as cents. For example, the
integer value of 5 is converted to the money equivalent of 5 dollars, not 5 cents,
in the us_english language.

Converting date/time information
Data that is recognizable as a date can be converted to datetime or
smalldatetime. Incorrect month names lead to syntax errors. Dates that fall
outside the acceptable range for the datatype lead to arithmetic overflow errors.

When datetime values are converted to smalldatetime, they are rounded to the
nearest minute.

Converting between numeric types
Data can be converted from one numeric type to another. If the new type is an
exact numeric whose precision or scale is not sufficient to hold the data, errors
can occur.

For example, if you provide a float or numeric value as an argument to a
built-in function that expects an integer, the value of the float or numeric is
truncated. However, Adaptive Server does not implicitly convert numerics that
have a fractional part but returns a scale error message. For example, Adaptive
Server returns error 241 for numerics that have a fractional part and error 257
if other datatypes are passed.

Datatype conversion functions

58

Use the arithabort and arithignore options to determine how Adaptive Server
handles errors resulting from numeric conversions.

Note The arithabort and arithignore options have been redefined for release
10.0 or later. If you use these options in your applications, examine them to be
sure they are still producing the desired behavior.

Arithmetic overflow and divide-by-zero errors
Divide-by-zero errors occur when Adaptive Server tries to divide a numeric
value by zero. Arithmetic overflow errors occur when the new type has too few
decimal places to accommodate the results. This happens during:

• Explicit or implicit conversions to exact types with a lower precision or
scale

• Explicit or implicit conversions of data that falls outside the acceptable
range for a money or date/time type

• Conversions of hexadecimal strings requiring more than 4 bytes of storage
using hextoint

Both arithmetic overflow and divide-by-zero errors are considered serious,
whether they occur during an implicit or explicit conversion. Use the arithabort
arith_overflow option to determine how Adaptive Server handles these errors.
The default setting, arithabort arith_overflow on, rolls back the entire transaction
in which the error occurs. If the error occurs in a batch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier commands in
the batch, and Adaptive Server does not execute statements that follow the
error-generating statement in the batch. If you set arithabort arith_overflow off,
Adaptive Server aborts the statement that causes the error, but continues to
process other statements in the transaction or batch.You can use the @@error
global variable to check statement results.

Use the arithignore arith_overflow option to determine whether Adaptive Server
displays a message after these errors. The default setting, off, displays a
warning message when a divide-by-zero error or a loss of precision occurs.
Setting arithignore arith_overflow on suppresses warning messages after these
errors. The optional arith_overflow keyword can be omitted without any effect.

CHAPTER 2 Transact-SQL Functions

59

Scale errors

When an explicit conversion results in a loss of scale, the results are truncated
without warning. For example, when you explicitly convert a float, numeric, or
decimal type to an integer, Adaptive Server assumes you want the result to be
an integer and truncates all numbers to the right of the decimal point.

During implicit conversions to numeric or decimal types, loss of scale generates
a scale error. Use the arithabort numeric_truncation option to determine how
serious such an error is considered. The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error, but continues
to process other statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results and
continues processing.

Note For entry level SQL92 compliance, set:

• arithabort arith_overflow off

• arithabort numeric_truncation on

• arithignore off

Domain errors

The convert() function generates a domain error when the function’s argument
falls outside the range over which the function is defined. This happens rarely.

Conversions between binary and integer types
The binary and varbinary types store hexadecimal-like data consisting of a “0x”
prefix followed by a string of digits and letters.

These strings are interpreted differently by different platforms. For example,
the string “0x0000100” represents 65536 on machines that consider byte 0
most significant and 256 on machines that consider byte 0 least significant.

Binary types can be converted to integer types either explicitly, using the
convert function, or implicitly. If the data is too short for the new type, it is
stripped of its “0x” prefix and zero-padded. If it is too long, it is truncated.

Datatype conversion functions

60

Both convert and the implicit datatype conversions evaluate binary data
differently on different platforms. Because of this, results may vary from one
platform to another. Use the hextoint function for platform-independent
conversion of hexadecimal strings to integers, and the inttohex function for
platform-independent conversion of integers to hexadecimal values.

Converting between binary and numeric or decimal types
In binary and varbinary data strings, the first two digits after “0x” represent the
binary type: “00” represents a positive number and “01” represents a negative
number. When you convert a binary or varbinary type to numeric or decimal, be
sure to specify the “00” or “01” values after the “0x” digit; otherwise, the
conversion will fail.

For example, here is how to convert the following binary data to numeric:

select convert(numeric
(38, 18),0x000000000000000006b14bd1e6eea0000000000000000000000000000000)

123.456000

This example converts the same numeric data back to binary:

select convert(binary,convert(numeric(38, 18), 123.456))

--
0x000000000000000006b14bd1e6eea0000000000000000000000000000000

Converting image columns to binary types
You can use the convert function to convert an image column to binary or
varbinary. You are limited to the maximum length of the binary datatypes,
which is determined by the maximum column size for your server’s logical
page size. If you do not specify the length, the converted value has a default
length of 30 characters.

Converting other types to bit
Exact and approximate numeric types can be converted to the bit type
implicitly. Character types require an explicit convert function.

CHAPTER 2 Transact-SQL Functions

61

The expression being converted must consist only of digits, a decimal point, a
currency symbol, and a plus or minus sign. The presence of other characters
generates syntax errors.

The bit equivalent of 0 is 0. The bit equivalent of any other number is 1.

Converting NULL value
You can use the convert function to change the NULL to NOT NULL and NOT
NULL to NULL.

Date functions
The date functions manipulate values of the datatype datetime or smalldatetime.

Date functions can be used in the select list or where clause of a query.

Use the datetime datatype only for dates after January 1, 1753. datetime values
must be enclosed in single or double quotes. Use char, nchar, varchar or
nvarchar for earlier dates. Adaptive Server recognizes a wide variety of date
formats. See Datatype conversion functions and “Date and time datatypes” for
more information.

Adaptive Server automatically converts between character and datetime values
when necessary (for example, when you compare a character value to a
datetime value).

Date parts
The date parts, the abbreviations recognized by Adaptive Server, and the
acceptable values are:

Date part Abbreviation Values

year yy 1753 – 9999 (2079 for smalldatetime)

quarter qq 1 – 4

month mm 1 – 12

week wk 1 – 54

day dd 1 – 31

Mathematical functions

62

When you enter a year as two digits (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is 2001, 32
is 2032, and 49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For example,
50 is 1950, 74 is 1974, and 99 is 1999.

Milliseconds can be preceded either with a colon or a period. If preceded by a
colon, the number means thousandths of a second. If preceded by a period, a
single digit means tenths of a second, two digits mean hundredths of a second,
and three digits mean thousandths of a second. For example, “12:30:20:1”
means twenty and one-thousandth of a second past 12:30; “12:30:20.1” means
twenty and one-tenth of a second past 12:30. Adaptive Server may round or
truncate millisecond values when adding datetime data.

Mathematical functions
Mathematical functions return values commonly needed for operations on
mathematical data. Mathematical function names are not keywords.

Each function also accepts arguments that can be implicitly converted to the
specified type. For example, functions that accept approximate numeric types
also accept integer types. Adaptive Server automatically converts the argument
to the desired type.

The mathematical functions are:

• abs

• acos

• asin

• atan

dayofyear dy 1 – 366

weekday dw 1 – 7 (Sun.-Sat.)

hour hh 0 – 23

minute mi 0 – 59

second ss 0 – 59

millisecond ms 0 – 999

Date part Abbreviation Values

CHAPTER 2 Transact-SQL Functions

63

• atn2

• ceiling

• cos

• cot

• degrees

• exp

• floor

• log

• log10

• pi

• power

• radians

• rand

• round

• sign

• sin

• sqrt

• tan

Error traps are provided to handle domain or range errors of these functions.
Users can set the arithabort and arithignore options to determine how domain
errors are handled:

• arithabort arith_overflow specifies behavior following a divide-by-zero
error or a loss of precision. The default setting, arithabort arith_overflow on,
rolls back the entire transaction or aborts the batch in which the error
occurs. If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error, but continues to process other statements
in the transaction or batch.

Security functions

64

• arithabort numeric_truncation specifies behavior following a loss of scale
by an exact numeric type during an implicit datatype conversion. (When
an explicit conversion results in a loss of scale, the results are truncated
without warning.) The default setting, arithabort numeric_truncation on,
aborts the statement that causes the error, but continues to process other
statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results and
continues processing.

• By default, the arithignore arith_overflow option is turned off, causing
Adaptive Server to display a warning message after any query that results
in numeric overflow. Set the arithignore option on to ignore overflow
errors.

Note The arithabort and arithignore options have been redefined for release
10.0 or later. If you use these options in your applications, examine them
to be sure they still produce the desired effects.

Security functions
Security functions return security-related information.

The security functions are:

• is_sec_service_on

• show_sec_services

String functions
String function operate on binary data, character strings, and expressions. The
string functions are:

• ascii

• char

• charindex

• char_length

CHAPTER 2 Transact-SQL Functions

65

• difference

• lower

• ltrim

• patindex

• replicate

• reverse

• right

• rtrim

• soundex

• space

• str

• stuff

• substring

• to_unichar

• uhighsurr

• ulowsurr

• upper

• uscalar

String functions can be nested, and they can be used in a select list, in a where
clause, or anywhere an expression is allowed. When you use constants with a
string function, enclose them in single or double quotes. String function names
are not keywords.

Each string function also accepts arguments that can be implicitly converted to
the specified type. For example, functions that accept approximate numeric
expressions also accept integer expressions. Adaptive Server automatically
converts the argument to the desired type.

When a string function accepts two character expressions but only one
expression is unichar, the other expression is “promoted” and internally
converted to unichar. This follows existing rules for mixed-mode expressions.
However, this conversion may cause truncation, since unichar data sometimes
takes twice the space.

System functions

66

Limits on string functions
Results of string functions are limited to 16K.

If set string_rtruncation is on, a user receives an error if an insert or update
truncates a character string. However, SQL Server does not report an error if a
displayed string is truncated. For example:

select replicate("a", 900) + replicate("B", 900)

Displays the first 16K of data, but the subsequent data is not displayed.

System functions
System functions return special information from the database. The system
functions are:

• col_length

• col_name

• curunreservedpgs

• data_pgs

• datalength

• db_id

• db_name

• host_id

• host_name

• index_col

• isnull

• lct_admin

• mut_excl_roles

• object_id

• object_name

• proc_role

• ptn_data_pgs

CHAPTER 2 Transact-SQL Functions

67

• reserved_pgs

• role_contain

• role_id

• role_name

• rowcnt

• show_role

• suser_id

• suser_name

• tsequal

• used_pgs

• user

• user_id

• user_name

• valid_name

• valid_user

The system functions can be used in a select list, in a where clause, and
anywhere an expression is allowed.

When the argument to a system function is optional, the current database, host
computer, server user, or database user is assumed.

Text and image functions
Text and image functions operate on text and image data. The text and image
functions are:

• textptr

• textvalid

Text and image built-in function names are not keywords. Use the set textsize
option to limit the amount of text or image data that is retrieved by a select
statement.

Text and image functions

68

The patindex text function can be used on text and image columns and can also
be considered a text and image function.

Use the datalength function to get the length of data in text and image columns.

text and image columns cannot be used:

• As parameters to stored procedures

• As values passed to stored procedures

• As local variables

• In order by, compute, and group by clauses

• In an index

• In a where clause, except with the keyword like

• In joins

• In triggers

CHAPTER 2 Transact-SQL Functions

69

abs
Description Returns the absolute value of an expression.

Syntax abs(numeric_expression)

Parameters numeric_expression
is a column, variable, or expression whose datatype is an exact numeric,
approximate numeric, money, or any type that can be implicitly converted
to one of these types.

Examples Returns the absolute value of -1:

select abs(-1)

1

Usage • abs, a mathematical function, returns the absolute value of a given
expression. Results are of the same type and have the same precision and
scale as the numeric expression.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute abs.

See also Functions ceiling, floor, round, sign

acos

70

acos
Description Returns the angle (in radians) whose cosine is specified.

Syntax acos(cosine)

Parameters cosine
is the cosine of the angle, expressed as a column name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples Returns the angle whose cosine is 0.52:

select acos(0.52)

1.023945

Usage • acos, a mathematical function, returns the angle (in radians) whose cosine
is the specified value.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute acos.

See also Functions cos, degrees, radians

CHAPTER 2 Transact-SQL Functions

71

ascii
Description Returns the ASCII code for the first character in an expression.

Syntax ascii(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples select au_lname, ascii(au_lname) from authors
where ascii(au_lname) < 70

au_lname
------------------------------ -----------
Bennet 66
Blotchet-Halls 66
Carson 67
DeFrance 68
Dull 68

Returns the authors last names and the ACSII codes for the first letters in their
last names, if the ASCII code is less than 70.

Usage • ascii, a string function, returns the ASCII code for the first character in the
expression.

• When a string function accepts two character expressions but only one
expression is unichar, the other expression is “promoted” and internally
converted to unichar. This follows existing rules for mixed-mode
expressions. However, this conversion may cause truncation, since unichar
data sometimes takes twice the space.

• If char_expr or uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute ascii.

See also Functions char, to_unichar

asin

72

asin
Description Returns the angle (in radians) whose sine is specified.

Syntax asin(sine)

Parameters sine
is the sine of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples select asin(0.52)

0.546851

Usage • asin, a mathematical function, returns the angle (in radians) whose sine is
the specified value.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute asin.

See also Functions degrees, radians, sin

CHAPTER 2 Transact-SQL Functions

73

atan
Description Returns the angle (in radians) whose tangent is specified.

Syntax atan(tangent)

Parameters tangent
is the tangent of the angle, expressed as a column name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples select atan(0.50)

0.463648

Usage • atan, a mathematical function, returns the angle (in radians) whose tangent
is the specified value.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute atan.

See also Functions atn2, degrees, radians, tan

atn2

74

atn2
Description Returns the angle (in radians) whose sine and cosine are specified.

Syntax atn2(sine, cosine)

Parameters sine
is the sine of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

cosine
is the cosine of the angle, expressed as a column name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples select atn2(.50, .48)

0.805803

Usage • atn2, a mathematical function, returns the angle (in radians) whose sine
and cosine are specified.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute atn2.

See also Functions atan, degrees, radians, tan

CHAPTER 2 Transact-SQL Functions

75

avg
Description Returns the numeric average of all (distinct) values.

Syntax avg([all | distinct] expression)

Parameters all
applies avg to all values. all is the default.

distinct
eliminates duplicate values before avg is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions” on page 219.

Examples Example 1 Calculates the average advance and the sum of total sales for all
business books. Each of these aggregate functions produces a single summary
value for all of the retrieved rows:

select avg(advance), sum(total_sales)
from titles
where type = "business"

------------------------ -----------
6,281.25 30788

Example 2 Used with a group by clause, the aggregate functions produce
single values for each group, rather than for the whole table. This statement
produces summary values for each type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type

type
------------ ------------------------ -----------
UNDECIDED NULL NULL
business 6,281.25 30788
mod_cook 7,500.00 24278
popular_comp 7,500.00 12875
psychology 4,255.00 9939
trad_cook 6,333.33 19566

Example 3 Groups the titles table by publishers and includes only those groups
of publishers who have paid more than $25,000 in total advances and whose
books average more than $15 in price:

avg

76

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $25000 and avg(price) > $15

pub_id
------ -------------------- --------------------
0877 41,000.00 15.41
1389 30,000.00 18.98

Usage • avg, an aggregate function, finds the average of the values in a column. avg
can only be used on numeric (integer, floating point, or money) datatypes.
Null values are ignored in calculating averages.

• For general information about aggregate functions, see “Aggregate
functions” on page 47.

• When you average integer data, Adaptive Server treats the result as an int
value, even if the datatype of the column is smallint or tinyint. To avoid
overflow errors in DB-Library programs, declare all variables for results
of averages or sums as type int.

• You cannot use avg() with the binary datatypes.

• Since the average value is only defined on numeric datatypes, use with
Unicode expressions generates an error.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute avg.

See also Functions max, min

CHAPTER 2 Transact-SQL Functions

77

ceiling
Description Returns the smallest integer greater than or equal to the specified value.

Syntax ceiling(value)

Parameters value
is a column, variable, or expression whose datatype is exact numeric,
approximate numeric, money, or any type that can be implicitly converted
to one of these types.

Examples Example 1

select ceiling(123.45)
124

Example 2

select ceiling(-123.45)
-123

Example 3

select ceiling(1.2345E2)
24.000000

Example 4

select ceiling(-1.2345E2)
-123.000000

Example 5

select ceiling($123.45)
124.00

Example 6

select discount, ceiling(discount) from salesdetail
where title_id = "PS3333"
discount
-------------------- --------------------

45.000000 45.000000
46.700000 47.000000
46.700000 47.000000
50.000000 50.000000

Usage • ceiling, a mathematical function, returns the smallest integer that is greater
than or equal to the specified value. The return value has the same datatype
as the value supplied.

ceiling

78

For numeric and decimal values, results have the same precision as the
value supplied and a scale of zero.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute ceiling.

See also Command set

Functions abs, floor, round, sign

CHAPTER 2 Transact-SQL Functions

79

char
Description Returns the character equivalent of an integer.

Syntax char(integer_expr)

Parameters integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression between 0 and 255.

Examples Example 1

select char(42)

-
*

Example 2

select xxx = char(65)

xxx

A

Usage • char, a string function, converts a single-byte integer value to a character
value (char is usually used as the inverse of ascii.).

• char returns a char datatype. If the resulting value is the first byte of a
multibyte character, the character may be undefined.

• If char_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Reformatting output with char

• You can use concatenation and char values to add tabs or carriage returns
to reformat output. char(10) converts to a return; char(9) converts to a tab.
For example:

/* just a space */
select title_id + " " + title from titles where title_id = "T67061"
/* a return */
select title_id + char(10) + title from titles where title_id = "T67061"
/* a tab */
select title_id + char(9) + title from titles where title_id = "T67061"

T67061 Programming with Curses

T67061

char

80

Programming with Curses

T67061 Programming with Curses

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute char.

See also Functions ascii, str

CHAPTER 2 Transact-SQL Functions

81

charindex
Description Returns an integer representing the starting position of an expression.

Syntax charindex(expression1, expression2)

Parameters expression
is a binary or character column name, variable or constant expression. Can
be char, varchar, nchar, nvarchar, unichar or univarchar data, binary or
varbinary.

Examples Returns the position at which the character expression “wonderful” begins in
the notes column of the titles table:

select charindex("wonderful", notes)
from titles
where title_id = "TC3218"

46

Usage • charindex, a string function, searches expression2 for the first occurrence
of expression1 and returns an integer representing its starting position. If
expression1 is not found, charindex returns 0.

• If expression1 contains wildcard characters, charindex treats them as
literals.

• If char_expr or uchar_expr is NULL, returns NULL.

• If a varchar expression is given as one parameter and a unichar expression
as the other, the varchar expression is implicitly converted to unichar (with
possible truncation).

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute charindex.

See also Function patindex

char_length

82

char_length
Description Returns the number of characters in an expression.

Syntax char_length(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples Example 1

select char_length(notes) from titles
where title_id = "PC9999"

39

Example 2

declare @var1 varchar(20), @var2 varchar(20), @char
char(20)
select @var1 = "abcd", @var2 = "abcd ",
 @char = "abcd"
select char_length(@var1), char_length(@var2),
char_length(@char)

 ----------- ----------- -----------
 4 8 20

Usage • char_length, a string function, returns an integer representing the number
of characters in a character expression or text value.

• For variable-length columns and variables, char_length returns the number
of characters (not the defined length of the column or variable). If explicit
trailing blanks are included in variable-length variables, they are not
stripped. For literals and fixed-length character columns and variables,
char_length does not strip the expression of trailing blanks (see Example
2).

• For multi-byte character sets, the number of characters in the expression is
usually less than the number of bytes; use datalength to determine the
number of bytes.

• For Unicode expressions, returns the number of Unicode values (not
bytes) in an expression. Surrogate pairs count as two Unicode values.

CHAPTER 2 Transact-SQL Functions

83

• If char_expr or uchar_expr is NULL, char_length returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute char_length.

See also Function datalength

col_length

84

col_length
Description Returns the defined length of a column.

Syntax col_length(object_name, column_name)

Parameters object_name
is name of a database object, such as a table, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the
database and owner name). It must be enclosed in quotes.

column_name
is the name of the column.

Examples Finds the length of the title column in the titles table. The “x” gives a column
heading to the result:

select x = col_length("titles", "title")

 x

80

Usage • col_length, a system function, returns the defined length of column.

• For general information about system functions, see “System functions”
on page 66.

• To find the actual length of the data stored in each row, use datalength.

• For text and image columns, col_length returns 16, the length of the
binary(16) pointer to the actual text page.

• For unichar columns, the defined length is the number of Unicode values
declared when the column was defined (not the number of bytes
represented).

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute col_length.

See also Function datalength

CHAPTER 2 Transact-SQL Functions

85

col_name
Description Returns the name of the column whose table and column IDs are specified.

Syntax col_name(object_id, column_id[, database_id])

Parameters object_id
is a numeric expression that is an object ID for a table, view, or other
database object. These are stored in the id column of sysobjects.

column_id
is a numeric expression that is a column ID of a column. These are stored in
the colid column of syscolumns.

database_id
is a numeric expression that is the ID for a database. These are stored in the
db_id column of sysdatabases.

Examples select col_name(208003772, 2)

title

Usage • col_name, a system function, returns the column’s name.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute col_name.

See also Functions db_id, object_id

compare

86

compare
Description Allows you to directly compare two character strings based on alternate

collation rules.

Syntax compare (char_expression1 | uchar_expression1),
(char_expression2 | uchar_expression2)
[, {collation_name | collation_ID}]

Parameters char_expression1 or uchar_expression1
are the character expressions you want to compare to char_expression2 or
uchar_expression 2.

char_expression2 or uchar_expression2
are the character expressions against which you want to compare
char_expression1 or uchar_expression1.

char_expression1 and char_expression2 can be one of the following:

• Character type (char, varchar, nchar, or nvarchar)

• Character variable, or

• Constant character expression, enclosed in single or double quotation
marks

uchar_expression1 and uchar_expression2 can be one of the following:

• Character type (unichar or univarchar)

• Character variable, or

• Constant character expression, enclosed in single or double quotation
marks

collation_name
can be a quoted string or a character variable that specifies the collation to
use. Table 2-3 shows the valid values.

collation_ID
is an integer constant or a variable that specifies the collation to use. Table
2-3 shows the valid values.

Usage • The compare function returns the following values, based on the collation
rules that you chose:

• 1 – indicates that char_expression1 or uchar_expression1 is greater
than char_expression2 or uchar_expression2.

• 0 – indicates that char_expression1 or uchar_expression1 is equal to
char_expression2 or uchar_expression2.

CHAPTER 2 Transact-SQL Functions

87

• -1 – indicates that char_expression1 or uchar_expression1 is less than
char_expression2 or uchar expression2.

• compare can generate up to 6 bytes of collation information for each input
character. Therefore, the result from using compare may exceed the length
limit of the varbinary datatype. If this happens, the result is truncated to fit.
Since this limit is dependent on the logical page size of your server,
truncation removes result bytes for each input character until the result
string is less than the following for DOL and APL tables:

If this occurs, Adaptive Server issues a warning message, but the query or
transaction that contained the compare function continues to run.

• Both char_expression1, uchar_expression1, and char_expression2 and
uchar_expression2 must be characters that are encoded in the server’s
default character set.

• Either char_expression1, uchar_expression 1, or char_expression2,
uchar_expression2, or both, can be empty strings:

• If char_expression2 or uchar_expression2 is empty, the function
returns 1.

• If both strings are empty, then they are equal, and the function returns
a 0 value.

• If char_expression1 or uchar_expression 1 is empty, the function
returns a -1.

The compare function does not equate empty strings and strings containing
only spaces, as does. compare uses the sortkey function to generate
collation keys for comparison. Therefore, a truly empty string, a string
with one space, or a string with two spaces will not compare equally.

• If either char_expression1, uchar_expression1; or char_expression2,
uchar_expression2 is NULL, then the result will be NULL.

• If a varchar expression is given as one parameter and a unichar expression
is given as the other, the varchar expression is implicitly converted to
unichar (with possible truncation).

Logical Page Size
Maximum row size
for DOL table

Maximum row size
for APL table

2K (2048 bytes) 1962 1964

4K (4096 bytes 4010 4012

8K (8096 bytes 8096 8108

16K (16384 bytes) 16298 16300

compare

88

• If you do not specify a value for collation_name or collation_ID, compare
assumes binary collation.

• Table 2-3 lists the valid values for collation_name and collation_ID.

Table 2-3: Collation names and IDs

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute compare.

See also Function sortkey

Description Collation name Collation ID

Binary sort binary 50

Default Unicode multilingual default 0

CP 850 Alternative no accent altnoacc 39

CP 850 Alternative lower case first altdict 45

CP 850 Alternative no case preference altnocsp 46

CP 850 Scandinavian dictionary scandict 47

CP 850 Scandinavian no case preference scannocp 48

GB Pinyin gbpinyin n/a

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-9 Turkish dictionary turdict 72

Shift-JIS binary order sjisbin 259

Thai dictionary thaidict 1

CHAPTER 2 Transact-SQL Functions

89

convert
Description Returns the specified value, converted to another datatype or a different

datetime display format.

Syntax convert (datatype [(length) | (precision[, scale])]
[null | not null], expression [, style])

Parameters datatype
is the system-supplied datatype (for example, char(10), unichar (10),
varbinary (50), or int) into which to convert the expression. You cannot use
user-defined datatypes.

When Java is enabled in the database, datatype can also be a Java-SQL class
in the current database.

length
is an optional parameter used with char, nchar, unichar, univarchar, varchar,
nvarchar, binary and varbinary datatypes. If you do not supply a length,
Adaptive Server truncates the data to 30 characters for the character types
and 30 bytes for the binary types. The maximum allowable length for
character and binary expression is 64K.

precision
is the number of significant digits in a numeric or decimal datatype. For float
datatypes, precision is the number of significant binary digits in the
mantissa. If you do not supply a precision, Adaptive Server uses the default
precision of 18 for numeric and decimal datatypes.

scale
is the number of digits to the right of the decimal point in a numeric, or
decimal datatype. If you do not supply a scale, Adaptive Server uses the
default scale of 0.

null | not null
specifies the nullabilty of the result expression. If you do not supply either
null or not null, the converted result has the same nullability as the
expression.

expression
is the value to be converted from one datatype or date format to another.

When Java is enabled in the database, expression can be a value to be
converted to a Java-SQL class.

When Unichar is used as the destination data type, the default length of 30
Unicode values is used if no length is specified.

convert

90

style
is the display format to use for the converted data. When converting money
or smallmoney data to a character type, use a style of 1 to display a comma
after every 3 digits.

When converting datetime or smalldatetime data to a character type, use the
style numbers in Table 2-4 to specify the display format. Values in the
left-most column display 2-digit years (yy). For 4-digit years (yyyy), add
100, or use the value in the middle column.

Table 2-4: Display formats for date/time information

The default values (style 0 or 100), and style 9 or 109 return the century
(yyyy). When converting to char or varchar from smalldatetime, styles that
include seconds or milliseconds show zeros in those positions.

Examples Example 1

select title, convert(char(12), total_sales)
from titles

Example 2

select title, total_sales
from titles
where convert(char(20), total_sales) like "1%"

Example 3 Converts the current date to style “3”, dd/mm/yy:

select convert(char(12), getdate(), 3)

Without century (yy) With century (yyyy) Output

N/A 0 or 100 mon dd yyyy hh:miAM (or PM)

1 101 mm/dd/yy

2 102 yy.mm.dd

3 103 dd/mm/yy

4 104 yy.mm.dd

5 105 dd-mm-yy

6 106 dd mon yy

7 107 mon dd, yy

8 108 hh:mm:ss

N/A 9 or 109 mon dd yyyy hh:mi:ss:mmmAM (or PM)

10 110 dd-mm-yy

11 111 yy/mm/dd

12 112 yymmdd

CHAPTER 2 Transact-SQL Functions

91

Example 4 If the value pubdate can be null, you must use varchar rather than
char, or errors may result:

select convert(varchar(12), pubdate, 3) from titles

Example 5 Returns the integer equivalent of the string “0x00000100”. Results
can vary from one platform to another:

select convert(integer, 0x00000100)

Example 6 Returns the platform-specific bit pattern as a Sybase binary type:

select convert (binary, 10)

Example 7 Returns 1, the bit string equivalent of $1.11:

select convert(bit, $1.11)

Example 8 Creates #tempsales with total_sales of datatype char(100), and does
not allow null values. Even if titles.total_sales was defined as allowing nulls,
#tempsales is created with #tempsales.total_sales not allowing null values:

select title, convert (char(100) not null, total_sales)
into #tempsales
from titles

Usage • convert, a datatype conversion function, converts between a wide variety
of datatypes and reformats date/time and money data for display purposes.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 53.

• convert() generates a domain error when the argument falls outside the
range over which the function is defined. This should happen rarely.

• Use null or not null to specify the nullability of a target column.
Specifically, this can be used with select into to create a new table and
change the datatype and nullability of existing columns in the source table
(See Example 8, above).

• You can use convert to convert an image column to binary or varbinary. You
are limited to the maximum length of the binary datatypes, which is
determined by the maximum column size for your server’s logical page
size. If you do not specify the length, the converted value has a default
length of 30 characters.

• Unichar expressions can be used as a destination data type or they can be
converted to another data type. Unichar expressions can be converted
either explicitly between any other data type supported by the server, or
implicitly.

convert

92

• If length is not specified when unichar is used as a destination type, the
default length of 30 Unicode values is used. If the length of the destination
type is not large enough to accommodate the given expression, as error
message appears.

Conversions involving Java classes

• When Java is enabled in the database, you can use convert to change
datatypes in these ways:

• Convert Java object types to SQL datatypes.

• Convert SQL datatypes to Java types.

• Convert any Java-SQL class installed in Adaptive Server to any other
Java-SQL class installed in Adaptive Server if the compile-time
datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.

• See Java in Adaptive Server Enterprise for a list of allowed datatype
mappings and more information about datatype conversions involving
Java classes.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute convert.

See also Datatypes User-defined datatypes

Functions hextoint, inttohex

CHAPTER 2 Transact-SQL Functions

93

cos
Description Returns the cosine of the specified angle.

Syntax cos(angle)

Parameters angle
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select cos(44)

0.999843

Usage • cos, a mathematical function, returns the cosine of the specified angle, in
radians.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension

Permissions Any user can execute cos.

See also Functions acos, degrees, radians, sin

cot

94

cot
Description Returns the cotangent of the specified angle.

Syntax cot(angle)

Parameters angle
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select cot(90)

-0.501203

Usage • cot, a mathematical function, returns the cotangent of the specified angle,
in radians.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute cot.

See also Functions degrees, radians, sin

CHAPTER 2 Transact-SQL Functions

95

count
Description Returns the number of (distinct) non-null values or the number of selected

rows.

Syntax count([all | distinct] expression)

Parameters all
applies count to all values. all is the default.

distinct
eliminates duplicate values before count is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions” on page 219.

Examples Example 1 Finds the number of different cities in which authors live:

select count(distinct city)
from authors

Example 2 Lists the types in the titles table, but eliminates the types that
include only one book or none:

select type
from titles
group by type
having count(*) > 1

Usage • count, an aggregate function, finds the number of non-null values in a
column. For general information about aggregate functions, see
“Aggregate functions” on page 47.

• When distinct is specified, count finds the number of unique non-null
values. count can be used with all datatypes, including unichar, but cannot
be used with text and image. Null values are ignored when counting.

• count(column_name) returns a value of 0 on empty tables, on columns that
contain only null values, and on groups that contain only null values.

• count(*) finds the number of rows. count(*) does not take any arguments,
and cannot be used with distinct. All rows are counted, regardless of the
presence of null values.

count

96

• When tables are being joined, include count(*) in the select list to produce
the count of the number of rows in the joined results. If the objective is to
count the number of rows from one table that match criteria, use
count(column_name).

• count() can be used as an existence check in a subquery. For example:

select * from tab where 0 <
 (select count(*) from tab2 where ...)

However, because count() counts all matching values, exists or in may
return results faster. For example:

select * from tab where exists
 (select * from tab2 where ...)

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute count.

See also Commands compute clause, group by and having clauses, select, where
clause

CHAPTER 2 Transact-SQL Functions

97

curunreservedpgs
Description Returns the number of free pages in the specified disk piece.

Syntax curunreservedpgs(dbid, lstart, unreservedpgs)

Parameters dbid
is the ID for a database. These are stored in the db_id column of
sysdatabases.

lstart
is a page within the disk piece for which pages are to be returned.

unreservedpgs
is the default value to return if the dbtable is presently unavailable for the
requested database.

Examples Example 1 Returns the database name, device name, and the number of
unreserved pages for each device fragment:

select db_name(dbid), d.name,
 curunreservedpgs(dbid, lstart, unreservedpgs)
 from sysusages u, sysdevices d
 where d.low <= u.size + vstart
 and d.high >= u.size + vstart -1
 and d.status &2 = 2

master master 184
master master 832
tempdb master 464
tempdb master 1016
tempdb master 768
model master 632
sybsystemprocs master 1024
pubs2 master 248

Example 2 Displays the number of free pages on the segment for dbid starting
on sysusages.lstart:

select curunreservedpgs (dbid, sysusages.lstart, 0)

Usage • curunreservedpgs, a system function, returns the number of free pages in a
disk piece. For general information about system functions, see “System
functions” on page 66.

• If the database is open, the value is taken from memory; if the database is
not in use, the value is taken from the unreservedpgs column in sysusages.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute curunreservedpgs.

curunreservedpgs

98

See also Functions db_id, lct_admin

CHAPTER 2 Transact-SQL Functions

99

data_pgs
Description Returns the number of pages used by the specified table or index.

Syntax data_pgs([dbid], object_id, {data_oam_pg_id | index_oam_pg_id}

Parameters dbid
is the dbid of the database that contains the data pages.

object_id
is an object ID for a table, view, or other database object. These are stored
in the id column of sysobjects.

data_oam_pg_id
is the page ID for a data OAM page, stored in the doampg column of
sysindexes.

index_oam_pg_id
is the page ID for an index OAM page, stored in the ioampg column of
sysindexes.

Examples Example 1 Estimates the number of data pages used by user tables (which have
object IDs that are greater than 100). An indid of 0 indicates a table without a
clustered index; an indid of 1 indicates a table with a clustered index. This
example does not include nonclustered indexes or text chains:

select sysobjects.name,
Pages = data_pgs(sysindexes.id, doampg)
from sysindexes, sysobjects
where sysindexes.id = sysobjects.id
 and sysindexes.id > 100
 and (indid = 1 or indid = 0)

Example 2 Estimates the number of data pages used by user tables (which
have object IDs that are greater than 100), nonclustered indexes, and page
chains:

select sysobjects.name,
Pages = data_pgs(sysindexes.id, ioampg)
from sysindexes, sysobjects
where sysindexes.id = sysobjects.id
 and sysindexes.id > 100
 and (indid > 1)

Usage • data_pgs, a system function, returns the number of pages used by a table
(doampg) or index (ioampg). You must use this function in a query run
against the sysindexes table. For more information on system functions,
see “System functions” on page 66.

data_pgs

100

• data_pgs works only on objects in the current database.

• The result does not include pages used for internal structures. To see a
report of the number of pages for the table, clustered index, and internal
structures, use used_pgs.

Accuracy of results

• If used on the transaction log (syslogs), the result may not be accurate and
can be off by up to 16 pages.

Errors

• Instead of returning an error, data_pgs returns 0 if any of the following are
true:

• The object_id does not exist in sysobjects

• The control_page_id does not belong to the table specified by
object_id

• The object_id is -1

• The page_id is -1

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute data_pgs.

See also Functions object_id, rowcnt

System procedure sp_spaceused

CHAPTER 2 Transact-SQL Functions

101

datalength
Description Returns the actual length, in bytes, of the specified column or string.

Syntax datalength(expression)

Parameters expression
is a column name, variable, constant expression, or a combination of any of
these that evaluates to a single value. It can be of any datatype. expression
is usually a column name. If expression is a character constant, it must be
enclosed in quotes.

Examples select Length = datalength(pub_name)
from publishers

Length

13
16
20

Finds the length of the pub_name column in the publishers table.

Usage • datalength, a system function, returns the length of expression in bytes.

• datalength finds the actual length of the data stored in each row. datalength
is useful on varchar univarhcar, varbinary, text and image datatypes, since
these datatypes can store variable lengths (and do not store trailing
blanks). When a char or unichar value is declared to allow nulls, Adaptive
Server stores it internally as varchar or univarchar. For all other datatypes,
datalength reports their defined length.

• datalength of any NULL data returns NULL.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute datalength.

See also Functions char_length, col_length

dateadd

102

dateadd
Description Returns the date produced by adding a given number of years, quarters, hours,

or other date parts to the specified date.

Syntax dateadd(date_part, integer, date)

Parameters date_part
is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts” on page 61.

numeric
is an integer expression.

date
is either the function getdate, a character string in one of the acceptable date
formats, an expression that evaluates to a valid date format, or the name of
a datetime column.

Examples Displays the new publication dates when the publication dates of all the books
in the titles table slip by 21 days:

select newpubdate = dateadd(day, 21, pubdate)
from titles

Usage • dateadd, a date function, adds an interval to a specified date. For more
information about date functions, see “Date functions” on page 61.

• dateadd takes three arguments: the date part, a number, and a date. The
result is a datetime value equal to the date plus the number of date parts.

If the date argument is a smalldatetime value, the result is also a
smalldatetime. You can use dateadd to add seconds or milliseconds to a
smalldatetime, but it is meaningful only if the result date returned by
dateadd changes by at least one minute.

• Use the datetime datatype only for dates after January 1, 1753. datetime
values must be enclosed in single or double quotes. Use char, nchar,
varchar or nvarchar for earlier dates. Adaptive Server recognizes a wide
variety of date formats. For more information, see “User-defined
datatypes” on page 40 and “Datatype conversion functions” on page 53.

Adaptive Server automatically converts between character and datetime
values when necessary (for example, when you compare a character value
to a datetime value).

• Using the date part weekday or dw with dateadd is not logical, and
produces spurious results. Use day or dd instead.

Standards SQL92 – Compliance level: Transact-SQL extension.

CHAPTER 2 Transact-SQL Functions

103

Permissions Any user can execute dateadd.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions datediff, datename, datepart, getdate

datediff

104

datediff
Description Returns the difference between two dates.

Syntax datediff(datepart, date1, date2)

Parameters datepart
is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts” on page 61.

date1
can be either the function getdate, a character string in an acceptable date
format, an expression that evaluates to a valid date format, or the name of a
datetime column.

date2
can be either the function getdate, a character string in an acceptable date
format, an expression that evaluates to a valid date format, or the name of a
datetime or smalldatetime column.

Examples This query finds the number of days that have elapsed between pubdate and the
current date (obtained with the getdate function):

select newdate = datediff(day, pubdate, getdate())
from titles

Usage • datediff, a date function, calculates the number of date parts between two
specified dates. For more information about date functions, see “Date
functions” on page 61.

• datediff takes three arguments. The first is a date part. The second and third
are dates. The result is a signed integer value equal to date2 - date1, in date
parts.

• datediff produces results of datatype int, and causes errors if the result is
greater than 2,147,483,647. For milliseconds, this is approximately 24
days, 20:31.846 hours. For seconds, this is 68 years, 19 days, 3:14:07
hours.

• datediff results are always truncated, not rounded, when the result is not an
even multiple of the date part. For example, using hour as the date part, the
difference between “4:00AM” and “5:50AM” is 1.

When you use day as the date part, datediff counts the number of midnights
between the two times specified. For example, the difference between
January 1, 1992, 23:00 and January 2, 1992, 01:00 is 1; the difference
between January 1, 1992 00:00 and January 1, 1992, 23:59 is 0.

CHAPTER 2 Transact-SQL Functions

105

• The month datepart counts the number of first-of-the-months between two
dates. For example, the difference between January 25 and February 2 is
1; the difference between January 1 and January 31 is 0.

• When you use the date part week with datediff, you get the number of
Sundays between the two dates, including the second date but not the first.
For example, the number of weeks between Sunday, January 4 and
Sunday, January 11 is 1.

• If smalldatetime values are used, they are converted to datetime values
internally for the calculation. Seconds and milliseconds in smalldatetime
values are automatically set to 0 for the purpose of the difference
calculation.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute datediff.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

datename

106

datename
Description Returns the name of the specified part of a datetime value.

Syntax datename (datepart, date)

Parameters datepart
is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts” on page 61.

date
can be either the function getdate, a character string in an acceptable date
format, an expression that evaluates to a valid date format, or the name of a
datetime or smalldatetime column.

Examples This example assumes a current date of November 20, 2000:

select datename(month, getdate())

November

Usage • datename, a date function, returns the name of the specified part (such as
the month “June”) of a datetime or smalldatetime value, as a character
string. If the result is numeric, such as “23” for the day, it is still returned
as a character string.

• For more information about date functions, see “Date functions” on page
61.

• The date part weekday or dw returns the day of the week (Sunday, Monday,
and so on) when used with datename.

• Since smalldatetime is accurate only to the minute, when a smalldatetime
value is used with datename, seconds and milliseconds are always 0.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute datename.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

CHAPTER 2 Transact-SQL Functions

107

datepart
Description Returns the integer value of the specified part of a datetime value.

Syntax datepart(date_part, date)

Parameters date_part
is a date part. Table 2-5 lists the date parts, the abbreviations recognized by
datepart, and the acceptable values.

Table 2-5: Date parts and their values

When you enter a year as two digits (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is 2001,
32 is 2032, and 49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is 1974, and 99 is 1999.

Milliseconds can be preceded by either a colon or a period. If preceded
by a colon, the number means thousandths of a second. If preceded by
a period, a single digit means tenths of a second, two digits mean
hundredths of a second, and three digits mean thousandths of a second.
For example, “12:30:20:1” means twenty and one-thousandth of a
second past 12:30; “12:30:20.1” means twenty and one-tenth of a
second past 12:30.

Date part Abbreviation Values

year yy 1753 – 9999 (2079 for smalldatetime)

quarter qq 1 – 4

month mm 1 – 12

week wk 1 – 54

day dd 1 – 31

dayofyear dy 1 – 366

weekday dw 1 – 7 (Sun. – Sat.)

hour hh 0 – 23

minute mi 0 – 59

second ss 0 – 59

millisecond ms 0 – 999

calweekofyear cwk 1 – 53

calyearofweek cyr 1753 – 9999

caldayofweek cdw 1 – 7

datepart

108

date
can be either the function getdate, a character string in an acceptable date
format, an expression that evaluates to a valid date format, or the name of a
datetime or smalldatetime column.

Examples Example 1 This example assumes a current date of November 25, 1995:

select datepart(month, getdate())

11

Example 2

select datepart(year, pubdate) from titles where type =
"trad_cook"

1990
1985
1987

Example 3

select datepart(cwk,’1993/01/01’)

53

Example 4

select datepart(cyr,’1993/01/01’)

1992

Example 5

select datepart(cdw,’1993/01/01’)

5

Usage • datepart, a date function, returns an integer value for the specified part of
a datetime value. For more information about date functions, see “Date
functions” on page 61.

CHAPTER 2 Transact-SQL Functions

109

• datepart returns a number that follows ISO standard 8601, which defines
the first day of the week and the first week of the year. Depending on
whether the datepart function includes a value for calweekofyear,
calyearofweek, or caldayorweek, the date returned may be different for the
same unit of time. For example, if Adaptive Server is configured to use US
English as the default language, the following returns 1988:

datepart(cyr, "1/1/1989")

However, the following returns 1989:

datepart(yy, "1/1/1989)

This disparity occurs because the ISO standard defines the first week of
the year as the first week that includes a Thursday and begins with
Monday.

For servers using US English as their default language, the first day of the
week as Sunday, and the first week of the year is the week that contains
January 4th.

• The date part weekday or dw returns the corresponding number when used
with datepart. The numbers that correspond to the names of weekdays
depend on the datefirst setting. Some language defaults (including
us_english) produce Sunday=1, Monday=2, and so on; others produce
Monday=1, Tuesday=2, and so on.The default behavior can be changed on
a per-session basis with set datefirst.

• calweekofyear, which can be abbreviated as cwk, returns the ordinal
position of the week within the year. calyearofweek, which can be
abbreviated as cyr, returns the year in which the week begins.
caldayofweek, which can abbreviated as cdw, returns the ordinal position
of the day within the week. You cannot use calweekofyear, calyearofweek,
and caldayofweek as date parts for dateadd, datediff and datename.

• Since smalldatetime is accurate only to the minute, when a smalldatetime
value is used with datepart, seconds and milliseconds are always 0.

• The values of the weekday date part are affected by the language setting.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute datepart.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datediff, datename, getdate

db_id

110

db_id
Description Returns the ID number of the specified database.

Syntax db_id(database_name)

Parameters database_name
is the name of a database. database_name must be a character expression. If
it is a constant expression, it must be enclosed in quotes.

Examples select db_id("sybsystemprocs")

4

Usage • db_id, a system function, returns the database ID number.

• If you do not specify a database_name, db_id returns the ID number of the
current database.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute db_id.

See also Functions db_name, object_id

CHAPTER 2 Transact-SQL Functions

111

db_name
Description Returns the name of the database whose ID number is specified.

Syntax db_name([database_id])

Parameters database_id
is a numeric expression for the database ID (stored in sysdatabases.dbid).

Examples Example 1 Returns the name of the current database:

select db_name()

Example 2

select db_name(4)

sybsystemprocs

Usage • db_name, a system function, returns the database name.

• If no database_id is supplied, db_name returns the name of the current
database.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute db_name.

See also Functions col_name, db_id, object_name

degrees

112

degrees
Description Returns the size, in degrees, of an angle with the specified number of radians.

Syntax degrees(numeric)

Parameters numeric
is a number, in radians, to convert to degrees.

Examples select degrees(45)

2578

Usage • degrees, a mathematical function, converts radians to degrees. Results are
of the same type as the numeric expression.

For numeric and decimal expressions, the results have an internal
precision of 77 and a scale equal to that of the expression.

When money datatypes are used, internal conversion to float may cause
loss of precision.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute degrees.

See also Functions radians

CHAPTER 2 Transact-SQL Functions

113

difference
Description Returns the difference between two soundex values.

Syntax difference(char_expr1 | uchar_expr1), (char_expr2 | uchar_expr2)

Parameters char_expr1
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

char_expr2
is another character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr1
is a character-type column name, variable, or constant expression of unichar
type.

uchar_expr2
is another character-type column name, variable, or constant expression of
unichar type.

Examples Example 1

select difference("smithers", "smothers")

4

Example 2

select difference("smothers", "brothers")

2

Usage • difference, a string function, returns an integer representing the difference
between two soundex values.

• The difference function compares two strings and evaluates the similarity
between them, returning a value from 0 to 4. The best match is 4.

The string values must be composed of a contiguous sequence of valid
single- or double-byte roman letters.

• If char_expr1, uchar_expr1, or char_expr2, uchar_expr2 is NULL,
returns NULL.

• If a varchar expression is given as one parameter and a unichar expression
is given as the other, the varchar expression is implicitly converted to
unichar (with possible truncation).

difference

114

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute difference.

See also Functions soundex

CHAPTER 2 Transact-SQL Functions

115

exp
Description Returns the value that results from raising the constant to the specified power.

Syntax exp(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select exp(3)

20.085537

Usage • exp, a mathematical function, returns the exponential value of the
specified value.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute exp.

See also Functions log, log10, power

floor

116

floor
Description Returns the largest integer that is less than or equal to the specified value.

Syntax floor(numeric)

Parameters numeric
is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples Example 1

select floor(123)

123

Example 2

select floor(123.45)

123

Example 3

select floor(1.2345E2)

123.000000

Example 4

select floor(-123.45)

-124

Example 5

select floor(-1.2345E2)

-124.000000

Example 6

select floor($123.45)

123.00

CHAPTER 2 Transact-SQL Functions

117

Usage • floor, a mathematical function, returns the largest integer that is less than
or equal to the specified value. Results are of the same type as the numeric
expression.

For numeric and decimal expressions, the results have a precision equal to
that of the expression and a scale of 0.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute floor.

See also Functions abs, ceiling, round, sign

get_appcontext

118

get_appcontext
Description Returns the value of the attribute in a specified context. get_appcontext is a

built-in function provided by the Application Context Facility (ACF). For
more information on the ACF see "Row Level Access Control," in the System
Administration Guide.

Syntax get_appcontext (“context_name”, “attribute_name”)

Parameters context_name
is a row specifying an application context name. It is saved as datatype
char(30).

attribute_name
is a row specifying an application context attribute name. It is saved as
datatype char(30).

Examples Example 1 Shows VALUE1 returned for ATTR1.

select get_appcontext("CONTEXT1", "ATTRI1")

VALUE1

ATTR1 does not exist in CONTEXT2:

select get_appcontext("CONTEXT2", "ATTR1")

Example 2 Shows the result when a user without appropriate permissions
attempts to get the application context.

select get_appcontext("CONTEXT1", "ATTR2", "VALUE1")

Select permission denied on built-in get_appcontext, database dbid

-1

Usage • This function returns 0 for success and -1 for failure.

• If the attribute you require does not exist in the application context,
get_appcontext returns “null.”

• get_appcontext saves attributes as char datatypes. If you are creating an
access rule that compares the attribute value to other datatypes, the rule
should convert the char data to the appropriate datatype.

• All arguments for this function are required.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, and are
stored by ACF.

CHAPTER 2 Transact-SQL Functions

119

See also Functions get_appcontext, list_appcontext, rm_appcontext, set_appcontext

getdate

120

getdate
Description Returns the current system date and time.

Syntax getdate()

Parameters None.

Examples Example 1

select getdate()

Nov 25 1995 10:32AM

Example 2

select datepart(month, getdate())

1

Example 3 These examples assume a current date of November 25, 1995,
10:32 a.m.:

select datename(month, getdate())

November

Usage • getdate, a date function, returns the current system date and time.

• For more information about date functions, see “Date functions” on page
61.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute getdate.

See also Datatypes Date and time datatypes.

Functions dateadd, datediff, datename, datepart

CHAPTER 2 Transact-SQL Functions

121

hextoint
Description Returns the platform-independent integer equivalent of a hexadecimal string.

Syntax hextoint (hexadecimal_string)

Parameters hexadecimal_string
is the hexadecimal value to be converted to an integer. This must be either a
character type column or variable name or a valid hexadecimal string, with
or without a “0x” prefix, enclosed in quotes.

Examples Returns the integer equivalent of the hexadecimal string “0x00000100”. The
result is always 256, regardless of the platform on which it is executed:

select hextoint ("0x00000100")

Usage • hextoint, a datatype conversion function, returns the platform-independent
integer equivalent of a hexadecimal string.

• Use the hextoint function for platform-independent conversions of
hexadecimal data to integers. hextoint accepts a valid hexadecimal string,
with or without a “0x” prefix, enclosed in quotes, or the name of a
character type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The
function always returns the same integer equivalent for a given
hexadecimal string, regardless of the platform on which it is executed.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 53.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute hextoint.

See also Functions convert, inttohex

host_id

122

host_id
Description Returns the host process ID or the client process.

Syntax host_id()

Parameters None.

Examples select host_id()

24711

Usage • host_id, a system function, returns the host process ID of the client process
(not the Server process).

• For general information about system functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute host_id.

See also Function host_name

CHAPTER 2 Transact-SQL Functions

123

host_name
Description Returns the current host computer name of the client process.

Syntax host_name()

Parameters None.

Examples select host_name()

violet

Usage • host_name, a system function, returns the current host computer name of
the client process (not the Server process).

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute host_name.

See also Function host_id

index_col

124

index_col
Description Returns the name of the indexed column in the specified table or view.

Syntax index_col (object_name, index_id, key_# [, user_id])

Parameters object_name
is the name of a table or view. The name can be fully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

index_id
is the number of object_name’s index. This number is the same as the value
of sysindexes.indid.

key_#
is a key in the index. This value is between 1 and sysindexes.keycnt for a
clustered index and between 1 and sysindexes.keycnt+1 for a nonclustered
index.

user_id
is the owner of object_name. If you do not specify user_id, it defaults to the
caller’s user ID.

Examples Finds the names of the keys in the clustered index on table t4:

declare @keycnt integer
select @keycnt = keycnt from sysindexes

where id = object_id("t4")
and indid = 1

while @keycnt > 0
begin

select index_col("t4", 1, @keycnt)
select @keycnt = @keycnt - 1

end

Usage • index_col, a system function, returns the name of the indexed column.

• index_col returns NULL if object_name is not a table or view name.

• For general information about system functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute index_col.

See also Functions object_id

System procedures sp_helpindex

CHAPTER 2 Transact-SQL Functions

125

index_colorder
Description Returns the column order.

Syntax index_colorder (object_name, index_id, key_#
[, user_id])

Parameters object_name
is the name of a table or view. The name can be fully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

index_id
is the number of object_name’s index. This number is the same as the value
of sysindexes.indid.

key_#
is a key in the index. Valid values are 1 and the number of keys in the index.
The number of keys is stored in sysindexes.keycnt.

user_id
is the owner of object_name. If you do not specify user_id, it defaults to the
caller’s user ID.

Examples Returns “DESC” because the salesind index on the sales table is in descending
order:

select name, index_colorder("sales", indid, 2)
from sysindexes
where id = object_id ("sales")
and indid > 0

name
------------------------- -------------------------
salesind DESC

Usage • index_colorder, a system function, returns “ASC” for columns in
ascending order or “DESC” for columns in descending order.

• index_colorder returns NULL if object_name is not a table name or if
key_# is not a valid key number.

• For general information about system functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute index_colorder.

inttohex

126

inttohex
Description Returns the platform-independent hexadecimal equivalent of the specified

integer.

Syntax inttohex (integer_expression)

Parameters integer_expression
is the integer value to be converted to a hexadecimal string.

Examples select inttohex (10)

0000000A

Usage • inttohex, a datatype conversion function, returns the platform-independent
hexadecimal equivalent of an integer, without a “0x” prefix.

• Use the inttohex function for platform-independent conversions of integers
to hexadecimal strings. inttohex accepts any expression that evaluates to an
integer. It always returns the same hexadecimal equivalent for a given
expression, regardless of the platform on which it is executed.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 53.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute inttohex.

See also Functions convert, hextoint

CHAPTER 2 Transact-SQL Functions

127

isnull
Description Substitutes the value specified in expression2 when expression1 evaluates to

NULL.

Syntax isnull(expression1, expression2)

Parameters expression
is a column name, variable, constant expression, or a combination of any of
these that evaluates to a single value. It can be of any datatype, including
unichar. expression is usually a column name. If expression is a character
constant, it must be enclosed in quotes.

Examples Returns all rows from the titles table, replacing null values in price with 0:

select isnull(price,0)
from titles

Usage • isnull, a system function, substitutes the value specified in expression2
when expression1 evaluates to NULL. For general information about
system functions, see “String functions” on page 64.

• The datatypes of the expressions must convert implicitly, or you must use
the convert function.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute isnull.

See also Function convert

is_sec_service_on

128

is_sec_service_on
Description Returns 1 if the security service is active and 0 if it is not.

Syntax is_sec_service_on(security_service_nm)

Parameters security_service_nm
is the name of the security service.

Examples select is_sec_service_on("unifiedlogin")

Usage • Use is_sec_service_on to determine whether a given security service is
active during the session.

• To find valid names of security services, run this query:

select * from syssecmechs

The result might look something like:

sec_mech_name available_service
------------- --------------------
dce unifiedlogin
dce mutualauth
dce delegation
dce integrity
dce confidentiality
dce detectreplay
dce detectseq

The available_service column displays the security services that are
supported by Adaptive Server.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute is_sec_service_on.

See also Function show_sec_services

CHAPTER 2 Transact-SQL Functions

129

lct_admin
Description Manages the last-chance threshold.

Returns the current value of the last-chance threshold.

Aborts transactions in a transaction log that has reached its last-chance
threshold.

Syntax lct_admin({{"lastchance" | "logfull" | "reserved_for_rollbacks"},
database_id
|"reserve", {log_pages | 0 }
| "abort", process-id [, database-id]})

Parameters lastchance
creates a last-chance threshold in the specified database.

logfull
returns 1 if the last-chance threshold has been crossed in the specified
database and 0 if it has not.

reserved_for_rollbacks
determines the number of pages a database currently reserved for rollbacks.

database_id
specifies the database.

reserve
obtains either the current value of the last-chance threshold or the number of
log pages required for dumping a transaction log of a specified size.

log_pages
is the number of pages for which to determine a last-chance threshold.

0
returns the current value of the last-chance threshold. The size of the
last-chance threshold in a database with separate log and data segments does
not vary dynamically. It has a fixed value, based on the size of the
transaction log. The last-chance threshold varies dynamically in a database
with mixed log and data segments.

abort
aborts transactions in a database where the transaction log has reached its
last-chance threshold. Only transactions in LOG SUSPEND mode can be
aborted.

logsegment_freepages
describes the free space available for the log segment. This is the total value
of free space, not per-disk.

lct_admin

130

process-id
The ID (spid) of a process in log-suspend mode. A process is placed in
log-suspend mode when it has open transactions in a transaction log that has
reached its last-chance threshold (LCT).

database-id
the ID of a database whose transaction log has reached its LCT. If process-id
is 0, all open transactions in the specified database are terminated.

Examples Example 1 This creates the log segment last-chance threshold for the database
with dbid 1. It returns the number of pages at which the new threshold resides.
If there was a previous last-chance threshold, it is replaced:

select lct_admin("lastchance", 1)

Example 2 Returns 1 if the last-chance threshold for the database with db_id
of 6 has been crossed, and 0 if it has not:

select lct_admin("logfull", 6)

Example 3 Calculates and returns the number of log pages that would be
required to successfully dump the transaction log in a log containing 64 pages:

select lct_admin("reserve", 64)

16

Example 4 Returns the current last-chance threshold of the transaction log in
the database from which the command was issued:

select lct_admin("reserve", 0)

Example 5 Aborts transactions belonging to process 83. The process must be
in log-suspend mode. Only transactions in a transaction log that has reached its
LCT are terminated:

select lct_admin("abort", 83)

Example 6 Aborts all open transactions in the database with database ID 5.
This form awakens any processes that may be suspended at the log segment
last-chance threshold:

select lct_admin("abort", 0, 5)

Example 7 Determines the number of pages reserved for rollbacks in the
pubs2 database, which has a pubid of 5:

select lct_admin("reserved_for_rollbacks", 5, 0)

Example 8 Describes the free space available for a database with database ID
of 4:

CHAPTER 2 Transact-SQL Functions

131

select lct_admin("logsegment_freepages", 4)

Usage • lct_admin, a system function, manages the log segment’s last-chance
threshold. For general information about system functions, see “String
functions” on page 64.

• If lct_admin(“lastchance”, dbid) returns zero, the log is not on a separate
segment in this database, so no last-chance threshold exists.

• Whenever you create a database with a separate log segment, the server
creates a default last chance threshold that defaults to calling
sp_thresholdaction. This happens even if a procedure called
sp_thresholdaction does not exist on the server at all.

If your log crosses the last-chance threshold, Adaptive Server suspends
activity, tries to call sp_thresholdaction, finds it does not exist, generates
an error, then leaves processes suspended until the log can be truncated.

• To terminate the oldest open transaction in a transaction log that has
reached its LCT, enter the ID of the process that initiated the transaction.

• To terminate all open transactions in a transaction log that has reached its
LCT, enter 0 as the process_id, and specify a database ID in the
database-id parameter.

• For more information, see the System Administration Guide.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only a System Administrator can execute lct_admin abort. Any user can
execute the other lct_admin options.

See also Command dump transaction

Function curunreservedpgs

System procedures sp_thresholdaction

license_enabled

132

license_enabled
Description Returns 1 if a feature’s license is enabled, 0 if the license is not enabled, or null

if you specify an invalid license name.

Syntax license_enabled("ase_server" | "ase_ha" | "ase_dtm" | "ase_java" |
"ase_asm")

Parameters ase_server
specifies the license for Adaptive Server.

ase_ha
specifies the license for the Adaptive Server high availability feature.

ase_dtm
specifies the license for Adaptive Server distributed transaction
management features.

ase_java
specifies the license for the Adaptive Server Java feature.

ase_asm
specifies the license for Adaptive Server advanced security mechanism.

Examples Indicates that the license for the Adaptive Server distributed transaction
management feature is enabled:

select license_enabled("ase_dtm")

1

Usage • For information about installing license keys for Adaptive Server features,
see your Installation Guide.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute license_enabled.

See also System procedure sp_configure

CHAPTER 2 Transact-SQL Functions

133

list_appcontext
Description Lists all the attributes of all the contexts in the current session. list_appcontext

is a built-in function provided by the Application Context Facility (ACF). For
more information on ACF see "Row Level Access Control" in the System
Administration Guide.

Syntax list_appcontext (["context_name"])

Parameters context_name
is an optional argument that names all the application context attributes in
the session.

Examples This example shows the results when a user without appropriate permissions
attempts to list the application contexts.

select list_appcontext ([context_name])

Context Name: (CONTEXT1)
Attribute Name: (ATTR1) Value: (VALUE2)
Context Name: (CONTEXT2)
Attribute Name: (ATTR1) Value: (VALUE1)

select list_appcontext()

Select permission denied on built-in list_appcontext,
database DBID

-1

Usage • This function returns 0 for success.

• Since built-in functions do not return multiple result sets, the client
application receives list_appcontext returns as messages.

Standards SQL92 – Compliance level: Transact-SQL extension

Permissions Permissions depend on the user profile and the application profile, and are
stored by ACF.

See also Functions get_appcontext, list_appcontext, rm_appcontext, set_appcontext

lockscheme

134

lockscheme
Description Returns the locking scheme of the specified object as a string.

Syntax lockscheme(object_name)

Or

lockscheme(object_id [, db_id])

Parameters object_name
is the name of the object whose locking scheme this function returns.
object_name can also be a fully qualified name.

db_id
the ID of the database specified by object_id.

object_id
the ID of the object whose locking scheme this function returns.

Examples Example 1 Selects the locking scheme for the titles table in the current
database:

select lockscheme("titles")

Example 2 Selects the locking scheme for object_id 224000798 (in this case,
the titles table) from database ID 4 (the pubs2 database):

select lockscheme(224000798, 4)

Example 3 Returns the locking scheme for the titles table (note that the
object_name in this example is fully qualified):

select lockscheme(tempdb.ownerjoe.titles)

Usage • lockscheme returns varchar(11) and allows NULLs.

• lockscheme defaults to the current database if:

• You do not provide a fully-qualified object_name.

• You do not provide a db_id

• You provide a null for db_id.

• If the specified object is not a table, lockscheme returns the string “not a
table”.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute lockscheme.

CHAPTER 2 Transact-SQL Functions

135

log
Description Returns the natural logarithm of the specified number.

Syntax log(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select log(20)

2.995732

Usage • log, a mathematical function, returns the natural logarithm of the specified
value.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute log.

See also Functions log10, power

log10

136

log10
Description Returns the base 10 logarithm of the specified number.

Syntax log10(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select log10(20)

1.301030

Usage • log10, a mathematical function, returns the base 10 logarithm of the
specified value.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute log10.

See also Functions log, power

CHAPTER 2 Transact-SQL Functions

137

lower
Description Returns the lowercase equivalent of the specified expression.

Syntax lower(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples select lower(city) from publishers

boston
washington
berkeley

Usage • lower, a string function, converts uppercase to lowercase, returning a
character value.

• lower is the inverse of upper.

• If char_expr or uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute lower.

See also Functions upper

ltrim

138

ltrim
Description Returns the specified expression, trimmed of leading blanks.

Syntax ltrim(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar,
or univarchar type.

Examples select ltrim(" 123")

123

Usage • ltrim, a string function, removes leading blanks from the character
expression. Only values equivalent to the space character in the current
character set are removed.

• If char_expr or uchar_expr is NULL, returns NULL.

• For Unicode expressions, returns the lower-case Unicode equivalent of the
specified expression. Characters in the expression that have no lower-case
equivalent are left unmodified.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute ltrim.

See also Functions rtrim

CHAPTER 2 Transact-SQL Functions

139

max
Description Returns the highest value in an expression.

Syntax max(expression)

Parameters expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery.

Examples Example 1 Returns the maximum value in the discount column of the
salesdetail table as a new column:

select max(discount) from salesdetail

 62.200000

Example 2 Returns the maximum value in the discount column of the
salesdetail table as a new row:

select discount from salesdetail
compute max(discount)

Usage • max, an aggregate function, finds the maximum value in a column or
expression. For general information about aggregate functions, see
“Aggregate functions” on page 47.

• max can be used with exact and approximate numeric, character, and
datetime columns. It cannot be used with bit columns. With character
columns, max finds the highest value in the collating sequence. max
ignores null values. max implicitly converts char datatypes to varchar,
unichar datatypes to univarchar, stripping all trailing blanks.

• unichar data is collated according to the default Unicode sort order.

• Adaptive Server goes directly to the end of the index to find the last row
for max when there is an index on the aggregated column, unless:

• The expression not a column

• The column is not the first column of an index

• There is another aggregate in the query

• There is a group by or where clause

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute max.

max

140

See also Commands compute clause, group by and having clauses, select, where
clause

Functions avg, min

CHAPTER 2 Transact-SQL Functions

141

min
Description Returns the lowest value in a column.

Syntax min(expression)

Parameters expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions” on page 219.

Examples select min(price) from titles
where type = "psychology"

7.00

Usage • min, an aggregate function, finds the minimum value in a column.

• For general information about aggregate functions, see “Aggregate
functions” on page 47.

• min can be used with numeric, character, and datetime columns. It cannot
be used with bit columns. With character columns, min finds the lowest
value in the sort sequence. min implicitly converts char datatypes to
varchar, unichar datatypes to univarchar, stripping all trailing blanks. min
ignores null values. distinct is not available, since it is not meaningful with
min.

• unichar data is collated according to the default Unicode sort order.

• Adaptive Server goes directly to the first qualifying row for min when
there is an index on the aggregated column, unless:

• The expression is not a column

• The column is not the first column of an index

• There is another aggregate in the query

• There is a group by clause

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute min.

See also Commands compute clause, group by and having clauses, select, where
clause

Functions avg, max

mut_excl_roles

142

mut_excl_roles
Description Returns information about the mutual exclusivity between two roles.

Syntax mut_excl_roles (role1, role2 [membership | activation])

Parameters role1
is one user-defined role in a mutually exclusive relationship.

role2
is the other user-defined role in a mutually exclusive relationship.

level
is the level (membership or activation) at which the specified roles are
exclusive.

Examples Shows that the admin and supervisor roles are mutually exclusive:

alter role admin add exclusive membership supervisor
select
mut_excl_roles("admin", "supervisor", "membership")

1

Usage • mut_excl_roles, a system function, returns information about the mutual
exclusivity between two roles. If the System Security Officer defines role1
as mutually exclusive with role2 or a role directly contained by role2,
mut_excl_roles returns 1. If the roles are not mutually exclusive,
mut_excl_roles returns 0.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension

Permissions Any user can execute mut_excl_roles.

See also Commands alter role, create role, drop role, grant, set, revoke

Functions proc_role,role_contain,role_id, role_name

System procedures sp_activeroles, sp_displayroles, sp_role

CHAPTER 2 Transact-SQL Functions

143

object_id
Description Returns the object ID of the specified object.

Syntax object_id(object_name)

Parameters object_name
is the name of a database object, such as a table, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the
database and owner name). Enclose the object_name in quotes.

Examples Example 1

select object_id("titles")

208003772

Example 2

select object_id("master..sysobjects")

1

Usage • object_id, a system function, returns the object’s ID. Object IDs are stored
in the id column of sysobjects.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute object_id.

See also Functions col_name, db_id, object_name

System procedure sp_help

object_name

144

object_name
Description Returns the name of the object whose object ID is specified.

Syntax object_name(object_id[, database_id])

Parameters object_id
is the object ID of a database object, such as a table, view, procedure, trigger,
default, or rule. Object IDs are stored in the id column of sysobjects.

database_id
is the ID for a database if the object is not in the current database. Database
IDs are stored in the db_id column of sysdatabases.

Examples Example 1

select object_name(208003772)

titles

Example 2

select object_name(1, 1)

sysobjects

Usage • object_name, a system function, returns the object’s name.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute object_name.

See also Functions col_name, db_id, object_id

System procedures sp_help

CHAPTER 2 Transact-SQL Functions

145

pagesize
Description Returns the page size, in bytes, for the specified object.

Syntax pagesize(object_name [, index_name])
or,
pagesize(object_id [,db_id [, index_id]])

Parameters object_name
the name of the object whose page size this function returns.

index_name
indicates the name of the index whose pagesize you want returned.

object_id
the ID of the object whose page size this function returns.

db_id
the ID of the database in which the object with object_name resides.

index_id
the ID of the index whose page size you want returned.

Examples Example 1 Selects the pagesize for the title_id index in the current database.

select pagesize("title", "title_id")

Example 2 The following returns the page size of the data layer for the object
with object_id 1234 and the database with a db_id of 2 (the last example
defaults to the current database):

select pagesize(1234,2, null)
select pagesize(1234,2)
select pagesize(1234)

Example 3 The following all default to the current database:

select pagesize(1234, null, 2)
select pagesize(1234)

Example 4 Selects the pagesize for the titles table (object_id 224000798) from
the pubs2 database (db_id 4):

select pagesize(224000798, 4)

Example 5 Returns the pagesize for the non-clustered index’s pages table
mytable, residing in the current database:

pagesize(object_id(‘mytable’), NULL, 2)

Example 6 Returns the page size for object titles_clustindex from the current
database:

pagesize

146

select pagesize("titles", "titles_clustindex")

Usage • pagesize() defaults to the data layer if you do not provide an index name
or index_id (for example, select pagesize("t1”)) of if you use the
word “null” as a parameter (for example, select pagesize("t1",
null).

• If the specified object is not an object requiring physical data storage for
pages (for example, if you provide the name of a view), pagesize() returns
zero.

• If the specified object does not exist, pagesize() returns NULL.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute pagesize().

CHAPTER 2 Transact-SQL Functions

147

patindex
Description Returns the starting position of the first occurrence of a specified pattern.

Syntax patindex("%pattern%", char_expr|uchar_expr [, using
{bytes | characters | chars}])

Parameters pattern
is a character expression of the char or varchar datatype that may include any
of the pattern-match wildcard characters supported by Adaptive Server. The
% wildcard character must precede and follow pattern (except when
searching for first or last characters). For a description of the wildcard
characters that can be used in pattern, see “Pattern matching with wildcard
characters” on page 235.

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar,
or univarchar type.

using
specifies a format for the starting position.

bytes
returns the offset in bytes.

chars or characters
returns the offset in characters (the default).

Examples Example 1 Selects the author ID and the starting character position of the word
“circus” in the copy column:

select au_id, patindex("%circus%", copy)
from blurbs

au_id
----------- -----------
486-29-1786 0
648-92-1872 0
998-72-3567 38
899-46-2035 31
672-71-3249 0
409-56-7008 0

Example 2

select au_id, patindex("%circus%", copy,

patindex

148

using chars)
from blurbs

Example 3 The same as Example 1:

select au_id, patindex("%circus%", copy,
using chars)

from blurbs

Example 4 Finds all the rows in sysobjects that start with “sys” and whose
fourth character is “a”, “b”, “c”, or “d”:

select name
from sysobjects
where patindex("sys[a-d]%", name) > 0

name

sysalternates
sysattributes
syscharsets
syscolumns
syscomments
sysconfigures
sysconstraints
syscurconfigs
sysdatabases
sysdepends
sysdevices

Usage • patindex, a string function, returns an integer representing the starting
position of the first occurrence of pattern in the specified character
expression, or a zero if pattern is not found.

• patindex can be used on all character data, including text and image data.

• By default, patindex returns the offset in characters; to return the offset in
bytes (multibyte character strings), specify using bytes.

• Include percent signs before and after pattern. To look for pattern as the
first characters in a column, omit the preceding %. To look for pattern as
the last characters in a column, omit the trailing %.

• If char_expr or uchar_expr is NULL, returns 0.

• If a varchar expression is given as one parameter and a unichar expression
is given as the other, the varchar expression is implicitly converted to
unichar (with possible truncation).

CHAPTER 2 Transact-SQL Functions

149

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute patindex.

See also Functions charindex, substring

pi

150

pi
Description Returns the constant value 3.1415926535897936.

Syntax pi()

Parameters None

Examples select pi()

3.141593

Usage • pi, a mathematical function, returns the constant value of
3.1415926535897931.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute pi.

See also Functions degrees, radians

CHAPTER 2 Transact-SQL Functions

151

power
Description Returns the value that results from raising the specified number to a given

power.

Syntax power(value, power)

Parameters value
is a numeric value.

power
is an exact numeric, approximate numeric, or money value.

Examples select power(2, 3)

8

Usage • power, a mathematical function, returns the value of value raised to the
power power. Results are of the same type as value.

For expressions of type numeric or decimal, the results have an internal
precision of 77 and a scale equal to that of the expression.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute power.

See also Functions exp, log, log10

proc_role

152

proc_role
Description Returns information about whether the user has been granted the specified role.

Syntax proc_role ("role_name")

Parameters role_name
is the name of a system or user-defined role.

Examples Example 1 Creates a procedure to check if the user is a System Administrator:

create procedure sa_check as
if (proc_role("sa_role") > 0)
begin

return(1)
end
print "You are a System Administrator."

Example 2 Checks that the user has been granted the System Security Officer
role:

select proc_role("sso_role")

Example 3 Checks that the user has been granted the Operator role:

select proc_role("oper_role")

Usage • proc_role, a system function, checks whether an invoking user has been
granted, and has activated, the specified role.

• proc_role returns 0 if any of the following are true:

• the user has not been granted the specified role

• the user has not been granted a role which contains the specified role

• the user has been granted, but has not activated, the specified role

• proc_role returns 1 if the invoking user has been granted, and has activated,
the specified role.

• proc_role returns 2 if the invoking user has a currently active role, which
contains the specified role.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute proc_role.

See also Commands alter role, create role, drop role, grant, set, revoke

Functions mut_excl_roles, role_contain, role_id, role_name, show_role

CHAPTER 2 Transact-SQL Functions

153

ptn_data_pgs
Description Returns the number of data pages used by a partition.

Syntax ptn_data_pgs(object_id, partition_id)

Parameters object_id
is the object ID for a table, stored in the id column of sysobjects, sysindexes,
and syspartitions.

partition_id
is the partition number of a table.

Examples select ptn_data_pgs(object_id("salesdetail"), 1)

5

Usage • ptn_data_pgs, a system function, returns the number of data pages in a
partitioned table.

• Use the object_id function to get an object’s ID, and use sp_helpartiton to
list the partitions in a table.

• The data pages returned by ptn_data_pgs may be inaccurate. Use the
update partition statistics, dbcc checktable, dbcc checkdb, or dbcc checkalloc
commands before using ptn_data_pgs to get the most accurate value.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only the table owner can execute ptn_data_pgs.

See also Commands update partition statistics, dbcc

Functions data_pgs, object_id

System procedures sp_helpartition

radians

154

radians
Description Returns the size, in radians, of an angle with the specified number of degrees.

Syntax radians(numeric)

Parameters numeric
is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples select radians(2578)

44

Usage • radians, a mathematical function, converts degrees to radians. Results are
of the same type as numeric.

For expressions of type numeric or decimal, the results have an internal
precision of 77 and a scale equal to that of the numeric expression.

When money datatypes are used, internal conversion to float may cause
loss of precision.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute radians.

See also Function degrees

CHAPTER 2 Transact-SQL Functions

155

rand
Description Returns a random value between 0 and 1, which is generated using the

specified seed value.

Syntax rand([integer])

Parameters integer
is any integer (tinyint, smallint or int) column name, variable, constant
expression, or a combination of these.

Examples Example 1

select rand()

0.395740

Example 2

declare @seed int
select @seed=100
select rand(@seed)

0.000783

Usage • rand, a mathematical function, returns a random float value between 0 and
1, using the optional integer as a seed value.

• The rand function uses the output of a 32-bit pseudo-random integer
generator. The integer is divided by the maximum 32-bit integer to give a
double value between 0.0 and 1.0. The rand function is seeded randomly
at server start-up, so getting the same sequence of random numbers is
unlikely, unless the user first initializes this function with a constant seed
value. The rand function is a global resource. Multiple users calling the
rand function progress along a single stream of pseudo-random values. If
a repeatable series of random numbers is needed, the user must assure that
the function is seeded with the same value initially and that no other user
calls rand while the repeatable sequence is desired.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute rand.

See also Datatypes Approximate numeric datatypes

replicate

156

replicate
Description Returns a string consisting of the specified expression repeated a given number

of times.

Syntax replicate (char_expr | uchar_expr, integer_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Examples select replicate("abcd", 3)

abcdabcdabcd

Usage • replicate, a string function, returns a string with the same datatype as
char_expr, or uchar_expr containing the same expression repeated the
specified number of times or as many times as will fit into a 64K-space,
whichever is less.

• If char_expr or uchar_expr is NULL, returns a single NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute replicate.

See also Functions stuff

CHAPTER 2 Transact-SQL Functions

157

reserved_pgs
Description Returns the number of pages allocated to the specified table or index, and

reports pages used for internal structures.

Syntax reserved_pgs(object_id, {doampg | ioampg})

Parameters object_id
is a numeric expression that is an object ID for a table, view, or other
database object. These are stored in the id column of sysobjects.

doampg | ioampg
specifies table (doampg) or index (ioampg).

Examples Returns the page count for the syslogs table:

select reserved_pgs(id, doampg)
from sysindexes where id =

object_id("syslogs")

534

Usage • reserved_pgs, a system function:

• Returns the number of pages allocated to a table or an index

• Reports pages used for internal structures

• Works only on objects in the current database

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute reserved_pgs.

See also Commands update statistics

Functions data_pgs

reverse

158

reverse
Description Returns the specified string with characters listed in reverse order.

Syntax reverse(expression | uchar_expr)

Parameters expression
is a character or binary-type column name, variable, or constant expression
of char, varchar, nchar, nvarchar, binary, or varbinary type.

uchar_expr
is a character or binary-type column name, variable, or constant expression
of unichar or univarchar type.

Examples Example 1

select reverse("abcd")

dcba

Example 2

select reverse(0x12345000)

0x00503412

Usage • reverse, a string function, returns the reverse of expression.

• If expression is NULL, returns NULL.

• Surrogate pairs are treated as indivisible and are not reversed.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute reverse.

See also Functions lower, upper

CHAPTER 2 Transact-SQL Functions

159

right
Description The rightmost part of the expression with the specified number of characters.

Syntax right(expression, integer_expr)

Parameters expression
is a character or binary-type column name, variable, or constant expression
of char, varchar, nchar, unichar, nvarchar, univarchar, binary, or varbinary type.

integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Examples Example 1

select right("abcde", 3)

cde

Example 2

select right("abcde", 2)

--
de

Example 3

select right("abcde", 6)

abcde

Example 4

select right(0x12345000, 3)

0x345000

Example 5

select right(0x12345000, 2)

0x5000

Example 6

select right(0x12345000, 6)

0x12345000

right

160

Usage • right, a string function, returns the specified number of characters from the
rightmost part of the character or binary expression.

• If the specified rightmost part begins with the second surrogate of a pair
(the low surrogate), the return value starts with the next full character.
Therefore, one less character is returned.

• The return value has the same datatype as the character or binary
expression.

• If expression is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension

Permissions Any user can execute right.

See also Functions rtrim, substring

CHAPTER 2 Transact-SQL Functions

161

rm_appcontext
Description Removes a specific application context, or all application contexts.

rm_appcontext is a function provided by the Application Context Facility
(ACF). For more information about ACF, see "Row Level Access Control," in
the System Administration Guide.

Syntax rm_appcontext (“context_name”, “attribute_name”)

Parameters context_name
is a row specifying an application context name. It is saved as datatype
char(30).

attribute_name
is a row specifying an application context attribute name. It is saved as
datatype char(30).

Examples Example 1 These examples show how to remove an application context by
specifying some or all attributes.

select rm_appcontext("CONTEXT1", "*")

0

select rm_appcontext("*", "*")

0

select rm_appcontext("NON_EXISTING_CTX","ATTR")

-1

Example 2 This example shows the result when a user without appropriate
permissions attempts to remove an application context.

select rm_appcontext("CONTEXT1","ATTR2")

-1

Usage • This function always returns 0 for success.

• All the arguments for this function are required.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, which are
stored by ACF.

See also Functions get_appcontext, set_appcontext, list_appcontext

role_contain

162

role_contain
Description Returns 1 if role2 contains role1.

Syntax role_contain("role1", "role2")

Parameters role1
is the name of a system or user-defined role.

role2
is the name of another system or user-defined role.

Examples Example 1

select role_contain("intern_role", "doctor_role")

1

Example 2

select role_contain("specialist_role", "intern_role")

0

Usage • role_contain, a system function, returns 1 if role1 is contained by role2.

• For more information about contained roles and role hierarchies, see the
System Administration Guide.

• For more information about system functions, see “System functions” on
page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute role_contain.

See also Functions mut_excl_roles,proc_role,role_id, role_name

Commands alter role

System procedures sp_activeroles, sp_displayroles, sp_role

CHAPTER 2 Transact-SQL Functions

163

role_id
Description Returns the system role ID of the role whose name you specify.

Syntax role_id("role_name")

Parameters role_name
is the name of a system or user-defined role. Role names and role IDs are
stored in the syssrvroles system table.

Examples Example 1 Returns the system role ID of sa_role:

select role_id("sa_role")

0

Example 2 Returns the system role ID of the “intern_role”:

select role_id("intern_role")

6

Usage • role_id, a system function, returns the system role ID (srid). System role
IDs are stored in the srid column of the syssrvroles system table.

• If the role_name is not a valid role in the system, Adaptive Server returns
NULL.

• For more information about roles, see the System Administration Guide.

• For more information about system functions, see “System functions” on
page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute role_id.

See also Functions mut_excl_roles,proc_role,role_contain, role_name

role_name

164

role_name
Description Returns the name of a role whose system role ID you specify.

Syntax role_name(role_id)

Parameters role_id
is the system role ID (srid) of the role. Role names are stored in syssrvroles.

Examples select role_name(01)

sso_role

Usage • role_name, a system function, returns the role name.

• For more information about system functions, see “System functions” on
page 66.

Standards SQL92 – Compliance level: Transact-SQL extension

Permissions Any user can execute role_name.

See also Functions mut_excl_roles,proc_role,role_contain, role_id

CHAPTER 2 Transact-SQL Functions

165

round
Description Returns the value of the specified number, rounded to a given number of

decimal places.

Syntax round(number, decimal_places)

Parameters number
is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

decimal_places
is the number of decimal places to round to.

Examples Example 1

select round(123.4545, 2)

123.4500

Example 2

select round(123.45, -2)

100.00

Example 3

select round(1.2345E2, 2)

123.450000

Example 4

select round(1.2345E2, -2)

100.000000

Usage • round, a mathematical function, rounds the number so that it has
decimal_places significant digits.

• A positive decimal_places determines the number of significant digits to
the right of the decimal point; a negative decimal_places, the number of
significant digits to the left of the decimal point.

• Results are of the same type as number and, for numeric and decimal
expressions, have an internal precision equal to the precision of the first
argument plus 1 and a scale equal to that of number.

round

166

• round always returns a value. If decimal_places is negative and exceeds
the number of significant digits in number, Adaptive Server returns a
result of 0. (This is expressed in the form 0.00, where the number of zeros
to the right of the decimal point is equal to the scale of numeric.) For
example, the following returns a value of 0.00:

select round(55.55, -3)

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute round.

See also Functions abs, ceiling, floor, sign, str

CHAPTER 2 Transact-SQL Functions

167

rowcnt
Description Returns an estimate of the number of rows in the specified table.

Syntax rowcnt(sysindexes.doampg)

Parameters sysindexes.doampg
is the row count maintained in sysindexes.

Examples select name, rowcnt(sysindexes.doampg)
from sysindexes
where name in

(select name from sysobjects where type = "U")

name
------------------------------ -----------
roysched 87
salesdetail 116
stores 7
discounts 4
au_pix 0
blurbs 6

Usage • rowcnt, a system function, returns the estimated number of rows in a table.

• The value returned by rowcnt can vary unexpectedly when Adaptive
Server reboots and recovers transactions. The value is most accurate after
running one of the following commands:

• dbcc checkalloc

• dbcc checkdb

• dbcc checktable

• update all statistics

• update statistics

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension

Permissions Any user can execute rowcnt.

See also Catalog stored procedures sp_statistics

Commands dbcc, update all statistics, update statistics

Function data_pgs

rowcnt

168

System procedures sp_helpartition, sp_spaceused

CHAPTER 2 Transact-SQL Functions

169

rtrim
Description Returns the specified expression, trimmed of trailing blanks.

Syntax rtrim(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar,
or univarchar type.

Examples select rtrim("abcd ")

abcd

Usage • rtrim, a string function, removes trailing blanks.

• For Unicode, a blank is defined as the Unicode value U+0020.

• If char_expr or uchar_expr is NULL, returns NULL.

• Only values equivalent to the space character in the current character set
are removed.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute rtrim.

See also Functions ltrim

set_appcontext

170

set_appcontext
Description Sets an application context name, attribute name, and attribute value for a user

session, defined by the attributes of a specified application. set_appcontext is a
built-in function that the Application Context Facility (ACF) provides. For
more information on the Application Context Facility see "Row Level Access
Control" in the System Administration Guide.

Syntax set_appcontext (“context_name, “attribute_name”, “attribute_value”)

Parameters context_name
is a row that specifies an application context name. It is saved as the datatype
char(30).

attribute_name
is a row that specifies an application context attribute name. It is saved as
the datatype char(30).

attribute_value
is a row that specifies and application attribute value. It is saved as the
datatype char(2048).

Examples Example 1 Creates an application context called CONTEXT1, with an
attribute ATTR1 that has the value VALUE1.

select set_appcontext ("CONTEXT1", "ATTR1", "VALUE1")

0

Attempting to override the existing application context created causes the
following:

select set_appcontext("CONTEXT1", "ATTR1", "VALUE1")

-1

Example 2 Shows set_appcontext including a datatype conversion in the
value.

declare@numericvarchar varchar(25)
select @numericvar = "20"
select set_appcontext ("CONTEXT1", "ATTR2",
convert(char(20), @numericvar))

0

Example 3 Shows the result when a user without appropriate permissions
attempts to set the application context.

CHAPTER 2 Transact-SQL Functions

171

select set_appcontext("CONTEXT1", "ATTR2", "VALUE1")

-1

Usage • This function returns 0 for success and -1 for failure.

• If you set values that already exist in the current session, set_appcontext
returns -1.

• This function cannot override the values of an existing application context.
If you want to assign new values to a context, remove the context and re-
create it with new values.

• set_appcontext saves attributes as char datatypes. If you are creating an
access rule that must compare the attribute value to another datatype, the
rule should convert the char data to the appropriate datatype.

• All the arguments for this function are required.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, stored by
ACF.

See also Functions get_appcontext, list_appcontext, rm_appcontext

show_role

172

show_role
Description Shows the login’s currently active system-defined roles.

Syntax show_role()

Parameters None.

Examples Example 1

select show_role()

sa_role sso_role oper_role replication_role

Example 2

if charindex("sa_role", show_role()) >0
begin

print "You have sa_role"
end

Usage • show_role, a system function, returns the login’s current active
system-defined roles, if any (sa_role, sso_role, oper_role, or
replication_role). If the login has no roles, show_role returns NULL.

• When a Database Owner invokes show_role after using setuser, show_role
displays the active roles of the Database Owner, not the user impersonated
with setuser.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute show_role.

See also Commands alter role, create role, drop role, grant, set, revoke

Functions proc_role, role_contain

System procedures sp_activeroles, sp_displayroles, sp_role

CHAPTER 2 Transact-SQL Functions

173

show_sec_services
Description Lists the security services that are active for the session.

Syntax show_sec_services()

Parameters None.

Examples Shows that the user’s current session is encrypting data and performing replay
detection checks:

select show_sec_services()

encryption, replay_detection

Usage • Use show_sec_services to list the security services that are active during
the session.

• If no security services are active, show_sec_services returns NULL.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute show_sec_services.

See also Functions is_sec_service_on

sign

174

sign
Description Returns the sign (+1 for positive, 0, or -1 for negative) of the specified value.

Syntax sign(numeric)

Parameters numeric
is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples Example 1

select sign(-123)

-1

Example 2

select sign(0)

0

Example 3

select sign(123)

 1

Usage • sign, a mathematical function, returns the positive (+1), zero (0), or
negative (-1).

• Results are of the same type, and have the same precision and scale, as the
numeric expression.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute sign.

See also Functions abs, ceiling, floor, round

CHAPTER 2 Transact-SQL Functions

175

sin
Description Returns the sine of the specified angle (in radians).

Syntax sin(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select sin(45)

0.850904

Usage • sin, a mathematical function, returns the sine of the specified angle
(measured in radians).

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute sin.

See also Functions cos, degrees, radians

sortkey

176

sortkey
Description Generates values that can be used to order results based on collation behavior,

which allows you to work with character collation behaviors beyond the
default set of Latin character-based dictionary sort orders and case or accent
sensitivity.

Syntax sortkey (char_expression | uchar_expression) [, {collation_name |
collation_ID}])

Parameters char_expression
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expression
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

collation_name
is a quoted string or a character variable that specifies the collation to use.
Table 2-6 shows the valid values.

collation_ID
is an integer constant or a variable that specifies the collation to use. Table
2-6 shows the valid values.

Examples Example 1 Shows sorting by European language dicitionary order:

select * from cust_table where cust_name like "TI%" order by
(sortkey(cust_name, "dict")

Example 2 Shows sorting by simplified Chinese phonetic order:

select *from cust_table where cust name like "TI%" order by
(sortkey(cust-name, "gbpinyin")

Example 3 Shows sorting by European language dictionary order using the
in-line option:

select *from cust_table where cust_name like "TI%" order by cust_french_sort

Example 4 Shows sorting by Simplified Chinese phonetic order using
pre-existing keys:

select * from cust_table where cust_name like "TI%" order by
cust_chinese_sort.

CHAPTER 2 Transact-SQL Functions

177

Usage • sortkey, a system function, generates values that can be used to order
results based on collation behavior. This allows you to work with character
collation behaviors beyond the default set of Latin-character-based
dictionary sort orders and case or accent sensitivity. The return value is a
varbinary datatype value that contains coded collation information for the
input string that is returned from the sortkey function.

For example, you can store the values returned by sortkey in a column with
the source character string. When you want to retrieve the character data
in the desired order, the select statement only needs to include an order by
clause on the columns that contain the results of running sortkey.

sortkey guarantees that the values it returns for a given set of collation
criteria work for the binary comparisons that are performed on varbinary
datatypes.

• sortkey can generate up to 6 bytes of collation information for each input
character. Therefore, the result from using sortkey may exceed the length
limit of the varbinary datatype. If this happens, the result is truncated to fit.
Since this limit is dependent on the logical page size of your server,
truncation removes result bytes for each input character until the result
string is less than the following for DOL and APL tables:

If this occurs, Adaptive Server issues a warning message, but the query or
transaction that contained the sortkey function continues to run.

• char_expression or uchar_expression must be composed of characters that
are encoded in the server’s default character set.

• char_expression or uchar_expression can be an empty string. If it is an
empty string:

• sortkey returns a zero-length varbinary value, and

• stores a blank for the empty string.

An empty string has a different collation value than an NULL string from
a database column.

Logical Page Size
Maximum row size
for DOL table

Maximum row size
for APL table

2K (2048 bytes) 1960 1960

4K (4096 bytes) 4008 4008

8K (8096 bytes) 8104 8157

16K (16384 bytes) 16296 16294

sortkey

178

• If char_expression or uchar_expression is NULL, sortkey returns a NULL
value.

• If a unicode expression has no specified sort order, the unicode default sort
order is used.

• If you do not specify a value for collation_name or collation_ID, sortkey
assumes binary collation.

Collation Tables

There are two types of collation tables you can use to perform multilingual
sorting:

1 A “built-in” collation table created by the sortkey function. This function
exists in versions of higher than Adaptive Server version 11.5.1. You can
use either the collation name or the collation ID to specify a built-in table.

2 An external collation table that uses the Unilib library sorting functions.
You must use the collation name to specify an external table. These files
are located at $SYBASE/collate/unicode.

Both of these methods work equally well, but a “built-in” table is tied to a
Sybase Adaptive Server database, an external table is not. If you use an
Adaptive Server database, a built-in table provides the best performance.
both of these methods can handle any mix of English, European, and Asian
languages.

There are two ways of using sortkey:

1 In-line: This uses sortkey as part of the order by clause and is useful for
retrofitting an existing application and minimizing the changes. Note
however, that this method generates sort keys on-the-fly, and therefore
does not provide optimum performance on large datasets of over 1000
records.

2 Pre-existing keys: this method calls sortkey whenever a new record
requiring multilingual sorting is added to the table, such as a new customer
name. Shadow columns (binary or varbinary type) must be set up in the
database, preferably in the same table, one for each desired sort order such
as French, Chinese, and so on. When a query requires output to be sorted,
the order by clause uses one of the shadow columns. This method produces
the best performance since keys are already generated and stored, and are
quickly compared only on the basis of their binary values.

You can view a list of available collation rules. Print out the list by executing
either the stored procedure sp_helpsort, or by querying and selecting the name,
id, and description from syscharsets (type is between 2003 and 2999).

CHAPTER 2 Transact-SQL Functions

179

• Table 2-6 lists the valid values for collation_name and collation_ID.

Table 2-6: Collation names and IDs

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute sortkey.

See also Functions compare

Description Collation name Collation ID

Binary sort binary 50

Default Unicode multilingual default 0

CP 850 Alternative no accent altnoacc 39

CP 850 Alternative lower case first altdict 45

CP 850 Alternative no case preference altnocsp 46

CP 850 Scandinavian dictionary scandict 47

CP 850 Scandinavian no case preference scannocp 48

GB Pinyin gbpinyin n/a

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-9 Turkish dictionary turdict 72

Shift-JIS binary order sjisbin 259

Thai dictionary thaidict 1

soundex

180

soundex
Description Returns a 4-character code representing the way an expression sounds.

Syntax soundex(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples select soundex ("smith"), soundex ("smythe")
----- -----
S530 S530

Usage • soundex, a string function, returns a 4-character soundex code for
character strings that are composed of a contiguous sequence of valid
single- or double-byte roman letters.

• The soundex function converts an alpha string to a four-digit code for use
in locating similar-sounding words or names. All vowels are ignored
unless they constitute the first letter of the string.

• If char_expr or uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute soundex.

See also Functions difference

CHAPTER 2 Transact-SQL Functions

181

space
Description Returns a string consisting of the specified number of single-byte spaces.

Syntax space(integer_expr)

Parameters integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Examples select "aaa", space(4), "bbb"

--- ---- ---
aaa bbb

Usage • space, a string function, returns a string with the indicated number of
single-byte spaces.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute space.

See also Functions isnull, rtrim

sqrt

182

sqrt
Description Returns the square root of the specified number.

Syntax sqrt(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression that evaluates to a positive number.

Examples select sqrt(4)

2.000000

Usage • sqrt, a mathematical function, returns the square root of the specified
value.

• If you attempt to select the square root of a negative number, Adaptive
Server returns the following error message:

Domain error occurred.

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute sqrt.

See also Functions power

CHAPTER 2 Transact-SQL Functions

183

str
Description Returns the character equivalent of the specified number.

Syntax str(approx_numeric [, length [, decimal]])

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

length
sets the number of characters to be returned (including the decimal point, all
digits to the right and left of the decimal point, and blanks). The default is
10.

decimal
sets the number of decimal digits to be returned. The default is 0.

Examples Example 1

select str(1234.7, 4)

1235

Example 2

select str(-12345, 6)

-12345

Example 3

select str(123.45, 5, 2)

123.5

Usage • str, a string function, returns a character representation of the floating point
number. For general information about string functions, see “String
functions” on page 64.

• length and decimal are optional. If given, they must be non-negative. str
rounds the decimal portion of the number so that the results fit within the
specified length. The length should be long enough to accommodate the
decimal point and, if negative, the number’s sign. The decimal portion of
the result is rounded to fit within the specified length. If the integer portion
of the number does not fit within the length, however, str returns a row of
asterisks of the specified length. For example:

select str(123.456, 2, 4)

str

184

--
**

A short approx_numeric is right justified in the specified length, and a
long approx_numeric is truncated to the specified number of decimal
places.

• If approx_numeric is NULL, returns NULL.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute str.

See also Functions abs, ceiling, floor, round, sign

CHAPTER 2 Transact-SQL Functions

185

stuff
Description Returns the string formed by deleting a specified number of characters from

one string and replacing them with another string.

Syntax stuff(char_expr1 | uchar_expr1, start, length, char_expr2 | uchar_expr2)

Parameters char_expr1
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr1
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

start
specifies the character position at which to begin deleting characters.

length
specifies the number of characters to delete.

char_expr2
is another character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr2
is another character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples Example 1

select stuff("abc", 2, 3, "xyz")

axyz

Example 2

select stuff("abcdef", 2, 3, null)

go

aef

Example 3

select stuff("abcdef", 2, 3, "")

a ef

stuff

186

Usage • stuff, a string function, deletes length characters from char_expr1 or
uchar_expr1 at start, then inserts char_expr2 or uchar_expr2 into
char_expr1 or uchar_expr2 at start. For general information about string
functions, see “String functions” on page 64.

• If the start position or the length is negative, a NULL string is returned. If
the start position is longer than expr1, a NULL string is returned. If the
length to be deleted is longer than expr1, expr1 is deleted through its last
character (see Example 1).

• If the start position falls in the middle of a surrogate pair, start is adjusted
to be one less. If the start length position falls in the middle of a surrogate
pair, length is adjusted to be one less.

• To use stuff to delete a character, replace expr2 with “NULL” rather than
with empty quotation marks. Using ‘‘ ‘’ to specify a null character
replaces it with a space (see Eexamples 2 and 3).

• If char_expr1 or uchar_expr1 is NULL, returns NULL. If char_expr1 or
or uchar_expr1 is a string value and char_expr2 or uchar_expr2 is NULL,
replaces the deleted characters with nothing.

• If a varchar expression is given as one parameter and a unichar expression
as the other, the varchar expression is implicitly converted to unichar (with
possible truncation).

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute stuff.

See also Functions replicate, substring

CHAPTER 2 Transact-SQL Functions

187

substring
Description Returns the string formed by extracting the specified number of characters

from another string.

Syntax substring(expression, start, length)

Parameters expression
is a binary or character column name, variable or constant expression. Can
be char, nchar, unichar, varchar, univarchar, or nvarchar data, binary or
varbinary.

start
specifies the character position at which the substring begins.

length
specifies the number of characters in the substring.

Examples Example 1 Displays the last name and first initial of each author, for example,
“Bennet A.”:

select au_lname, substring(au_fname, 1, 1)
from authors

Example 2 Converts the author’s last name to uppercase, then displays the first
three characters:

select substring(upper(au_lname), 1, 3)
from authors

Example 3 Concatenates pub_id and title_id, then displays the first six
characters of the resulting string:

select substring((pub_id + title_id), 1, 6)
from titles

Example 4 Extracts the lower four digits from a binary field, where each
position represents two binary digits:

select substring(xactid,5,2)
from syslogs

Usage • substring, a string function, returns part of a character or binary string. For
general information about string functions, see “String functions” on page
64.

• If any of the arguments to substring are NULL, substring returns NULL.

substring

188

• If the start position from the beginning of uchar_expr1 falls in the middle
of a surrogate pair, start is adjusted to one less. If the start length position
from the beginning of uchar_expr1 falls in the middle of a surrogate pair,
length is adjusted to one less.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute substring.

See also Functions charindex, patindex, stuff

CHAPTER 2 Transact-SQL Functions

189

sum
Description Returns the total of the values.

Syntax sum([all | distinct] expression)

Parameters all
applies sum to all values. all is the default.

distinct
eliminates duplicate values before sum is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions” on page 219.

Examples Example 1 Calculates the average advance and the sum of total sales for all
business books. Each of these aggregate functions produces a single summary
value for all of the retrieved rows:

select avg(advance), sum(total_sales)
from titles
where type = "business"

Example 2 Used with a group by clause, the aggregate functions produce
single values for each group, rather than for the whole table. This statement
produces summary values for each type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type

Example 3 Groups the titles table by publishers, and includes only those
groups of publishers who have paid more than $25,000 in total advances and
whose books average more than $15 in price:

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $25000 and avg(price) > $15

Usage • sum, an aggregate function, finds the sum of all the values in a column.
sum can only be used on numeric (integer, floating point, or money)
datatypes. Null values are ignored in calculating sums.

• For general information about aggregate functions, see “Aggregate
functions” on page 47.

sum

190

• When you sum integer data, Adaptive Server treats the result as an int
value, even if the datatype of the column is smallint or tinyint. To avoid
overflow errors in DB-Library programs, declare all variables for results
of averages or sums as type int.

• You cannot use sum with the binary datatypes.

• Since this function only defines numeric types, use with Unicode
expressions generates an error.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute sum.

See also Commands compute clause, group by and having clauses, select, where
clause

Functions count, max, min

CHAPTER 2 Transact-SQL Functions

191

suser_id
Description Returns the server user’s ID number from the syslogins table.

Syntax suser_id([server_user_name])

Parameters server_user_name
is an Adaptive Server login name.

Examples Example 1

select suser_id()

1

Example 2

select suser_id("margaret")

5

Usage • suser_id, a system function, returns the server user’s ID number from
syslogins. For general information about system functions, see “System
functions” on page 66.

• To find the user’s ID in a specific database from the sysusers table, use the
user_id system function.

• If no server_user_name is supplied, suser_id returns the server ID of the
current user.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute suser_id.

See also Functions suser_name, user_id

suser_name

192

suser_name
Description Returns the name of the current server user or the user whose server ID is

specified.

Syntax suser_name([server_user_id])

Parameters server_user_id
is an Adaptive Server user ID.

Examples Example 1

select suser_name()

sa

Example 2

select suser_name(4)

margaret

Usage • suser_name, a system function, returns the server user’s name. Server user
IDs are stored in syslogins. If no server_user_id is supplied, suser_name
returns the name of the current user.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute suser_name.

See also Functions suser_id, user_name

CHAPTER 2 Transact-SQL Functions

193

syb_quit()
Description Terminates the connection.

Syntax syb_quit()

Examples Terminates the connection in which the function is executed and returns an
error message.

select syb_quit()

CT-LIBRARY error:

ct_results(): network packet layer:
internal net library error: Net-Library operation
terminated due to disconnect

Usage syb_quit can be used to terminate a script if the isql preprocessor command exit
causes an error.

Permissions Any user can execute syb_quit.

syb_sendmsg

194

syb_sendmsg
Description UNIX only Sends a message to a User Datagram Protocol (UDP) port.

Syntax syb_sendmsg ip_address, port_number, message

Parameters ip_address
is the IP address of the machine where the UDP application is running.

port_number
is the port number of the UDP port.

message
is the message to send. It can be up to 255 characters in length.

Examples Example 1 Sends the message “Hello” to port 3456 at IP address 120.10.20.5:

select syb_sendmsg("120.10.20.5", 3456, "Hello")

Example 2 Reads the IP address and port number from a user table, and uses
a variable for the message to be sent:

declare @msg varchar(255)
select @msg = "Message to send"
select syb_sendmsg (ip_address, portnum, @msg)
from sendports
where username = user_name()

Usage • To enable the use of UDP messaging, a System Security Officer must set
the configuration parameter allow sendmsg to 1.

• No security checks are performed with syb_sendmsg. Sybase strongly
recommends caution when using syb_sendmsg to send sensitive
information across the network. By enabling this functionality, the user
accepts any security problems which result from its use.

• For a sample C program that creates a UDP port, see sp_sendmsg.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute syb_sendmsg.

See also System procedure sp_sendmsg

CHAPTER 2 Transact-SQL Functions

195

tan
Description Returns the tangent of the specified angle (in radians).

Syntax tan(angle)

Parameters angle
is the size of the angle in radians, expressed as a column name, variable, or
expression of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

Examples select tan(60)

0.320040

Usage • tan, a mathematical function, returns the tangent of the specified angle
(measured in radians).

• For general information about mathematical functions, see “Mathematical
functions” on page 62.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute tan.

See also Functions atan, atn2, degrees, radians

textptr

196

textptr
Description Returns a pointer to the first page of a text or image column.

Syntax textptr(column_name)

Parameters column_name
is the name of a text column.

Examples Example 1 This example uses the textptr function to locate the text column,
copy, associated with au_id 486-29-1786 in the author’s blurbs table. The text
pointer is put into a local variable @val and supplied as a parameter to the
readtext command, which returns 5 bytes, starting at the second byte (offset of
1):

declare @val binary(16)
select @val = textptr(copy) from blurbs
where au_id = "486-29-1786"
readtext blurbs.copy @val 1 5

Example 2 Selects the title_id column and the 16-byte text pointer of the copy
column from the blurbs table:

select au_id, textptr(copy) from blurbs

Usage • textptr, a text and image function, returns the text pointer value, a 16-byte
varbinary value.

• If a text or an image column has not been initialized by a non-null insert or
by any update statement, textptr returns a NULL pointer. Use textvalid to
check whether a text pointer exists. You cannot use writetext or readtext
without a valid text pointer.

• For general information about text and image functions, see “Text and
image functions” on page 67.

Note Trailing f in varbinary values are truncated when the values are
stored in tables. If you are storing text pointer values in a table, use binary
as the datatype for the column.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute textptr.

See also Datatypes text and image datatypes

Functions textvalid

CHAPTER 2 Transact-SQL Functions

197

textvalid
Description Returns 1 if the pointer to the specified text column is valid; 0 if it is not.

Syntax textvalid("table_name.column_name", textpointer)

Parameters table_name.column_name
is the name of a table and its text column.

textpointer
is a text pointer value.

Examples Reports whether a valid text pointer exists for each value in the blurb column
of the texttest table:

select textvalid ("texttest.blurb", textptr(blurb))
from texttest

Usage • textvalid, a text and image function, checks that a given text pointer is
valid. Returns 1 if the pointer is valid or 0 if it is not.

• The identifier for a text or an image column must include the table name.

• For general information about text and image functions, see “Text and
image functions” on page 67.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute textvalid.

See also Datatypes text and image datatypes

Functions textptr

to_unichar

198

to_unichar
Description Returns a unichar expression having the value of the integer expression.

Syntax to_unichar (integer_expr)

Parameters integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Usage • to_unichar, a string function, converts a Unicode integer value to a
Unicode character value.

• If a unichar expression refers to only half of a surrogate pair, an error
message appears and the operation is aborted.

• If a integer_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute to_unichar.

See also Datatypes text and image datatypes

Functions char

CHAPTER 2 Transact-SQL Functions

199

tsequal
Description Compares timestamp values to prevent update on a row that has been modified

since it was selected for browsing.

Syntax tsequal(browsed_row_timestamp, stored_row_timestamp)

Parameters browsed_row_timestamp
 is the timestamp column of the browsed row.

stored_row_timestamp
is the timestamp column of the stored row.

Examples Retrieves the timestamp column from the current version of the publishers table
and compares it to the value in the timestamp column that has been saved. If the
values in the two timestamp columns are equal, updates the row. If the values
are not equal, returns an error message:

update publishers
set city = "Springfield"
where pub_id = "0736"
and tsequal(timestamp, 0x0001000000002ea8)

Usage • tsequal, a system function, compares the timestamp column values to
prevent an update on a row that has been modified since it was selected for
browsing. For general information about system functions, see “System
functions” on page 66.

• tsequal allows you to use browse mode without calling the dbqual function
in DB-Library. Browse mode supports the ability to perform updates while
viewing data. It is used in front-end applications using Open Client and a
host programming language. A table can be browsed if its rows have been
timestamped.

• To browse a table in a front-end application, append the for browse
keywords to the end of the select statement sent to Adaptive Server. For
example:

Start of select statement in an Open Client application
...

for browse

Completion of the Open Client application routine

• The tsequal function should not be used in the where clause of a select
statement, only in the where clause of insert and update statements where
the rest of the where clause matches a single unique row.

tsequal

200

If a timestamp column is used as a search clause, it should be compared
like a regular varbinary column; that is, timestamp1 = timestamp2.

Timestamping a new table for browsing

• When creating a new table for browsing, include a column named
timestamp in the table definition. The column is automatically assigned a
datatype of timestamp; you do not have to specify its datatype. For
example:

create table newtable(col1 int, timestamp, col3 char(7))

Whenever you insert or update a row, Adaptive Server timestamps it by
automatically assigning a unique varbinary value to the timestamp column.

Timestamping an existing table

• To prepare an existing table for browsing, add a column named timestamp
with alter table. For example, the following adds a timestamp column with
a NULL value to each existing row:

alter table oldtable add timestamp

To generate a timestamp, update each existing row without specifying new
column values. For example:

update oldtable
set col1 = col1

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute tsequal.

See also Datatypes Timestamp datatype

CHAPTER 2 Transact-SQL Functions

201

uhighsurr
Description Returns 1 if the Unicode value at position start is the high half of a surrogate

pair (which should appear first in the pair). Returns 0 otherwise.

Syntax uhighsurr(uchar_expr, start)

Parameters uchar_expr
is a character-type column name, variable, or constant expression of unichar,
or univarchar type.

start
specifies the character position to investigate.

Usage • uhighsurr, a string function, allows you to write explicit code for surrogate
handling. Specifically, if a substring starts on a Unicode character where
uhighsurr() is true, you need to extract a substring of at least 2 Unicode
values. (substr will not extract half of a surrogate pair.)

• If uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute uhighsurr.

See also Functions ulowsurr

ulowsurr

202

ulowsurr
Description Returns 1 if the Unicode value at position start is the low half of a surrogate

pair (which should appear second in the pair). Returns 0 otherwise.

Syntax ulowsurr(uchar_expr, start)

Parameters uchar_expr
is a character-type column name, variable, or constant expression of unichar,
or univarchar type.

start
specifies the character position to investigate.

Usage • ulowsurr, a string function, allows you to write explicit code around
adjustments performed by substr(), stuff(), and right(). Specifically, if a
substring ends on a Unicode value where ulowsurr() is true, the user knows
to extract a substring of 1 less characters (or 1 more). substr() does not
extract a string that contains an unmatched surrogate pair.

• If uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute ulowsurr.

See also Functions uhighsurr

CHAPTER 2 Transact-SQL Functions

203

upper
Description Returns the uppercase equivalent of the specified string.

Syntax upper(char_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
unichar, varchar, nchar, nvarchar or univarchar type.

Examples select upper("abcd")

ABCD

Usage • upper, a string function, converts lowercase to uppercase, returning a
character value.

• If char_expr or uchar_expr is NULL, returns NULL.

• Characters that have no upper-case equivalent are left unmodified.

• If a unichar expression is created containing only half of a surrogate pair,
an error message appears and the operation is aborted.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute upper.

See also Functions lower

uscalar

204

uscalar
Description Returns the Unicode scalar value for the first Unicode character in an

expression.

Syntax uscalar(uchar_expr)

Parameters uchar_expr
is a character-type column name, variable, or constant expression of unichar,
or univarchar type.

Usage • uscalar, a string function, returns the Unicode value for the first Unicode
character in an expression.

• If uchar_expr is NULL, returns NULL.

• If uscalar is called on a uchar_expr containing an unmatched surrogate
half, and error occurs and the operation is aborted.

• For general information about string functions, see “String functions” on
page 64.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute uscalar.

See also Functions ascii

CHAPTER 2 Transact-SQL Functions

205

used_pgs
Description Returns the number of pages used by a table or index. For an all-pages-locked

table with a clustered index, it returns the sum of the table and index pages.

Syntax used_pgs(object_id, doampg, ioampg)

Parameters object_id
is the object ID of the table for which you want to see the used pages. To see
the pages used by an index, specify the object ID of the table to which the
index belongs.

doampg
is the page number for the object allocation map of a table or clustered index,
stored in the doampg column of sysindexes.

ioampg
is the page number for the allocation map of a nonclustered index, stored in
the ioampg column of sysindexes.

Examples Example 1 Returns the number of pages used by the data and clustered index
of the titles table:

select name, id, indid, doampg, ioampg
from sysindexes where id = object_id("titles")
name id indid doampg ioampg
------------- ----------- ------ -------- -------
titleidind 208003772 1 560 552
titleind 208003772 2 0 456

select used_pgs(208003772, 560, 552)

6

Example 2 Returns the number of pages used by the stores table, which has
no index:

select name, id, indid, doampg, ioampg
from sysindexes where id = object_id("stores")
name id indid doampg ioampg
------------- ----------- ------ -------- -------
stores 240003886 0 464 0

select used_pgs(240003886, 464, 0)

2

Usage • used_pgs, a system function, returns:

used_pgs

206

• For all-pages-locked tables with a clustered index – the sum of the
table and index pages

• For data-only-locked tables and tables with no clustered index – the
number of used pages in the table

• For clustered and nonclustered indexes on data-only-locked tables –
the number of pages in the index

• In the examples, indid 0 indicates a table; indid 1 indicates a clustered
index; an indid of 2–250 is a nonclustered index; and an indid of 255 is text
or image data.

• used_pgs only works on objects in the current database.

• Each table and each index on a table has an object allocation map (OAM),
which contains information about the number of pages allocated to and
used by an object. This information is updated by most Adaptive Server
processes when pages are allocated or deallocated. The sp_spaceused
system procedure reads these values to provide quick space estimates.
Some dbcc commands update these values while they perform consistency
checks.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute used_pgs.

See also Functions data_pgs, object_id

CHAPTER 2 Transact-SQL Functions

207

user
Description Returns the name of the current user.

Syntax user

Parameters None.

Examples select user

dbo

Usage • user, a system function, returns the user’s name.

• If the sa_role is active, you are automatically the Database Owner in any
database you are using. Inside a database, the user name of the Database
Owner is always “dbo”.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute user.

See also Functions user_name

user_id

208

user_id
Description Returns the ID number of the specified user or of the current user in the

database.

Syntax user_id([user_name])

Parameters user_name
is the name of the user.

Examples Example 1

select user_id()

1

Example 2

select user_id("margaret")

4

Usage • user_id, a system function, returns the user’s ID number. For general
information about system functions, see “System functions” on page 66.

• user_id reports the number from sysusers in the current database. If no
user_name is supplied, user_id returns the ID of the current user. To find
the server user ID, which is the same number in every database on
Adaptive Server, use suser_id.

• Inside a database, the “guest” user ID is always 2.

• Inside a database, the user_id of the Database Owner is always 1. If you
have the sa_role active, you are automatically the Database Owner in any
database you are using. To return to your actual user ID, use set sa_role off
before executing user_id. If you are not a valid user in the database,
Adaptive Server returns an error when you use set sa_role off.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions You must System Administrator or System Security Officer to use this function
on a user_name other than your own.

See also Commands setuser

Functions suser_id, user_name

CHAPTER 2 Transact-SQL Functions

209

user_name
Description Returns the name within the database of the specified user or of the current

user.

Syntax user_name([user_id])

Parameters user_id
is the ID of a user.

Examples Example 1

select user_name()

dbo

Example 2

select user_name(4)

margaret

Usage • user_name, a system function, returns the user’s name, based on the user’s
ID in the current database. For general information about system
functions, see “System functions” on page 66.

• If no user_id is supplied, user_name returns the name of the current user.

• If the sa_role is active, you are automatically the Database Owner in any
database you are using. Inside a database, the user_name of the Database
Owner is always “dbo”.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions You must be a System Administrator or System Security Officer to use this
function on a user_id other than your own.

See also Functions suser_name, user_id

valid_name

210

valid_name
Description Returns 0 if the specified string is not a valid identifier or a number other than

0 if the string is a valid identifier.

Syntax valid_name(character_expression)

Parameters character_expression
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type. Constant expressions must be enclosed in
quotation marks.

Examples Creates a procedure to verify that identifiers are valid:

create procedure chkname
@name varchar(30)
as

if valid_name(@name) = 0
print "name not valid"

Usage • valid_name, a system function, returns 0 if the character_ expression is not
a valid identifier (illegal characters, more than 30 bytes long, or a reserved
word), or a number other than 0 if it is a valid identifier.

• Adaptive Server identifiers can be a maximum of 30 bytes in length,
whether single-byte or multibyte characters are used. The first character of
an identifier must be either an alphabetic character, as defined in the
current character set, or the underscore (_) character. Temporary table
names, which begin with the pound sign (#), and local variable names,
which begin with the at sign (@), are exceptions to this rule. valid_name
returns 0 for identifiers that begin with the pound sign (#) and the at sign
(@).

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Any user can execute valid_name.

See also System procedure sp_checkreswords

CHAPTER 2 Transact-SQL Functions

211

valid_user
Description Returns 1 if the specified ID is a valid user or alias in at least one database on

this Adaptive Server.

Syntax valid_user(server_user_id)

Parameters server_user_id
is a server user ID. Server user IDs are stored in the suid column of syslogins.

Examples select valid_user(4)

1

Usage • valid_user, a system function, returns 1 if the specified ID is a valid user or
alias in at least one database on this Adaptive Server.

• For general information about system functions, see “System functions”
on page 66.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions You must be a System Administrator or a System Security Officer to use this
function on a server_user_id other than your own.

See also System procedures sp_addlogin, sp_adduser

valid_user

212

213

C H A P T E R 3 Global Variables

Global variables are system-defined variables updated by Adaptive Server
on an ongoing basis. For example, @@error contains the last error
number generated by the system.

To view the value for any global variable, enter:

select variable_name

For example:

select @@char_convert

Topics covered are:

Adaptive Server’s global variables
The following are the global variables available for Adaptive Sever:

Topics Page
Adaptive Server’s global variables 213

Global variable Definition

@@boottime Returns the date and time Adaptive Server was last booted.

@@char_convert Returns 0 if character set conversion is not in effect. Returns 1 if character set
conversion is in effect.

@@cis_rpc_handling Returns 0 if cis rpc handling is off. Returns 1 if cis rpc handling is on. Formore
information, see the Component Integration Services User’s Guide.

@@cis_version Returns the date andversion of Component Integration Services.

@@client_csexpansion Returns the expansion factor used when converting from the server character set
to the client character set. For example, if it contains a value of 2, a character in
the server character set could take up to twice the number of bytes after
translation to the client character set.

@@client_csid Returns -1 if the client character set has never been initialized. Returns the client
character set ID from syscharsets for the connection if the client character set
has been initialized.

Adaptive Server’s global variables

214

@@client_csname Returns NULL if client character set has never been initialized; Returns the
name of the character set for the connection if the client character set has been
initialized.

@@cmpstate Returns the current mode of Adaptive Server in a high availability environment.

@@connections Returns the number of user logins attempted.

@@cpu_busy Returns the number of seconds, in CPU time, that Adaptive Server's CPU was
performing Adaptive Server work.

@@curloid Returns the current session’s lock owner ID.

@@dbts Returns the timestamp of the current database.

@@error Returns the error number most recently generated by the system.

@@errorlog Returns the full path to the directory in which the Adaptive Server errorlog is
kept, relative to $SYBASE directory (%SYBASE% on NT).

@@failedoverconn Returns a value greater than 0 if the connection to the primary companion has
failed over and is executing on the secondary companion server. Used only in a
high availability environment, and is session-specific.

@@guestuserid Returns the ID of the guest user.

@@hacmpservername Returns the name of the companion server in a high availability setup.

@@haconnection Returns a value greater than 0 if the connection has the failover property
enabled. This is a session-specific property.

@@heapmemsize Returns the size of the heap memory pool, in bytes. See the System
Administration Guide for more information on heap memory.

@@identity Returns the most recently generated IDENTITY column value.

@@idle Returns the number of seconds, in CPU time, that Adaptive Server has been idle.

@@invaliduserid Returns a value of -1 for an invalid user ID.

@@io_busy Returns the number of seconds in CPU time that Adaptive Server has spent
doing input and output operations.

@@isolation Returns the value of the session-specific isolation level (0, 1, or 3) of the current
Transact-SQL program.

@@kernel_addr Returns the starting address of the first shared memory region that contains the
kernel region. The result is in the form of 0xaddress pointer value.

@@kernel_size Returns the size of the kernel region that is part of the first shared memory
region.

@@langid Returns the server-wide language ID of the language in use, as specified in
syslanguages.langid.

@@language Returns the name of the language in use, as specified in syslanguages.name.

@@maxcharlen Returns the maximum length, in bytes, of a character in Adaptive Server's
default character set.

Global variable Definition

CHAPTER 3 Global Variables

215

@@max_connections Returns the maximum number of simultaneous connections that can be made
with Adaptive Server in the current computer environment. You can configure
Adaptive Server for any number of connections less than or equal to the value of
@@max_connections with the number of user connections configuration
parameter.

@@maxgroupid Returns the highest group user ID. The highest value is 1048576.

@@maxpagesize Returns the server's logical page size.

@@maxspid Returns maximum valid value for the spid.

@@maxsuid Returns the highest server user ID. The default value is 2147483647.

@@maxuserid Returns the highest user ID. The highest value is 2147483647.

@@mempool_addr Returns the global memory pool table address. The result is in the form
0xaddress pointer value. This variable is for internal use.

@@mingroupid Returns the lowest group user ID. The lowest value is 16384.

@@min_poolsize Returns the minimum size of a named cache pool, in kilobytes. It is calculated
based on the DEFAULT_POOL_SIZE, which is 256, and the current value of
max database page size.

@@minspid Returns 1, which is the lowest value for spid.

@@minsuid Returns the minimum server user ID. The lowest value is -32768.

@@minuserid Returns the lowest user ID. The lowest value is -32768.

@@ncharsize Returns the maximum length, in bytes, of a character set in the current server
default character set.

@@nestlevel Returns the current nesting level.

@@nodeid Returns the current installation's node ID. Adaptive Server generates a nodeid
the first time the master device is first used

@@options Returns a hexadecimal representation of the session's set options.

@@packet_errors Returns the number of errors detected by Adaptive Server while reading and
writing packets.

@@pack_received Retruns the number of input packets read by Adaptive Server.

@@pack_sent Returns the nmber of output packets written by Adaptive Server.

@@pagesize Returns the server’s virtual page size.

@@parallel_degree Returns the current maximum parallel degree setting.

@@probesuid Returns a value of 2 for the probe user ID.

@@procid Returns the stored procedure ID of the currently executing procedure.

@@rowcount Returns the number of rows affected by the last query. @@rowcount is set to 0
by any command that does not return rows, such as an if, update, or delete
statement. With cursors, @@rowcount represents the cumulative number of
rows returned from the cursor result set to the client, up to the last fetch request.

@@scan_parallel_degree Returns the current maximum parallel degree setting for nonclustered index
scans.

Global variable Definition

Adaptive Server’s global variables

216

@@servername Returns the name of Adaptive Server.

@@shmem_flags Returns the shared memory region properties. This variable is for internal use.
There are a total of 13 different properties values corresponding to 13 bits in the
integer. The valid values represented from low to high bit are:

MR_SHARED, MR_SPECIAL, MR_PRIVATE, MR_READABLE,
MR_WRITABLE, MR_EXECUTABLE, MR_HWCOHERENCY,
MR_SWCOHERENC, MR_EXACT, MR_BEST, MR_NAIL, MR_PSUEDO,
MR_ZERO.

@@spid Returns the server process ID of the current process.

@@sqlstatus Returns status information (warning exceptions) resulting from the execution of
a fetch statement.

@@stringsize Returns the amount of character data returned from a toString() method. The
default is 50. Max values may be up to 2GB. A value of zero specifies the default
value. For more information, see the Component Integration Services User’s
Guide.

@@textcolid Returns the column ID of the column referenced by @@textptr.

@@textdbid Returns the database ID of a database containing an object with the column
referenced by @@textptr.

@@textobjid Returns the object ID of an object containing the column referenced by
@@textptr.

@@textptr Returns the text pointer of the last text or image column inserted or updated by
a process (Not the same as the textptr function).

@@textptr_parameters Returns 0 if the current status of the textptr_parameters configuration parameter
is off. Returns 1 if the current status of the textptr_parameters if on. For more
information, see the Component Integration Services User’s Guide.

@@textsize Returns the limit on the number of bytes of text or image data a select returns.
Default limit is 32K bytes for isql; the default depends on the client software.
Can be changed for a session with set textsize.

@@textts Returns the text timestamp of the column referenced by @@textptr.

@@thresh_hysteresis Returns the decrease in free space required to activate a threshold. This amount,
also known as the hysteresis value, is measured in 2K database pages. It
determines how closely thresholds can be placed on a database segment.

@@timeticks Returns the number of microseconds per tick. The amount of time per tick is
machine-dependent.

@@total_errors Returns the number of errors detected by Adaptive Server while reading and
writing.

@@total_read Returns the number of disk reads by Adaptive Server.

@@total_write Returns the number of disk writes by Adaptive Server.

@@tranchained Returns 0 if the current transaction mode of the Transact-SQL program is
unchained. Returns 1 if the current transaction mode of the Transact-SQL
program is chained.

Global variable Definition

CHAPTER 3 Global Variables

217

@@trancount Returns the nesting level of transactions in the current user session.

@@transactional_rpc Returns 0 if RPCs to remote servers are transactional. Returns 1 if RPCs to
remote servers are not transactional. For more information, see enable xact
coordination and set option transactional_rpc in the Reference Manual. Also, see
the Component Integration Services User’s Guide.

@@transtate Returns the current state of a transaction after a statement executes in the current
user session.

@@unicharsize Returns 2, the size of a character in unichar.

@@version Returns the date, version string, and so on of the current release of Adaptive
Server.

@@version_as_integer Returns the version of the current release of Adaptive Server as an integer.

Global variable Definition

Adaptive Server’s global variables

218

219

C H A P T E R 4 Expressions, Identifiers, and
Wildcard Characters

This chapter describes Transact-SQL expressions, valid identifiers, and
wildcard characters.

Topics covered are:

Expressions
An expression is a combination of one or more constants, literals,
functions, column identifiers and/or variables, separated by operators, that
returns a single value. Expressions can be of several types, including
arithmetic, relational, logical (or Boolean), and character string. In some
Transact-SQL clauses, a subquery can be used in an expression. A case
expression can be used in an expression.

Table 4-1 lists the types of expressions that are used in Adaptive Server
syntax statements.

Table 4-1: Types of expressions used in syntax statements

Topics Page
Expressions 219

Identifiers 229

Pattern matching with wildcard characters 235

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or an expression that implicitly converts to a floating value

integer_expr Any integer expression or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

Expressions

220

Size of expressions
Expressions returning binary or character datum can be up to 16384 bytes in
length. However, earlier versions of Adaptive Server only allowed expressions
to be up to 255 bytes in length. If you have upgraded from an earlier release of
Adaptive Server, and your stored procedures or scripts store a result string of
up to 255 bytes, the remainder will be truncated. You may have to re-write
these stored procedures and scripts for to account for the additional length of
the expressions.

Arithmetic and character expressions
The general pattern for arithmetic and character expressions is:

{constant | column_name | function | (subquery)
| (case_expression)}

[{arithmetic_operator | bitwise_operator |
string_operator | comparison_operator }

{constant | column_name | function | (subquery)
| case_expression}]...

Relational and logical expressions
A logical expression or relational expression returns TRUE, FALSE, or
UNKNOWN. The general patterns are:

expression comparison_operator [any | all] expression

expression [not] in expression

[not]exists expression

expression [not] between expression and expression

expression [not] like "match_string"
[escape "escape_character "]

not expression like "match_string"
[escape "escape_character "]

expression is [not] null

not logical_expression

logical_expression {and | or} logical_expression

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

221

Operator precedence
Operators have the following precedence levels, where 1 is the highest level
and 6 is the lowest:

1 unary (single argument) – + ~

2 * / %

3 binary (two argument) + – & | ^

4 not

5 and

6 or

When all operators in an expression are at the same level, the order of
execution is left to right. You can change the order of execution with
parentheses—the most deeply nested expression is processed first.

Arithmetic operators
Adaptive Server uses the following arithmetic operators:

Table 4-2: Arithmetic operators

Addition, subtraction, division, and multiplication can be used on exact
numeric, approximate numeric, and money type columns.

The modulo operator cannot be used on smallmoney, money, float or real
columns. Modulo finds the integer remainder after a division involving two
whole numbers. For example, 21 % 11 = 10 because 21 divided by 11 equals 1
with a remainder of 10.

When you perform arithmetic operations on mixed datatypes, for example float
and int, Adaptive Server follows specific rules for determining the type of the
result. For more information, see Chapter 1, “System and User-Defined
Datatypes.”

Operator Meaning

 + Addition

 – Subtraction

 * Multiplication

 / Division

 % Modulo (Transact-SQL extension)

Expressions

222

Bitwise operators
The bitwise operators are a Transact-SQL extension for use with integer type
data. These operators convert each integer operand into its binary
representation, then evaluate the operands column by column. A value of 1
corresponds to true; a value of 0 corresponds to false.

Table 4-3 summarizes the results for operands of 0 and 1. If either operand is
NULL, the bitwise operator returns NULL:

Table 4-3: Truth tables for bitwise operations

The examples in Table 4-4 use two tinyint arguments, A = 170
(10101010 in binary form) and B = 75 (01001011 in binary form).

& (and) 1 0

1 1 0

0 0 0

 | (or) 1 0

1 1 1

0 1 0

^ (exclusive or) 1 0

1 0 1

0 1 0

~ (not)

1 FALSE

0 0

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

223

Table 4-4: Examples of bitwise operations

String concatenation operator
The string operator + can be used to concatenate two or more character or
binary expressions. For example, the following displays author names under
the column heading Namein last-name first-name order, with a comma after the
last name; for example, “Bennett, Abraham.”:

select Name = (au_lname + ", " + au_fname)
from authors

The following returns the string “abc def”. The empty string is interpreted as a
single space in all char, varchar, unichar, nchar, nvarchar, and text
concatenation, and in varchar and univarchar insert and assignment statements:

select "abc" + "" + "def"

When concatenating non-character, non-binary expressions, always use
convert:

select "The date is " +
 convert(varchar(12), getdate())

Operation Binary form Result Explanation

(A & B) 10101010

01001011

00001010

10 Result column equals 1 if both A and
B are 1. Otherwise, result column
equals 0.

(A | B) 10101010

01001011

11101011

235 Result column equals 1 if either A or
B, or both, is 1. Otherwise, result
column equals 0

(A ^ B) 10101010

01001011

11100001

225 Result column equals 1 if either A or
B, but not both, is 1

(~A) 10101010

01010101

85 All 1s are changed to 0s and all 0s to
1s

Expressions

224

A string concatenated with NULL evaluates to the value of the string. This is
an exception to the SQL standard, which states that a string concatenated with
a NULL should evaluate to NULL.

Comparison operators
Adaptive Server uses the comparison operators listed in Table 4-5:

Table 4-5: Comparison operators

In comparing character data, < means closer to the beginning of the server’s
sort order and > means closer to the end of the sort order. Uppercase and
lowercase letters are equal in a case-insensitive sort order. Use sp_helpsort to
see the sort order for your Adaptive Server. Trailing blanks are ignored for
comparison purposes. So, for example, “Dirk” is the same as “Dirk ”.

In comparing dates, < means earlier and > means later.

Put single or double quotes around all character and datetime data used with a
comparison operator:

= "Bennet"
> "May 22 1947"

Nonstandard operators
The following operators are Transact-SQL extensions:

• Modulo operator: %

• Negative comparison operators: !>, !<, !=

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Transact-SQL extension – Not equal to

!> Transact-SQL extension – Not greater than

!< Transact-SQL extension – Not less than

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

225

• Bitwise operators: ~, ^, |, &

• Join operators: *= and =*

Using any, all and in
any is used with <, >, or = and a subquery. It returns results when any value
retrieved in the subquery matches the value in the where or having clause of the
outer statement. For more information, see the Transact-SQL User’s Guide.

all is used with < or > and a subquery. It returns results when all values retrieved
in the subquery are less than (<) or greater than (>) the value in the where or
having clause of the outer statement. For more information, see the
Transact-SQL User’s Guide.

in returns results when any value returned by the second expression matches
the value in the first expression. The second expression must be a subquery or
a list of values enclosed in parentheses. in is equivalent to = any.For more
information, see where clause.

Negating and testing
not negates the meaning of a keyword or logical expression.

Use exists, followed by a subquery, to test for the existence of a particular
result.

Ranges
between is the range-start keyword; and is the range-end keyword. The
following range is inclusive:

 where column1 between x and y

The following range is not inclusive:

 where column1 > x and column1 < y

Using nulls in expressions
Use is null or is not null in queries on columns defined to allow null values.

Expressions

226

An expression with a bitwise or arithmetic operator evaluates to NULL if any
of the operands are null. For example, the following evaluates to NULL if
column1 is NULL:

1 + column1

Comparisons that return TRUE

In general, the result of comparing null values is UNKNOWN, since it is not
possible to determine whether NULL is equal (or not equal) to a given value or
to another NULL. However, the following cases return TRUE when expression
is any column, variable or literal, or combination of these, which evaluates as
NULL:

• expression is null

• expression = null

• expression = @x, where @x is a variable or parameter containing NULL.
This exception facilitates writing stored procedures with null default
parameters.

• expression != n, where n is a literal that does not contain NULL, and
expression evaluates to NULL.

The negative versions of these expressions return TRUE when the expression
does not evaluate to NULL:

• expression is not null

• expression != null

• expression != @x

Note The far right side of these exceptions is a literal null, or a variable or
parameter containing NULL. If the far right side of the comparison is an
expression (such as @nullvar + 1), the entire expression evaluates to NULL.

Following these rules, null column values do not join with other null column
values. Comparing null column values to other null column values in a where
clause always returns UNKNOWN for null values, regardless of the
comparison operator, and the rows are not included in the results. For example,
this query returns no result rows where column1 contains NULL in both tables
(although it may return other rows):

select column1
from table1, table2

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

227

where table1.column1 = table2.column1

Difference between FALSE and UNKNOWN

Although neither FALSE nor UNKNOWN returns values, there is an important
logical difference between FALSE and UNKNOWN, because the opposite of
false (“not false”) is true. For example, “1 = 2” evaluates to false and its
opposite, “1 != 2”, evaluates to true. But “not unknown” is still unknown. If
null values are included in a comparison, you cannot negate the expression to
get the opposite set of rows or the opposite truth value.

Using “NULL” as a character string

Only columns for which NULL was specified in the create table statement and
into which you have explicitly entered NULL (no quotes), or into which no
data has been entered, contain null values. Avoid entering the character string
“NULL” (with quotes) as data for a character column. It can only lead to
confusion. Use “N/A”, “none”, or a similar value instead. When you want to
enter the value NULL explicitly, do not use single or double quotes.

NULL compared to the empty string

The empty string (“ ”or ‘ ’) is always stored as a single space in variables and
column data. This concatenation statement is equivalent to “abc def”, not to
“abcdef”:

"abc" + "" + "def"

The empty string is never evaluated as NULL.

Connecting expressions
and connects two expressions and returns results when both are true. or
connects two or more conditions and returns results when either of the
conditions is true.

When more than one logical operator is used in a statement, and is evaluated
before or. You can change the order of execution with parentheses.

Table 4-6 shows the results of logical operations, including those that involve
null values:

Expressions

228

Table 4-6: Truth tables for logical expressions

The result UNKNOWN indicates that one or more of the expressions evaluates
to NULL, and that the result of the operation cannot be determined to be either
TRUE or FALSE. See “Using nulls in expressions” on page 225 for more
information.

Using parentheses in expressions
Parentheses can be used to group the elements in an expression. When
“expression” is given as a variable in a syntax statement, a simple expression
is assumed. “Logical expression” is specified when only a logical expression
is acceptable.

Comparing character expressions
Character constant expressions are treated as varchar. If they are compared
with non-varchar variables or column data, the datatype precedence rules are
used in the comparison (that is, the datatype with lower precedence is
converted to the datatype with higher precedence). If implicit datatype
conversion is not supported, you must use the convert function.

Comparison of a char expression to a varchar expression follows the datatype
precedence rule; the “lower” datatype is converted to the “higher” datatype. All
varchar expressions are converted to char (that is, trailing blanks are appended)
for the comparison. If a unichar expression is compared to a char (varchar,
nchar, nvarchar) expression, the latter is implicitly converted to unichar.

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

NULL UNKNOWN FALSE UNKNOWN

or TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

NULL TRUE UNKNOWN UNKNOWN

not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

229

Using the empty string
The empty string ("") or ('') is interpreted as a single blank in insert or
assignment statements on varchar or univarchar data. In concatenation of
varchar, char, nchar, nvarchar data, the empty string is interpreted as a single
space; for following example is stored as “abc def”:

"abc" + "" + "def"

The empty string is never evaluated as NULL.

Including quotation marks in character expressions
There are two ways to specify literal quotes within a char, or varchar entry. The
first method is to double the quotes. For example, if you begin a character entry
with a single quote and you want to include a single quote as part of the entry,
use two single quotes:

'I don''t understand.'

With double quotes:

"He said, ""It's not really confusing."""

The second method is to enclose a quote in the opposite kind of quote mark. In
other words, surround an entry containing a double quote with single quotes (or
vice versa). Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn"t there a better way?"'

Using the continuation character
To continue a character string to the next line on your screen, enter a backslash
(\) before going to the next line.

Identifiers
Identifiers are names for database objects such as databases, tables, views,
columns, indexes, triggers, procedures, defaults, rules, and cursors.

Identifiers

230

Adaptive Server identifiers can be a maximum of 30 bytes in length, whether
single-byte or multibyte characters are used. The first character of an identifier
must be either an alphabetic character, as defined in the current character set,
or the underscore (_) character.

Note Temporary table names, which begin with the pound sign (#), and local
variable names, which begin with the at sign (@), are exceptions to this rule.

Subsequent characters can include letters, numbers, the symbols #, @, _, and
currency symbols such as $ (dollars), ¥ (yen), and £ (pound sterling).
Identifiers cannot include special characters such as !, %, ^, &, *, and . or
embedded spaces.

You cannot use a reserved word, such as a Transact-SQL command, as an
identifier. For a complete list of reserved words, see Chapter 5, “Reserved
Words.”

Tables beginning with # (temporary tables)
Tables with names that begin with the pound sign (#) are temporary tables. You
cannot create other types of objects with names that begin with the pound sign.

Adaptive Server performs special operations on temporary table names to
maintain unique naming on a per-session basis. Long temporary table names
are truncated to 13 characters (including the pound sign); short names are
padded to 13 characters with underscores (_). A 17-digit numeric suffix that is
unique for an Adaptive Server session is appended.

Case sensitivity and identifiers
Sensitivity to the case (upper or lower) of identifiers and data depends on the
sort order installed on your Adaptive Server. Case sensitivity can be changed
for single-byte character sets by reconfiguring Adaptive Server’s sort order;
see the System Administration Guide for more information. Case is significant
in utility program options.

If Adaptive Server is installed with a case-insensitive sort order, you cannot
create a table named MYTABLE if a table named MyTable or mytable already
exists. Similarly, the following command will return rows from MYTABLE,
MyTable, or mytable, or any combination of uppercase and lowercase letters in
the name:

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

231

select * from MYTABLE

Uniqueness of object names
Object names need not be unique in a database. However, column names and
index names must be unique within a table, and other object names must be
unique for each owner within a database. Database names must be unique on
Adaptive Server.

Using delimited identifiers
Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers allows you to avoid certain restrictions on object names.
Table, view, and column names can be delimited by quotes; other object names
cannot.

Delimited identifiers can be reserved words, can begin with non-alphabetic
characters, and can include characters that would not otherwise be allowed.
They cannot exceed 28 bytes.

 Warning! Delimited identifiers may not be recognized by all front-end
applications and should not be used as parameters to system procedures.

Before creating or referencing a delimited identifier, you must execute:

set quoted_identifier on

Each time you use the delimited identifier in a statement, you must enclose it
in double quotes. For example:

create table "1one"(col1 char(3))
create table "include spaces" (col1 int)
create table "grant"("add" int)
insert "grant"("add") values (3)

While the quoted_identifier option is turned on, do not use double quotes around
character or date strings; use single quotes instead. Delimiting these strings
with double quotes causes Adaptive Server to treat them as identifiers. For
example, to insert a character string into col1 of 1table , use:

insert "1one"(col1) values ('abc')

Do not not use:

Identifiers

232

insert "1one"(col1) values ("abc")

To insert a single quote into a column, use two consecutive single quotation
marks. For example, to insert the characters “a’b” into col1 use:

insert "1one"(col1) values('a''b')

Syntax that includes
quotes

When the quoted_identifier option is set to on, you do not need to use double
quotes around an identifier if the syntax of the statement requires that a quoted
string contain an identifier. For example:

set quoted_identifier on
create table '1one' (c1 int)

However, object_id() requires a string, so you must include the table name in
quotes to select the information:

select object_id('1one')

896003192

You can include an embedded double quote in a quoted identifier by doubling
the quote:

create table "embedded""quote" (c1 int)

However, there is no need to double the quote when the statement syntax
requires the object name to be expressed as a string:

select object_id('embedded"quote')

Identifying tables or columns by their qualified object name
You can uniquely identify a table or column by adding other names that qualify
it—the database name, owner’s name, and (for a column) the table or view
name. Each qualifier is separated from the next one by a period. For example:

database.owner.table_name.column_name
database.owner.view_name.column_name

The naming conventions are:

[[database.]owner.]table_name
[[database.]owner.]view_name

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

233

Using delimited identifiers within an object name

If you use set quoted_identifier on, you can use double quotes around individual
parts of a qualified object name. Use a separate pair of quotes for each qualifier
that requires quotes. For example, use:

database.owner."table_name"."column_name"

Do not use:

database.owner."table_name.column_name"

Omitting the owner name

You can omit the intermediate elements in a name and use dots to indicate their
positions, as long as the system is given enough information to identify the
object:

database..table_name
database..view_name

Referencing your own objects in the current database

You need not use the database name or owner name to reference your own
objects in the current database. The default value for owner is the current user,
and the default value for database is the current database.

If you reference an object without qualifying it with the database name and
owner name, Adaptive Server tries to find the object in the current database
among the objects you own.

Referencing objects owned by the database owner

If you omit the owner name and you do not own an object by that name,
Adaptive Server looks for objects of that name owned by the Database Owner.
You must qualify objects owned by the Database Owner only if you own an
object of the same name, but you want to use the object owned by the Database
Owner. However, you must qualify objects owned by other users with the
user’s name, whether or not you own objects of the same name.

Identifiers

234

Using qualified identifiers consistently

When qualifying a column name and table name in the same statement, be sure
to use the same qualifying expressions for each; they are evaluated as strings
and must match; otherwise, an error is returned. Example 2 is incorrect because
the syntax style for the column name does not match the syntax style used for
the table name.

Example 1 select demo.mary.publishers.city

from demo.mary.publishers

city

Boston

Washington

Berkeley

Example 2 select demo.mary.publishers.city

from demo..publishers

The column prefix "demo.mary.publishers" does not match a

table name or alias name used in the query.

Determining whether an identifier is valid
Use the system function valid_name, after changing character sets or before
creating a table or view, to determine whether the object name is acceptable to
Adaptive Server. Here is the syntax:

select valid_name("Object_name")

If object_name is not a valid identifier (for example, if it contains illegal
characters or is more than 30 bytes long), Adaptive Server returns 0. If
object_name is a valid identifier, Adaptive Server returns a nonzero number.

Renaming database objects
Rename user objects (including user-defined datatypes) with sp_rename.

 Warning! After you rename a table or column, you must redefine all
procedures, triggers, and views that depend on the renamed object.

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

235

Using multibyte character sets
In multibyte character sets, a wider range of characters is available for use in
identifiers. For example, on a server with the Japanese language installed, the
following types of characters may be used as the first character of an identifier:
Zenkaku or Hankaku Katakana, Hiragana, Kanji, Romaji, Greek, Cyrillic, or
ASCII.

Although Hankaku Katakana characters are legal in identifiers on Japanese
systems, they are not recommended for use in heterogeneous systems. These
characters cannot be converted between the EUC-JIS and Shift-JIS character
sets.

The same is true for some 8-bit European characters. For example, the OE
ligature, is part of the Macintosh character set (codepoint 0xCE). This
character does not exist in the ISO 8859-1 (iso_1) character set. If the OE
ligature exists in data being converted from the Macintosh to the ISO 8859-1
character set, it causes a conversion error.

If an object identifier contains a character that cannot be converted, the client
loses direct access to that object.

Pattern matching with wildcard characters
Wildcard characters represent one or more characters, or a range of characters,
in a match_string. A match_stringis a character string containing the pattern to
find in the expression. It can be any combination of constants, variables, and
column names or a concatenated expression, such as:

like @variable + "%".

If the match string is a constant, it must always be enclosed in single or double
quotes.

Use wildcard characters with the keyword like to find character and date strings
that match a particular pattern. You cannot use like to search for seconds or
milliseconds. For more information, see “Using wildcard characters with
datetime data” on page 241.

Use wildcard characters in where and having clauses to find character or
date/time information that is like—or not like—the match string:

{where | having} [not]
expression [not] like match_string

[escape "escape_character "]

Pattern matching with wildcard characters

236

expression can be any combination of column names, constants, or functions
with a character value.

Wildcard characters used without like have no special meaning. For example,
this query finds any phone numbers that start with the four characters “415%”:

select phone
from authors
where phone = "415%"

Using not like
Use not like to find strings that do not match a particular pattern. These two
queries are equivalent: they find all the phone numbers in the authors table that
do not begin with the 415 area code.

select phone
from authors
where phone not like "415%"

select phone
from authors
where not phone like "415%"

For example, this query finds the system tables in a database whose names
begin with “sys”:

select name
from sysobjects
where name like "sys%"

To see all the objects that are not system tables, use:

 not like "sys%"

If you have a total of 32 objects and like finds 13 names that match the pattern,
not like will find the 19 objects that do not match the pattern.

not like and the negative wildcard character [^] may give different results (see
“The caret (^) wildcard character” on page 239). You cannot always duplicate
not like patterns with like and ^. This is because not like finds the items that do
not match the entire like pattern, but like with negative wildcard characters is
evaluated one character at a time.

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

237

A pattern such as like “[^s][^y][^s]%" may not produce the same results. Instead
of 19, you might get only 14, with all the names that begin with “s”, or have
“y” as the second letter, or have “s” as the third letter eliminated from the
results, as well as the system table names. This is because match strings with
negative wildcard characters are evaluated in steps, one character at a time. If
the match fails at any point in the evaluation, it is eliminated.

Case and accent insensitivity
If your Adaptive Server uses a case-insensitive sort order, case is ignored when
comparing expression and match_string. For example, this clause would return
“Smith,” “smith,” and “SMITH” on a case-insensitive Adaptive Server:

where col_name like "Sm%"

If your Adaptive Server is also accent-insensitive, it treats all accented
characters as equal to each other and to their unaccented counterparts, both
uppercase and lowercase. The sp_helpsort system procedure displays the
characters that are treated as equivalent, displaying an “=” between them.

Using wildcard characters
You can use the match string with a number of wildcard characters, which are
discussed in detail in the following sections. Table 4-7 summarizes the
wildcard characters:

Table 4-7: Wildcard characters used with like

Enclose the wildcard character and the match string in single or double quotes
(like “[dD]eFr_nce”).

The percent sign (%) wildcard character

Use the % wildcard character to represent any string of zero or more characters.
For example, to find all the phone numbers in the authors table that begin with
the 415 area code:

Symbol Meaning

% Any string of 0 or more characters

_ Any single character

[] Any single character within the specified range ([a-f]) or set ([abcdef])

[^] Any single character not within the specified range ([^a-f]) or set ([^abcdef])

Pattern matching with wildcard characters

238

select phone
from authors
where phone like "415%"

To find names that have the characters “en” in them (Bennet, Green,
McBadden):

select au_lname
from authors
where au_lname like "%en%"

Trailing blanks following “%” in a like clause are truncated to a single trailing
blank. For example, “%” followed by two spaces matches “X ”(one space);
“X ” (two spaces); “X ” (three spaces), or any number of trailing spaces.

The underscore (_) wildcard character

Use the underscore (_) wildcard character to represent any single character.
For example, to find all six-letter names that end with “heryl” (for example,
Cheryl):

select au_fname
from authors
where au_fname like "_heryl"

Bracketed ([]) characters

Use brackets to enclose a range of characters, such as [a-f], or a set of
characters such as [a2Br]. When ranges are used, all values in the sort order
between (and including) rangespec1 and rangespec2 are returned. For
example, “[0-z” matches 0-9, A-Z and a-z (and several punctuation characters)
in 7-bit ASCII.

To find names ending with “inger” and beginning with any single character
between M and Z:

select au_lname
from authors
where au_lname like "[M-Z]inger"

To find both “DeFrance” and “deFrance”:

select au_lname
from authors
where au_lname like "[dD]eFrance"

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

239

The caret (^) wildcard character

The caret is the negative wildcard character. Use it to find strings that do not
match a particular pattern. For example, “[^a-f]” finds strings that are not in the
range a-f and “[^a2bR]” finds strings that are not “a,” “2,” “b,” or “R.”

To find names beginning with “M” where the second letter is not “c”:

select au_lname
from authors
where au_lname like "M[^c]%"

When ranges are used, all values in the sort order between (and including)
rangespec1 and rangespec2 are returned. For example,
“[0-z]” matches 0-9, A-Z , a-z, and several punctuation characters in 7-bit
ASCII.

Using multibyte wildcard characters
If the multibyte character set configured on your Adaptive Server defines
equivalent double-byte characters for the wildcard characters _, %, - [,], and
^, you can substitute the equivalent character in the match string. The
underscore equivalent represents either a single- or double-byte character in
the match string.

Using wildcard characters as literal characters
To search for the occurrence of %, _, [,], or ^ within a string, you must use an
escape character. When a wildcard character is used in conjunction with an
escape character, Adaptive Server interprets the wildcard character literally,
rather than using it to represent other characters.

Adaptive Server provides two types of escape characters:

• Square brackets, a Transact-SQL extension

• Any single character that immediately follows an escape clause,
compliant with the SQL standards

Pattern matching with wildcard characters

240

Using square brackets ([]) as escape characters

Use square brackets as escape characters for the percent sign, the underscore,
and the left bracket. The right bracket does not need an escape character; use it
by itself. If you use the hyphen as a literal character, it must be the first
character inside a set of square brackets.

Table 4-8 shows examples of square brackets used as escape characters with
like.

Table 4-8: Using square brackets to search for wildcard characters

Using the escape clause

Use the escape clause to specify an escape character. Any single character in
the server’s default character set can be used as an escape character. If you try
to use more than one character as an escape character, Adaptive Server
generates an exception.

Do not use existing wildcard characters as escape characters because:

• If you specify the underscore (_) or percent sign (%) as an escape
character, it loses its special meaning within that like predicate and acts
only as an escape character.

• If you specify the left or right bracket ([or]) as an escape character, the
Transact-SQL meaning of the bracket is disabled within that like predicate.

• If you specify the hyphen (-) or caret (^) as an escape character, it loses its
special meaning and acts only as an escape character.

An escape character retains its special meaning within square brackets, unlike
wildcard characters such as the underscore, the percent sign, and the open
bracket.

like predicate Meaning

like "5%" 5 followed by any string of 0 or more characters

like "5[%]" 5%

like "_n" an, in, on (and so on)

like "[_]n" _n

like "[a-cdf]" a, b, c, d, or f

like "[-acdf]" -, a, c, d, or f

like "[[]" [

like "]"]

like “[[]ab]” []ab

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

241

The escape character is valid only within its like predicate and has no effect on
other like predicates contained in the same statement. The only characters that
are valid following an escape character are the wildcard characters (_, %, [,],
or [^]), and the escape character itself. The escape character affects only the
character following it, and subsequent characters are not affected by it.

If the pattern contains two literal occurrences of the character that happens to
be the escape character, the string must contain four consecutive escape
characters. If the escape character does not divide the pattern into pieces of one
or two characters, Adaptive Server returns an error message. Table 4-9 shows
examples of escape clauses used with like.

Table 4-9: Using the escape clause

Using wildcard characters with datetime data
When you use like with datetime values, Adaptive Server converts the dates to
the standard datetime format, then to varchar. Since the standard storage format
does not include seconds or milliseconds, you cannot search for seconds or
milliseconds with like and a pattern.

It is a good idea to use like when you search for datetime values, since datetime
entries may contain a variety of date parts. For example, if you insert the value
“9:20” and the current date into a column named arrival_time, the clause:

where arrival_time = '9:20'

would not find the value, because Adaptive Server converts the entry into “Jan
1 1900 9:20AM.” However, the following clause would find this value:

where arrival_time like '%9:20%'

like predicate Meaning

like "5@%" escape "@" 5%

like "*_n" escape "*" _n

like "%80@%%" escape "@" String containing 80%

like "*_sql**%" escape "*" String containing _sql*

like "%#####_#%%" escape "#" String containing ##_%

Pattern matching with wildcard characters

242

243

C H A P T E R 5 Reserved Words

Keywords, also known as reserved words, are words that have special
meanings. This chapter lists Transact-SQL and SQL92 keywords.

Topics covered are:

Transact-SQL reserved words
The words in Table 5-1 are reserved by Adaptive Server as keywords (part
of SQL command syntax). They cannot be used as names of database
objects such as databases, tables, rules, or defaults. They can be used as
names of local variables and as stored procedure parameter names.

To find the names of existing objects that are reserved words, use
sp_checkreswords.

Table 5-1: List of Transact-SQL reserved words

Topics Page
Transact-SQL reserved words 243

SQL92 reserved words 244

Potential SQL92 reserved words 245

Words

A add, all, alter, and, any, arith_overflow, as, asc, at, authorization, avg

B begin, between, break, browse, bulk, by

C cascade, case, char_convert, check, checkpoint, close, clustered, coalesce, commit, compute, confirm,
connect, constraint, continue, controlrow, convert, count, create, current, cursor

D database, dbcc, deallocate, declare, default, delete, desc, deterministic, disk distinct, double, drop,
dummy, dump

E else, end, endtran, errlvl, errordata, errorexit, escape, except, exclusive, exec, execute, exists, exit,
exp_row_size, external

F fetch, fillfactor, for, foreign, from, func, function

G goto, grant, group

H having, holdlock

SQL92 reserved words

244

SQL92 reserved words
Adaptive Server includes entry-level SQL92 features. Full SQL92
implementation includes the words listed in the following tables as command
syntax. Upgrading identifiers can be a complex process; therefore, we are
providing this list for your convenience. The publication of this information
does not commit Sybase to providing all of these SQL92 features in subsequent
releases. In addition, subsequent releases may include keywords not included
in this list.

I identity, identity_gap, identity_insert, identity_start, if, in, index, inout, insert, install, intersect, into, is,
isolation

J jar, join

K key, kill

L level, like, lineno, load, lock

M max, max_rows_per_page, min, mirror, mirrorexit, modify

N national, new, noholdlock, nonclustered, not, null, nullif, numeric_truncation

Note “New” is a potential Transact-SQL reserved word, not a current Transact-SQL reserved word, so
you can use it to name a database object. However, since “New” may become a reserved word in the
future, Sybase recommends that you avoid using it.

“New” is a special case (see “Potential SQL92 reserved words” on page 245 for information on other
reserved words) because it appears in the spt_values table, and because sp_checkreswords displays
“New” as a reserved word.

O of, off, offsets, on, once, online, only, open, option, or, order, out, output, over

P partition, perm, permanent, plan, precision, prepare, primary, print, privileges, proc, procedure,
processexit, proxy_table, public

Q quiesce

R raiserror, read, readpast, readtext, reconfigure, references remove, reorg, replace, replication,
reservepagegap, return, returns, revoke, role, rollback, rowcount, rows, rule

S save, schema, select, set, setuser, shared, shutdown, some, statistics, stringsize, stripe, sum, syb_identity,
syb_restree, syb_terminate

T table, temp, temporary, textsize, to, tran, transaction, trigger, truncate, tsequal

U union, unique, unpartition, update, use, user, user_option, using

V values, varying, view

W waitfor, when, where, while, with, work, writetext

Words

CHAPTER 5 Reserved Words

245

The words in Table 5-2 are SQL92 keywords that are not reserved words in
Transact-SQL.

Table 5-2: List of SQL92 reserved words

Potential SQL92 reserved words
If you are using the ISO/IEC 9075:1989 standard, also avoid using the words
shown in the following list because these words may become SQL92 reserved
words in the future.

Words

A absolute, action, allocate, are, assertion

B bit, bit_length, both

C cascaded, case, cast, catalog, char, char_length, character, character_length, coalesce, collate, collation,
column, connection, constraints, corresponding, cross, current_date, current_time, current_timestamp,
current_user

D date, day, dec, decimal, deferrable, deferred, describe, descriptor, diagnostics, disconnect, domain

E end-exec, exception, extract

F false, first, float, found, full

G get, global, go

H hour

I immediate, indicator, initially, inner, input, insensitive, int, integer, interval

J join

L language, last, leading, left, local, lower

M match, minute, module, month

N names, natural, nchar, next, no, nullif, numeric

O octet_length, outer, output, overlaps

P pad, partial, position, preserve, prior

R real, relative, restrict, right

S scroll, second, section, session_user , size , smallint, space, sql, sqlcode, sqlerror, sqlstate, substring,
system_user

T then, time, timestamp, timezone_hour, timezone_minute, trailing, translate, translation, trim, true

U unknown, upper, usage

V value, varchar

W when, whenever, write, year

Z zone

Potential SQL92 reserved words

246

Table 5-3: List of potential SQL92 reserved words

Words

A after, alias, async

B before, boolean, breadth

C call, completion, cycle

D data, depth, dictionary

E each, elseif, equals

G general

I ignore

L leave, less, limit, loop

M modify

N new, none

O object, oid, old, operation, operators, others

P parameters, pendant, preorder, private, protected

R recursive, ref, referencing, resignal, return, returns, routine, row

S savepoint, search, sensitive, sequence, signal, similar, sqlexception, structure

T test, there, type

U under

V variable, virtual, visible

W wait, without

247

C H A P T E R 6 SQLSTATE Codes and Messages

This chapter describes Adaptive Server’s SQLSTATE status codes and
their associated messages.

Topics covered are:

SQLSTATE codes are required for entry level SQL92 compliance. They
provide diagnostic information about two types of conditions:

• Warnings – conditions that require user notification but are not
serious enough to prevent a SQL statement from executing
successfully

• Exceptions – conditions that prevent a SQL statement from having
any effect on the database

Each SQLSTATE code consists of a 2-character class followed by a
3-character subclass. The class specifies general information about error
type. The subclass specifies more specific information.

SQLSTATE codes are stored in the sysmessages system table, along with
the messages that display when these conditions are detected. Not all
Adaptive Server error conditions are associated with a SQLSTATE
code—only those mandated by SQL92. In some cases, multiple Adaptive
Server error conditions are associated with a single SQLSTATE value.

Warnings
Adaptive Server currently detects only one SQLSTATE warning
condition, which is described in Table 6-1:

Topics Page
Warnings 247

Exceptions 248

Exceptions

248

Table 6-1: SQLSTATE warnings

Exceptions
Adaptive Server detects the following types of exceptions:

• Cardinality violations

• Data exceptions

• Integrity constraint violations

• Invalid cursor states

• Syntax errors and access rule violations

• Transaction rollbacks

• with check option violations

Exception conditions are described in Table 6-2 through Table 6-8. Each class
of exceptions appears in its own table. Within each table, conditions are sorted
alphabetically by message text.

Cardinality violations
Cardinality violations occur when a query that should return only a single row
returns more than one row to an Embedded SQL™ application.

Message Value Description

Warning – null value eliminated in set
function.

01003 Occurs when you use an aggregate function (avg, max,
min, sum, or count) on an expression with a null value.

Warning–string data, right truncation 01004 Occurs when character, unichar, or binary data is
truncated to 255 bytes. The data may be:

• The result of a select statement in which the client
does not support the WIDE TABLES property.

• Parameters to an RPC on remote Adaptive Servers
or Open Servers that do not support the WIDE
TABLES property.

CHAPTER 6 SQLSTATE Codes and Messages

249

Table 6-2: Cardinality violations

Data exceptions
Data exceptions occur when an entry:

• Is too long for its datatype,

• Contains an illegal escape sequence, or

• Contains other format errors.

Table 6-3: Data exceptions

Message Value Description

Subquery returned more than 1 value. This
is illegal when the subquery follows =, !=,
<, <=, >, >=. or when the subquery is used
as an expression.

21000 Occurs when:

• A scalar subquery or a row subquery returns more than
one row.

• A select into parameter_list query in Embedded SQL
returns more than one row.

Message Value Description

Arithmetic overflow occurred. 22003 Occurs when:

• An exact numeric type would lose precision or scale as a result
of an arithmetic operation or sum function.

• An approximate numeric type would lose precision or scale as
a result of truncation, rounding, or a sum function.

Data exception - string data right
truncated.

22001 Occurs when a char, unichar, univarchar, or varchar column is too
short for the data being inserted or updated and non-blank
characters must be truncated.

Divide by zero occurred. 22012 Occurs when a numeric expression is being evaluated and the
value of the divisor is zero.

Illegal escape character found.
There are fewer bytes than
necessary to form a valid character.

22019 Occurs when you are searching for strings that match a given
pattern if the escape sequence does not consist of a single
character.

Invalid pattern string. The character
following the escape character must
be percent sign, underscore, left
square bracket, right square bracket,
or the escape character.

22025 Occurs when you are searching for strings that match a particular
pattern when:

• The escape character is not immediately followed by a percent
sign, an underscore, or the escape character itself, or

• The escape character partitions the pattern into substrings
whose lengths are other than 1 or 2 characters.

Exceptions

250

Integrity constraint violations
Integrity constraint violations occur when an insert, update, or delete statement
violates a primary key, foreign key, check, or unique constraint or a unique index.

Table 6-4: Integrity constraint violations

Invalid cursor states
Invalid cursor states occur when:

• A fetch uses a cursor that is not currently open, or

• An update where current of or delete where current of affects a cursor row
that has been modified or deleted, or

• An update where current of or delete where current of affects a cursor row
that not been fetched.

Table 6-5: Invalid cursor states

Message Value Description

Attempt to insert duplicate key row in object object_name
with unique index index_name

23000 Occurs when a duplicate row is inserted
into a table that has a unique constraint
or index.

Check constraint violation occurred, dbname =
database_name, table name = table_name, constraint name =
constraint_name

23000 Occurs when an update or delete would
violate a check constraint on a column.

Dependent foreign key constraint violation in a referential
integrity constraint.
dbname = database_name,
table name = table_name, constraint name = constraint_name

23000 Occurs when an update or delete on a
primary key table would violate a
foreign key constraint.

Foreign key constraint violation occurred, dbname =
database_name, table name = table_name, constraint name =
constraint_name

23000 Occurs when an insert or update on a
foreign key table is performed without a
matching value in the primary key table.

Message Value Description

Attempt to use cursor cursor_name which is not
open. Use the system stored procedure
sp_cursorinfo for more information.

24000 Occurs when an attempt is made to fetch from a
cursor that has never been opened or that was closed
by a commit statement or an implicit or explicit
rollback. Reopen the cursor and repeat the fetch.

Cursor cursor_name was closed implicitly
because the current cursor position was deleted
due to an update or a delete. The cursor scan
position could not be recovered. This happens
for cursors which reference more than one table.

24000 Occurs when the join column of a multitable cursor
has been deleted or changed. Issue another fetch to
reposition the cursor.

CHAPTER 6 SQLSTATE Codes and Messages

251

Syntax errors and access rule violations
Syntax errors are generated by SQL statements that contain unterminated
comments, implicit datatype conversions not supported by Adaptive Server or
other incorrect syntax.

Access rule violations are generated when a user tries to access an object that
does not exist or one for which he or she does not have the correct permissions.

Table 6-6: Syntax errors and access rule violations

The cursor cursor_name had its current scan
position deleted because of a
DELETE/UPDATE WHERE CURRENT OF or
a regular searched DELETE/UPDATE. You
must do a new FETCH before doing an
UPDATE or DELETE WHERE CURRENT OF.

24000 Occurs when a user issues an update/delete where
current of whose current cursor position has been
deleted or changed. Issue another fetch before
retrying the update/delete where current of.

The UPDATE/DELETE WHERE CURRENT
OF failed for the cursor cursor_name because it
is not positioned on a row.

24000 Occurs when a user issues an update/delete where
current of on a cursor that:

• Has not yet fetched a row

• Has fetched one or more rows after reaching the
end of the result set

Message Value Description

Message Value Description

command permission denied on object
object_name, database database_name,
owner owner_name .

42000 Occurs when a user tries to access an object for which he
or she does not have the proper permissions.

Implicit conversion from datatype
‘datatype’ to ‘datatype’ is not allowed. Use
the CONVERT function to run this query.

42000 Occurs when the user attempts to convert one datatype to
another but Adaptive Server cannot do the conversion
implicitly.

Incorrect syntax near object_name. 42000 Occurs when incorrect SQL syntax is found near the
object specified.

Insert error: column name or number of
supplied values does not match table
definition.

42000 Occurs during inserts when an invalid column name is
used or when an incorrect number of values is inserted.

Missing end comment mark ‘*/’. 42000 Occurs when a comment that begins with the /* opening
delimiter does not also have the */ closing delimiter.

object_name not found. Specify
owner.objectname or use sp_help to check
whether the object exists (sp_help may
produce lots of output).

42000 Occurs when a user tries to reference an object that he or
she does not own. When referencing an object owned by
another user, be sure to qualify the object name with the
name of its owner.

Exceptions

252

Transaction rollbacks
Transaction rollbacks occur when the transaction isolation level is set to 3, but
Adaptive Server cannot guarantee that concurrent transactions can be
serialized. This type of exception generally results from system problems such
as disk crashes and offline disks.

Table 6-7: Transaction rollbacks

with check option violation
This class of exception occurs when data being inserted or updated through a
view would not be visible through the view.

Table 6-8: with check option violation

The size (size) given to the object_name
exceeds the maximum. The largest size
allowed is size.

42000 Occurs when:

• The total size of all the columns in a table definition
exceeds the maximum allowed row size.

• The size of a single column or parameter exceeds the
maximum allowed for its datatype.

Message Value Description

Message Value Description

Your server command (process id #process_id)
was deadlocked with another process and has been
chosen as deadlock victim. Re-run your command.

40001 Occurs when Adaptive Server detects that it cannot
guarantee that two or more concurrent transactions
can be serialized.

Message Value Description

The attempted insert or update failed because the target view was
either created WITH CHECK OPTION or spans another view
created WITH CHECK OPTION. At least one resultant row from the
command would not qualify under the CHECK OPTION constraint.

44000 Occurs when a view, or any view
on which it depends, was created
with a with check option clause.

253

C H A P T E R 7 Commands

This volume describes commands, clauses, and other elements used to
construct a Transact-SQL statement.

Overview
Table 7-1 provides a brief description of the commands in this chapter.

Table 7-1: Transact-SQL commands

Command Description

alter database Increases the amount of space allocated to a database.

alter role Defines mutually exclusive relationships between roles and adds, drops, and changes
passwords for roles.

alter table Adds new columns; adds, changes, or drops constraints, changes constraints; partitions
or unpartitions an existing table.

begin...end Encloses a series of SQL statements so that control-of-flow language, such as if...else,
can affect the performance of the whole group.

begin transaction Marks the starting point of a user-defined transaction.

break Causes an exit from a while loop. break is often activated by an if test.

case Allows SQL expressions to be written for conditional values. case expressions can be
used anywhere a value expression can be used.

checkpoint Writes all dirty pages (pages that have been updated since they were last written) to the
database device.

close Deactivates a cursor.

coalesce Allows SQL expressions to be written for conditional values. coalesce expressions can
be used anywhere a value expression can be used; alternative for a case expression.

commit Marks the ending point of a user-defined transaction.

compute clause Generates summary values that appear as additional rows in the query results.

connect to...disconnect Specifies the server to which a passthrough connection is required.

continue Causes the while loop to restart. continue is often activated by an if test.

create database Creates a new database.

create default Specifies a value to insert in a column (or in all columns of a user-defined datatype) if
no value is explicitly supplied at insert time.

Overview

254

create existing table Confirms that the current remote table information matches the information that is
stored in column_list, and verifies the existence of the underlying object.

create index Creates an index on one or more columns in a table.

create plan Creates an abstract query plan.

create procedure Creates a stored procedure that can take one or more user-supplied parameters.

create proxy_table Creates a proxy table without specifying a column list. Component Integration Services
derives the column list from the metadata it obtains from the remote table.

create role Creates a user-defined role.

create rule Specifies the domain of acceptable values for a particular column or for any column of
a user-defined datatype.

create schema Creates a new collection of tables, views and permissions for a database user.

create table Creates new tables and optional integrity constraints.

create trigger Creates a trigger, a type of stored procedure often used for enforcing integrity
constraints. A trigger executes automatically when a user attempts a specified data
modification statement on a specified table.

create view Creates a view, which is an alternative way of looking at the data in one or more tables.

dbcc Database Consistency Checker (dbcc) checks the logical and physical consistency of a
database. Use dbcc regularly as a periodic check or if you suspect any damage.

deallocate cursor Makes a cursor inaccessible and releases all memory resources committed to that
cursor.

declare Declares the name and type of local variables for a batch or procedure.

declare cursor Defines a cursor.

delete Removes rows from a table.

delete statistics Removes statistics from the sysstatistics system table.

disk init Makes a physical device or file usable by Adaptive Server.

disk mirror Creates a software mirror that immediately takes over when the primary device fails.

disk refit Rebuilds the master database’s sysusages and sysdatabases system tables from
information contained in sysdevices. Use disk refit after disk reinit as part of the
procedure to restore the master database.

disk reinit Rebuilds the master database’s sysdevices system table. Use disk reinit as part of the
procedure to restore the master database.

disk remirror Reenables disk mirroring after it is stopped by failure of a mirrored device or
temporarily disabled by the disk unmirror command.

disk unmirror Disables either the original device or its mirror, allowing hardware maintenance or the
changing of a hardware device.

drop database Removes one or more databases from a Adaptive Server.

drop default Removes a user-defined default.

drop index Removes an index from a table in the current database.

drop procedure Removes user-defined stored procedures.

Command Description

CHAPTER 7 Commands

255

drop role Removes a user-defined role.

drop rule Removes a user-defined rule.

drop table Removes a table definition and all of its data, indexes, triggers, and permission
specifications from the database.

drop trigger Removes a trigger.

drop view Removes one or more views from the current database.

dump database Makes a backup copy of the entire database, including the transaction log, in a form that
can be read in with load database. Dumps and loads are performed through Backup
Server.

dump transaction Makes a copy of a transaction log and removes the inactive portion.

execute Runs a system procedure, a user-defined stored procedure, or a dynamically constructed
Transact-SQL command.

fetch Returns a row or a set of rows from a cursor result set.

goto label Branches to a user-defined label.

grant Assigns permissions to users or to user-defined roles.

group by and having
clauses

Used in select statements to divide a table into groups and to return only groups that
match conditions in the having clause.

if...else Imposes conditions on the execution of a SQL statement.

insert Adds new rows to a table or view.

kill Kills a process.

load database Loads a backup copy of a user database, including its transaction log.

load transaction Loads a backup copy of the transaction log.

lock table Explicitly locks a table within a transaction.

nullif Allows SQL expressions to be written for conditional values. nullif expressions can be
used anywhere a value expression can be used; alternative for a case expression.

online database Marks a database available for public use after a normal load sequence and, if needed,
upgrades a loaded database and transaction log dumps to the current version of
Adaptive Server.

open Opens a cursor for processing.

order by clause Returns query results in the specified column(s) in sorted order.

prepare transaction Used by DB-Library™ in a two-phase commit application to see if a server is prepared
to commit a transaction.

print Prints a user-defined message on the user’s screen.

quiesce database Suspends and resumes updates to a specified list of databases.

raiserror Prints a user-defined error message on the user’s screen and sets a system flag to record
that an error condition has occurred.

readtext Reads text and image values, starting from a specified offset and reading a specified
number of bytes or characters.

Command Description

Overview

256

reconfigure The reconfigure command currently has no effect; it is included to allow existing scripts
to run without modification. In previous releases, reconfigure was required after the
sp_configure system procedure to implement new configuration parameter settings.

remove java Removes one or more Java-SQL classes, packages, or JARs from a database. Use when
Java is enabled in the database.

reorg Reclaims unused space on pages, removes row forwarding, or rewrites all rows in the
table to new pages, depending on the option used.

return Exits from a batch or procedure unconditionally, optionally providing a return status.
Statements following return are not executed.

revoke Revokes permissions or roles from users or roles.

rollback Rolls a user-defined transaction back to the last savepoint inside the transaction or to the
beginning of the transaction.

rollback trigger Rolls back the work done in a trigger, including the update that caused the trigger to fire,
and issues an optional raiserror statement.

save transaction Sets a savepoint within a transaction.

select Retrieves rows from database objects.

set Sets Adaptive Server query-processing options for the duration of the user’s work
session. Can be used to set some options inside a trigger or stored procedure. Can also
be used to activate or deactivate a role in the current session.

setuser Allows a Database Owner to impersonate another user.

shutdown Shuts down Adaptive Server or a Backup Server™. This command can be issued only
by a System Administrator.

truncate table Removes all rows from a table.

union operator Returns a single result set that combines the results of two or more queries. Duplicate
rows are eliminated from the result set unless the all keyword is specified.

update Changes data in existing rows, either by adding data or by modifying existing data;
updates all statistics information for a given table; updates information about the
number of pages in each partition for a partitioned table; updates information about the
distribution of key values in specified indexes.

use Specifies the database with which you want to work.

waitfor Specifies a specific time, a time interval, or an event for the execution of a statement
block, stored procedure, or transaction.

where clause Sets the search conditions in a select, insert, update, or delete statement.

while Sets a condition for the repeated execution of a statement or statement block. The
statement(s) execute repeatedly, as long as the specified condition is true.

writetext Permits non-logged, interactive updating of an existing text or image column.

Command Description

CHAPTER 7 Commands

257

alter database
Description Increases the amount of space allocated to a database.

Syntax alter database database_name
[on {default | database_device } [= size]

[, database_device [= size]]...]
[log on { default | database_device } [= size]

[, database_device [= size]]...]
[with override]
[for load]
[for proxy_update]

Parameters database_name
is the name of the database. The database name can be a literal, a variable,
or a stored procedure parameter.

on
indicates a size and/or location for the database extension. If you have your
log and data on separate device fragments, use this clause for the data device
and the log on clause for the log device.

default
 indicates that alter database can put the database extension on any default
database device(s) (as shown by sp_helpdevice). To specify a size for the
database extension without specifying the exact location, use this command:

on default = size

To change a database device’s status to default, use the system procedure
sp_diskdefault.

database_device
is the name of the database device on which to locate the database extension.
A database can occupy more than one database device with different
amounts of space on each. Add database devices to Adaptive Server with
disk init.

alter database

258

size
is the amount of space to allocate to the database extension. size can be in
the following unit specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes),
and ‘g’ or ‘G’ (gigabytes). Sybase recommends that you always include a
unit specifier. If you do not specify a value, alter database extends a database
by 1MB or 4 allocation unit, whichever is larger. The following table
describes the minimum amounts:

log on
indicates that you want to specify additional space for the database’s
transaction logs. The log on clause uses the same defaults as the on clause.

with override
forces Adaptive Server to accept your device specifications, even if they mix
data and transaction logs on the same device, thereby endangering
up-to-the-minute recoverability for your database. If you attempt to mix log
and data on the same device without using this clause, the alter database
command fails. If you mix log and data, and use with override, you are
warned, but the command succeeds.

for load
is used only after create database for load, when you must re-create the space
allocations and segment usage of the database being loaded from a dump.

for proxy_update
forces the re-synchronization of proxy tables within the proxy database.

Examples Example 1 Adds 1MB to the database mydb on a default database device:

alter database mydb

Example 2 Adds 3MB to the space allocated for the pubs2 database on the
database device named newdata:

alter database pubs2
on newdata = 3

Example 3 Adds 10MB of space for data on userdata1 and 2MB for the log on
logdev:

Server’s logical
page size

Database
extended by:

2K 1MB

4K 1MB

8K 2MB

16K 4MB

CHAPTER 7 Commands

259

alter database production
on userdata1 = 10
log on logdev = 2

Usage Restrictions

• Quotes are optional if you do not include a unit specifier. However, you
must use quotes if you include a unit specifier.

• If you do not include a unit specifier, Adaptive Server interprets the size
in terms of megabytes of disk space, and this number is converted to the
logical page size the server uses.

• Adaptive Server reports an error if the total size of all fixed-length
columns, plus the row overhead, is greater than the table’s locking scheme
and page size allows.

• If you create a data-ony locking (DOL) table with a variable-length
column that exceeds a 8191-byte offset, you cannot add any rows to the
column.

• Because Adaptive Server allocates space for databases for create database
and alter database in chunks of 256 logical pages, these commands round
the specified size down to the nearest multiple of allocation units.

• You can specify the size as a float datatype, however, the size is rounded
down to the nearest multiple of the allocation unit.

• The minimum size that space is allocated to a database is the larger of:

• One megabyte.

• One allocation unit of the server’s logical page size.

• Although Adaptive Server does create tables in the following
circumstances, you will receive errors about size limitations when you
perform data manipulation language operations:

• If the total row size for rows with variable-length columns exceeds the
maximum column size.

• If the length of a single variable-length column exceeds the maximum
column size.

• For DOL tables, if the offset of any variable-length column other than
the initial column exceeds the limit of 8191 bytes.

• If Adaptive Server cannot allocate the requested space, it comes as close
as possible per device and prints a message telling how much space has
been allocated on each database device.

alter database

260

• You must be using the master database, or executing a stored procedure in
the master database, to use alter database.

• If Adaptive Server cannot allocate the requested space, it comes as close
as possible per device and prints a message telling how much space has
been allocated on each database device.

• You can expand the master database only on the master device. An attempt
to use alter database to expand the master database to any other database
device results in an error message. Here is an example of the correct
statement for modifying the master database on the master device:

alter database master on master = 1

• Each time you allocate space on a database device with create database or
alter database, that allocation represents a device fragment, and the
allocation is entered as a row in sysusages.

• If you use alter database on a database that is in the process of being
dumped, the alter database command cannot complete until the dump
finishes. Adaptive Server locks the in-memory map of database space use
during a dump. If you issue an alter database command while this
in-memory map is locked, Adaptive Server updates the map from the disk
after the dump completes. If you interrupt alter database, Adaptive Server
instructs you to run sp_dbremap. If you fail to run sp_dbremap, the space
you added does not become available to Adaptive Server until the next
reboot.

• You can use alter database on database_device on an offline database.

Backing up master after allocating more space

• Back up the master database with the dump database command after each
use of alter database. This makes recovery easier and safer in case master
becomes damaged.

• If you use alter database and fail to back up master, you may be able to
recover the changes with disk refit.

Placing the log on a separate device

• To increase the amount of storage space allocated for the transaction log
when you have used the log on extension to create database, give the name
of the log’s device in the log on clause when you issue the alter database
command.

CHAPTER 7 Commands

261

• If you did not use the log on extension of create database to place your logs
on a separate device, you may not be able to recover fully in case of a hard
disk crash. In this case, you can extend your logs by using alter database
with the log on clause, then using sp_logdevice.

Getting help on space usage

• To see the names, sizes, and usage of device fragments already in use by a
database, execute sp_helpdb dbname.

• To see how much space the current database is using, execute
sp_spaceused.

The system and default segments

• The system and default segments are mapped to each new database device
included in the on clause of an alter database command. To unmap these
segments, use sp_dropsegment.

• When you use alter database (without override) to extend a database on a
device already in use by that database, the segments mapped to that device
are also extended. If you use the override clause, all device fragments
named in the on clause become system/default segments, and all device
fragments named in the log on clause become log segments.

Using alter database to awaken sleeping processes

• If user processes are suspended because they have reached a last-chance
threshold on a log segment, use alter database to add space to the log
segment. The processes awaken when the amount of free space exceeds
the last-chance threshold.

Using for proxy_update

• If the for proxy_update clause is entered with no other options, the size of
the database will not be extended; instead, the proxy tables, if any, will be
dropped from the proxy database and re-created from the metadata
obtained from the pathname specified during create database ... with
default_location = ‘pathname’.

• If this command is used with other options to extend the size of the
database, the proxy table synchronization is performed after the size
extensions are made.

• The purpose of this alter database extension is to provide the DBA with an
easy-to-use, single-step operation with which to obtain an accurate and
up-to-date proxy representation of all tables at a single remote site.

alter database

262

• This re-synchronization is supported for all external data sources, and not
just the primary server in a HA-cluster environment. Also, a database need
not have been created with the for proxy_update clause. If a default storage
location has been specified, either through the create database command
or with sp_defaultloc, the metadata contained within the database can be
synchronized with the metadata at the remote storage location.

• To make sure databases are synchronized correctly so that all the proxy
tables have the correct schema to the content of the primary database you
just reloaded, you may need to run the for proxy_update clause on the
server hosting the proxy database.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions alter database permission defaults to the Database Owner. System
Administrators can also alter databases.

See also Commands create database, disk init, drop database, load database

System procedures sp_addsegment, sp_dropsegment, sp_helpdb,
sp_helpsegment, sp_logdevice, sp_renamedb, sp_spaceused

CHAPTER 7 Commands

263

alter role
Description Defines mutually exclusive relationships between roles; adds, drops, and

changes passwords for roles; specifies the password expiration interval, the
minimum password length, and the maximum number of failed logins allowed
for a specified role.

Syntax alter role role1 { add | drop } exclusive
{ membership | activation } role2

alter role role_name [add passwd "password" |
drop passwd] [lock | unlock]

alter role { role_name | "all overrides" }
set { passwd expiration | min passwd length |
max failed_logins } option_value

Parameters role1
is one role in a mutually exclusive relationship.

add
adds a role in a mutually exclusive relationship; adds a password to a role.

drop
drops a role in a mutually exclusive relationship; drops a password from a
role.

exclusive
makes both named roles mutually exclusive.

membership
does not allow you to grant users both roles at the same time.

activation
allows you to grant a user both roles at the same time, but does not allow the
user to activate both roles at the same time.

role2
is the other role in a mutually exclusive relationship.

role_name
is the name of the role for which you want to add, drop, or change a
password.

passwd
adds a password to a role.

alter role

264

password
is the password to add to a role. Passwords must be at least 6 characters in
length and must conform to the rules for identifiers. You cannot use
variables for passwords.

lock
locks the specified role.

unlock
unlocks the specified role.

all overrides
applies the setting that follows to the entire server rather than to a specific
role.

set
activates the option that follows it.

passwd expiration
specifies the password expiration interval in days. It can be any value
between 0 and 32767, inclusive.

min passwd length
specifies the minimum length allowed for the specified password.

max failed_logins
specifies the maximum number of failed login attempts allowed for the
specified password.

option_value
specifies the value for passwd expiration, min passwd length, or max
failed_logins. To set all overrides, set the value of option_value to -1.

Examples Example 1 Defines intern_role and specialist_role as mutually exclusive:

alter role intern_role add exclusive membership specialist_role

Example 2 Defines roles as mutually exclusive at the membership level and
at the activation level:

alter role specialist_role add exclusive membership intern_role
alter role intern_role add exclusive activation surgeon_role

Example 3 Adds a password to an existing role:

alter role doctor_role add passwd "physician"

Example 4 Drops a password from an existing role:

alter role doctor_role drop passwd

CHAPTER 7 Commands

265

Example 5 Locks the role physician_role:

alter role physician_role lock

Example 6 Unlocks the role physician_role:

alter role physician_role unlock

Example 7 Changes the maximum number of failed logins allowed for
physician_role to 5:

alter role physician_role set max failed_logins 5

Example 8 Sets the minimum password length for physician_role, an existing
role, to five characters:

alter role physician_role set min passwd length 5

Example 9 Overrides the minimum password length of all roles:

alter role "all overrides" set min passwd length -1

Example 10 Removes the overrides for the maximum failed logins for all
roles:

alter role "all overrides" set max failed_logins -1

Usage • The alter role command defines mutually exclusive relationships between
roles and adds, drops, and changes passwords for roles.

• For more information on altering roles, see the System Administration
Guide.

• The all overrides parameter removes the system overrides that were set
using sp_configure with any of the following parameters:

• passwd expiration

• max failed_logins

• min passwd length

Dropping the role password removes the overrides for the password
expiration and the maximum failed logins options.

Mutually exclusive roles

• You need not specify the roles in a mutually exclusive relationship or role
hierarchy in any particular order.

• You can use mutual exclusivity with role hierarchy to impose constraints
on user-defined roles.

alter role

266

• Mutually exclusive membership is a stronger restriction than mutually
exclusive activation. If you define two roles as mutually exclusive at
membership, they are implicitly mutually exclusive at activation.

• If you define two roles as mutually exclusive at membership, defining
them as mutually exclusive at activation has no effect on the membership
definitions. Mutual exclusivity at activation is added and dropped
independently of mutual exclusivity at membership.

• You cannot define two roles as having mutually exclusive after granting
both roles to users or roles. Revoke either granted role from existing
grantees before attempting to define the roles as mutually exclusive on the
membership level.

• If two roles are defined as mutually exclusive at activation, the System
Security Officer can assign both roles to the same user, but the user cannot
activate both roles at the same time.

• If the System Security Officer defines two roles as mutually exclusive at
activation, and users have already activated both roles or, by default, have
set both roles to activate at login, Adaptive Server makes the roles
mutually exclusive, but issues a warning message naming specific users
with conflicting roles. The users’ activated roles do not change.

Changing passwords for roles

• To change the password for a role, first drop the existing password, then
add the new password, as follows:

alter role doctor_role drop passwd
alter role doctor_role add passwd "physician"

Note Passwords attached to user-defined roles do not expire.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only a System Security Officer can execute alter role.

See also Commands create role, drop role, grant, revoke, set

Functions mut_excl_roles, proc_role, role_contain, role_id, role_name

System procedures sp_activeroles, sp_displaylogin, sp_displayroles,
sp_modifylogin

CHAPTER 7 Commands

267

alter table
Description Adds new columns to a table; drops or modifies existing columns; adds,

changes, or drops constraints; changes properties of an existing table; enables
or disables triggers on a table.

Syntax alter table [[database.][owner].table_name

{ add column_name datatype
[default {constant_expression | user | null}]
{identity | null | not null}
[off row | in row]
[[constraint constraint_name]
{ { unique | primary key }

[clustered | nonclustered]
[asc | desc]
[with { fillfactor = pct,

max_rows_per_page = num_rows,
reservepagegap = num_pages }]

[on segment_name]
| references [[database.]owner.]ref_table

[(ref_column)]
| check (search_condition)] ... }
[, next_column]...

| add {[constraint constraint_name]
{ unique | primary key}

[clustered | nonclustered]
(column_name [asc | desc]

[, column_name [asc | desc]...])
[with { fillfactor = pct,

max_rows_per_page = num_rows,
reservepagegap = num_pages}]

[on segment_name]
| foreign key (column_name [{, column_name}...])

references [[database.]owner.]ref_table
[(ref_column [{, ref_column}...])]

| check (search_condition)}

| drop {column_name [, column_name]...
| constraint constraint_name }

| modify column_name datatype [null | not null]
[, next_column]...

| replace column_name
default { constant_expression | user | null}

| partition number_of_partitions

| unpartition

alter table

268

| { enable | disable } trigger

| lock {allpages | datarows | datapages } }

| with exp_row_size=num_bytes

Parameters table_name
is the name of the table to change. Specify the database name if the table is
in another database, and specify the owner’s name if more than one table of
that name exists in the database. The default value for owner is the current
user, and the default value for database is the current database.

add
specifies the name of the column or constraint to add to the table. If
Component Integration Services is enabled, you cannot use add for remote
servers.

column_name
is the name of a column in that table. If Java is enabled in the database, the
column can be a Java-SQL column.

datatype
is any system datatype except bit or any user-defined datatype except those
based on bit.

If Java is enabled in the database, can be the name of a Java class installed
in the database, either a system class or a user-defined class. Refer to Java
in Adaptive Server Enterprise for more information.

default
specifies a default value for a column. If you specify a default and the user
does not provide a value for this column when inserting data, Adaptive
Server inserts this value. The default can be a constant_expression, user (to
insert the name of the user who is inserting the data), or null (to insert the null
value).

Adaptive Server generates a name for the default in the form of
tabname_colname_objid, where tabname is the first 10 characters of the
table name, colname is the first 5 characters of the column name, and objid
is the object ID number for the default. Setting the default to null drops the
default.

If Component Integration Services is enabled, you cannot use default for
remote servers.

CHAPTER 7 Commands

269

constant_expression
is a constant expression to use as a default value for a column. It cannot
include global variables, the name of any columns, or other database objects,
but can include built-in functions. This default value must be compatible
with the datatype of the column.

user
specifies that Adaptive Server should insert the user name as the default if
the user does not supply a value. The datatype of the column must be either
char(30), varchar(30), or a type that Adaptive Server implicitly converts to
char; however, if the datatype is not char(30) or varchar(30), truncation may
occur.

null | not null
specifies Adaptive Server’s behavior during data insertion if no default
exists.

null specifies that a column is added that allows nulls. Adaptive Server
assigns a null value during inserts if a user does not provide a value.

not null specifies that a column is added that does not allow nulls. Users must
provide a non-null value during inserts if no default exists.

If you do not specify null or not null, Adaptive Server uses not null by default.
However, you can switch this default using sp_dboption to make the default
compatible with the SQL standards. If you specify (or imply) not null for the
newly added column, a default clause is required. The default value is used
for all existing rows of the newly added column, and applies to future inserts
as well.

identity
indicates that the column has the IDENTITY property. Each table in a
database can have one IDENTITY column of type numeric and scale zero.
IDENTITY columns are not updatable and do not allow nulls.

IDENTITY columns store sequential numbers, such as invoice numbers or
employee numbers, automatically generated by Adaptive Server. The value
of the IDENTITY column uniquely identifies each row in a table.

If Component Integration Services is enabled, you cannot use identity for
remote servers.

alter table

270

off row | in row
specifies whether the Java-SQL column is stored separate from the row or
in storage allocated directly in the row.

The storage for an in row column must not exceed 16K bytes, depending on
the page size of the database server and other variables. The default value is
off row.

constraint
introduces the name of an integrity constraint. If Component Integration
Services is enabled, you cannot use constraint for remote servers.

constraint_name
is the name of the constraint. It must conform to the rules for identifiers and
be unique in the database. If you do not specify the name for a table-level
constraint, Adaptive Server generates a name in the form of
tabname_colname_objectid, where tabname is the first 10 characters of the
table name, colname is the first 5 characters of the column name, and
objectid is the object ID number for the constraint. If you do not specify the
name for a unique or primary key constraint, Adaptive Server generates a
name in the format tabname_colname_tabindid, where tabindid is a string
concatenation of the table ID and index ID.

Constraints do not apply to the data that already exists in the table at the time
the constraint is added.

unique
constrains the values in the indicated column or columns so that no two rows
can have the same non-null value. This constraint creates a unique index that
can be dropped only if the constraint is dropped. You cannot use this option
along with the null option described above.

primary key
constrains the values in the indicated column or columns so that no two rows
can have the same value and so that the value cannot be NULL. This
constraint creates a unique index that can be dropped only if the constraint
is dropped.

clustered | nonclustered
specifies that the index created by a unique or primary key constraint is a
clustered or nonclustered index. clustered is the default (unless a clustered
index already exists for the table) for primary key constraints; nonclustered
is the default for unique constraints. There can be only one clustered index
per table. See create index for more information.

CHAPTER 7 Commands

271

asc | desc
specifies whether the index is to be created in ascending (asc) or descending
(desc) order. The default is ascending order.

with fillfactor=pct
specifies how full to make each page when Adaptive Server creates a new
index on existing data. “pct” stands for percentage. The fillfactor percentage
is relevant only when the index is created. As the data changes, the pages are
not maintained at any particular level of fullness.

 Warning! Creating a clustered index with a fillfactor affects the amount of
storage space your data occupies, since Adaptive Server redistributes the data
as it creates the clustered index.

The default for fillfactor is 0; this is used when you do not include with
fillfactor in the create index statement (unless the value has been changed
with sp_configure). When specifying a fillfactor, use a value between 1 and
100.

A fillfactor of 0 creates clustered indexes with completely full pages and
nonclustered indexes with completely full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both clustered and nonclustered
indexes. There is seldom a reason to change the fillfactor.

If the fillfactor is set to 100, Adaptive Server creates both clustered and
nonclustered indexes with each page 100 percent full. A fillfactor of 100
makes sense only for read-only tables—tables to which no additional data
will ever be added.

fillfactor values smaller than 100 (except 0, which is a special case) cause
Adaptive Server to create new indexes with pages that are not completely
full. A fillfactor of 10 might be a reasonable choice if you are creating an
index on a table that will eventually hold a great deal more data, but small
fillfactor values cause each index (or index and data) to take more storage
space.

alter table

272

max_rows_per_page=num_rows
limits the number of rows on data pages and the leaf level pages of indexes.
Unlike fillfactor, the max_rows_per_page value is maintained until it is
changed with sp_chgattribute.

If you do not specify a value for max_rows_per_page, Adaptive Server uses
a value of 0 when creating the index. When specifying max_rows_per_page
for data pages, use a value between 0 and 256. The maximum number of
rows per page for nonclustered indexes depends on the size of the index key;
Adaptive Server returns an error message if the specified value is too high.

For indexes created by constraints, a max_rows_per_page setting of 0
creates clustered indexes with full pages and nonclustered indexes with full
leaf pages. A setting of 0 leaves a comfortable amount of space within the
index B-tree in both clustered and nonclustered indexes.

If max_rows_per_page is set to 1, Adaptive Server creates both clustered and
nonclustered leaf index pages with one row per page at the leaf level. You
can use this to reduce lock contention on frequently accessed data.

Low max_rows_per_page values cause Adaptive Server to create new
indexes with pages that are not completely full, use more storage space, and
may cause more page splits.

 Warning! Creating a clustered index with max_rows_per_page can affect the
amount of storage space your data occupies, since Adaptive Server
redistributes the data as it creates the clustered index.

reservepagegap = num_pages
specifies a ratio of filled pages to empty pages to be left during extent I/O
allocation operations for the index created by the constraint. For each
specified num_pages, an empty page is left for future expansion of the table.
Valid values are 0 – 255. The default value, 0, leaves no empty pages.

on segment_name
specifies that the index is to be created on the named segment. Before the on
segment_name option can be used, the device must be initialized with disk
init, and the segment must be added to the database with the sp_addsegment
system procedure. See your System Administrator or use sp_helpsegment
for a list of the segment names available in your database.

If you specify clustered and use the on segment_name option, the entire table
migrates to the segment you specify, since the leaf level of the index
contains the actual data pages.

CHAPTER 7 Commands

273

references
specifies a column list for a referential integrity constraint. You can specify
only one column value for a column-constraint. By including this constraint
with a table that references another table, any data inserted into the
referencing table must already exist in the referenced table.

To use this constraint, you must have references permission on the
referenced table. The specified columns in the referenced table must be
constrained by a unique index (created by either a unique constraint or a
create index statement). If no columns are specified, there must be a primary
key constraint on the appropriate columns in the referenced table. Also, the
datatypes of the referencing table columns must exactly match the datatype
of the referenced table columns.

If Component Integration Services is enabled, you cannot use references for
remote servers.

foreign key
specifies that the listed column(s) are foreign keys in this table whose
matching primary keys are the columns listed in the references clause.

ref_table
is the name of the table that contains the referenced columns. You can
reference tables in another database. Constraints can reference up to 192
user tables and internally generated worktables. Use the system procedure
sp_helpconstraint to check a table’s referential constraints.

ref_column
is the name of the column or columns in the referenced table.

check
specifies a search_condition constraint that Adaptive Server enforces for all
the rows in the table. If Component Integration Services is enabled, you
cannot use check for remote servers.

search_condition
is a boolean expression that defines the check constraint on the column
values. These constraints can include:

• A list of constant expressions introduced with in.

• A set of conditions, which may contain wildcard characters, introduced
with like.

An expression can include arithmetic operations and Transact-SQL
functions. The search_condition cannot contain subqueries, aggregate
functions, parameters, or host variables.

alter table

274

next_column
includes additional column definitions (separated by commas) using the
same syntax described for a column definition.

drop
specifies the name of a column or constraint to drop from the table. If
Component Integration Services is enabled, you cannot use drop for remote
servers.

modify
specifies the name of the column whose datatype or nullability you are
changing.

replace
specifies the column whose default value you want to change with the new
value specified by a following default clause. If Component Integration
Services is enabled, you cannot use replace for remote servers.

partition number_of_partitions
creates multiple database page chains for the table. Adaptive Server can
perform concurrent insertion operations into the last page of each chain.
number_of_partitions must be a positive integer greater than or equal to 2.
Each partition requires an additional control page; lack of disk space can
limit the number of partitions you can create in a table. Lack of memory can
limit the number of partitioned tables you can access. If Component
Integration Services is enabled, you cannot use partition for remote servers.

unpartition
creates a single page chain for the table by concatenating subsequent page
chains with the first one. If Component Integration Services is enabled, you
cannot use unpartition for remote servers.

enable | disable trigger
Enables or disables a trigger. For more information, see the System
Administration Guide.

lock datarows | datapages | allpages
changes the locking scheme to be used for the table.

with exp_row_size=num_bytes
specifies the expected row size. Applies only to datarows and datapages
locking schemes, to tables with variable-length rows, and only when alter
table performs a data copy. Valid values are 0, 1, and any value between the
minimum and maximum row length for the table. The default value is 0,
which means a server-wide setting is applied.

CHAPTER 7 Commands

275

Examples Example 1 Adds a column to a table. For each existing row in the table,
Adaptive Server assigns a NULL column value:

alter table publishers
add manager_name varchar(40) null

Example 2 Adds an IDENTITY column to a table. For each existing row in
the table, Adaptive Server assigns a unique, sequential column value. Note that
the IDENTITY column has type numeric and a scale of zero. The precision
determines the maximum value (10 5 - 1, or 99,999) that can be inserted into
the column:

alter table sales_daily
add ord_num numeric(5,0) identity

Example 3 Adds a primary key constraint to the authors table. If there is an
existing primary key or unique constraint on the table, the existing constraint
must be dropped first (see Example 5):

alter table authors
add constraint au_identification
primary key (au_id, au_lname, au_fname)

Example 4 Creates an index on authors; the index has a reservepagegap value
of 16, leaving 1 empty page in the index for each 15 allocated pages:

alter table authors
add constraint au_identification
primary key (au_id, au_lname, au_fname)
with reservepagegap = 16

Example 5 Drops the au_identification constraint:

alter table titles
drop constraint au_identification

Example 6 Removes the default constraint on the phone column in the authors
table. If the column allows NULL values, NULL is inserted if no column value
is specified. If the column does not allow NULL values, an insert that does not
specify a column value fails:

alter table authors
replace phone default null

Example 7 Creates four new page chains for the titleauthor table. After the
table is partitioned, existing data remains in the first partition. New rows,
however, are inserted into all five partitions:

alter table titleauthor partition 5

alter table

276

Example 8 Concatenates all page chains of the titleauthor table, then
repartitions it with six partitions:

alter table titleauthor unpartition
alter table titleauthor partition 6

Example 9 Changes the locking scheme for the titles table to datarows locking:

alter table titles lock datarows

Example 10 Adds the not-null column author_type to the authors table with a
default of primary_author:

alter table authors
add author_type varchar(20)
default "primary_author" not null

Example 11 Drops the advance, notes, and contract columns from the titles
table:

alter table titles
drop advance, notes, contract

Example 12 Modifies the city column of the authors table to be a varchar(30)
with a default of NULL:

alter table authors
modify city varchar(30) null

Example 13 Modifies the stor_name column of the stores table to be NOT
NULL. Note that its datatype, varchar(40), remains unchanged:

alter table stores
modify stor_name not null

Example 14 Modifies the type column of the titles table and changes the
locking scheme of the titles table from allpages to datarows:

alter table titles
modify type varchar(10)
lock datarows

Example 15 Modifies the notes column of the titles table from varchar(200) to
varchar(150), changes the default value from NULL to NOT NULL, and
specifies an exp_row_size of 40:

alter table titles
modify notes varchar(150) not null
with exp_row_size = 40

CHAPTER 7 Commands

277

Example 16 Adds, modifies, and drops a column, and then adds another
column in one query. Alters the locking scheme and specifies the exp_row_size
of the new column:

alter table titles
add author_type varchar(30) null
modify city varchar(30)
drop notes
add sec_advance money default 1000 not null
lock datarows
with exp_row_size = 40

Usage • If stored procedures using select * reference a table that has been altered,
no new columns appear in the result set, even if you use the with recompile
option. You must drop the procedure and re-create it to include these new
columns.

• When the table owner uses alter table, Adaptive Server disables access
rules during the execution of the command and enables them upon
completion of the command. The access rules are disabled to avoid
filtering of the table data during alter table.

Restrictions

 Warning! Do not alter the system tables.

• You cannot add a column of datatype bit to an existing table.

• The maximum number of columns in a table is:

• 1024 for fixed-length columns in both all-pages-locked (APL) and
data-only-locked (DOL) tables.

• 254 for variable-length columns in both APL and DOL tables.

• 1024 for variable-length columns in both APL and DOL tables.

• alter table raises an error if the number of variable-length columns in an
APL table exceeds 254.

• The maximum length for in-row Java columns is determined by the
maximum size of a variable-length column for the table’s schema, locking
style, and page size.

alter table

278

• When converting a table to a different locking scheme, the data in the
source table cannot violate the limits of the target table. For example, if
you attempt to convert a DOL with more than 254 variable-length columns
to an APL table, alter table fails because an APL table is restricted to
having no more than 254 columns.

• Columns with fixed-length data (for example char, binary, and so on) have
the maximum sizes shown in the following table:

Table 7-2: Maximum row and column length—APL and DOL

• The maximum number of bytes of variable length data per row depends on
the locking scheme for the table. The following describes the maximum
size columns for an APL table:

The following describes the maximum size columns for a DOL table:

Locking scheme Page size Maximum row length Maximum column length

2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

APL tables 8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

DOL tables 8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes
if table does not include any
variable length columns

16K (16384 bytes) 16300
(subject to a max start offset
of varlen = 8191)

8191-6-2 = 8183 bytes
if table includes at least on
variable length column.*

* This size includes six bytes for the row overhead and two bytes for the row length field

Page size Maximum row length Maximum column length

2K (2048 bytes) 1960 1960

4K (4096 bytes) 4008 4008

8K (8192 bytes) 8104 8157

16K (16384 bytes) 16296 16227

Page size Maximum row length Maximum column length

2K (2048 bytes) 1960 1958

4K (4096 bytes) 4008 4006

8K (8192 bytes) 8157 8102

CHAPTER 7 Commands

279

• You cannot partition a system table or a table that is already partitioned.

• You cannot issue the alter table command with a partition or unpartition
clause within a user-defined transaction.

• The maximum value for max_rows_per_page is 256 bytes for APL tables.
max_rows_per_page parameter is not used for DOL tables.

• You cannot partition a system table or a table that is already partitioned.

• You cannot issue the alter table command with a partition or unpartition
clause within a user-defined transaction.

• You cannot use alter table to add a declarative or check constraint and then
insert data into the table in the same batch or procedure. Either separate the
alter and insert statements into two different batches or procedures, or use
execute to perform the actions separately.

• You cannot use the following variable in alter table statements that include
defaults:

declare @a int
select @a = 2
alter table t2 add c3 int
default @a

Doing so results in error message 154, which says, “Variable is not
allowed in default.”

Getting information about tables

• For information about a table and its columns, use sp_help.

• To rename a table, execute the system procedure sp_rename (do not
rename the system tables).

• For information about integrity constraints (unique, primary key,
references, and check) or the default clause, see create table in this chapter.

Specifying ascending or descending ordering in indexes

• Use the asc and desc keywords after index column names to specify the
sort order for the index. Creating indexes so that columns are in the same
order specified in the order by clause of queries eliminates the sorting step
during query processing. For more information, see Chapter 8, “Indexing
for Performance” in the Performance and Tuning Guide.

16K (16384 bytes) 16294 16294

Page size Maximum row length Maximum column length

alter table

280

Using cross-database referential integrity constraints

• When you create a cross-database constraint, Adaptive Server stores the
following information in the sysreferences system table of each database:

Table 7-3: Information stored about referential integrity constraints

• When you drop a referencing table or its database, Adaptive Server
removes the foreign key information from the referenced database.

• Because the referencing table depends on information from the referenced
table, Adaptive Server does not allow you to:

• Drop the referenced table,

• Drop the external database that contains the referenced table, or

• Rename either database with sp_renamedb.

You must first remove the cross-database constraint with alter table.

• Each time you add or remove a cross-database constraint, or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases could cause database
corruption.

• The sysreferences system table stores the name and the ID number of the
external database. Adaptive Server cannot guarantee referential integrity
if you use load database to change the database name or to load it onto a
different server.

 Warning! Before dumping a database in order to load it with a different
name or move it to another Adaptive Server, use alter table to drop all
external referential integrity constraints.

Information stored
in sysreferences

Columns with information
about the referenced table

Columns with information
about the referencing table

Key column IDs refkey1 through refkey16 fokey1 through fokey16

Table ID reftabid tableid

Database ID pmrydbid frgndbid

Database name pmrydbname frgndbname

CHAPTER 7 Commands

281

Changing defaults

• You can create column defaults in two ways: by declaring the default as a
column constraint in the create table or alter table statement or by creating
the default using the create default statement and binding it to a column
using sp_bindefault.

• You cannot replace a user-defined default bound to the column with
sp_bindefault. Unbind the default with sp_unbindefault first.

• If you declare a default column value with create table or alter table, you
cannot bind a default to that column with sp_bindefault. Drop the default
by altering it to NULL, then bind the user-defined default. Changing the
default to NULL unbinds the default and deletes it from the sysobjects
table.

Setting space management properties for indexes

• The space management properties fillfactor, max_rows_per_page, and
reservepagegap in the alter table statement apply to indexes that are
created for primary key or unique constraints. The space management
properties affect the data pages of the table if the constraint creates a
clustered index on an allpages-locked table.

• Use sp_chgattribute to change max_rows_per_page or reservepagegap for
a table or an index, to change the exp_row_size value for a table, or to store
fillfactor values.

• Space management properties for indexes are applied:

• When indexes are re-created as a result of an alter table command that
changes the locking scheme for a table from allpages locking to
data-only locking or vice versa. See “Changing locking schemes” on
page 288 for more information.

• When indexes are automatically rebuilt as part of a reorg rebuild
command.

• To see the space management properties currently in effect for a table, use
sp_help. To see the space management properties currently in effect for an
index, use sp_helpindex.

• The space management properties fillfactor, max_rows_per_page, and
reservepagegap help manage space usage for tables and indexes in the
following ways:

• fillfactor leaves extra space on pages when indexes are created, but the
fillfactor is not maintained over time. It applies to all locking schemes.

alter table

282

• max_rows_per_page limits the number of rows on a data or index
page. Its main use is to improve concurrency in allpages-locked
tables.

• reservepagegap specifies the ratio of empty pages to full pages to
apply for commands that perform extent allocation. It applies to all
locking schemes.

Space management properties can be stored for tables and indexes so that
they are applied during alter table and reorg rebuild commands.

• The following table shows the valid combinations of space management
properties and locking schemes. If an alter table command changes the
table so that the combination is not compatible, the values stored in the
stored in system tables remain there, but are not applied during operations
on the table. If the locking scheme for a table changes so that the properties
become valid, then they are used.

• The following table shows the default values and the effects of using the
default values for the space management properties.

Conversion of max_rows_per_page to exp_row_size

• If a table has max_rows_per_page set, and the table is converted from
allpages locking to data-only locking, the value is converted to an
exp_row_size value before the alter table...lock command copies the table
to its new location. The exp_row_size is enforced during the copy. The
following table shows how the values are converted.

Parameter allpages datapages datarows

max_rows_per_page Yes No No

reservepagegap Yes Yes Yes

fillfactor Yes Yes Yes

exp_row_size No Yes Yes

Parameter Default Effect of using the default

max_rows_per_page 0 Fits as many rows as possible on the page, up to a maximum of 255

reservepagegap 0 Leaves no gaps

fillfactor 0 Fully packs leaf pages

If max_rows_per_page is set to Set exp_row_size to

0 Percentage value set by default exp_row_size percent

255 1, that is, fully packed pages

CHAPTER 7 Commands

283

Using reservepagegap

• Commands that use large amounts of space allocate new space by
allocating an extent rather than allocating single pages. The
reservepagegap keyword causes these commands to leave empty pages so
that future page allocations take place close to the page that is being split
or to the page from which a row is being forwarded.

• The reservepagegap value for a table is stored in sysindexes, and is applied
when the locking scheme for a table is changed from allpages locking to
data-only locking or vice versa. To change the stored value, use the system
procedure sp_chgattribute before running alter table.

• reservepagegap specified with the clustered keyword on an
allpages-locked table overwrites any value previously specified with
create table or alter table.

Partitioning tables for improved insert performance

• Partitioning a table with the partition clause of the alter table command
creates additional page chains, making multiple last pages available at any
given time for concurrent insert operations. This improves insert
performance by reducing page contention and, if the segment containing
the table is spread over multiple physical devices, by reducing I/O
contention while the server flushes data from cache to disk.

• If you are copying data into or out of a partitioned table, the Adaptive
Server must be configured for parallel processing.

• When you partition a table, Adaptive Server allocates a control page for
each partition, including the first partition. The existing page chain
becomes part of the first partition. Adaptive Server creates a first page for
each subsequent partition. Since each partition has its own control page,
partitioned tables require slightly more disk space than unpartitioned
tables.

• You can partition both empty tables and those that contain data.
Partitioning a table does not move data; existing data remains where it was
originally stored, in the first partition. For best performance, partition a
table before inserting data.

1–254 The smaller of:

• maximum row size

• 2002/max_rows_per_page value

If max_rows_per_page is set to Set exp_row_size to

alter table

284

• You cannot partition a system table or a table that is already partitioned.
You can partition a table that contains text and image columns; however,
partitioning has no effect on the way Adaptive Server stores the text and
image columns.

• After you have partitioned a table, you cannot use the truncate table
command or the sp_placeobject system procedure on it.

• To change the number of partitions in a table, use the unpartition clause of
alter table to concatenate all existing page chains, then use the partition
clause of alter table to repartition the table.

• If you unpartition a table, recompile the query plans of any dependent
procedures. Unpartitioning does not automatically recompile procedures.

• When you unpartition a table with the unpartition clause of the alter table
command, Adaptive Server deallocates all control pages, including that of
the first partition, and concatenates the page chains. The resulting single
page chain contains no empty pages, with the possible exception of the
first page. Unpartitioning a table does not move data.

Adding IDENTITY columns

• When adding an IDENTITY column to a table, make sure the column
precision is large enough to accommodate the number of existing rows. If
the number of rows exceeds 10 precision - 1, Adaptive Server prints an error
message and does not add the column.

• When adding an IDENTITY column to a table, Adaptive Server:

• Locks the table until all the IDENTITY column values have been
generated. If a table contains a large number of rows, this process may
be time-consuming.

• Assigns each existing row a unique, sequential IDENTITY column
value, beginning with the value 1.

• Logs each insert operation into the table. Use dump transaction to clear
the database’s transaction log before adding an IDENTITY column to
a table with a large number of rows.

• Each time you insert a row into the table, Adaptive Server generates an
IDENTITY column value that is one higher than the last value. This value
takes precedence over any defaults declared for the column in the alter
table statement or bound to it with sp_bindefault.

CHAPTER 7 Commands

285

Altering table schema

• add, drop, or modify, and lock sub-clauses are useful to change an existing
table’s schema. A single statement can contain any number of these
sub-clauses, in any order, as long as the same column name is not
referenced more than once in the statement.

• If stored procedures using select * reference a table that has been altered,
no new columns appear in the result set, even if you use the with recompile
option. You must drop the procedure and re-create it to include these new
columns.

• You cannot drop all the columns in a table. Also, you cannot drop the last
remaining column from a table (for example, if you drop four columns
from a five-column table, you cannot then drop the remaining column). To
remove a table from the database, use drop table.

• Data copy is required:

• To drop a column

• To add a NOT NULL column

• For most alter table ... modify commands

Use showplan to determine if a data copy is required for a particular alter
table command.

• You can specify a change in the locking scheme for the modified table with
other alter table commands (add, drop, or modify) when the other alter table
command requires a data copy.

• If alter table performs a data copy, select into /bulkcopy/pllsort must be
turned on in the database that includes the table whose schema you are
changing.

• Adaptive Server must be configured for parallel processing when you alter
the schema of a partitioned table and the change requires a data copy.

• The modified table retains the existing space management properties
(max_rows_per_page, fillfactor, and so on) and indexes of the table.

• alter table that requires a data copy does not fire any triggers.

• You can use alter table to change the schema of remote proxy tables created
and maintained by Component Integration Services (CIS). For
information about CIS, see the Component Integration Services User’s
Guide.

alter table

286

• You cannot perform a data copy and add a table level or referential
integrity constraint in the same statement.

• You cannot perform a data copy and create a clustered index in the same
statement.

• If you add a NOT NULL column, you must also specify a default clause.
This rule has one exception: if you add a user-defined type column, and
the type has a default bound to it, you do not need to specify a default
clause.

• You can always add, drop, or modify a column in an all-pages locked
tables. However, there are restrictions for adding, dropping, or modifying
a column in a data-only locked table, which are described in the following
table:

If you need to add, drop, or modify a column in a data-only locked table
partitioned table with a clustered index, you can:

a Drop the clustered index.

b Alter the (data-only locked) table.

c Re-create the clustered index.

• You cannot add a NOT NULL Java object as a column. By default, all Java
columns always have a default value of NULL, and are stored as either
varbinary strings or as image datatypes.

• You cannot modify a partitioned table that contains a Java column if the
modification requires a data copy. Instead, first unpartition the table, run
the alter table command, then repartition the table.

• You cannot drop the key column from an index or a referential integrity
constraint. To drop a key column, first drop the index or referential
integrity constraint, then drop the key column. See the Transact-SQL
User’s Guide for more information.

Type of
index

All pages Locked,
partitioned table

Allpages Locked,
unpartitioned table

Data-only locked,
partitioned table

Data-only locked,
unpartitioned table

Clustered Yes Yes No Yes

Non-clustered Yes Yes Yes Yes

CHAPTER 7 Commands

287

• You can drop columns that have defaults or rules bound to them. Any
column-specific defaults are also dropped when you drop the column. You
cannot drop columns that have check constraints or referential constraints
bound to them. Instead, first drop the check constraint or referential
constraint, then drop the column. Use sp_helpconstraint to identify any
constraints on a table, and use sp_depends to identify any column- level
dependencies.

• You cannot drop a column from a system table. Also, you cannot drop
columns from user tables that are created and used by Sybase-provided
tools and stored procedures.

• You can generally modify the datatype of an existing column to any other
datatype if the table is empty. If the table is not empty, you can modify the
datatype to any datatype that is explicitly convertible to the original
datatype.

• You can:

• Add a new IDENTITY column.

• Drop an existing IDENTITY column.

• Modify the size of an existing IDENTITY.

See the Transact-SQL User’s Guide for more information.

• Altering the schema of a table increments the schema count, causing
existing stored procedures that access this table to be renormalized the
next time they are executed. Changes in datatype-dependent stored
procedures or views may fail with datatype normalization type errors. You
must update these dependent objects so they refer to the modified schema
of the table.

Restrictions for modifying a table schema

• You cannot run alter table from inside a transaction.

• Altering a table’s schema can invalidate backups that you made using bcp.
These backups may use a tables schema that is no longer compatible with
the table’s current schema.

• You can add NOT NULL columns with check constraints, however,
Adaptive Server does not validate the constraint against existing data.

• You cannot change the locking scheme of a table using the alter table . . .
add, drop, or modify commands if the table has a clustered index and the
operation requires a data copy. Instead you can

a Drop the clustered index.

alter table

288

b Alter the table’s schema.

c Re-create the clustered index.

• You cannot alter a table’s schema if there are any active open cursors on
the table.

Restrictions for modifying text and image columns

• You can only add text or image columns that accept null values.

To add a text or image column so it contains only non-null values, first add
a column that only accepts null values and then update it to the non-null
values.

• You can only modify a column from text datatype to the following
datatypes:

• char

• varchar

• unichar

• univarchar

• nchar

• nvarchar

• You can only modify a column from image datatype to a varbinary
datatype, and the column can only include non-null data.

• You can modify text or image columns to any other datatypes only if the
table is empty.

• You cannot add a new text or image column and then drop an existing text
or image column in the same statement.

• You cannot modify a column to either text or image datatype.

Changing locking schemes

• alter table supports changing from any locking scheme to any other locking
scheme. You can change:

• From allpages to datapages or vice versa

• From allpages to datarows or vice versa

• From datapages to datarows or vice versa

CHAPTER 7 Commands

289

• Before you change from allpages locking to a data-only locking scheme,
or vice versa, use sp_dboption to set the database option
select into/bulkcopy/pllsort to true, then run checkpoint in the database if any
of the tables are partitioned and the sorts for the indexes require a parallel
sort.

• After changing the locking scheme from allpages-locking to data-only
locking or vice versa, the use of the dump transaction command to back up
the transaction log is prohibited; you must first perform a full database
dump.

• When you use alter table...lock to change the locking scheme for a table
from allpages locking to data-only locking or vice versa, Adaptive Server
makes a copy of the table’s data pages. There must be enough room on the
segment where the table resides for a complete copy of the data pages.
There must be space on the segment where the indexes reside to rebuild
the indexes.

Clustered indexes for data-only-locked tables have a leaf level above the
data pages. If you are altering a table with a clustered index from
allpages-locking to a data-only-locking, the resulting clustered index
requires more space. The additional space required depends on the size of
the index keys.

Use sp_spaceused to determine how much space is currently occupied by
the table, and use sp_helpsegment to see the space available to store the
table.

• When you change the locking scheme for a table from allpages locking to
datapages locking or vice versa, the space management properties are
applied to the tables, as the data rows are copied, and to the indexes, as
they are re-created. When you change from one data-only locking scheme
to another, the data pages are not copied, and the space management
properties are not applied.

• If a table is partitioned, changing the locking scheme performs a
partition-to-partition copy of the rows. It does not balance the data on the
partitions during the copy.

• When you change the locking scheme for a table, the alter table...lock
command acquires an exclusive lock on the table until the command
completes.

• When you use alter table...lock to change from datapages locking to
datarows locking, the command does not copy data pages or rebuild
indexes. It only updates system tables.

alter table

290

• Changing the locking scheme while other users are active on the system
may have the following effects on user activity:

• Query plans in the procedure cache that access the table will be
recompiled the next time they are run.

• Active multi-statement procedures that use the table are recompiled
before continuing with the next step.

• Ad hoc batch transactions that use the table are terminated.

 Warning! Changing the locking scheme for a table while a bulk copy
operation is active can cause table corruption. Bulk copy operates by
first obtaining information about the table and does not hold a lock
between the time it reads the table information and the time it starts
sending rows, leaving a small window of time for an alter table...lock
command to start.

Adding Java-SQL columns

• If Java is enabled in the database, you can add Java-SQL columns to a
table. For more information, see Java in Adaptive Server Enterprise.

• The declared class (datatype) of the new Java-SQL column must
implement either the Serializable or Externalizable interface.

• When you add a Java-SQL column to a table, the Java-SQL column cannot
be specified:

• As a foreign key

• In a references clause

• As having the UNIQUE property

• As the primary key

• If in row is specified, then the value stored cannot exceed 16K bytes,
depending on the page size of the data server.

• If off row is specified, then:

• The column cannot be referenced in a check constraint.

• The column cannot be referenced in a select that specifies distinct.

• The column cannot be specified in a comparison operator, in a
predicate, or in a group by clause.

Standards SQL92 – Compliance level: Transact-SQL extension.

CHAPTER 7 Commands

291

See Chapter 1, “System and User-Defined Datatypes” for datatype compliance
information.

Permissions alter table permission defaults to the table owner; it cannot be transferred
except to the Database Owner, who can impersonate the table owner by
running the setuser command. A System Administrator can also alter user
tables.

See also Commands create index, create table, dbcc, drop database, dump transaction,
insert, setuser

System procedures sp_chgattribute, sp_help, sp_helpartition, sp_rename

begin...end

292

begin...end
Description Encloses a series of SQL statements so that control-of-flow language, such as

if...else, can affect the performance of the whole group.

Syntax begin
statement block

end

Parameters statement block
is a series of statements enclosed by begin and end.

Examples Example 1 Without begin and end, the if condition would cause execution of
only one SQL statement:

if (select avg(price) from titles) < $15
begin

update titles
set price = price * $2
select title, price
from titles
where price > $28

end

Example 2 Without begin and end, the print statement would not execute:

create trigger deltitle
on titles
for delete
as
if (select count(*) from deleted, salesdetail
where salesdetail.title_id = deleted.title_id) > 0

begin
rollback transaction
print "You can’t delete a title with sales."

end
else

print "Deletion successful--no sales for this
title."

Usage • begin...end blocks can nest within other begin...end blocks.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions begin...end permission defaults to all users. No permission is required to use it.

See also Commands if...else

CHAPTER 7 Commands

293

begin transaction
Description Marks the starting point of a user-defined transaction.

Syntax begin tran[saction] [transaction_name]

Parameters transaction_name
is the name assigned to this transaction. Transaction names must conform to
the rules for identifiers. Use transaction names only on the outermost pair of
nested begin transaction/commit or begin transaction/rollback statements.

Examples Explicitly begins a transaction for the insert statement:

begin transaction
insert into publishers (pub_id) values ("9999")

commit transaction

Usage • Define a transaction by enclosing SQL statements and/or system
procedures within the phrases begin transaction and commit. If you set
chained transaction mode, Adaptive Server implicitly invokes a begin
transaction before the following statements: delete, insert, open, fetch,
select, and update. You must still explicitly close the transaction with a
commit.

• To cancel all or part of a transaction, use the rollback command. The
rollback command must appear within a transaction; you cannot roll back
a transaction after it is committed.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions begin transaction permission defaults to all users. No permission is required to
use it.

See also Commands commit, rollback, save transaction

break

294

break
Description Causes an exit from a while loop. break is often activated by an if test.

Syntax while logical_expression
statement

break
statement

continue

Parameters logical_expression
is an expression (a column name, constant, any combination of column
names and constants connected by arithmetic or bitwise operators, or a
subquery) that returns TRUE, FALSE, or NULL. If the logical expression
contains a select statement, enclose the select statement in parentheses.

Examples If the average price is less than $30, double the prices. Then, select the
maximum price. If it is less than or equal to $50, restart the while loop and
double the prices again. If the maximum price is more than $50, exit the while
loop and print a message:

while (select avg(price) from titles) < $30
begin

update titles
set price = price * 2
select max(price) from titles

 if (select max(price) from titles) > $50
break

else
continue

end
begin
print "Too much for the market to bear"

 end

Usage • break causes an exit from a while loop. Statements that appear after the
keyword end, which marks the end of the loop, are then executed.

• If two or more while loops are nested, the inner break exits to the next
outermost loop. First, all the statements after the end of the inner loop run;
then, the next outermost loop restarts.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions break permission defaults to all users. No permission is required to use it.

See also Commands continue, while

CHAPTER 7 Commands

295

case
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used.

Syntax case
when search_condition then expression
[when search_condition then expression]...
[else expression]

end

case and values syntax:

case expression
when expression then expression
[when expression then expression]...
[else expression]

end

Parameters case
begins the case expression.

when
precedes the search condition or the expression to be compared.

search_condition
is used to set conditions for the results that are selected. Search conditions
for case expressions are similar to the search conditions in a where clause.
Search conditions are detailed in the Transact-SQL User’s Guide.

then
precedes the expression that specifies a result value of case.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 219.

Examples Example 1 Selects all the authors from the authors table and, for certain
authors, specifies the city in which they live:

select au_lname, postalcode,
 case

when postalcode = "94705"
then "Berkeley Author"

when postalcode = "94609"
then "Oakland Author"

when postalcode = "94612"
then "Oakland Author"

case

296

when postalcode = "97330"
then "Corvallis Author"

end
from authors

Example 2 Returns the first occurrence of a non-NULL value in either the
lowqty or highqty column of the discounts table:

select stor_id, discount,
coalesce (lowqty, highqty)

from discounts

Example 3 This is an alternative way of writing Example 2:

select stor_id, discount,
case

when lowqty is not NULL then lowqty
else highqty

end
from discounts

Example 4 Selects the titles and type from the titles table. If the book type is
UNDECIDED, nullif returns a NULL value:

select title,
nullif(type, "UNDECIDED")

from titles

Example 5 This is an alternative way of writing Example 4:

select title,
case

when type = "UNDECIDED" then NULL
else type

end
from titles

Usage • case expression simplifies standard SQL expressions by allowing you to
express a search condition using a when...then construct instead of an if
statement.

• case expressions can be used anywhere an expression can be used in SQL.

• At least one expression must be something other than the null keyword.
This example produces the following error message:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

CHAPTER 7 Commands

297

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
Datatype of mixed-mode expressions in Chapter 1, “System and
User-Defined Datatypes,” in Volume 1, Building Blocks. If you specify
two datatypes that Adaptive Server cannot implicitly convert (for
example, char and int), the query fails.

• coalesce is an abbreviated form of a case expression. Example 3 describes
an alternative way of writing the coalesce statement.

• coalesce must be followed by at least two expressions. This example
produces the following error message:

select stor_id, discount, coalesce (highqty)
from discounts

A single coalesce element is illegal in a COALESCE expression.

• nullif is an abbreviated form of a case expression. Example 5 describes an
alternative way of writing nullif.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions case permission defaults to all users. No permission is required to use it.

See also Commands coalesce, nullif, if...else, select, where clause

checkpoint

298

checkpoint
Description Writes all dirty pages (pages that have been updated since they were last

written) to the database device.

Syntax checkpoint

Examples Writes all dirty pages in the current database to the database device, regardless
of the system checkpoint schedule:

checkpoint

Usage • Use checkpoint only as a precautionary measure in special circumstances.
For example, Adaptive Server instructs you to issue the checkpoint
command after resetting database options.

• Use checkpoint each time you change a database option with the system
procedure sp_dboption.

Automatic checkpoints

• Checkpoints caused by the checkpoint command supplement automatic
checkpoints, which occur at intervals calculated by Adaptive Server on the
basis of the configurable value for maximum acceptable recovery time.

• The checkpoint shortens the automatic recovery process by identifying a
point at which all completed transactions are guaranteed to have been
written to the database device. A typical checkpoint takes about 1 second,
although checkpoint time varies, depending on the amount of activity on
Adaptive Server.

• The automatic checkpoint interval is calculated by Adaptive Server on the
basis of system activity and the recovery interval value in the system table
syscurconfigs. The recovery interval determines checkpoint frequency by
specifying the maximum amount of time it should take for the system to
recover. Reset this value by executing the system procedure sp_configure.

• If the housekeeper task is able to flush all active buffer pools in all
configured caches during the server’s idle time, it wakes up the checkpoint
task. The checkpoint task determines whether it can checkpoint the
database.

Checkpoints that occur as a result of the housekeeper task are known as
free checkpoints. They do not involve writing many dirty pages to the
database device, since the housekeeper task has already done this work.
They may improve recovery speed for the database.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions checkpoint permission defaults to the Database Owner. It cannot be transferred.

CHAPTER 7 Commands

299

See also System procedures sp_configure, sp_dboption

close

300

close
Description Deactivates a cursor.

Syntax close cursor_name

Parameters cursor_name
is the name of the cursor to close.

Examples Closes the cursor named authors_crsr:

close authors_crsr

Usage • The close command essentially removes the cursor’s result set. The cursor
position within the result set is undefined for a closed cursor.

• Adaptive Server returns an error message if the cursor is already closed or
does not exist.

Standards SQL92 – Compliance level: Entry-level compliant.

Permissions close permission defaults to all users. No permission is required to use it.

See also Commands deallocate cursor, declare cursor, fetch, open

CHAPTER 7 Commands

301

coalesce
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used; alternative for a case expression.

Syntax coalesce(expression, expression [, expression]...)

Parameters coalesce
evaluates the listed expressions and returns the first non-null value. If all the
expressions are null, coalesce returns a null.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 219.

Examples Example 1 Returns the first occurrence of a non-NULL value in either the
lowqty or highqty column of the discounts table:

select stor_id, discount,
coalesce (lowqty, highqty)

from discounts

Example 2 This is an alternative way of writing Example 1:

select stor_id, discount,
case

when lowqty is not NULL then lowqty
else highqty

end
from discounts

Usage • coalesce expression simplifies standard SQL expressions by allowing you
to express a search condition as a simple comparison instead of using a
when...then construct.

• coalesce expressions can be used anywhere an expression can be used in
SQL.

• At least one result of the coalesce expression must return a non-null value.
This example produces the following error message:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

coalesce

302

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
Datatype of mixed-mode expressions in Volume 1, Building Blocks. If
you specify two datatypes that Adaptive Server cannot implicitly convert
(for example, char and int), the query fails.

• coalesce is an abbreviated form of a caseexpression. Example 2 describes
an alternative way of writing the coalesce statement.

• coalesce must be followed by at least two expressions. This example
produces the following error message:

select stor_id, discount, coalesce (highqty)
from discounts

A single coalesce element is illegal in a COALESCE expression.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions coalesce permission defaults to all users. No permission is required to use it.

See also Commands case, nullif, select, if...else, where clause

CHAPTER 7 Commands

303

commit
Description Marks the ending point of a user-defined transaction.

Syntax commit [tran | transaction | work] [transaction_name]

Parameters tran | transaction | work
specifies that you want to commit the transaction or the work. If you specify
tran, transaction, or work, you can also specify the transaction_name.

transaction_name
is the name assigned to the transaction. It must conform to the rules for
identifiers. Use transaction names only on the outermost pair of nested begin
transaction/commit or begin transaction/rollback statements.

Examples After updating the royaltyper entries for the two authors, insert the savepoint
percentchanged, then determine how a 10 percent increase in the book’s price
would affect the authors’ royalty earnings. The transaction is rolled back to the
savepoint with the rollback transaction command:

begin transaction royalty_change

update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

update titleauthor
set royaltyper = 35
from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

save transaction percentchanged

update titles
set price = price * 1.1
where title = "The Gourmet Microwave"

select (price * total_sales) * royaltyper
from titles, titleauthor
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id

rollback transaction percentchanged

commit

304

commit transaction

Usage • Define a transaction by enclosing SQL statements and/or system
procedures with the phrases begin transaction and commit. If you set the
chained transaction mode, Adaptive Server implicitly invokes a begin
transaction before the following statements: delete, insert, open, fetch,
select, and update. You must still explicitly enclose the transaction with a
commit.

• To cancel all or part of an entire transaction, use the rollback command.
The rollbackcommand must appear within a transaction. You cannot roll
back a transaction after the commit has been entered.

• If no transaction is currently active, the commit or rollback statement has
no effect on Adaptive Server.

Standards SQL92 – Compliance level: Entry-level compliant.

The commit transaction and commit tran forms of the statement are
Transact-SQL extensions.

Permissions commit permission defaults to all users.

See also Commands begin transaction, rollback, save transaction

CHAPTER 7 Commands

305

compute clause
Description Generates summary values that appear as additional rows in the query results.

Syntax start_of_select_statement
compute row_aggregate (column_name)

[, row_aggregate(column_name)]...
[by column_name [, column_name]...]

Parameters row_aggregate
is one of the following:

column_name
is the name of a column. It must be enclosed in parentheses. Only numeric
columns can be used with sum and avg.

One compute clause can apply several aggregate functions to the same set of
grouping columns (see Examples 2 and 3). To create more than one group,
use more than one compute clause (see Example 5).

by
calculates the row aggregate values for subgroups. Whenever the value of
the by item changes, row aggregate values are generated. If you use by, you
must use order by.

Listing more than one item after by breaks a group into subgroups and
applies a function at each level of grouping.

Examples Example 1 Calculates the sum of the prices of each type of cook book that
costs more than $12:

select type, price
from titles
where price > $12

and type like "%cook"
order by type, price

compute sum(price) by type

type price
--------- ------------
mod_cook 19.99

Function Meaning

sum Total of values in the (numeric) column

avg Average of values in the (numeric) column

min Lowest value in the column

max Highest value in the column

count Number of values in the column

compute clause

306

sum

19.99
type price
--------- ------------
trad_cook 14.99
trad_cook 20.95

sum

35.94
(5 rows affected)

Example 2 Calculates the sum of the prices and advances for each type of cook
book that costs more than $12:

select type, price, advance
from titles
where price > $12

and type like "%cook"
order by type, price

compute sum(price), sum(advance) by type

type price advance
--------- --------- ------------
mod_cook 19.99 0.00

sum sum
--------- ------------

19.99 0.00

type price advance
--------- --------- ------------
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

sum sum
--------- ------------

35.94 15,000.00
(5 rows affected)

Example 3 Calculates the sum of the prices and maximum advances of each
type of cook book that costs more than $12:

select type, price, advance
from titles
where price > $12

and type like "%cook"
order by type, price

compute sum(price), max(advance) by type

type price advance

CHAPTER 7 Commands

307

--------- --------- -------------
mod_cook 19.99 0.00

sum

19.99
max

 0.00

type price advance
--------- --------- -------------
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

sum

35.94
 max

8,000.00
(5 rows affected)

Example 4 Breaks on type and pub_id and calculates the sum of the prices of
psychology books by a combination of type and publisher ID:

select type, pub_id, price
from titles
where price > $10

and type = "psychology"
order by type, pub_id, price

compute sum(price) by type, pub_id

type pub_id price
------------ --------- -----------
psychology 0736 10.95
psychology 0736 19.99

sum

30.94

type pub_id price
------------ --------- ---------
psychology 0877 21.59

sum

21.59
(5 rows affected)

Example 5 Calculates the grand total of the prices of psychology books that
cost more than $10 in addition to calculating sums by type and pub_id:

compute clause

308

select type, pub_id, price
from titles
where price > $10

and type = "psychology"
order by type, pub_id, price
compute sum(price) by type, pub_id
compute sum(price) by type

type pub_id price
------------ --------- ---------
psychology 0736 10.95
psychology 0736 19.99

sum

30.94

type pub_id price
------------ --------- ---------
psychology 0877 21.59

sum

21.59
sum

52.53
(6 rows affected)

Example 6 Calculates the grand totals of the prices and advances of cook
books that cost more than $10:

select type, price, advance
from titles
where price > $10

and type like "%cook"
compute sum(price), sum(advance)

type price advance
--------- ----------- --------------
mod_cook 19.99 0.00
trad_cook 20.95 8,000.00
trad_cook 11.95 4,000.00
trad_cook 14.99 7,000.00

sum sum
----------- --------------

 67.88 19,000.00
(5 rows affected)

Example 7 Calculates the sum of the price of cook books and the sum of the
price used in an expression:

CHAPTER 7 Commands

309

select type, price, price*2
from titles

where type like "%cook"
compute sum(price), sum(price*2)

type price
------------ -------------- ------------
mod_cook 19.99 39.98
mod_cook 2.99 5.98
trad_cook 20.95 41.90
trad_cook 11.95 23.90
trad_cook 14.99 29.98

 sum sum
 ============= ============

 70.87 141.74

Usage • The compute clause allows you to see the detail and summary rows in one
set of results. You can calculate summary values for subgroups, and you
can calculate more than one aggregate for the same group.

• compute can be used without by to generate grand totals, grand counts, and
so on. order by is optional if you use the compute keyword without by. See
Example 6.

• If you use compute by, you must also use an order by clause. The columns
listed after compute by must be identical to or a subset of those listed after
order by and must be in the same left-to-right order, start with the same
expression, and not skip any expressions. For example, if the order by
clause is order by a, b, c, the compute by clause can be any (or all) of
these:

compute by a, b, c
compute by a, b
compute by a

Restrictions

• You cannot use more than 127 aggregate columns in a compute clause.

• You cannot use a compute clause in a cursor declaration.

• Summary values can be computed for both expressions and columns. Any
expression or column that appears in the compute clause must appear in the
select list.

• Aliases for column names are not allowed as arguments to the row
aggregate in a compute clause, although they can be used in the select list,
the order by clause, and the by clause of compute.

compute clause

310

• You cannot use select into in the same statement as a compute clause,
because statements that include compute do not generate normal tables.

• If a compute clause includes a group by clause:

• The compute clause cannot contain more than 255 aggregates

• The group by clause cannot contain more than 255 columns

• Columns included in a compute clause cannot be longer than 255 bytes.

compute results appear as a new row or rows

• The aggregate functions ordinarily produce a single value for all the
selected rows in the table or for each group, and these summary values are
shown as new columns. For example:

select type, sum(price), sum(advance)
from titles
where type like "%cook"
group by type
type
------------- --------- ----------
mod_cook 22.98 15,000.00
trad_cook 47.89 19,000.00

(2 rows affected)

• The compute clause makes it possible to retrieve detail and summary rows
with one command. For example:

select type, price, advance
from titles
where type like "%cook"
order by type
compute sum(price), sum(advance) by type
type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:
---------------------- -----------------

 22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

CHAPTER 7 Commands

311

Compute Result:
---------------------- -----------------

 47.89 19,000.00
(7 rows affected)

• Table 7-4 lists the output and grouping of different types of compute
clauses.

Table 7-4: compute by clauses and detail rows

Case sensitivity

• If your server has a case-insensitive sort order installed, compute ignores
the case of the data in the columns you specify. For example, given this
data:

select * from groupdemo
lname amount
---------- ------------------
Smith 10.00
smith 5.00
SMITH 7.00
Levi 9.00
Lévi 20.00

compute by on lname produces these results:

 select lname, amount from groupdemo
 order by lname
 compute sum(amount) by lname
 lname amount
 ---------- ------------------------
 Levi 9.00

 Compute Result:

 9.00

Clauses and grouping Output Examples

One compute clause, same function One detail row 1, 2, 4, 6, 7

One compute clause, different functions One detail row per type of function 3

More than one compute clause, same
grouping columns

One detail row per compute clause;
detail rows together in the output

Same results as having one
compute clause with different
functions

More than one compute clause, different
grouping columns

One detail row per compute clause;
detail rows in different places,
depending on the grouping

5

compute clause

312

 lname amount
 ---------- ------------------------
 Lévi 20.00

Compute Result:

20.00

 lname amount
 ---------- ------------------------
 smith 5.00
 SMITH 7.00
 Smith 10.00

Compute Result:

22.00

The same query on a case- and accent-insensitive server produces these
results:

 lname amount
 ---------- ------------------------
 Levi 9.00
 Lévi 20.00

Compute Result:

29.00

 lname amount
 ---------- ------------------------
 smith 5.00
 SMITH 7.00
 Smith 10.00

Compute Result:

22.00

Standards SQL92 – Compliance level: Transact-SQL extension.

See also Commands group by and having clauses, select

Functions avg, count, max, min, sum

CHAPTER 7 Commands

313

connect to...disconnect
Description Component Integration Services only – Connects to the specified server and

disconnects the connected server.

Syntax connect to server_name
disconnect

Parameters server_name
is the server to which a passthrough connection is required.

Examples Example 1 Establishes a passthrough connection to the server named
SYBASE:

connect to SYBASE

Example 2 Disconnects the connected server:

disconnect

Usage • connect to specifies the server to which a passthrough connection is
required. Passthrough mode enables you to perform native operations on
a remote server.

• server_name must be the name of a server in the sysservers table, with its
server class and network name defined.

• When establishing a connection to server_name on behalf of the user,
Component Integration Services uses one of the following identifiers:

• A remote login alias described in sysattributes, if present

• The user’s name and password

In either case, if the connection cannot be made to the specified server,
Adaptive Server returns an error message.

• For more information about adding remote servers, see sp_addserver.

• After making a passthrough connection, Component Integration Services
bypasses the Transact-SQL parser and compiler when subsequent
language text is received. It passes statements directly to the specified
server, and converts the results into a form that can be recognized by the
Open Client interface and returned to the client program.

• To close the connection created by the connect to command, use the
disconnect command. You can use this command only after the connection
has been made using connect to.

• The disconnect command can be abbreviated to disc.

connect to...disconnect

314

• The disconnect command returns an error unless connect to has been
previously issued and the server is connected to a remote server.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Permission to use the connect to command must be explicitly granted by the
System Administrator. The syntax is:

grant connect to user_name

The System Administrator can grant or revoke connect permission to public
globally while in the master database. If the System Administrator wants to
grant or revoke connect to permission for a particular user, the user must be a
valid user of the master database, and the System Administrator must first
revoke permission from public as follows:

use master
go
revoke connect from public
go
sp_adduser fred
go
grant connect to fred
go

See also Commands create existing table, grant

System procedures sp_addserver, sp_autoconnect, sp_helpserver,
sp_passthru, sp_remotesql, sp_serveroption

CHAPTER 7 Commands

315

continue
Description Restarts the while loop. continue is often activated by an if test.

Syntax while boolean_expression
statement

break
statement

continue

Examples If the average price is less than $30, double the prices. Then, select the
maximum price. If it is less than or equal to $50, restart the while loop and
double the prices again. If the maximum price is more than $50, exit the while
loop and print a message:

while (select avg(price) from titles) < $30
begin

update titles
set price = price * 2
select max(price) from titles

if (select max(price) from titles) > $50
 break

else
 continue
end

begin
print "Too much for the market to bear"
end

Usage • continue restarts the while loop, skipping any statements after continue.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions continue permission defaults to all users. No permission is required to use it.

See also Commands break, while

create database

316

create database
Description Creates a new database.

Syntax create database database_name
[on {default | database_device} [= size]

[, database_device [= size]]...]
[log on database_device [= size]

[, database_device [= size]]...]
[with {override | default_location = "pathname"}]
[for {load | proxy_update}]

Parameters database_name
is the name of the new database. It must conform to the rules for identifiers
and cannot be a variable.

on
indicates a location and size for the database.

default
indicates that create database can put the new database on any default
database device(s), as shown in sysdevices.status. To specify a size for the
database without specifying a location, use this command:

on default = size

To change a database device’s status to “default,” use sp_diskdefault.

database_device
is the logical name of the device on which to locate the database. A database
can occupy different amounts of space on each of several database devices.
To add database devices to Adaptive Server, use disk init.

size
is the amount of space to allocate to the database extension. Size can be in
the following unit specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes),
and ‘g’ or ‘G’ (gigabytes). Sybase recommends that you always include a
unit specifier. Quotes are optional if you do not include a unit specifier.
However, you must use quotes if you include a unit specifier.

log on
specifies the logical name of the device for the database logs. You can
specify more than one device in the log on clause.

CHAPTER 7 Commands

317

with override
forces Adaptive Server to accept your device specifications, even if they mix
data and transaction logs on the same device, thereby endangering
up-to-the-minute recoverability for your database. If you attempt to mix log
and data on the same device without using this clause, the create database
command fails. If you mix log and data, and use with override, you are
warned, but the command succeeds.

for load
invokes a streamlined version of create database that can be used only for
loading a database dump. See “Using the for load option” on page 320 for
more information.

with default_location
specifies the storage location of new tables. If you also specify the for
proxy_update clause, one proxy table for each remote table or view is
automatically created from the specified location.

for proxy_update
automatically gets metadata from the remote location and creates proxy
tables. You cannot use for proxy_update unless you also specify with
default_location.

Examples Example 1 Creates a database named pubs:

create database pubs

Example 2 Creates a 4MB database named pubs:

create database pubs
on default = 4

Example 3 Creates a database named pubs with 3MB on the datadev segment
and 2MB on the moredatadev segment:

create database pubs
on datadev = 3, moredatadev = 2

Example 4 Creates a database named pubs with 3MB of data on the datadev
segment and a 1MB log on the logdev segment:

create database pubs
on datadev = 3
log on logdev = 1

Example 5 Creates a proxy database named proxydb but does not
automatically create proxy tables:

create database proxydb
with default_location

create database

318

"UNITEST.pubs.dbo."

Example 6 Creates a proxy database named proxydb and automatically creates
proxy tables:

create database proxydb
on default = 4
with default_location
"UNITEST.pubs2.dbo."
for proxy_update

Usage • Use create database from the master database.

• You can specify the size as a float datatype, however, the size is rounded
down to the nearest multiple of the allocation unit.

• If the size of the database is not explicitly stated, the size is determined by
the size of the model database. The minimum size that you can create a
database is four allocation units.

• Because Adaptive Server allocates space for databases for create database
and alter database in chunks of 256 logical pages, these commands round
the specified size down to the nearest multiple of allocation units.

• If you do not include a unit specifier, Adaptive Server interprets the size
in terms of megabytes of disk space, and this number is converted to the
logical page size the server uses.

• If you do not specify a location and size for a database, the default location
is any default database device(s) indicated in master..sysdevices. The
default size is the larger of the size of the model database or the default
database size parameter in sysconfigures.

System Administrators can increase the default size by using sp_configure
to change the value of default database size and restarting Adaptive Server.
The default database size parameter must be at least as large as the model
database. If you increase the size of the model database, the default size
must also be increased.

If Adaptive Server cannot give you as much space as you want where you
have requested it, it comes as close as possible, on a per-device basis, and
prints a message telling how much space was allocated and where it was
allocated. The maximum size of a database is system-dependent.

• If a proxy database is created using:

create database mydb on my_device
with default_location = "pathname" for proxy_update

CHAPTER 7 Commands

319

The presence of the device name is enough to bypass size calculation, and
this command may fail if the default database size (the size of the model
database) isn’t large enough to contain all of the proxy tables.

To allow CIS to estimate database size, do not include any device name or
other option with the command:

create database mydb
with default_location = "pathname" for proxy_update

Restrictions

• Adaptive Server can manage as many as 32,767 databases.

• Adaptive Server can create only one database at a time. If two database
creation requests collide, one user sees this message:

model database in use: cannot create new database

• Each time you allocate space on a database device with create database or
alter database, that allocation represents a device fragment, and the
allocation is entered as a row in sysusages.

• The maximum number of named segments for a database is 32. Segments
are named subsets of database devices available to a particular Adaptive
Server. For more information on segments, see the System Administration
Guide.

New databases are created from model

• Adaptive Server creates a new database by copying the model database.

• You can customize model by adding tables, stored procedures,
user-defined datatypes, and other objects, and by changing database
option settings. New databases inherit these objects and settings from
model.

• To guarantee recoverability, create database must clear every page that
was not initialized when the model database was copied. This may take
several minutes, depending on the size of the database and the speed of
your system.

If you are creating a database to load a database dump into it, you can use
the for load option to skip the page-clearing step. This makes database
creation considerably faster.

create database

320

Ensuring database recoverability

• Back up the master database each time you create a new database. This
makes recovery easier and safer if master is damaged.

Note If you create a database and fail to back up master, you may be able
to recover the changes with disk reinit.

• The with override clause allows you to mix log and data segments on a
single device. However, for full recoverability, the device or devices
specified in log on should be different from the physical device that stores
the data. In the event of a hard disk crash, the database can be recovered
from database dumps and transaction logs.

You can create a small database on a single device that is used to store both
the transaction log and the data, but you must rely on the dump database
command for backups.

• The size of the device required for the transaction log varies according to
the amount of update activity and the frequency of transaction log dumps.
As a rule of thumb, allocate to the log device 10 – 25 percent of the space
you allocate to the database itself. It is best to start small, since space
allocated to a transaction log device cannot be reclaimed and cannot be
used for storing data.

Using the for load option

You can use the for load option for recovering from media failure or for moving
a database from one machine to another, if you have not added to the database
with sp_addsegment. Use alter database for load to create a new database in the
image of the database from which the database dump to be loaded was made.
For a discussion of duplicating space allocation when loading a dump into a
new database, see the System Administration Guide.

• When you create a database using the for load option, you can run only the
following commands in the new database before loading a database dump:

• alter database for load

• drop database

• load database

After you load the database dump into the new database, you can also use
some dbcc diagnostic commands in the databases. After you issue the
online database command, there are no restrictions on the commands you
can use.

CHAPTER 7 Commands

321

• A database created with the for load option has a status of “don’t recover”
in the output from sp_helpdb.

Getting information about databases

• To get a report on a database, execute the system procedure sp_helpdb.

• For a report on the space used in a database, use sp_spaceused.

Using with default_location and for proxy_update

Without the for proxy_update clause, the behavior of the with default_location
clause is the same as that provided by the stored procedure sp_defaultloc — a
default storage location is established for new and existing table creation, but
automatic import of proxy table definitions is not done during the processing
of the create database command.

• If for proxy_update is specified with no default_location, an error is
reported.

• When a proxy database is created (using the for proxy_update option),
Component Integration Services will be called upon to:

• Provide an estimate of the database size required to contain all proxy
tables representing the actual tables and views found in the primary
server’s database. This estimate is the number of database pages
needed to contain all proxy tables and indexes. The estimate is used if
no size is specified, and no database devices are specified.

• Create all proxy tables representing the actual tables and views found
in the companion server’s database.

• Grant all permissions on proxy tables to public.

• Add the guest user to the proxy database.

• The database status will be set to indicate that this database
‘Is_A_Proxy’. This status is contained in
master.dbo.sysdatabases.status4.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions create database permission defaults to System Administrators, who can
transfer it to users listed in the sysusers table of the master database. However,
create database permission is often centralized in order to maintain control
over database storage allocation.

If you are creating the sybsecurity database, you must be a System Security
Officer.

create database permission is not included in the grant all command.

create database

322

See also Commands alter database, disk init, drop database, dump database, load
database, online database

System procedures sp_changedbowner, sp_diskdefault, sp_helpdb,
sp_logdevice, sp_renamedb, sp_spaceused

CHAPTER 7 Commands

323

create default
Description Specifies a value to insert in a column (or in all columns of a user-defined

datatype) if no value is explicitly supplied at insert time.

Syntax create default [owner.]default_name
as constant_expression

Parameters default_name
is the name of the default. It must conform to the rules for identifiers and
cannot be a variable. Specify the owner’s name to create another default of
the same name owned by a different user in the current database. The default
value for owner is the current user.

constant_expression
is an expression that does not include the names of any columns or other
database objects. It cannot include global variables, but can include built-in
functions that do not reference database objects. Enclose character and date
constants in quotes and use a “0x” prefix for binary constants.

Examples Example 1 Defines a default value. Now, you need to bind it to the appropriate
column or user-defined datatype with sp_bindefault:

create default phonedflt as "UNKNOWN"

sp_bindefault phonedflt, "authors.phone"

The default takes effect only if there is no entry in the phone column of the
authors table. No entry is different from a null value entry. To get the default,
issue an insert command with a column list that does not include the column
that has the default.

Example 2 Creates a default value, todays_date, that inserts the current date
into the columns to which it is bound:

create default todays_date as getdate()

Usage • Bind a default to a column or user-defined datatype—but not a Adaptive
Server-supplied datatype—with sp_bindefault.

• You can bind a new default to a datatype without unbinding the old one.
The new default overrides and unbinds the old one.

• To hide the source test of a default, use sp_hidetext.

Restrictions

• You can create a default only in the current database.

• You cannot combine create default statements with other statements in a
single batch.

create default

324

• You must drop a default with drop default before you create a new one of
the same name; you must unbind a default with sp_unbindefault, before
you drop it.

Datatype compatibility

• Adaptive Server generates an error message when it tries to insert a default
value that is not compatible with the column’s datatype. For example, if
you bind a character expression such as “N/A” to an integer column, any
insert that does not specify the column value fails.

• If a default value is too long for a character column, Adaptive Server either
truncates the string or generates an exception, depending on the setting of
the string_rtruncation option. For more information, see the set command.

Getting information about defaults

• Default definitions are stored in syscomments.

• After a default is bound to a column, its object ID is stored in syscolumns.
After a default is bound to a user-defined datatype, its object ID is stored
in systypes.

• To rename a default, use sp_rename.

• For a report on the text of a default, use sp_helptext.

Defaults and rules

• If a column has both a default and a rule associated with it, the default
value must not violate the rule. A default that conflicts with a rule cannot
be inserted. Adaptive Server generates an error message each time it
attempts to insert such a default.

Defaults and NULLs

• If a column does not allow nulls, and you do not create a default for the
column, when a user attempts to insert a row but does not include a value
for that column, the insert fails and Adaptive Server generates an error
message.

Table 7-5 illustrates the relationship between the existence of a default and
the definition of a column as NULL or NOT NULL.

Table 7-5: Relationship between nulls and column defaults

Column null
type

No entry,
no default

No entry, default
exists

Entry Is null,
No default

Entry Is null,
default exists

NULL Null inserted Default value inserted Null inserted Null inserted

NOT NULL Error, command fails Default value inserted Error, command fails Error, command fails

CHAPTER 7 Commands

325

Specifying a default value in create table

• You can define column defaults using the default clause of the create table
statement as an alternative to using create default. However, these column
defaults are specific to that table; you cannot bind them to other tables. See
create table and alter table for information about integrity constraints.

Standards SQL92 – Compliance level: Transact-SQL extension.

Use the default clause of the create table statement to create SQL92-compliant
defaults.

Permissions create default permission defaults to the Database Owner, who can transfer it to
other users.

See also Commands alter table, create rule, create table, drop default, drop rule

System procedures sp_bindefault, sp_help, sp_helptext, sp_rename,
sp_unbindefault

create existing table

326

create existing table
Description Component Integration Services only Creates a proxy table, then retrieves

and stores metadata from a remote table and places the data into the proxy
table. Allows you to map the proxy table to a table, view, or procedure at a
remote location.

Syntax create existing table table_name (column_list)
[on segment_name]
[[external {table | procedure | file}] at pathname]

Parameters table_name
specifies the name of the table for which you want to create a proxy table.

column_list
specifies the name of the column list that stores information about the
remote table.

on segment_name
specifies the segment that contains the remote table.

external
specifies that the object is a remote object.

table
specifies that the remote object is a table or a view. The default is external
table.

procedure
specifies that the remote object is a stored procedure.

file
specifies that the remote object is a file.

at pathname
specifies the location of the remote object. pathname takes the form:
server_name.dbname.owner.object, where:

• server_name (required) – is the name of the server that contains the
remote object.

• dbname (optional) – is the name of the database managed by the remote
server that contains this object.

• owner (optional) – is the name of the remote server user that owns the
remote object.

• object (required) – is the name of the remote table, view, or procedure.

Examples Example 1 Creates the proxy table authors:

CHAPTER 7 Commands

327

create existing table authors
(
au_id id,
au_lname varchar(40) NOT NULL,
au_fname varchar(20) NOT NULL,
phone char(12),
address varchar(40) NULL,
city varchar(20) NULL,
state char(2) NULL,
zip char(5) NULL,
contract bit
)

Example 2 Creates the proxy table syb_columns:

create existing table syb_columns
(
id int,
number smallint,
colid tinyint,
status tinyint,
type tinyint,
length tinyint,
offset smallint,
usertype smallint,
cdefault int,
domain int,
name varchar(30),
printfmt varchar(255) NULL,
prec tinyint NULL,
scale tinyint NULL
)

Example 3 Creates a proxy table named blurbs for the blurbs table at the
remote server SERVER_A:

create existing table blurbs
(author_id id not null,
copy text not null)
at "SERVER_A.db1.joe.blurbs"

Example 4 Creates a proxy table named rpc1 for the remote procedure named
p1:

create existing table rpc1
(column_1 int,
column_2 int)
external procedure
at "SERVER_A.db1.joe.p1"

create existing table

328

Usage • create existing table does not create a new table, unless the remote object
is a file. Instead, Component Integration Services checks the table
mapping to confirm that the information in column_list matches the
remote table, verifies the existence of the underlying object, and retrieves
and stores metadata about the remote table.

• If the host data file or remote server object does not exist, the command is
rejected with an error message.

• If the object exists, the system tables sysobjects, syscolumns, and
sysindexes are updated. The verification operation requires these steps:

a The nature of the existing object is determined. For host data files, this
requires determining file organization and record format. For remote
server objects, this requires determining whether the object is a table,
a view, or an RPC.

b For remote server objects (other than RPCs), column attributes
obtained for the table or view are compared with those defined in the
column_list.

c Index information from the host data file or remote server table is
extracted and used to create rows for the system table sysindexes. This
defines indexes and keys in Adaptive Server terms and enables the
query optimizer to consider any indexes that might exist on this table.

• The on segment_name clause is processed locally and is not passed to a
remote server.

• After successfully defining an existing table, issue an update statistics
command for the table. This allows the query optimizer to make intelligent
choices regarding index selection and join order.

• Component Integration Services allows you to create a proxy table with a
column defined as NOT NULL even though the remote column is defined
as NULL. It displays a warning to notify you of the mismatch.

• The location information provided by the at keyword is the same
information that is provided by the sp_addobjectdef system procedure. The
information is stored in the sysattributes table.

• Component Integration Services inserts or updates a record in the
systabstats catalog for each index of the remote table. Since detailed
structural statistics are irrelevant for remote indexes, only a minimum
number of columns are set in the systabstats record—id, indid, and rowcnt.

• External files cannot be of datatypes text, image or Java ADTs.

CHAPTER 7 Commands

329

Datatype conversions

• When using create existing table, you must specify all datatypes with
recognized Adaptive Server datatypes. If the remote server tables reside
on a class of server that is heterogeneous, the datatypes of the remote table
are automatically converted into the specified Adaptive Server types when
the data is retrieved. If the conversion cannot be made, Component
Integration Services does not allow the table to be defined.

• The Component Integration Services User’s Guide contains a section for
each supported server class and identifies all possible datatype
conversions that are implicitly performed by Component Integration
Services.

Changes by server class

• All server classes allow you to specify fewer columns than there are in the
table on the remote server.

• All server classes match the columns by name.

• All server classes allow the column type to be any datatype that can be
converted to and from the datatype of the column in the remote table.

Remote procedures

• When the proxy table is a procedure-type table, you must provide a
column list that matches the description of the remote procedure’s result
set. create existing table does not verify the accuracy of this column list.

• No indexes are created for procedures.

• Component Integration Services treats the result set of a remote procedure
as a virtual table that can be sorted, joined with other tables, or inserted
into another table using insert or select. However, a procedure type table
is considered read-only, which means you cannot issue the following
commands against the table:

• alter table

• create index

• delete

• insert

• truncate table

• update

create existing table

330

• Begin the column name with an underscore (_) to specify that the column
is not part of the remote procedure’s result set. These columns are referred
to as parameter columns. For example:

create existing table rpc1
(

a int,
b int,
c int,
_p1 int null,
_p2 int null

)
external procedure
at "SYBASE.sybsystemprocs.dbo.myproc"

In this example, the parameter columns _p1 and _p2 are input parameters.
They are not expected in the result set, but can be referenced in the query:

select a, b, c from t1
where _p1 = 10 and _p2 = 20

Component Integration Services passes the search arguments to the
remote procedure as parameters, using the names @p1 and @p2.

• Parameter column definitions in a create existing table statement must
follow these rules:

• Parameter column definitions must allow a null value.

• Parameter columns cannot precede regular result columns—they
must appear at the end of the column list.

• If a parameter column is included in a select list and is passed to the
remote procedure as a parameter, the return value is assigned by the where
clause.

• If a parameter column is included in a select list, but does not appear in the
where clause or cannot be passed to the remote procedure as a parameter,
its value is NULL.

• A parameter column can be passed to a remote procedure as a parameter
if the Adaptive Server query processor considers it a searchable argument.
A parameter column is considered a searchable argument if it is not
included in any or predicates. For example, the or predicate in the second
line of the following query prevents the parameter columns from being
used as parameters:

select a, b, c from t1
where _p1 = 10 or _p2 = 20

CHAPTER 7 Commands

331

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions create existing table permission defaults to the table owner and is not
transferable.

See also Commands alter table, create table, create proxy_table, drop index, insert,
order by clause, set, update

create function (SQLJ)

332

create function (SQLJ)
Description Creates a user-defined function by adding a SQL wrapper to a Java static

method. Can return a value defined by the method.

Syntax create function [owner.]sql_function_name
([sql_parameter_name sql_datatype

[(length)| (precision[, scale])]
[[, sql_parameter_name sql_datatype

[(length)| (precision[, scale])]]
...]])

returns sql_datatype
[(length)| (precision[, scale])]

[modifies sql data]
[returns null on null input |

called on null input]
[deterministic | not deterministic]
[exportable]
language java
parameter style java
external name 'java_method_name

[([java_datatype[, java_datatype
...]])] '

Parameters sql_function_name
is the Transact-SQL name of the function. It must conform to the rules for
identifiers and cannot be a variable.

sql_parameter_name
is the name of an argument to the function. The value of each input
parameter is supplied when the function is executed. Parameters are
optional; a SQLJ function need not take arguments.

Parameter names must conform to the rules for identifiers. If the value of a
parameter contains non-alphanumeric characters, it must be enclosed in
quotes. This includes object names qualified by a database name or owner
name, since they include a period. If the value of the parameter begins with
a numeric character, it also must be enclosed in quotes.

sql_datatype [(length) | (precision [, scale])]
is the Transact-SQL datatype of the parameter. See create procedure on page
351 for more information about these parameters.

sql_datatype is the SQL procedure signature.

returns sql_datatype
specifies the result datatype of the function.

CHAPTER 7 Commands

333

modifies sql data
indicates that the Java method invokes SQL operations, reads, and modifies
SQL data in the database. This is the default and only implementation. It is
included for syntactic compatibility with the ANSI standard.

deterministic | not deterministic
included for syntactic compatibility with the ANSI standard. Not currently
implemented.

exportable
specifies that the procedure is to be run on a remote server using the
Adaptive Server OmniConnect™ feature. Both the procedure and the
method it is built on must reside on the remote server.

language java
specifies that the external routine is written in Java. This is a required clause
for SQLJ functions.

parameter style java
specifies that the parameters passed to the external routine at runtime are
Java parameters. This is a required clause for SQLJ functions.

external
indicates that create function defines a SQL name for an external routine
written in a programming language other than SQL.

name
specifies the name of the external routine (Java method). The specified
name—‘java_method_name [java_datatype[{, java_datatype} ...]]’—is a
character-string literal and must be enclosed in single quotes.

java_method_name
specifies the name of the external Java method.

java_datatype
specifies a Java datatype that is mappable or result-set mappable. This is the
Java method signature.

Examples This example creates a function square_root that invokes the
java.lang.Math.sqrt() method:

create function square_root
(input_number double precision) returns

double precision
language java parameter style java
external name 'java.lang.Math.sqrt'

create function (SQLJ)

334

Usage • You cannot create a SQLJ function with the same name as an Adaptive
Server built-in function.

• You can create user-defined functions (based on Java static methods) and
SQLJ functions with the same class and method names.

Note Adaptive Server’s searching order ensures that the SQLJ function is
always found first.

• You can include a maximum of 31 parameters in a create function
statement.

• See Java in Adaptive Server Enterprise for more information about create
function.

Permissions Only the Database Owner or user with sa role can execute create function. The
Database Owner or sa cannot transfer permission for create function.

See also Commands create function (SQLJ), drop function (SQLJ)

System procedures sp_depends, sp_help, sp_helpjava, sp_helprotect

CHAPTER 7 Commands

335

create index
Description Creates an index on one or more columns in a table.

Syntax create [unique] [clustered | nonclustered]
index index_name

on [[database.]owner.]table_name
(column_name [asc | desc]

[, column_name [asc | desc]]...)
[with { fillfactor = pct,

max_rows_per_page = num_rows,
reservepagegap = num_pages,
consumers = x, ignore_dup_key, sorted_data,
[ignore_dup_row | allow_dup_row],

 statistics using num_steps values }]
[on segment_name]

Parameters unique
prohibits duplicate index values (also called “key values”). The system
checks for duplicate key values when the index is created (if data already
exists), and each time data is added with an insert or update. If there is a
duplicate key value or if more than one row contains a null value, the
command fails, and Adaptive Server prints an error message giving the
duplicate entry.

 Warning! Adaptive Server does not detect duplicate rows if a table contains
any non-null text or image columns.

update and insert commands that generate duplicate key values fail, unless
the index was created with ignore_dup_row or ignore_dup_key.

Composite indexes (indexes in which the key value is composed of more
than one column) can also be unique.

The default is nonunique. To create a nonunique clustered index on a table
that contains duplicate rows, specify allow_dup_row or ignore_dup_row. See
“Duplicate rows” on page 343.

clustered
means that the physical order of rows on the current database device is the
same as the indexed order of the rows. The bottom, or leaf level, of the
clustered index contains the actual data pages. A clustered index almost
always retrieves data faster than a nonclustered index. Only one clustered
index per table is permitted. See “Creating clustered indexes” on page 342.

If clustered is not specified, nonclustered is assumed.

create index

336

nonclustered
means that the physical order of the rows is not the same as their indexed
order. The leaf level of a nonclustered index contains pointers to rows on
data pages. You can have as many as 249 nonclustered indexes per table.

index_name
is the name of the index. Index names must be unique within a table, but
need not be unique within a database.

table_name
is the name of the table in which the indexed column or columns are located.
Specify the database name if the table is in another database, and specify the
owner’s name if more than one table of that name exists in the database. The
default value for owner is the current user, and the default value for database
is the current database.

column_name
is the column or columns to which the index applies. Composite indexes are
based on the combined values of as many as 16 columns. The sum of the
maximum lengths of all the columns used in a composite index cannot
exceed 600 bytes. List the columns to be included in the composite index (in
the order in which they should be sorted) inside the parentheses following
table_name.

asc | desc
specifies whether the index is to be created in ascending or descending order
for the column specified. The default is ascending order.

CHAPTER 7 Commands

337

fillfactor
specifies how full Adaptive Server makes each page when it creates a new
index on existing data. The fillfactor percentage is relevant only when the
index is created. As the data changes, the pages are not maintained at any
particular level of fullness.

The value you specify is not saved in sysindexes for display by sp_helpindex
or for later use by the reorg command. Use sp_chgattribute to create stored
fillfactor values.

The default for fillfactor is 0; this is used when you do not include with
fillfactor in the create index statement (unless the value has been changed
with sp_configure). When specifying a fillfactor, use a value between 1 and
100.

A fillfactor of 0 creates clustered indexes with completely full pages and
nonclustered indexes with completely full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both the clustered and
nonclustered indexes. There is seldom a reason to change the fillfactor.

If the fillfactor is set to 100, Adaptive Server creates both clustered and
nonclustered indexes with each page 100 percent full. A fillfactor of 100
makes sense only for read-only tables—tables to which no additional data
will ever be added.

fillfactor values smaller than 100 (except 0, which is a special case) cause
Adaptive Server to create new indexes with pages that are not completely
full. A fillfactor of 10 might be a reasonable choice if you are creating an
index on a table that will eventually hold a great deal more data, but small
fillfactor values cause each index (or index and data) to occupy more storage
space.

 Warning! Creating a clustered index with a fillfactor affects the amount of
storage space your data occupies, since Adaptive Server redistributes the data
as it creates the clustered index.

create index

338

max_rows_per_page
limits the number of rows on data pages and the leaf level pages of indexes.
max_rows_per_page and fillfactor are mutually exclusive. Unlike fillfactor, the
max_rows_per_page value is maintained until it is changed with
sp_chgattribute.

If you do not specify a value for max_rows_per_page, Adaptive Server uses
a value of 0 when creating the table. Values for tables and clustered indexes
are between 0 and 256. The maximum number of rows per page for
nonclustered indexes depends on the size of the index key. Adaptive Server
returns an error message if the specified value is too high.

A max_rows_per_page value of 0 creates clustered indexes with full pages
and nonclustered indexes with full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both clustered and nonclustered
indexes.

If max_rows_per_page is set to 1, Adaptive Server creates both clustered and
nonclustered indexes with one row per page at the leaf level. Use low values
to reduce lock contention on frequently accessed data. However, low
max_rows_per_page values cause Adaptive Server to create new indexes
with pages that are not completely full, uses more storage space, and may
cause more page splits.

If Component Integration Services is enabled, you cannot use
max_rows_per_page for remote servers.

 Warning! Creating a clustered index with max_rows_per_page can affect the
amount of storage space your data occupies, since Adaptive Server
redistributes the data as it creates the clustered index.

with reservepagegap = num_pages
specifies a ratio of filled pages to empty pages to be left during extent I/O
allocation operations. For each specified num_pages, an empty page is left
for future expansion of the index. Valid values are 0 – 255. The default is 0.

CHAPTER 7 Commands

339

ignore_dup_key
cancels attempts of duplicate key entry into a table that has a unique index
(clustered or nonclustered). Adaptive Server cancels the attempted insert or
update of a duplicate key with an informational message. After the
cancellation, the transaction containing the duplicate key proceeds to
completion.

You cannot create a unique index on a column that includes duplicate values
or more than one null value, whether or not ignore_dup_key is set. If you
attempt to do so, Adaptive Server prints an error message that displays the
first of the duplicate values. You must eliminate duplicates before Adaptive
Server can create a unique index on the column.

ignore_dup_row
allows you to create a new, nonunique clustered index on a table that
includes duplicate rows. ignore_dup_row deletes the duplicate rows from
the table, and cancels any insert or update that would create a duplicate row,
but does not roll back the entire transaction. See “Duplicate rows” on page
343 for more information.

allow_dup_row
allows you to create a nonunique clustered index on a table that includes
duplicate rows, and allows you to duplicate rows with update and insert
statements. See “Duplicate rows” on page 343 for an explanation of how to
use these options.

sorted_data
speeds creation of clustered indexes or unique nonclustered indexes when
the data in the table is already in sorted order (for example, when you have
used bcp to copy data that has already been sorted into an empty table). See
“Using the sorted_data option to speed sorts” on page 345 for more
information.

with statistics using num_steps values
specifies the number of steps to generate for the histogram used to optimize
queries. If you omit this clause:

• The default value is 20, if no histogram is currently stored for the
leading index column.

• The current number of steps is used, if a histogram for the leading
column of the index column already exists.

If you specify 0 for num_steps, the index is re-created, but the statistics for
the index are not overwritten in the system tables.

create index

340

on segment_name
creates the index on the named segment. Before using the on segment_name
option, initialize the device with disk init, and add the segment to the
database using sp_addsegment. See your System Administrator, or use
sp_helpsegment for a list of the segment names available in your database.

with consumers
specifies the number of consumer processes that should perform the sort
operation for creating the index. The actual number of consumer processes
used to sort the index may be smaller than the specified number, if fewer
worker processes are available when Adaptive Server executes the sort.

Examples Example 1 Creates an index named au_id_ind on the au_id column of the
authors table:

create index au_id_ind on authors (au_id)

Example 2 Creates a unique clustered index named au_id_ind on the au_id
column of the authors table:

create unique clustered index au_id_ind
on authors(au_id)

Example 3 Creates an index named ind1 on the au_id and title_id columns of
the titleauthor table:

create index ind1 on titleauthor (au_id, title_id)

Example 4 Creates a nonclustered index named zip_ind on the zip column of
the authors table, filling each index page one-quarter full and limiting the sort
to 4 consumer processes:

create nonclustered index zip_ind
on authors(postalcode)
with fillfactor = 25, consumers = 4

Example 5 Creates an index with ascending ordering on pub_id and
descending order on pubdate:

create index pub_dates_ix
on titles (pub_id asc, pubdate desc)

Example 6 Creates an index on title_id, using 50 histogram steps for optimizer
statistics and leaving 1 empty page out of every 40 pages in the index:

create index title_id_ix
on titles (title_id)
with reservepagegap = 40,
statistics using 50 values

CHAPTER 7 Commands

341

Usage • Run update statistics periodically if you add data to the table that changes
the distribution of keys in the index. The query optimizer uses the
information created by update statistics to select the best plan for running
queries on the table.

• If the table contains data when you create a nonclustered index, Adaptive
Server runs update statistics on the new index. If the table contains data
when you create a clustered index, Adaptive Server runs update statistics
on all the table’s indexes.

• Index all columns that are regularly used in joins.

• When Component Integration Services is enabled, the create index
command is reconstructed and passed directly to the Adaptive Server
associated with the table.

Restrictions

• You cannot create an index on a column with a datatype of bit, text, or
image.

• You can create non-indexable columns in a table by creating columns with
lengths greater than the index row-size limit:

• A table can have a maximum of 249 nonclustered indexes.

• A table can have a maximum of one clustered index.

• You can specify up to 31 columns (formerly 16) for the index key. The
maximum total number of bytes must be within the limits shown in the
table above.

• You can create an index on a temporary table. The index disappears when
the table disappears.

• You can create an index on a table in another database, as long as you are
the owner of that table.

• You cannot create an index on a view.

• create index runs more slowly while a dump database is taking place.

Logical page size Index column size limit

2K 600

4K 1250

8K 2600

16K 5300

create index

342

• You can create a clustered index on a partitioned table, or partition a table
with a clustered index if all the following conditions are true:

• The select into/bulkcopy/pllsort database option is turned on,

• Adaptive Server is configured for parallel processing, and

• There is one more worker process available than the number of
partitions.

For more information about clustered indexes on partitioned tables, see
Chapter 24, “Parallel Sorting,” in the Performance and Tuning Guide.

• The maximum number of indexes allowed on a data-only-locked table
with a clustered index is 249. A table can have one clustered index and 248
nonclustered indexes.

Creating indexes efficiently

• Indexes speed data retrieval, but can slow data updates. For better
performance, create a table on one segment and create its nonclustered
indexes on another segment, when the segments are on separate physical
devices.

• Adaptive Server can create indexes in parallel if a table is partitioned and
the server is configured for parallelism. It can also use sort buffers to
reduce the amount of I/O required during sorting. For more information,
see Chapter 24, “Parallel Sorting,” in the Performance and Tuning Guide.

• Create a clustered index before creating any nonclustered indexes, since
nonclustered indexes are automatically rebuilt when a clustered index is
created.

• When using parallel sort for data-only-locked tables, the number of
worker processes must be configured to equal or exceed the number of
partitions, even for empty tables. The database option select
into/bulkcopy/pllsort must also be enabled.

Creating clustered indexes

• A table “follows” its clustered index. When you create a table, use the
on segment_name extension to create clustered index, the table migrates to
the segment where the index is created.

If you create a table on a specific segment, then create a clustered index
without specifying a segment, Adaptive Server moves the table to the
default segment when it creates the clustered index there.

CHAPTER 7 Commands

343

Because text and image data is stored in a separate page chain, creating a
clustered index with on segment_name does not move text and image
columns.

• To create a clustered index, Adaptive Server duplicates the existing data;
the server deletes the original data when the index is complete. Before
creating a clustered index, use sp_spaceused to make sure that the
database has at least 120 percent of the size of the table available as free
space.

• The clustered index is often created on the table’s primary key (the column
or columns that uniquely identify the row). The primary key can be
recorded in the database (for use by front-end programs and sp_depends)
using sp_primarykey.

• To allow duplicate rows in a clustered index, specify allow_dup_row.

Specifying ascending or descending ordering in indexes

• Use the asc and desc keywords after index column names to specify the
sorting order for the index keys. Creating indexes so that columns are in
the same order specified in the order by clause of queries eliminates the
sorting step during query processing. For more information, see Chapter
8, “Indexing for Performance,” in the Performance and Tuning Guide.

Space requirements for indexes

• Space is allocated to tables and indexes in increments of one extent, or
eight pages, at a time. Each time an extent is filled, another extent is
allocated. Use sp_spaceused to display the amount of space allocated and
used by an index..

• In some cases, using the sorted_data option allows Adaptive Server to skip
copying the data rows as described in Table 7-8 on page 345. In these
cases, you need only enough additional space for the index structure itself.
Depending on key size, this is usually about 20 percent of the size of the
table.

Duplicate rows

• The ignore_dup_row and allow_dup_row options are not relevant when you
are creating a nonunique, nonclustered index. Adaptive Server attaches a
unique row identification number internally in each nonclustered index;
duplicate rows are not a problem even for identical data values.

• ignore_dup_row and allow_dup_row are mutually exclusive.

• A nonunique clustered index allows duplicate keys, but does not allow
duplicate rows unless you specify allow_dup_row.

create index

344

• allow_dup_row allows you to create a nonunique, clustered index on a table
that includes duplicate rows. If a table has a nonunique, clustered index
that was created without the allow_dup_row option, you cannot create new
duplicate rows using the insert or update command.

If any index in the table is unique, the requirement for uniqueness takes
precedence over the allow_dup_row option. You cannot create an index
with allow_dup_row if a unique index exists on any column in the table.

• The ignore_dup_row option is also used with a nonunique, clustered index.
The ignore_dup_row option eliminates duplicates from a batch of data.
ignore_dup_row cancels any insert or update that would create a duplicate
row, but does not roll back the entire transaction.

• Table 7-6 illustrates how allow_dup_row and ignore_dup_row affect
attempts to create a nonunique, clustered index on a table that includes
duplicate rows and attempts to enter duplicate rows into a table.

Table 7-6: Duplicate row options for nonunique clustered indexes

Table 7-7 shows which index options can be used with the different types
of indexes:

Table 7-7: Index options

Using unique constraints in place of indexes

• As an alternative to create index, you can implicitly create unique indexes
by specifying a unique constraint with the create table or alter table
statement. The unique constraint creates a clustered or nonclustered
unique index on the columns of a table. These implicit indexes are named
after the constraint, and they follow the same rules for indexes created
with create index.

Option setting
Create an index on a table
that has duplicate rows

Insert duplicate rows into
a table with an index

Neither option set create index fails. insert fails.

allow_dup_row set create index completes. insert completes.

ignore_dup_row set Index is created but duplicate
rows are deleted; error message.

All rows are inserted except
duplicates; error message.

Index type Options

Clustered ignore_dup_row | allow_dup_row

Unique, clustered ignore_dup_key

Nonclustered None

Unique, nonclustered ignore_dup_key, ignore_dup_row

CHAPTER 7 Commands

345

• You cannot drop indexes supporting unique constraints using the drop
index statement. They are dropped when the constraints are dropped
through an alter table statement or when the table is dropped. See create
table for more information about unique constraints.

Using the sorted_data option to speed sorts

• The sorted_data option can reduce the time needed to create an index by
skipping the sort step and by eliminating the need to copy the data rows to
new pages in certain cases. The speed increase becomes significant on
large tables and increases to several times faster in tables larger than 1GB.

If sorted_data is specified, but data is not in sorted order, Adaptive Server
displays an error message, and the command fails.

Creating a nonunique, nonclustered index succeeds, unless there are rows
with duplicate keys. If there are rows with duplicate keys, Adaptive Server
displays an error message, and the command fails.

• The effects of sorted_data for creating a clustered index depend on
whether the table is partitioned and whether certain other options are used
in the create index command. Some options require data copying, if used
at all, for nonpartitioned tables and sorts plus data copying for partitioned
tables, while others require data copying only if you:

• Use the ignore_dup_row option

• Use the fillfactor option

• Use the on segmentname clause to specify a segment that is different
from the segment where the table data is located

• Use the max_rows_per_page clause to specify a value that is different
from the value associated with the table

• Table 7-8 shows when the sort is required and when the table is copied for
partitioned and nonpartitioned tables.

Table 7-8: Using the sorted_data option for creating a clustered index

Options Partitioned table Unpartitioned table

No options specified Parallel sort; copies data, distributing
evenly on partitions; creates index tree.

Either parallel or nonparallel sort;
copies data, creates index tree.

with sorted_data only or with
sorted_data on same_segment

Creates index tree only. Does not
perform the sort or copy data. Does not
run in parallel.

Creates index tree only. Does not
perform the sort or copy data.
Does not run in parallel.

with sorted_data and ignore_dup_row
or fillfactor or on other_segment or
max_rows_per_page

Parallel sort; copies data, distributing
evenly on partitions; creates index tree.

Copies data and creates the index
tree. Does not perform the sort.
Does not run in parallel.

create index

346

Specifying the number of histogram steps

• Use the with statistics clause to specify the number of steps for a histogram
for the leading column of an index. Histograms are used during query
optimization to determine the number of rows that match search
arguments for a column.

• To re-create an index without updating the values in sysstatistics for a
column, use 0 for the number of steps. This avoids overwriting statistics
that have been changed with optdiag.

Space management properties

• fillfactor, max_rows_per_page, and reservepagegap help manage space on
index pages in different ways:

• fillfactor applies to indexes for all locking schemes. For clustered
indexes on allpages-locked tables, it affects the data pages of the
table. On all other indexes, it affects the leaf level of the index.

• max_rows_per_page applies only to index pages of allpages-locked
tables.

• reservepagegap applies to tables and indexes for all locking schemes.

• reservepagegap affects space usage in indexes when

• The index is created

• reorg commands on indexes are executed

• Nonclustered indexes are rebuilt after creating a clustered index

• When a reservepagegap value is specified in a create clustered index
command, it applies to:

• The data and index pages of allpages-locked tables

• Only the index pages of data-only-locked tables

• The num_pages value specifies a ratio of filled pages to empty pages on
the leaf level of the index so that indexes can allocate space close to
existing pages, as new space is required. For example, a reservepagegap
of 10 leaves 1 empty page for each 9 used pages.

• reservepagegap specified along with create clustered index on an
allpages-locked table overwrites any value previously specified with
create table or alter table.

CHAPTER 7 Commands

347

• You can change the space management properties for an index with
sp_chgattribute. Changing properties with sp_chgattribute does not
immediately affect storage for indexes on the table. Future large scale
allocations, such as reorg rebuild, use the sp_chgattribute value.

• The fillfactor value set by sp_chgattribute is stored in the fill_factor column
in sysindexes. The fillfactor is applied when an index is recreated as a result
of an alter table...lock command or a reorg rebuild command.

Index options and locking modes

• Table 7-9 shows the index options supported for allpages-locked and
data-only-locked tables. On data-only-locked tables, the ignore_dup_row
and allow_dup_row options are enforced during create index, but are not
enforced during insert and update operations. Data-only-locked tables
always allow the insertion of duplicate rows.

Table 7-9: create index options supported for locking schemes

Table 7-10 shows the behavior of commands that attempt to insert
duplicate rows into tables with clustered indexes, and when the clustered
indexes are dropped and re-created.

Table 7-10: Enforcement and errors for duplicate row options

Using the sorted_data option on data-only-locked tables

• The sorted_data option to create index can be used only immediately
following a bulk copy operation into an empty table. Once data
modifications to that table cause additional page allocations, the
sorted_data option cannot be used.

Index type Allpages-locked table Data-only-locked table

During index creation During inserts

Clustered allow_dup_row,
ignore_dup_row

allow_dup_row,
ignore_dup_row

allow_dup_row

Unique clustered ignore_dup_key ignore_dup_key ignore_dup_key

Nonclustered None None None

Unique nonclustered ignore_dup_key ignore_dup_key ignore_dup_key

Options Allpages-locked table Data-only-locked table

No options specified Insert fails with error message 2615.
Re-creating the index succeeds.

Insert succeeds. Re-creating the index
fails with error message 1508.

allow_dup_row Insert and re-creating the index succeed. Insert and re-creating the index succeed.

ignore_dup_row Insert fails with “Duplicate row was ignored”
message. Re-creating the index succeeds.

Insert succeeds. Re-creating the index
deletes duplicate rows.

create index

348

• Specifying different values for space management properties may override
the sort suppression functionality of the sorted_data.

Getting information about tables and indexes

• Each index—including composite indexes—is represented by one row in
sysindexes.

• For information about the order of the data retrieved through indexes and
the effects of an Adaptive Server’s installed sort order, see the order by
clause.

• For information about a table’s indexes, execute sp_helpindex.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions create index permission defaults to the table owner and is not transferable.

See also Commands alter table, create table, drop index, insert, order by clause, set,
update

System procedures sp_addsegment, sp_chgattribute, sp_helpindex,
sp_helpsegment, sp_spaceused

Utilities optdiag

CHAPTER 7 Commands

349

create plan
Description Creates an abstract plan.

Syntax create plan query plan
[into group_name]
[and set @new_id]

Parameters query
is a string literal, parameter, or local variable containing the SQL text of a
query.

plan
is a string literal, parameter, or local variable containing an abstract plan
expression.

into group_name
specifies the name of an abstract plan group.

and set @new_id
returns the ID number of the abstract plan in the variable.

Examples Example 1 Creates an abstract plan for the specified query:

create plan "select * from titles where price > $20"
"(t_scan titles)"

Example 2 Creates an abstract plan for the query in the dev_plans group, and
returns the plan ID in the variable @id:

declare @id int
create plan "select au_fname, au_lname from authors
where au_id = ’724-08-9931’ "
"(i_scan au_id_ix authors)"
into dev_plans
and set @id
select @id

Usage • create plan saves the abstract plan in the group specified with into. If no
group name is specified, it saves the plan in the currently active plan
group.

• Queries and abstract plans specified with create plan are not checked for
valid SQL syntax and plans are not checked for valid abstract plan syntax.
Also, the plan is not checked for compatibility with the SQL text. All plans
created with create plan should be immediately checked for correctness by
running the query specified in the create plan statement.

create plan

350

• If another query plan in the group has the same SQL text, the replace mode
must be enabled with set plan replace on. Otherwise, the create plan
command fails.

• You must declare @new_id before using it in the and set clause.

• The abstract plan group you specify with into must already exist.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions create plan permission defaults to all users. No permission is required to use it.

See also Commands set plan

System procedures sp_add_qpgroup, sp_find_qplan, sp_help_qpgroup,
sp_set_qplan

CHAPTER 7 Commands

351

create procedure
Description Creates a stored procedure or an extended stored procedure (ESP) that can take

one or more user-supplied parameters.

Note For syntax and usage information about the SQLJ command for creating
procedures, see create function (SQLJ) on page 332.

Syntax create procedure [owner.]procedure_name[;number]
[[(]@parameter_name

datatype [(length) | (precision [, scale])]
[= default][output]

[, @parameter_name
datatype [(length) | (precision [, scale])]
[= default][output]]...[)]]

[with recompile]
as {SQL_statements | external name dll_name}

Parameters procedure_name
is the name of the procedure. It must conform to the rules for identifiers and
cannot be a variable. Specify the owner’s name to create another procedure
of the same name owned by a different user in the current database. The
default value for owner is the current user.

;number
is an optional integer used to group procedures of the same name so that they
can be dropped together with a single drop procedure statement. Procedures
used in the same application are often grouped this way. For example, if the
procedures used with the application named orders are named orderproc;1,
orderproc;2, and so on, the following statement drops the entire group:

 drop proc orderproc

Once procedures have been grouped, individual procedures within the group
cannot be dropped. For example, the following statement is not allowed:

 drop procedure orderproc;2

You cannot group procedures if you are running Adaptive Server in the
evaluated configuration. The evaluated configuration requires that you
disallow procedure grouping so that every stored procedure has a unique
object identifier and can be dropped individually. To disallow procedure
grouping, a System Security Officer must use sp_configure to reset allow
procedure grouping. For more information about the evaluated
configuration, see the System Administration Guide.

create procedure

352

parameter_name
is the name of an argument to the procedure. The value of each parameter is
supplied when the procedure is executed. Parameter names are optional in
create procedure statements—a procedure is not required to take any
arguments.

Parameter names must be preceded by the @ sign and conform to the rules
for identifiers. A parameter name, including the @ sign, can be a maximum
of 30 characters. Parameters are local to the procedure: the same parameter
names can be used in other procedures.

If the value of a parameter contains nonalphanumeric characters, it must be
enclosed in quotes. This includes object names qualified by a database name
or owner name, since they include a period. If the value of a character
parameter begins with a numeric character, it also must be enclosed in
quotes.

datatype[(length) | (precision [, scale])]
 is the datatype of the parameter. See Chapter 1, “System and User-Defined
Datatypes,” for more information about datatypes. Stored procedure
parameters cannot have a datatype of text or image or a user-defined
datatype whose underlying type is text or image.

The char, varchar, unichar, univarchar, nchar, nvarchar, binary, and varbinary
datatypes should include a length in parentheses. If you omit the length,
Adaptive Server truncates the parameter value to 1 character.

The float datatype expects a binary precision in parentheses. If you omit the
precision, Adaptive Server uses the default precision for your platform.

The numeric and decimal datatypes expect a precision and scale, enclosed in
parentheses and separated by a comma. If you omit the precision and scale,
Adaptive Server uses a default precision of 18 and a scale of 0.

default
defines a default value for the procedure’s parameter. If a default is defined,
a user can execute the procedure without giving a parameter value. The
default must be a constant. It can include the wildcard characters (%, _, [],
and [^]) if the procedure uses the parameter name with the keyword like (see
Example 2).

The default can be NULL. The procedure definition can specify that some
action be taken if the parameter value is NULL (see Example 3).

CHAPTER 7 Commands

353

output
indicates that the parameter is a return parameter. Its value can be returned
to the execute command that called this procedure. Use return parameters to
return information to the calling procedure (see Example 5).

To return a parameter value through several levels of nested procedures,
each procedure must include the output option with the parameter name,
including the execute command that calls the highest level procedure.

The output keyword can be abbreviated to out.

with recompile
means that Adaptive Server never saves a plan for this procedure; a new plan
is created each time it is executed. Use this optional clause when you expect
that the execution of a procedure will be atypical—that is, when you need a
new plan. The with recompile clause has no impact on the execution of an
extended stored procedure.

SQL_statements
specify the actions the procedure is to take. Any number and kind of SQL
statements can be included, with the exception of create view, create default,
create rule, create procedure, create trigger, and use.

create procedure SQL statements often include control-of-flow language,
including one or more of the following: declare; if...else; while; break;
continue; begin...end; goto label; return; waitfor; /* comment */. They can also
refer to parameters defined for the procedure.

The SQL statements can reference objects in another database, as long as
they are properly qualified.

external name
creates an extended stored procedure. If the as external name syntax is used,
you cannot use the number parameter with as external name.

dll_name
specifies the name of the dynamic link library (DLL) or shared library
containing the functions that implement the extended stored procedure. The
dll_name can be specified with no extension or with a platform-specific
extension, such as .dll on Windows NT or .so on Sun Solaris. If you specify
the extension, enclose the entire dll_name in quotation marks.

Examples Example 1 Given a table name, the procedure showind displays its name and
the names and identification numbers of any indexes on any of its columns:

create procedure showind @tabname varchar(30)
as

select sysobjects.name, sysindexes.name, indid

create procedure

354

from sysindexes, sysobjects
where sysobjects.name = @tabname
and sysobjects.id = sysindexes.id

Here are the acceptable syntax forms for executing showind:

execute showind titles
execute showind @tabname = "titles"

Or, if this is the first statement in a file or batch:

showind titles

Example 2 This procedure displays information about the system tables if the
user does not supply a parameter:

create procedure
showsysind @table varchar(30) = "sys%"
as

select sysobjects.name, sysindexes.name, indid
from sysindexes, sysobjects
where sysobjects.name like @table
and sysobjects.id = sysindexes.id

Example 3 This procedure specifies an action to be taken if the parameter is
NULL (that is, if the user does not give a parameter):

create procedure
showindnew @table varchar(30) = null
as

if @table is null
print "Please give a table name"
else
select sysobjects.name, sysindexes.name, indid
from sysindexes, sysobjects
where sysobjects.name = @table
and sysobjects.id = sysindexes.id

Example 4 This procedure multiplies two integer parameters and returns the
product in the output parameter, @result:

create procedure mathtutor @mult1 int, @mult2 int,
@result int output

as
select @result = @mult1 * @mult2

If the procedure is executed by passing it 3 integers, the select statement
performs the multiplication and assigns the values, but does not print the return
parameter:

mathtutor 5, 6, 32

CHAPTER 7 Commands

355

(return status 0)

Example 5 In this example, both the procedure and the execute statement
include output with a parameter name so that the procedure can return a value
to the caller:

declare @guess int
select @guess = 32
exec mathtutor 5, 6, @result = @guess output

(1 row affected)
(return status = 0)

Return parameters:

@result

 30

The output parameter and any subsequent parameters in the execute statement,
@result, must be passed as:

 @parameter = value

• The value of the return parameter is always reported, whether or not its
value has changed.

• @result does not need to be declared in the calling batch because it is the
name of a parameter to be passed to mathtutor.

• Although the changed value of @result is returned to the caller in the
variable assigned in the execute statement (in this case, @guess), it is
displayed under its own heading (@result).

Example 6 Return parameters can be used in additional SQL statements in the
batch or calling procedure. This example shows how to use the value of
@guess in conditional clauses after the execute statement by storing it in
another variable name, @store, during the procedure call. When return
parameters are used in an execute statement that is part of a SQL batch, the
return values are printed with a heading before subsequent statements in the
batch are executed.

declare @guess int
declare @store int
select @guess = 32
select @store = @guess
execute mathtutor 5, 6, @result = @guess output
select Your_answer = @store, Right_answer = @guess
if @guess = @store

create procedure

356

print "Right-o"
else

print "Wrong, wrong, wrong!"

(1 row affected)
(1 row affected)
(return status = 0)

Return parameters:

@result

 30
Your_answer Right_answer
----------- ------------

 32 30

(1 row affected)
Wrong, wrong, wrong!

Example 7 Creates an extended stored procedure named xp_echo, which takes
an input parameter, @in, and echoes it to an output parameter, @out. The code
for the procedure is in a function named xp_echo, which is compiled and linked
into a DLL named sqlsrvdll.dll:

create procedure xp_echo @in varchar(255),
@out varchar(255) output

as external name "sqlsrvdll.dll"

Usage • After a procedure is created, you can run it by issuing the execute
command along with the procedure’s name and any parameters. If a
procedure is the first statement in a batch, you can give its name without
the keyword execute.

• You can use sp_hidetext to hide the source text for a procedure, which is
stored in syscomments.

• When a stored procedure batch executes successfully, Adaptive Server
sets the @@error global variable to 0.

Restrictions

• The maximum number of parameters that a stored procedure can have is
255.

• The maximum number of local and global variables in a procedure is
limited only by available memory.

• The maximum amount of text in a stored procedure is 16MB.

CHAPTER 7 Commands

357

• A create procedure statement cannot be combined with other statements in
a single batch.

• You can create a stored procedure only in the current database, although
the procedure can reference objects from other databases. Any objects
referenced in a procedure must exist at the time you create the procedure.
You can create an object within a procedure, then reference it, provided the
object is created before it is referenced.

You cannot use alter table in a procedure to add a column and then refer to
that column within the procedure.

• If you use select * in your create procedure statement, the procedure (even
if you use the with recompile option to execute) does not pick up any new
columns you may have added to the table. You must drop the procedure
and re-create it.

• Within a stored procedure, you cannot create an object (including a
temporary table), drop it, then create a new object with the same name.
Adaptive Server creates the objects defined in a stored procedure when the
procedure is executed, not when it is compiled.

 Warning! Certain changes to databases, such as dropping and re-creating
indexes, can cause object IDs to change. When object IDs change, stored
procedures recompile automatically, and can increase slightly in size.
Leave some space for this increase.

Extended stored procedures

• If the as external name syntax is used, create procedure registers an
extended stored procedure (ESP). Extended stored procedures execute
procedural language functions rather than Transact-SQL commands.

• On Windows NT – an ESP function should not call a C runtime signal
routine. This can cause XP Server to fail, because Open Server™ does not
support signal handling on Windows NT.

• To support multithreading, ESP functions should use the Open Server
srv_yield function, which suspends and reschedules the XP Server thread
to allow another thread of the same or higher priority to execute.

• The DLL search mechanism is platform-dependent. On Windows NT, the
sequence of a DLL file name search is as follows:

a The directory from which the application is loaded

b The current directory

create procedure

358

c The system directory (SYSTEM32)

d Directories listed in the PATH environment variable

If the DLL is not in the first three directories, set the PATH to include the
directory in which it is located.

On UNIX platforms, the search method varies with the particular platform.
If it fails to find the DLL or shared library, it searches $SYBASE/lib.

Absolute path names are not supported.

System procedures

• System Administrators can create new system procedures in the
sybsystemprocs database. System procedure names must begin with the
characters “sp_”. These procedures can be executed from any database by
specifying the procedure name; it is not necessary to qualify it with the
sybsystemprocs database name. For more information about creating
system procedures, see the System Administration Guide.

• System procedure results may vary depending on the context in which
they are executed. For example, sp_foo, which executes the db_name()
system function, returns the name of the database from which it is
executed. When executed from the pubs2 database, it returns the value
“pubs2”:

use pubs2
sp_foo

pubs2

When executed from sybsystemprocs, it returns the value
“sybsystemprocs”:

use sybsystemprocs
sp_foo

sybsystemprocs

Nested procedures

• Procedure nesting occurs when one stored procedure calls another.

• If you execute a procedure that calls another procedure, the called
procedure can access objects created by the calling procedure.

• The nesting level increments when the called procedure begins execution
and decrements when the called procedure completes execution.
Exceeding the maximum of 16 levels of nesting causes the transaction to
fail.

CHAPTER 7 Commands

359

• You can call another procedure by name or by a variable name in
place of the actual procedure name.

• The current nesting level is stored in the @@nestlevel global variable.

Procedure return status

• Stored procedures can return an integer value called a return status. The
return status either indicates that the procedure executed successfully or
specifies the type of error that occurred.

• When you execute a stored procedure, it automatically returns the
appropriate status code. Adaptive Server currently returns the following
status codes:

Codes -15 through -99 are reserved for future use.

• Users can generate a user-defined return status with the return statement.
The status can be any integer other than 0 through -99. The following
example returns “1” when a book has a valid contract and “2” in all other
cases:

create proc checkcontract @titleid tid
as
if (select contract from titles where

title_id = @titleid) = 1
return 1

else

Code Meaning

0 Procedure executed without error

-1 Missing object

-2 Datatype error

-3 Process was chosen as deadlock victim

-4 Permission error

-5 Syntax error

-6 Miscellaneous user error

-7 Resource error, such as out of space

-8 Non-fatal internal problem

-9 System limit was reached

-10 Fatal internal inconsistency

-11 Fatal internal inconsistency

-12 Table or index is corrupt

-13 Database is corrupt

-14 Hardware error

create procedure

360

return 2
checkcontract @titleid = "BU1111"
(return status = 1)
checkcontract @titleid = "MC3026"
(return status = 2)

• If more than one error occurs during execution, the code with the highest
absolute value is returned. User-defined return values take precedence
over system-defined values.

Object identifiers

• To change the name of a stored procedure, use sp_rename.

• To change the name of an extended stored procedure, drop the procedure,
rename and recompile the supporting function, then re-create the
procedure.

• If a procedure references table names, column names, or view names that
are not valid identifiers, you must set quoted_identifier on before the
create procedure command and enclose each such name in double quotes.
The quoted_identifier option does not need to be on when you execute the
procedure.

• You must drop and re-create the procedure if any of the objects it
references have been renamed.

• Inside a stored procedure, object names used with the create table and dbcc
commands must be qualified with the object owner’s name if other users
are to make use of the stored procedure. For example, user “mary,” who
owns the table marytab, should qualify the name of her table inside a stored
procedure (when it is used with these commands) if she wants other users
to be able to execute it. This is because the object names are resolved when
the procedure is run. When another user tries to execute the procedure,
Adaptive Server looks for a table called marytab owned by the user
“mary” and not a table called marytab owned by the user executing the
stored procedure.

Object names used with other statements (for example, select or insert)
inside a stored procedure need not be qualified because the names are
resolved when the procedure is compiled.

Temporary tables and procedures

• You can create a procedure to reference a temporary table if the temporary
table is created in the current session. A temporary table created within a
procedure disappears when the procedure exits. For more information, see
the Transact-SQL User’s Guide.

CHAPTER 7 Commands

361

• System procedures such as sp_help work on temporary tables, but only if
you use them from tempdb.

Setting options in procedures

• You can use the set command inside a stored procedure. Most set options
remain in effect during the execution of the procedure, then revert to their
former settings.

However, if you use a set option (such as identity_insert) which requires the
user to be the object owner, a user who is not the object owner cannot
execute the stored procedure.

Getting information about procedures

• For a report on the objects referenced by a procedure, use sp_depends.

• To display the text of a create procedure statement, which is stored in
syscomments, use sp_helptext with the procedure name as the parameter.
You must be using the database where the procedure resides when you use
sp_helptext. To display the text of a system procedure, execute sp_helptext
from the sybsystemprocs database.

• To see a list of system extended stored procedures and their supporting
DLLs, use sp_helpextendedproc from the sybsystemprocs database.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions create procedure permission defaults to the Database Owner, who can transfer
it to other users.

Permission to use a procedure must be granted explicitly with the grant
command and may be revoked with the revoke command.

Permissions on objects at procedure creation When you create a
procedure, Adaptive Server makes no permission checks on objects, such as
tables and views, that are referenced by the procedure. Therefore, you can
create a procedure successfully even though you do not have access to its
objects. All permission checks occur when a user executes the procedure.

Permissions on objects at procedure execution When the procedure is
executed, permission checks on objects depend upon whether the procedure
and all referenced objects are owned by the same user.

• If the procedure’s objects are owned by different users, the invoker must
have been granted direct access to the objects. For example, if the
procedure performs a select from a table that the user cannot access, the
procedure execution fails.

create procedure

362

• If a procedure and its objects are owned by the same user, however, special
rules apply. The invoker automatically has “implicit permission” to access
the procedure’s objects even though the invoker could not access them
directly. Without having to grant users direct access to your tables and
views, you can give them restricted access with a stored procedure. In this
way, a stored procedure can be a security mechanism. For example,
invokers of the procedure might be able to access only certain rows and
columns of your table.

A detailed description of the rules for implicit permissions is discussed in
the System Administration Guide.

See also Commands begin...end, break, continue, declare, drop procedure, execute,
goto label, grant, if...else, return, select, waitfor, while

System procedures sp_addextendedproc, sp_helpextendedproc,
sp_helptext, sp_hidetext, sp_rename

CHAPTER 7 Commands

363

create procedure (SQLJ)
Description Creates a SQLJ stored procedure by adding a SQL wrapper to a Java static

method. Can accept user-supplied parameters and return result sets and output
parameters.

Note For syntax and usage information about the Transact-SQL command for
creating procedures, see create procedure on page 351.

Syntax create procedure [owner.]sql_procedure_name
([[in | out | inout] sql_parameter_name

sql_datatype [(length) |
(precision[, scale])]

[, [in | out | inout] sql_parameter_name
sql_datatype [(length) |
(precision[, scale])]]

...])
[modifies sql data]
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name 'java_method_name

[([java_datatype[, java_datatype
...]])]'

Parameters sql_procedure_name
is the Transact-SQL name of the procedure. It must conform to the rules for
identifiers and cannot be a variable. Specify the owner’s name to create
another procedure of the same name owned by a different user in the current
database. The default value for owner is the current user.

in | out | inout
specifies the mode of the listed parameter. in indicates an input parameter;
out indicates an output parameter; and inout indicates a parameter that is both
an input and an output parameter. The default mode is in.

sql_parameter_name
is the name of an argument to the procedure. The value of each input
parameter is supplied when the procedure is executed. Parameters are
optional; a SQLJ stored procedure need not take arguments.

Parameter names must conform to the rules for identifiers. If the value of a
parameter contains nonalphanumeric characters, it must be enclosed in
quotes. This includes object names qualified by a database name or owner
name, since they include a period. If the value of the parameter begins with
a numeric character, it also must be enclosed in quotes.

create procedure (SQLJ)

364

sql_datatype [(length) | (precision [, scale])]
is the Transact-SQL datatype of the parameter.

sql_datatype is the SQL procedure signature.

modifies sql data
indicates that the Java method invokes SQL operations, reads, and modifies
SQL data in the database. This is the default and only implementation. It is
included for syntactic compatibility with the ANSI standard.

dynamic result sets integer
specifies that the Java method can return SQL result sets. integer specifies
the maximum number of result sets the method can return. This value is
implementation-defined.

deterministic | not deterministic
this syntax is supported for compatibility with other SQLJ-compliant
vendors.

language java
specifies that the external routine is written in Java. This is a required clause
for SQLJ stored procedures.

parameter style java
specifies that the parameters passed to the external routine at runtime are
Java parameters. This is a required clause for SQLJ stored procedures.

external
indicates that create procedure defines a SQL name for an external routine
written in a programming language other than SQL.

name
specifies the name of the external routine (Java method). The specified name
is a character-string literal and must be enclosed in single quotes:

'java_method_name [java_datatype
[{, java_datatype} ...]]'

java_method_name
specifies the name of the external Java method.

java_datatype
specifies a Java datatype that is mappable or result-set mappable. This is the
Java method signature.

Examples This example creates the SQLJ procedure java_multiply, which multiplies two
integers and returns an integer.

create procedure java_multiply (param1 integer,

CHAPTER 7 Commands

365

param2 integer, out result integer)
language java parameter style java
external name 'MathProc.multiply'

Usage • You can include a maximum of 31 in, inout, and out parameters in a create
procedure statement.

• To comply with the ANSI standard, do not precede parameter names with
the @ sign. When executing a SQLJ stored procedure from isql or other
non-Java client, however, you must precede parameter names with the @
sign, which preserves the naming order.

• The SQLJ create procedure syntax differs from the Transact-SQL create
procedure syntax for compatibility with the SQLJ ANSI standard.
Adaptive Server executes each type of stored procedure in the same way.

Permissions create procedure permission defaults to the Database Owner, who can transfer
it to other users. Permission to use a procedure must be granted explicitly with
the grant command and may be revoked with the revoke command.

See also Commands create function (SQLJ), drop procedure

System procedures sp_depends, sp_help, sp_helpjava, sp_helprotect

create proxy_table

366

create proxy_table
Description Component Integration Services only – creates a proxy table without

specifying a column list. Component Integration Services derives the column
list from the metadata it obtains from the remote table.

Syntax create proxy_table table_name
[on segment_name]
[external [table | directory | file]]
at pathname

Parameters table_name
specifies the local proxy table name to be used by subsequent statements.
table_name takes the form dbname.owner.object, where dbname and owner
are optional and represent the local database and owner name. If dbname is
not specified, the table is created in the current database; if owner is not
specified, the table is owned by the current user. If either dbname or owner
is specified, the entire table_name must be enclosed in quotes. If only
dbname is present, a placeholder is required for owner.

on segment_name
specifies the segment that contains the remote table.

external table
specifies that the object is a remote table or view. external table is the default,
so this clause is optional.

external directory
specifies that the object is a directory with a path in the following format:
"/tmp/directory_name [;R]". “R” indicates “recursive.”

external file
specifies that the object is a file with a path in the following format:
"/tmp/filename".

at pathname
specifies the location of the remote object. pathname takes the form
server_name.dbname.owner.object, where:

• server_name (required) – is the name of the server that contains the
remote object.

• dbname (optional) – is the name of the database managed by the remote
server that contains this object.

• owner (optional) – is the name of the remote server user that owns the
remote object.

• object (required) – is the name of the remote table or view.

CHAPTER 7 Commands

367

Examples This example creates a proxy table named t1 that is mapped to the remote table
t1. Component Integration Services derives the column list from the remote
table:

create proxy_table t1
at "SERVER_A.db1.joe.t1"

Usage • create proxy_table is a variant of the create existing table command. You
use create proxy_table to create a proxy table, but (unlike create existing
table) you do not specify a column list. Component Integration Services
derives the column list from the metadata it obtains from the remote table.

• The location information provided by the at keyword is the same
information that is provided by sp_addobjectdef. The information is stored
in the sysattributes table.

• If the remote server object does not exist, the command is rejected with an
error message.

• If the object exists, the local system tables are updated. Every column is
used. Columns and their attributes are obtained for the table or view.

• Component Integration Services automatically converts the datatype of
the column into an Adaptive Server datatype. If the conversion cannot be
made, the create proxy_table command does not allow the table to be
defined.

• Index information from the remote server table is extracted and used to
create rows for the system table sysindexes. This defines indexes and keys
in Adaptive Server terms and enables the query optimizer to consider any
indexes that may exist on the table.

• After defining the proxy table, issue an update statistics command for the
table. This allows the query optimizer to make intelligent choices
regarding join order.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions create proxy_table permission defaults to the table owner and is not
transferable.

See also Commands create existing table, create table

create role

368

create role
Description Creates a user-defined role; specifies the password expiration interval, the

minimum password length, and the maximum number of failed logins allowed
for a specified role at creation.

Syntax create role role_name [with passwd "password"
[, {"passwd expiration" | "min passwd length" |
"max failed_logins" } option_value]]

Parameters role_name
is the name of the new role. It must be unique to the server and conform to
the rules for identifiers. It cannot be a variable.

with passwd
attaches a password the user must enter to activate the role.

password
is the password to attach to the role. Passwords must be at least 6 characters
in length and must conform to the rules for identifiers. You cannot use
variables for passwords.

passwd expiration
specifies the password expiration interval in days. It can be any value
between 0 and 32767, inclusive.

min passwd length
specifies the minimum password length required for the specified role.

max failed_logins
specifies the number of allowable failed login attempts for the specified
login.

option_value
specifies the value for passwd expiration, min passwd length, or max
failed_logins.

Examples Example 1 Creates a role named doctor_role:

create role doctor_role

Example 2 Creates a role named doctor_role with the password physician:

create role doctor_role with passwd "physician"

Example 3 Sets the password expiration for intern_role:

create role intern_role, with passwd "temp244",
passwd expiration 7

Example 4 Sets the maximum number of failed logins allowed for intern_role:

CHAPTER 7 Commands

369

create role intern_role with passwd “temp244”,
max failed_logins 20

Example 5 Sets the minimum password length for intern_role:

create role intern_role with passwd "temp244",
min passwd length 0

Usage • The create role command creates a role with privileges, permissions, and
limitations that you design. For more information on how to use create
role, see the System Administration Guide.

For information on monitoring and limiting access to objects, see the set
role command.

• Use create role from the master database.

• Use the with passwd password clause to attach a password to a role at
creation. If you attach a password to the role, the user granted this role
must specify the password to activate the role.

For information on adding a password to a role after creation, see the alter
role command.

Note Passwords attached to user-defined roles do not expire.

• Role names must be unique to the server.

• Role names cannot be the same as user names. You can create a role with
the same name as a user, but when you grant privileges, Adaptive Server
resolves naming conflicts by making the grant to the user instead of the
role.

For more information on naming conflicts, see the grant role command.

Restrictions

• The maximum number of roles that can be created per server session is
1024. However, 32 roles are reserved for Sybase system roles, such as
sa_role and sso_role. Therefore, the maximum number of user-defined
roles that can be created per server session is 992.

• If you create a role with an attached password, a user cannot activate that
role by default at login. Do not create a role with an attached password if
the user to whom you grant that role needs to activate the role by default
at login.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions You must be a System Security Officer to use create role.

create role

370

create role permission is not included in the grant all command.

See also Commands alter role, drop role, grant, revoke, set

System procedures sp_activeroles, sp_displaylogin, sp_displayroles,
sp_helprotect, sp_modifylogin

CHAPTER 7 Commands

371

create rule
Description Specifies the domain of acceptable values for a particular column or for any

column of a user-defined datatype and creates access rules.

Syntax create [[and | or] access]] rule
[owner.]rule_name
as condition_expression

Parameters access
specifies that you are creating an access rule. For information on access
rules, see Chapter 11, “Managing User Permissions” in the System
Administration Guide.

rule_name
is the name of the new rule. It must conform to the rules for identifiers and
cannot be a variable. Specify the owner’s name to create another rule of the
same name owned by a different user in the current database. The default
value for owner is the current user.

condition_expression
specifies the conditions that define the rule. It can be any expression that is
valid in a where clause, and can include arithmetic operators, relational
operators, in, like, between, and so on. However, it cannot reference a column
or any other database object. Built-in functions that do not reference
database objects can be included.

A condition_expression takes one argument. The argument is prefixed by
the @ sign and refers to the value that is entered via the update or insert
command. You can use any name or symbol to represent the value when you
write the rule, but the first character must be the @ sign. Enclose character
and date constants in quotes, and precede binary constants with “0x”.

Examples Example 1 Creates a rule named limit, which limits the value of advance to less
than $1000:

create rule limit
as @advance < $1000

Example 2 Creates a rule named pubid_rule, which restricts the values of
pub_id to 1389, 0736, or 0877:

create rule pubid_rule
as @pub_id in ('1389', '0736', '0877')

Example 3 Creates a rule named picture, which restricts the value of value to
always begin with the indicated characters:

create rule picture

create rule

372

as @value like '_-%[0-9]'

Usage • To hide the text of a rule, use sp_hidetext.

• To rename a rule, use sp_rename.

Restrictions

• You can create a rule only in the current database.

• Rules do not apply to the data that already exists in the database at the time
the rules are created.

• create rule statements cannot be combined with other statements in a single
batch.

• You cannot bind a rule to a Adaptive Server-supplied datatype or to a
column of type text, image, or timestamp.

• You must drop a rule before you create a new one of the same name, and
you must unbind a rule before you drop it. Use:

sp_unbindrule objname [, futureonly]

Binding rules

• Use sp_bindrule to bind a rule to a column or user-defined datatype. Its
syntax is:

sp_bindrule rulename, objname [, futureonly]

• A rule that is bound to a user-defined datatype is activated when you insert
a value into, or update, a column of that type. Rules do not test values
inserted into variables of that type.

• The rule must be compatible with the datatype of the column. For
example, you cannot use:

@value like A%

as a rule for an exact or approximate numeric column. If the rule is not
compatible with the column to which it is bound, Adaptive Server
generates an error message when it tries to insert a value, not when you
bind it.

• You can bind a rule to a column or datatype without unbinding an existing
rule.

• Rules bound to columns always take precedence over rules bound to
user-defined datatypes, regardless of which rule was most recently bound.
Table 7-11 indicates the precedence when binding rules to columns and
user-defined datatypes where rules already exist.

CHAPTER 7 Commands

373

Table 7-11: Rule binding precedence

Rules and NULLs

• Rules do not override column definitions. If a rule is bound to a column
that allows null values, you can insert NULL into the column, implicitly
or explicitly, even though NULL is not included in the text of the rule. For
example, if you create a rule specifying “@val in (1,2,3)” or “@amount >
10000”, and bind this rule to a table column that allows null values, you
can still insert NULL into that column. The column definition overrides
the rule.

Defaults and rules

• If a column has both a default and a rule associated with it, the default must
fall within the domain defined by the rule. A default that conflicts with a
rule will never be inserted. Adaptive Server generates an error message
each time it attempts to insert the default.

Using integrity constraints in place of rules

• You can define rules using check with the create table statement, which
creates integrity constraints. However, these constraints are specific for
that table; you cannot bind them to other tables. See create table and alter
table for information about integrity constraints.

Getting information about rules

• To get a report on a rule, use sp_help.

• To display the text of a rule, which is stored in the syscomments system
table, execute sp_helptext with the rule name as the parameter.

• After a rule is bound to a particular column or user-defined datatype, its
ID is stored in the syscolumns or systypes system tables.

Standards SQL92 – Compliance level: Entry-level compliant.

To create rules using SQL92-compliant syntax, use the check clause of the
create table statement.

Permissions create rule permission defaults to the Database Owner, who can transfer it to
other users.

See also Commands alter table, create default, create table, drop rule, drop table

New rule bound to
Old rule bound to
user-defined datatype

Old rule bound to
column

User-defined datatype New rule replaces old No change

Column New rule replaces old New rule replaces old

create rule

374

System procedures sp_bindrule, sp_help, sp_helptext, sp_hidetext,
sp_rename, sp_unbindrule

CHAPTER 7 Commands

375

create schema
Description Creates a new collection of tables, views, and permissions for a database user.

Syntax create schema authorization authorization_name
create_oject_statement

[create_object_statement ...]
[permission_statement ...]

Parameters authorization_name
must be the name of the current user in the database.

create_object_statement
is a create table or create view statement.

permission_statement
is a grant or revoke command.

Examples Creates the newtitles, newauthors, newtitleauthors tables, the tit_auth_view view,
and the corresponding permissions:

create schema authorization pogo
create table newtitles (

title_id tid not null,
title varchar(30) not null)

create table newauthors (
au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null)

create table newtitleauthors (
au_id id not null,
title_id tid not null)

create view tit_auth_view
as

select au_lname, au_fname
from newtitles, newauthors,

newtitleauthors
where
newtitleauthors.au_id = newauthors.au_id
and
newtitleauthors.title_id =

 newtitles.title_id

grant select on tit_auth_view to public
revoke select on tit_auth_view from churchy

Usage • Schemas can be created only in the current database.

create schema

376

• The authorization_name, also called the schema authorization
identifier, must be the name of the current user.

• The user must have the correct command permissions (create table and/or
create view). If the user creates a view on tables owned by another
database user, permissions on the view are checked when a user attempts
to access data through the view, not when the view is created.

• The create schema command is terminated by:

• The regular command terminator (“go” is the default in isql).

• Any statement other than create table, create view, grant, or revoke.

• If any of the statements within a create schema statement fail, the entire
command is rolled back as a unit, and none of the commands take effect.

• create schema adds information about tables, views, and permissions to
the system tables. Use the appropriate drop command (drop table or drop
view) to drop objects created with create schema. Permissions granted or
revoked in a schema can be changed with the standard grant and revoke
commands outside the schema creation statement.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions create schema can be executed by any user of a database. The user must have
permission to create the objects specified in the schema; that is, create table
and/or create view permission.

See also Commands create table, create view, grant, revoke

Utilities isql

CHAPTER 7 Commands

377

create table
Description Creates new tables and optional integrity constraints.

Syntax create table [database .[owner].]table_name (column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]

[off row | [in row [(size_in_bytes)]]
[[constraint constraint_name]

{{unique | primary key}
[clustered | nonclustered] [asc | desc]
[with { fillfactor = pct,

max_rows_per_page = num_rows, }
reservepagegap = num_pages }]

[on segment_name]
| references [[database .]owner .]ref_table

[(ref_column)]
| check (search_condition)}]}...

| [constraint constraint_name]
{{unique | primary key}

[clustered | nonclustered]
(column_name [asc | desc]

[{, column_name [asc | desc]}...])
[with { fillfactor = pct

max_rows_per_page = num_rows ,
reservepagegap = num_pages }]

[on segment_name]
|foreign key (column_name [{,column_name}...])

references [[database.]owner.]ref_table
[(ref_column [{, ref_column}...])]

| check (search_condition) ... }
[{, {next_column | next_constraint}}...])
[lock {datarows | datapages | allpages }]
[with { max_rows_per_page = num_rows,

exp_row_size = num_bytes,
reservepagegap = num_pages,
identity_gap = value }]

[on segment_name]
[[external table] at pathname]

create table

378

Parameters table_name
is the explicit name of the new table. Specify the database name if the table
is in another database, and specify the owner’s name if more than one table
of that name exists in the database. The default value for owner is the current
user, and the default value for database is the current database.

You cannot use a variable for the table name. The table name must be unique
within the database and to the owner. If you have set quoted_identifier on,
you can use a delimited identifier for the table name. Otherwise, it must
conform to the rules for identifiers. For more information about valid table
names, see “Identifiers” in Chapter 4, “Expressions, Identifiers, and
Wildcard Characters.”

You can create a temporary table by preceding the table name with either a
pound sign (#) or “tempdb..”. For more information, see “Tables beginning
with # (temporary tables)” in Chapter 4, “Expressions, Identifiers, and
Wildcard Characters.”

You can create a table in a different database, as long as you are listed in the
sysusers table and have create table permission for that database. For
example, you can use either of the following to create a table called newtable
in the database otherdb:

create table otherdb..newtable
create table otherdb.yourname.newtable

column_name
is the name of the column in the table. It must be unique in the table. If you
have set quoted_identifier on, you can use a delimited identifier for the
column. Otherwise, it must conform to the rules for identifiers. For more
information about valid column names, see Chapter 4, “Expressions,
Identifiers, and Wildcard Characters.”

datatype
is the datatype of the column. System or user-defined datatypes are
acceptable. Certain datatypes expect a length, n, in parentheses:

 datatype(n)

Others expect a precision, p, and scale, s:

 datatype(p,s)

See “Datatypes” for more information.

If Java is enabled in the database, datatype can be the name of a Java class,
either a system class or a user-defined class, that has been installed in the
database. Refer to Java in Adaptive Server Enterprise for more information.

CHAPTER 7 Commands

379

default
specifies a default value for a column. If you specify a default, and the user
does not provide a value for the column when inserting data, Adaptive
Server inserts the default value. The default can be a constant expression,
user, to insert the name of the user who is performing the insert, or null, to
insert the null value. Adaptive Server generates a name for the default in the
form of tabname_colname_objid, where tabname is the first 10 characters
of the table name, colname is the first 5 characters of the column name, and
objid is the object ID number for the default. Defaults declared for columns
with the IDENTITY property have no effect on column values.

constant_expression
is a constant expression to use as a default value for the column. It cannot
include global variables, the name of any columns, or other database objects,
but can include built-in functions that do not reference database objects.
This default value must be compatible with the datatype of the column, or
Adaptive Server generates a datatype conversion error when attempting to
insert the default.

user | null
specifies that Adaptive Server should insert the user name or the null value
as the default if the user does not supply a value. For user, the datatype of
the column must be either char(30) or varchar(30). For null, the column must
allow null values.

identity
indicates that the column has the IDENTITY property. Each table in a
database can have one IDENTITY column with a type of numeric and a scale
of 0. IDENTITY columns are not updatable and do not allow nulls.

IDENTITY columns are used to store sequential numbers, such as invoice
numbers or employee numbers, that are generated automatically by
Adaptive Server. The value of the IDENTITY column uniquely identifies
each row in a table.

create table

380

null | not null
specifies Adaptive Server’s behavior during data insertion if no default
exists.

null specifies that Adaptive Server assigns a null value if a user does not
provide a value.

not null specifies that a user must provide a non-null value if no default
exists.

If you do not specify null or not null, Adaptive Server uses not null by default.
However, you can switch this default using sp_dboption to make the default
compatible with the SQL standards.

off row | in row
specifies whether a Java-SQL column is stored separate from the row (off
row) or in storage allocated directly in the row (in row).

The default value is off row. For more information, see Java in Adaptive
Server Enterprise.

size_in_bytes
specifies the maximum size of the in-row column. An object stored in-row
can occupy up to approximately 16K bytes, depending on the page size of
the database server and other variables.

constraint
introduces the name of an integrity constraint.

constraint_name
is the name of the constraint. It must conform to the rules for identifiers and
be unique in the database. If you do not specify the name for a referential or
check constraint, Adaptive Server generates a name in the form
tabname_colname_objectid where tabname is the first 10 characters of the
table name, colname is the first 5 characters of the column name, and
objectid is the object ID number for the constraint. If you do not specify the
name for a unique or primary key constraint, Adaptive Server generates a
name in the format tabname_colname_tabindid where tabindid is a string
concatenation of the table ID and index ID.

unique
constrains the values in the indicated column or columns so that no two rows
have the same value. This constraint creates a unique index that can be
dropped only if the constraint is dropped using alter table.

CHAPTER 7 Commands

381

primary key
constrains the values in the indicated column or columns so that no two rows
have the same value, and so that the value cannot be NULL. This constraint
creates a unique index that can be dropped only if the constraint is dropped
using alter table.

clustered | nonclustered
specifies that the index created by a unique or primary key constraint is a
clustered or nonclustered index. clustered is the default for primary key
constraints; nonclustered is the default for unique constraints. There can be
only one clustered index per table. See create index for more information.

asc | desc
specifies whether the index created for a constraint is to be created in
ascending or descending order for each column. The default is ascending
order.

create table

382

fillfactor
specifies how full Adaptive Server makes each page when it creates a new
index on existing data. The fillfactor percentage is relevant only when the
index is created. As the data changes, the pages are not maintained at any
particular level of fullness.

The default for fillfactor is 0; this is used when you do not include with
fillfactor in the create index statement (unless the value has been changed
with sp_configure). When specifying a fillfactor, use a value between 1 and
100.

A fillfactor of 0 creates clustered indexes with completely full pages and
nonclustered indexes with completely full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both the clustered and
nonclustered indexes. There is seldom a reason to change the fillfactor.

If the fillfactor is set to 100, Adaptive Server creates both clustered and
nonclustered indexes with each page 100 percent full. A fillfactor of 100
makes sense only for read-only tables—tables to which no additional data
will ever be added.

fillfactor values smaller than 100 (except 0, which is a special case) cause
Adaptive Server to create new indexes with pages that are not completely
full. A fillfactor of 10 might be a reasonable choice if you are creating an
index on a table that will eventually hold a great deal more data, but small
fillfactor values cause each index (or index and data) to take more storage
space.

If Component Integration Services is enabled, you cannot use fillfactor for
remote servers.

 Warning! Creating a clustered index with a fillfactor affects the amount of
storage space your data occupies, since Adaptive Server redistributes the data
as it creates the clustered index.

CHAPTER 7 Commands

383

max_rows_per_page
limits the number of rows on data pages and the leaf-level pages of indexes.
Unlike fillfactor, the max_rows_per_page value is maintained when data is
inserted or deleted.

If you do not specify a value for max_rows_per_page, Adaptive Server uses
a value of 0 when creating the table. Values for tables and clustered indexes
are between 0 and 256. The maximum number of rows per page for
nonclustered indexes depends on the size of the index key; Adaptive Server
returns an error message if the specified value is too high.

A max_rows_per_page of 0 creates clustered indexes with full data pages
and nonclustered indexes with full leaf pages. It leaves a comfortable
amount of space within the index B-tree in both clustered and nonclustered
indexes.

Using low values for max_rows_per_page reduces lock contention on
frequently accessed data. However, using low values also causes Adaptive
Server to create new indexes with pages that are not completely full, uses
more storage space, and may cause more page splits.

If Component Integration Services is enabled, and you create a proxy table,
then max_rows_per_page is ignored. Proxy tables do not contain any data. If
max_rows_per_page is used to create a table, and later a proxy table is
created to reference that table, then the max_rows_per_page limits apply
when you insert or delete through the proxy table.

on segment_name
specifies that the index is to be created on the named segment. Before the on
segment_name option can be used, the device must be initialized with disk
init, and the segment must be added to the database with sp_addsegment. See
your System Administrator or use sp_helpsegment for a list of the segment
names available in your database.

If you specify clustered and use the on segment_name option, the entire table
migrates to the segment you specify, since the leaf level of the index
contains the actual data pages.

create table

384

references
specifies a column list for a referential integrity constraint. You can specify
only one column value for a column constraint. By including this constraint
with a table that references another table, any data inserted into the
referencing table must already exist in the referenced table.

To use this constraint, you must have references permission on the
referenced table. The specified columns in the referenced table must be
constrained by a unique index (created by either a unique constraint or a
create index statement). If no columns are specified, there must be a primary
key constraint on the appropriate columns in the referenced table. Also, the
datatypes of the referencing table columns must match the datatype of the
referenced table columns.

foreign key
specifies that the listed column(s) are foreign keys in this table whose target
keys are the columns listed in the following references clause. The foreign
key syntax is permitted only for table-level constraints, not for column-level
constraints.

ref_table
is the name of the table that contains the referenced columns. You can
reference tables in another database. Constraints can reference as many as
192 user tables and internally generated worktables.

ref_column
is the name of the column or columns in the referenced table.

check
specifies a search_condition constraint that Adaptive Server enforces for all
the rows in the table. You can specify check constraints as table or column
constraints; create table allows multiple check constraints in a column
definition.

search_condition
is the check constraint on the column values. These constraints can include:

• A list of constant expressions introduced with in

• A set of conditions introduced with like, which may contain wildcard
characters

Column and table check constraints can reference any columns in the table.

An expression can include arithmetic operators and functions. The
search_condition cannot contain subqueries, aggregate functions, host
variables, or parameters.

CHAPTER 7 Commands

385

next_column | next_constraint
indicates that you can include additional column definitions or table
constraints (separated by commas) using the same syntax described for a
column definition or table constraint definition.

lock datarows | datapages | allpages
specifies the locking scheme to be used for the table. The default is the
server-wide setting for the configuration parameter lock scheme.

exp_row_size = num_bytes
specifies the expected row size; applies only to datarows and datapages
locking schemes, and only to tables with variable-length rows. Valid values
are 0, 1, and any value between the minimum and maximum row length for
the table. The default value is 0, which means a server-wide setting is
applied.

reservepagegap = num_pages
specifies the ratio of filled pages to empty pages that are to be left during
extent I/O allocation operations. For each specified num_pages, an empty
page is left for future expansion of the table. Valid values are 0 – 255. The
default value is 0.

with identity_gap
specifies the identity gap for the table. This value overrides the system
identity gap setting for this table only.

value
is the identity gap amount. For more information about setting the identity
gap, see IDENTITY columns.

external table
specifies that the object is a remote table or view. external table is the default,
so specifying this is optional.

create table

386

at pathname
specifies the location of the remote object. pathname takes the form
server_name.dbname.owner.object;aux1.aux2, where:

• server_name (required) – is the name of the server that contains the
remote object.

• dbname (optional) – is the name of the database managed by the remote
server that contains this object.

• owner (optional) – is the name of the remote server user that owns the
remote object.

• object (required) – is the name of the remote table or view.

• aux1.aux2 (optional) – is a string of characters that is passed to the
remote server during a create table or create index command. This string
is used only if the server is class db2. aux1 is the DB2 database in which
to place the table, and aux2 is the DB2 table space in which to place the
table.

on segment_name
specifies the name of the segment on which to place the table. When using
on segment_name, the logical device must already have been assigned to the
database with create database or alter database, and the segment must have
been created in the database with sp_addsegment. See your System
Administrator or use sp_helpsegment for a list of the segment names
available in your database.

Examples Example 1 Creates the titles table:

create table titles
(title_id tid not null,
title varchar(80) not null,
type char(12) not null,
pub_id char(4) null,
price money null,
advance money null,
total_sales int null,
notes varchar(200) null,
pubdate datetime not null,
contract bit not null)

Example 2 Creates the compute table. The table name and the column names,
max and min, are enclosed in double quotes because they are reserved words.
The total score column name is enclosed in double quotes because it contains
an embedded blank. Before creating this table, you must set quoted_identifier
on:

CHAPTER 7 Commands

387

create table "compute"
("max" int, "min" int, "total score" int)

Example 3 Creates the sales table and a clustered index in one step with a
unique constraint. (In the pubs2 database installation script, there are separate
create table and create index statements):

create table sales
(stor_id char(4) not null,
ord_num varchar(20) not null,
date datetime not null,
unique clustered (stor_id, ord_num))

Example 4 Creates the salesdetail table with two referential integrity
constraints and one default value. There is a table-level, referential integrity
constraint named salesdet_constr and a column-level, referential integrity
constraint on the title_id column without a specified name. Both constraints
specify columns that have unique indexes in the referenced tables (titles and
sales). The default clause with the qty column specifies 0 as its default value:

create table salesdetail
(stor_id char(4) not null,
ord_num varchar(20) not null,
title_id tid not null

 references titles(title_id),
qty smallint default 0 not null,
discount float not null,

constraint salesdet_constr
foreign key (stor_id, ord_num)
references sales(stor_id, ord_num))

Example 5 Creates the table publishers with a check constraint on the pub_id
column. This column-level constraint can be used in place of the pub_idrule
included in the pubs2 database:

create rule pub_idrule
as @pub_id in ("1389", "0736", "0877", "1622",

"1756")
or @pub_id like "99[0-9][0-9]"

create table publishers
(pub_id char(4) not null

check (pub_id in ("1389", "0736", "0877", "1622",
"1756")

or pub_id like "99[0-9][0-9]"),
pub_name varchar(40) null,
city varchar(20) null,

create table

388

state char(2) null)

Example 6 Specifies the ord_num column as the IDENTITY column for the
sales_daily table. The first time you insert a row into the table, Adaptive Server
assigns a value of 1 to the IDENTITY column. On each subsequent insert, the
value of the column increments by 1:

create table sales_daily
(stor_id char(4) not null,
ord_num numeric(10,0) identity,
ord_amt money null)

Example 7 Specifies the datapages locking scheme for the new_titles table and
an expected row size of 200:

create table new_titles (
title_id tid,
title varchar(80) not null,
type char(12) ,
pub_id char(4) null,
price money null,
advance money null,
total_sales int null,
notes varchar(200) null,
pubdate datetime,
contract bit)

lock datapages
with exp_row_size = 200

Example 8 Specifies the datarows locking scheme and sets a reservepagegap
value of 16 so that extent I/O operations leave 1 blank page for each 15 filled
pages:

create table new_publishers (
pub_id char(4) not null,
pub_name varchar(40) null,
city varchar(20) null,
state char(2) null)
lock datarows
with reservepagegap = 16

Example 9 Creates a constraint supported by a unique clustered index; the
index order is ascending for stor_id and descending for ord_num:

create table sales_south
(stor_id char(4) not null,
ord_num varchar(20) not null,
date datetime not null,
unique clustered (stor_id asc, ord_num desc))

CHAPTER 7 Commands

389

Example 10 Creates a table named t1 at the remote server SERVER_A and
creates a proxy table named t1 that is mapped to the remote table:

create table t1
(a int,
 b char(10))
at "SERVER_A.db1.joe.t1"

Example 11 Creates a table named employees. name is of type varchar,
home_addr is a Java-SQL column of type Address, and mailing_addr is a
Java-SQL column of type Address2Line. Both Address and Address2Line are
Java classes installed in the database:

create table employees
(name varchar(30),
home_addr Address,
mailing_addr Address2Line)

Example 12 Creates a table named mytable with an identity column. The
identity gap is set to 10, which means ID numbers are allocated in memory in
blocks of ten. If the server fails or is shut down with no wait, the maximum gap
between the last ID number assigned to a row and the next ID number assigned
to a row is ten numbers:

create table mytable
(IdNum numeric(12,0) identity)
with identity_gap = 10

Example 13 Creates a table named mytable with an identity column. The
identity gap is set to 10, which means ID numbers will be allocated in memory
in blocks of ten. If the server fails or is shut down with no wait, the maximum
gap between the last ID number assigned to a row and the next ID number
assigned to a row is ten numbers:

create table mytable
(IdNum numeric(12,0) identity)
with identity_gap = 10

For more information about identity gaps, see the section “Managing Identity
Gaps in Tables” in Chapter 7, “Creating Databases and Tables” in the
Transact-SQL User’s Guide.

Usage • create table creates a table and optional integrity constraints. The table is
created in the currently open database unless you specify a different
database in the create table statement. You can create a table or index in
another database, if you are listed in the sysusers table and have create
table permission in the database.

create table

390

• Space is allocated to tables and indexes in increments of one extent, or
eight pages, at a time. Each time an extent is filled, another extent is
allocated. To see the amount of space allocated and used by a table, use
sp_spaceused.

• The maximum length for in-row Java columns is determined by the
maximum size of a variable-length column for the table’s schema, locking
style, and page size.

• When using create table from Component Integration Services with a
column defined as char(n) NULL, Component Integration Services creates
the column as varchar(n) on the remote server.

Restrictions

• The maximum number of columns in a table depends on the width of the
columns and the server’s logical page size:

• The sum of the columns’ sizes cannot exceed the server’s logical page
size.

• The maximum number of columns per table cannot exceed 1024.

• The maximum number of variable length columns for an APL table is
254.

For example, if your server uses a 2K logical page size and includes
a table of integer columns, the maximum number of columns in the
table would be far fewer than 1024. (1024 * 4 bytes exceeds a 2K
logical page size.)

You can mix variable- and fixed-length columns in a single table as
long as the maximum number of columns does not exceed 1024. For
example, if your server uses a 8K logical page size, a table configured
for APL can have 254 nullable integer columns (these are variable
length columns) and 770 non-nullable integers, for a total of 1024
columns.

• There can be as many as 2,000,000,000 tables per database and 250
user-defined columns per table. The number of rows per table is limited
only by available storage.

• Although Adaptive Server does create tables in the following
circumstances, you will receive errors about size limitations when you
perform DML operations:

• If the total row size for rows with variable-length columns exceeds the
maximum column size.

CHAPTER 7 Commands

391

• If the length of a single variable-length column exceeds the maximum
column size.

• For DOL tables, if the offset of any variable-length column other than
the initial column exceeds the limit of 8191 bytes.

• Adaptive Server reports an error if the total size of all fixed-length
columns, plus the row overhead, is greater than the table’s locking scheme
and page size allows. These limits are described in Table 7-12.

Table 7-12: Maximum row and column length - APL and DOL

• The maximum number of bytes of variable length data per row depends on
the locking scheme for the table. Table 7-13 describes the maximum size
columns for an APL table:

Table 7-13: Maximum size for variable-length columns in an APL table

Table 7-14 describes the maximum size of columns for a DOL table:

Locking scheme Page size Maximum row length Maximum column length

APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes
if table does not include any
variable length columns

16K (16384 bytes) 16300
(subject to a max start
offset of varlen = 8191)

8191-6-2 = 8183 bytes
if table includes at least on
variable length column.*

* This size includes six bytes for the row overhead and two bytes for the row length field

Page size Maximum row length Maximum column length

2K (2048 bytes) 1962 1960

4K (4096 bytes) 4010 4008

8K (8192 bytes) 8096 8104

16K (16384 bytes) 16298 16296

create table

392

Table 7-14: Maximum size for variable-length columns in an DOL table

• If you create a DOL table with a variable-length column that exceeds a
8191-byte offset, you cannot add any rows to the column.

• If you create tables with varchar, nvarchar, univarchar, or varbinary
columns whose total defined width is greater than the maximum allowed
row size, a warning message appears, but the table is created. If you try to
insert more than the maximum number bytes into such a row, or to update
a row so that its total row size is greater than the maximum length,
Adaptive Server produces an error message, and the command fails.

Note When a create table command occurs within an if...else block or a
while loop, Adaptive Server creates the schema for the table before
determining whether the condition is true. This may lead to errors if the
table already exists. Make sure a table with the same name does not
already exist in the database.

• You cannot issue create table with a declarative default or check constraint
and then insert data into the table in the same batch or procedure. Either
separate the create and insert statements into two different batches or
procedures, or use execute to perform the actions separately.

• You cannot use the following variable in create table statements that
include defaults:

declare @p int
select @p = 2
create table t1 (c1 int default @p, c2 int)

Doing so results in error message 154, which says, “Variable is not
allowed in default.”

Column definitions

• When you create a column from a user-defined datatype:

• You cannot change the length, precision, or scale.

• You can use a NULL type to create a NOT NULL column, but not to
create an IDENTITY column.

Page size Maximum row length Maximum column length

2K (2048 bytes) 1964 1958

4K (4096 bytes) 4012 4006

8K (8192 bytes) 8108 8102

16K (16384 bytes) 16300 16294

CHAPTER 7 Commands

393

• You can use a NOT NULL type to create a NULL column or an
IDENTITY column.

• You can use an IDENTITY type to create a NOT NULL column, but
the column inherits the IDENTITY property. You cannot use an
IDENTITY type to create a NULL column.

• Only columns with variable-length datatypes can store null values. When
you create a NULL column with a fixed-length datatype, Adaptive Server
automatically converts it to the corresponding variable-length datatype.
Adaptive Server does not inform the user of the type change.

The following table lists the fixed-length datatypes and the variable-length
datatypes to which they are converted. Certain variable-length datatypes,
such as moneyn, are reserved types that cannot be used to create columns,
variables, or parameters:

Table 7-15: Variable-length datatypes used to store nulls

• You can create column defaults in two ways: by declaring the default as a
column constraint in the create table or alter table statement, or by creating
the default using the create default statement and binding it to a column
using sp_bindefault.

• For a report on a table and its columns, execute the system procedure
sp_help.

Temporary tables

• Temporary tables are stored in the temporary database, tempdb.

• The first 13 characters of a temporary table name must be unique per
session. Such tables can be accessed only by the current Adaptive Server
session. They are stored in tempdb..objects by their names plus a
system-supplied numeric suffix, and they disappear at the end of the
current session or when they are explicitly dropped.

Original fixed-length datatype Converted to

char varchar

nchar nvarchar

binary varbinary

datetime datetimn

float floatn

int, smallint, and tinyint intn

decimal decimaln

numeric numericn

money and smallmoney moneyn

create table

394

• Temporary tables created with the “tempdb..” prefix are shareable among
Adaptive Server user sessions. They exist until they are explicitly dropped
by their owner or until Adaptive Server reboots. Create temporary tables
with the “tempdb..” prefix from inside a stored procedure only if you
intend to share the table among users and sessions. To avoid inadvertent
sharing of temporary tables, use the “#” prefix when creating and dropping
temporary tables in stored procedures.

• Temporary tables can be used by multiple users during an Adaptive Server
session. However, the specific user session usually cannot be identified
because temporary tables are created with the “guest” user ID of 2. If more
than one user runs the process that creates the temporary table, each user
is a “guest” user so the uid values are all the same. Therefore, there is no
way to know which user session in the temporary table is for a specific
user. It is possible that the SA can add the user to the temporary table using
sp_addlogin, in which case the individual uid is available for that user’s
session in the temporary table, but this circumstance is unlikely.

• You can associate rules, defaults, and indexes with temporary tables, but
you cannot create views on temporary tables or associate triggers with
them.

• When you create a temporary table, you can use a user-defined datatype
only if the type is in tempdb..systypes. To add a user-defined datatype to
tempdb for the current session only, execute sp_addtype while using
tempdb. To add the datatype permanently, execute sp_addtype while using
model, then restart Adaptive Server so that model is copied to tempdb.

Using indexes

• A table “follows” its clustered index. If you create a table on one segment,
and then create its clustered index on another segment, the table migrates
to the segment where the index is created.

• You can make inserts, updates, and selects faster by creating a table on one
segment and its nonclustered indexes on another segment, if the segments
are on separate physical devices. For more information, see the
Performance and Tuning Guide.

Renaming a table or its columns

• Use sp_rename to rename a table or column.

CHAPTER 7 Commands

395

• After renaming a table or any of its columns, use sp_depends to determine
which procedures, triggers, and views depend on the table, and redefine
these objects.

 Warning! If you do not redefine these dependent objects, they will no
longer work after Adaptive Server recompiles them.

Specifying ascending or descending ordering in indexes

• Use the asc and desc keywords after index column names to specify the
sort order for the index. Creating indexes so that columns are in the same
order specified in the order by clause of queries eliminates the sorting step
during query processing.

Defining integrity constraints

• The create table statement helps control a database’s integrity through a
series of integrity constraints as defined by the SQL standards. These
integrity constraint clauses restrict the data that users can insert into a
table. You can also use defaults, rules, indexes, and triggers to enforce
database integrity.

Integrity constraints offer the advantages of defining integrity controls in
one step during the table creation process and of simplifying the process
to create those integrity controls. However, integrity constraints are more
limited in scope and less comprehensive than defaults, rules, indexes, and
triggers.

• You must declare constraints that operate on more than one column as
table-level constraints; declare constraints that operate on just one column
as column-level constraints. Although the difference is rarely noticed by
users, column-level constraints are only checked if a value in the column
is being modified, while the table-level constraints are checked if there is
any modification to a row, regardless of whether or not it changes the
column in question.

Place column-level constraints after the column name and datatype, before
the delimiting comma (see Example 5). You enter table-level constraints
as separate comma-delimited clauses (see Example 4). Adaptive Server
treats table-level and column-level constraints the same way; neither way
is more efficient than the other.

• You can create the following types of constraints at the table level or the
column level:

create table

396

• A unique constraint requires that no two rows in a table have the same
values in the specified columns. In addition, a primary key constraint
requires that there be no null values in the column.

• A referential integrity (references) constraint requires that the data
being inserted or updated in specific columns has matching data in the
specified table and columns.

• A check constraint limits the values of the data inserted into the
columns.

You can also enforce data integrity by restricting the use of null values in
a column (the null or not null keywords) and by providing default values for
columns (the default clause).

• You can use the system procedures sp_primarykey, sp_foreignkey, and
sp_commonkey to save information in system tables, which can help
clarify the relationships between tables in a database. These system
procedures do not enforce the key relationships or duplicate the functions
of the primary key and foreign key keywords in a create table statement. For
a report on keys that have been defined, use sp_helpkey. For a report on
frequently used joins, execute sp_helpjoins.

• Transact-SQL provides several mechanisms for integrity enforcement. In
addition to the constraints you can declare as part of create table, you can
create rules, defaults, indexes, and triggers. Table 7-16 summarizes the
integrity constraints and describes the other methods of integrity
enforcement:

Table 7-16: Methods of integrity enforcement

The method you choose depends on your requirements. For example,
triggers provide more complex handling of referential integrity (such as
referencing other columns or objects) than those declared in create table.
Also, the constraints defined in a create table statement are specific for that
table; unlike rules and defaults, you cannot bind them to other tables, and
you can only drop or change them using alter table. Constraints cannot
contain subqueries or aggregate functions, even on the same table.

In create table Other methods

unique constraint create unique index (on a column that allows null values)

primary key constraint create unique index (on a column that does not allow null values)

references constraint create trigger

check constraint (table level) create trigger

check constraint (column level) create trigger or create rule and sp_bindrule

default clause create default and sp_bindefault

CHAPTER 7 Commands

397

• The create table command can include many constraints, with these
limitations:

• The number of unique constraints is limited by the number of indexes
that a table can have.

• A table can have only one primary key constraint.

• You can include only one default clause per column in a table, but you
can define different constraints on the same column.

For example:

create table discount_titles
(title_id varchar(6) default "PS7777" not null

unique clustered
references titles(title_id)
check (title_id like "PS%"),

new_price money)

Column title_id of the new table discount_titles is defined with each
integrity constraint.

• You can create error messages and bind them to referential integrity and
check constraints. Create messages with sp_addmessage and bind them to
the constraints with sp_bindmsg. For more information, see
sp_addmessage and sp_bindmsg.

• Adaptive Server evaluates check constraints before enforcing the
referential constraints, and evaluates triggers after enforcing all the
integrity constraints. If any constraint fails, Adaptive Server cancels the
data modification statement; any associated triggers do not execute.
However, a constraint violation does not roll back the current transaction.

• In a referenced table, you cannot update column values or delete rows that
match values in a referencing table. Update or delete from the referencing
table first, then try updating or deleting from the referenced table.

• You must drop the referencing table before you drop the referenced table;
otherwise, a constraint violation occurs.

• For information about constraints defined for a table, use
sp_helpconstraint.

Unique and primary key constraints

• You can declare unique constraints at the column level or the table level.
unique constraints require that all values in the specified columns be
unique. No two rows in the table can have the same value in the specified
column.

create table

398

• A primary key constraint is a more restrictive form of unique constraint.
Columns with primary key constraints cannot contain null values.

Note The create table statement’s unique and primary key constraints
create indexes that define unique or primary key attributes of columns.
sp_primarykey, sp_foreignkey, and sp_commonkey define logical
relationships between columns. These relationships must be enforced
using indexes and triggers.

• Table-level unique or primary key constraints appear in the create table
statement as separate items and must include the names of one or more
columns from the table being created.

• unique or primary key constraints create a unique index on the specified
columns. The unique constraint in Example 3 creates a unique, clustered
index, as does the statement:

create unique clustered index salesind
on sales (stor_id, ord_num)

The only difference is the index name, which you could set to salesind by
naming the constraint.

• The definition of unique constraints in the SQL standard specifies that the
column definition cannot allow null values. By default, Adaptive Server
defines the column as not allowing null values (if you have not changed
this using sp_dboption) when you omit null or not null in the column
definition. In Transact-SQL, you can define the column to allow null
values along with the unique constraint, since the unique index used to
enforce the constraint allows you to insert a null value.

• unique constraints create unique, nonclustered indexes by default; primary
key constraints create unique, clustered indexes by default. There can be
only one clustered index on a table, so you can specify only one unique
clustered or primary key clustered constraint.

• The unique and primary key constraints of create table offer a simpler
alternative to the create index statement. However, they have the following
limitations:

• You cannot create nonunique indexes.

• You cannot use all the options provided by create index.

• You must drop these indexes using alter table drop constraint.

CHAPTER 7 Commands

399

Referential integrity constraints

• Referential integrity constraints require that data inserted into a
referencing table that defines the constraint must have matching values in
a referenced table. A referential integrity constraint is satisfied for either
of the following conditions:

• The data in the constrained column(s) of the referencing table
contains a null value.

• The data in the constrained column(s) of the referencing table
matches data values in the corresponding columns of the referenced
table.

Using the pubs2 database as an example, a row inserted into the salesdetail
table (which records the sale of books) must have a valid title_id in the titles
table. salesdetail is the referencing table and titles table is the referenced
table. Currently, pubs2 enforces this referential integrity using a trigger.
However, the salesdetail table could include this column definition and
referential integrity constraint to accomplish the same task:

title_id tid
references titles(title_id)

• The maximum number of table references allowed for a query is 192. Use
sp_helpconstraint to check a table’s referential constraints.

• A table can include a referential integrity constraint on itself. For example,
the store_employees table in pubs3, which lists employees and their
managers, has the following self-reference between the emp_id and mgr_id
columns:

emp_id id primary key,
mgr_id id null

references store_employees(emp_id),

This constraint ensures that all managers are also employees, and that all
employees have been assigned a valid manager.

• You cannot drop the referenced table until the referencing table is dropped
or the referential integrity constraint is removed (unless it includes only a
referential integrity constraint on itself).

• Adaptive Server does not enforce referential integrity constraints for
temporary tables.

• To create a table that references another user’s table, you must have
references permission on the referenced table. For information about
assigning references permissions, see the grant command.

create table

400

• Table-level, referential integrity constraints appear in the create table
statement as separate items. They must include the foreign key clause and
a list of one or more column names.

Column names in the references clause are optional only if the columns in
the referenced table are designated as a primary key through a primary key
constraint.

The referenced columns must be constrained by a unique index in that
referenced table. You can create that unique index using either the unique
constraint or the create index statement.

• The datatypes of the referencing table columns must match the datatypes
of the referenced table columns. For example, the datatype of col1 in the
referencing table (test_type) matches the datatype of pub_id in the
referenced table (publishers):

create table test_type
(col1 char(4) not null

references publishers(pub_id),
col2 varchar(20) not null)

• The referenced table must exist at the time you define the referential
integrity constraint. For tables that cross-reference one another, use the
create schema statement to define both tables simultaneously. As an
alternative, create one table without the constraint and add it later using
alter table. See create schema or alter table for more information.

• The create table referential integrity constraints offer a simple way to
enforce data integrity. Unlike triggers, they cannot:

• Cascade changes through related tables in the database

• Enforce complex restrictions by referencing other columns or
database objects

• Perform “what-if” analysis

CHAPTER 7 Commands

401

Referential integrity constraints do not roll back transactions when a data
modification violates the constraint. Triggers allow you to choose whether
to roll back or continue the transaction depending on how you handle
referential integrity.

Note Adaptive Server checks referential integrity constraints before it
checks any triggers, so a data modification statement that violates the
constraint does not also fire the trigger.

Using cross-database referential integrity constraints

• When you create a cross-database constraint, Adaptive Server stores the
following information in the sysreferences system table of each database:

Table 7-17: Information stored for referential integrity constraints

• You can drop the referencing table or its database without problems.
Adaptive Server automatically removes the foreign key information from
the referenced database.

• Because the referencing table depends on information from the referenced
table, Adaptive Server does not allow you to:

• Drop the referenced table,

• Drop the external database that contains the referenced table, or

• Rename either database with sp_renamedb.

You must remove the cross-database constraint with alter table before you
can do any of these actions.

• Each time you add or remove a cross-database constraint, or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of databases containing cross-database
constraints could cause database corruption.

Information stored
in sysreferences

Columns with information
about the referenced table

Columns with information
about the referencing table

Key column IDs refkey1 through refkey16 fokey1 through fokey16

Table ID reftabid tableid

Database ID pmrydbid frgndbid

Database name pmrydbname frgndbname

create table

402

• The sysreferences system table stores the name and the ID number of the
external database. Adaptive Server cannot guarantee referential integrity
if you use load database to change the database name or to load it onto a
different server.

 Warning! Before dumping a database in order to load it with a different
name or move it to another Adaptive Server, use alter table to drop all
external referential integrity constraints.

check constraints

• A check constraint limits the values a user can insert into a column in a
table. A check constraint specifies a search_condition that any non-null
value must pass before it is inserted into the table. A search_condition can
include:

• A list of constant expressions introduced with in

• A range of constant expressions introduced with between

• A set of conditions introduced with like, which can contain wildcard
characters

An expression can include arithmetic operators and Transact-SQL built-in
functions. The search_condition cannot contain subqueries, aggregate
functions, or a host variable or parameter. Adaptive Server does not
enforce check constraints for temporary tables.

• If the check constraint is a column-level check constraint, it can reference
only the column in which it is defined; it cannot reference other columns
in the table. Table-level check constraints can reference any column in the
table.

• create table allows multiple check constraints in a column definition.

• check integrity constraints offer an alternative to using rules and triggers.
They are specific to the table in which they are created, and cannot be
bound to columns in other tables or to user-defined datatypes.

• check constraints do not override column definitions. If you declare a
check constraint on a column that allows null values, you can insert NULL
into the column, implicitly or explicitly, even though NULL is not
included in the search_condition. For example, if you create a check
constraint specifying “pub_id in (“1389”, “0736”, “0877”, “1622”,
“1756”)” or “@amount > 10000” in a table column that allows null values,
you can still insert NULL into that column. The column definition
overrides the check constraint.

CHAPTER 7 Commands

403

IDENTITY columns

• The first time you insert a row into the table, Adaptive Server assigns the
IDENTITY column a value of 1. Each new row gets a column value that
is 1 higher than the last value. This value takes precedence over any
defaults declared for the column in the create table statement or bound to
the column with sp_bindefault. The maximum value that can be inserted
into the IDENTITY column is 10 precision - 1.

• Inserting a value into the IDENTITY column allows you to specify a seed
value for the column or to restore a row that was deleted in error. The table
owner, Database Owner, or System Administrator can explicitly insert a
value into an IDENTITY column after using set identity_insert table_name
on for the base table. Unless you have created a unique index on the
IDENTITY column, Adaptive Server does not verify the uniqueness of the
value. You can insert any positive integer.

• You can reference an IDENTITY column using the syb_identity keyword,
qualified by the table name where necessary, in place of the actual column
name.

• System Administrators can use the auto identity database option to
automatically include a 10-digit IDENTITY column in new tables. To turn
on this feature in a database, use:

sp_dboption database_name, "auto identity", "true"

Each time a user creates a table in the database without specifying either a
primary key, a unique constraint, or an IDENTITY column, Adaptive
Server automatically defines an IDENTITY column. This column,
SYB_IDENTITY_COL, is not visible when you retrieve columns with the
select * statement. You must explicitly include the column name in the
select list.

• Server failures can create gaps in IDENTITY column values. Gaps can
also occur due to transaction rollbacks, the deletion of rows, or the manual
insertion of data into the IDENTITY column. The maximum size of the
gap depends on the setting of the identity burning set factor and identity grab
size configuration parameters, the identity_gap value given in the create
table or select into statment. For details about using the different methods
to set the identity gap, see “Managing Identity Gaps in Tables” in Chapter
7, “Creating Databases and Tables” in the Transact-SQL User’s Guide.

Specifying a locking scheme

• To specify the locking scheme for a table, use the keyword lock and one of
the following locking schemes:

create table

404

• allpages locking, which locks data pages and the indexes affected by
queries

• datapages locking, which locks only data pages

• datarows locking, which locks only data rows

If you do not specify a locking scheme, the default locking scheme for the
server is used. The server-wide default is set with the configuration
parameter lock scheme.

• The locking scheme for a table can be changed with the alter table
command.

Space management properties

• The space management properties fillfactor, max_rows_per_page,
exp_row_size, and reservepagegap help manage space usage for tables in
the following ways:

• fillfactor leaves extra space on pages when indexes are created, but the
fillfactor is not maintained over time.

• max_rows_per_page limits the number of rows on a data or index
page. Its main use is to improve concurrency in allpages-locked
tables, since reducing the number of rows can reduce lock contention.
If you specify a max_rows_per_page value and datapages or datarows
locking, a warning message is printed. The table is created, and the
value is stored in sysindexes, but it is applied only if the locking
scheme is changed later to allpages.

• exp_row_size specifies the expected size of a data row. It applies only
to data rows, not to indexes, and applies only to data-only-locked
tables that have variable-length columns. It is used to reduce the
number of forwarded rows in data-only-locked tables. It is needed
mainly for tables where rows have null or short columns when first
inserted, but increase in size as a result of subsequent updates.
exp_row_size reserves space on the data page for the row to grow to
the specified size. If you specify exp_row_size when you create an
allpages-locked table, a warning message is printed. The table is
created, and the value is stored in sysindexes, but it is only applied if
the locking scheme is changed later to datapages or datarows.

• reservepagegap specifies the ratio of empty pages to full pages to
apply for commands that perform extent allocation. It applies to both
data and index pages, in all locking schemes.

CHAPTER 7 Commands

405

• Table 7-18 shows the valid combinations of space management properties
and locking scheme. If a create table command includes incompatible
combinations, a warning message is printed and the table is created. The
values are stored in system tables, but are not applied. If the locking
scheme for a table changes so that the properties become valid, then they
are used.

Table 7-18: Space management properties and locking schemes

• Table 7-19 shows the default values and the effects of using default values
for the space management properties.

Table 7-19: Defaults and effects of space management properties

Using exp_row_size

• If an application inserts short rows into a data-only-locked table and
updates them later so that their length increases, use exp_row_size to
reduce the number of times that rows in data-only-locked tables are
forwarded to new locations.

Using reservepagegap

• Commands that use large amounts of space allocate new space by
allocating an extent rather than allocating single pages. The
reservepagegap keyword causes these commands to leave empty pages so
that subsequent page allocations happen close to the page being split or
close to the page from which a row is being forwarded. Table 7-20 shows
when reservepagegap is applied.

Table 7-20: When reservepagegap is applied

Property allpages datapages datarows

max_rows_per_page Yes No No

exp_row_size No Yes Yes

reservepagegap Yes Yes Yes

fillfactor Yes Yes Yes

Property Default Effect of using the default

max_rows_per_page 0 Fits as many rows as possible on the page, up to a maximum of 255

exp_row_size 0 Uses the server-wide default value, set with the configuration
parameter default exp_row_size percent

reservepagegap 0 Leaves no empty pages during extent allocations

fillfactor 0 Fully packs leaf pages, with space left on index pages

Command Applies to data pages Applies to index pages

Fast bcp Yes Fast bcp is not used if indexes exist

create table

406

• The reservepagegap value for a table is stored in sysindexes and is applied
when any of the above operations on a table are executed. To change the
stored value, use sp_chgattribute.

• reservepagegap is not applied to worktables or sorts on worktables.

Using at

• The location information provided by the at keyword is the same
information that is provided by sp_addobjectdef. The information is stored
in the sysattributes table.

Java-SQL columns

• If Java is enabled in the database, you can creates tables with Java-SQL
columns. Refer to Java in Adaptive Server Enterprise for detailed
information.

• The declared class (datatype) of the Java-SQL column must implement
either the Serializable or Externalizable interface.

• When you create a table, a Java-SQL column cannot be specified:

• As a foreign key

• In a references clause

• As having the UNIQUE property

• As the primary key

• If in row is specified, the value stored cannot exceed 16K bytes, depending
on the page size of the database server and other variables.

• If off row is specified:

• The column cannot be referenced in a check constraint.

• The column cannot be referenced in a select that specifies distinct.

Slow bcp Only for heap tables, not for
tables with a clustered index

Extent allocation not performed

select into Yes No indexes exist on the target table

create index or alter
table...constraint

Yes, for clustered indexes Yes

reorg rebuild Yes Yes

alter table...lock

(For allpages-locking to data-only
locking, or vice versa)

Yes Yes

Command Applies to data pages Applies to index pages

CHAPTER 7 Commands

407

• The column cannot be specified in a comparison operator, in a
predicate, or in a group by clause.

Getting information about tables

• sp_help displays information about tables, listing any attributes (such as
cache bindings) assigned to the specified table and its indexes, giving the
attribute’s class, name, integer value, character value, and comments.

• sp_depends displays information about the view(s), trigger(s), and
procedure(s) in the database that depend on a table.

• sp_helpindex reports information about the indexes created on a table.

Standards SQL92 – Compliance level: Entry-level compliant.

The following are Transact-SQL extensions:

• Use of a database name to qualify a table or column name

• IDENTITY columns

• The not null column default

• The asc and desc options

• The reservepagegap option

• The lock clause

• The on segment_name clause

See Chapter 1, “System and User-Defined Datatypes” or datatype
compliance information.

Permissions create table permission defaults to the Database Owner, who can transfer it to
other users. Any user can create temporary tables.

See also Commands alter table, create existing table, create index, create rule, create
schema, create view, drop index, drop rule, drop table

System procedures sp_addmessage, sp_addsegment, sp_addtype,
sp_bindmsg, sp_chgattribute, sp_commonkey, sp_depends, sp_foreignkey,
sp_help, sp_helpjoins, sp_helpsegment, sp_primarykey, sp_rename,
sp_spaceused

create trigger

408

create trigger
Description Creates a trigger, a type of stored procedure that is often used for enforcing

integrity constraints. A trigger executes automatically when a user attempts a
specified data modification statement on a specified table.

Syntax create trigger [owner .]trigger_name
on [owner .]table_name
for {insert , update , delete}
as SQL_statements

Or, using the if update clause:

create trigger [owner .]trigger_name
on [owner .]table_name
for {insert , update}
as

[if update (column_name)
[{and | or} update (column_name)]...]
SQL_statements

[if update (column_name)
[{and | or} update (column_name)]...
SQL_statements]...

Parameters trigger_name
is the name of the trigger. It must conform to the rules for identifiers and be
unique in the database. Specify the owner’s name to create another trigger
of the same name owned by a different user in the current database. The
default value for owner is the current user. If you use an owner name to
qualify a trigger, you must explicitly qualify the table name the same way.

You cannot use a variable for a trigger name.

table_name
is the name of the table on which to create the trigger. If more than one table
of the same name exists in the database, specify the owner’s name. The
default value for owner is the current user.

insert, update, delete
can be included in any combination. delete cannot be used with the if update
clause.

CHAPTER 7 Commands

409

SQL_statements
specify trigger conditions and trigger actions. Trigger conditions determine
whether the attempted insert, update, or delete causes the trigger actions to
be carried out. The SQL statements often include a subquery preceded by
the keyword if. In Example 2, below, the subquery that follows the keyword
if is the trigger condition.

Trigger actions take effect when the user action (insert, update, or delete) is
attempted. If multiple trigger actions are specified, they are grouped with
begin and end.

See Triggers and transactions for a list of statements that are not allowed in
a trigger definition. See “The deleted and inserted logical tables” on page
411 for information about the deleted and inserted logical tables that can be
included in trigger definitions.

if update
is used to test whether the specified column is included in the set list of an
update statement or is affected by an insert. This allows specified trigger
actions to be associated with updates to specified columns (see Example 3).
More than one column can be specified, and you can use more than one if
update statement in a create trigger statement (see Example 5).

Examples Example 1 Prints a message when anyone tries to add data or change data in
the titles table:

create trigger reminder
on titles
for insert, update as
print "Don't forget to print a report for accounting."

Example 2 Prevents insertion of a new row into titleauthor if there is no
corresponding title_id in the titles table:

create trigger t1
on titleauthor
for insert as
if (select count(*)

from titles, inserted
where titles.title_id = inserted.title_id) = 0

begin
print "Please put the book's title_id in the

titles table first."
rollback transaction
end

Example 3 If the pub_id column of the publishers table is changed, make the
corresponding change in the titles table:

create trigger

410

create trigger t2
on publishers
for update as
if update (pub_id) and @@rowcount = 1
begin

update titles
set titles.pub_id = inserted.pub_id
from titles, deleted, inserted
where deleted.pub_id = titles.pub_id

end

Example 4 Deletes title from the titles table if any row is deleted from
titleauthor. If the book was written by more than one author, other references to
it in titleauthor are also deleted:

create trigger t3
on titleauthor
for delete as
begin

delete titles
from titles, deleted
where deleted.title_id = titles.title_id
delete titleauthor
from titleauthor, deleted
where deleted.title_id = titleauthor.title_id
print "All references to this title have been
deleted from titles and titleauthor."

end

Example 5 Prevents updates to the primary key on weekends. Prevents
updates to the price or advance of a title unless the total revenue amount for
that title surpasses its advance amount:

create trigger stopupdatetrig
on titles
for update
as
if update (title_id)

and datename(dw, getdate())
in ("Saturday", "Sunday")
begin

rollback transaction
print "We don't allow changes to"
print "primary keys on the weekend!"

end
if update (price) or update (advance)

if (select count(*) from inserted
where (inserted.price * inserted.total_sales)

CHAPTER 7 Commands

411

< inserted.advance) > 0
begin
rollback transaction
print "We don't allow changes to price or"
print "advance for a title until its total"
print "revenue exceeds its latest advance."
end

Usage • A trigger fires only once per data modification statement. A complex
query containing a while loop may repeat an update or insert many times,
and the trigger is fired each time.

Triggers and referential integrity

• Triggers are commonly used to enforce referential integrity (integrity rules
about relationships between the primary and foreign keys of tables or
views), to supply cascading deletes, and to supply cascading updates (see
Examples 2, 3, and 4, respectively).

• A trigger fires only after the data modification statement has completed
and Adaptive Server has checked for any datatype, rule, or integrity
constraint violations. The trigger and the statement that fires it are treated
as a single transaction that can be rolled back from within the trigger. If a
severe error is detected, the entire transaction is rolled back.

• You can also enforce referential integrity using constraints defined with
the create tablestatement as an alternative to using create trigger. See
create table and alter table for information about integrity constraints.

The deleted and inserted logical tables

• deleted and inserted are logical (conceptual) tables. They are structurally
identical to the table for which the trigger is defined—that is, the table on
which the user action is attempted—and hold the old values or new values
of the rows that would be changed by the user action.

• deleted and inserted tables can be examined by the trigger to determine
whether or how the trigger action should be carried out, but the tables
themselves cannot be altered by the trigger’s actions.

• deleted tables are used with delete and update; inserted tables, with insert
and update. An update is a delete followed by an insert: it affects the
deleted table first, and then the inserted table.

Trigger restrictions

• You can create a trigger only in the current database. If you use an owner
name to qualify a trigger, you must explicitly qualify the table name the
same way. A trigger can reference objects outside the current database.

create trigger

412

• A trigger cannot apply to more than one table. However, the same trigger
action can be defined for more than one user action (for example, insert
and update) in the same create trigger statement. A table can have a
maximum of three triggers—one each for insert, update, and delete.

• Each new trigger in a table or column for the same operation (insert,
update, or delete) overwrites the previous one. No warning message
displays before the overwrite occurs.

• You cannot create a trigger on a temporary table.

• You cannot create a trigger on a view.

• You cannot create a trigger on a system table.

• You cannot use triggers that select from a text or image column of the
inserted or deleted table.

• Sybase recommends that triggers not include select statements that return
results to the user, since special handling for these returned results must be
written into every application program that allows modifications to the
trigger table.

• If a trigger references table names, column names, or view names that are
not valid identifiers, you must set quoted_identifier on before the create
trigger command and enclose each such name in double quotes. The
quoted_identifier option does not need to be on when the trigger fires.

Triggers and performance

• In performance terms, trigger overhead is usually very low. The time
involved in running a trigger is spent mostly in referencing other tables,
which are either in memory or on the database device.

• The deleted and inserted tables often referenced by triggers are always in
memory rather than on the database device, because they are logical
tables. The location of other tables referenced by the trigger determines the
amount of time the operation takes.

Setting options within triggers

• You can use the set command inside a trigger. The set option you invoke
remains in effect during the execution of the trigger, then reverts to its
former setting. In particular, the self_recursion option can be used inside a
trigger so that data modifications by the trigger itself can cause the trigger
to fire again.

CHAPTER 7 Commands

413

Dropping a trigger

• You must drop and re-create the trigger if you rename any of the objects
referenced by the trigger. You can rename a trigger with sp_rename.

• When you drop a table, any triggers associated with it are also dropped.

Actions that do not cause triggers to fire

• A truncate table command is not caught by a delete trigger. Although a
truncate table statement is, in effect, like a delete without a where clause (it
removes all rows), changes to the data rows are not logged, and so cannot
fire a trigger.

Since permission for the truncate table command defaults to the table
owner and is not transferable, only the table owner need worry about
inadvertently circumventing a delete trigger with a truncate table
statement.

• The writetext command, whether logged or unlogged, does not cause a
trigger to fire.

Triggers and transactions

• When a trigger is defined, the action it specifies on the table to which it
applies is always implicitly part of a transaction, along with the trigger
itself. Triggers are often used to roll back an entire transaction if an error
is detected, or they can be used roll back the effects of a specific data
modification:

• When the trigger contains the rollback transaction command, the
rollback aborts the entire batch, and any subsequent statements in the
batch are not executed.

• When the trigger contains the rollback trigger, the rollback affects only
the data modification that caused the trigger to fire. The rollback
trigger command can include a raiserror statement. Subsequent
statements in the batch are executed.

• Since triggers execute as part of a transaction, the following statements
and system procedures are not allowed in a trigger:

• All create commands, including create database, create default,
create index, create procedure, create rule, create table, create trigger,
and create view

• All drop commands

• alter database and alter table

• truncate table

create trigger

414

• grant and revoke

• update statistics

• sp_configure

• load database and load transaction

• disk init, disk mirror, disk refit, disk reinit, disk remirror, disk unmirror

• select into

• If a desired result (such as a summary value) depends on the number of
rows affected by a data modification, use @@rowcount to test for
multirow data modifications (an insert, delete, or update based on a select
statement), and take appropriate actions. Any Transact-SQL statement that
does not return rows (such as an if statement) sets @@rowcount to 0, so
the test of @@rowcount should occur at the beginning of the trigger.

Inserting and updating triggers

• When an insert or update command executes, Adaptive Server adds rows
to both the trigger table and the inserted table at the same time. The rows
in the inserted table are always duplicates of one or more rows in the
trigger table.

• An update or insert trigger can use the if update command to determine
whether the update or insert changed a particular column. if
update(column_name) is true for an insert statement whenever the column
is assigned a value in the select list or in the values clause. An explicit
NULL or a default assigns a value to a column and thus activates the
trigger. An implicit NULL, however, does not.

For example, if you create the following table and trigger:

create table junk
(aaa int null,
bbb int not null)
create trigger trigtest on junk
for insert as
if update (aaa)

print "aaa updated"
if update (bbb)

print "bbb updated"

Inserting values into either column or into both columns fires the trigger
for both column aaa and column bbb:

insert junk (aaa, bbb)
values (1, 2)

CHAPTER 7 Commands

415

aaa updated
bbb updated

Inserting an explicit NULL into column aaa also fires the trigger:

insert junk
values (NULL, 2)
aaa updated
bbb updated

If there was a default for column aaa, the trigger would also fire.

However, with no default for column aaa and no value explicitly inserted,
Adaptive Server generates an implicit NULL and the trigger does not fire:

insert junk (bbb)
values(2)
bbb updated

if update is never true for a delete statement.

Nesting triggers and trigger recursion

• Adaptive Server allows nested triggers by default. To prevent triggers
from nesting, use sp_configure to set the allow nested triggers option to 0
(off), as follows:

sp_configure "allow nested triggers", 0

• Triggers can be nested to a depth of 16 levels. If a trigger changes a table
on which there is another trigger, the second trigger fires and can then call
a third trigger, and so forth. If any trigger in the chain sets off an infinite
loop, the nesting level is exceeded and the trigger aborts, rolling back the
transaction that contains the trigger query.

Note Since triggers are put into a transaction, a failure at any level of a set
of nested triggers cancels the entire transaction: all data modifications are
rolled back. Supply your triggers with messages and other error handling
and debugging aids to determine where the failure occurred.

• The global variable @@nestlevel contains the nesting level of the current
execution. Each time a stored procedure or trigger calls another stored
procedure or trigger, the nesting level is incremented. If the maximum of
16 is exceeded, the transaction aborts.

• If a trigger calls a stored procedure that performs actions that would cause
the trigger to fire again, the trigger is reactivated only if nested triggers are
enabled. Unless there are conditions within the trigger that limit the
number of recursions, this causes a nesting-level overflow.

create trigger

416

For example, if an update trigger calls a stored procedure that performs an
update, the trigger and stored procedure execute once if allow nested
triggers is off. If allow nested triggers is on, and the number of updates is
not limited by a condition in the trigger or procedure, the procedure or
trigger loop continues until it exceeds the 16-level maximum nesting
value.

• By default, a trigger does not call itself in response to a second data
modification to the same table within the trigger, regardless of the setting
of the allow nested triggers configuration parameter. A set option,
self_recursion, enables a trigger to fire again as a result of a data
modification within the trigger. For example, if an update trigger on one
column of a table results in an update to another column, the update trigger
fires only once when self_recursion is disabled, but it can fire up to 16
times if self_recursion is set on. The allow nested triggers configuration
parameter must also be enabled in order for self-recursion to take place.

Getting information about triggers

• The execution plan for a trigger is stored in sysprocedures.

• Each trigger is assigned an identification number, which is stored as a new
row in sysobjects with the object ID for the table to which it applies in the
deltrig column, and also as an entry in the deltrig, instrig, and updtrig
columns of the sysobjects row for the table to which it applies.

• To display the text of a trigger, which is stored in syscomments, use
sp_helptext.

If the System Security Officer has reset the allow select on
syscomments.text column parameter with the system procedure
sp_configure (as required to run Adaptive Server in the evaluated
configuration), you must be the creator of the trigger or a System
Administrator to view the text of the trigger through sp_helptext.

• For a report on a trigger, use sp_help.

• For a report on the tables and views that are referenced by a trigger, use
sp_depends.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only a System Security Officer can grant or revoke permissions to create
triggers. The Database Owner can create triggers on any user table. Users can
create triggers only on tables that they own.

Permission to issue the create trigger command is granted to users by default.

CHAPTER 7 Commands

417

When the System Security Officer revokes permission for a user to create
triggers, a revoke row is added in the sysprotects table for that user. To grant
permission to that user to issue create trigger, issue two grant commands: the
first command removes the revoke row from sysprotects; the second inserts a
grant row. If permission to create triggers is revoked, the user cannot create
triggers even on tables that the user owns. Revoking permission to create
triggers from a user affects only the database where the revoke command was
issued.

Permissions on objects at trigger creation When you create a trigger,
Adaptive Server makes no permission checks on objects such as tables or
views that the trigger references. Therefore, you can create a trigger
successfully, even though you do not have access to its objects. All permission
checks occur when the trigger fires.

Permissions on objects at trigger execution When the trigger executes,
permission checks on its objects depend on whether the trigger and its objects
are owned by the same user.

• If the trigger and its objects are not owned by the same user, the user who
caused the trigger to fire must have been granted direct access to the
objects. For example, if the trigger performs a select from a table the user
cannot access, the trigger execution fails. In addition, the data
modification that caused the trigger to fire is rolled back.

• If a trigger and its objects are owned by the same user, special rules apply.
The user automatically has implicit permission to access the trigger’s
objects, even though the user cannot access them directly. A detailed
description of the rules for implicit permissions is discussed in the System
Administration Guide.

See also Commands alter table, create procedure, create procedure, drop trigger,
rollback trigger, set

System procedures sp_commonkey, sp_configure, sp_depends,
sp_foreignkey, sp_help, sp_helptext, sp_primarykey, sp_rename, sp_spaceused

create view

418

create view
Description Creates a view, which is an alternative way of looking at the data in one or more

tables.

Syntax create view [owner .]view_name
[(column_name [, column_name]...)]
as
select [distinct] select_statement
[with check option]

Parameters view_name
is the name of the view. The name cannot include the database name. If you
have set quoted_identifier on, you can use a delimited identifier. Otherwise,
the view name cannot be a variable and must conform to the rules for
identifiers. For more information about valid view names, see “Identifiers”
on page 229. Specify the owner’s name to create another view of the same
name owned by a different user in the current database. The default value for
owner is the current user.

column_name
specifies names to be used as headings for the columns in the view. If you
have set quoted_identifier on, you can use a delimited identifier. Otherwise,
the column name must conform to the rules for identifiers. For more
information about valid column names, see “Identifiers” on page 229.

It is always legal to supply column names, but column names are required
only in the following cases:

• When a column is derived from an arithmetic expression, function,
string concatenation, or constant

• When two or more columns have the same name (usually because of a
join)

• When you want to give a column in a view a different name than the
column from which it is derived (see Example 3)

Column names can also be assigned in the select statement (see Example 4).
If no column names are specified, the view columns acquire the same names
as the columns in the select statement.

select
begins the select statement that defines the view.

distinct
specifies that the view cannot contain duplicate rows.

CHAPTER 7 Commands

419

select_statement
completes the select statement that defines the view. The select statement
can use more than one table and other views.

with check option
indicates that all data modification statements are validated against the view
selection criteria. All rows inserted or updated through the view must remain
visible through the view.

Examples Example 1 Creates a view derived from the title, type, price, and pubdate
columns of the base table titles:

create view titles_view
as select title, type, price, pubdate
from titles

Example 2 Creates “new view” from “old view.” Both columns are renamed
in the new view. All view and column names that include embedded blanks are
enclosed in double quotation marks. Before creating the view, you must use set
quoted_identifier on:

create view "new view" ("column 1", "column 2")
as select col1, col2 from "old view"

Example 3 Creates a view that contains the titles, advances, and amounts due
for books with a price less than $5.00:

create view accounts (title, advance, amt_due)
as select title, advance, price * total_sales
from titles
where price > $5

Example 4 Creates a view derived from two base tables, authors and
publishers. The view contains the names and cities of authors who live in a city
in which there is a publisher:

create view cities
(authorname, acity, publishername, pcity)
as select au_lname, authors.city, pub_name,
publishers.city
from authors, publishers
where authors.city = publishers.city

Example 5 Creates a view with the same definition as in example 3, but with
column headings provided in the select statement:

create view cities2
as select authorname = au_lname,
acity = authors.city, publishername = pub_name, pcity =
publishers.city

create view

420

from authors, publishers
where authors.city = publishers.city

Example 6 Creates a view, author_codes, derived from titleauthor that lists the
unique author identification codes:

create view author_codes
as select distinct au_id
from titleauthor

Example 7 Creates a view, price_list, derived from title that lists the unique
book prices:

create view price_list (price)
as select distinct price
from titles

Example 8 Creates a view of the stores table that excludes information about
stores outside of California. The with check option clause validates each
inserted or updated row against the view’s selection criteria. Rows for which
state has a value other than “CA” are rejected:

create view stores_cal
as select * from stores
where state = "CA"
with check option

Example 9 Creates a view, stores_cal30, which is derived from stores_cal. The
new view inherits the check option from stores_cal. All rows inserted or
updated through stores_cal30 must have a state value of “CA.”. Because
stores_cal30 has no with check option clause, you can insert or update rows
through stores_cal30 for which payterms has a value other than “Net 30”:

create view stores_cal30
as select * from stores_cal
where payterms = "Net 30"

Example 10 Creates a view, stores_cal30_check, derived from stores_cal. The
new view inherits the check option from stores_cal. It also has a with check
option clause of its own. Each row that is inserted or updated through
stores_cal30_check is validated against the selection criteria of both stores_cal
and stores_cal30_check. Rows with a state value other than “CA” or a payterms
value other than “Net 30” are rejected:

create view stores_cal30_check
as select * from stores_cal
where payterms = "Net 30"
with check option

CHAPTER 7 Commands

421

Usage • You can use views as security mechanisms by granting permission on a
view, but not on its underlying tables.

• You can rename a view with sp_rename.

• When you query through a view, Adaptive Server checks to make sure that
all the database objects referenced anywhere in the statement exist, that
they are valid in the context of the statement, and that data update
commands do not violate data integrity rules. If any of these checks fail,
you get an error message. If the checks are successful, create view
“translates” the view into an action on the underlying table(s).

• For more information about views, see the Transact-SQL User’s Guide.

Restrictions on views

• You can create a view only in the current database.

• The number of columns referenced by a view cannot exceed 1024.

• You cannot create a view on a temporary table.

• You cannot create a trigger or build an index on a view.

• You cannot use readtext or writetext on text or image columns in views.

• You cannot include order by or compute clauses or the keyword into in the
select statements that define views.

• You cannot update or insert into a view whose select statements include
the union operator.

• You cannot delete from a view whose select statements include the union
operator.

• create view statements can be combined with other SQL statements in a
single batch.

 Warning! When a create view command occurs within an if...else block or
a while loop, Adaptive Server creates the schema for the view before
determining whether the condition is true. This may lead to errors if the
view already exists. Make sure a view with the same name does not
already exist in the database.

• You cannot use the following variable in create view statements:

declare @p int
select @p = 2
create view v2
as

create view

422

select * from t1 where c1 > @p

Doing so results in error message 7351, which says, “Local or global
variables not allowed in view definition.”

View resolution

• If you alter the structure of a view’s underlying table(s) by adding or
deleting columns, the new columns do not appear in a view defined with a
select * clause unless the view is dropped and redefined. The asterisk
shorthand is interpreted and expanded when the view is first created.

• If a view depends on a table (or view) that has been dropped, Adaptive
Server produces an error message when anyone tries to use the view. If a
new table (or view) with the same name and schema is created to replace
the one that has been dropped, the view again becomes usable.

• You can redefine a view without redefining other views that depend on it,
unless the redefinition makes it impossible for Adaptive Server to translate
the dependent view(s).

Modifying data through views

• delete statements are not allowed on multitable views.

• insert statements are not allowed unless all not null columns in the
underlying table or view are included in the view through which you are
inserting new rows (Adaptive Server cannot supply values for not null
columns in the underlying table or view).

• You cannot insert a row through a view that includes a computed column.

• insert statements are not allowed on join views created with distinct or with
check option.

• update statements are allowed on join views with check option. The update
fails if any of the affected columns appear in the where clause, in an
expression that includes columns from more than one table.

• If you insert or update a row through a join view, all affected columns must
belong to the same base table.

• You cannot update or insert into a view defined with the distinct clause.

• Data update statements cannot change any column in a view that is a
computation, and cannot change a view that includes aggregates.

IDENTITY columns and views

• You cannot add a new IDENTITY column to a view with the
column_name = identity(precision) syntax.

CHAPTER 7 Commands

423

• To insert an explicit value into an IDENTITY column, the table owner,
Database Owner, or System Administrator must set identity_insert
table_name on for the column’s base table, not through the view through
which it is being inserted.

group by clauses and views

• When creating a view for security reasons, be careful when using
aggregate functions and the group by clause. A Transact-SQL extension
allows you to name columns that do not appear in the group by clause. If
you name a column that is not in the group by clause, Adaptive Server
returns detailed data rows for the column. For example, this query returns
a row for every (18 rows)—more data than you might intend:

select title_id, type, sum(total_sales)
from titles
group by type

 While this query returns one row for each type (6 rows):

select type, sum(total_sales)
from titles
group by type

For more information about group by, see “group by and having clauses
on page 534.”

distinct clauses and views

• The distinct clause defines a view as a database object that contains no
duplicate rows. A row is defined to be a duplicate of another row if all of
its column values match the same column values in another row. Null
values are considered to be duplicates of other null values.

Querying a subset of a view’s columns can result in what appear to be
duplicate rows. If you select a subset of columns, some of which contain
the same values, the results appear to contain duplicate rows. However, the
underlying rows in the view are still unique. Adaptive Server applies the
distinct requirement to the view’s definition when it accesses the view for
the first time (before it does any projection and selection) so that all the
view’s rows are distinct from each other.

You can specify distinct more than once in the view definition’s select
statement to eliminate duplicate rows, as part of an aggregate function or
a group by clause. For example:

select distinct count(distinct title_id), price
from titles

create view

424

• The scope of the distinct applies only for that view; it does not cover any
new views derived from the distinct view.

with check option clauses and views

• If a view is created with check option, each row that is inserted or updated
through the view must meet the selection criteria of the view.

• If a view is created with check option, all views derived from the “base”
view must satisfy its check option. Each row inserted or updated through
the derived view must remain visible through the base view.

Getting information about views

• To get a report of the tables or views on which a view depends, and of
objects that depend on a view, execute sp_depends.

• To display the text of a view, which is stored in syscomments, execute
sp_helptext with the view name as the parameter.

Standards SQL92 – Compliance level: Entry-level compliant.

The use of more than one distinct keyword and the use of
“column_heading = column_name” in the select list are Transact-SQL
extensions.

Permissions create view permission defaults to the Database Owner, who can transfer it to
other users.

Permissions on objects at view reation When you create a view, Adaptive
Server makes no permission checks on objects, such as tables and views, that
are referenced by the view. Therefore, you can create a view successfully even
if you do not have access to its objects. All permission checks occur when a
user invokes the view.

Permissions on objects at view execution When a view is invoked,
permission checks on its objects depend on whether the view and all referenced
objects are owned by the same user.

• If the view and its objects are not owned by the same user, the invoker
must have been granted direct access to the objects. For example, if the
view performs a select from a table the invoker cannot access, the select
statement fails.

CHAPTER 7 Commands

425

• If the view and its objects are owned by the same user, special rules apply.
The invoker automatically has implicit permission to access the view’s
objects even though the invoker could not access them directly. Without
having to grant users direct access to your tables, you can give them
restricted access with a view. In this way, a view can be a security
mechanism. For example, invokers of the view might be able to access
only certain rows and columns of your table. A detailed description of the
rules for implicit permissions is discussed in the System Administration
Guide.

See also Commands create schema, drop view, update

System procedures sp_depends, sp_help, sp_helptext, sp_rename

dbcc

426

dbcc
Description Database Consistency Checker (dbcc) checks the logical and physical

consistency of a database and provides statistics, planning, and repair
functionality.

Syntax dbcc checkalloc [(database_name [, fix | nofix])]

dbcc checkcatalog [(database_name)]

dbcc checkdb [(database_name [, skip_ncindex])]

dbcc checkstorage [(database_name)]

dbcc checktable({table_name | table_id}[, skip_ncindex])

dbcc checkverify [(database_name)]

dbcc complete_xact (xid, {"commit" | "rollback"})

dbcc forget_xact (xid)

dbcc dbrepair (database_name, dropdb)

dbcc engine({offline , [enginenum] | "online" })

dbcc fix_text ({table_name | table_id})

dbcc indexalloc ({table_name | table_id}, index_id
[, {full | optimized | fast | null}
[, fix | nofix]])

dbcc rebuild_text (table [, column
[, text_page_number]])

dbcc reindex ({table_name | table_id})

dbcc tablealloc ({table_name | table_id}
[, {full | optimized | fast | null}
[, fix | nofix]])|

dbcc { traceon | traceoff } (flag [, flag ...])

dbcc tune ({ ascinserts, {0 | 1 } , tablename |
cleanup, {0 | 1 } |
cpuaffinity, start_cpu {, on| off } |
des_greedyalloc, dbid, object_name,

" { on | off }" |
deviochar vdevno, "batch_size" |
doneinproc { 0 | 1 } |
maxwritedes, writes_per_batch })

CHAPTER 7 Commands

427

Parameters checkalloc
checks the specified database to see that all pages are correctly allocated and
that no page that is allocated is not used.
If no database name is given, checkalloc checks the current database. It
always uses the optimized report option (see tablealloc).

checkalloc reports on the amount of space allocated and used.

database_name
is the name of the database to check. If no database name is given, dbcc uses
the current database.

fix | nofix
determines whether dbcc fixes the allocation errors found. The default mode
for checkalloc is nofix. You must put the database into single-user mode to
use the fix option.

For a discussion of page allocation in Adaptive Server, see the System
Administration Guide.

checkcatalog
checks for consistency in and between system tables. For example,
checkcatalog makes sure that every type in syscolumns has a matching entry
in systypes, that every table and view in sysobjects has at least one column
in syscolumns, and that the last checkpoint in syslogs is valid. checkcatalog
also reports on any segments that have been defined. If no database name is
given, checkcatalog checks the current database.

checkdb
runs the same checks as checktable, but on each table, including syslogs, in
the specified database. If no database name is given, checkdb checks the
current database.

skip_ncindex
causes dbcc checktable or dbcc checkdb to skip checking the nonclustered
indexes on user tables. The default is to check all indexes.

checkstorage
checks the specified database for allocation, OAM page entries, page
consistency, text valued columns, allocation of text valued columns, and text
column chains. The results of each dbcc checkstorage operation are stored in
the dbccdb database. For details on using dbcc checkstorage, and on
creating, maintaining, and generating reports from dbccdb, see the System
Administration Guide.

dbcc

428

checktable
checks the specified table to see that index and data pages are correctly
linked, that indexes are in properly sorted order, that all pointers are
consistent, that the data information on each page is reasonable, and that
page offsets are reasonable. If the log segment is on its own device, running
dbcc checktable on the syslogs table reports the log(s) used and free space.
For example:

Checking syslogs
The total number of data pages in this table is 1.
*** NOTICE: Space used on the log segment is 0.20 Mbytes, 0.13%.
*** NOTICE: Space free on the log segment is 153.4 Mbytes, 99.87%.

DBCC execution completed. If dbcc printed error messages, see your System
Administrator.

If the log segment is not on its own device, the following message appears:

*** NOTICE: Notification of log space used/free cannot be reported because the
log segment is not on its own device.

table_name | table_id
is the name or object ID of the table to check.

checkverify
verifies the results of the most recent run of dbcc checkstorage for the
specified database. For details on using dbcc checkverify, see the System
Administration Guide.

complete_xact
heuristically completes a transaction by either committing or rolling back its
work. Adaptive Server retains information about all heuristically completed
transactions in the master.dbo.systransactions table, so that the external
transaction coordinator may have some knowledge of how the transaction
was completed.

 Warning! Heuristically completing a transaction in the prepared state can
cause inconsistent results for an entire distributed transaction. The System
Administrator’s decision to heuristically commit or roll back a transaction may
contradict the decision made by the coordinating Adaptive Server or protocol.

CHAPTER 7 Commands

429

forget_xact
removes the commit status of a heuristically completed transaction from
master.dbo.systransactions. forget_xact can be used when the System
Administrator does not want the coordinating service to have knowledge
that a transaction was heuristically completed, or when an external
coordinator will not be available to clear commit status in systransactions.

 Warning! Never use dbcc forget_xact in a normal DTP environment, since the
external transaction coordinator should be permitted to detect
heuristically-completed transactions. X/Open XA-compliant transaction
managers and Adaptive Server transaction coordination services automatically
clear the commit status in systransactions.

xid
is a transaction name from the systransactions.xactname column. You can
also determine valid xid values using sp_transactions.

dbrepair (database_name, dropdb)
drops a damaged database. drop database does not work on a damaged
database.

Users cannot be using the database being dropped when this dbcc statement
is issued (including the user issuing the statement).

fengine
takes Adaptive Server engines offline or brings them online. If enginenum
is not specified, dbcc engine (offline) takes the highest-numbered engine
offline. For more information, see Chapter 8, “Managing Multiprocessor
Servers,” in the System Administration Guide.

fix_text
upgrades text values after an Adaptive Server’s character set has been
changed from any character set to a new multibyte character set.

Changing to a multibyte character set makes the internal management of text
data more complicated. Since a text value can be large enough to cover
several pages, Adaptive Server must be able to handle characters that span
page boundaries. To do so, the server requires additional information on
each of the text pages. The System Administrator or table owner must run
dbcc fix_text on each table that has text data to calculate the new values
needed. For more information, see the System Administration Guide.

dbcc

430

indexalloc
checks the specified index to see that all pages are correctly allocated and
that no page that is allocated is not used. This is a smaller version of
checkalloc, providing the same integrity checks on an individual index.

indexalloc produces the same three types of reports as tablealloc: full,
optimized, and fast. If no type is indicated, or if you use null, Adaptive Server
uses optimized. The fix | nofix option functions the same with indexalloc as
with tablealloc.

Note You can specify fix or nofix only if you include a value for the type of
report (full, optimized, fast, or null).

table_name | table_id, index_id
is the table name or the table’s object ID (the id column from sysobjects) plus
the index’s indid from sysindexes.

full
reports all types of allocation errors.

optimized
produces a report based on the allocation pages listed in the object allocation
map (OAM) pages for the index. It does not report and cannot fix
unreferenced extents on allocation pages that are not listed in the OAM
pages. The optimized option is the default.

fast
does not produce an allocation report, but produces an exception report of
pages that are referenced but not allocated in the extent (2521-level errors).

fix | nofix
determines whether indexalloc fixes the allocation errors found in the table.
The default is fix for all indexes except indexes on system tables, for which
the default is nofix. To use the fix option with system tables, you must first
put the database in single-user mode.

You can specify fix or nofix only if you include a value for the type of report
(full, optimized, fast, or null).

rebuild_text
rebuilds or creates an internal Adaptive Server 12.x data structure for text or
image data. This data structure enables Adaptive Server to perform random
access and asynchronous prefetch during data queries.

CHAPTER 7 Commands

431

reindex
checks the integrity of indexes on user tables by running a fast version of
dbcc checktable. It can be used with the table name or the table’s object ID
(the id column from sysobjects). reindex prints a message when it discovers
the first index-related error, then drops and re-creates the suspect indexes.
The System Administrator or table owner must run dbcc reindex after
Adaptive Server’s sort order has been changed and indexes have been
marked “suspect” by Adaptive Server.

When dbcc finds corrupt indexes, it drops and re-creates the appropriate
indexes. If the indexes for a table are already correct, or if the table has no
indexes, dbcc reindex does not rebuild the index, but prints an informational
message instead.

dbcc reindex aborts if a table is suspected of containing corrupt data. When
that happens, an error message instructs the user to run dbcc checktable. dbcc
reindex does not allow reindexing of system tables. System indexes are
checked and rebuilt, if necessary, as an automatic part of recovery after
Adaptive Server is restarted following a sort order change.

tablealloc
checks the specified table to see that all pages are correctly allocated and that
no page that is allocated is not used. This is a smaller version of checkalloc,
providing the same integrity checks on an individual table. It can be used
with the table name or the table’s object ID (the id column from sysobjects).
For an example of tablealloc output, see the System Administration Guide.

Three types of reports can be generated with tablealloc: full, optimized, and
fast. If no type is indicated, or if you use null, Adaptive Server uses
optimized.

full
is equivalent to checkalloc at a table level; it reports all types of allocation
errors.

optimized
produces a report based on the allocation pages listed in the object allocation
map (OAM) pages for the table. It does not report and cannot fix
unreferenced extents on allocation pages that are not listed in the OAM
pages. The optimized option is the default.

fast
does not produce an allocation report, but produces an exception report of
pages that are referenced but not allocated in the extent (2521-level errors).

dbcc

432

fix | nofix
determines whether or not tablealloc fixes the allocation errors found in the
table. The default is fix for all tables except system tables, for which the
default is nofix. To use the fix option with system tables, you must first put
the database in single user mode.

You can specify fix or nofix only if you include a value for the type of report
(full, optimized, fast, or null).

traceon | traceoff
toggles the printing of diagnostics during query optimization (flag values
302, 310, and 317). Values 3604 and 3605 toggle sending trace output to the
user session and to the error log, respectively. For more information, see
Chapter 37, “Tuning with dbcc traceon” in the Performance and Tuning
Guide.

tune
enables or disables tuning flags for special performance situations. For more
information on the individual options, see the Performance and Tuning
Guide.

Examples Example 1 Checks pubs2 for page allocation errors:

dbcc checkalloc(pubs2)

Example 2 Checks database consistency for pubs2 and places the information
in the dbccdb database:

dbcc checkstorage(pubs2)

Example 3 Adaptive Server returns an optimized report of allocation for this
table, but does not fix any allocation errors:

dbcc tablealloc(publishers, null, nofix)

Checking salesdetail
The total number of pages in partition 1 is 3.
The total number of pages in partition 2 is 1.
The total number of pages in partition 3 is 1.
The total number of pages in partition 4 is 1.
The total number of data pages in this table is 10.
Table has 116 data rows.
DBCC execution completed. If DBCC printed error
messages, contact a user with System Administrator (SA)
role.

dbcc checktable(salesdetail)

Example 4 Adaptive Server returns a full report of allocation for the index
with an indid of 2 on the titleauthor table and fixes any allocation errors:

CHAPTER 7 Commands

433

dbcc indexalloc ("pubs..titleauthor", 2, full)

Example 5 Rebuilds or creates an internal Adaptive Server 12.x data structure
for all text and image columns in the blurbs table:

dbcc rebuild_text (blurbs)

Example 6 dbcc reindex has discovered one or more corrupt indexes in the
titles table:

dbcc reindex(titles)

One or more indexes are corrupt. They will be rebuilt.

Example 7 Upgrades text values for blurbs after a character set change:

dbcc fix_text(blurbs)

Example 8 Heuristically aborts the transaction, “distributedxact1”:

dbcc complete_xact (distributedxact1, "rollback")

Example 9 Removes information for the transaction, “distributedxact1” from
master.dbo.systransactions:

dbcc forget_xact (distributedxact1)

Usage • dbcc, the Database Consistency Checker, can be run while the database is
active, except for the dbrepair(database_name, dropdb) option and dbcc
checkalloc with the fix option.

• dbcc locks database objects as it checks them. For information on
minimizing performance problems while using dbcc, see the dbcc
discussion in the System Administration Guide.

• To qualify a table or an index name with a user name or database name,
enclose the qualified name in single or double quotation marks. For
example:

dbcc tablealloc("pubs2.pogo.testtable")

• dbcc reindex cannot be run within a user-defined transaction.

• dbcc fix_text can generate a large number of log records, which may fill up
the transaction log. dbcc fix_text is designed so that updates are done in a
series of small transactions: in case of a log space failure, only a small
amount of work is lost. If you run out of log space, clear your log and
restart dbcc fix_text using the same table that was being upgraded when the
original dbcc fix_text failed.

dbcc

434

• If you attempt to use select, readtext, or writetext on text values after
changing to a multibyte character set, and you have not run dbcc fix_text,
the command fails, and an error message instructs you to run dbcc fix_text
on the table. However, you can delete text rows after changing character
sets without running dbcc fix_text.

• dbcc output is sent as messages or errors, rather than as result rows. Client
programs and scripts should check the appropriate error handlers.

• If a table is partitioned, dbcc checktable returns information about each
partition.

• text and image data that has been upgraded to Adaptive Server version 12.x
is not automatically upgraded to the new storage format. To improve query
performance and enable prefetch for this data, use the rebuild_text keyword
against the upgraded text and image columns.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only the table owner can execute dbcc with the checktable, fix_text, rebuild_text,
or reindex keywords.

Only the Database Owner can use the checkstorage, checkdb, checkcatalog,
checkalloc, indexalloc, and tablealloc keywords.

Only a System Administrator can use the dbrepair, complete_xact, and
forget_xact keywords.

Only a System Administrator can use dbcc traceon and dbcc traceoff
commands.

Only a System Administrator can use dbcc engine.

See also Commands drop database

System procedures sp_configure, sp_helpdb

CHAPTER 7 Commands

435

deallocate cursor
Description Makes a cursor inaccessible and releases all memory resources committed to

that cursor.

Syntax deallocate cursor cursor_name

Parameters cursor_name
is the name of the cursor to deallocate.

Examples Deallocates the cursor named “authors_crsr”:

deallocate cursor authors_crsr

Usage • Adaptive Server returns an error message if the cursor does not exist.

• You must deallocate a cursor before you can use its cursor name as part of
another declare cursor statement.

• deallocate cursor has no effect on memory resource usage when specified
in a stored procedure or trigger.

• You can deallocate a cursor whether it is open or closed.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions deallocate cursor permission defaults to all users. No permission is required to
use it.

See also Commands close, declare cursor

declare

436

declare
Description Declares the name and type of local variables for a batch or procedure.

Syntax Variable declaration:

declare @variable_name datatype
[, @variable_name datatype]...

Variable assignment:

select @variable = {expression | select_statement}
[, @variable = {expression | select_statement} ...]
[from table_list]
[where search_conditions]
[group by group_by_list]
[having search_conditions]
[order by order_by_list]
[compute function_list [by by_list]]

Parameters @variable_name
must begin with @ and must conform to the rules for identifiers.

datatype
can be either a system datatype or a user-defined datatype.

Examples Example 1 Declares two variables and prints strings according to the values in
the variables:

declare @one varchar(18), @two varchar(18)
select @one = "this is one", @two = "this is two"
if @one = "this is one"

print "you got one"
if @two = "this is two"

print "you got two"
else print "nope"

you got one
you got two

Example 2 Prints “Ouch!” if the maximum book price in the titles table is more
than $20.00:

declare @veryhigh money
select @veryhigh = max(price)

from titles
if @veryhigh > $20

print "Ouch!"

Usage • Assign values to local variables with a select statement.

CHAPTER 7 Commands

437

• The maximum number of parameters in a procedure is 2048. The number
of local or global variables is limited only by available memory. The @
sign denotes a variable name.

• Local variables are often used as counters for while loops or if...else blocks.
In stored procedures, they are declared for automatic, noninteractive use
by the procedure when it executes. Local variables must be used in the
batch or procedure in which they are declared.

• The select statement that assigns a value to the local variable usually
returns a single value. If there is more than one value to return, the variable
is assigned the last one. The select statement that assigns values to
variables cannot be used to retrieve data in the same statement.

• The print and raiserror commands can take local variables as arguments.

• Users cannot create global variables and cannot update the value of global
variables directly in a select statement.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions declare permission defaults to all users. No permission is required to use it.

See also Commands print, raiserror, select, while

declare cursor

438

declare cursor
Description Defines a cursor.

Syntax declare cursor_name cursor
for select_statement
[for {read only | update [of column_name_list]}]

Parameters cursor_name
is the name of the cursor being defined.

select_statement
is the query that defines the cursor result set. See select for more
information.

for read only
specifies that the cursor result set cannot be updated.

for update
specifies that the cursor result set is updatable.

of column_name_list
is the list of columns from the cursor result set (specified by the
select_statement) defined as updatable. Adaptive Server also allows you to
include columns that are not specified in the list of columns of the cursor’s
select_statement (and excluded from the result set), but that are part of the
tables specified in the select_statement.

Examples Example 1 Defines a result set for the authors_crsr cursor that contains all
authors from the authors table who do not reside in California:

declare authors_crsr cursor
for select au_id, au_lname, au_fname
from authors
where state != 'CA'

Example 2 Defines a read-only result set for the titles_crsr cursor that contains
the business-type books from the titles table:

declare titles_crsr cursor
for select title, title_id from titles
where title_id like "BU%"
for read only

Example 3 Defines an updatable result set for the pubs_crsr cursor that
contains all of the rows from the publishers table. It defines the address of each
publisher (cityand state columns) for update:

declare pubs_crsr cursor
for select pub_name, city, state

CHAPTER 7 Commands

439

from publishers
for update of city, state

Usage Restrictions on cursors

• A declare cursor statement must precede any open statement for that
cursor.

• You cannot include other statements with declare cursor in the same
Transact-SQL batch.

• You can include up to 1024 columns in an update clause of a client’s
declare cursor statement.

• cursor_name must be a valid Adaptive Server identifier.

Cursor select statements

• select_statement can use the full syntax and semantics of a Transact-SQL
select statement, with these restrictions:

• Must contain a from clause.

• Cannot contain a compute, for browse, or into clause.

• Can contain the holdlock keyword.

• The select_statement can contain references to Transact-SQL parameter
names or Transact-SQL local variables (for all cursor types except
language). The names must reference the Transact-SQL parameters and
local variables defined in the procedure, trigger, or statement batch that
contains the declare cursor statement.

The parameters and local variables referenced in the declare cursor
statement do not have to contain valid values until the cursor is opened.

• The select_statement can contain references to the inserted and deleted
temporary tables that are used in triggers.

Cursor scope

• A cursor’s existence depends on its scope. The scope refers to the context
in which the cursor is used, that is, within a user session, within a stored
procedure, or within a trigger.

Within a user session, the cursor exists only until the user ends the session.
The cursor does not exist for any additional sessions started by other users.
After the user logs off, Adaptive Server deallocates the cursors created in
that session.

declare cursor

440

If a declare cursor statement is part of a stored procedure or trigger, the
cursor created within it applies to stored procedure or trigger scope and to
the scope that launched the stored procedure or trigger. Cursors declared
inside a trigger on an inserted or a deleted table are not accessible to any
nested stored procedures or triggers. However, cursors declared inside a
trigger on an inserted or a deleted table are accessible within the scope of
the trigger. Once the stored procedure or trigger completes, Adaptive
Server deallocates the cursors created within it.

Figure 7-1 illustrates how cursors operate between scopes.

Figure 7-1: How cursors operate within scopes

• A cursor name must be unique within a given scope. Adaptive Server
detects name conflicts within a particular scope only during runtime. A
stored procedure or trigger can define two cursors with the same name if
only one is executed. For example, the following stored procedure works
because only one names_crsr cursor is defined in its scope:

create procedure proc2 @flag int

1 – User Session

declare cursor c1
go
exec sp_proc1 2 – Within proc1

Can access cursor c1 from
User Session

declare cursor c2
go
update command
fires trigger1

4 – User Session

Can access cursor c1, but not
cursor c2 or c3, since they no
longer exist

 3 – Within trigger1

Can access cursor c2 from
proc1 and cursor c1 from
User Session

declare cursor c3
go
exit trigger1 back to User
Session (Scope 1)

CHAPTER 7 Commands

441

as
if @flag > 0

declare names_crsr cursor
for select au_fname from authors

else
declare names_crsr cursor
for select au_lname from authors

return

Result set

• Cursor result set rows may not reflect the values in the actual base table
rows. For example, a cursor declared with an order by clause usually
requires the creation of an internal table to order the rows for the cursor
result set. Adaptive Server does not lock the rows in the base table that
correspond to the rows in the internal table, which permits other clients to
update these base table rows. In that case, the rows returned to the client
from the cursor result set would not be in sync with the base table rows.

• A cursor result set is generated as the rows are returned through a fetch of
that cursor. This means that a cursor select query is processed like a normal
select query. This process, known as a cursor scan, provides a faster
turnaround time and eliminates the need to read rows that are not required
by the application.

A restriction of cursor scans is that they can only use the unique indexes
of a table. However, if none of the base tables referenced by the cursor
result set are updated by another process in the same lock space as the
cursor, the restriction is unnecessary. Adaptive Server allows the
declaration of cursors on tables without unique indexes, but any attempt to
update those tables in the same lock space closes all cursors on the tables.

Updatable cursors

• After defining a cursor using declare cursor, Adaptive Server determines
whether the cursor is updatable or read-only. If a cursor is updatable, you
can update or delete rows within the cursor result set. If a cursor is
read-only, you cannot change the result set.

• Use the for update or for read only clause to explicitly define a cursor as
updatable or read-only. You cannot define an updatable cursor if its
select_statement contains one of the following constructs:

• distinct option

• group by clause

• Aggregate function

declare cursor

442

• Subquery

• union operator

• at isolation read uncommitted clause

If you omit either the for update or the read only clause, Adaptive Server
checks to see whether the cursor is updatable.

Adaptive Server also defines a cursor as read-only if you declare a
language- or server-type cursor that includes an order by clause as part of
its select_statement. Adaptive Server handles updates differently for
client- and execute-type cursors, thereby eliminating this restriction.

• If you do not specify a column_name_list with the for update clause, all the
specified columns in the query are updatable. Adaptive Server attempts to
use unique indexes for updatable cursors when scanning the base table.
For cursors, Adaptive Server considers an index containing an IDENTITY
column to be unique, even if it is not so declared.

If you do not specify the for update clause, Adaptive Server chooses any
unique index, although it can also use other indexes or table scans if no
unique index exists for the specified table columns. However, when you
specify the for update clause, Adaptive Server must use a unique index
defined for one or more of the columns to scan the base table. If none
exists, it returns an error.

• In most cases, include only columns to be updated in the
column_name_list of the for update clause. If the table has only one unique
index, you do not need to include its column in the for update
column_name_list; Adaptive Server will find it when it performs the cursor
scan. If the table has more than one unique index, include its column in the
for update column_name_list, so that Adaptive Server can find it quickly for
the cursor scan.

This allows Adaptive Server to use that unique index for its cursor scan,
which helps prevent an update anomaly called the Halloween problem.
Another way to prevent the Halloween problem is to create tables with the
unique auto_identity index database option. For more information, see the
System Administration Guide.

CHAPTER 7 Commands

443

The Halloween problem occurs when a client updates a column of a cursor
result set row that defines the order in which the rows are returned from
the base tables. For example, if Adaptive Server accesses a base table
using an index, and the index key is updated by the client, the updated
index row can move within the index and be read again by the cursor. This
is a result of an updatable cursor only logically creating a cursor result set.
The cursor result set is actually the base tables that derive the cursor.

• If you specify the read only option, the cursor result set cannot be updated
using the delete or update statement.

Standards SQL92 – Compliance level: Entry-level compliant.

The for update and for read only options are Transact-SQL extensions.

Permissions declare cursor permission defaults to all users. No permission is required to use
it.

See also Commands open

delete

444

delete
Description Removes rows from a table.

Syntax delete [from]
[[database.]owner.]{view_name|table_name}
[where search_conditions]
[plan "abstract plan"]

delete [[database.]owner.]{table_name | view_name}
[from [[database.]owner.]{view_name [readpast]|

table_name [readpast]
[(index {index_name | table_name }
[prefetch size][lru|mru])]}

[, [[database.]owner.]{view_name [readpast]|
table_name [readpast]

[(index {index_name | table_name }
[prefetch size][lru|mru])]} ...]

[where search_conditions]]
[plan "abstract plan"]

delete [from] [[database.]owner.]{table_name|view_name}
where current of cursor_name

Parameters from (after delete)
is an optional keyword used for compatibility with other versions of SQL.

view_name | table_name
is the name of the view or table from which to remove rows. Specify the
database name if the view or table is in another database, and specify the
owner’s name if more than one view or table of that name exists in the
database. The default value for owner is the current user, and the default
value for database is the current database.

where
is a standard where clause. See where clause for more information.

from (after table_name or view_name)
lets you name more than one table or view to use with a where clause when
specifying which rows to delete. This from clause allows you to delete rows
from one table based on data stored in other tables, giving you much of the
power of an embedded select statement.

readpast
specifies that the delete command skip all pages or rows on which
incompatible locks are held, without waiting for locks or timing out. For
datapages-locked tables, the command skips all rows on pages on which
incompatible locks are held; for datarows-locked tables, it skips all rows on
which incompatible locks are held.

CHAPTER 7 Commands

445

index index_name
specifies an index to use for accessing table_name. You cannot use this
option when you delete from a view.

prefetch size
specifies the I/O size, in kilobytes, for tables that are bound to caches with
large I/Os configured. You cannot use this option when you delete from a
view. sp_helpcache shows the valid sizes for the cache an object is bound to
or for the default cache.

When using prefetch and designating the prefetch size (size), the minimum
is 2K and any power of two on the logical page size up to 16K. prefetch size
options in kilobytes are:

The prefetch size specified in the query is only a suggestion. To allow the
size specification, configure the data cache at that size. If you do not
configure the data cache to a specific size, the default prefetch size is used.

To configure the data cache size, use sp_cacheconfigure.

Note If Component Integration Services is enabled, you cannot use the
prefetch keyword for remote servers.

lru | mru
specifies the buffer replacement strategy to use for the table. Use lru to force
the optimizer to read the table into the cache on the MRU/LRU (most
recently used/least recently used) chain. Use mru to discard the buffer from
cache, and replace it with the next buffer for the table. You cannot use this
option when you delete from a view.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. See Chapter 22,
“Creating and Using Abstract Plans,” in the Performance and Tuning Guide
for more information.

Logical page size Prefetch size options

2 2, 4, 8 16

4 4, 8, 16, 32

8 8, 16, 32, 64

16 16, 32, 64, 128

delete

446

where current of cursor_name
causes Adaptive Server to delete the row of the table or view indicated by
the current cursor position for cursor_name.

Examples Example 1 Deletes all rows from the authors table:

delete authors

Example 2 Deletes a row or rows from the authors table:

delete from authors
where au_lname = "McBadden"

Example 3 Deletes rows for books written by Bennet from the titles table.

delete titles
from titles, authors, titleauthor
where authors.au_lname = 'Bennet'

and authors.au_id = titleauthor.au_id
and titleauthor.title_id = titles.title_id

The pubs2 database includes a trigger (deltitle) that prevents the deletion of the
titles recorded in the sales table; drop this trigger for this example to work.

Example 4 Deletes a row from the titles table currently indicated by the cursor
title_crsr:

delete titles where current of title_crsr

Example 5 Determines which row has a value of 4 for the IDENTITY column
and deletes it from the authors table. Note the use of the syb_identity keyword
instead of the actual name of the IDENTITY column:

delete authors
where syb_identity = 4

Example 6 Deletes rows from authors, skipping any locked rows:

delete from authors from authors readpast
where state = "CA"

Example 7 Deletes rows from stores, skipping any locked rows. If any rows
in authors are locked, the query blocks on these rows, waiting for the locks to
be released:

delete stores from stores readpast, authors
where stores.city = authors.city

Usage • delete removes rows from the specified table.

• You can refer to as many as 15 tables in a delete statement.

CHAPTER 7 Commands

447

Restrictions

• You cannot use delete with a multitable view (one whose from clause
names more than one table), even though you may be able to use update
or insert on that same view. Deleting a row through a multitable view
changes multiple tables, which is not permitted. insert and update
statements that affect only one base table of the view are permitted.

• Adaptive Server treats two different designations for the same table in a
delete as two tables. For example, the following delete issued in pubs2
specifies discounts as two tables (discounts and pubs2..discounts):

delete discounts
from pubs2..discounts, pubs2..stores
where pubs2..discounts.stor_id =

pubs2..stores.stor_id

In this case, the join does not include discounts, so the where condition
remains true for every row; Adaptive Server deletes all rows in discounts
(which is not the desired result). To avoid this problem, use the same
designation for a table throughout the statement.

• If you are deleting a row from a table that is referenced from other tables
via referential constraints, Adaptive Server checks all the referencing
tables before permitting the delete. If the row you are attempting to delete
contains a primary key that is being used as a foreign key by one of the
referencing tables, the delete is not allowed.

Deleting all rows from a table

• If you do not use a where clause, all rows in the table named after delete
[from] are removed. The table, though empty of data, continues to exist
until you issue a drop table command.

• truncate table and delete without a row specification are functionally
equivalent, but truncate table is faster. delete removes rows one at a time
and logs these transactions. truncate table removes whole data pages, and
the rows are not logged.

Both delete and truncate table reclaim the space occupied by the data and
its associated indexes.

• You cannot use the truncate table command on a partitioned table. To
remove all rows from a partitioned table, either use the delete command
without a where clause, or unpartition the table before issuing the truncate
table command.

delete

448

delete and transactions

• In chained transaction mode, each delete statement implicitly begins a new
transaction if no transaction is currently active. Use commit to complete
any deletes, or use rollback to undo the changes. For example:

delete from sales where date < ’01/01/89’
if exists (select stor_id

from stores
where stor_id not in
(select stor_id from sales))

rollback transaction
else

commit transaction

This batch begins a transaction (using the chained transaction mode) and
deletes rows with dates earlier than Jan. 1, 1989 from the sales table. If it
deletes all sales entries associated with a store, it rolls back all the changes
to sales and ends the transaction. Otherwise, it commits the deletions and
ends the transaction. For more information about the chained mode, see
the Transact-SQL User’s Guide.

delete triggers

• You can define a trigger to take a specified action when a delete command
is issued on a specified table.

Using delete where current of

• Use the clause where current of with cursors. Before deleting rows using
the clause where current of, you must first define the cursor with declare
cursor and open it using the open statement. Position the cursor on the row
you want to delete using one or more fetch statements. The cursor name
cannot be a Transact-SQL parameter or local variable. The cursor must be
an updatable cursor or Adaptive Server returns an error. Any deletion to
the cursor result set also affects the base table row from which the cursor
row is derived. You can delete only one row at a time using the cursor.

• You cannot delete rows in a cursor result set if the cursor’s select statement
contains a join clause, even though the cursor is considered updatable. The
table_name or view_name specified with a delete...where current of must
be the table or view specified in the first from clause of the select statement
that defines the cursor.

CHAPTER 7 Commands

449

• After the deletion of a row from the cursor’s result set, the cursor is
positioned before the next row in the cursor’s result set. You must issue a
fetch to access the next row. If the deleted row is the last row of the cursor
result set, the cursor is positioned after the last row of the result set. The
following describes the position and behavior of open cursors affected by
a delete:

• If a client deletes a row (using another cursor or a regular delete) and
that row represents the current cursor position of other opened cursors
owned by the same client, the position of each affected cursor is
implicitly set to precede the next available row. However, one client
cannot delete a row representing the current cursor position of another
client’s cursor.

• If a client deletes a row that represents the current cursor position of
another cursor defined by a join operation and owned by the same
client, Adaptive Server accepts the delete statement. However, it
implicitly closes the cursor defined by the join.

Using readpast

• The readpast option allows delete commands on data-only-locked tables
to proceed without being blocked by incompatible locks held by other
tasks.

• On datarows-locked tables, readpast skips all rows on which shared,
update, or exclusive locks are held by another task.

• On datapages-locked tables, readpast skips all pages on which shared,
update, or exclusive locks are held by another task.

• Commands specifying readpast block if there is an exclusive table lock.

• If the readpast option is specified for an allpages-locked table, the readpast
option is ignored. The command blocks as soon as it finds an incompatible
lock.

• If the session-wide isolation level is 3, the readpast option is silently
ignored. The command executes at level 3. The command blocks on any
rows or pages with incompatible locks.

• If the transaction isolation level for a session is 0, a delete command using
readpast does not issue warning messages. For datapages-locked tables,
delete with readpast modifies all rows on all pages that are not locked with
incompatible locks. For datarows-locked tables, it affects all rows that are
not locked with incompatible locks.

delete

450

• If the delete command applies to a row with two or more text columns, and
any text column has an incompatible lock on it, readpast locking skips the
row.

Using index, prefetch, or lru | mru

• The index, prefetch, and lru | mru options override the choices made by the
Adaptive Server optimizer. Use these options with caution, and always
check the performance impact with set statistics io on. For more
information about using these options, see the Performance and Tuning
Guide.

Standards SQL92 – Compliance level: Entry-level compliant.

The use of more than one table in the from clause and qualification of table
name with database name are Transact-SQL extensions.

readpast is a Transact-SQL extension.

Permissions delete permission defaults to the table or view owner, who can transfer it to
other users.

If set ansi_permissions is on, you must have select permission on all columns
appearing in the where clause, in addition to the regular permissions required
for delete statements. By default, ansi_permissions is off.

See also Commands create trigger, drop table, drop trigger, truncate table, where
clause

CHAPTER 7 Commands

451

delete statistics
Description Removes statistics from the sysstatistics system table.

Syntax delete [shared] statistics table_name [(column_name
[, column_name]...)]

Parameters shared
removes simulated statistics information from sysstatistics in the master
database.

table_name
removes statistics for all columns in the table.

column_name
removes statistics for the specified column.

Examples Example 1 Delete the densities, selectivities, and histograms for all columns in
the titles table:

delete statistics titles

Example 2 Deletes densities, selectivities, and histograms for the pub_id
column in the titles table:

delete statistics titles(pub_id)

Example 3 Deletes densities, selectivities, and histograms for pub_id, pubdate,
without affecting statistics on the single-column pub_id or the single-column
pubdate:

delete statistics titles(pub_id, pubdate)

Usage • delete statistics removes statistics for the specified columns or table from
the sysstatistics table. It does not affect statistics in the systabstats table.

• When you issue the drop table command, the corresponding rows in
sysstatistics are dropped. When you use the drop index command, the rows
in sysstatistics are not deleted. This allows the query optimizer to continue
to use index statistics without incurring the overhead of maintaining the
index on the table.

 Warning! Densities, selectivities, and histograms are essential to good
query optimization. The delete statistics command is provided as a tool to
remove statistics not used by the optimizer. If you inadvertently delete
statistics needed for query optimization, run update statistics on the table,
index, or column.

delete statistics

452

• Loading simulated statistics with the optdiag utility command adds a small
number of rows to master..sysstatistics table. If the simulated statistics are
no longer in use, the information in master..sysstatistics can be dropped
with the delete shared statistics command.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only the table owner or a System Administrator can use delete statistics.

See also Commands create index, update

Utilities optdiag

CHAPTER 7 Commands

453

disk init
Description Makes a physical device or file usable by Adaptive Server.

Syntax disk init
name = "device_name" ,
physname = "physicalname" ,
[vdevno = virtual_device_number ,]
size = number_of_blocks
[, vstart = virtual_address

, cntrltype = controller_number]
[, contiguous]
[, dsync = { true | false }]

Parameters name
is the name of the database device or file. The name must conform to the
rules for identifiers and must be enclosed in single or double quotes. This
name is used in the create database and alter database commands.

physname
is the full specification of the database device. This name must be enclosed
in single or double quotes.

vdevno
is the virtual device number, which must be unique among the database
devices associated with Adaptive Server. The device number 0 is reserved
for the master device. Valid device numbers are between 1 and 255, but the
highest number must be one less than the number of database devices for
which your Adaptive Server is configured. For example, for an Adaptive
Server with the default configuration of 10 devices, the available device
numbers are 1 – 9. To see the maximum number of devices available on
Adaptive Server, run sp_configure, and check the number of devices value.

To determine the virtual device number, look at the device_number column
of the sp_helpdevice report, and use the next unused integer.

size
is the amount of space to allocate to the database extension. size can be in
the following unit specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes),
and ‘g’ or ‘G’ (gigabytes). Sybase recommends that you always include a
unit specifier. Quotes are optional if you do not include a unit specifier.
However, you must use quotes if you include a unit specifier.

disk init

454

vstart
is the starting virtual address, or the offset, for Adaptive Server to begin
using the database device. vstart accepts the following optional unit
specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes), and ‘g’ or ‘G’
(gigabytes). The size of the offset depends on how you enter the value for
vstart.

• If you do not specify a unit size, vstart uses 2K pages for its starting
address. For example, if you specify vstart = 13, Adaptive Server
uses 13 * 2K pages as the offset for the starting address.

• If you specify a unit value, vstart uses this as the starting address. For
example, if you specify vstart = "13M", Adaptive Server sets the
starting address offset at 13 megabytes.

The default value (and usually the preferred value) of vstart is 0. If the
specified device does not have the sum of vstart + size blocks available, the
disk init command fails. If you are running the Logical Volume Manager on
an AIX operating system. vstart should be 2. Specify vstart only if instructed
to do so by Sybase Technical Support.

cntrltype
specifies the disk controller. Its default value is 0. Reset cntrltype only if
instructed to do so by Sybase Technical Support.

dsync
UNIX platforms only – specifies whether writes to the database device take
place directly to the storage media, or are buffered when using UNIX
operating system files. This option is meaningful only when you are
initializing a UNIX operating system file; it has no effect when initializing
devices on a raw partition. By default, all UNIX operating system files are
initialized with dsync set to true.

Examples Example 1 Initializes 5MB of a disk on a UNIX system:

disk init
name = "user_disk",
physname = "/dev/rxy1a",
vdevno = 2, size = 5120

Example 2 Initializes 10MB of a disk on a UNIX operating system file.
Adaptive Server opens the device file with the dsync setting, and writes to the
file are guaranteed to take place directly on the storage media:

disk init
name = "user_file",
physname = "/usr/u/sybase/data/userfile1.dat",
vdevno = 2, size = 5120, dsync = true

CHAPTER 7 Commands

455

Usage • The master device is initialized by the installation program; you need not
initialize this device with disk init.

• To successfully complete disk initialization, the “sybase” user must have
the appropriate operating system permissions on the device that is being
initialized.

• You can specify the size as a float, but the size is rounded down to the
nearest multiple of 2K.

• If you do not use a unit specifier for size:

• disk init uses the virtual page size of 2K.

• The size argument for create database and alter database is in terms
of megabytes of disk space. This value is converted to the number of
logical pages the master device was built with

.

• The minimum size of a disk piece that you can initialize using disk init is
the larger of:

• One megabyte

• One allocation unit of the server’s logical page size

• Use disk init for each new database device. Each time disk init is issued, a
row is added to master..sysdevices. A new database device does not
automatically become part of the pool of default database storage. Assign
default status to a database device with sp_diskdefault.

• Back up the master database with the dump database or dump transaction
command after each use of disk init. This makes recovery easier and safer
in case master is damaged. If you add a device with disk init and fail to back
up master, you may be able to recover the changes by using disk reinit, then
stopping and restarting Adaptive Server.

• Assign user databases to database devices with the name clause of the
create database or alter database command.

disk init

456

• The preferred method for placing a database’s transaction log (the system
table syslogs) on a different device than the one on which the rest of the
database is stored, is to use the log on extension to create database.
Alternatively, you can name at least two devices when you create the
database, then execute sp_logdevice. You can also use alter database to
extend the database onto a second device, then run sp_logdevice. The log
on extension immediately moves the entire log to a separate device. The
sp_logdevice method retains part of the system log on the original database
device until transaction activity causes the migration to become complete.

• For a report on all Adaptive Server devices on your system (both database
and dump devices), execute sp_helpdevice.

• Remove a database device with sp_dropdevice. You must first drop all
existing databases on that device.

After dropping a database device, you can create a new one with the same
name (using disk unit), as long as you give it a different physical name and
virtual device number. If you want to use the same physical name and
virtual device number, you must restart Adaptive Server.

• If disk unit failed because the size value is too large for the database device,
use a different virtual device number or restart Adaptive Server before
executing disk unit again.

Using dsync

Note Do not set dsync to false for any device that stores critical data. The only
exception is tempdb, which can safely be stored on devices for which dsync is
set to false.

• When dsync is on, writes to the database device are guaranteed to take
place on the physical storage media, and Adaptive Server can recover data
on the device in the event of a system failure.

• When dsync is off, writes to the database device may be buffered by the
UNIX file system. The UNIX file system may mark an update as being
completed, even though the physical media has not yet been modified. In
the event of a system failure, there is no guarantee that data updates have
ever taken place on the physical media, and Adaptive Server may be
unable to recover the database.

• dsync is always on for the master device file.

CHAPTER 7 Commands

457

• The dsync value should be turned off only when databases on the device
need not be recovered after a system failure. For example, you may
consider turning dsync off for a device that stores only the tempdb
database.

• Adaptive Server ignores the dsync setting for devices stored on raw
partitions—writes to those device are guaranteed to take place on the
physical storage media, regardless of the dsync setting.

• The dsync setting is not used on the Windows NT platform.

• disk reinit ensures that master..sysdevices is correct if the master database
has been damaged or if devices have been added since the last dump of
master.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions disk init permission defaults to System Administrators and is not transferable.
You must be using the master database to use disk init.

See also Commands alter database, create database, disk refit, disk reinit, dump
database, dump transaction, load database, load transaction

System procedures sp_diskdefault, sp_dropdevice, sp_helpdevice,
sp_logdevice

disk mirror

458

disk mirror
Description Creates a software mirror that immediately takes over when the primary device

fails.

Syntax disk mirror
name = "device_name" ,
mirror = "physicalname"
[, writes = { serial | noserial }]

Parameters name
is the name of the database device that you want to mirror. This is recorded
in the name column of the sysdevices table. The name must be enclosed in
single or double quotes.

mirror
is the full path name of the database mirror device that is to be your
secondary device. It must be enclosed in single or double quotes. If the
secondary device is a file, physicalname should be a path specification that
clearly identifies the file, which Adaptive Server creates. The value of
physicalname cannot be an existing file.

writes
allows you to choose whether to enforce serial writes to the devices. In the
default case (serial), the write to the primary database device is guaranteed
to finish before the write to the secondary device begins. If the primary and
secondary devices are on different physical devices, serial writes can ensure
that at least one of the disks will be unaffected in the event of a power
failure.

Examples disk mirror
name = "user_disk",
mirror = "/server/data/mirror.dat"

Creates a software mirror for the database device user_disk on the file
mirror.dat.

Usage • Disk mirroring creates a software mirror of a user database device, the
master database device, or a database device used for user database
transaction logs. If a database device fails, its mirror immediately takes
over.

Disk mirroring does not interfere with ongoing activities in the database.
You can mirror or unmirror database devices without shutting down
Adaptive Server.

CHAPTER 7 Commands

459

• Back up the master database with the dump database command after each
use of disk mirror. This makes recovery easier and safer in case master is
damaged.

• When a read or write to a mirrored device is unsuccessful, Adaptive Server
unmirrors the bad device and prints error messages. Adaptive Server
continues to run, unmirrored. The System Administrator must use the disk
remirror command to restart mirroring.

• You can mirror the master device, devices that store data, and devices that
store transaction logs. However, you cannot mirror dump devices.

• Devices are mirrored; databases are not.

• A device and its mirror constitute one logical device. Adaptive Server
stores the physical name of the mirror device in the mirrorname column of
the sysdevices table. It does not require a separate entry in sysdevices and
should not be initialized with disk init.

• To retain use of asynchronous I/O, always mirror devices that are capable
of asynchronous I/O to other devices capable of asynchronous I/O. In most
cases, this means mirroring raw devices to raw devices and operating
system files to operating system files.

If the operating system cannot perform asynchronous I/O on files,
mirroring a raw device to a regular file produces an error message.
Mirroring a regular file to a raw device works, but does not use
asynchronous I/O.

• Mirror all default database devices so that you are still protected if a create
database or alter database command affects a database device in the
default list.

• For greater protection, mirror the database device used for transaction
logs.

• Always put user database transaction logs on a separate database device.
To put a database’s transaction log (that is, the system table syslogs) on a
device other than the one on which the rest of the database is stored, name
the database device and the log device when you create the database.
Alternatively, use alter database to extend the database onto a second
device, then run sp_logdevice.

disk mirror

460

• If you mirror the database device for the master database, you can use the
-r option and the name of the mirror for UNIX, when you restart Adaptive
Server with the dataserver utility program. Add this to the
RUN_servername file for that server so that the startserver utility program
knows about it. For example, to start a master device named master.dat and
its mirror, mirror.dat enter:

dataserver -dmaster.dat -rmirror.dat

 For more information, see dataserver and startserver in the Utility Guide.

• If you mirror a database device that has unallocated space (room for
additional create database and alter database statements to allocate part of
the device), disk mirror begins mirroring these allocations when they are
made, not when the disk mirror command is issued.

• For a report on all Adaptive Server devices on your system (user database
devices and their mirrors, as well as dump devices), execute
sp_helpdevice.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions disk mirror permission defaults to the System Administrator and is not
transferable. You must be using the master database to use disk mirror.

See also Commands alter database, create database, disk init, disk refit, disk reinit, disk
remirror, disk unmirror, dump database, dump transaction, load database, load
transaction

System procedures sp_diskdefault, sp_helpdevice, sp_logdevice

Utilities dataserver, startserver

CHAPTER 7 Commands

461

disk refit
Description Rebuilds the master database’s sysusages and sysdatabases system tables from

information contained in sysdevices.

Syntax disk refit

Examples disk refit

Usage • Adaptive Server automatically shuts down after disk refit rebuilds the
system tables.

• Use disk refit after disk reinit as part of the procedure to restore the master
database. For more information, see the System Administration Guide.

Note You must start Adaptive Server with trace flag 3608 before you run disk
refit. However, make sure you read the information in the Troubleshooting and
Error Messages Guide before you start Adaptive Server with any trace flag.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions disk refit permission defaults to System Administrators and is not transferable.
You must be in the master database to use disk refit.

See also Commands disk init, disk reinit

System procedures sp_addumpdevice, sp_helpdevice

disk reinit

462

disk reinit
Description Rebuilds the master database’s sysdevices system table. Use disk reinit as part

of the procedure to restore the master database.

Syntax disk reinit
name = "device_name",
physname = "physicalname" ,
[vdevno = virtual_device_number ,]
size = number_of_blocks
[, vstart = virtual_address

, cntrltype = controller_number]
[, dsync = { true | false }]

Parameters name
is the name of the database device. It must conform to the rules for
identifiers, and it must be enclosed in single or double quotes. This name is
used in the create database and alter database commands.

physname
is the name of the database device. The physical name must be enclosed in
single or double quotes.

vdevno
is the virtual device number. It must be unique among devices used by
Adaptive Server. The device number 0 is reserved for the master database
device. Legal numbers are between 1 and 255, but cannot be greater than the
number of database devices for which your system is configured. The
default is 50 devices.

size
is the amount of space to allocate to the database extension. size can be in
the following unit specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes),
and ‘g’ or ‘G’ (gigabytes). Sybase recommends that you always include a
unit specifier. Quotes are optional if you do not include a unit specifier.
However, you must use quotes if you include a unit specifier.

CHAPTER 7 Commands

463

vstart
is the starting virtual address, or the offset, for Adaptive Server to begin
using the database device. vstart accepts the following optional unit
specifiers: ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes), and ‘g’ or ‘G’
(gigabytes). The size of the offset depends on how you enter the value for
vstart.

• If you do not specify a unit size, vstart uses 2K pages for its starting
address. For example, if you specify vstart = 13, Adaptive Server
uses 13 * 2K pages as the offset for the starting address.

• If you specify a unit value, vstart uses this as the starting address. For
example, if you specify vstart = "13M", Adaptive Server sets the
starting address offset at 13 megabytes.

The default value (and usually the preferred value) of vstart is 0. If the
specified device does not have the sum of vstart + size blocks available, the
disk reinit command fails.

Note If you are running the Logical Volume Manager on an AIX operating
system, vstart should be 2.

Specify vstart only if instructed to do so by Sybase Technical Support.

cntrltype
specifies the disk controller. Its default value is 0. Reset it only if instructed
to do so by Sybase Technical Support.

dsync
UNIX platforms only – specifies whether writes to the database device take
place directly to the storage media, or are buffered when using UNIX
operating system files. This option is meaningful only when you are
initializing a UNIX operating system file; it has no effect when initializing
devices on a raw partition. By default, all UNIX operating system files are
initialized with dsync set to true.

Examples Initializes 10MB of a disk on a UNIX operating system file. Adaptive Server
opens the device file with the dsync setting, and writes to the file are guaranteed
to take place directly on the storage media:

disk reinit
name = "user_file",
physname = "/usr/u/sybase/data/userfile1.dat",
vdevno = 2, size = 5120, dsync = true

disk reinit

464

Usage • disk reinit ensures that master..sysdevices is correct if the master database
has been damaged or if devices have been added since the last dump of
master.

• disk reinit is similar to disk init, but does not initialize the database device.

• You can specify the size as a float, but the size is rounded down to the
nearest multiple of 2K.

• If you do not use a unit specifier for size, disk reinit uses the virtual page
size of 2K.

• For complete information on restoring the master database, see the System
Administration Guide.

Using dsync

Note Do not set dsync to false for any device that stores critical data. The only
exception is tempdb, which can safely be stored on devices for which dsync is
set to false.

• When dsync is on, writes to the database device are guaranteed to take
place on the physical storage media, and Adaptive Server can recover data
on the device in the event of a system failure.

• When dsync is off, writes to the database device may be buffered by the
UNIX file system. The UNIX file system may mark an update as being
completed, even though the physical media has not yet been modified. In
the event of a system failure, there is no guarantee that data updates have
ever taken place on the physical media, and Adaptive Server may be
unable to recover the database.

• dsync is always on for the master device file.

• The dsync value should be turned off only when databases on the device
need not be recovered after a system failure. For example, you may
consider turning dsync off for a device that stores only the tempdb
database.

• Adaptive Server ignores the dsync setting for devices stored on raw
partitions—writes to those device are guaranteed to take place on the
physical storage media, regardless of the dsync setting.

• The dsync setting is not used on the Windows NT platform.

• disk reinit ensures that master..sysdevices is correct if the master database
has been damaged or if devices have been added since the last dump of
master.

CHAPTER 7 Commands

465

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions disk reinit permission defaults to System Administrators and is not transferable.
You must be in the master database to use disk reinit.

See also Commands alter database, create database, dbcc, disk init, disk refit

System procedures sp_addumpdevice, sp_helpdevice

disk remirror

466

disk remirror
Description Restarts disk mirroring after it is stopped by failure of a mirrored device or

temporarily disabled by the disk unmirror command.

Syntax disk remirror
name = "device_name"

Parameters name
is the name of the database device that you want to remirror. The name is
recorded in the name column of the sysdevices table, and must be enclosed
in single or double quotes.

Examples Resumes software mirroring on the database device user_disk:

disk remirror
name = "user_disk"

Usage • Disk mirroring creates a software mirror of a user database device, the
master database device, or a database device used for user database
transaction logs. If a database device fails, its mirror immediately takes
over.

Use the disk remirror command to reestablish mirroring after it has been
temporarily stopped by failure of a mirrored device or temporarily
disabled with the mode = retain option of the disk unmirror command. The
disk remirror command copies data on the retained disk to the mirror.

• It is important to back up the master database with the dump database
command after each use of disk remirror. This makes recovery easier and
safer in case master is damaged.

• If mirroring was permanently disabled with the mode = remove option, you
must remove the operating system file that contains the mirror before
using disk remirror.

• Database devices, not databases, are mirrored.

• You can mirror, remirror, or unmirror database devices without shutting
down Adaptive Server. Disk mirroring does not interfere with ongoing
activities in the database.

• When a read or write to a mirrored device is unsuccessful, Adaptive Server
unmirrors the bad device and prints error messages. Adaptive Server
continues to run, unmirrored. The System Administrator must use disk
remirror to restart mirroring.

CHAPTER 7 Commands

467

• In addition to mirroring user database devices, always put user database
transaction logs on a separate database device. The database device used
for transaction logs can also be mirrored for even greater protection. To put
a database’s transaction log (that is, the system table syslogs) on a different
device than the one on which the rest of the database is stored, name the
database device and the log device when you create the database.
Alternatively, alter database to a second device, then run sp_logdevice.

• If you mirror the database device for the master database, you can use the
-r option and the name of the mirror for UNIX, when you restart Adaptive
Server with the dataserver utility program. Add this option to the
RUN_servername file for that server so that the startserver utility program
knows about it. For example, the following command starts a master
device named master.dat and its mirror, mirror.dat:

dataserver -dmaster.dat -rmirror.dat

For more information, see dataserver and startserver in the Utility Guide.

• For a report on all Adaptive Server devices on your system (user database
devices and their mirrors, as well as dump devices), execute
sp_helpdevice.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions disk remirror permission defaults to the System Administrator and is not
transferable. You must be using the master database to use disk remirror.

See also Commands alter database, create database, disk init, disk mirror, disk refit,
disk reinit, disk unmirror, dump database, dump transaction, load database, load
transaction

System procedures sp_diskdefault, sp_helpdevice, sp_logdevice

Utilities dataserver, startserver

disk unmirror

468

disk unmirror
Description Suspends disk mirroring initiated with the disk mirror command to allow

hardware maintenance or the changing of a hardware device.

Syntax disk unmirror
name = "device_name"
[,side = { "primary" | secondary }]
[,mode = { retain | remove }]

Parameters name
is the name of the database device that you want to unmirror. The name must
be enclosed in single or double quotes.

side
specifies whether to disable the primary device or the secondary device (the
mirror). By default, the secondary device is unmirrored.

mode
determines whether the unmirroring is temporary (retain) or permanent
(remove). By default, unmirroring is temporary.

Specify retain when you plan to remirror the database device later in the
same configuration. This option mimics what happens when the primary
device fails:

• I/O is directed only at the device not being unmirrored.

• The status column of sysdevices indicates that mirroring is deactivated.
remove eliminates all sysdevices references to a mirror device.

• The status column indicates that the mirroring feature is ignored.

• The phyname column is replaced by the name of the secondary device
in the mirrorname column if the primary device is the one being
deactivated.

• The mirrorname column is set to NULL.

Examples Example 1 Suspends software mirroring for the database device user_disk:

disk unmirror
name = "user_disk"

Example 2 Suspends software mirroring for the database device user_disk on
the secondary side:

disk unmirror name = "user_disk", side = secondary

Example 3 Suspends software mirroring for the database device user_disk and
removes all device references to the mirror device:

CHAPTER 7 Commands

469

disk unmirror name = "user_disk", mode = remove

Usage • Disk mirroring creates a software mirror of a user database device, the
master database device, or a database device used for user database
transaction logs. If a database device fails, its mirror immediately takes
over.

disk unmirror disables either the original database device or the mirror,
either permanently or temporarily, so that the device is no longer available
to Adaptive Server for reads or writes. It does not remove the associated
file from the operating system.

• Disk unmirroring alters the sysdevices table in the master database. It is
important to back up the master database with the dump database
command after each use of disk unmirror. This makes recovery easier and
safer in case master is damaged.

• You can unmirror a database device while it is in use.

• You cannot unmirror any of a database’s devices while a dump database,
load database, or load transaction is in progress. Adaptive Server displays
a message asking whether to abort the dump or load or to defer the disk
unmirror until after the dump or load completes.

• You cannot unmirror a database’s log device while a dump transaction is in
progress. Adaptive Server displays a message asking whether to abort the
dump or defer the disk unmirror until after the dump completes.

Note dump transaction with truncate_only and dump transaction with no_log
are not affected when a log device is unmirrored.

• You should mirror all the default database devices so that you are still
protected if a create or alter database command affects a database device
in the default list.

• When a read or write to a mirrored device is unsuccessful, Adaptive Server
automatically unmirrors the bad device and prints error messages.
Adaptive Server continues to run, unmirrored. A System Administrator
must restart mirroring with the disk remirror command.

• For a report on all Adaptive Server devices on your system (user database
devices and their mirrors, as well as dump devices), execute
sp_helpdevice.

disk unmirror

470

• Use disk remirror to reestablish mirroring after it is temporarily stopped
with the mode = retain option of the disk unmirror command. If mirroring is
permanently disabled with the mode = remove option, you must remove
the operating system file that contains the mirror before using disk
remirror.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions disk unmirror permission defaults to the System Administrator, and is not
transferable. You must be using the master database to use disk unmirror.

See also Commands alter database, create database, disk init, disk mirror, disk refit,
disk reinit, disk remirror, dump database, dump transaction, load database, load
transaction

System procedures sp_diskdefault, sp_helpdevice, sp_logdevice

Utilities dataserver, startserver

CHAPTER 7 Commands

471

drop database
Description Removes one or more databases from Adaptive Server.

Syntax drop database database_name [, database_name] ...

Parameters database_name
is the name of a database to remove. Use sp_helpdb to get a list of databases.

Examples Removes the publishing database and all its contents:

drop database publishing

Usage • Removing a database deletes the database and all its objects, frees its
storage allocation, and erases its entries from the sysdatabases and
sysusages system tables in the master database.

• drop database clears the suspect page entries pertaining to the dropped
database from master..sysattributes.

Restrictions

• You must be using the master database to drop a database.

• You cannot drop a database that is in use (open for reading or writing by
any user).

• You cannot use drop database to remove a database that is referenced by a
table in another database. Execute the following query to determine which
tables and external databases have foreign key constraints on primary key
tables in the current database:

select object_name(tableid), frgndbname
from sysreferences
where frgndbname is not null

Use alter table to drop these cross-database constraints, then reissue the
drop database command.

• You cannot use drop database to remove a damaged database. Use the dbcc
dbrepair command:

dbcc dbrepair (database_name, dropdb)

• You cannot drop the sybsecurity database if auditing is enabled. When
auditing is disabled, only the System Security Officer can drop sybsecurity.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only the Database Owner can execute drop database, except for the sybsecurity
database, which can be dropped only by the System Security Officer.

See also Commands alter database, create database, dbcc, use

drop database

472

Utilities sp_changedbowner, sp_helpdb, sp_renamedb, sp_spaceused

CHAPTER 7 Commands

473

drop default
Description Removes a user-defined default.

Syntax drop default [owner.]default_name
[, [owner.]default_name] ...

Parameters default_name
is the name of an existing default. Execute sp_help to get a list of existing
defaults. Specify the owner’s name to drop a default of the same name
owned by a different user in the current database. The default value for
owner is the current user.

Examples Removes the user-defined default datedefault from the database:

drop default datedefault

Usage • You cannot drop a default that is currently bound to a column or to a
user-defined datatype. Use sp_unbindefault to unbind the default before
you drop it.

• You can bind a new default to a column or user-defined datatype without
unbinding its current default. The new default overrides the old one.

• When you drop a default for a NULL column, NULL becomes the
column’s default value. When you drop a default for a NOT NULL
column, an error message appears if users do not explicitly enter a value
for that column when inserting data.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions drop default permission defaults to the owner of the default and is not
transferable.

See also Commands create default

System procedures sp_help, sp_helptext, sp_unbindefault

drop function (SQLJ)

474

drop function (SQLJ)
Description Removes a SQLJ function.

Syntax drop func[tion] [owner.]function_name
[, [owner.]function_name] ...

Parameters [owner.]function_name
is the SQL name of a SQLJ function.

Examples Removes the SQLJ function square_root:

drop function square_root

Usage • See Java in Adaptive Server Enterprise for more information about SQLJ
functions.

• drop function removes only user-created functions from the current
database. It does not remove system functions.

Permissions Only the Database Owner or user with the sa role can execute drop function.

See also Commands create function (SQLJ)

CHAPTER 7 Commands

475

drop index
Description Removes an index from a table in the current database.

Syntax drop index table_name.index_name
[, table_name.index_name] ...

Parameters table_name
is the table in which the indexed column is located. The table must be in the
current database.

index_name
is the index to drop. In Transact-SQL, index names need not be unique in a
database, though they must be unique within a table.

Examples Removes au_id_ind from the authors table:

drop index authors.au_id_ind

Usage • Once the drop index command is issued, you regain all the space that was
previously occupied by the index. This space can be used for any database
objects.

• You cannot use drop index on system tables.

• drop index cannot remove indexes that support unique constraints. To drop
such indexes, drop the constraints through alter table or drop the table. See
create table for more information about unique constraint indexes.

• You cannot drop indexes that are currently used by any open cursor. For
information about which cursors are open and what indexes they use, use
sp_cursorinfo.

• To get information about what indexes exist on a table, use the following,
where objname is the name of the table:

sp_helpindex objname

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions drop index permission defaults to the index owner and is not transferable.

See also Commands create index

System procedures sp_cursorinfo, sp_helpindex, sp_spaceused

drop procedure

476

drop procedure
Description Removes a procedure.

Syntax drop proc[edure] [owner.]procedure_name
[, [owner.]procedure_name] ...

Parameters procedure_name
is the name of the Transact-SQL or SQLJ procedure to drop. Specify the
owner’s name to drop a procedure of the same name owned by a different
user in the current database. The default value for owner is the current user.

Examples Example 1 Deletes the stored procedure showind:

drop procedure showind

Example 2 Unregisters the extended stored procedure xp_echo:

drop procedure xp_echo

Usage • drop procedure drops user-defined stored procedures, system procedures,
and extended stored procedures (ESPs).

• Adaptive Server checks the existence of a procedure each time a user or a
program executes that procedure.

• A procedure group (more than one procedure with the same name but with
different number suffixes) can be dropped with a single drop procedure
statement. For example, if the procedures used with the application named
orders were named orderproc;1, orderproc;2, and so on, the following
statement drops the entire group:

drop proc orderproc

Once procedures have been grouped, individual procedures within the
group cannot be dropped. For example, the following statement is not
allowed:

drop procedure orderproc;2

You cannot drop extended stored procedures as a procedure group.

• sp_helptext displays the procedure’s text, which is stored in syscomments.

• sp_helpextendedproc displays ESPs and their corresponding DLLs.

• Dropping an ESP unregisters the procedure by removing it from the
system tables. It has no effect on the underlying DLL.

• drop procedure drops only user-created procedures from your current
database.

CHAPTER 7 Commands

477

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions drop procedure permission defaults to the procedure owner and is not
transferable.

See also Commands create procedure, create procedure (SQLJ)

System procedures sp_depends, sp_dropextendedproc,
sp_helpextendedproc, sp_helptext, sp_rename

drop role

478

drop role
Description Drops a user-defined role.

Syntax drop role role_name [with override]

Parameters role_name
is the name of the role you want to drop.

with override
overrides any restrictions on dropping a role. When you use the with override
option, you can drop any role without having to check whether the role
permissions have been dropped in each database.

Examples Example 1 Drops the named role only if all permissions in all databases have
been revoked. The System Administrator or object owner must revoke
permissions granted in each database before dropping a role, or the command
fails:

drop role doctor_role

Example 2 Drops the named role and removes permission information and any
other reference to the role from all databases:

drop role doctor_role with override

Usage • You need not drop memberships before dropping a role. Dropping a role
automatically removes any user’s membership in that role, regardless of
whether you use the with override option.

• Use drop role from the master database.

Restrictions

• You cannot use drop role to drop system roles.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions You must be a System Security Officer to use drop role.

drop role permission is not included in the grant all command.

See also Commands alter role, create role, grant, revoke, set

System procedures sp_activeroles, sp_displaylogin, sp_displayroles,
sp_helprotect, sp_modifylogin

CHAPTER 7 Commands

479

drop rule
Description Removes a user-defined rule.

Syntax drop rule [owner.]rule_name [, [owner.]rule_name] ...

Parameters rule_name
is the name of the rule to drop. Specify the owner’s name to drop a rule of
the same name owned by a different user in the current database. The default
value for owner is the current user.

Examples Removes the rule pubid_rule from the current database:

drop rule pubid_rule

Usage • Before dropping a rule, you must unbind it using the system procedure
sp_unbindrule. If the rule has not been unbound, an error message appears,
and the drop rule command fails.

• You can bind a new rule to a column or user-defined datatype without
unbinding its current rule. The new rule overrides the old one.

• After you drop a rule, Adaptive Server enters new data into the columns
that were previously governed by the rule without constraints. Existing
data is not affected in any way.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions drop rule permission defaults to the rule owner and is not transferable.

See also Commands create rule

System procedures sp_bindrule, sp_help, sp_helptext, sp_unbindrule

drop table

480

drop table
Description Removes a table definition and all of its data, indexes, triggers, and

permissions from the database.

Syntax drop table [[database.]owner.]table_name
[, [[database.]owner.]table_name] ...

Parameters table_name
is the name of the table to drop. Specify the database name if the table is in
another database, and specify the owner’s name if more than one table of
that name exists in the database. The default value for owner is the current
user, and the default value for database is the current database.

Examples Removes the table roysched and its data and indexes from the current database:

drop table roysched

Usage • When you use drop table, any rules or defaults on the table lose their
binding, and any triggers associated with it are automatically dropped. If
you re-create a table, you must rebind the appropriate rules and defaults
and re-create any triggers.

• The system tables affected when a table is dropped are sysobjects,
syscolumns, sysindexes, sysprotects, and syscomments.

• If Component Integration Services is enabled, and if the table being
dropped was created with create existing table, the table is not dropped
from the remote server. Instead, Adaptive Server removes references to the
table from the system tables.

Restrictions

• You cannot use the drop table command on system tables.

• You can drop a table in any database, as long as you are the table owner.
For example, use either of the following to drop a table called newtable in
the database otherdb:

drop table otherdb..newtable
drop table otherdb.yourname.newtable

• If you delete all the rows in a table or use the truncate table command, the
table still exists until you drop it.

Dropping tables with cross-database referential integrity constraints

• When you create a cross-database constraint, Adaptive Server stores the
following information in the sysreferences system table of each database:

CHAPTER 7 Commands

481

Table 7-21: Information stored about referential integrity constraints

• Because the referencing table depends on information from the referenced
table, Adaptive Server does not allow you to:

• Drop the referenced table,

• Drop the external database that contains it, or

• Rename either database with sp_renamedb.

Use sp_helpconstraint to determine which tables reference the table you
want to drop. Use alter table to drop the constraints before reissuing the
drop table command.

• You can drop a referencing table or its database without problems.
Adaptive Server automatically removes the foreign key information from
the referenced database.

• Each time you add or remove a cross-database constraint or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases can cause database
corruption. For more information about loading databases with
cross-database referential integrity constraints, see the System
Administration Guide.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions drop table permission defaults to the table owner and is not transferable.

See also Commands alter table, create table, delete, truncate table

System procedures sp_depends, sp_help, sp_spaceused

Information stored in
sysreferences

Columns with information about
referenced table

Columns with information about
referencing table

Key column IDs refkey1 through refkey16 fokey1 through fokey16

Table ID reftabid tableid

Database name pmrydbname frgndbname

drop trigger

482

drop trigger
Description Removes a trigger.

Syntax drop trigger [owner.]trigger_name
[, [owner.]trigger_name] ...

Parameters trigger_name
is the name of the trigger to drop. Specify the owner’s name to drop a trigger
of the same name owned by a different user in the current database. The
default value for owner is the current user.

Examples Removes the trigger trigger1 from the current database:

drop trigger trigger1

Usage • drop trigger drops a trigger in the current database.

• You do not need to explicitly drop a trigger from a table to create a new
trigger for the same operation (insert, update, or delete). In a table or
column each new trigger for the same operation overwrites the previous
one.

• When a table is dropped, Adaptive Server automatically drops any triggers
associated with it.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions drop trigger permission defaults to the trigger owner and is not transferable.

See also Commands create trigger

System procedures sp_depends, sp_help, sp_helptext

CHAPTER 7 Commands

483

drop view
Description Removes one or more views from the current database.

Syntax drop view [owner.]view_name [, [owner.]view_name] ...

Parameters view_name
is the name of the view to drop. Specify the owner’s name to drop a view of
the same name owned by a different user in the current database. The default
value for owner is the current user.

Examples Removes the view new_price from the current database:

drop view new_price

Usage • When you use drop view, the definition of the view and other information
about it, including privileges, is deleted from the system tables sysobjects,
syscolumns, syscomments, sysdepends, sysprocedures, and sysprotects.

• Existence of a view is checked each time the view is referenced, for
example, by another view or by a stored procedure.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions drop view permission defaults to the view owner and is not transferable.

See also Commands create view

System procedures sp_depends, sp_help, sp_helptext

dump database

484

dump database
Description Makes a backup copy of the entire database, including the transaction log, in a

form that can be read in with load database. Dumps and loads are performed
through Backup Server.

Syntax dump database database_name
to [compress::[compression_level::]]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]

[[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
notify = {client | operator_console}
}]

Parameters database_name
is the name of the database from which you are copying data. The database
name can be specified as a literal, a local variable, or a stored procedure
parameter.

CHAPTER 7 Commands

485

compress::compression_level
is a number between 0 and 9, with 0 indicating no compression, and 9
providing the highest level of compression. If you do not specify
compression_level, the default is 1. See Chapter 27, “Backing Up and
Restoring User Databases” in the System Administration Guide for more
information about the compress option.

Note The compress option works only with local archives; you cannot use the
backup_server_name option.

to stripe_device
is the device to which to copy the data. See “Specifying dump devices” in
this section for information about what form to use when specifying a dump
device.

at backup_server_name
is the name of the Backup Server. Do not specify this parameter when
dumping to the default Backup Server. Specify this parameter only when
dumping over the network to a remote Backup Server. You can specify as
many as 32 remote Backup Servers with this option. When dumping across
the network, specify the network name of a remote Backup Server running
on the machine to which the dump device is attached. For platforms that use
interfaces files, the backup_server_name must appear in the interfaces file.

density = density_value
overrides the default density for a tape device. Valid densities are 800, 1600,
6250, 6666, 10000, and 38000. Not all values are valid for every tape drive;
use the correct density for your tape drive.

blocksize = number_bytes
overrides the default block size for a dump device. The block size must be
at least one database page (2048 bytes for most systems) and must be an
exact multiple of the database page size. For optimal performance, specify
the blocksize as a power of 2, for example, 65536, 131072, or 262144.

dump database

486

capacity = number_kilobytes
is the maximum amount of data that the device can write to a single tape
volume. The capacity must be at least five database pages and should be less
than the recommended capacity for your device.

A general rule for calculating capacity is to use 70 percent of the
manufacturer’s maximum capacity for the device, allowing 30 percent for
overhead such as inter-record gaps and tape marks. The maximum capacity
is the capacity of the device on the drive, not the drive itself. This rule works
in most cases, but may not work in all cases due to differences in overhead
across vendors and across devices.

On UNIX platforms that cannot reliably detect the end-of-tape marker,
indicate how many kilobytes can be dumped to the tape. You must supply a
capacity for dump devices specified as a physical path name. If a dump
device is specified as a logical device name, the Backup Server uses the size
parameter stored in the sysdevices system table unless you specify a
capacity.

dumpvolume = volume_name
establishes the name that is assigned to the volume. The maximum length of
volume_name is 6 characters. Backup Server writes the volume_name in the
ANSI tape label when overwriting an existing dump, dumping to a brand
new tape, or dumping to a tape whose contents are not recognizable. The
load database command checks the label and generates an error message if
the wrong volume is loaded.

 Warning! Label each tape volume as you create it so that the operator can load
the correct tape.

stripe on stripe_device
is an additional dump device. You can use as many as 32 devices, including
the device named in the to stripe_device clause. The Backup Server splits
the database into approximately equal portions, and sends each portion to a
different device. Dumps are made concurrently on all devices, reducing the
time required to make a dump and requiring fewer volume changes during
the dump. See “Specifying dump devices” on page 491 for information
about how to specify a dump device.

dismount | nodismount
on platforms that support logical dismount, determines whether tapes
remain mounted. By default, all tapes used for a dump are dismounted when
the dump completes. Use nodismount to keep tapes available for additional
dumps or loads.

CHAPTER 7 Commands

487

nounload | unload
determines whether tapes rewind after the dump completes. By default,
tapes do not rewind, allowing you to make additional dumps to the same
tape volume. Specify unload for the last dump file to be added to a
multidump volume. This rewinds and unloads the tape when the dump
completes.

retaindays= number_days
on UNIX systems – when dumping to disk, specifies the number of days that
Backup Server protects you from overwriting the dump. If you try to
overwrite the dump before it expires, Backup Server requests confirmation
before overwriting the unexpired volume.

Note This option is meaningful only when dumping to a disk. It is not
meaningful for tape dumps.

The number_days must be a positive integer or 0, for dumps that you can
overwrite immediately. If you do not specify a retaindays value, Backup
Server uses the tape retention in days value set by sp_configure.

noinit | init
determines whether to append the dump to existing dump files or reinitialize
(overwrite) the tape volume. By default, Adaptive Server appends dumps
following the last end-of-tape mark, allowing you to dump additional
databases to the same volume. New dumps can be appended only to the last
volume of a multivolume dump. Use init for the first database you dump to
a tape to overwrite its contents.

Use init when you want Backup Server to store or update tape device
characteristics in the tape configuration file. For more information, see the
System Administration Guide.

file = file_name
is the name of the dump file. The name cannot exceed 17 characters and
must conform to operating system conventions for file names. For more
information, see “Dump files” on page 492.

dump database

488

notify = {client | operator_console}
overrides the default message destination.

On operating systems that offer an operator terminal feature, volume change
messages are always sent to the operator terminal on the machine on which
Backup Server is running. Use client to route other Backup Server messages
to the terminal session that initiated the dump database.

On operating systems that do not offer an operator terminal feature, such as
UNIX, messages are sent to the client that initiated the dump database. Use
operator_console to route messages to the terminal on which Backup Server
is running.

Examples Example 1 Dumps the database pubs2 to a tape device. If the tape has an ANSI
tape label, this command appends this dump to the files already on the tape,
since the init option is not specified:

dump database pubs2
to "/dev/nrmt0"

Example 2 For UNIX – dumps the pubs2 database, using the
REMOTE_BKP_SERVER Backup Server. The command names three dump
devices, so the Backup Server dumps approximately one-third of the database
to each device. This command appends the dump to existing files on the tapes.
On UNIX systems, the retaindays option specifies that the tapes cannot be
overwritten for 14 days:

dump database pubs2
to "/dev/rmt4" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt5" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt0" at REMOTE_BKP_SERVER

with retaindays = 14

Example 3 The init option initializes the tape volume, overwriting any existing
files:

dump database pubs2
to "/dev/nrmt0"
with init

Example 4 Rewinds the dump volumes upon completion of the dump:

dump database pubs2
to "/dev/nrmt0"
with unload

CHAPTER 7 Commands

489

Example 5 For UNIX – the notify clause sends Backup Server messages
requesting volume changes to the client which initiated the dump request,
rather than sending them to the default location, the console of the Backup
Server machine:

dump database pubs2
to "/dev/nrmt0"
with notify = client

Example 6 Creates a compressed dump of the pubs2 database into a file called
dmp090100.dmp using a compression level of 4:

dump database pubs2 to
"compress::4::/opt/bin/Sybase/dumps/dmp090100.dmp"

Usage • Table 7-22 describes the commands and system procedures used to back
up databases:

Table 7-22: Commands used to back up databases and logs

Restrictions

• You cannot dump from an 11.x Adaptive Server to a 10.x Backup Server.

• You cannot have Sybase dumps and non-Sybase data (for example, UNIX
archives) on the same tape.

To do this Use this command

Make routine dumps of the entire database, including the transaction log. dump database

Make routine dumps of the transaction log, then truncate the inactive
portion.

dump transaction

Dump the transaction log after failure of a database device. dump transaction with no_truncate

Truncate the log without making a backup, then copy the entire database. dump transaction with truncate_only

dump database

Truncate the log after your usual method fails due to insufficient log space,
then copy the entire database.

dump transaction with no_log

dump database

Respond to the Backup Server’s volume change messages. sp_volchanged

dump database

490

• If a database has cross-database referential integrity constraints, the
sysreferences system table stores the name—not the ID number—of the
external database. Adaptive Server cannot guarantee referential integrity
if you use load database to change the database name or to load it onto a
different server.

 Warning! Before dumping a database to load it with a different name or
move it to another Adaptive Server, use alter table to drop all external
referential integrity constraints.

• You cannot use dump database in a user-defined transaction.

• If you issue dump database on a database where a dump transaction is
already in progress, dump database sleeps until the transaction dump
completes.

• When using 1/4-inch cartridge tape, you can dump only one database or
transaction log per tape.

• You cannot dump a database if it has offline pages. To force offline pages
online, use sp_forceonline_db or sp_forceonline_page.

Scheduling dumps

• Adaptive Server database dumps are dynamic—they can take place while
the database is active. However, they may slow the system down slightly,
so you may want to run dump database when the database is not being
heavily updated.

• Back up the master database regularly and frequently. In addition to your
regular backups, dump master after each create database, alter database,
and disk init command is issued.

• Back up the model database each time you make a change to the database.

• Use dump database immediately after creating a database, to make a copy
of the entire database. You cannot run dump transaction on a new database
until you have run dump database.

• Each time you add or remove a cross-database constraint or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases can cause database
corruption.

CHAPTER 7 Commands

491

• Develop a regular schedule for backing up user databases and their
transaction logs.

• Use thresholds to automate backup procedures. To take advantage of
Adaptive Server’s last-chance threshold, create user databases with log
segments on a device that is separate from data segments. For more
information about thresholds, see the System Administration Guide.

Dumping the system databases

• The master, model, and sybsystemprocs databases do not have separate
segments for their transaction logs. Use dump transaction with
truncate_only to purge the log, then use dump database to back up the
database.

• Backups of the master database are needed for recovery procedures in case
of a failure that affects the master database. See the System Administration
Guide for step-by-step instructions for backing up and restoring the master
database.

• If you are using removable media for backups, the entire master database
must fit on a single volume unless you have another Adaptive Server that
can respond to volume change messages.

Specifying dump devices

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

• You cannot dump to the null device (on UNIX, /dev/null).

• Dumping to multiple stripes is supported for tape and disk devices. Placing
multiple dumps on a device is supported only for tape devices.

• You can specify a local dump device as:

• A logical device name from the sysdevices system table

• An absolute path name

• A relative path name

Backup Server resolves relative path names using Adaptive Server’s
current working directory.

• When dumping across the network, you must specify the absolute path
name of the dump device. The path name must be valid on the machine on
which Backup Server is running. If the name includes any characters
except letters, numbers, or the underscore (_), you must enclose it in
quotes.

dump database

492

• Ownership and permissions problems on the dump device may interfere
with the use of dump commands. sp_addumpdevice adds the device to the
system tables, but does not guarantee that you can dump to that device or
create a file as a dump device.

• You can run more than one dump (or load) at the same time, as long as each
uses different dump devices.

• If the device file already exists, Backup Server overwrites it; it does not
truncate it. For example, suppose you dump a database to a device file and
the device file becomes 10MB. If the next dump of the database to that
device is smaller, the device file is still 10MB.

Determining tape device characteristics

• If you issue a dump command without the init qualifier and Backup Server
cannot determine the device type, the dump command fails. For more
information, see the System Administration Guide.

Backup servers

• You must have a Backup Server running on the same machine as Adaptive
Server. The Backup Server must be listed in the master..sysservers table.
This entry is created during installation or upgrade, and should not be
deleted.

• If your backup devices are located on another machine so that you dump
across a network, you must also have a Backup Server installed on the
remote machine.

Dump files

• Dumping a database with the init option overwrites any existing files on the
tape or disk.

• If you perform two or more dumps to a tape device and use the same file
name for both dumps (specified with the FILENAME parameter), Adaptive
Server appends the second dump to the archive device. You will not be
able to restore the second dump because Adaptive Server locates the first
instance of the dump image with the specified file name and restores this
image instead. Adaptive Server does not search for subsequent dump
images with the same file name.

• Backup Server sends the dump file name to the location specified by the
with notify clause. Before storing a backup tape, the operator should label
it with the database name, file name, date, and other pertinent information.
When loading a tape without an identifying label, use the with headeronly
and with listonly options to determine the contents.

CHAPTER 7 Commands

493

File names and archive names

• The name of a dump file identifies the database that was dumped and when
the dump was made. However, in the syntax, file_name has different
meanings depending on whether you are dumping to disk or to a UNIX
tape:

file = file_name

In a dump to disk, the path name of a disk file is also its file name.

In a dump to a UNIX tape, the path name is not the file name. The ANSI
Standard Format for File Interchange contains a file name field in the
HDR1 label. For tapes conforming to the ANSI specification, this field in
the label identifies the file name. The ANSI specification only applies
these labels to tape; it does not apply to disk files.

This creates two problems:

• UNIX does not follow the ANSI convention for tape file names.
UNIX considers the tape’s data to be unlabeled. Although it can be
divided into files, those files have no name.

• In Backup Server, the ANSI tape labels are used to store information
about the archive, negating the ANSI meanings. Therefore, disk files
also have ANSI labels, because the archive name is stored there.

The meaning of filename changes depending on the kind of dump you are
performing. For example, in the following syntax:

dump database database_name to 'filename' with file='filename'

• The first filename refers to the path name you enter to display the file.

• The second filename is actually the archive name, the name stored in
the HDR1 label in the archive, which the user can specify with the
file=filename parameter of the dump or load command.

When the archive name is specified, the server uses that name during a
database load to locate the selected archive.

If the archive name is not specified, the server loads the first archive it
encounters.

In both cases, file='archivename' establishes the name that is stored in the
HDR1 label, and which the subsequent load uses to validate that it is
looking at the correct data.

If the archive name is not specified, a dump creates one; a load uses the first
name it encounters.

dump database

494

The meaning of filename in the to ’filename’ clause changes according to
whether this is a disk or tape dump:

• If the dump is to tape, ‘filename’ is the name of the tape device,

• If the dump is to disk, it is the name of a disk file.

If this is a disk dump and the ‘filename’ is not a complete path, it is
modified by prepending the server’s current working directory.

• If you are dumping to tape and you do not specify a file name, Backup
Server creates a default file name by concatenating the following:

• Last seven characters of the database name

• Two-digit year number

• Three-digit day of the year (1–366)

• Hexadecimal-encoded time at which the dump file was created

For example, the file cations980590E100 contains a copy of the
publications database made on the 59th day of 1998:

Figure 7-2: File naming convention for database dumps to tape

Volume names

• Dump volumes are labeled according to the ANSI tape-labeling standard.
The label includes the logical volume number and the position of the
device within the stripe set.

cations 98 059 0E100

last 7 characters
of database name

last 2
digits of
year

day of
year

number of seconds
since midnight

CHAPTER 7 Commands

495

• During loads, Backup Server uses the tape label to verify that volumes are
mounted in the correct order. This allows you to load from a smaller
number of devices than you used at dump time.

Note When dumping and loading across the network, you must specify
the same number of stripe devices for each operation.

Changing dump volumes

• On UNIX systems – Backup Server requests a volume change when the
tape capacity has been reached. After mounting another volume, the
operator notifies Backup Server by executing sp_volchanged on any
Adaptive Server that can communicate with Backup Server.

• If Backup Server detects a problem with the currently mounted volume, it
requests a volume change by sending messages to either the client or its
operator console. The operator responds to these messages with the
sp_volchanged system procedure.

Appending to or overwriting a volume

• By default (noinit), Backup Server writes successive dumps to the same
tape volume, making efficient use of high-capacity tape media. Data is
added following the last end-of-tape mark. New dumps can be appended
only to the last volume of a multivolume dump. Before writing to the tape,
Backup Server verifies that the first file has not yet expired. If the tape
contains non-Sybase data, Backup Server rejects it to avoid destroying
potentially valuable information.

• Use the init option to reinitialize a volume. If you specify init, Backup
Server overwrites any existing contents, even if the tape contains
non-Sybase data, the first file has not yet expired, or the tape has ANSI
access restrictions.

• Figure 7-3 illustrates how to dump three databases to a single volume
using:

• init to initialize the tape for the first dump

• noinit (the default) to append subsequent dumps

• unload to rewind and unload the tape after the last dump

dump database

496

Figure 7-3: Dumping several databases to the same volume

Dumping from a 32-bit OS to a 64-bit OS

Database dumps from a 32-bit version of Adaptive Server are fully compatible
with a 64-bit version of Adaptive Server of the same platform, and vice-versa.

Dumping databases whose devices are mirrored

• At the beginning of a dump database, Adaptive Server passes Backup
Server the primary device name of all database and log devices. If the
primary device has been unmirrored, Adaptive Server passes the name of
the secondary device instead. If any named device fails before the Backup
Server completes its data transfer, Adaptive Server aborts the dump.

• If a user attempts to unmirror any of the named database devices while a
dump database is in progress, Adaptive Server displays a message. The
user executing the disk unmirror command can abort the dump or defer the
disk unmirror until after the dump is complete.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only the System Administrator, the Database Owner, and users with the
Operator role can execute dump database.

See also Commands dump transaction, load database, load transaction

System procedures sp_addthreshold, sp_addumpdevice, sp_dropdevice,
sp_dropthreshold, sp_helpdevice, sp_helpdb, sp_helpthreshold, sp_logdevice,
sp_spaceused, sp_volchanged

dump database mydb
to /dev/nrmt4
with init

dump database yourdb
to /dev/nrmt4

dump database pubs2
to /dev/nrmt4
with unload

CHAPTER 7 Commands

497

dump transaction
Description Makes a copy of a transaction log and removes the inactive portion.

Syntax To make a routine log dump:

dump tran[saction] database_name
to [compress::[compression_level::]]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]

[[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
notify = {client | operator_console},
standby_access }]

To truncate the log without making a backup copy:

dump tran[saction] database_name
with truncate_only

To truncate a log that is filled to capacity. Use only as a last resort:

dump tran[saction] database_name
with no_log

To back up the log after a database device fails:

dump transaction

498

dump tran[saction] database_name
to [compress::[compression_level::]]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]

[[stripe on [compress::[compression_level::]]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
no_truncate,
notify = {client | operator_console}}]

Parameters database_name
is the name of the database from which you are copying data. The name can
be given as a literal, a local variable, or a parameter to a stored procedure.

compress::compression_level
is a number between 0 and 9, with 0 indicating no compression, and 9
providing the highest level of compression. If you do not specify
compression_level, the default is 1. For more information about the
compress option, see Chapter 27, “Backing Up and Restoring User
Databases” in the System Administration Guide.

Note The compress option works only with local archives; you cannot use the
backup_server_name option.

CHAPTER 7 Commands

499

truncate_only
removes the inactive part of the log without making a backup copy. Use on
databases without log segments on a separate device from data segments, Do
not specify a dump device or Backup Server name.

no_log
removes the inactive part of the log without making a backup copy and
without recording the procedure in the transaction log. Use no_log only
when you are completely out of log space and cannot run the usual dump
transaction command. Use no_log as a last resort and use it only once after
dump transaction with truncate_only fails. For additional information, see the
System Administration Guide.

to stripe_device
is the device to which data is being dumped. See “Specifying dump devices”
on page 491 for information about what form to use when specifying a dump
device.

at backup_server_name
is the name of the Backup Server. Do not specify this parameter if you are
dumping to the default Backup Server. Specify this parameter only if you are
dumping over the network to a remote Backup Server. You can specify up
to 32 different remote Backup Servers using this option. When dumping
across the network, specify the network name of a remote Backup Server
running on the machine to which the dump device is attached. For platforms
that use interfaces files, the backup_server_name must appear in the
interfaces file.

density = density_value
overrides the default density for a tape device. Valid densities are 800, 1600,
6250, 6666, 10000, and 38000. Not all values are valid for every tape drive;
use the correct density for your tape drive.

blocksize = number_bytes
overrides the default block size for a dump device. The block size must be
at least one database page (2048 bytes for most systems) and must be an
exact multiple of the database page size.

Note Whenever possible, use the default block size; it is the best block size for
your system.

dump transaction

500

capacity = number_kilobytes
is the maximum amount of data that the device can write to a single tape
volume. The capacity must be at least five database pages, and should be
slightly less than the recommended capacity for your device.

A general rule for calculating capacity is to use 70 percent of the
manufacturer’s maximum capacity for the device, leaving 30 percent for
overhead such as inter-record gaps and tape marks. This rule works in most
cases, but may not work in all cases because of differences in overhead
across vendors and devices.

On UNIX platforms that cannot reliably detect the end-of-tape marker, you
must indicate how many kilobytes can be dumped to the tape. You must
supply a capacity for dump devices specified as a physical path name. If a
dump device is specified as a logical device name, the Backup Server uses
the size parameter stored in the sysdevices system table, unless you specify
a capacity.

dumpvolume = volume_name
establishes the name that is assigned to the volume. The maximum length of
volume_name is 6 characters. The Backup Server writes the volume_name
in the ANSI tape label when overwriting an existing dump, dumping to a
brand new tape, or dumping to a tape whose contents are not recognizable.
The load transaction command checks the label and generates an error
message if the wrong volume is loaded.

stripe on stripe_device
is an additional dump device. You can use up to 32 devices, including the
device named in the to stripe_device clause. The Backup Server splits the
log into approximately equal portions and sends each portion to a different
device. Dumps are made concurrently on all devices, reducing the time and
the number of volume changes required. See “Specifying dump devices” on
page 491 for information about how to specify a dump device.

dismount | nodismount
on platforms that support logical dismount – determines whether tapes
remain mounted. By default, all tapes used for a dump are dismounted when
the dump completes. Use nodismount to keep tapes available for additional
dumps or loads.

CHAPTER 7 Commands

501

nounload | unload
determines whether tapes rewind after the dump completes. By default,
tapes do not rewind, allowing you to make additional dumps to the same
tape volume. Specify unload for the last dump file to be added to a
multidump volume. This rewinds and unloads the tape when the dump
completes.

retaindays = number_days
on UNIX platforms – specifies the number of days that Backup Server
protects you from overwriting a dump. If you try to overwrite a dump before
it expires, Backup Server requests confirmation before overwriting the
unexpired volume.

Note This option is meaningful for disk, 1/4-inch cartridge, and single-file
media. On multifile media, this option is meaningful for all volumes except the
first.

The number_days must be a positive integer or 0, for dumps you can
overwrite immediately. If you do not specify a retaindays value, Backup
Server uses the server-wide tape retention in days value, set by sp_configure.

noinit | init
determines whether to append the dump to existing dump files or reinitialize
(overwrite) the tape volume. By default, Adaptive Server appends dumps
following the last end-of-tape mark, allowing you to dump additional
databases to the same volume. New dumps can be appended only to the last
volume of a multivolume dump. Use init for the first database you dump to
a tape, to overwrite its contents.

Use init when you want Backup Server to store or update tape device
characteristics in the tape configuration file. For more information, see the
System Administration Guide.

file = file_name
is the name of the dump file. The name cannot exceed 17 characters and
must conform to operating system conventions for file names. If you do not
specify a file name, Backup Server creates a default file name. For more
information, see “Dump files” on page 492.

dump transaction

502

no_truncate
dumps a transaction log, even if the disk containing the data segments for a
database is inaccessible, using a pointer to the transaction log in the master
database. The with no_truncate option provides up-to-the-minute log
recovery when the transaction log resides on an undamaged device, and the
master database and user databases reside on different physical devices.

notify = {client | operator_console}
overrides the default message destination.

• On operating systems that offer an operator terminal feature, volume
change messages are always sent to the operator terminal on the
machine on which the Backup Server is running. Use client to route
other Backup Server messages to the terminal session that initiated the
dump database.

• On operating systems (such as UNIX) that do not offer an operator
terminal feature, messages are sent to the client that initiated the dump
database. Use operator_console to route messages to the terminal on
which the Backup Server is running.

with standby_access
specifies that only completed transactions are to be dumped. The dump
continues to the furthest point it can find at which a transaction has just
completed and there are no other active transactions.

Examples Example 1 Dumps the transaction log to a tape, appending it to the files on the
tape, since the init option is not specified:

dump transaction pubs2
to "/dev/nrmt0"

Example 2 Dumps the transaction log for the mydb database, using the Backup
Server REMOTE_BKP_SERVER. The Backup Server dumps approximately
half the log to each of the two devices. The init option overwrites any existing
files on the tape. The retaindays option specifies that the tapes cannot be
overwritten for 14 days:

dump transaction mydb
to "/dev/nrmt4" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt5" at REMOTE_BKP_SERVER

with init, retaindays = 14

Example 3 Dumps completed transactions from the inventory_db transaction
log file to device dev1:

dump tran inventory_db to dev1 with standby_access

CHAPTER 7 Commands

503

Usage • Table 7-23 describes the commands and system procedures used to back
up databases and logs.

Table 7-23: Commands used to back up databases and logs

Restrictions

• You cannot dump to the null device (on UNIX, /dev/null).

• You cannot use the dump transaction command in a transaction.

• When using 1/4-inch cartridge tape, you can dump only one database or
transaction log per tape.

• You cannot issue dump the transaction log while the trunc log on chkpt
database option is enabled or after enabling select into/bulk copy/pllsort and
making minimally logged changes to the database with select into, fast
bulk copy operations, default unlogged writetext operations, or a parallel
sort. Use dump database instead.

 Warning! Never modify the log table syslogs with a delete, update, or
insert command.

• If a database does not have a log segment on a separate device from data
segments, you cannot use dump transaction to copy the log and truncate it.

• If a user or threshold procedure issues a dump transaction command on a
database where a dump database or another dump transaction is in
progress, the second command sleeps until the first completes.

• To restore a database, use load database to load the most recent database
dump; then use load transaction to load each subsequent transaction log
dump in the order in which it was made.

To do this Use this command

Make routine dumps of the entire database, including the transaction log. dump database

Make routine dumps of the transaction log, then truncate the inactive portion. dump transaction

Dump the transaction log after failure of a database device. dump transaction with no_truncate

Truncate the log without making a backup.

Then copy the entire database.

dump transaction with truncate_only

dump database

Truncate the log after your usual method fails due to insufficient log space.

Then copy the entire database.

dump transaction with no_log

dump database

Respond to the Backup Server’s volume change messages. sp_volchanged

dump transaction

504

• Each time you add or remove a cross-database constraint, or drop a table
that contains a cross-database constraint, dump both of the affected
databases.

 Warning! Loading earlier dumps of these databases can cause database
corruption.

• You cannot dump from an 11.x Adaptive Server to a 10.x Backup Server.

• You cannot have Sybase dumps and non-Sybase data (for example, UNIX
archives) on the same tape.

• You cannot dump a transaction with no_log or with truncate_only if the
database has offline pages.

Copying the log after device failure

• After device failure, use dump transaction with no_truncate to copy the log
without truncating it. You can use this option only if your log is on a
separate segment and your master database is accessible.

• The backup created by dump transaction with no_truncate is the most recent
dump for your log. When restoring the database, load this dump last.

Dumping databases without separate log segments

• When a database does not have a log segment on a separate device from
data segments, use dump transaction with truncate_only to remove
committed transactions from the log without making a backup copy.

 Warning! dump transaction with truncate_only provides no means to
recover your databases. Run dump database at the earliest opportunity to
ensure recoverability.

• Use with truncate_only on the master, model, and sybsystemprocs
databases, which do not have log segments on a separate device from data
segments.

• You can also use this option on very small databases that store the
transaction log and data on the same device.

• Mission-critical user databases should have log segments on a separate
device from data segments. Use the log on clause of create database to
create a database with a separate log segment, or alter database and
sp_logdevice to transfer the log to a separate device.

CHAPTER 7 Commands

505

Dumping only complete transactions

• Use the with standby_access option to dump transaction logs for loading
into a server that acts as a warm standby server for the database.

• When you use with standby_access to dump the transaction log, the dump
proceeds to the furthest point in the log at which all earlier transactions
have completed and there are no records belonging to open transactions.

• You must use dump tran[saction]...with standby_access in all situations
where you will be loading two or more transaction logs in sequence and
you want the database to be online between loads.

• After loading a dump made with the with standby_access option, use the
online database command with the for standby_access option to make the
database accessible.

 Warning! If a transaction log contains open transactions and you dump it
without the with standby_access option, version 11.9.2 does not allow you
to load the log, bring the database online, then load a subsequent
transaction dump. If you are going to load a series of transaction dumps,
you can bring the database online only after a load that was originally
dumped with standby_access or after loading the entire series.

Dumping without the log

 Warning! Use dump transaction with no_log only as a last resort, after your
usual method of dumping the transaction log (dump transaction or dump
transaction with truncate_only) fails because of insufficient log space. dump
transaction with no_log provides no means to recover your databases. Run dump
database at the earliest opportunity to ensure recoverability.

• dump transaction...with no_log truncates the log without logging the dump
transaction event. Because it copies no data, it requires only the name of
the database.

• Every use of dump transaction...with no_log is considered an error and is
recorded in Adaptive Server’s error log.

• If you have created your databases with log segments on a separate device
from data segments, written a last-chance threshold procedure that dumps
your transaction log often enough, and allocated enough space to your log
and database, you should not have to use this option. If you must use with
no_log, increase the frequency of your dumps and the amount of log space.

dump transaction

506

Scheduling dumps

• Transaction log dumps are dynamic—they can take place while the
database is active. They may slow the system slightly, so run dumps when
the database is not being heavily updated.

• Use dump database immediately after creating a database to make a copy
of the entire database. You cannot run dump transaction on a new database
until you have run dump database.

• Develop a regular schedule for backing up user databases and their
transaction logs.

• dump transaction uses less storage space and takes less time than dump
database. Typically, transaction log dumps are made more frequently than
database dumps.

Using thresholds to automate dump transaction

• Use thresholds to automate backup procedures. To take advantage of
Adaptive Server’s last-chance threshold, create user databases with log
segments on a separate device from data segments.

• When space on the log segment falls below the last-chance threshold,
Adaptive Server executes the last-chance threshold procedure. Including a
dump transaction command in your last-chance threshold procedure helps
protect you from running out of log space. For more information, see
sp_thresholdaction.

• You can use sp_addthreshold to add a second threshold to monitor log
space. For more information about thresholds, see the System
Administration Guide.

Specifying dump devices

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

• You can specify a local dump device as:

• A logical device name from the sysdevices system table

• An absolute path name

• A relative path name

The Backup Server resolves relative path names using Adaptive Server’s
current working directory.

• Dumping to multiple stripes is supported for tape and disk devices. Placing
multiple dumps on a device is supported only for tape devices.

CHAPTER 7 Commands

507

• When dumping across the network, specify the absolute path name of the
dump device. The path name must be valid on the machine on which the
Backup Server is running. If the name includes any characters except
letters, numbers, or the underscore (_), enclose it in quotes.

• Ownership and permissions problems on the dump device may interfere
with use of dump commands. sp_addumpdevice adds the device to the
system tables, but does not guarantee that you can dump to that device or
create a file as a dump device.

• You can run more than one dump (or load) at the same time, as long as they
use different dump devices.

Determining tape device characteristics

• If you issue a dump transaction command without the init qualifier and
Backup Server cannot determine the device type, the dump transaction
command fails. For more information, see the System Administration
Guide.

Backup servers

• You must have a Backup Server running on the same machine as your
Adaptive Server. The Backup Server must be listed in the
master..sysservers table. This entry is created during installation or
upgrade and should not be deleted.

• If your backup devices are located on another machine so that you dump
across a network, you must also have a Backup Server installed on the
remote machine.

Dump files

• Dumping a log with the init option overwrites any existing files on the tape
or disk.

• Dump file names identify which database was dumped and when the dump
was made. If you do not specify a file name, Backup Server creates a
default file name by concatenating the following:

• Last seven characters of the database name

• Two-digit year number

• Three-digit day of the year (1– 366)

• Hexadecimal-encoded time at which the dump file was created

For example, the file cations930590E100 contains a copy of the
publications database made on the 59th day of 1993:

dump transaction

508

Figure 7-4: File naming convention for transaction log dumps

• The Backup Server sends the dump file name to the location specified by
the with notify clause. Before storing a backup tape, the operator should
label it with the database name, file name, date, and other pertinent
information. When loading a tape without an identifying label, use the with
headeronly and with listonly options to determine the contents.

Volume names

• Dump volumes are labeled according to the ANSI tape-labeling standard.
The label includes the logical volume number and the position of the
device within the stripe set.

• During loads, Backup Server uses the tape label to verify that volumes are
mounted in the correct order. This allows you to load from a smaller
number of devices than you used at dump time.

Note When dumping and loading across the network, you must specify
the same number of stripe devices for each operation.

Changing dump volumes

• On UNIX systems – the Backup Server requests a volume change when the
tape capacity has been reached. After mounting another volume, the
operator notifies the Backup Server by executing the sp_volchanged
system procedure on any Adaptive Server that can communicate with the
Backup Server.

• If the Backup Server detects a problem with the currently mounted volume
(for example, if the wrong volume is mounted), it requests a volume
change by sending messages to either the client or its operator console.
The operator responds to these messages with the sp_volchanged system
procedure.

cations 93 059 0E100

last 7 characters
of database name

last 2
digits of
year

day of
year

number of seconds
since midnight

CHAPTER 7 Commands

509

Appending to or overwriting a volume

• By default (noinit), Backup Server writes successive dumps to the same
tape volume, making efficient use of high-capacity tape media. Data is
added following the last end-of-tape mark. New dumps can be appended
only to the last volume of a multivolume dump. Before writing to the tape,
Backup Server verifies that the first file has not yet expired. If the tape
contains non-Sybase data, Backup Server rejects it to avoid destroying
potentially valuable information.

• Use the init option to reinitialize a volume. If you specify init, Backup
Server overwrites any existing contents, even if the tape contains
non-Sybase data, the first file has not yet expired, or the tape has ANSI
access restrictions.

• Figure 7-5 illustrates how to dump three transaction logs to a single
volume. Use:

• init to initialize the tape for the first dump

• noinit (the default) to append subsequent dumps

• unload to rewind and unload the tape after the last dump

Figure 7-5: Dumping three transaction logs to a single volume

dump tran mydb
to /dev/nrmt4
with init

dump tran yourdb
to /dev/nrmt4

dump tran pubs2
to /dev/nrmt4
with unload

dump transaction

510

Dumping logs stored on mirrored devices

• At the beginning of a dump transaction, Adaptive Server passes the
primary device name of each logical log device to the Backup Server. If
the primary device has been unmirrored, Adaptive Server passes the name
of the secondary device instead. If the named device fails before Backup
Server completes its data transfer, Adaptive Server aborts the dump.

• If you attempt to unmirror a named log device while a dump transaction is
in progress, Adaptive Server displays a message. The user executing the
disk unmirror command can abort the dump or defer the disk unmirror until
after the dump completes.

• dump transaction with truncate_only and dump transaction with no_log do not
use the Backup Server. These commands are not affected when a log
device is unmirrored, either by a device failure or by a disk unmirror
command.

• dump transaction copies only the log segment. It is not affected when a
data-only device is unmirrored, either by a device failure or by a disk
unmirror command.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only System Administrators, users who have been granted the Operator role,
and the Database Owner can execute dump transaction.

See also Commands dump database, load database, load transaction, online database

System procedures sp_addumpdevice, sp_dboption, sp_dropdevice,
sp_helpdevice, sp_logdevice, sp_volchanged

CHAPTER 7 Commands

511

execute
Description Runs a procedure or dynamically executes Transact-SQL commands.

Syntax [exec[ute]] [@return_status =]
[[[server .]database.]owner.]procedure_name[;number]

[[@parameter_name =] value |
[@parameter_name =] @variable [output]

[,[@parameter_name =] value |
[@parameter_name =] @variable [output]...]]

[with recompile]

or

exec[ute] ("string" | char_variable
[+ "string" | char_variable]...)

Parameters execute | exec
is used to execute a stored procedure or an extended stored procedure (ESP).
This parameter is necessary only if the stored procedure call is not the first
statement in a batch.

@return_status
is an optional integer variable that stores the return status of a stored
procedure. @return_status must be declared in the batch or stored procedure
before it is used in an execute statement.

server
is the name of a remote server. You can execute a procedure on another
Adaptive Server as long as you have permission to use that server and to
execute the procedure in that database. If you specify a server name, but do
not specify a database name, Adaptive Server looks for the procedure in
your default database.

database
is the database name. Specify the database name if the procedure is in
another database. The default value for database is the current database. You
can execute a procedure in another database as long as you are its owner or
have permission to execute it in that database.

owner
is the procedure owner’s name. Specify the owner’s name if more than one
procedure of that name exists in the database. The default value for owner is
the current user. The owner name is optional only if the Database Owner
owns the procedure or if you own it.

procedure_name
is the name of a procedure defined with create procedure.

execute

512

;number
is an optional integer used to group procedures of the same name so that
they can be dropped together with a single drop procedure statement.
Procedures used in the same application are often grouped this way. For
example, if the procedures used with an application named orders are
named orderproc;1, orderproc;2, and so on, the following statement
drops the entire group:

drop proc orderproc

After procedures have been grouped, individual procedures within the
group cannot be dropped. For example, you cannot execute the
statement:

drop procedure orderproc;2

parameter_name
is the name of an argument to the procedure, as defined in create
procedure. Parameter names must be preceded by the @ sign.

If the “@parameter_name = value” form is used, parameter names and
constants need not be supplied in the order defined in create procedure.
However, if this form is used for any parameter, it must be used for all
subsequent parameters.

value
is the value of the parameter or argument to the procedure. If you do not
use the “@parameter_name = value” form, you must supply parameter
values in the order defined in create procedure.

@variable
is the name of a variable used to store a return parameter.

output
indicates that the stored procedure is to return a return parameter. The
matching parameter in the stored procedure must also have been created
with the keyword output.

The output keyword can be abbreviated to out.

with recompile
forces compilation of a new plan. Use this option if the parameter you
are supplying is atypical or if the data has significantly changed. The
changed plan is used on subsequent executions. Adaptive Server
ignores this option when executing an extended system procedure
(ESP).

CHAPTER 7 Commands

513

string
is a literal string containing part of a Transact-SQL command to
execute. There are no restrictions to the number of characters supplied
with the literal string.

char_variable
is the name of a variable that supplies the text of a Transact-SQL
command.

Examples Example 1 All three examples execute showind with a parameter value
titles:

execute showind titles
exec showind @tabname = titles

If this is the only statement in a batch or file:

showind titles

Example 2 Executes checkcontract on the remote server GATEWAY.
Stores the return status indicating success or failure in @retstat:

declare @retstat int
execute @retstat = GATEWAY.pubs.dbo.checkcontract
"409-56-4008"

Example 3 Executes roy_check, passing three parameters. The third
parameter, @pc, is an output parameter. After execution of the procedure,
the return value is available in the variable @percent:

declare @percent int
select @percent = 10
execute roy_check "BU1032", 1050, @pc = @percent
output
select Percent = @percent

Example 4 This procedure displays information about the system tables
if you do not supply a parameter:

create procedure
showsysind @table varchar(30) = "sys%"
as

select sysobjects.name, sysindexes.name, indid
from sysindexes, sysobjects
where sysobjects.name like @table
and sysobjects.id = sysindexes.id

Example 5 Executes xp_echo, passing in a value of “Hello World!”. The
returned value of the extended stored procedure is stored in a variable
named result:

execute

514

declare @input varchar(12), @in varchar(12),
@out varchar(255), @result varchar(255)

select @input="Hello World!"
execute xp_echo @in = @input, @out= @result output

Example 6 The final execute command concatenates string values and
character variables to issue the Transact-SQL command:

select name from sysobjects where id=3

declare @tablename char(20)
declare @columname char(20)
select @tablename="sysobjects”
select @columname="name"
execute ('select ' + @columname + ' from ' +
@tablename + ' where id=3')

Example 7 Executes sp_who:

declare @sproc varchar(255)
select @sproc = "sp_who"
execute @sproc

Usage • Procedure results may vary, depending on the database in which they
are executed. For example, the user-defined system procedure sp_foo,
which executes the db_name() system function, returns the name of
the database from which it is executed. When executed from the
pubs2 database, it returns the value “pubs2”:

exec pubs2..sp_foo

pubs2
(1 row affected, return status = 0)

When executed from sybsystemprocs, it returns the value
“sybsystemprocs”:

exec sybsystemprocs..sp_foo

sybsystemprocs
(1 row affected, return status = 0)

• There are two ways to supply parameters—by position, or by using:

@parameter_name = value

If you use the second form, you do not have to supply the parameters
in the order defined in create procedure.

CHAPTER 7 Commands

515

If you are using the output keyword and intend to use the return
parameters in additional statements in your batch or procedure, the
value of the parameter must be passed as a variable. For example:

parameter_name = @variable_name

When executing an extended stored procedure, pass all parameters by
either name or value. You cannot mix parameters by value and
parameters by name in a single invocation of the execute command
for an ESP.

• The Dynamic SQL syntax of exec (@parameter_name) is also valid;
however, it may take more keystrokes. For example, the dynamic
SQL command exec (@sproc ="7") passes the integer value 7 to the
procedure, but this can be accomplished with fewer keystrokes as
exec @sproc 7.

• You cannot use text and image columns as parameters to stored
procedures or as values passed to parameters.

• Executing a procedure specifying output for a parameter that is not
defined as a return parameter in create procedure causes an error.

• You cannot pass constants to stored procedures using output; the
return parameter requires a variable name. You must declare the
variable’s datatype and assign it a value before executing the
procedure. Return parameters cannot have a datatype of text or image.

• It is not necessary to use the keyword execute if the statement is the
first one in a batch. A batch is a segment of an input file terminated
by the word “go” on a line by itself.

• Since the execution plan for a procedure is stored the first time it is
run, subsequent run time is much shorter than for the equivalent set of
standalone statements.

• Nesting occurs when one stored procedure calls another. The nesting
level is incremented when the called procedure begins execution and
it is decremented when the called procedure completes execution.
Exceeding the maximum of 16 levels of nesting causes the transaction
to fail. The current nesting level is stored in the @@nestlevel global
variable.

• Return values 0 and -1 through -14 are currently used by Adaptive
Server to indicate the execution status of stored procedures. Values
from -15 through -99 are reserved for future use. See return for a list
of values.

execute

516

• Parameters are not part of transactions, so if a parameter is changed in
a transaction that is later rolled back, its value does not revert to its
previous value. The value that is returned to the caller is always the
value at the time the procedure returns.

• If you use select * in create procedure, the procedure does not pick up
any new columns you may have added to the table (even if you use
the with recompile option to execute). You must drop the procedure and
re-create it.

• Commands executed via remote procedure calls cannot be rolled
back.

• The with recompile option is ignored when Adaptive Server executes
an extended stored procedure.

Dynamically executing Transact-SQL

• When used with the string or char_variable options, execute
concatenates the supplied strings and variables to execute the
resulting Transact-SQL command. This form of the execute
command may be used in SQL batches, procedures, and triggers.

• You cannot supply string and char_variable options to execute the
following commands: begin transaction, commit, connect to, declare
cursor, rollback, dump transaction, dbcc, set, use, or nested execute
commands.

• The create view command can be specified using execute(), but only
in SQL batches. create view cannot be used in procedures, either as a
static command or as a string parameter to execute().

• The contents of the string or char_variable options cannot reference
local variables declared in the SQL batch or procedure.

• string and char_variable options can be concatenated to create new
tables. Within the same SQL batch or procedure, however, the table
created with execute() is visible only to other execute() commands.
After the SQL batch or procedure has completed, the
dynamically-created table is persistent and visible to other
commands.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions execute permission defaults to the owner of the procedure, who can
transfer it to other users.

CHAPTER 7 Commands

517

The permission to execute Transact-SQL commands defined with the
string or char_variable options is checked against the user executing the
command. This is true even when execute() is defined within a procedure
or trigger that belongs to another user.

See also Commands create procedure, drop procedure, return

System procedures sp_addextendedproc, sp_depends,
sp_dropextendedproc, sp_helptext

fetch

518

fetch
Description Returns a row or a set of rows from a cursor result set.

Syntax fetch cursor_name [into fetch_target_list]

Parameters cursor_name
the name of the cursor

into fetch_target_list
is a comma-separated list of parameters or local variables into which
cursor results are placed. The parameters and variables must be
declared prior to the fetch.

Examples Example 1 Returns a row of information from the cursor result set defined
by the authors_crsr cursor:

fetch authors_crsr

Example 2 Returns a row of information from the cursor result set defined
by the pubs_crsr cursor into the variables @name, @city, and @state:

fetch pubs_crsr into @name, @city, @state

Usage Restrictions

• Before you can use fetch, you must declare the cursor and open it.

• The cursor_name cannot be a Transact-SQL parameter or local
variable.

• You cannot fetch a row that has already been fetched. There is no way
to backtrack through the result set, but you can close and reopen the
cursor to create the cursor result set again and start from the
beginning.

• Adaptive Server expects a one-to-one correspondence between the
variables in the fetch_target_list and the target list expressions
specified by the select_statement that defines the cursor. The
datatypes of the variables or parameters must be compatible with the
datatypes of the columns in the cursor result set.

• When you set chained transaction mode, Adaptive Server implicitly
begins a transaction with the fetch statement if no transaction is
currently active. However, this situation occurs only when you set the
close on endtran option and the cursor remains open after the end of
the transaction that initially opened it, since the open statement also
automatically begins a transaction.

CHAPTER 7 Commands

519

Cursor position

• After you fetch all the rows, the cursor points to the last row of the
result set. If you fetch again, Adaptive Server returns a warning
through the @@sqlstatus variable indicating there is no more data,
and the cursor position moves beyond the end of the result set. You
can no longer update or delete from that current cursor position.

• With fetch into, Adaptive Server does not advance the cursor position
when an error occurs because the number of variables in the
fetch_target_list does not equal the number of target list expressions
specified by the query that defines the cursor. However, it does
advance the cursor position, even if a compatibility error occurs
between the datatypes of the variables and the datatypes of the
columns in the cursor result set.

Determining the number of rows fetched

• You can fetch one or more rows at a time. Use the cursor rows option
of the set command to specify the number of rows to fetch.

Getting information about fetches

• The @@sqlstatus global variable holds status information (warning
exceptions) resulting from the execution of a fetch statement. The
value of @@sqlstatus is 0, 1, or 2, as shown in Table 7-24.

Table 7-24: @@sqlstatus values

Only a fetch statement can set @@sqlstatus. Other statements have no
effect on @@sqlstatus.

• The @@rowcount global variable holds the number of rows returned
from the cursor result set to the client up to the last fetch. In other
words, it represents the total number of rows seen by the client at any
one time.

Once all the rows have been read from the cursor result set,
@@rowcount represents the total number of rows in the cursor results
set. Each open cursor is associated with a specific @@rowcount
variable, which is dropped when you close the cursor. Check
@@rowcount after a fetch to get the number of rows read for the
cursor specified in that fetch.

0 Indicates successful completion of the fetch statement.

1 Indicates that the fetch statement resulted in an error.

2 Indicates that there is no more data in the result set. This warning can occur if the current cursor
position is on the last row in the result set and the client submits a fetch statement for that cursor.

fetch

520

Standards SQL92 – Compliance level: Entry-level compliant.

The use of variables in a target list and fetch of multiple rows are
Transact-SQL extensions.

Permissions fetch permission defaults to all users.

See also Commands declare cursor, open, set

CHAPTER 7 Commands

521

goto label
Description Branches to a user-defined label.

Syntax label:
goto label

Examples Shows the use of a label called restart:

declare @count smallint
select @count = 1
restart:

print "yes"
select @count = @count + 1
while @count <=4

goto restart

Usage • The label name must conform to the rules for identifiers and must be
followed by a colon (:) when it is declared. It is not followed by a
colon when it is used with goto.

• Make the goto dependent on an if or while test, or some other
condition, to avoid an endless loop between goto and the label.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions goto permission defaults to all users. No permission is required to use it.

See also Commands if...else, while

grant

522

grant
Description Assigns permissions to users or to user-defined roles. Assigns roles to

users or system or user-defined roles.

Syntax To grant permission to access database objects:

grant {all [privileges]| permission_list}
on { table_name [(column_list)]

| view_name[(column_list)]
| stored_procedure_name}

to {public | name_list | role_name}
[with grant option]

To grant permission to execute certain commands:

grant {all [privileges] | command_list}
to {public | name_list | role_name}

To grant a role to a user or a role:

grant {role role_granted [, role_granted ...]}
to grantee [, grantee...]

Parameters all
when used to assign permission to access database objects (the first
syntax format), all specifies that all permissions applicable to the
specified object are granted. All object owners can use grant all with an
object name to grant permissions on their own objects.

Only a System Administrator or the Database Owner can assign
permission to create database objects (the second syntax format). When
used by a System Administrator, grant all assigns all create permissions
(create database, create default, create procedure, create rule, create
table, and create view). When the Database Owner uses grant all,
Adaptive Server grants all create permissions except create database,
and prints an informational message.

Specifying all does not include permission to execute set proxy or set
session authorization.

permission_list
is a list of object access permissions granted. If more than one
permission is listed, separate them with commas. The following table
illustrates the access permissions that can be granted on each type of
object:

Object permission_list can include

Table select, insert, delete, update, references

View select, insert, delete, update

CHAPTER 7 Commands

523

command_list
is a list of commands that the user can execute. If more than one
command is listed, separate them with commas. The command list can
include create database, create default, create procedure, create rule,
create table, create view, set proxy, and set session authorization.

create database permission can be granted only by a System
Administrator, and only from within the master database.

Only a System Security Officer can grant users permission to execute
set proxy or set session authorization. Granting permission to execute set
proxy or set session authorization allows the grantee to impersonate
another login in the server. set proxy and set session authorization are
identical, except that set session authorization follows the ANSI92
standard, and set proxy is a Transact-SQL extension.

table_name
is the name of the table on which you are granting permissions. The
table must be in your current database. Only one object can be listed for
each grant statement.

column_list
is a list of columns, separated by commas, to which the permissions
apply. If columns are specified, only select, references, and update
permissions can be granted.

view_name
is the name of the view on which you are granting permissions. The
view must be in your current database. Only one object can be listed for
each grant statement.

stored_procedure_name
is the name of the stored procedure on which you are granting
permissions. The stored procedure must be in your current database.
Only one object can be listed for each grant statement.

Column select, update, references
Column names can be specified in either permission_list or
column_list (see Example 2).

Stored procedure execute

Object permission_list can include

grant

524

public
is all users. For object access permissions, public excludes the object
owner. For object creation permissions or set proxy authorizations,
public excludes the Database Owner. You cannot grant permissions with
grant option to “public” or to other groups or roles.

name_list
is a list of users’ database names and/or group names, separated by
commas.

with grant option
allows the users specified in name_list to grant object access
permissions to other users. You can grant permissions with grant option
only to individual users, not to “public” or to a group or role.

role
grants a role to a user or to a system or user-defined role.

role_granted
is the name of a system or user-defined role that the System Security
Officer is granting to a user or a role.

grantee
is the name of a system role, user-defined role, or a user, to whom you
are granting a role.

role_name
is the name of a system or user-defined role to which you are granting
the permission.

Examples Example 1 Grants Mary and the “sales” group permission to use the insert
and delete commands on the titles table:

grant insert, delete
on titles
to mary, sales

Example 2 Two ways to grant update permission on the price and advance
columns of the titles table to “public” (which includes all users):

grant update
on titles (price, advance)
to public

or:

grant update (price, advance)
on titles
to public

CHAPTER 7 Commands

525

Example 3 Grants Harry and Billy permission to execute either set proxy
or set session authorization to impersonate another user in the server:

grant set proxy to harry, billy

Example 4 Grants users with sso_role permission to execute either set
proxy or set session authorization to impersonate another user in the server:

grant set session authorization to sso_role

Example 5 Grants users with vip_role the ability to impersonate another
user in the server. vip_role must be a role defined by a System Security
Officer with the create role command:

grant set proxy to vip_role

Example 6 Grants Mary and John permission to use the create database
and create table commands. Because create database permission is being
granted, this command can be executed only by a System Administrator
within the master database. Mary and John’s create table permission
applies only to the master database:

grant create database, create table
to mary, john

Example 7 Grants complete access permissions on the titles table to all
users:

grant all on titles
to public

Example 8 Grants all object creation permissions in the current database
to all users. If this command is executed by a System Administrator from
the master database, it includes create database permission:

grant all
to public

Example 9 Gives Mary permission to use the update command on the
authors table and to grant that permission to others:

grant update on authors
to mary
with grant option

Example 10 Gives Bob permission to use the select and update
commands on the price column of the titles table and to grant that
permission to others:

grant select, update on titles(price)
to bob

grant

526

with grant option

Example 11 Grants permission to execute the new_sproc stored procedure
to all System Security Officers:

grant execute on new_sproc
to sso_role

Example 12 Grants James permission to create a referential integrity
constraint on another table that refers to the price column of the titles table:

grant references on titles(price)
to james

Example 13 Grants the role “specialist”, with all its permissions and
privileges, to the role “doctor”:

grant role specialist_role to doctor_role

Example 14 Grants the role “doctor” to Mary:

grant role doctor_role to mary

Usage • You can substitute the word from for to in the grant syntax.

• Table 7-25 summarizes default permissions on Transact-SQL
commands in Adaptive Server. The user listed under the “Defaults to”
heading is the lowest level of user that is automatically granted
permission to execute a command. This user can grant or revoke the
permission if it is transferable. Users at higher levels than the default
are either automatically assigned permission or (in the case of
Database Owners) can get permission by using the setuser command.

For example, the owner of a database does not automatically receive
permission on objects owned by other users. A Database Owner can
gain such permission by assuming the identity of the object owner
with the setuser command, and then issuing the appropriate grant or
revoke statement. System Administrators have permission to access
all commands and objects at any time.

The Adaptive Server installation script assigns a set of permissions to
the default group “public.” grant and revoke statements need not be
written for these permissions.

Table 7-25 does not include the System Security Officer, who does
not have any special permissions on commands and objects, but only
on certain system procedures.

CHAPTER 7 Commands

527

Table 7-25: Command and object permissions

Statement Defaults to
Can be
granted/revoked

System
Admin Operator

Database
Owner

Object
owner Public Yes No N/A

alter database X (1)

alter role X

alter table X X

begin transaction X X

checkpoint X X

commit X X

connect to X

create database X X

create default X X

create index X X

create procedure X X

create role X

create rule X X

create table X (2) X (2)

create trigger X X

create view X X

dbcc Varies depending upon options. See dbcc in this manual. X

delete X (3) X

disk init X X

disk mirror X

disk refit X

disk reinit X

disk remirror X

disk unmirror X X

drop any object X X

dump database X X X

dump transaction X X X

execute X (4) X

grant on object X X

grant command X X

insert X (3) X

kill X X

load database X X X

grant

528

• You can grant permissions only on objects in your current database.

• Before you create a table that includes a referential integrity
constraint to reference another user’s table, you must be granted
references permission on that referenced table (see example 10). The
table must also include a unique constraint or unique index on the
referenced columns. See create table for more information about
referential integrity constraints.

• grant and revoke commands are order-sensitive. The command that
takes effect when there is a conflict is the one issued most recently.

load transaction X X X

print X X

raiserror X X

readtext X (5)

revoke on object X X

revoke command X X

rollback X X

save transaction X X

select X (3) X

set X X

setuser X X

shutdown X X

truncate table X X

update X (3) X

update all statistics X X

update partition
statistics

X X

update statistics X X

writetext X (6)

(1) Transferred with database ownership
(2) Public can create temporary tables, no
permission required
(3) If a view, permission defaults to view
owner

(4) Defaults to stored procedure owner
(5) Transferred with select permission
(6) Transferred with update permission
“No” means use of the command is never restricted
“N/A” means use of the command is always restricted

Statement Defaults to
Can be
granted/revoked

System
Admin Operator

Database
Owner

Object
owner Public Yes No N/A

CHAPTER 7 Commands

529

• A user can be granted permission on a view or stored procedure even
if he or she has no permissions on objects referenced by the procedure
or view. For more information, see the System Administration Guide.

• Adaptive Server grants all users permission to declare cursors,
regardless of the permissions defined for the base tables or views
referenced in the declare cursor statement. Cursors are not defined as
Adaptive Server objects (such as tables), so no permissions can be
applied against a cursor. When a user opens a cursor, Adaptive Server
determines whether the user has select permissions on the objects that
define that cursor’s result set. It checks permissions each time a cursor
is opened.

If the user has permission to access the objects defined by the cursor,
Adaptive Server opens the cursor and allows the user to fetch row data
through the cursor. Adaptive Server does not apply permission
checking for each fetch. However, if the user performs a delete or an
update through that cursor, the regular permission checking applies
for deleting and updating the data of objects referenced in the cursor
result set.

• A grant statement adds one row to the sysprotects system table for
each user, group, or role that receives the permission. If you
subsequently revoke the permission from the user or group, Adaptive
Server removes the row from sysprotects. If you revoke the
permission from selected group members only, but not from the entire
group to which it was granted, Adaptive Server retains the original
row and adds a new row for the revoke.

• If a user inherits a particular permission by virtue of being a member
of a group, and the same permission is explicitly granted to the user,
no row is added to sysprotects. For example, if “public” has been
granted select permission on the phone column in the authors table,
then John, a member of “public,” is granted select permission on all
columns of authors. The row added to sysprotects as a result of the
grant to John contains references to all columns in the authors table
except for the phone column, on which he already had permission.

grant

530

• Permission to issue the create trigger command is granted to users by
default. When you revoke permission for a user to create triggers, a
revoke row is added in the sysprotects table for that user. To grant
permission to that user to issue create trigger, you must issue two grant
commands. The first command removes the revoke row from
sysprotects; the second inserts a grant row. If you revoke permission
to create triggers, the user cannot create triggers even on tables that
the user owns. Revoking permission to create triggers from a user
affects only the database where the revoke command was issued.

• You can get information about permissions with these system
procedures:

• sp_helprotect reports permissions information for a database
object or a user.

• sp_column_privileges reports permissions information for one or
more columns in a table or view.

• sp_table_privileges reports permissions information for all
columns in a table or view.

• sp_activeroles displays all active roles for the current login
session of Adaptive Server.

• sp_displayroles displays all roles granted to another role, or
displays the entire hierarchy tree of roles in table format.

grant all object creation permissions

• When used with only user or group names (no object names), grant all
assigns these permissions: create database, create default, create
procedure, create rule, create table, and create view. create database
permission can be granted only by a System Administrator and only
from within the master database.

• Only the Database Owner and a System Administrator can use the
grant all syntax without an object name to grant create command
permissions to users or groups. When the grant all command is used
by the Database Owner, an informational message is printed, stating
that only a System Administrator can grant create database
permission. All other permissions noted above are granted.

• All object owners can use grant all with an object name to grant
permissions on their own objects. When used with a table or view
name plus user or group names, grant all enables delete, insert, select,
and update permissions on the table.

CHAPTER 7 Commands

531

grant with grant option rules

• You cannot grant permissions with grant option to “public” or to a
group or role.

• In granting permissions, a System Administrator is treated as the
object owner. If a System Administrator grants permission on another
user’s object, the owner‘s name appears as the grantor in sysprotects
and in sp_helprotect output.

• Information for each grant is kept in the system table sysprotects with
the following exceptions:

• Adaptive Server displays an informational message if a specific
permission is granted to a user more than once by the same
grantor. Only the first grant is kept.

• If two grants are exactly same except that one of them is granted
with grant option, the grant with grant option is kept.

• If two grant statements grant the same permissions on a particular
table to a specific user, but the columns specified in the grants are
different, Adaptive Server treats the grants as if they were one
statement. For example, the following grant statements are
equivalent:

grant select on titles(price, contract)
to keiko

grant select on titles(advance) to keiko
grant select on titles(price, contract,

advance)
to keiko

Granting proxies and session authorizations

• Granting permission to execute set proxy or set session authorization
allows the grantee to impersonate another login in Adaptive Server.
set proxy and set session authorization are identical with one
exception: set session authorization follows the SQL standard, and set
proxy is a Transact-SQL extension.

• To grant set proxy or set session authorization permission, you must be
a System Security Officer, and you must be in the master database.

• The name you specify in the grant set proxy command must be a valid
user in the database; that is, the name must be in the sysusers table in
the database.

grant

532

• grant all does not include the set proxy or set session authorization
permissions.

Granting permission to roles

• You can use the grant command to grant permissions to all users who
have been granted a specified role. The role can be either a system
role, like sso_role or sa_role, or a user-defined role. For a user-defined
role, the System Security Officer must create the role with a create
role command.

However, grant execute permission does not prevent users who do not
have a specified role from being individually granted permission to
execute a stored procedure. If you want to ensure, for example, that
only System Security Officers can ever be granted permission to
execute a stored procedure, use the proc_role system function within
the stored procedure itself. It checks to see whether the invoking user
has the correct role to execute the procedure. For more information,
see proc_role.

• Permissions that are granted to roles override permissions that are
granted to users or groups. For example, say John has been granted
the System Security Officer role, and sso_role has been granted
permission on the sales table. If John’s individual permission on sales
is revoked, he can still access sales because his role permissions
override his individual permissions.

Users and user groups

• User groups allow you to grant or revoke permissions to more than one
user with a single statement. Each user can be a member of only one
group and is always a member of “public”.

• The Database Owner or System Administrator can add new users with
sp_adduser and create groups with sp_addgroup. To allow users with
logins on Adaptive Server to use the database with limited privileges,
you can add a “guest” user with sp_adduser and assign limited
permissions to “guest”. All users with logins can access the database
as “guest”.

• To remove a user, use sp_dropuser. To remove a group, use
sp_dropgroup.

To add a new user to a group other than “public,” use sp_adduser. To
change an established user’s group, use sp_changegroup.

To display the members of a group, use sp_helpgroup.

CHAPTER 7 Commands

533

• When sp_changegroup is executed to change group membership, it
clears the in-memory protection cache by executing:

grant all to null

so that the cache can be refreshed with updated information from the
sysprotects table. To modify sysprotects directly, contact Sybase
Technical Support.

Standards SQL92 – Compliance level: Entry-level compliant.

Granting permissions to groups and granting set proxy are Transact-SQL
extensions. Granting set session authorization (identical in function to set
proxy) follows the ANSI standard.

Permissions Database object access grant permission for database objects defaults
to object owners. An object owner can grant permission to other users on
his or her own database objects.

Command execution Only a System Administrator can grant create
database permission, and only from the master database. Only a System
Security Officer can grant create trigger permission.

Proxy and session authorization Only a System Security Officer can
grant set proxy or set session authorization, and only from the master
database.

Roles You can grant roles only from the master database. Only a System
Security Officer can grant sso_role, oper_role or a user-defined role to a
user or a role. Only System Administrators can grant sa_role to a user or a
role. Only a user who has both sa_role and sso_role can grant a role which
includes sa_role.

See also Catalog stored procedures sp_column_privileges

Commands revoke, setuser, set

Functions proc_role

System procedures sp_addgroup, sp_adduser, sp_changedbowner,
sp_changegroup, sp_dropgroup, sp_dropuser, sp_helpgroup,
sp_helprotect, sp_helpuser, sp_role

group by and having clauses

534

group by and having clauses
Description Used in select statements to divide a table into groups and to return only

groups that match conditions in the having clause.

Syntax Start of select statement

[group by [all] aggregate_free_expression
[, aggregate_free_expression]...]

[having search_conditions]

End of select statement

Parameters group by
specifies the groups into which the table will be divided, and if
aggregate functions are included in the select list, finds a summary
value for each group. These summary values appear as columns in the
results, one for each group. You can refer to these summary columns in
the having clause.

You can use the avg, count, max, min, and sum aggregate functions in
the select list before group by (the expression is usually a column name).
For more information, see “Aggregate functions” on page 47.

A table can be grouped by any combination of columns—that is, groups
can be nested within each other, as in Example 2.

all
is a Transact-SQL extension that includes all groups in the results, even
those excluded by a where clause. For example:

select type, avg(price)
from titles
where advance > 7000
group by all type

type
----------------- ----------
UNDECIDED NULL
business 2.99
mod_cook 2.99
popular_comp 20.00
psychology NULL
trad_cook 14.99

CHAPTER 7 Commands

535

(6 rows affected)

“NULL” in the aggregate column indicates groups that would be
excluded by the where clause. A having clause negates the meaning of
all.

aggregate_free_expression
is an expression that includes no aggregates. A Transact-SQL extension
allows grouping by an aggregate-free expression as well as by a column
name.

You cannot group by column heading or alias. This example is correct:

select Price=avg(price), Pay=avg(advance),
Total=price * $1.15
from titles
group by price * $1.15

having
sets conditions for the group by clause, similar to the way in which
where sets conditions for the select clause.

having search conditions can include aggregate expressions; otherwise,
having search conditions are identical to where search conditions.
Following is an example of a having clause with aggregates:

select pub_id, total = sum(total_sales)
from titles
where total_sales is not null
group by pub_id
having count(*)>5

When Adaptive Server optimizes queries, it evaluates the search
conditions in where and having clauses, and determines which
conditions are search arguments (SARGs) that can be used to choose
the best indexes and query plan. All of the search conditions are used to
qualify the rows. For more information on search arguments, see the
Performance and Tuning Guide.

Examples Example 1 Calculates the average advance and the sum of the sales for
each type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type

Example 2 Groups the results by type, then by pub_id within each type:

select type, pub_id, avg(advance), sum(total_sales)
from titles

group by and having clauses

536

group by type, pub_id

Example 3 Calculates results for all groups, but displays only groups
whose type begins with “p”:

select type, avg(price)
from titles
group by type
having type like 'p%'

Example 4 Calculates results for all groups, but displays results for
groups matching the multiple conditions in the having clause:

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $15000
and avg(price) < $10
and pub_id > "0700"

Example 5 Calculates the total sales for each group (publisher) after
joining the titles and publishers tables:

select p.pub_id, sum(t.total_sales)
from publishers p, titles t
where p.pub_id = t.pub_id
group by p.pub_id

Example 6 Displays the titles that have an advance of more than $1000
and a price that is more than the average price of all titles:

select title_id, advance, price
from titles
where advance > 1000
having price > avg(price)

Usage • You can use a column name or any expression (except a column
heading or alias) after group by. You can use group by to calculate
results or display a column or an expression that does not appear in
the select list (a Transact-SQL extension described in “Transact-SQL
extensions to group by and having” on page 539).

• The maximum number of columns or expressions allowed in a group
by clause is 31, the same as the maximum number of indexes allowed
on a table.

CHAPTER 7 Commands

537

• The group by clause on large columns, and on all columns specified
by the group by clause, is limited by the maximum size of the index
for a given logical page size. This is because Adaptive Server
generates a worktable with a key when grouping data results. For
more information on index sizes, see create index on page 335.

An index size limitation may cause errors when you process a group
by clause. For instance, a group by clause in a 1024-byte column on a
2K page size server causes an error if the index size limitation is 600
bytes.

• Null values in the group by column are put into a single group.

• You cannot name text or image columns in group by and having
clauses.

• You cannot use a group by clause in the select statement of an
updatable cursor.

• Aggregate functions can be used only in the select list or in a having
clause. They cannot be used in a where or group by clause.

Aggregate functions are of two types. Aggregates applied to all the
qualifying rows in a table (producing a single value for the whole
table per function) are called scalar aggregates. An aggregate
function in the select list with no group by clause applies to the whole
table; it is one example of a scalar aggregate.

Aggregates applied to a group of rows in a specified column or
expression (producing a value for each group per function) are called
vector aggregates. For either aggregate type, the results of the
aggregate operations are shown as new columns that the having clause
can refer to.

You can nest a vector aggregate inside a scalar aggregate. See
“Aggregate functions.” for more information.

How group by and having queries with aggregates work

• The where clause excludes rows that do not meet its search
conditions; its function remains the same for grouped or nongrouped
queries.

• The group by clause collects the remaining rows into one group for
each unique value in the group by expression. Omitting group by
creates a single group for the whole table.

group by and having clauses

538

• Aggregate functions specified in the select list calculate summary
values for each group. For scalar aggregates, there is only one value
for the table. Vector aggregates calculate values for the distinct
groups.

• The having clause excludes groups from the results that do not meet
its search conditions. Even though the having clause tests only rows,
the presence or absence of a group by clause may make it appear to be
operating on groups:

• When the query includes group by, having excludes result group
rows. This is why having seems to operate on groups.

• When the query has no group by, having excludes result rows
from the (single-group) table. This is why having seems to
operate on rows (the results are similar to where clause results).

Standard group by and having queries

• All group by and having queries in the Examples section adhere to the
SQL standard. It dictates that queries using group by, having, and
vector aggregate functions produce one row and one summary value
per group, using these guidelines:

• Columns in a select list must also be in the group by expression,
or they must be arguments of aggregate functions.

• A group by expression can contain only column names that are in
the select list. However, columns used only as arguments of
aggregate functions in the select list do not qualify.

• Columns in a having expression must be single-valued —
arguments of aggregates, for instance — and they must be in the
select list or group by clause. Queries with a select list aggregate
and a having clause must have a group by clause. If you omit the
group by for a query without a select list aggregate, all the rows
not excluded by the where clause are considered to be a single
group (see Example 6).

In nongrouped queries, the principle that “where excludes rows”
seems straightforward. In grouped queries, the principle expands to
“where excludes rows before group by, and having excludes rows from
the display of results.”

CHAPTER 7 Commands

539

• The SQL standard allows queries that join two or more tables to use
group by and having, if they also adhere to the above guidelines. When
specifying joins or other complex queries, use the standard syntax of
group by and having until you fully comprehend the effect of the
Transact-SQL extensions to both clauses, as described in
“Transact-SQL extensions to group by and having.”

To help you avoid problems with extensions, Adaptive Server
provides the fipsflagger option to the set command that issues a
nonfatal warning for each occurrence of a Transact-SQL extension in
a query. See set for more information.

Transact-SQL extensions to group by and having

• Transact-SQL extensions to standard SQL make displaying data more
flexible, by allowing references to columns and expressions that are
not used for creating groups or summary calculations:

• A select list that includes aggregates can include extended
columns that are not arguments of aggregate functions and are
not included in the group by clause. An extended column affects
the display of final results, since additional rows are displayed.

• The group by clause can include columns or expressions that are
not in the select list.

• The group by all clause displays all groups, even those excluded
from calculations by a where clause. See the example for the
keyword all in the “Parameters” section.

• The having clause can include columns or expressions that are not
in the select list and not in the group by clause.

When the Transact-SQL extensions add rows and columns to a
display, or if group by is omitted, query results can be hard to interpret.
The examples that follow can help you understand how Transact-SQL
extensions can affect query results.

• The following examples illustrate the differences between queries
that use standard group by and having clauses and queries that use the
Transact-SQL extensions:

a An example of a standard grouping query:

select type, avg(price)
from titles
group by type

type

group by and having clauses

540

---------------------- ----------
UNDECIDED NULL
business 13.73
mod_cook 11.49
popular_comp 21.48
psychology 13.50
trad_cook 15.96

(6 rows affected)

b The Transact-SQL extended column, price (in the select list, but
not an aggregate and not in the group by clause), causes all
qualified rows to display in each qualified group, even though a
standard group by clause produces a single row per group. The
group by still affects the vector aggregate, which computes the
average price per group displayed on each row of each group
(they are the same values that were computed for example a):

select type, price, avg(price)
from titles
group by type

type price
------------ ---------------- --------------
business 19.99 13.73
business 11.95 13.73
business 2.99 13.73
business 19.99 13.73
mod_cook 19.99 11.49
mod_cook 2.99 11.49
UNDECIDED NULL NULL
popular_comp 22.95 21.48
popular_comp 20.00 21.48
popular_comp NULL 21.48
psychology 21.59 13.50
psychology 10.95 13.50
psychology 7.00 13.50
psychology 19.99 13.50
psychology 7.99 13.50
trad_cook 20.95 15.96
trad_cook 11.95 15.96
trad_cook 14.99 15.96

(18 rows affected)

CHAPTER 7 Commands

541

c The way Transact-SQL extended columns are handled can make
it look as if a query is ignoring a where clause. This query
computes the average prices using only those rows that satisfy the
where clause, but it also displays rows that do not match the
where clause.

Adaptive Server first builds a worktable containing only the type
and aggregate values using the where clause. This worktable is
joined back to the titles table in the grouping column type to
include the price column in the results, but the where clause is not
used in the join.

The only row in titles that is not in the results is the lone row with
type = “UNDECIDED” and a NULL price, that is, a row for
which there were no results in the worktable. If you also want to
eliminate the rows from the displayed results that have prices of
less than $10.00, you must add a having clause that repeats the
where clause, as shown in Example 4:

select type, price, avg(price)
from titles
where price > 10.00
group by type

type price
------------ ---------------- --------------
business 19.99 17.31
business 11.95 17.31
business 2.99 17.31
business 19.99 17.31
mod_cook 19.99 19.99
mod_cook 2.99 19.99
popular_comp 22.95 21.48
popular_comp 20.00 21.48
popular_comp NULL 21.48
psychology 21.59 17.51
psychology 10.95 17.51
psychology 7.00 17.51
psychology 19.99 17.51
psychology 7.99 17.51
trad_cook 20.95 15.96
trad_cook 11.95 15.96
trad_cook 14.99 15.96

(17 rows affected)

group by and having clauses

542

d If you are specifying additional conditions, such as aggregates, in
the having clause, be sure to also include all conditions specified
in the where clause. Adaptive Server will appear to ignore any
where clause conditions that are missing from the having clause:

select type, price, avg(price)
from titles
where price > 10.00
group by type
having price > 10.00

type price
----------- ---------------- --------------
business 19.99 17.31
business 11.95 17.31
business 19.99 17.31
mod_cook 19.99 19.99
popular_comp 22.95 21.48
popular_comp 20.00 21.48
psychology 21.59 17.51
psychology 10.95 17.51
psychology 19.99 17.51
trad_cook 20.95 15.96
trad_cook 11.95 15.96
trad_cook 14.99 15.96

(12 rows affected)

e This is an example of a standard grouping query using a join
between two tables. It groups by pub_id, then by type within each
publisher ID, to calculate the vector aggregate for each row:

select p.pub_id, t.type, sum(t.total_sales)
from publishers p, titles t
where p.pub_id = t.pub_id
group by p.pub_id, t.type

pub_id type
------ ------------ --------
0736 business 18722
0736 psychology 9564
0877 UNDECIDED NULL
0877 mod_cook 24278
0877 psychology 375
0877 trad_cook 19566
1389 business 12066
1389 popular_comp 12875

CHAPTER 7 Commands

543

(8 rows affected)

It may seem that it is only necessary to specify group by for the
pub_id and type columns to produce the results, and add extended
columns as follows:

select p.pub_id, p.pub_name, t.type,
sum(t.total_sales)

from publishers p, titles t
where p.pub_id = t.pub_id
group by p.pub_id, t.type

However, the results for the above query are much different from
the results for the first query in this example. After joining the
two tables to determine the vector aggregate in a worktable,
Adaptive Server joins the worktable to the table (publishers) of
the extended column for the final results. Each extended column
from a different table invokes an additional join.

As you can see, using the extended column extension in queries
that join tables can easily produce results that are difficult to
comprehend. In most cases, you should use the standard group by
to join tables in your queries.

f This example uses the Transact-SQL extension to group by to
include columns that are not in the select list. Both the pub_id and
type columns are used to group the results for the vector
aggregate. However, the final results do not include the type
within each publisher. In this case, you may only want to know
how many distinct title types are sold for each publisher:

select p.pub_id, sum(t.total_sales)
from publishers p, titles t
where p.pub_id = t.pub_id
group by p.pub_id, t.type

pub_id
------ --------
0736 18722
0736 9564
0877 NULL
0877 24278
0877 375
0877 19566
1389 12066
1389 12875

(8 rows affected)

group by and having clauses

544

g This example combines two Transact-SQL extension effects.
First, it omits the group by clause while including an aggregate in
the select list. Second, it includes an extended column. By
omitting the group by clause:

• The table becomes a single group. The scalar aggregate
counts three qualified rows.

• pub_id becomes a Transact-SQL extended column because it
does not appear in a group by clause. No having clause is
present, so all rows in the group are qualified to be displayed.

select pub_id, count(pub_id)
from publishers

pub_id
---------- ---------
0736 3
0877 3
1389 3

(3 rows affected)

h The where clause excludes publishers with a pub_id of 1000 or
more from the single group, so the scalar aggregate counts two
qualified rows. The extended column pub_id displays all
qualified rows from the publishers table:

select pub_id, count(pub_id)
from publishers
where pub_id < "1000"

pub_id
-------------- -----------
0736 2
0877 2
1389 2

(3 rows affected)

i This example illustrates an effect of a having clause used without
a group by clause.

• The table is considered a single group. No where clause
excludes rows, so all the rows in the group (table) are
qualified to be counted.

• The rows in this single-group table are tested by the having
clause.

CHAPTER 7 Commands

545

• These combined effects display the two qualified rows.

select pub_id, count(pub_id)
from publishers
having pub_id < "1000"

pub_id
-------------- ---------
0736 3
0877 3
(2 rows affected)

j This example uses the extension to having that allows columns or
expressions not in the select list and not in the group by clause. It
determines the average price for each title type, but it excludes
those types that do not have more than $10,000 in total sales,
even though the sum aggregate does not appear in the results:

select type, avg(price)
from titles
group by type
having sum(total_sales) > 10000

type
------------ ----------
business 13.73
mod_cook 11.49
popular_comp 21.48
trad_cook 15.96

(4 rows affected)

group by and having and sort orders

• If your server has a case-insensitive sort order, group by ignores the
case of the grouping columns. For example, given this data on a
case-insensitive server:

select lname, amount
from groupdemo
lname amount
---------- ------------------
Smith 10.00
smith 5.00
SMITH 7.00
Levi 9.00
Lévi 20.00

grouping by lname produces these results:

group by and having clauses

546

select lname, sum(amount)
from groupdemo

 lname
lname
---------- ------------------
Levi 9.00
Lévi 20.00
Smith 22.00

The same query on a case- and accent-insensitive server produces
these results:

 lname
 ---------- ------------------
 Levi 29.00
 Smith 22.00

Standards SQL92 – Compliance level: Entry-level compliant.

The use of columns within the select list that are not in the group by list and
have no aggregate functions is a Transact-SQL extension.

The use of the all keyword is a Transact-SQL extension.

See also Commands compute clause, declare, select, where clause

Functions Aggregate functions

CHAPTER 7 Commands

547

if...else
Description Imposes conditions on the execution of a SQL statement.

Syntax if logical_expression [plan "abstract plan"]
statements

[else
[if logical_expression] [plan "abstract plan"]

statement]

Parameters logical_expression
is an expression (a column name, a constant, any combination of column
names and constants connected by arithmetic or bitwise operators, or a
subquery) that returns TRUE, FALSE, or NULL. If the expression contains
a select statement, the select statement must be enclosed in parentheses.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. Plans can only be
specified for optimizable SQL statements, that is, select queries that access
tables.

statements
is either a single SQL statement or a block of statements delimited by begin
and end.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full or
partial plan, specified in the abstract plan language. Plans can only be
specified for optimizable expressions in if clauses, that is, queries that access
tables. For more information, see Chapter 30, “Creating and Using Abstract
Plans,” in the Performance and Tuning Guide.

Examples Example 1 Prints “yes” if 3 is larger than 2:

if 3 > 2
print "yes"

Example 2 The if...else condition tests for the presence of authors whose postal
codes are 94705, then prints “Berkeley author” for the resulting set:

if exists (select postalcode from authors
where postalcode = "94705")
print "Berkeley author"

Example 3 The if...else condition tests for the presence of user-created objects
(all of which have ID numbers greater than 100) in a database. Where user
tables exist, the else clause prints a message and selects their names, types, and
ID numbers:

if...else

548

if (select max(id) from sysobjects) < 100
print "No user-created objects in this database"

else
 begin

print "These are the user-created objects"
select name, type, id
from sysobjects
where id > 100

 end

Example 4 Since the value for total sales for PC9999 in the titles table is
NULL, this query returns FALSE. The else portion of the query is
performed when the if portion returns FALSE or NULL. For more
information on truth values and logical expressions, see Expressions in
Chapter 4, “Expressions, Identifiers, and Wildcard Characters.”

if (select total_sales
from titles
where title_id = "PC9999") > 100

select "true"
else
select "false"

Usage • The statement following an if keyword and its condition is executed if
the condition is satisfied (when the logical expression returns TRUE).
The optional else keyword introduces an alternate SQL statement that
executes when the if condition is not satisfied (when the logical
expression returns FALSE).

• The if or else condition affects the performance of only a single SQL
statement, unless statements are grouped into a block between the
keywords begin and end (see Example 3).

The statement clause can be an execute command or any other legal
SQL statement or statement block.

• If a select statement is used as part of the boolean expression, it must
return a single value.

• if...else constructs can be used either in a stored procedure (where they
are often used to test for the existence of some parameter) or in ad hoc
queries (see Examples 1 and 2).

CHAPTER 7 Commands

549

• if tests can be nested either within another if or following an else. The
maximum number of if tests you can nest varies with the complexity
of any select statements (or other language constructs) that you
include with each if...else construct.

Note When an alter table, create table, or create view command occurs
within an if...else block, Adaptive Server creates the schema for the
table or view before determining whether the condition is true. This
may lead to errors if the table or view already exists.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions if...else permission defaults to all users. No permission is required to use it.

See also Commands begin...end,create procedure

insert

550

insert
Description Adds new rows to a table or view.

Syntax insert [into] [database.[owner.]]{table_name|view_name}
[(column_list)]
{values (expression [, expression]...)

|select_statement [plan "abstract plan"] }

Parameters into
is optional.

table_name | view_name
is the name of the table or view from which you want to remove rows.
Specify the database name if the table or view is in another database,
and specify the owner’s name if more than one table or view of that
name exists in the database. The default value for owner is the current
user, and the default value for database is the current database.

column_list
is a list of one or more columns to which data is to be added. Enclose
the list in parentheses. The columns can be listed in any order, but the
incoming data (whether in a values clause or a select clause) must be in
the same order. If a column has the IDENTITY property, you can
substitute the syb_identity keyword for the actual column name.

The column list is necessary when some, but not all, of the columns in
the table are to receive data. If no column list is given, Adaptive Server
assumes that the insert affects all columns in the receiving table (in
create table order).

See “The column list” on page 551 for more information.

values
is a keyword that introduces a list of expressions.

expression
specifies constant expressions, variables, parameters, or null values for
the indicated columns. Enclose character and datetime constants in
single or double quotes.

You cannot use a subquery as an expression.

The values list must be enclosed in parentheses and must match the
explicit or implicit column list. See “Datatypes” for more information
about data entry rules.

select_statement
is a standard select statement used to retrieve the values to be inserted.

CHAPTER 7 Commands

551

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full
or partial plan, specified in the abstract plan language. Plans can only
be specified for insert...select statements. See Chapter 30, “Creating and
Using Abstract Plans,” in the Performance and Tuning Guide for more
information.

Examples Example 1

insert titles
values("BU2222", "Faster!", "business", "1389",

null, null, null, "ok", "06/17/87", 0)

Example 2

insert titles
(title_id, title, type, pub_id, notes, pubdate,

contract)
values ('BU1237', 'Get Going!', 'business',

'1389', 'great', '06/18/86', 1)

Example 3

insert newauthors
select *
from authors
where city = "San Francisco"

Example 4

insert test
select *
from test
where city = "San Francisco"

Usage • Use insert only to add new rows. Use update to modify column values
in a row you have already inserted.

The column list

• The column list determines the order in which values are entered. For
example, suppose that you have a table called newpublishers that is
identical in structure and content to the publishers table in pubs2. In
the example below, the columns in the column list of the
newpublishers table match the columns of the select list in the
publishers table.

insert newpublishers (pub_id, pub_name)
select pub_id, pub_name

from publishers

insert

552

where pub_name="New Age Data"

The pub_id and pub_name for “New Age Data” are stored in the
pub_id and pub_name columns of newpublishers.

In the next example, the order of the columns in the column list of the
newpublishers table does not match the order of the columns of the
select list of the publishers table.

insert newpublishers (pub_id, pub_name)
select pub_name, pub_id
from publishers
where pub_name="New Age Data"

The result is that the pub_id for “New Age Data” is stored in the
pub_name column of the newpublishers table, and the pub_name for
“New Age Data” is stored in the pub_id column of the newpublishers
table.

• You can omit items from the column and values lists as long as the
omitted columns allow null values (see Example 2).

Validating column values

• insert interacts with the ignore_dup_key, ignore_dup_row, and
allow_dup_row options, which are set with the create index command.
See create index for more information.

• A rule or check constraint can restrict the domain of legal values that
can be entered into a column. Rules are created with the create rule
command and bound with sp_bindrule. check constraints are declared
with create table.

• A default can supply a value if you do not explicitly enter one.
Defaults are created with the create default command and bound with
sp_bindefault, or they are declared with create table.

• If an insert statement violates domain or integrity rules (see create rule
and create trigger), or if it is the wrong datatype (see create table and
Chapter 1, “System and User-Defined Datatypes”), the statement
fails, and Adaptive Server displays an error message.

Treatment of blanks

• Inserting an empty string ("") into a variable character type or text
column inserts a single space. char columns are padded to the defined
length.

CHAPTER 7 Commands

553

• All trailing spaces are removed from data that is inserted into varchar
and univarchar columns, except in the case of a string that contains
only spaces. Strings that contain only spaces are truncated to a single
space. Strings that are longer than the specified length of a char, nchar,
unichar, univarchar, varchar, or nvarchar column are silently truncated
unless the string_rtruncation option is set to on.

Inserting into text and image columns

• An insert of a NULL into a text or an image column does not create a
valid text pointer, nor does it a text page as would otherwise occur.
Use update to get a valid text pointer for that column.

insert triggers

• You can define a trigger that takes a specified action when an insert
command is issued on a specified table.

Using insert when Component Integration Services is enabled

• You can send an insert as a language event or as a parameterized
dynamic statement to remote servers.

Inserting rows selected from another table

• You can select rows from a table and insert them into the same table
in a single statement (see Example 4).

• To insert data with select from a table that has null values in some
fields into a table that does not allow null values, provide a substitute
value for any NULL entries in the original table. For example, to
insert data into an advances table that does not allow null values,
substitute 0 for the NULL fields:

insert advances
select pub_id, isnull(advance, 0) from titles

Without the isnull function, this command inserts all the rows with
non-null values into the advances table, which produces error
messages for all the rows where the advance column in the titles table
contained NULL.

If you cannot make this kind of substitution for your data, you cannot
insert data containing null values into the columns that have a NOT
NULL specification.

Two tables can be identically structured, and yet be different as to
whether null values are permitted in some fields. Use sp_help to see
the null types of the columns in your table.

insert

554

Transactions and insert

• When you set chained transaction mode, Adaptive Server implicitly
begins a transaction with the insert statement if no transaction is
currently active. To complete any inserts, you must commit the
transaction, or roll back the changes. For example:

insert stores (stor_id, stor_name, city, state)
 values ('999', 'Books-R-Us', 'Fremont', 'AZ')
if exists (select t1.city
 from stores t1, stores t2
 where t1.city = t2.city
 and t1.state = t2.state
 and t1.stor_id < t2.stor_id)
 rollback transaction
else
 commit transaction

In chained transaction mode, this batch begins a transaction and
inserts a new row into the stores table. If it inserts a row containing
the same city and state information as another store in the table, it rolls
back the changes to stores and ends the transaction. Otherwise, it
commits the insertions and ends the transaction. For more information
about chained transaction mode, see the Transact-SQL User’s Guide.

Inserting values into IDENTITY columns

• When inserting a row into a table, do not include the name of the
IDENTITY column in the column list or its value in the values list. If
the table consists of only one column, an IDENTITY column, omit
the column list and leave the values list empty as follows:

insert id_table values()

• The first time you insert a row into a table, Adaptive Server assigns
the IDENTITY column a value of 1. Each new row gets a column
value that is one higher than the last. This value takes precedence over
any defaults declared for the column in the create table or alter table
statement or defaults bound to the column with sp_bindefault.

Server failures can create gaps in IDENTITY column values. The
maximum size of the gap depends on the setting of the identity burning
set factor configuration parameter. Gaps can also result from manual
insertion of data into the IDENTITY column, deletion of rows, and
transaction rollbacks.

CHAPTER 7 Commands

555

• Only the table owner, Database Owner, or System Administrator can
explicitly insert a value into an IDENTITY column after setting
identity_insert table_name on for the column’s base table. A user can
set identity_insert table_name on for one table at a time in a database.
When identity_insert is on, each insert statement must include a
column list and must specify an explicit value for the IDENTITY
column.

Inserting a value into the IDENTITY column allows you to specify a
seed value for the column or to restore a row that was deleted in error.
Unless you have created a unique index on the IDENTITY column,
Adaptive Server does not verify the uniqueness of the value; you can
insert any positive integer.

To insert an explicit value into an IDENTITY column, the table
owner, Database Owner, or System Administrator must set
identity_insert table_name on for the column’s base table, not for the
view through which it is being inserted.

• The maximum value that can be inserted into an IDENTITY column
is 10 precision - 1. Once an IDENTITY column reaches this value, any
additional insert statements return an error that aborts the current
transaction.

When this happens, use the create table statement to create a new table
that is identical to the old one, but that has a larger precision for the
IDENTITY column. Once you have created the new table, use either
the insert statement or the bcp utility to copy the data from the old
table to the new one.

• Use the @@identity global variable to retrieve the last value that you
inserted into an IDENTITY column. If the last insert or select into
statement affected a table with no IDENTITY column, @@identity
returns the value 0.

• An IDENTITY column selected into a result table observes the
following rules with regard to inheritance of the IDENTITY property:

• If an IDENTITY column is selected more than once, it is defined
as NOT NULL in the new table. It does not inherit the
IDENTITY property.

• If an IDENTITY column is selected as part of an expression, the
resulting column does not inherit the IDENTITY property. It is
created as NULL if any column in the expression allows nulls;
otherwise, it is created as NOT NULL.

insert

556

• If the select statement contains a group by clause or aggregate
function, the resulting column does not inherit the IDENTITY
property. Columns that include an aggregate of the IDENTITY
column are created NULL; others are created NOT NULL.

• An IDENTITY column that is selected into a table with a union
or join does not retain the IDENTITY property. If the table
contains the union of the IDENTITY column and a NULL
column, the new column is defined as NULL; otherwise, it is
defined as NOT NULL.

Inserting data through views

• If a view is created with check option, each row that is inserted through
the view must meet the selection criteria of the view.

For example, the stores_cal view includes all rows of the stores table
for which state has a value of “CA”:

create view stores_cal
as select * from stores
where state = "CA"
with check option

The with check option clause checks each insert statement against the
view’s selection criteria. Rows for which state has a value other than
“CA” are rejected.

• If a view is created with check option, all views derived from the base
view must satisfy the view’s selection criteria. Each new row inserted
through a derived view must be visible through the base view.

Consider the view stores_cal30, which is derived from stores_cal. The
new view includes information about stores in California with
payment terms of “Net 30”:

create view stores_cal30
as select * from stores_cal
where payterms = "Net 30"

Because stores_cal was created with check option, all rows inserted or
updated through stores_cal30 must be visible through stores_cal. Any
row with a state value other than “CA” is rejected.

Notice that stores_cal30 does not have a with check option clause of its
own. This means that you can insert or update a row with a payterms
value other than “Net 30” through stores_cal30. The following update
statement would be successful, even though the row would no longer
be visible through stores_cal30:

CHAPTER 7 Commands

557

update stores_cal30
set payterms = "Net 60"
where stor_id = "7067"

• insert statements are not allowed on join views created with check
option.

• If you insert or update a row through a join view, all affected columns
must belong to the same base table.

Partitoning tables for improved insert performance

• An unpartitioned table with no clustered index consists of a single
doubly linked chain of database pages, so each insertion into the table
uses the last page of the chain. Adaptive Server holds an exclusive
lock on the last page while it inserts the rows, blocking other
concurrent transactions from inserting data into the table.

Partitioning a table with the partition clause of the alter table command
creates additional page chains. Each chain has its own last page,
which can be used for concurrent insert operations. This improves
insert performance by reducing page contention. If the table is spread
over multiple physical devices, partitioning also improves insert
performance by reducing I/O contention while the server flushes data
from cache to disk. For more information about partitioning tables for
insert performance, see the Performance and Tuning Guide.

Standards SQL92 – Compliance level: Entry-level compliant.

The following are Transact-SQL extensions:

• A union operator in the select portion of an insert statement.

• Qualification of a table or column name by a database name.

• Insertion through a view that contains a join.

Note The FIPS flagger does not detect insertions through a view that
contains a join.

Permissions • insert permission defaults to the table or view owner, who can transfer
it to other users.

• insert permission for a table’s IDENTITY column is limited to the
table owner, Database Owner, and System Administrator.

See also Commands alter table, create default, create index, create rule, create
table, create trigger, dbcc, delete, select, update

insert

558

Datatypes Chapter 1, “System and User-Defined Datatypes”

System procedures sp_bindefault, sp_bindrule, sp_help,
sp_helpartition, sp_unbindefault, sp_unbindrule

Utilities bcp

CHAPTER 7 Commands

559

kill
Description Kills a process.

Syntax kill spid

Parameters spid
is the identification number of the process you want to kill. spid must
be a constant; it cannot be passed as a parameter to a stored procedure
or used as a local variable. Use sp_who to see a list of processes and
other information.

Examples kill 1378

Usage • To get a report on the current processes, execute sp_who. Following
is a typical report:

fid spid status loginame origname hostname blk dbname
cmd

--- ----- -------- -------- -------- -------- --- ------

0 1 recv sleep bird bird jazzy 0 master
AWAITING COMMAND

0 2 sleeping NULL NULL 0 master
NETWORK HANDLER

0 3 sleeping NULL NULL 0 master
MIRROR HANDLER

0 4 sleeping NULL NULL 0 master
AUDIT PROCESS

0 5 sleeping NULL NULL 0 master
CHECKPOINT SLEEP

0 6 recv sleep rose rose petal 0 master
AWAITING COMMAND

0 7 running robert sa helos 0 master
SELECT

0 8 send sleep daisy daisy chain 0 pubs2
SELECT

0 9 alarm sleep lily lily pond 0 master
WAITFOR

0 10 lock sleep viola viola cello 7 pubs2
SELECT

kill

560

The spid column contains the process identification numbers used in
the Transact-SQL kill command. The blk column contains the process
ID of a blocking process, if there is one. A blocking process (which
may have an exclusive lock) is one that is holding resources that are
needed by another process. In this example, process 10 (a select on a
table) is blocked by process 7 (a begin transaction followed by an
insert on the same table).

• The status column reports the state of the command. The following
table shows the status values and the effects of sp_who:

Table 7-26: Status values reported by sp_who

• To get a report on the current locks and the spids of the processes
holding them, use sp_lock.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions kill permission defaults to System Administrators and is not transferable.

See also Commands shutdown

System procedures sp_lock, sp_who

Status Description Effect of kill command

recv sleep Waiting on a network read. Immediate.

send sleep Waiting on a network send. Immediate.

alarm sleep Waiting on an alarm, such as waitfor delay
"10:00".

Immediate.

lock sleep Waiting on a lock acquisition. Immediate.

sleeping Waiting on disk I/O or some other resource.
Probably indicates a process that is running,
but doing extensive disk I/O.

Process is killed when it “wakes up,” usually
immediately. A few sleeping processes do not
wake up, and require an Adaptive Server reboot
to clear.

runnable In the queue of runnable processes. Immediate.

running Actively running on one of the server
engines.

Immediate.

infected Adaptive Server has detected a serious error
condition; extremely rare.

kill command not recommended. Adaptive
Server restart probably required to clear process.

background A process, such as a threshold procedure, run
by Adaptive Server rather than by a user
process.

Immediate; use kill with extreme care.
Recommend a careful check of sysprocesses
before killing a background process.

log suspend Processes suspended by reaching the
last-chance threshold on the log.

Immediate.

CHAPTER 7 Commands

561

load database
Description Loads a backup copy of a user database, including its transaction log, that was

created with dump database.

Syntax load database database_name
from [compress::]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

[[stripe on [compress::]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
listonly [= full],
headeronly,
notify = {client | operator_console}
}]]

Parameters database_name
is the name of the database that will receive the backup copy. It can be either
a database created with the for load option, or an existing database. Loading
dumped data to an existing database overwrites all existing data. The
receiving database must be at least as large as the dumped database. The
database name can be specified as a literal, a local variable, or a stored
procedure parameter.

compress::
 invokes the decompression of the archived database. For more information
about the compress option, see Chapter 27, “Backing Up and Restoring User
Databases” in the System Administration Guide.

load database

562

from stripe_device
is the device from which data is being loaded. See “Specifying dump
devices” on page 577 for information about what form to use when
specifying a dump device. For a list of supported dump devices, see the
Adaptive Server installation and configuration guides.

at backup_server_name
is the name of a remote Backup Server running on the machine to which
the dump device is attached. For platforms that use interfaces files, the
backup_server_name must appear in the interfaces file.

density = density_value
is ignored. For more information, see the dump database command.

blocksize = number_bytes
overrides the default block size for a dump device. If you specify a
block size on UNIX systems, it should be identical to that used to make
the dump. For more information, see the dump database command.

dumpvolume = volume_name
is the volume name field of the ANSI tape label. load database checks
this label when the tape is opened and generates an error message if the
wrong volume is loaded.

Note When using load database, the dumpvolume option does not provide
an error messages if an incorrect file name is given for the file=filename
option. The backup server searches the entire tape looking for that file,
regardless of an incorrect tape mounted.

stripe on stripe_device
is an additional dump device. You can use up to 32 devices, including
the device named in the to stripe_device clause. The Backup Server
loads data from all devices concurrently, reducing the time and the
number of volume changes required. See “Specifying dump devices”
on page 577 for information about how to specify a dump device.

dismount | nodismount
on platforms that support logical dismount – determines whether tapes
remain mounted. By default, all tapes used for a load are dismounted
when the load completes. Use nodismount to keep tapes available for
additional loads or dumps.

CHAPTER 7 Commands

563

nounload | unload
determines whether tapes rewind after the load completes. By default,
tapes do not rewind, allowing you to make additional loads from the
same tape volume. Specify unload for the last dump file to be loaded
from a multidump volume. This rewinds and unloads the tape when the
load completes.

file = file_name
is the name of a particular database dump on the tape volume. If you did
not record the dump file names at the time you made the dump, use
listonly to display information about all dump files.

listonly [= full]
displays information about all dump files on a tape volume, but does not
load the database. listonly identifies the database and device, the date
and time the dump was made, and the date and time it can be
overwritten. listonly = full provides additional details about the dump.
Both reports are sorted by ANSI tape label.

After listing the files on a volume, the Backup Server sends a volume
change request. The operator can either mount another tape volume or
terminate the list operation for all dump devices.

Due to current implementation, the listonly option overrides the
headeronly option.

 Warning! Do not use load database with listonly on 1/4-inch cartridge tape.

load database

564

headeronly
displays header information for a single dump file, but does not load the
database. headeronly displays information about the first file on the
tape unless you use the file = file_name option to specify another file
name. The dump header indicates:

• Type of dump (database or transaction log)

• Database ID

• File name

• Date the dump was made

• Character set

• Sort order

• Page count

• Next object ID

notify = {client | operator_console}
overrides the default message destination.

• On operating systems that offer an operator terminal feature,
volume change messages are always sent to the operator terminal
on the machine on which the Backup Server is running. Use client
to route other Backup Server messages to the terminal session that
initiated the dump database.

• On operating systems (such as UNIX) that do not offer an operator
terminal feature, messages are sent to the client that initiated the
dump database. Use operator_console to route messages to the
terminal on which the Backup Server is running.

Examples Example 1 Reloads the database pubs2 from a tape device:

load database pubs2
from "/dev/nrmt0"

Example 2 Loads the pubs2 database, using the Backup Server
REMOTE_BKP_SERVER. This command names three devices:

load database pubs2
from "/dev/nrmt4" at REMOTE_BKP_SERVER

stripe on "/dev/nrmt5" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt0" at REMOTE_BKP_SERVER

Example 3 Loads the pubs2 database from a compressed dump file called
dmp090100.dmp located at /opt/bin/Sybase/dumps:

CHAPTER 7 Commands

565

load database pubs2 from
"compress::/opt/bin/Sybase/dumps/dmp090100.dmp"

Usage • The listonly and headeronly options display information about the
dump files without loading them.

• Dumps and loads are performed through Backup Server.

• To make sure databases are synchronized correctly so that all the
proxy tables have the correct schema to the content of the primary
database you just reloaded, you may need to run the alter database
dbname for proxy_update command on the server hosting the proxy
database.

• Table 7-27 describes the commands and system procedures used to
restore databases from backups:

Table 7-27: Commands used to restore databases from dumps

Restrictions

• You cannot load a dump that was made on a different platform.

• You cannot load a dump that was generated on a server version before
version 10.0.

• If a database has cross-database referential integrity constraints, the
sysreferences system table stores the name—not the ID number—of
the external database. Adaptive Server cannot guarantee referential
integrity if you use load database to change the database name or to
load it onto a different server.

Use this command To do this

create database for load Create a database for the purpose of loading a dump.

load database Restore a database from a dump.

load transaction Apply recent transactions to a restored database.

online database Make a database available for public use after a normal load sequence or
after upgrading the database to the current version of Adaptive Server.

load { database | transaction }
with {headeronly | listonly}

Identify the dump files on a tape.

sp_volchanged Respond to Backup Server’s volume change messages.

load database

566

• Each time you add or remove a cross-database constraint or drop a
table that contains a cross-database constraint, dump both of the
affected databases.

 Warning! Loading earlier dumps of these databases can cause
database corruption. Before dumping a database to load it with a
different name or move it to another Adaptive Server, use alter table
to drop all external referential integrity constraints.

• load database clears the suspect page entries pertaining to the loaded
database from master..sysattributes.

• load database overwrites any existing data in the database.

• After a database dump is loaded, two processes may require
additional time before the database can be brought online:

• All unused pages in the database must be zeroed after the load
completes. The time required depends on the number of unused
pages. If the target database is the same size as the database that
is loaded, the Backup Server performs this step. If the target
database is larger than the database that is loaded, Adaptive
Server performs this step after the Backup Server completes the
load. The time required for this step depends on the number of
empty pages.

• All transactions in the transaction log included in the database
dump must be rolled back or rolled forward. The time required
depends on the number and type of transactions in the log. This
step is performed by Adaptive Server.

• The receiving database must be as large as or larger than the database
to be loaded. If the receiving database is too small, Adaptive Server
displays an error message that gives the required size.

• You cannot load from the null device (on UNIX, /dev/null).

• You cannot use load database in a user-defined transaction.

Locking out users during loads

• While you are loading a database, it cannot be in use. load database
sets the status of the database to “offline.” No one can use the database
while its status is “offline.” The “offline” status prevents users from
accessing and changing the database during a load sequence.

CHAPTER 7 Commands

567

• A database loaded by load database remains inaccessible until online
database is issued.

Upgrading database and transaction log dumps

• To restore and upgrade a user database dump from a version 10.0 or
later server to the current version of Adaptive Server:

a Load the most recent database dump.

b Load, in order, all transaction log dumps made since the last
database dump.

Adaptive Server checks the timestamp on each dump to make
sure that it is being loaded to the correct database and in the
correct sequence.

c Issue online database to do the upgrade and make the database
available for public use.

d Dump the newly upgraded database immediately after upgrade,
to create a dump consistent with the current version of Adaptive
Server.

Specifying dump devices

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

• You can specify a local device as:

• A logical device name from the sysdevices system table

• An absolute path name

• A relative path name

The Backup Server resolves relative path names using Adaptive
Server’s current working directory.

• When loading across the network, specify the absolute path name of
the dump device. The path name must be valid on the machine on
which the Backup Server is running. If the name includes characters
other than letters, numbers, or the underscore (_), enclose the entire
name in quotes.

• Ownership and permissions problems on the dump device may
interfere with use of load commands.

• You can run more than one load (or dump) at the same time, as long
as each load uses a different physical device.

load database

568

Backup Servers

• You must have a Backup Server running on the same machine as
Adaptive Server. The Backup Server must be listed in the
master..sysservers table. This entry is created during installation or
upgrade and should not be deleted.

• If your backup devices are located on another machine, so that you
load across a network, you must also have a Backup Server installed
on the remote machine.

Volume names

• Dump volumes are labeled according to the ANSI tape labeling
standard. The label includes the logical volume number and the
position of the device within the stripe set.

• During loads, Backup Server uses the tape label to verify that volumes
are mounted in the correct order. This allows you to load from a
smaller number of devices than you used at dump time.

Note When dumping and loading across the network, you must
specify the same number of stripe devices for each operation.

Changing dump volumes

• If the Backup Server detects a problem with the currently mounted
volume, it requests a volume change by sending messages to either
the client or its operator console. After mounting another volume, the
operator notifies the Backup Server by executing sp_volchanged on
any Adaptive Server that can communicate with the Backup Server.

Restoring the system databases

• See the System Administration Guide for step-by-step instructions for
restoring the system databases from dumps.

Disk mirroring

• At the beginning of a load, Adaptive Server passes Backup Server the
primary device name of each logical database and log device. If the
primary device has been unmirrored, Adaptive Server passes the
name of the secondary device instead. If any named device fails
before Backup Server completes its data transfer, Adaptive Server
aborts the load.

CHAPTER 7 Commands

569

• If you attempt to unmirror any named device while a load database is
in progress, Adaptive Server displays a message. The user executing
disk unmirror can abort the load or defer the disk unmirror until after the
load completes.

• Backup Server loads the data onto the primary device, then load
database copies it to the secondary device. load database takes longer
to complete if any database device is mirrored.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only a System Administrator, Database Owner, or user with the Operator
role can execute load database.

See also Commands alter database, dbcc, dump database, dump transaction, load
transaction, online database

System procedures sp_helpdevice, sp_volchanged, sp_helpdb

load transaction

570

load transaction
Description Loads a backup copy of the transaction log that was created with dump

transaction.

Syntax load tran[saction] database_name
from [compress::]stripe_device

[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

[stripe on [compress::]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

[[stripe on [compress::]stripe_device
[at backup_server_name]
[density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]]...]

[with {
density = density_value,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[dismount | nodismount],
[nounload | unload],
listonly [= full],
headeronly,
notify = {client | operator_console}
until_time = datetime}]]

Parameters database_name
is the name of the database to receive data from a dumped backup copy
of the transaction log. The log segment of the receiving database must
be at least as large as the log segment of the dumped database. The
database name can be specified as a literal, a local variable, or a
parameter of a stored procedure.

compress::
 invokes the decompression of the archived transaction log. See Chapter
27, “Backing Up and Restoring User Databases” in the System
Administration Guide for more information about the compress option.

CHAPTER 7 Commands

571

from stripe_device
is the name of the dump device from which you are loading the
transaction log. For information about the form to use when specifying
a dump device, see “Specifying dump devices” on page 577. For a list
of supported dump devices, see the Adaptive Server installation and
configuration guides.

at backup_server_name
is the name of a remote Backup Server running on the machine to which
the dump device is attached. For platforms that use interfaces files, the
backup_server_name must appear in the interfaces file.

density = density_value
overrides the default density for a tape device. This option is ignored.

blocksize = number_bytes
overrides the default block size for a dump device. If you specify a
block size on UNIX systems, it should be identical to that used to make
the dump.

dumpvolume = volume_name
is the volume name field of the ANSI tape label. load transaction checks
this label when the tape is opened and generates an error message if the
wrong volume is loaded.

stripe on stripe_device
is an additional dump device. You can use up to 32 devices, including
the device named in the to stripe_device clause. The Backup Server
loads data from all devices concurrently, reducing the time and the
number of volume changes required. See “Specifying dump devices”
on page 577 for information about how to specify a dump device.

dismount | nodismount
on platforms that support logical dismount – determines whether tapes
remain mounted. By default, all tapes used for a load are dismounted
when the load completes. Use nodismount to keep tapes available for
additional loads or dumps.

nounload | unload
determines whether tapes rewind after the load completes. By default,
tapes do not rewind, allowing you to make additional loads from the
same tape volume. Specify unload for the last dump file to be loaded
from a multidump volume. This rewinds and unloads the tape when the
load completes.

load transaction

572

file = file_name
is the name of a particular database dump on the tape volume. If you did
not record the dump file names at the time you made the dump, use
listonly to display information about all the dump files.

listonly [= full]
displays information about all the dump files on a tape volume, but does
not load the transaction log. listonly identifies the database and device,
the date and time the dump was made, and the date and time it can be
overwritten. listonly = full provides additional details about the dump.
Both reports are sorted by ANSI tape label.

After listing the files on a volume, the Backup Server sends a volume
change request. The operator can either mount another tape volume or
terminate the list operation for all dump devices.

In the current implementation, listonly overrides headeronly.

 Warning! Do not use load transaction with listonly on 1/4-inch cartridge
tape.

headeronly
displays header information for a single dump file, but does not load the
database. headeronly displays information about the first file on the
tape unless you use the file = file_name option to specify another file
name. The dump header indicates:

• Type of dump (database or transaction log)

• Database ID

• File name

• Date the dump was made

• Character set

• Sort order

• Page count

• Next object ID

• Checkpoint location in the log

• Location of the oldest begin transaction record

• Old and new sequence dates

CHAPTER 7 Commands

573

notify = {client | operator_console}
overrides the default message destination.

• On operating systems that offer an operator terminal feature,
volume change messages are always sent to the operator terminal
on the machine on which the Backup Server is running. Use client
to route other Backup Server messages to the terminal session that
initiated the dump database.

• On operating systems (such as UNIX) that do not offer an operator
terminal feature, messages are sent to the client that initiated the
dump database. Use operator_console to route messages to the
terminal on which the Backup Server is running.

until_time
loads the transaction log up to a specified time in the transaction log.
Only transactions committed before the specified time are saved to the
database.

Examples Example 1 Loads the transaction log for the database pubs2 tape:

load transaction pubs2
from "/dev/nrmt0"

Example 2 Loads the transaction log for the pubs2 database, using the
Backup Server REMOTE_BKP_SERVER:

load transaction pubs2
from "/dev/nrmt4" at REMOTE_BKP_SERVER

stripe on "/dev/nrmt5" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt0" at REMOTE_BKP_SERVER

Example 3 Loads the transaction log for pubs2, up to March 20, 1997, at
10:51:43:866 a.m:

load transaction pubs2
from "/dev/ntmt0"
with until_time = "mar 20, 1997 10:51:43:866am"

Usage • The listonly and headeronly options display information about the
dump files without loading them.

• Dumps and loads are performed through Backup Server.

• Table 7-28 describes the commands and system procedures used to
restore databases from backups:

load transaction

574

Table 7-28: Commands used to restore databases

Restrictions

• You cannot load a dump that was made on a different platform.

• You cannot load a dump that was generated on a version before 10.0
server.

• The database and transaction logs must be at the same release level.

• Load transaction logs in chronological order.

• You cannot load from the null device (on UNIX, /dev/null).

• You cannot use load transaction after an online database command that
does an upgrade. The correct sequence for upgrading a database is
load database, load transaction, online database.

• Do not issue online database until all transaction logs are loaded. The
command sequence is:

a Load database

b Load transaction (repeat as needed)

c Online database

However, to load additional transaction logs while retaining read-only
access to the database (a typical “warm backup” situation), use the
dump tran for standby_access option to generate the transaction
dumps. You can then issue online database for standby_access for
read-only access.

• You cannot use the load transaction command in a user-defined
transaction.

Restoring a database

• To restore a database:

Use this command To do this

create database for load Create a database for the purpose of loading a dump.

load database Restore a database from a dump.

load transaction Apply recent transactions to a restored database.

online database Make a database available for public use after a normal load sequence or
after upgrading the database to the current version of Adaptive Server.

load { database | transaction }
with {headeronly | listonly}

Identify the dump files on a tape.

sp_volchanged Respond to the Backup Server’s volume change messages.

CHAPTER 7 Commands

575

• Load the most recent database dump

• Load, in order, all transaction log dumps made since the last
database dump

• Issue online database to make the database available for public
use

• Each time you add or remove a cross-database constraint, or drop a
table that contains a cross-database constraint, dump both of the
affected databases.

 Warning! Loading earlier dumps of these databases can cause
database corruption.

• For more information on backup and recovery of Adaptive Server
databases, see the System Administration Guide.

Recovering a database to a specified time

• You can use the until_time option for most databases that can be loaded
or dumped. It does not apply to databases such as master, in which the
data and logs are on the same device. Also, you cannot use it on any
database that has had a truncated log since the last dump database,
such as tempdb.

• The until_time option is useful for the following reasons:

• It enables you to have a database consistent to a particular time.
For example, in an environment with a decision support system
(DSS) database and an online transaction processing (OLTP)
database, the System Administrator can roll the DSS database to
an earlier specified time to compare data between the earlier
version and the current version.

• If a user inadvertently destroys data, such as dropping an
important table, you can use the until_time option to back out the
errant command by rolling forward the database to a point just
before the data was destroyed.

• To effectively use the until_time option after data has been destroyed,
you must know the exact time the error took place. You can find out
by executing a select getdate() command immediately after the error.
For a more precise time using milliseconds, use the convert function,
for example:

select convert(char(26), getdate(), 109)

load transaction

576

Feb 26 1997 12:45:59:650PM

• After you load a transaction log using until_time, Adaptive Server
restarts the database’s log sequence. This means that until you dump
the database again, you cannot load subsequent transaction logs after
the load transaction using until_time. Dump the database before you
dump another transaction log.

• Only transactions that committed before the specified time are saved
to the database. However, in some cases, transactions committed
shortly after the until_time specification are applied to the database
data. This may occur when several transactions are committing at the
same time. The ordering of transactions may not be written to the
transaction log in time-ordered sequence. In this case, the transactions
that are out of time sequence reflected in the data that has been
recovered. The time should be less than a second.

• For more information on recovering a database to a specified time, see
the System Administration Guide.

Locking users out during loads

• While you are loading a database, it cannot be in use. load transaction,
unlike load database, does not change the offline/online status of the
database. load transaction leaves the status of the database the way it
found it. load database sets the status of the database to “offline”. No
one can use the database while it is “offline.” The “offline” status
prevents users from accessing and changing the database during a
load sequence.

• A database loaded by load database remains inaccessible until online
database is issued.

Upgrading database and transaction log dumps

• To restore and upgrade a user database dump from a version 10.0 or
later server to the current version of Adaptive Server:

a Load the most recent database dump.

b Load, in order, all transaction logs generated after the last
database dump.

c Use online database to do the upgrade.

d Dump the newly upgraded database immediately after the
upgrade, to create a dump that is consistent with the current
version of Adaptive Server.

CHAPTER 7 Commands

577

Specifying dump devices

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

• When loading from a local device, you can specify the dump device
as:

• An absolute path name

• A relative path name

• A logical device name from the sysdevices system table

Backup Server resolves relative path names, using Adaptive Server’s
current working directory.

• When loading across the network, specify the absolute path name of
the dump device. (You cannot use a relative path name or a logical
device name from the sysdevices system table.) The path name must
be valid on the machine on which the Backup Server is running. If the
name includes any characters other than letters, numbers or the
underscore (_), you must enclose it in quotes.

• Ownership and permissions problems on the dump device may
interfere with use of load commands. sp_addumpdevice adds the
device to the system tables, but does not guarantee that you can load
from that device or create a file as a dump device.

• You can run more than one load (or dump) at the same time, as long
as each one uses a different physical device.

Backup Servers

• You must have a Backup Server running on the same machine as your
Adaptive Server. The Backup Server must be listed in the
master..sysservers table. This entry is created during installation or
upgrade and should not be deleted.

• If your backup devices are located on another machine so that you
load across a network, you must also have a Backup Server installed
on the remote machine.

Volume names

• Dump volumes are labeled according to the ANSI tape-labeling
standard. The label includes the logical volume number and the
position of the device within the stripe set.

load transaction

578

• During loads, Backup Server uses the tape label to verify that volumes
are mounted in the correct order. This allows you to load from a
smaller number of devices than you used at dump time.

Note When dumping and loading across a network, you must specify
the same number of stripe devices for each operation.

Changing dump volumes

• If Backup Server detects a problem with the currently mounted
volume, it requests a volume change by sending messages to either
the client or its operator console. After mounting another volume, the
operator notifies Backup Server by executing sp_volchanged on any
Adaptive Server that can communicate with Backup Server.

Restoring the system databases

• For step-by-step instructions for restoring the system databases from
dumps, see the System Administration Guide.

Disk mirroring

• At the beginning of a load, Adaptive Server passes the primary device
name of each logical database device and each logical log device to
the Backup Server. If the primary device has been unmirrored,
Adaptive Server passes the name of the secondary device instead. If
any named device fails before the Backup Server completes its data
transfer, Adaptive Server aborts the load.

• If you attempt to unmirror any of the named devices while a load
transaction is in progress, Adaptive Server displays a message. The
user executing disk unmirror can abort the load, or defer disk unmirror
until after the load completes.

• Backup Server loads the data onto the primary device, then load
transaction copies it to the secondary device. load transaction takes
longer to complete if any database device is mirrored.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions load transaction permission defaults to the Database Owner and operators.
It is not transferable.

See also Commands disk unmirror, dump database, dump transaction, load
database, online database

System procedures sp_dboption, sp_helpdb, sp_helpdevice,
sp_volchanged

CHAPTER 7 Commands

579

lock table
Description Explicitly locks a table within a transaction.

Syntax lock table table_name in {share | exclusive } mode
[wait [numsecs] | nowait]

Parameters table_name
specifies the name of the table to be locked.

share | exclusive
specifies the type of lock, shared or exclusive, to be applied to the table.

wait numsecs
specifies the number of seconds to wait, if a lock cannot be acquired
immediately. If numsecs is omitted, specifies that the lock table
command should wait until lock is granted.

nowait
causes the command to fail if the lock cannot be acquired immediately.

Examples Example 1 Tries to acquire a shared table lock on the titles table. If a
session-level wait has been set with set lock wait, the lock table command
waits for that period of time; otherwise, the server-level wait period is
used:

begin transaction
lock table titles in share mode

Example 2 Tries to acquire an exclusive table lock on the authors table. If
the lock cannot be acquired within 5 seconds, the command returns an
informational message. Subsequent commands within the transaction
continue as they would have without lock table:

begin transaction
lock table authors in exclusive mode wait 5

Example 3 If a table lock is not acquired within 5 seconds, the procedure
checks the user’s role. If the procedure is executed by a user with sa_role,
the procedure prints an advisory message and proceeds without a table
lock. If the user does not have sa_role, the transaction is rolled back:

create procedure bigbatch
as
begin transaction
lock table titles in share mode wait 5
if @@error = 12207
begin

/*
** Allow SA to run without the table lock

lock table

580

** Other users get an error message
*/
if (proc_role("sa_role") = 0)
begin
print "You cannot run this procedure at

this time, please try again later"
rollback transaction
return 100
end

else
begin
print "Couldn't obtain table lock,

proceeding with default locking."
end

end
/* more SQL here */
commit transaction

Usage • You can use lock table only within a transaction. The table lock is held
for the duration of the transaction.

• The behavior of lock table depends on the wait-time options that are
specified in the command or that are active at the session level or
server level.

• If the wait and nowait option are not specified, lock table uses either the
session-level wait period or the server-level wait period. If a
session-level wait has been set using set lock wait, it is used, otherwise,
the server-level wait period is used.

• If the table lock cannot be obtained with the time limit (if any), the
lock table command returns message 12207. The transaction is not
rolled back. Subsequent commands in the transaction proceed as they
would have without the lock table command.

• You cannot use lock table on system tables or temporary tables.

• You can issue multiple lock table commands in the same transaction.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions You must have select access permission on the table to use lock table in
share mode. You must have delete, insert, or update access permission on
the table to use lock table in exclusive mode.

See also Commands set

CHAPTER 7 Commands

581

nullif
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used; alternative for a case expression.

Syntax nullif(expression, expression)

Parameters nullif
compares the values of the two expressions. If the first expression equals the
second expression, nullif returns NULL. If the first expression does not equal
the second expression, nullif returns the first expression.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 219.

Examples Example 1 Selects the titles and type from the titles table. If the book type is
UNDECIDED, nullif returns a NULL value:

select title,
nullif(type, "UNDECIDED")

from titles

Example 2 This is an alternative way of writing Example 1:

select title,
case

when type = "UNDECIDED" then NULL
else type

end
from titles

Usage • nullif expression alternate for a case expression.

• nullif expression simplifies standard SQL expressions by allowing you to
express a search condition as a simple comparison instead of using a
when...then construct.

• nullif expressions can be used anywhere an expression can be used in SQL.

• At least one result of the case expression must return a non-null value. For
example the following results in an error message:

select price, coalesce (NULL, NULL, NULL)
from titles
All result expressions in a CASE expression must not be NULL.

nullif

582

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
“Datatype of mixed-mode expressions” in Chapter 1, “System and
User-Defined Datatypes” If you specify two datatypes that Adaptive
Server cannot implicitly convert (for example, char and int), the query
fails.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions nullif permission defaults to all users. No permission is required to use it.

See also Commands case, coalesce, select, if...else, where clause

CHAPTER 7 Commands

583

online database
Description Marks a database available for public use after a normal load sequence; if

needed, upgrades a loaded database to the current version of Adaptive
Server; brings a database online after loading a transaction log dumped
with the for standby_access option.

Syntax online database database_name [for standby_access]

Parameters database_name
specifies the name of the database to be brought online.

for standby_access
brings the database online on the assumption that the database contains
no open transactions.

Examples Example 1 Makes the pubs2 database available for public use after a load
sequence completes:

online database pubs2

Example 2 Brings the database inventory_db online. Used after loading
inventory_db with a transaction-log dump obtained through
dump tran...with standby_access:

online database inventory_db for standby_access

Usage • online database brings a database online for general use after a normal
database or transaction log load sequence.

• When load database is issued, the database’s status is set to “offline.”
The offline status is set in the sysdatabases system table and remains
set until online database completes.

• Do not issue online database until all transaction logs are loaded. The
command sequence is:

• load database

• load transaction (there may be more than one load transaction)

• online database

• If you execute online database against a currently online database, no
processing occurs and no error messages are generated.

online database

584

• online database...for standby_access can only be used with a
transaction log that was dumped using dump transaction...with
standby_access. If you use online database...for standby_access after
loading a transaction log that was dumped without using dump
transaction...with standby access, online database generates an error
message and fails.

• You can use sp_helpdb to find out whether a database is currently
online, online for standby access, or offline.

Upgrading databases

• online database initiates, if needed, the upgrade of a loaded database
and transaction log dumps to make the database compatible with the
current version of Adaptive Server. After the upgrade completes, the
database is made available for public use. If errors occur during
processing, the database remains offline.

• online database is required only after a database or transaction log
load sequence. It is not required for new installations or upgrades.
When Adaptive Server is upgraded to a new version, all databases
associated with that server are automatically upgraded.

• online database only upgrades version 10.0 or later user databases.

• After you upgrade a database with online database, dump the newly
upgraded database to create a dump that is consistent with the current
version of Adaptive Server. You must dump the upgraded database
before you can issue a dump transaction command.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Only a System Administrator, Database Owner, or user with the Operator
role can execute online database.

See also Commands dump database, dump transaction, load database, load
transaction

System procedures sp_helpdb

CHAPTER 7 Commands

585

open
Description Opens a cursor for processing.

Syntax open cursor_name

Parameters cursor_name
is the name of the cursor to open.

Examples Opens the cursor named authors_crsr:

open authors_crsr

Usage • open opens a cursor. Cursors allow you to modify or delete rows on
an individual basis. You must first open a cursor to use the fetch,
update, and delete statements. For more information about cursors,
see the Transact-SQL User’s Guide.

• Adaptive Server returns an error message if the cursor is already open
or if the cursor has not been created with the declare cursor statement.

• Opening the cursor causes Adaptive Server to evaluate the select
statement that defines the cursor (specified in the declare cursor
statement) and makes the cursor result set available for processing.

• When the cursor is first opened, it is positioned before the first row of
the cursor result set.

• When you set the chained transaction mode, Adaptive Server
implicitly begins a transaction with the open statement if no
transaction is currently active.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions open permission defaults to all users.

See also Commands close, declare cursor, fetch

order by clause

586

order by clause
Description Returns query results in the specified column(s) in sorted order.

Syntax [Start of select statement]

[order by {[table_name.| view_name.]column_name
| select_list_number | expression} [asc | desc]

[,{[table_name.| view_name.] column_name
select_list_number|expression} [asc

|desc]]...]

[End of select statement]

Parameters order by
sorts the results by columns.

asc
sorts the results in ascending order. If you do not specify asc or desc,
asc is assumed.

desc
sorts the results in descending order.

Examples Example 1 Selects the titles whose price is greater than $19.99 and lists
them with the titles in alphabetical order:

select title, type, price
from titles
where price > $19.99
order by title

title
type price

--
------------ -------------------------

But Is It User Friendly?
popular_comp 22.95

Computer Phobic and Non-Phobic Individuals: Behavior Variations
psychology 21.59

Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean
trad_cook 20.95

Secrets of Silicon Valley
popular_comp 20.00

Example 2 Lists the books from the titles table, in descending alphabetical
order of the type, and calculates the average price and advance for each
type:

select type, price, advance
from titles

CHAPTER 7 Commands

587

order by type desc
compute avg(price), avg(advance) by type

Example 3 Lists the title IDs from the titles table, with the advances
divided by the total sales, ordered from the lowest calculated amount to the
highest:

select title_id, advance/total_sales
from titles
order by advance/total_sales

 title_id
 -------- ------------------------
 MC3026 NULL
 PC9999 NULL
 MC2222 0.00
 TC4203 0.26
 PS3333 0.49
 BU2075 0.54
 MC3021 0.67
 PC1035 0.80
 PS2091 1.11
 PS7777 1.20
 BU1032 1.22
 BU7832 1.22
 BU1111 1.29
 PC8888 1.95
 TC7777 1.95
 PS1372 18.67
 TC3218 18.67
 PS2106 54.05

Example 4 Lists book titles and types in order by the type, renaming the
columns in the output:

select title as BookName, type as Type
from titles
order by Type

Usage • order by returns query results in the specified column(s) in sorted
order. order by is part of the select command.

• In Transact-SQL, you can use order by to sort items that do not appear
in the select list. You can sort by a column heading, a column name,
an expression, an alias name (if specified in the select list), or a
number representing the position of the item in the select list
(select_list_number).

order by clause

588

• If you sort by select_list_number, the columns to which the order by
clause refers must be included in the select list, and the select list
cannot be * (asterisk).

• Use order by to display your query results in a meaningful order.
Without an order by clause, you cannot control the order in which
Adaptive Server returns results.

Restrictions

• The maximum number of columns allowed in an order by clause is 31.

• order by cannot be used on text or image datatype columns.

• Subqueries and view definitions cannot include an order by clause (or
a compute clause or the keyword into). Conversely, you cannot use a
subquery in an order by list.

• You cannot update the result set of a server- or language- type cursor
if it contains an order by clause in its select statement. For more
information about the restrictions applied to updatable cursors, see the
Transact-SQL User’s Guide.

• If you use compute by, you must also use an order by clause. The
expressions listed after compute by must be identical to or a subset of
those listed after order by, must be in the same left-to-right order, must
start with the same expression, and must not skip any expressions. For
example, if the order by clause is:

order by a, b, c

the compute by clause can be any (or all) of these:

compute by a, b, c
compute by a, b
compute by a

The keyword compute can be used without by to generate grand totals,
grand counts, and so on. In this case, order by is optional.

Collating sequences

• With order by, null values precede all others.

• The sort order (collating sequence) on your Adaptive Server
determines how your data is sorted. The sort order choices are binary,
dictionary, case-insensitive, case-insensitive with preference, and
case- and accent-insensitive. Sort orders that are specific to specific
national languages may also be provided.

CHAPTER 7 Commands

589

Table 7-29: Effect of sort order choices

• sp_helpsort reports the sort order installed on Adaptive Server.

Sort rules

• When two rows have equivalent values in Adaptive Server’s sort
order, the following rules are used to order the rows:

• The values in the columns named in the order by clause are
compared.

• If two rows have equivalent column values, the binary value of
the entire rows is compared byte by byte. This comparison is
performed on the row in the order in which the columns are
stored internally, not the order of the columns as they are named
in the query or in the original create table clause. In brief, data is
stored with all the fixed-length columns, in order, followed by all
the variable length columns, in order.

• If rows are equal, row IDs are compared.

Given this table:

create table sortdemo (lname varchar(20),
init char(1) not null)

and this data:

lname init
---------- ----
Smith B

Adaptive Server sort order Effects on order by results

Binary order Sorts all data according to the numeric byte-value of each character in the
character set. Binary order sorts all uppercase letters before lowercase letters.
Binary sort order is the only option for multibyte character sets.

Dictionary order Sorts uppercase letters before their lowercase counterparts (case-sensitive).
Dictionary order recognizes the various accented forms of a letter and sorts
them after the unaccented form.

Dictionary order, case-insensitive Sorts data in dictionary order but does not recognize case differences.
Uppercase letters are equivalent to their lowercase counterparts and are sorted
as described in “Sort rules” in the following section.

Dictionary order, case-insensitive
with preference

Sorts an uppercase letter in the preferred position, before its lowercase version.
It does not recognize case difference when performing comparisons (for
example, in where clauses).

Dictionary order, case- and
accent-insensitive

Sorts data in dictionary order, but does not recognize case differences; treats
accented forms of a letter as equivalent to the associated unaccented letter. It
intermingles accented and unaccented letters in sorting results.

order by clause

590

SMITH C
smith A

you get these results when you order by lname:

lname init
---------- ----
smith A
Smith B
SMITH C

Since the fixed-length char data (the init column) is stored first
internally, the order by sorts these rows based on the binary values
“Asmith”, “BSmith” and “CSMITH”.

However, if the init is of type varchar, the lname column is stored
first, and then the init column. The comparison takes place on the
binary values “SMITHC”, “SmithB”, and “smithA”, and the
rows are returned in that order.

Descending scans

• Use of the keyword desc in an order by clause allows the query
optimizer to choose a strategy that eliminates the need for a worktable
and a sort step to return results in descending order. This optimization
scans the page chain of the index in reverse order, following the
previous page pointers on each index page.

To use this optimization, the columns in the order by clause must
match the index order. They can be a subset of the keys, but must be
a prefix subset, that is, they must include the first key(s). The
descending scan optimization cannot be used if the columns named in
the order by clause are a superset of the index keys.

If the query involves a join, all tables can be scanned in descending
key order, as long as the requirements for a prefix subset of keys are
met. Descending scan optimization can also be used for one or more
tables in a join, while other tables are scanned in ascending order.

• If other user processes are scanning forward to perform updates or
deletes, performing descending scans can cause deadlocks.
Deadlocks may also be encountered during page splits and shrinks.
You can use sp_sysmon to track deadlocks on your server, or you can
use the configuration parameter print deadlock information to send
deadlock information to the error log.

CHAPTER 7 Commands

591

• If your applications need to return results in descending order, but the
descending scans optimization creates deadlock problems, some
possible workarounds are:

• Use transaction isolation level 0 scans for descending scans. For
more information on the effect of isolation level 0 reads, see the
Performance and Tuning Guide.

• Disable descending scan optimization with the configuration
parameter allow backward scans so that all queries that use desc
scan the table in ascending order and sort the result set into
descending order. For more information, see the System
Administration Guide.

• Break problematical descending scans into two steps, selecting
the required rows into a temporary table in ascending order in the
first step, and selecting from the temporary table in descending
order in the second step.

• If a backward scan uses a clustered index that contains overflow pages
because duplicate key values are present, the result set returned by the
descending scan may not be in exact reverse order of the result set that
is returned with an ascending scan. The specified key values are
returned in order, but the order of the rows for the identical keys on
the overflow pages may be different. For an explanation of how
overflow pages in clustered indexes are stored, see the Performance
and Tuning Guide.

Standards SQL92 – Compliance level: Transact-SQL extension.

Specifying new column headings in the order by clause of a select
statement when the union operator is used is a Transact-SQL extension.

See also Commands compute clause, declare, group by and having clauses,
select, where clause

System procedures sp_configure, sp_helpsort, sp_lock, sp_sysmon

prepare transaction

592

prepare transaction
Description Used by DB-Library in a two-phase commit application to see if a server

is prepared to commit a transaction.

Syntax prepare tran[saction]

Usage • For more information, see the Open Client DB-Library Reference
Manual.

Standards SQL92 – Compliance level: Transact-SQL extension.

See also Commands begin transaction, begin transaction, rollback, save
transaction

CHAPTER 7 Commands

593

print
Description Prints a user-defined message on the user’s screen.

Syntax print
{format_string | @local_variable |
@@global_variable}

[, arg_list]

Parameters format_string
can be either a variable or a string of characters. The maximum length
of format_string is 1023 bytes.

Format strings can contain up to 20 unique placeholders in any order.
These placeholders are replaced with the formatted contents of any
arguments that follow format_string when the text of the message is
sent to the client.

To allow reordering of the arguments when format strings are translated
to a language with a different grammatical structure, the placeholders
are numbered. A placeholder for an argument appears in this format:
“ %nn !”—a percent sign (%), followed by an integer from 1 to 20,
followed by an exclamation point (!). The integer represents the
argument number in the string in the argument list. “%1!” is the first
argument in the original version, “%2!” is the second argument, and so
on.

Indicating the position of the argument in this way makes it possible to
translate correctly, even when the order in which the arguments appear
in the target language is different.

For example, assume the following is an English message:

%1! is not allowed in %2!.

The German version of this message is:

%1! ist in %2! nicht zulassig.

@local_variable
must be of type char, nchar, varchar, or nvarchar, and must be declared
within the batch or procedure in which it is used.

@@global_variable
must be of type char or varchar, or be automatically convertible to these
types, such as @@version. Currently, @@version is the only
character-type global variable.

print

594

arg_list
may be a series of either variables or constants separated by commas.
arg_list is optional unless a format string containing placeholders of the
form “%nn !” is provided. In that case, the arg_list must have at least as
many arguments as the highest numbered placeholder. An argument can
be any datatype except text or image; it is converted to a character
datatype before being included in the final message.

Examples Example 1 Prints “Berkeley author” if any authors in the authors table live
in the 94705 ZIP code:

if exists (select postalcode from authors
where postalcode = '94705')
print "Berkeley author"

Example 2 Declares a variable, assigns a value to the variable, and prints
the value:

declare @msg char(50)
select @msg = "What's up, doc?"
print @msg

What's up, doc?

Example 3 Demonstrates the use of variables and placeholders in
messages:

declare @tabname varchar(30)
select @tabname = "titles"

declare @username varchar(30)
select @username = "ezekiel"

print "The table '%1!' is not owned by the user
'%2!'.", @tabname, @username

The table 'titles' is not owned
by the user 'ezekiel.'

Usage • The maximum output string length of format_string plus all
arguments after substitution is 1024 bytes.

• If you use placeholders in a format string, keep this in mind: for each
placeholder n in the string, the placeholders 1 through n- 1 must also
exist in the same string, although they do not have to be in numerical
order. For example, you cannot have placeholders 1 and 3 in a format
string without having placeholder 2 in the same string. If you omit a
number in a format string, an error message is generated when print is
executed.

CHAPTER 7 Commands

595

• The arg_list must include an argument for each placeholder in the
format_string, or the transaction is aborted. You can use more
arguments than placeholders.

• To include a literal percent sign as part of the error message, use two
percent signs (‘‘%%’’) in the format_string. If you include a single
percent sign (‘‘%’’) in the format_string that is not used as a
placeholder, Adaptive Server returns an error message.

• If an argument evaluates to NULL, it is converted into a zero-length
character string. If you do not want zero-length strings in the output,
use the isnull function. For example, if @arg is null, the following
statement prints I think we have nothing here.:

declare @arg varchar(30)
select @arg = isnull(col1, "nothing") from
table_a where ...
print "I think we have %1! here", @arg

• User-defined messages can be added to the system table
sysusermessages for use by any application. Use sp_addmessage to
add messages to sysusermessages; use sp_getmessage to retrieve
messages for use by print and raiserror.

• Use raiserror instead of print to print a user-defined error message and
have the error number stored in @@error.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions print permission defaults to all users. No permission is required to use it.

See also Commands declare, raiserror

System procedures sp_addmessage, sp_getmessage

quiesce database

596

quiesce database
Description Suspends and resumes updates to a specified list of databases.

Syntax quiesce database tag_name hold dbname [, dbname] ...
[for external dump

or:

quiesce database tag_name release

Parameters tag_name
is a user-defined name that designates the list of databases to hold or
release. The tag_name must conform to the rules for identifiers.

database
is a database name.

for external dump
specifies that while updates to the databases in the list are suspended,
you will physically copy all affected database devices, using some
facility external to Adaptive Server. The copy operation is to serve as a
replacement for the combination of dump database and load database.

Examples Example 1 Suspends update activity on salesdb and ordersdb:

quiesce database report_dbs hold salesdb, ordersdb

Example 2 Resumes update activity on the databases labeled report_dbs:

quiesce database report_dbs release

Example 3 Suspends update activity to the pubs2 database and signifies
your intent to make an external copy of this database:

quiesce database pubs_tag hold pubs2 for external dump

Usage • quiesce database used with the hold keyword suspends all updates to
the specified database. Transactions cannot update data in suspended
databases, and background tasks such as the checkpoint process and
housekeeper process skip all databases that are in the suspended state.

• quiesce database used with the release keyword allows updates to
resume on databases that were previously suspended.

• quiesce database used with the for external dump clause signifies that
you intend to make an external copy of the database. It serves to
replace a combination of dump and load database.

• The quiesce database hold and release commands need not be
executed from the same user session.

CHAPTER 7 Commands

597

• If the databases specified in the quiesce database hold command
contain distributed or multidatabase transactions that are in the
prepared state, Adaptive Server waits during a five-second timeout
period for those transactions to complete. If the transactions do not
complete during the timeout period, quiesce database hold fails.

• If Adaptive Server is executing a dump database or dump transaction
command on a database specified in quiesce database hold, the
database is suspended only after the dump command completes.

• If you execute a dump database or dump transaction command on a
database while updates to the database are suspended, Adaptive
Server blocks those commands until the database is released with
quiesce database release.

• You can specify a maximum of eight databases in a single quiesce
database hold command. If you must suspend updates to additional
databases, execute additional quiesce database hold commands.

Permissions quiesce database permission defaults to System Administrators.

See also Commands dump database, dump transaction

System procedures sp_helpdb, sp_who

raiserror

598

raiserror
Description Prints a user-defined error message on the user’s screen and sets a system

flag to record that an error condition has occurred.

Syntax raiserror error_number
[{format_string | @local_variable}] [, arg_list]
[with errordata restricted_select_list]

Parameters error_number
is a local variable or an integer with a value greater than 17,000. If the
error_number is between 17,000 and 19,999, and format_string is
missing or empty (""), Adaptive Server retrieves error message text
from the sysmessages table in the master database. These error
messages are used chiefly by system procedures.

If error_number is 20,000 or greater and format_string is missing or
empty, raiserror retrieves the message text from the sysusermessages
table in the database from which the query or stored procedure
originates. Adaptive Server attempts to retrieve messages from either
sysmessages or sysusermessages in the language defined by the
current setting of @@langid.

CHAPTER 7 Commands

599

format_string
is a string of characters with a maximum length of 1024 bytes.
Optionally, you can declare format_string in a local variable and use
that variable with raiserror (see @local_variable).

raiserror recognizes placeholders in the character string that is to be
printed out. Format strings can contain up to 20 unique placeholders in
any order. These placeholders are replaced with the formatted contents
of any arguments that follow format_string, when the text of the
message is sent to the client.

To allow reordering of the arguments, when format strings are
translated to a language with a different grammatical structure, the
placeholders are numbered. A placeholder for an argument appears in
this format: “%nn!”—a percent sign (%), followed by an integer from
1 to 20, followed by an exclamation point (!). The integer represents the
argument number in the string in the argument list. “%1!” is the first
argument in the original version, “%2!” is the second argument, and so
on.

Indicating the position of the argument in this way makes it possible to
translate correctly, even when the order in which the arguments appear
in the target language is different from their order in the source
language.

For example, assume the following is an English message:

%1! is not allowed in %2!.

The German version of this message is:

%1! ist in %2! nicht zulassig.

@local_variable
is a local variable containing the format_string value. It must be of type
char or varchar and must be declared within the batch or procedure in
which it is used.

arg_list
is a series of variables or constants separated by commas. arg_list is
optional unless a format string containing placeholders of the form
“%nn !” is provided. An argument can be any datatype except text or
image; it is converted to the char datatype before being included in the
final string.

If an argument evaluates to NULL, Adaptive Server converts it to a
zero-length char string.

raiserror

600

with errordata
supplies extended error data for Client-Library™ programs.

restricted_select_list
consists of one or more of the following items:

• “*”, representing all columns in create table order.

• A list of column names in the order in which you want to see them.
When selecting an existing IDENTITY column, you can substitute
the syb_identity keyword, qualified by the table name, where
necessary, for the actual column name.

• A specification to add a new IDENTITY column to the result table:

column_name = identity(precision)

• A replacement for the default column heading (the column name),
in the following forms:

column_heading = column_name
column_name column_heading
column_name as column_heading

The column heading may be enclosed in quotation marks for any
of these forms. The heading must be enclosed in quotation marks
if it is not a valid identifier (that is, if it is a reserved word, if it
begins with a special character, or if it contains spaces or
punctuation marks).

• An expression (a column name, constant, function, or any
combination of column names, constants, and functions connected
by arithmetic or bitwise operators, or a subquery).

• A built-in function or an aggregate.

• Any combination of the items listed above.

The restricted_select_list can also perform variable assignment, in the
form:

@variable = expression

CHAPTER 7 Commands

601

[, @variable = expression ...]

Restrictions to restricted_select_list are:

• You cannot combine variable assignment with any of the other
restricted_select_list options.

• You cannot use from, where, or other select clauses in
restricted_select_list.

• You cannot use “*” to represent all columns in
restricted_select_list.

For more information, see the Transact-SQL User’s Guide.

Examples Example 1 This stored procedure example returns an error if it does not
find the table supplied with the @tabname parameter:

create procedure showtable_sp @tabname varchar(18)
as
if not exists (select name from sysobjects

where name = @tabname)
begin

raiserror 99999 "Table %1! not found.",
@tabname

end
else

begin
select sysobjects.name, type, crdate, indid
from sysindexes, sysobjects
where sysobjects.name = @tabname
and sysobjects.id = sysindexes.id

end

Example 2 This example adds a message to sysusermessages, then tests
the message with raiserror, providing the substitution arguments:

sp_addmessage 25001,
"There is already a remote user named '%1!'
for remote server '%2!'."

raiserror 25001, jane, myserver

Example 3 This example uses the with errordata option to return the
extended error data column and server to a client application, to indicate
which column was involved and which server was used:

raiserror 20100 "Login must be at least 5
characters long" with errordata "column" =
"login", "server" = @@servername

raiserror

602

Usage • User-defined messages can be generated ad hoc, as in Example 1 and
Example 3, or they can be added to the system table sysusermessages
for use by any application, as shown in Example 2. Use
sp_addmessage to add messages to sysusermessages; use
sp_getmessage to retrieve messages for use by print and raiserror.

• Error numbers for user-defined error messages must be greater than
20,000. The maximum value is 2,147,483,647 (231 -1).

• The severity level of all user-defined error messages is 16. This level
indicates that the user has made a a nonfatal error.

• The maximum output string length of format_string plus all
arguments after substitution is 1024 bytes.

• If you use placeholders in a format string, keep this in mind: for each
placeholder n in the string, the placeholders 1 through n-1 must exist
in the same string, although they do not have to be in numerical order.
For example, you cannot have placeholders 1 and 3 in a format string
without having placeholder 2 in the same string. If you omit a number
in a format string, an error message is generated when raiserror is
executed.

• If there are too few arguments relative to the number of placeholders
in format_string, an error message displays and the transaction is
aborted. You can have more arguments than placeholders in
format_string.

• To include a literal percent sign as part of the error message, use two
percent signs (‘‘%%’’) in the format_string. If you include a single
percent sign (‘‘%’’) in the format_string that is not used as a
placeholder, Adaptive Server returns an error message.

• If an argument evaluates to NULL, it is converted into a zero-length
char string. If you do not want zero-length strings in the output, use
the isnull function.

• When raiserror is executed, the error number is placed in the global
variable @@error, which stores the error number that was most
recently generated by the system.

• Use raiserror instead of print if you want an error number stored in
@@error.

• To include an arg_list with raiserror, put a comma after error_number
or format_string before the first argument. To include extended error
data, separate the first extended_value from error_number,
format_string, or arg_list using a space (not a comma).

CHAPTER 7 Commands

603

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions raiserror permission defaults to all users. No permission is required to use
it.

See also Commands declare, print

System procedures sp_addmessage, sp_getmessage

readtext

604

readtext
Description Reads text and image values, starting from a specified offset and reading a

specified number of bytes or characters.

Syntax readtext [[database.]owner.]table_name.column_name
text_pointer offset size
[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {

[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3] }]

Parameters table_name.column_name
is the name of the text or image column. You must include the table
name. Specify the database name if the table is in another database, and
specify the owner’s name if more than one table of that name exists in
the database. The default value for owner is the current user, and the
default value for database is the current database.

text_pointer
is a varbinary(16) value that stores the pointer to the text or image data.
Use the textptr function to determine this value (see Example 1). text and
image data is not stored in the same set of linked pages as other table
columns. It is stored in a separate set of linked pages. A pointer to the
actual location is stored with the data; textptr returns this pointer.

offset
specifies the number of bytes or characters to skip before starting to
read text or image data.

size
specifies the number of bytes or characters of data to read.

holdlock
causes the text value to be locked for reads until the end of the
transaction. Other users can read the value, but they cannot modify it.

noholdlock
prevents the server from holding any locks acquired during the
execution of this statement, regardless of the transaction isolation level
currently in effect. You cannot specify both a holdlock and a noholdlock
option in a query.

CHAPTER 7 Commands

605

readpast
specifies that readtext should silently skip rows with exclusive locks,
without waiting and without generating a message.

using
specifies whether readtext interprets the offset and size parameters as a
number of bytes (bytes) or as a number of textptr characters (chars or
characters are synonymous). This option has no effect when used with
a single-byte character set or with image values (readtext reads image
values byte by byte). If the using option is not given, readtext interprets
the size and offset arguments as bytes.

at isolation
specifies the isolation level (0, 1, or 3) of the query. If you omit this
clause, the query uses the isolation level of the session in which it
executes (isolation level 1 by default). If you specify holdlock in a query
that also specifies at isolation read uncommitted, Adaptive Server issues
a warning and ignores the at isolation clause. For the other isolation
levels, holdlock takes precedence over the at isolation clause.

read uncommitted
specifies isolation level 0 for the query. You can specify 0 instead of
read uncommitted with the at isolation clause.

read committed
specifies isolation level 1 for the query. You can specify “1” instead of
read committed with the at isolation clause.

repeatable read
specifies isolation level 2 for the query. You can specify “2” instead of
serializable with the at isolation clause.

serializable
specifies isolation level 3 for the query. You can specify “3” instead of
serializable with the at isolation clause.

Examples Example 1 Selects the second through the sixth character of the copy
column:

declare @val varbinary(16)
select @val = textptr(copy) from blurbs
where au_id = "648-92-1872"
readtext blurbs.copy @val 1 5 using chars

Example 2

declare @val varbinary(16)
select @val = textptr(copy) from blurbs readpast

readtext

606

where au_id = "648-92-1872"
readtext blurbs.copy @val 1 5 readpast using chars

Usage • The textptr function returns a 16-byte binary string (text pointer) to the
text or image column in the specified row or to the text or image
column in the last row returned by the query, if more than one row is
returned. It is best to declare a local variable to hold the text pointer,
then use the variable with readtext.

• The value in the global variable @@textsize, which is the limit on the
number of bytes of data to be returned, supersedes the size specified
for readtext if it is less than that size. Use set textsize to change the
value of @@textsize.

• When using bytes as the offset and size, Adaptive Server may find
partial characters at the beginning or end of the text data to be
returned. If it does, and character set conversion is on, the server
replaces each partial character with a question mark (?) before
returning the text to the client.

• Adaptive Server must determine the number of bytes to send to the
client in response to a readtext command. When the offset and size are
in bytes, determining the number of bytes in the returned text is
simple. When the offset and size are in characters, the server must
calculate the number of bytes being returned to the client. As a result,
performance may be slower when using characters as the offset and
size. The using characters option is useful only when Adaptive Server
is using a multibyte character set: it ensures that readtext will not
return partial characters.

• You cannot use readtext on text and image columns in views.

• If you attempt to use readtext on text values after changing to a
multibyte character set, and you have not run dbcc fix_text, the
command fails, and an error message instructs you to run dbcc fix_text
on the table.

Using the readpast option

• readpast applies only to data-only-locked tables. readpast is ignored
if it is specified for an allpages-locked table.

• The readpast option is incompatible with the holdlock option. If both
are specified in a command, an error is generated and the command
terminates.

• If readtext specifies at isolation read uncommitted, readpast generates
a warning, but does not terminate the command.

CHAPTER 7 Commands

607

• If the statement isolation level is set to 3, readpast generates an error
and terminates the command.

• If the session-wide isolation level is 3, readpast is silently ignored.

• If the session-wide isolation level is 0, readpast generates a warning,
but does not terminate the command.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions readtext requires select permission on the table. readtext permission is
transferred when select permission is transferred.

See also Commands set, writetext

System procedures text and image datatypes

reconfigure

608

reconfigure
Description The reconfigure command currently has no effect; it is included to allow

existing scripts to run without modification. In earlier version, reconfigure
was required after sp_configure to implement new configuration parameter
settings.

Syntax reconfigure

Usage Note If you have scripts that include reconfigure, change them at your
earliest convenience. Although reconfigure is included in this version, it
may not continue to be supported in subsequent versions.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions reconfigure permission defaults to System Administrators and is not
transferable.

See also System procedures – sp_configure

CHAPTER 7 Commands

609

remove java
Description Removes one or more Java-SQL classes, packages, or JARs from a

database.

Use when Java classes are installed in the database. Refer to Java in
Adaptive Server Enterprise for more information.

Syntax remove java
class class_name [, class_name]...

| package package_name [, package_name]...
| jar jar_name [, jar_name]...[retain classes]

Parameters class class_name
the name of one or more Java classes to be removed from the database.
The classes must be installed in the current database.

package package_name
the name of one or more Java packages to be removed. The packages
must be stored in the current database.

jar jar_name
either a SQL identifier or character string value of up to 30 bytes that
contains a valid SQL identifier.

Each jar_name must be equal to the name of a retained JAR in the
current database.

retain classes
specifies that the named JARs are no longer retained in the database,
and the retained classes have no associated JAR.

Usage • If a remove java statement is contained in a stored procedure, the
current database is the database that is current when the procedure is
created, not the database that is current when the procedure is called.

If a remove java statement is not contained in a stored procedure, the
current database is the database that is current when the remove
statement is executed.

• If class or package is specified and any removed class has an
associated JAR, then an exception is raised.

• If any stored procedure, table, or view contains a reference to a
removed class as the datatype of a column, variable, or parameter,
then an exception is raised.

• All removed classes are:

• Deleted from the current database.

remove java

610

• Unloaded from the Java Virtual Machine (Java VM) of the
current connection. The removed classes are not unloaded from
the Java VMs of other connections.

• If any exception is raised during the execution of remove java, then all
actions of remove java are cancelled.

• You cannot remove a Java-SQL class if that class is directly
referenced by a SQLJ stored procedure or function.

• To remove a Java-SQL class from the database, you must:

a Delete all SQLJ stored procedures or functions that directly
reference the class using drop procedure and/or drop function.

b Delete the Java-SQL class from the database using remove java.

Locks

• When you use remove java, an exclusive table lock is placed on
sysxtypes.

• If jar is specified, then an exclusive table lock is placed on sysjars.

Permissions You must be a System Administrator or Database Owner to use remove
java.

See also System procedures – sp_helpjava

System tables – sysjars, sysxtypes

Utilities – extractjava, installjava

CHAPTER 7 Commands

611

reorg
Description Reclaims unused space on pages, removes row forwarding, or rewrites all

rows in the table to new pages, depending on the option used.

Syntax reorg reclaim_space tablename [indexname]
[with {resume, time = no_of_minutes}]

reorg forwarded_rows tablename
[with {resume,time = no_of_minutes}]

reorg compact tablename
[with {resume, time = no_of_minutes}]

reorg rebuild tablename [indexname]

Parameters reclaim_space
reclaims unused space left by deletes and updates. For each data page
in a table, if there is unused space resulting from committed deletes or
row-shortening updates, reorg reclaim_space rewrites the current rows
contiguously, leaving all unused space at the end of the page. If there
are no rows on the page, the page is deallocated.

tablename
specifies the name of the table to be reorganized. If indexname is
specified, only the index is reorganized.

indexname
specifies the name of the index to be reorganized.

with resume
initiates reorganization from the point at which a previous reorg
command terminated. Used when the previous reorg command
specified a time limit (time = no_of_minutes).

with time = no_of_minutes
specifies the number of minutes that the reorg command is to run.

forwarded_rows
removes row forwarding.

compact
combines the functions of reorg reclaim_space and reorg
forwarded_rows to both reclaim space and undo row forwarding in the
same pass.

reorg

612

rebuild
if a table name is specified, rewrites all rows in a table to new pages, so
that the table is arranged according to its clustered index (if one exists),
with all pages conforming to current space management settings and
with no forwarded rows and no gaps between rows on a page. If an
index name is specified, reorg rebuilds that index while leaving the table
accessible for read and update activities.

Examples Example 1 Reclaims unused page space in the titles table:

reorg reclaim_space titles

Example 2 Reclaims unused page space in the index titleind:

reorg reclaim_space titles titleind

Example 3 Initiates reorg compact on the titles table. reorg starts at the
beginning of the table and continues for 120 minutes. If the reorg
completes within the time limit, it returns to the beginning of the table and
continues until the full time period has elapsed:

reorg compact titles with time = 120

Example 4 Initiates reorg compact at the point where the previous reorg
compact stopped and continues for 30 minutes:

reorg compact titles with resume, time = 30

Usage • The table specified in reorg must have a datarows or datapages
locking scheme.

• You cannot issue reorg within a transaction.

• reorg rebuild requires that you set the database option select
into/bulkcopy/pllsort to true and run checkpoint in the database.

• reorg rebuild requires additional disk space equal to the size of the
table and its indexes. You can find out how much space a table
currently occupies by using sp_spaceused. You can use
sp_helpsegment to check the amount of space available.

• After running reorg rebuild, you must dump the database before you
can dump the transaction log.

• For more information, see the System Administration Guide.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions You must be a System Administrator or the object owner to issue the reorg
command.

See also System procedures – sp_chgattribute

CHAPTER 7 Commands

613

return
Description Exits from a batch or procedure unconditionally and provides an optional

return status. Statements following return are not executed.

Syntax return [integer_expression] [plan "abstract plan"]

Parameters integer_expression
is the integer value returned by the procedure. Stored procedures can
return an integer value to a calling procedure or an application program.

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full
or partial plan specified in the abstract plan language. Plans can only be
specified for optimizable SQL statements, that is, queries that access
tables. See Chapter 30, “Creating and Using Abstract Plans,” in the
Performance and Tuning Guide for more information.

Examples Example 1 If no user name is given as a parameter, the return command
causes the procedure to exit after a message has been sent to the user’s
screen. If a user name is given, the names of the rules created by that user
in the current database are retrieved from the appropriate system tables:

create procedure findrules @nm varchar(30) = null as
if @nm is null
begin

print "You must give a user name"
return

end
else
begin

select sysobjects.name, sysobjects.id,
sysobjects.uid
from sysobjects, master..syslogins

where master..syslogins.name = @nm
and sysobjects.uid = master..syslogins.suid
and sysobjects.type = "R"

end

Example 2 If the updates cause the average price of business titles to
exceed $15, the return command terminates the batch before any more
updates are performed on titles:

print "Begin update batch"
update titles

set price = price + $3
where title_id = 'BU2075'

update titles

return

614

set price = price + $3
where title_id = 'BU1111'

if (select avg(price) from titles
where title_id like 'BU%') > $15

begin
print "Batch stopped; average price over $15"

return
end
update titles

set price = price + $2
where title_id = 'BU1032'

Example 3 This procedure creates two user-defined status codes: a value
of 1 is returned if the contract column contains a 1; a value of 2 is returned
for any other condition (for example, a value of 0 on contract or a title_id
that did not match a row):

create proc checkcontract @param varchar(11)
as
declare @status int
if (select contract from titles where title_id =
@param) = 1

return 1
else

return 2

Usage • The return status value can be used in subsequent statements in the
batch or procedure that executed the current procedure, but must be
given in the form:

execute @retval = procedure_name

See execute for more information.

• Adaptive Server reserves 0 to indicate a successful return, and
negative values in the range -1 to -99 to indicate different reasons for
failure. If no user-defined return value is provided, the Adaptive
Server value is used. User-defined return status values must not
conflict with those reserved by Adaptive Server. Numbers 0 and -1
through -14 are currently in use:

CHAPTER 7 Commands

615

Table 7-30: Adaptive Server error return values

Values -15 to -99 are reserved for future Adaptive Server use.

• If more than one error occurs during execution, the status with the
highest absolute value is returned. User-defined return values always
take precedence over Adaptive Server-supplied return values.

• The return command can be used at any point where you want to exit
from a batch or procedure. Return is immediate and complete:
statements after return are not executed.

• A stored procedure cannot return a NULL return status. If a procedure
attempts to return a null value, for example, using return @status
where @status is NULL, a warning message is generated, and a value
in the range of 0 to -14 is returned.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions return permission defaults to all users. No permission is required to use it.

See also Commands begin...end, execute, if...else, while

Value Meaning

0 Procedure executed without error

-1 Missing object

-2 Datatype error

-3 Process was chosen as deadlock victim

-4 Permission error

-5 Syntax error

-6 Miscellaneous user error

-7 Resource error, such as out of space

-8 Nonfatal internal problem

-9 System limit was reached

-10 Fatal internal inconsistency

-11 Fatal internal inconsistency

-12 Table or index is corrupt

-13 Database is corrupt

-14 Hardware error

revoke

616

revoke
Description Revokes permissions or roles from users or roles.

Syntax To revoke permission to access database objects:

revoke [grant option for]
{all [privileges] | permission_list}
on { table_name [(column_list)]

| view_name [(column_list)]
| stored_procedure_name}

from {public | name_list | role_name}
[cascade]

To revoke permission to create database objects, execute set proxy, or
execute set session authorization:

revoke {all [privileges] | command_list }
from {public | name_list | role_name}

To revoke a role from a user or another role:

revoke role {role_name [, role_name ...]} from
{grantee [, grantee ...]}

Parameters all
when used to revoke permission to access database objects (the first
syntax format), all revokes all permissions applicable to the specified
object. All object owners can use revoke all with an object name to
revoke permissions on their own objects.

Only the System Administrator or the Database Owner can revoke
permission to revoke create command permissions (the second syntax
format). When used by the System Administrator, revoke all revokes all
create permissions (create database, create default, create procedure,
create rule, create table, and create view). When the Database Owner
uses revoke all, Adaptive Server revokes all create permissions except
create database, and prints an informational message.

all does not apply to set proxy or set session authorization.

CHAPTER 7 Commands

617

permission_list
is a list of permissions to revoke. If more than one permission is listed,
separate them with commas. The following table illustrates the access
permissions that can be granted and revoked on each type of object:

Permissions can be revoked only by the user who granted them.

command_list
is a list of commands. If more than one command is listed, separate
them with commas. The command list can include create database,
create default, create procedure, create rule, create table, create view, set
proxy, or set session authorization. create database permission can be
revoked only by a System Administrator and only from within the
master database.

set proxy and set session authorization are identical; the only difference
is that set session authorization follows the SQL standard, and set proxy
is a Transact-SQL extension. Revoking permission to execute set proxy
or set session authorization revokes permission to become another user
in the server. Permissions for set proxy or set session authorization can
be revoked only by a System Security Officer, and only from within the
master database.

table_name
is the name of the table on which you are revoking permissions. The
table must be in your current database. Only one object can be listed for
each revoke statement.

column_list
is a list of columns, separated by commas, to which the privileges apply.
If columns are specified, only select and update permissions can be
revoked.

view_name
is the name of the view on which you are revoking permissions. The
view must be in your current database. Only one object can be listed for
each revoke statement.

Object permission_list can include

Table select, insert, delete, update, references

View select, insert, delete, update

Column select, update, references

Column names can be specified in either
permission_list or column_list (see Example 2).

Stored procedure execute

revoke

618

stored _procedure_name
is the name of the stored procedure on which you are revoking
permissions. The stored procedure must be in your current database.
Only one object can be listed for each revoke statement.

public
is all users. For object access permissions, public excludes the object
owner. For object creation permissions or set proxy authorizations,
public excludes the Database Owner. You cannot grant permissions with
grant option to “public” or to other groups or roles.

name_list
is a list of user and/or group names, separated by commas.

role
is the name of a system or user-defined role. Use revoke role to revoke
granted roles from roles or users.

role_name
is the name of a system or user-defined role. This allows you to revoke
permissions from all users who have been granted a specific role. The
role name can be either a system role or a user-defined role created by
a System Security Officer with create role. Either type of role can be
granted to a user with the grant role command. In addition, sp_role can
be used to grant system roles.

grantee
is the name of a system role, user-defined role, or a user, from whom
you are revoking a role.

grant option for
revokes with grant option permissions, so that the user(s) specified in
name_list can no longer grant the specified permissions to other users.
If those users have granted permissions to other users, you must use the
cascade option to revoke permissions from those users. The user
specified in name_list retains permission to access the object, but can
no longer grant access to other users. grant option for applies only to
object access permissions, not to object creation permissions.

cascade
revokes the specified object access permissions from all users to whom
the revokee granted permissions. Applies only to object access
permissions, not to object creation permissions. When you use revoke
without grant option for, permissions granted to other users by the
revokee are also revoked: the cascade occurs automatically.

CHAPTER 7 Commands

619

Examples Example 1 Revokes insert and delete permissions on the titles table from
Mary and the “sales” group:

revoke insert, delete
on titles
from mary, sales

Example 2 Two ways to revoke update permission on the price and
advance columns of the titles table from “public”:

revoke update
on titles (price, advance)
from public

or:

revoke update (price, advance)
on titles
from public

Example 3 Revokes permission from Mary and John to use the create
database and create table commands. Because create database permission
is being revoked, this command must be executed by a System
Administrator from within the master database. Mary and John’s create
table permission is revoked only within the master database:

revoke create database, create table from mary, john

Example 4 Revokes permission from Harry and Billy to execute either set
proxy or set session authorization to impersonate another user in the server:

revoke set proxy from harry, billy

Example 5 Revokes permission from users with sso_role to execute either
set proxy or set session authorization:

revoke set session authorization from sso_role

Example 6 Revokes permission from users with vip_role to impersonate
another user in the server. vip_role must be a role defined by a System
Security Officer with the create role command:

revoke set proxy from vip_role

Example 7 Revokes all object creation permissions from Mary in the
current database:

revoke all from mary

Example 8 Revokes all object access permissions on the titles table from
Mary:

revoke

620

revoke all on titles from mary

Example 9 Two ways to revoke Tom’s permission to create a referential
integrity constraint on another table that refers to the price and advance
columns in the titles table:

revoke references
on titles (price, advance)
from tom

or:

revoke references (price, advance)
on titles
from tom

Example 10 Revokes permission to execute new_sproc from all users who
have been granted the “operator” role:

revoke execute on new_sproc from oper_role

Example 11 Revokes John’s permission to grant insert, update, and delete
permissions on the authors table to other users. Also revokes from other
users any such permissions that John has granted:

revoke grant option for
insert, update, delete
on authors
from john
cascade

Example 12 Revokes “doctor_role” from “specialist_role”:

revoke role doctor_role from specialist_role

Example 13 Revokes “doctor_role” and “surgeon_role” from
“specialist_role” and “intern_role”, and from users Mary and Tom:

revoke role doctor_role, surgeon_role from
specialist_role, intern_role, mary, tom

Usage • See the grant command for more information about permissions.

• You can revoke permissions only on objects in your current database.

• You can revoke only permissions that were granted by you.

• You cannot revoke a role from a user while the user is logged in.

• grant and revoke commands are order sensitive. When there is a
conflict, the command issued most recently takes effect.

• The word to can be substituted for the word from in the revoke syntax.

CHAPTER 7 Commands

621

• If you do not specify grant option for in a revoke statement, with grant
option permissions are revoked from the user along with the specified
object access permissions. In addition, if the user has granted the
specified permissions to any other users, all of those permissions are
revoked. In other words, the revoke cascades.

• A grant statement adds one row to the sysprotects system table for
each user, group, or role that receives the permission. If you
subsequently revoke the permission from the user or group, Adaptive
Server removes the row from sysprotects. If you revoke the
permission from only selected group members, but not from the entire
group to which it was granted, Adaptive Server retains the original
row and adds a new row for the revoke.

• Permission to issue create trigger is granted to users by default. When
you revoke permission for a user to create triggers, a revoke row is
added in the sysprotects table for that user. To grant permission to
issue create trigger, you must issue two grant commands. The first
command removes the revoke row from sysprotects; the second
inserts a grant row. If you revoke permission to create triggers, the
user cannot create triggers even on tables that the user owns.
Revoking permission to create triggers from a user affects only the
database where the revoke command was issued.

Using the cascade option

• revoke grant option revokes the user’s ability to grant the specified
permission to other users, but does not revoke the permission itself
from that user. If the user has granted that permission to others, you
must use the cascade option; otherwise, you receive an error message
and the revoke fails.

For example, say you revoke the with grant option permissions from
the user Bob on titles, with this statement:

revoke grant option for select
on titles
from bob
cascade

• If Bob has not granted this permission to other users, this
command revokes his ability to do so, but he retains select
permission on the titles table.

revoke

622

• If Bob has granted this permission to other users, you must use
the cascade option. If you do not, you receive an error message
and the revoke fails. cascade revokes this select permission from
all users to whom Bob has granted it, as well as their ability to
grant it to others.

• You cannot use revoke with the cascade option to revoke privileges
granted by the table owner. For example, the owner of a table (UserA)
can grant privileges to another user (UserB) as in this scenario:

create table T1 (...)
grant select on T1 to UserB

However, the System Administrator cannot revoke UserB’s privileges
using the revoke privileges command with the cascade option as in
this statement:

revoke select on T1 from UserA cascade

This statement revokes the select privileges of the table owner, but
does not revoke those privileges from UserB.

By default, all data manipulation language (DML) operations are
revoked implicitly for users other than the table owner. Because the
sysprotects table contains no records indicating that the table owner
has granted and then revoked privileges, the cascade option is not
invoked.

You must revoke explicitly the select privilege from UserB.

Revoking set proxy and set session authorization

• To revoke set proxy or set session authorization permission, or to
revoke roles, you must be a System Security Officer, and you must be
in the master database.

• set proxy and set session authorization are identical, with one
exception: set session authorization follows the SQL standard. If you
are concerned about using only SQL standard commands and syntax,
use set session authorization.

• revoke all does not include set proxy or set session authorization
permissions.

CHAPTER 7 Commands

623

Revoking from roles, users and groups

• Permissions granted to roles override permissions granted to
individual users or groups. Therefore, if you revoke a permission
from a user who has been granted a role, and the role has that same
permission, the user retains it. For example, say John has been granted
the System Security Officer role, and sso_role has been granted
permission on the sales table. If John’s individual permission on sales
is revoked, he can still access sales because his role permissions
override his individual permissions.

• Revoking a specific permission from “public” or from a group also
revokes it from users who were individually granted the permission.

• Database user groups allow you to grant or revoke permissions to
more than one user at a time. A user is always a member of the default
group, “public” and can be a member of only one other group.
Adaptive Server’s installation script assigns a set of permissions to
“public.”

Create groups with sp_addgroup and remove groups with
sp_dropgroup. Add new users to a group with sp_adduser. Change a
user’s group membership with sp_changegroup. To display the
members of a group, use sp_helpgroup.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions Database object access revoke permission for database objects
defaults to object owners. An object owner can revoke permission from
other users on his or her own database objects.

Command execution Only a System Administrator can revoke create
database permission, and only from the master database. Only a System
Security Officer can revoke create trigger permission.

Proxy and session authorization Only a System Security Officer can
revoke set proxy or set session authorization, and only from the master
database.

Roles You can revoke roles only from the master database. Only a
System Security Officer can revoke sso_role, oper_role, or a user-defined
role from a user or a role. Only System Administrators can revoke sa_role
from a user or a role. Only a user who has both sa_role and sso_role can
revoke a role that includes sa_role.

See also Commands grant, setuser, set

Functions proc_role

revoke

624

System procedures sp_activeroles, sp_adduser, sp_changedbowner,
sp_changegroup, sp_displaylogin, sp_displayroles, sp_dropgroup,
sp_dropuser, sp_helpgroup, sp_helprotect, sp_helpuser, sp_modifylogin,
sp_role

CHAPTER 7 Commands

625

rollback
Description Rolls back a user-defined transaction to the named savepoint in the transaction

or to the beginning of the transaction.

Syntax rollback [tran | transaction | work]
[transaction_name | savepoint_name]

Parameters tran | transaction | work
specifies that you want to roll back the transaction or the work. If you
specify tran, transaction, or work, you can also specify the transaction_name
or the savepoint_name.

transaction_name
is the name assigned to the outermost transaction. It must conform to the
rules for identifiers.

savepoint_name
is the name assigned to the savepoint in the save transaction statement. The
name must conform to the rules for identifiers.

Examples Rolls back the transaction:

begin transaction
delete from publishers where pub_id = "9906"
rollback transaction

Usage • rollback transaction without a transaction_name or savepoint_name rolls
back a user-defined transaction to the beginning of the outermost
transaction.

• rollback transaction transaction_name rolls back a user-defined transaction
to the beginning of the named transaction. Though you can nest
transactions, you can roll back only the outermost transaction.

• rollback transaction savepoint_name rolls a user-defined transaction back
to the matching save transaction savepoint_name.

Restrictions

• If no transaction is currently active, the commit or rollback statement has no
effect.

• The rollback command must appear within a transaction. You cannot roll
back a transaction after commit has been entered.

Rolling back an entire transaction

• rollback without a savepoint name cancels an entire transaction. All the
transaction’s statements or procedures are undone.

rollback

626

• If no savepoint_name or transaction_name is given with the rollback
command, the transaction is rolled back to the first begin transaction
in the batch. This also includes transactions that were started with an
implicit begin transaction using the chained transaction mode.

Rolling back to a savepoint

• To cancel part of a transaction, use rollback with a savepoint_name. A
savepoint is a marker set within a transaction by the user with the
command save transaction. All statements or procedures between the
savepoint and the rollback are undone.

After a transaction is rolled back to a savepoint, it can proceed to
completion (executing any SQL statements after that rollback) using
commit, or it can be canceled altogether using rollback without a
savepoint. There is no limit on the number of savepoints within a
transaction.

Rollbacks within triggers and stored procedures

• In triggers or stored procedures, rollback statements without
transaction or savepoint names roll back all statements to the first
explicit or implicit begin transaction in the batch that called the
procedure or fired the trigger.

• When a trigger contains a rollback command without a savepoint
name, the rollback aborts the entire batch. Any statements in the batch
following the rollback are not executed.

• A remote procedure call (RPC) is executed independently from any
transaction in which it is included. In a standard transaction (that is,
not using Open Client™ DB-Library two-phase commit), commands
executed via an RPC by a remote server are not rolled back with
rollback and do not depend on commit to be executed.

• For complete information on using transaction management
statements and on the effects of rollback on stored procedures,
triggers, and batches, see the Transact-SQL User’s Guide.

Standards SQL92 – Compliance level: Entry-level compliant.

Transact-SQL extensions Tthe rollback transaction and rollback tran
forms of the statement and the use of a transaction name.

Permissions rollback permission defaults to “public.” No permission is required to use
it.

See also Commands begin transaction, commit, create trigger, save transaction

CHAPTER 7 Commands

627

rollback trigger
Description Rolls back the work done in a trigger, including the data modification that

caused the trigger to fire, and issues an optional raiserror statement.

Syntax rollback trigger
[with raiserror_statement]

Parameters with raiserror_statement
specifies a raiserror statement, which prints a user-defined error
message and sets a system flag to record that an error condition has
occurred. This provides the ability to raise an error to the client when
the rollback trigger is executed so that the transaction state in the error
reflects the rollback. For information about the syntax and rules
defining raiserror_statement, see the raiserror command.

Examples Rolls back a trigger and issues the user-defined error message 25002:

rollback trigger with raiserror 25002
"title_id does not exist in titles table."

Usage • When rollback trigger is executed, Adaptive Server aborts the currently
executing command and halts execution of the rest of the trigger.

• If the trigger that issues rollback trigger is nested within other triggers,
Adaptive Server rolls back all work done in these triggers up to and
including the update that caused the first trigger to fire.

• Adaptive Server ignores a rollback trigger statement that is executed
outside a trigger and does not issue a raiserror associated with the
statement. However, a rollback trigger statement executed outside a
trigger but inside a transaction generates an error that causes Adaptive
Server to roll back the transaction and abort the current statement
batch.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions rollback trigger permission defaults to “public.” No permission is required
to use it.

See also Commands create trigger, raiserror, rollback

save transaction

628

save transaction
Description Sets a savepoint within a transaction.

Syntax save transaction savepoint_name

Parameters savepoint_name
is the name assigned to the savepoint. It must conform to the rules for
identifiers.

Examples After updating the royaltyper entries for the two authors, insert the
savepoint percentchanged, then determine how a 10 percent increase in the
book’s price would affect the authors’ royalty earnings. The transaction is
rolled back to the savepoint with rollback transaction:

begin transaction royalty_change

update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

update titleauthor
set royaltyper = 35
from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

save transaction percentchanged

update titles
set price = price * 1.1
where title = "The Gourmet Microwave"

select (price * total_sales) * royaltyper
from titles, titleauthor
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id

rollback transaction percentchanged

commit transaction

Usage • For complete information on using transaction statements, see the
Transact-SQL User’s Guide.

CHAPTER 7 Commands

629

• A savepoint is a user-defined marker within a transaction that allows
portions of a transaction to be rolled back. rollback savepoint_name
rolls back to the indicated savepoint; all statements or procedures
between the savepoint and the rollback are undone.

Statements preceding the savepoint are not undone—but neither are
they committed. After rolling back to the savepoint, the transaction
continues to execute statements. A rollback without a savepoint
cancels the entire transaction. A commit allows it to proceed to
completion.

• If you nest transactions, save transaction creates a savepoint only in
the outermost transaction.

• There is no limit on the number of savepoints within a transaction.

• If no savepoint_name or transaction_name is given with the rollback
command, all statements back to the first begin transaction in a batch
are rolled back, and the entire transaction is canceled.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions save transaction permission defaults to “public.” No permission is required
to use it.

See also Commands begin transaction, commit, rollback

select

630

select
Description Retrieves rows from database objects.

Syntax select ::=
select [all | distinct] select_list
[into_clause]
[from_clause]
[where_clause]
[group_by_clause]
[having_clause]
[order_by_clause]
[compute_clause]
[read_only_clause]
[isolation_clause]
[browse_clause]
[plan_clause]

select_list ::=

Note For details on select_list, see the parameters description.

into_clause ::=
into [[database.]owner.]table_name
[lock {datarows | datapages | allpages }]

[with into_option [, into_option] ...]

into_option ::=
| max_rows_per_page = num_rows
| exp_row_size = num_bytes
| reservepagegap = num_pages
| identity_gap = gap
[existing table table_name]
[[external type] at “path_name”
[column delimiter delimiter]]

from_clause ::=
from table_reference [,table_reference]...

table_reference ::=
table_view_name | ANSI_join

table_view_name ::=
[[database.]owner.] {{table_name | view_name}
[as] [correlation_name]
[index {index_name | table_name }]
[parallel [degree_of_parallelism]]
[prefetch size][lru | mru]}

[holdlock | noholdlock]
[readpast]
[shared]

CHAPTER 7 Commands

631

ANSI_join ::=
table_reference join_type join table_reference

join_conditions
join_type ::= inner | left [outer] | right [outer]
join_conditions ::= on search_conditions

where_clause ::=
where search_conditions

group_by_clause ::=
group by [all] aggregate_free_expression

[, aggregate_free_expression]...

having_clause ::=
having search_conditions

order_by_clause ::=
order by sort_clause [, sort_clause]...

sort_clause ::=
{

[[[database.]owner.]{table_name.|view_name.}]column_name
| select_list_number
| expression }
[asc | desc]

compute_clause ::=
compute row_aggregate(column_name)

[, row_aggregate(column_name)]...
[by column_name [, column_name]...]

read_only_clause ::=
for {read only | update [of column_name_list]}

isolation_clause ::=
at isolation

{ read uncommitted | 0 }
| { read committed | 1 }
| { repeatable read | 2 }
| { serializable | 3 }

browse_clause ::=
for browse

plan_clause ::=
plan "abstract plan"

Parameters all
includes all rows in the results. all is the default.

select

632

distinct
includes only unique rows in the results. distinct must be the first word
in the select list. distinct is ignored in browse mode.

Null values are considered equal for the purposes of the keyword
distinct: only one NULL is selected, no matter how many are
encountered.

select_list
consists of one or more of the following items:

• “*”, representing all columns in create table order.

• A list of column names in the order in which you want to see them.
When selecting an existing IDENTITY column, you can substitute
the syb_identity keyword, qualified by the table name, where
necessary, for the actual column name.

• A specification to add a new IDENTITY column to the result table:

column_name = identity(precision)

• A replacement for the default column heading (the column name),
in one of these forms:

column_heading = column_name
column_name column_heading
column_name as column_heading

The column heading can be enclosed in quotation marks for any of
these forms. The heading must be enclosed in quotation marks if it
is not a valid identifier (that is, if it is a reserved word, if it begins
with a special character, or if it contains spaces or punctuation
marks).

• An expression (a column name, constant, function, or any
combination of column names, constants, and functions connected
by arithmetic or bitwise operators, or a subquery).

• A built-in function or an aggregate.

• Any combination of the items listed above.

The select_list can also assign values to variables, in the form:

@variable = expression
[, @variable = expression ...]

You cannot combine variable assignment with any other select_list
option.

CHAPTER 7 Commands

633

into
creates a new table based on the columns specified in the select list and
the rows chosen in the where clause. See “Using select into” in this
section.

lock datarows | datapages | allpages
specifies the locking scheme to be used for a table created with a select
into command. The default is the server-wide

ting for the configuration parameter lock scheme.

max_rows_per_page
limits the number of rows on data pages for a table created with select
into. Unlike fillfactor, the max_rows_per_page value is maintained when
data is inserted or deleted. max_rows_per_page is not supported on
data-only-locked tables.

existing table table_name
indicates that you are selecting data into a proxy table. You cannot use
this select into any other table type except proxy. The column list in the
select list must match the type, length, and number in the proxy table.

at "path_name"
indicates the full path name of the external file you are selecting into.
You can only use the at parameter to select into a proxy table.

external [table | file]
indicates that the type of the external object is either a file or a table. If
you do indicate either a file or a table, select into assumes that you are
using a table.

column delimeter “delimiter”
indicates the delimiter that you are using to separate columns. If you do
not specify a delimiter, select into uses the tab character.

exp_row_size = num_bytes
specifies the expected row size for a table created with the select into
command. Valid only for datarows and datapages locking schemes and
only for tables that have variable-length rows. Valid values are 0, 1, and
any value greater than the minimum row length and less than the
maximum row length for the table. The default value is 0, which means
that a server-wide default is used.

select

634

reservepagegap = num_pages
specifies a ratio of filled pages to empty pages that is to be left as select
into allocates extents to store data. This option is valid only for the select
into command. For each specified num_pages, one empty page is left for
future expansion of the table. Valid values are 0 – 255. The default value
is 0.

readpast
specifies that the query should silently skip rows with exclusive locks,
without waiting and without generating a message.

with identity_gap
specifies the identity gap for the table. This value overrides the system
identity gap setting for this table only.

value
is the identity gap amount.

If you are creating a table in a select into statement from a table that has
a specific identity gap setting, the new table does not inherit the identity
gap setting from the parent table. Instead, the new table uses the identity
burning set factor setting. To give the new table a specific identity_gap
setting, specify the identity gap in the select into statement. You can give
the new table an identity gap that is the same as or different from the
parent table.

from
indicates which tables and views to use in the select statement. It is
required except when the select list contains no column names (that is,
it contains constants and arithmetic expressions only):

select 5 x, 2 y, "the product is", 5*2 Result

x y Result
----------- ----------- -------------- -----------

5 2 the product is 10

At most, a query can reference 50 tables and 14 worktables (such as
those created by aggregate functions). The 50-table limit includes:

• Tables (or views on tables) listed in the from clause

• Each instance of multiple references to the same table (self-joins)

• Tables referenced in subqueries

• Tables being created with into

• Base tables referenced by the views listed in the from clause

CHAPTER 7 Commands

635

view_name, table_name
lists tables and views used in the select statement. Specify the database
name if the table or view is in another database, and specify the owner’s
name if more than one table or view of that name exists in the database.
The default value for owner is the current user, and the default value for
database is the current database.

If there is more than one table or view in the list, separate their names
by commas. The order of the tables and views following the keyword
from does not affect the results.

You can query tables in different databases in the same statement.

Table names and view names can be given correlation names (aliases),
either for clarity or to distinguish the different roles that tables or views
play in self-joins or subqueries. To assign a correlation name, give the
table or view name, then a space, then the correlation name, like this:

select pub_name, title_id
from publishers pu, titles t
where t.pub_id = pu.pub_id

All other references to that table or view (for example in a where clause)
must use the correlation name. Correlation names cannot begin with a
numeral.

index index_name
specifies the index to use to access table_name. You cannot use this
option when you select from a view, but you can use it as part of a select
clause in a create view statement.

parallel
specifies a parallel partition or index scan, if Adaptive Server is
configured to allow parallel processing.

degree_of_parallelism
specifies the number of worker processes that will scan the table or
index in parallel. If set to 1, the query executes serially.

select

636

prefetch size
specifies the I/O size, in kilobytes, for tables bound to caches with large
I/Os configured. You cannot use this option when you select from a
view, but you can use it as part of a select clause in a create view
statement. sp_helpcache shows the valid sizes for the cache an object is
bound to or for the default cache. To configure the data cache size, use
sp_cacheconfigure.

When using prefetch and designating the prefetch size (size), the
minimum is 2K and any power of two on the logical page size up to
16K. prefetch size options in kilobytes are:

The prefetch size specified in the query is only a suggestion. To allow
the size specification, configure the data cache at that size. If you do not
configure the data cache to a specific size, the default prefetch size is
used.

If Component Integration Services is enabled, you cannot use prefetch
for remote servers.

lru | mru
specifies the buffer replacement strategy to use for the table. Use lru to
force the optimizer to read the table into the cache on the MRU/LRU
(most recently used/least recently used) chain. Use mru to discard the
buffer from cache and replace it with the next buffer for the table. You
cannot use this option when you select from a view, but you can use it
as part of a select clause in a create view statement.

Logical page size Prefetch size options

2 2, 4, 8 16

4 4, 8, 16, 32

8 8, 16, 32, 64

16 16, 32, 64, 128

CHAPTER 7 Commands

637

holdlock
makes a shared lock on a specified table or view more restrictive by
holding it until the transaction completes (instead of releasing the
shared lock as soon as the required data page is no longer needed,
whether or not the transaction has completed).

The holdlock option applies only to the table or view for which it is
specified, and only for the duration of the transaction defined by the
statement in which it is used. Setting the transaction isolation level 3
option of the set command implicitly applies a holdlock for each select
statement within a transaction. The keyword holdlock is not permitted in
a select statement that includes the for browse option. You cannot
specify both a holdlock and a noholdlock option in a query.

If Component Integration Services is enabled, you cannot use holdlock
for remote servers.

noholdlock
prevents the server from holding any locks acquired during the
execution of this select statement, regardless of the transaction isolation
level currently in effect. You cannot specify both a holdlock and a
noholdlock option in a query.

shared
instructs Adaptive Server to use a shared lock (instead of an update
lock) on a specified table or view. This allows other clients to obtain an
update lock on that table or view. You can use the shared keyword only
with a select clause included as part of a declare cursor statement. For
example:

declare shared_crsr cursor
for select title, title_id
from titles shared
where title_id like "BU%"

You can use the holdlock keyword in conjunction with shared after each
table or view name, but holdlock must precede shared.

ANSI join
an inner or outer join that uses the ANSI syntax. The from clause
specifies which tables are to be joined.

inner
includes only the rows of the inner and outer tables that meet the
conditions of the on clause. The result set of a query that includes an
inner join does not include any null supplied rows for the rows of the
outer table that do not meet the conditions of the on clause.

select

638

outer
includes all the rows from the outer table whether or not they meet the
conditions of the on clause. If a row does not meet the conditions of the
on clause, values from the inner table are stored in the joined table as
null values. The where clause of an ANSI outer join restricts the rows
that are included in the query result.

left
left joins retain all the rows of the table reference listed on the left of the
join clause. The left table reference is referred to as the outer table or
row-preserving table.

In the queries below, T1 is the outer table and T2 is the inner table:

T1 left join T2
T2 right join T1

right
right joins retain all the rows of the table reference on the right of the
join clause (see example above).

search_conditions
used to set the conditions for the rows that are retrieved. A search
condition can include column names, expressions, arithmetic operators,
comparison operators, the keywords not, like, is null, and, or, between,
in, exists, any, and all, subqueries, case expressions, or any combination
of these items. See where clause on page 712 for more information.

group by
finds a value for each group. These values appear as new columns in the
results, rather than as new rows.

When group by is used with standard SQL, each item in the select list
must either have a fixed value in every row in the group or be used with
aggregate functions, which produce a single value for each group.
Transact-SQL has no such restrictions on the items in the select list.
Also, Transact-SQL allows you to group by any expression (except by
a column alias); with standard SQL, you can group by a column only.

You can use the aggregates listed in Table 7-31 with group by
(expression is almost always a column name):

Table 7-31: Results of using aggregates with group by

Aggregate function Result

sum([all | distinct] expression) Total of the values in the numeric column.

avg([all | distinct] expression) Average of the values in the numeric column.

count([all | distinct] expression) Number of (distinct) non-null values in the column.

CHAPTER 7 Commands

639

See group by and having clauses on page 534 for more information.

A table can be grouped by any combination of columns—that is, groups
can be nested within each other. You cannot group by a column heading;
you must use a column name, an expression, or a number representing
the position of the item in the select list.

group by all
includes all groups in the results, even those that do not have any rows
that meet the search conditions. See group by and having clauses for an
example.

aggregate_free_expression
is an expression that includes no aggregates.

having
sets conditions for the group by clause, similar to the way that where sets
conditions for the select clause. There is no limit on the number of
conditions that can be included.

You can use a having clause without a group by clause.

If any columns in the select list do not have aggregate functions applied
to them and are not included in the query’s group by clause (illegal in
standard SQL), the meanings of having and where are somewhat
different.

In this situation, a where clause restricts the rows that are included in the
calculation of the aggregate, but does not restrict the rows returned by
the query. Conversely, a having clause restricts the rows returned by the
query, but does not affect the calculation of the aggregate. See group by
and having clauses for examples.

order by
sorts the results by columns. In Transact-SQL, you can use order by for
items that do not appear in the select list. You can sort by a column
name, a column heading (or alias), an expression, or a number
representing the position of the item in the select list (the
select_list_number). If you sort by select list number, the columns to
which the order by clause refers must be included in the select list, and
the select list cannot be * (asterisk).

count(*) Number of selected rows.

max(expression) Highest value in the column.

min(expression) Lowest value in the column.

Aggregate function Result

select

640

asc
sorts results in ascending order (the default).

desc
sorts results in descending order.

compute
used with row aggregates (sum, avg, min, max, and count) to generate
control break summary values. The summary values appear as
additional rows in the query results, allowing you to see detail and
summary rows with one statement.

You cannot use a select into clause with compute.

If you use compute by, you must also use an order by clause. The
columns listed after compute by must be identical to or a subset of those
listed after order by, and must be in the same left-to-right order, start
with the same expression, and not skip any expressions.

For example, if the order by clause is order by a, b, c, the compute
by clause can be any (or all) of these:

compute by a, b, c
compute by a, b
compute by a

The keyword compute can be used without by to generate grand totals,
grand counts, and so on. order by is optional if you use compute without
by. See compute clause on page 305 for details and examples.

If Component Integration Services is enabled, you cannot use compute
for remote servers.

for {read only | update}
specifies that a cursor result set is read-only or updatable. You can use
this option only within a stored procedure and only when the procedure
defines a query for a cursor. In this case, the select is the only statement
allowed in the procedure. It defines the for read only or for update option
(instead of the declare cursor statement). This method of declaring
cursors provides the advantage of page-level locking while fetching
rows.

If the select statement in the stored procedure is not used to define a
cursor, Adaptive Server ignores the for read only | update option. See the
Embedded SQL™ documentation for more information about using
stored procedures to declare cursors. For information about read-only
or updatable cursors, see the Transact-SQL User’s Guide.

CHAPTER 7 Commands

641

of column_name_list
is the list of columns from a cursor result set defined as updatable with
the for update option.

at isolation
specifies the isolation level (0, 1, 2 or 3) of the query. If you omit this
clause, the query uses the isolation level of the session in which it
executes (isolation level 1 by default). The at isolation clause is valid
only for single queries or within the declare cursor statement. Adaptive
Server returns a syntax error if you use at isolation:

• With a query using the into clause

• Within a subquery

• With a query in the create view statement

• With a query in the insert statement

• With a query using the for browse clause

If there is a union operator in the query, you must specify the at isolation
clause after the last select. If you specify holdlock, noholdlock, or shared
in a query that also specifies at isolation read uncommitted, Adaptive
Server issues a warning and ignores the at isolation clause. For the other
isolation levels, holdlock takes precedence over the at isolation clause.
For more information about isolation levels, see the Transact-SQL
User’s Guide.

If Component Integration Services is enabled, you cannot use at
isolation for remote servers.

read uncommitted | 0
specifies isolation level 0 for the query.

read committed | 1
specifies isolation level 1 for the query.

repeatable read | 2
specifies transaction isolation level 2 for the query.

serializable | 3
specifies isolation level 3 for the query.

for browse
must be attached to the end of a SQL statement sent to Adaptive Server
in a DB-Library browse application. See the Open Client DB-Library
Reference Manual for details.

select

642

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full
or partial plan, specified in the abstract plan language. See Chapter 30,
“Creating and Using Abstract Plans,” in the Performance and Tuning
Guide for more information.

Examples Example 1 Selects all rows and columns from the publishers table:

select * from publishers

pub_id pub_name city state
------ --------------------------- -------------------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

Example 2 Selects all rows from specific columns of the publishers table:

select pub_id, pub_name, city, state from publishers

Example 3 Selects all rows from specific columns of the publishers table,
substituting one column name and adding a string to the output:

select "The publisher's name is",
Publisher = pub_name, pub_id
from publishers

Publisher pub_id
----------------------- ----------------------------- ------
The publisher’s name is New Age Books 0736
The publisher’s name is Binnet & Hardley 0877
The publisher’s name is Algodata Infosystems 1389

Example 4 Selects all rows from specific columns of the titles table,
substituting column names:

select type as Type, price as Price
from titles

Example 5 Specifies the locking scheme and the reserve page gap for
select into:

select title_id, title, price
into bus_titles
lock datarows with reservepagegap = 10
from titles
where type = "business"

CHAPTER 7 Commands

643

Example 6 Selects only the rows that are not exclusively locked. If any
other user has an exclusive lock on a qualifying row, that row is not
returned:

select title, price
from titles readpast

where type = "news"
and price between $20 and $30

Example 7 Selects specific columns and rows, placing the results into the
temporary table #advance_rpt:

select pub_id, total = sum (total_sales)
into #advance_rpt

from titles
where advance < $10000

and total_sales is not null
group by pub_id
having count(*) > 1

Example 8 Concatenates two columns and places the results into the
temporary table #tempnames:

select "Author_name" = au_fname + " " + au_lname
into #tempnames
from authors

Example 9 Selects specific columns and rows, returns the results ordered
by type from highest to lowest, and calculates summary information:

select type, price, advance from titles
order by type desc
compute avg(price), sum(advance) by type
compute sum(price), sum(advance)

Example 10 Selects specific columns and rows, and calculates totals for
the price and advance columns:

select type, price, advance from titles compute sum(price), sum(advance)

Example 11 Creates the coffeetabletitles table, a copy of the titles table
which includes only books priced over $20:

select * into coffeetabletitles from titles
where price > $20

Example 12 Creates the newtitles table, an empty copy of the titles table:

select * into newtitles from titles
where 1 = 0

select

644

Example 13 Updates the existing authors table to include only books
priced over $20:

select * into authors from titles
where price > $20

Example 14 Gives an optimizer hint:

select title_id, title
from titles (index title_id_ind prefetch 16)
where title_id like "BU%"

Example 15 Selects the IDENTITY column from the sales_east and
sales_west tables by using the syb_identity keyword:

select sales_east.syb_identity,
sales_west.syb_identity
from sales_east, sales_west

Example 16 Creates the newtitles table, a copy of the titles table with an
IDENTITY column:

select *, row_id = identity(10)
into newtitles from titles

Example 17 Specifies a transaction isolation level for the query.

select pub_id, pub_name
from publishers
at isolation read uncommitted

Example 18 Selects from titles using the repeatable read isolation level.
No other user can change values in or delete the affected rows until the
transaction completes:

begin tran
select type, avg(price)

from titles
group by type

at isolation repeatable read

Example 19 Gives an optimizer hint for the parallel degree for the query:

select ord_num from salesdetail
(index salesdetail parallel 3)

Example 20 Joins the titleauthor and the titles tables on their title_id
columns. The result set only includes those rows that contain a price
greater than 15:

select au_id, titles.title_id, title, price
from titleauthor inner join titles

CHAPTER 7 Commands

645

on titleauthor.title_id = titles.title_id
and price > 15

Example 21 The result set contains all the authors from the authors table.
The authors who do not live in the same city as their publishers produce
null values in the pub_name column. Only the authors who live in the same
city as their publishers, Cheryl Carson and Abraham Bennet, produce a
non-null value in the pub_name column:

select au_fname, au_lname, pub_name
from authors left join publishers
on authors.city = publishers.city

Example 22 Create a new table (newtable) from the existing table
(oldtable) with an identity gap, you specify it in the select into statement:

select identity into newtable
with identity_gap = 20
from oldtable

For more information about identity gaps, see “Managing Identity Gaps in
Tables” in Chapter 7, “Creating Databases and Tables” in the
Transact-SQL User’s Guide.

Usage • The keywords in the select statement, as in all other statements, must
be used in the order shown in the syntax statement.

• The maximum number of expressions in a select statement is 4096.

• The keyword all can be used after select for compatibility with other
implementations of SQL. all is the default. Used in this context, all is
the opposite of distinct. All retrieved rows are included in the results,
whether or not some are duplicates.

• Except in create table, create view, and select into statements, column
headings may include any characters, including blanks and Adaptive
Server keywords, if the column heading is enclosed in quotes. If the
heading is not enclosed in quotes, it must conform to the rules for
identifiers.

• The character string indicated by like cannot be longer than 255 bytes.

• You cannot use the select...for browse option on tables containing
more than 255 columns.

• Column headings in create table, create view, and select into
statements, as well as table aliases, must conform to the rules for
identifiers.

select

646

• To insert data with select from a table that has null values in some
fields into a table that does not allow null values, you must provide a
substitute value for any NULL entries in the original table. For
example, to insert data into an advances table that does not allow null
values, this example substitutes “0” for the NULL fields:

insert advances
select pub_id, isnull(advance, 0) from titles

Without the isnull function, this command would insert all the rows
with non-null values into the advances table, and produce error
messages for all rows where the advance column in the titles table
contained NULL.

If you cannot make this kind of substitution for your data, you cannot
insert data containing null values into the columns with the NOT
NULL specification.

Two tables can be identically structured, and yet be different as to
whether null values are permitted in some fields. Use sp_help to see
the null types of the columns in your table.

• The default length of the text or image data returned with a select
statement is 32K. Use set textsize to change the value. The size for the
current session is stored in the global variable @@textsize. Certain
client software may issue a set textsize command on logging in to
Adaptive Server.

• Data from remote Adaptive Servers can be retrieved through the use
of remote procedure calls. See create procedure and execute for more
information.

• A select statement used in a cursor definition (through declare cursor)
must contain a from clause, but it cannot contain a compute, for
browse, or into clause. If the select statement contains any of the
following constructs, the cursor is considered read-only and not
updatable:

• distinct option

• group by clause

• Aggregate functions

• union operator

CHAPTER 7 Commands

647

If you declare a cursor inside a stored procedure with a select
statement that contains an order by clause, that cursor is also
considered read-only. Even if it is considered updatable, you cannot
delete a row using a cursor that is defined by a select statement
containing a join of two or more tables. See declare cursor for more
information.

• If a select statement that assigns a value to a variable returns more
than one row, the last returned value is assigned to the variable. For
example:

declare @x varchar(40)
select @x = pub_name from publishers
print @x
(3 rows affected)
Algodata Infosystems

Using ANSI join syntax

• Before you write queries using the ANSI inner and outer join syntax,
read “Outer Joins” in Chapter 4, “Joins: Retrieving Data From Several
Tables”, in the Transact-SQL User’s Guide.

Using select into

• select into is a two-step operation. The first step creates the new table,
and the second step inserts the specified rows into the new table.

Note You can select into an existing table.

Because the rows inserted by select into operations are not logged,
select into commands cannot be issued within user-defined
transactions, even if the ddl in tran database option is set to true. Page
allocations during select into operations are logged, so large select into
operations may fill the transaction log.

If a select into statement fails after creating a new table, Adaptive
Server does not automatically drop the table or deallocate its first data
page. This means that any rows inserted on the first page before the
error occurred remain on the page. Check the value of the @@error
global variable after a select into statement to be sure that no error
occurred. Use the drop table statement to remove the new table, then
reissue the select into statement.

• The name of the new table must be unique in the database and must
conform to the rules for identifiers. You can also select into temporary
tables (see Examples 7, 8, and 11).

select

648

• Any rules, constraints, or defaults associated with the base table are
not carried over to the new table. Bind rules or defaults to the new
table using sp_bindrule and sp_bindefault.

• select into does not carry over the base table’s max_rows_per_page
value, and it creates the new table with a max_rows_per_page value of
0. Use sp_chgattribute to set the max_rows_per_page value.

• The select into/bulkcopy/pllsort option must be set to true (by executing
sp_dboption) in order to select into a permanent table. You do not have
to set the select into/bulkcopy/pllsort option to true in order to select into
a temporary table, since the temporary database is never recovered.

After you have used select into in a database, you must perform a full
database dump before you can use the dump transaction command.
select into operations log only page allocations and not changes to data
rows. Therefore, changes are not recoverable from transaction logs. In
this situation, issuing the dump transaction statement produces an
error message instructing you to use dump database instead.

By default, the select into/bulkcopy/pllsort option is set to false in newly
created databases. To change the default situation, set this option to
true in the model database.

• select into runs more slowly while a dump database is taking place.

• You can use select into to create a duplicate table with no data by
having a false condition in the where clause (see Example 12).

• You must provide a column heading for any column in the select list
that contains an aggregate function or any expression. The use of any
constant, arithmetic or character expression, built-in functions, or
concatenation in the select list requires a column heading for the
affected item. The column heading must be a valid identifier or must
be enclosed in quotation marks (see Examples 7 and 8).

• Datatypes and nullability are implicitly assigned to literal values
when select into is used, such as:

select x = getdate() into mytable

This results in a non-nullable column, regardless of whether allow
nulls by default is on or not. It depends upon how the select commands
are used and with what other commands within the syntax.

The convert syntax allows you to explicitly specify the datatype and
nullability of the resulting column, not the default.

Wrap getdate with a function that does result in a null, such as:

CHAPTER 7 Commands

649

select x = nullif(getdate(), "1/1/1900") into
mytable

Or, use the convert syntax:

select x = convert(datetime null, getdate()) into
mytable

• You cannot use select into inside a user-defined transaction or in the
same statement as a compute clause.

• To select an IDENTITY column into a result table, include the column
name (or the syb_identity keyword) in the select statement’s
column_list. The new column observes the following rules:

• If an IDENTITY column is selected more than once, it is defined
as NOT NULL in the new table. It does not inherit the
IDENTITY property.

• If an IDENTITY column is selected as part of an expression, the
resulting column does not inherit the IDENTITY property. It is
created as NULL if any column in the expression allows nulls;
otherwise, it is created as NOT NULL.

• If the select statement contains a group by clause or aggregate
function, the resulting column does not inherit the IDENTITY
property. Columns that include an aggregate of the IDENTITY
column are created NULL; others are NOT NULL.

• An IDENTITY column that is selected into a table with a union
or join does not retain the IDENTITY property. If the table
contains the union of the IDENTITY column and a NULL
column, the new column is defined as NULL. Otherwise, it is
defined as NOT NULL.

• You cannot use select into to create a new table with multiple
IDENTITY columns. If the select statement includes both an existing
IDENTITY column and a new IDENTITY specification of the form
column_name = identity(precision), the statement fails.

• If Component Integration Services is enabled, and if the into table
resides on Adaptive Server, Adaptive Server uses bulk copy routines
to copy the data into the new table. Before doing a select into with
remote tables, set the select into/bulkcopy database option to true.

• For information about the Embedded SQL command select into
host_var_list, see the Open Client Embedded SQL Reference Manual.

select

650

Converting the NULL properties of a target column with select...into

• Use the convert command to change the nullability of a target column
into which you are selecting data. For example, the following selects
data from the titles table into a target table named temp_titles, but
converts the total_sales column from null to not null:

select title, convert (char(100) not null,
total_sales)
total_sales
into #tempsales
from titles

Specifying a lock scheme with select...into

• The lock option, used with select...into, allows you to specify the
locking scheme for the table created by the command. If you do not
specify a locking scheme, the default locking scheme, as set by the
configuration parameter lock scheme, is applied.

• When you use the lock option, you can also specify the space
management properties max_rows_per_page, exp_row_size, and
reservepagegap.

You can change the space management properties for a table created
with select into, using sp_chgattribute.

Using index, prefetch, and lru | mru

• The index, prefetch and lru | mru options specify the index, cache and
I/O strategies for query execution. These options override the choices
made by the Adaptive Server optimizer. Use them with caution, and
always check the performance impact with set statistics io on. For
more information about using these options, see the Performance and
Tuning Guide.

Using parallel

• The parallel option reduces the number of worker threads that the
Adaptive Server optimizer can use for parallel processing. The
degree_of_parallelism cannot be greater than the configured max
parallel degree. If you specify a value that is greater than the
configured max parallel degree, the optimizer ignores the parallel
option.

CHAPTER 7 Commands

651

• When multiple worker processes merge their results, the order of rows
that Adaptive Server returns may vary from one execution to the next.
To get rows from partitioned tables in a consistent order, use an order
by clause, or override parallel query execution by using parallel 1 in
the from clause of the query.

• A from clause specifying parallel is ignored if any of the following
conditions is true:

• The select statement is used for an update or insert.

• The from clause is used in the definition of a cursor.

• parallel is used in the from clause within any inner query blocks of
a subquery.

• The select statement creates a view.

• The table is the inner table of an outer join.

• The query specifies min or max on the table and specifies an
index.

• An unpartitioned clustered index is specified or is the only
parallel option.

• The query specifies exists on the table.

• The value for the configuration parameter max scan parallel
degree is 1 and the query specifies an index.

• A nonclustered index is covered. For information on index
covering, see Chapter 9, “How Indexes Work” in the
Performance and Tuning Guide.

• The table is a system table or a virtual table.

• The query is processed using the OR strategy. For an explanation
of the OR strategy, see the Performance and Tuning Guide.

• The query returns a large number of rows to the user.

Using readpast

• The readpast option allows a select command to access the specified
table without being blocked by incompatible locks held by other
tasks. readpast queries can only be performed on data-only-locked
tables.

select

652

• If the readpast option is specified for an allpages-locked table, the
readpast option is ignored. The command operates at the isolation
level specified for the command or session. If the isolation level is 0,
dirty reads are performed, and the command returns values from
locked rows and does not block. If the isolation level is 1 or 3, the
command blocks when pages with incompatible locks must be read.

• The interactions of session-level isolation levels and readpast on a
table in a select command are shown in Table 7-32.

Table 7-32: Effects of session-level isolation levels and readpast

• select commands that specify readpast fail with an error message if
they also include any of the following:

• An at isolation clause, specifying 0 or read uncommitted

• An at isolation clause, specifying 3 or serializable

• The holdlock keyword on the same table

• If at isolation 2 or at isolation repeatable read is specified in a select
query that specifies readpast, shared locks are held on the readpast
tables until the statement or transaction completes.

• If a select command with the readpast option encounters a text
column that has an incompatible lock on it, readpast locking retrieves
the row, but returns the text column with a value of null. No distinction
is made, in this case, between a text column containing a null value
and a null value returned because the column is locked.

Standards SQL92 – Compliance level: Entry-level compliant.

Session isolation level Effects

0, read uncommitted
(dirty reads)

readpast is ignored, and rows containing uncommitted transactions are returned to
the user. A warning message is printed.

1, read committed Rows or pages with incompatible locks are skipped; no locks are held on the rows
or pages read

Using readpast may produce duplicates and adding the distinct clause does not clear
this problem.

To resolve this, when using readpast, use a group by clause in addition to a distinct
clause to avoid duplicates.

2, repeatable read Rows or pages with incompatible locks are skipped; shared locks are held on all
rows or pages that are read until the end of the statement or transaction; holds locks
on all pages read by the statement until the transaction completes.

3, serializable readpast is ignored, and the command executes at level 3. The command blocks on
any rows or pages with incompatible locks.

CHAPTER 7 Commands

653

The following are Transact-SQL extensions:

• select into to create a new table

• lock clauses

• compute clauses

• Global and local variables

• index clause, prefetch, parallel and lru | mru

• holdlock, noholdlock, and shared keywords

• “column_heading = column_name”

• Qualified table and column names

• select in a for browse clause

• The use, within the select list, of columns that are not in the group by
list and have no aggregate functions

• at isolation repeatable read | 2 option

Permissions select permission defaults to the owner of the table or view, who can
transfer it to other users.

See also Commands compute clause, create index, create trigger, delete, group by
and having clauses, insert, order by clause, set, union operator, update,
where clause

Functions avg, count, isnull, max, min,sum

System procedures sp_cachestrategy, sp_chgattribute, sp_dboption

set

654

set
Description Sets Adaptive Server query-processing options for the duration of the

user’s work session; sets some options inside a trigger or stored procedure.

Syntax set ansinull {on | off}

set ansi_permissions {on | off}

set arithabort [arith_overflow | numeric_truncation]
{on | off}

set arithignore [arith_overflow] {on | off}

set {chained, close on endtran, nocount, noexec, parseonly, procid,
self_recursion, showplan, sort_resources} {on | off}

set char_convert {off | on [with {error | no_error}] |
charset [with {error | no_error}]}

set cis_rpc_handling {on | off}

set [clientname client_name | clienthostname
host_name | clientapplname application_name]

set cursor rows number for cursor_name

set {datefirst number, dateformat format,
language language}

set explicit_transaction_required [true | false]

set fipsflagger {on | off}

set flushmessage {on | off}

set forceplan {on | off}

set identity_insert [database.[owner.]]table_name
{on | off}

set jtc {on | off}

set lock { wait [numsecs] | nowait }

set offsets {select, from, order, compute, table,
procedure, statement, param, execute} {on | off}

set parallel_degree number

set plan {dump | load } [group_name] {on | off}

set plan exists check {on | off}

set plan replace {on | off}

set prefetch [on|off]

set process_limit_action {abort | quiet | warning}

set proxy login_name

set quoted_identifier {on | off}

CHAPTER 7 Commands

655

set role {"sa_role" | "sso_role" | "oper_role" |
role_name [with passwd "password"]} {on | off}

set {rowcount number, textsize number}

set scan_parallel_degree number

set session authorization login_name

set sort_merge {on | off}

set statistics {io, subquerycache, time} {on | off}

set statistics simulate { on | off }

set strict_dtm_enforcement {on | off}

set string_rtruncation {on | off}

set table count number

set textsize {number}

set transaction isolation level {
[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3] }

set transactional_rpc {on | off}

Parameters ansinull
determines whether evaluation of NULL-valued operands in aggregate
functions is compliant with the SQL92 standard. If you use set ansinull
on, Adaptive Server generates a warning when an aggregate function
eliminates a null-valued operand from the calculation. This parameter
does not affect how Adaptive Server evaluates NULL values in equality
(=) or inequality (!=) comparisons.

For example, if you perform the following query on the titles table with
set ansinull off (the default value):

select max(total_sales) from titles

Adaptive Server returns:

22246

However, if you perform the same query with set ansinull on, Adaptive
Server returns the same value and an error message because the
total_sales column contains NULL values:

22246

set

656

Warning - null value eliminated in set function

This message indicates that some entries in total_sales contain NULL
instead of a real amount, so you do not have complete data on total sales
for all books in this table. However, of the available data, the value
returned is the highest.

ansi_permissions
determines whether SQL92 permission requirements for delete and
update statements are checked. The default is off. Table 7-33
summarizes permission requirements:

Table 7-33: Permissions required for update and delete

Command
Permissions required with
set ansi_permissions off

Permissions required with
set ansi_permissions on

update • update permission on columns
where values are being set

• update permission on columns where values are being set

• select permission on all columns appearing in where clause

• select permission on all columns on right side of set clause

delete • delete permission on table • delete permission on table

• select permission on all columns appearing in where clause

CHAPTER 7 Commands

657

arithabort
determines how Adaptive Server behaves when an arithmetic error
occurs. The two arithabort options, arithabort arith_overflow and
arithabort numeric_truncation, handle different types of arithmetic
errors. You can set each option independently or set both options with
a single set arithabort on or set arithabort off statement.

• arithabort arith_overflow specifies Adaptive Server’s behavior
following a divide-by-zero error or a loss of precision during an
explicit or implicit datatype conversion. This type of error is
serious. The default setting, arithabort arith_overflow on, rolls back
the entire transaction in which the error occurs. If the error occurs
in a batch that does not contain a transaction, arithabort
arith_overflow on does not roll back earlier commands in the batch;
however, Adaptive Server does not execute any statements in the
batch that follow the error-generating statement.

If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error, but continues to process other
statements in the transaction or batch.

• arithabort numeric_truncation specifies Adaptive Server’s behavior
following a loss of scale by an exact numeric type during an
implicit datatype conversion. (When an explicit conversion results
in a loss of scale, the results are truncated without warning.) The
default setting, arithabort numeric_truncation on, aborts the
statement that causes the error, but Adaptive Server continues to
process other statements in the transaction or batch. If you set
arithabort numeric_truncation off, Adaptive Server truncates the
query results and continues processing.

arithignore arith_overflow
determines whether Adaptive Server displays a message after a
divide-by-zero error or a loss of precision. By default, the arithignore
option is set to off. This causes Adaptive Server to display a warning
message after any query that results in numeric overflow. To have
Adaptive Server ignore overflow errors, use set arithignore on. You can
omit the optional arith_overflow keyword without any effect.

set

658

chained
begins a transaction just before the first data retrieval or data
modification statement at the beginning of a session and after a
transaction ends. In chained mode, Adaptive Server implicitly executes
a begin transaction command before the following statements: delete,
fetch, insert, open, select, and update. You cannot execute set chained
within a transaction.

char_convert
enables or disables character set conversion between Adaptive Server
and a client. If the client is using Open Client DB-Library release 4.6 or
later, and the client and server use different character sets, conversion is
turned on during the login process and is set to a default based on the
character set the client is using. You can also use set char_convert
charset to start conversion between the server character set and a
different client character set.

charset can be either the character set’s ID or a name from syscharsets
with a type value of less than 2000.

set char_convert off turns conversion off so that characters are sent and
received unchanged. set char_convert on turns conversion on if it is
turned off. If character set conversion was not turned on during the
login process or by the set char_convert command, set char_convert on
generates an error message.

If you request character set conversion with set char_convert charset,
and Adaptive Server cannot perform the requested conversion, the
conversion state remains the same as it was before the request. For
example, if conversion is set to off prior to the set char_convert charset
command, conversion remains turned off if the request fails.

When the with no_error option is included, Adaptive Server does not
notify an application when characters from Adaptive Server cannot be
converted to the client’s character set. Error reporting is initially turned
on when a client connects with Adaptive Server: if you do not want
error reporting, you must turn it off for each session with set
char_convert {on | charset} with no_error. To turn error reporting back on
within a session, use set char_convert {on | charset} with error.

Whether or not error reporting is turned on, the bytes that cannot be
converted are replaced with ASCII question marks (?).

See the System Administration Guide for a more complete discussion of
error handling in character set conversion.

CHAPTER 7 Commands

659

cis_rpc_handling
determines whether Component Integration Services handles outbound
remote procedure call (RPC) requests by default.

clientapplname
assigns an application an individual name. This is useful for
differentiating among clients in a system where many clients connect to
Adaptive Server using the same application name. After you assign a
new name to an application, it appears in the sysprocesses table under
the new name.

clienthostname
assigns a host an individual name. This is useful for differentiating
among clients in a system where many clients connect to Adaptive
Server using the same host name. After you assign a new name to a host,
it appears in the sysprocesses table under the new name.

clientname
assigns a client an individual name. This is useful for differentiating
among clients in a system where many clients connect to Adaptive
Server using the same client name. After you assign a new name to a
user, they appear in the sysprocesses table under the new name.

close on endtran
causes Adaptive Server to close all cursors opened within a transaction
at the end of that transaction. A transaction ends by the use of either the
commit or rollback statement. However, only cursors declared within the
scope that sets this option (stored procedure, trigger, and so on) are
affected. For more information about cursor scopes, see the
Transact-SQL User’s Guide.

For more information about the evaluated configuration, see the System
Administration Guide.

cursor rows
causes Adaptive Server to return the number of rows for each cursor
fetch request from a client application. The number can be a numeric
literal with no decimal point or a local variable of type integer. If the
number is less than or equal to zero, the value is set to 1. You can set the
cursor rows option for a cursor, whether it is open or closed. However,
this option does not affect a fetch request containing an into clause.
cursor_name specifies the cursor for which to set the number of rows
returned.

set

660

datefirst
sets the first week day to a number from 1 to 7. The us_english language
default is 1 (Sunday).

dateformat
sets the order of the date parts month/day/year for entering datetime or
smalldatetime data. Valid arguments are mdy, dmy, ymd, ydm, myd, and
dym. The us_english language default is mdy.

explicit_transaction_required
when set to true, causes any attempts to start an implicit transaction, or
send an RPC to a remote server outside a transaction, to fail.

All other commands succeed.

fipsflagger
determines whether Adaptive Server displays a warning message when
Transact-SQL extensions to entry-level SQL92 are used. By default,
Adaptive Server does not tell you when you use nonstandard SQL. This
option does not disable SQL extensions. Processing completes when
you issue the non-ANSI SQL command.

flushmessage
determines when Adaptive Server returns messages to the user. By
default, messages are stored in a buffer until the query that generated
them is completed or the buffer is filled to capacity. Use set
flushmessage on to return messages to the user immediately, as they are
generated.

forceplan
causes the query optimizer to use the order of the tables in the from
clause of a query as the join order for the query plan. forceplan is
generally used when the optimizer fails to choose a good plan. Forcing
an incorrect plan can have severely bad effects on I/O and performance.
For more information, see the Performance and Tuning Guide.

CHAPTER 7 Commands

661

identity_insert
determines whether explicit inserts into a table’s IDENTITY column
are allowed. (Updates to an IDENTITY column are never allowed.)
This option can be used only with base tables. It cannot be used with
views or set within a trigger.

Setting identity_insert table_name on allows the table owner, Database
Owner, or System Administrator to explicitly insert a value into an
IDENTITY column. Inserting a value into the IDENTITY column
allows you to specify a seed value for the column or to restore a row that
was deleted in error. Unless you have created a unique index on the
IDENTITY column, Adaptive Server does not verify the uniqueness of
the inserted value; you can insert any positive integer.

The table owner, Database Owner, or System Administrator can use the
set identity_insert table_name on command on a table with an
IDENTITY column to enable the manual insertion of a value into an
IDENTITY column. However, only the following users can actually
insert a value into an IDENTITY column, when identity_insert is on:

• Table owner

• Database Owner:

• if granted explicit insert permission on the column by the table
owner

• impersonating the table owner by using the setuser command

Setting identity_insert table_name off restores the default behavior by
prohibiting explicit inserts to IDENTITY columns. At any time, you
can use set identity_insert table_name on for a single database table
within a session.

jtc
toggles join transitive closure. For more information, see the
Performance and Tuning Guide.

language
is the official name of the language that displays system messages. The
language must be installed on Adaptive Server. The default is
us_english.

nocount
controls the display of rows affected by a statement. set nocount on
disables the display of rows; set nocount off reenables the count of rows.

set

662

noexec
compiles each query but does not execute it. noexec is often used with
showplan. After you set noexec on, no subsequent commands are
executed (including other set commands) until you set noexec off.

compiles each subsequent query but does not execute it. set fmtonly on
is often used with showplan for troubleshooting. Set noexec on
immediately after executing a query. After you set noexec on, no
subsequent commands are executed (including other set commands)
until you set noexec off. set noexec can be used in stored procedures.

lock wait
specifies the length of time that a command waits to acquire locks
before aborting and returning an error.

numsecs
specifies the number of seconds a command is to wait to acquire a lock.
Valid values are from 0 to 2147483647, the maximum value for an
integer.

lock nowait
specifies that if a command cannot acquire a lock immediately, it
returns an error and fails. set lock nowait is equivalent to set lock wait 0.

offsets
returns the position of specified keywords (with relation to the
beginning of the query) in Transact-SQL statements. The keyword list
is a comma-separated list that can include any of the following
Transact-SQL constructs: select, from, order, compute, table, procedure,
statement, param, and execute. Adaptive Server returns offsets if there
are no errors. This option is used in Open Client DB-Library only.

parallel_degree
specifies an upper limit for the number of worker processes used in the
parallel execution of a query. This number must be less than or equal to
the number of worker processes per query, as set by the max parallel
degree configuration parameter. The @@parallel_degree global
variable stores the current setting.

parseonly
checks the syntax of each query and returns any error messages without
compiling or executing the query. Do not use parseonly inside a stored
procedure or trigger.

CHAPTER 7 Commands

663

plan
introduces an abstract plan command. For more information, see
Chapter 30, “Creating and Using Abstract Plans,” in the Performance
and Tuning Guide.

dump
enables or disables capturing abstract plans for the current connection.
If a group_name is not specified, the plans are stored in the default
group, ap_stdout.

load
enables or disables loading abstract plans for the current connection. If
a group_name is not specified, the plans are loaded from the default
group, ap_stdin.

group_name
is the name of the abstract plan group to use for loading or storing plans.

exists check
when used with set plan load, stores hash keys for up to 20 queries from
an abstract plan group in a per-user cache.

replace
enables or disables replacing existing abstract plans during plan capture
mode. By default, plan replacement is off.

prefetch
enables or disables large I/Os to the data cache.

process_limit_action
specifies whether Adaptive Server executes parallel queries when an
insufficient number of worker processes is available. Under these
circumstances, when process_limit_action is set to quiet, Adaptive
Server silently adjusts the plan to use a degree of parallelism that does
not exceed the number of available processes. If process_limit_action is
set to warning when an insufficient number of worker processes are
available, Adaptive Server issues a warning message when adjusting
the plan; and if process_limit_action is set to abort, Adaptive Server
aborts the query and issues an explanatory message an insufficient
number of worker processes are available.

procid
returns the ID number of the stored procedure to Open Client
DB-Library/C (not to the user) before sending rows generated by the
stored procedure.

set

664

proxy
allows you to assume the permissions, login name, and suid (server user
ID) of login_name. For login_name, specify a valid login from
master..syslogins, enclosed in quotation marks. To revert to your
original login name and suid, use set proxy with your original
login_name.

Note Without explicit permission, neither the “sa_role” nor the “sso_role”
can issue the set proxy login_name command. To use set proxy login_name,
any user, including the System Security Officer, must have permission
explicitly granted by the System Security Officer.

See “Using proxies” on page 677 for more information.

quoted_identifier
determines whether Adaptive Server recognizes delimited identifiers.
By default, quoted_identifier is off and all identifiers must conform to the
rules for valid identifiers. If you use set quoted_identifier on, you can use
table, view, and column names that begin with a nonalphabetic
character, include characters that would not otherwise be allowed, or
are reserved words, by enclosing the identifiers within double quotation
marks. Delimited identifiers cannot exceed 28 bytes, may not be
recognized by all front-end products, and may produce unexpected
results when used as parameters to system procedures.

When quoted_identifier is on, all character strings enclosed within
double quotes are treated as identifiers. Use single quotes around
character or binary strings.

role
turns the specified role on or off during the current session. When you
log in, all system roles that have been granted to you are turned on. Use
set role role_name off to turn a role off, and set role role_name on to turn
it back on again, as needed. System roles are “sa_role”, “sso_role”, and
“oper_role”. If you are not a user in the current database, and if there is
no “guest” user, you cannot set sa_role off, because there is no server
user ID for you to assume.

role_name
is the name of any user-defined role created by the System Security
Officer. User-defined roles are not turned on by default. To set
user-defined roles to activate at login, the user or the System Security
Officer must use set role on.

CHAPTER 7 Commands

665

with passwd
specifies the password to activate the role. If a user-defined role has an
attached password, you must specify the password to activate the role.

rowcount
causes Adaptive Server to stop processing the query (select, insert,
update, or delete) after the specified number of rows are affected. The
number can be a numeric literal with no decimal point or a local
variable of type integer. To turn this option off, use:

set rowcount 0

scan_parallel_degree
specifies the maximum session-specific degree of parallelism for
hash-based scans (parallel index scans and parallel table scans on
nonpartitioned tables). This number must be less than or equal to the
current value of the max scan parallel degree configuration parameter.
The @@scan_parallel_degree global variable stores the current
setting.

self_recursion
determines whether Adaptive Server allows triggers to cause
themselves to fire again (this is called self recursion). By default,
Adaptive Server does not allow self recursion in triggers. You can turn
this option on only for the duration of a current client session; its effect
is limited by the scope of the trigger that sets it. For example, if the
trigger that sets self_recursion on returns or causes another trigger to
fire, this option reverts to off. This option works only within a trigger
and has no effect on user sessions.

session authorization
is identical to set proxy, with this exception: set session authorization
follows the SQL standard, while set proxy is a Transact-SQL extension.

showplan
generates a description of the processing plan for the query. The results
of showplan are of use in performance diagnostics. showplan does not
print results when it is used inside a stored procedure or trigger. For
parallel queries, showplan output also includes the adjusted query plan
at runtime, if applicable. For more information, see the Performance
and Tuning Guide.

sort_merge
enables or disables the use of sort-merge joins during a session. For
more information, see the Performance and Tuning Guide.

set

666

sort_resources
generates a description of the sorting plan for a create index statement.
The results of sort_resources are of use in determining whether a sort
operation will be done serially or in parallel. When sort_resouces is on,
Adaptive Server prints the sorting plan but does not execute the create
index statement. For more information, see Chapter 24, “Parallel
Sorting,” in the Performance and Tuning Guide.

statistics io
displays the following statistics information for each table referenced in
the statement:

• the number of times the table is accessed (scan count)

• the number of logical reads (pages accessed in memory)

• and the number of physical reads (database device accesses)

For each command, statistics io displays the number of buffers written.

If Adaptive Server has been configured to enforce resource limits,
statistics io also displays the total I/O cost. For more information, see
Chapter 34, “Using the set statistics Commands” in the Performance
and Tuning Guide.

statistics subquerycache
displays the number of cache hits, misses, and the number of rows in the
subquery cache for each subquery.

statistics time
displays the amount of time Adaptive Server used to parse and compile
for each command. For each step of the command, statistics time
displays the amount of time Adaptive Server used to execute the
command. Times are given in milliseconds and timeticks, the exact
value of which is machine-dependent.

statistics simulate
specifies that the optimizer should use simulated statistics to optimize
the query.

strict_dtm_enforcement
determines whether the server propagates transactions to servers that do
not support Adaptive Server transaction coordination services. The
default value is inherited from the value of the strict dtm enforcement
configuration parameter.

CHAPTER 7 Commands

667

string_rtruncation
determines whether Adaptive Server raises a SQLSTATE exception
when an insert or update command truncates a char, unichar, varchar or
univarchar string. If the truncated characters consist only of spaces, no
exception is raised. The default setting, off, does not raise the
SQLSTATE exception, and the character string is silently truncated.

table count
sets the number of tables that Adaptive Server considers at one time
while optimizing a join. The default used depends on the number of
tables in the join:

Valid values are 0 – 8. A value of 0 resets the default behavior. A value
greater than 8 defaults to 8. table count may improve the optimization
of certain join queries, but it increases the compilation cost.

textsize
specifies the maximum size in bytes of text or image type data that is
returned with a select statement. The @@textsize global variable stores
the current setting. To reset textsize to the default size (32K), use:

set textsize 0

The default setting is 32K in isql. Some client software sets other default
values.

transaction isolation level
sets the transaction isolation level for your session. After you set this
option, any current or future transactions operate at that isolation level.

read uncommitted | 0
scans at isolation level 0 do not acquire any locks. Therefore, the result
set of a level 0 scan may change while the scan is in progress. If the scan
position is lost due to changes in the underlying table, a unique index is
required to restart the scan. In the absence of a unique index, the scan
may be aborted.

By default, a unique index is required for a level 0 scan on a table that
does not reside in a read-only database. You can override this
requirement by forcing the Adaptive Server to choose a nonunique
index or a table scan, as follows:

Tables joined Tables considered at a time

2 – 25 4

26 – 37 3

38 – 50 2

set

668

select * from table_name (index table_name)

Activity on the underlying table may cause the scan to be aborted before
completion.

read committed | 1
By default, Adaptive Server’s transaction isolation level is read
committed or 1, which allows shared read locks on data.

repeatable read | 2
prevents nonrepeatable reads.

serializable | 3
specify isolation level 3, Adaptive Server applies a holdlock to all select
and readtext operations in a transaction, which holds the queries’ read
locks until the end of that transaction. If you also set chained mode, that
isolation level remains in effect for any data retrieval or modification
statement that implicitly begins a transaction.

transactional_rpc
controls the handling of remote procedure calls. If this option is set to
on, when a transaction is pending, the RPC is coordinated by Adaptive
Server. If this option is set to off, the remote procedure call is handled
by the Adaptive Server site handler. The default value is inherited from
the value of the enable xact coordination configuration parameter.

Examples Example 1 For each query, returns a description of the processing plan,
but does not execute it:

set showplan, noexec on
go
select * from publishers
go

Example 2 Sets the limit on text or image data returned with a select
statement to 100 bytes:

set textsize 100

Example 3 For each insert, update, delete, and select statement, Adaptive
Server stops processing the query after it affects the first four rows. For
example:

select title_id, price from titles
title_id price
-------- ----------
BU1032 19.99
BU1111 11.95
BU2075 2.99

CHAPTER 7 Commands

669

BU7832 19.99

(4 rows affected)

set rowcount 4

Example 4 Activates character set conversion, setting it to a default based
on the character set the client is using. Adaptive Server also notifies the
client or application when characters cannot be converted to the client’s
character set:

set char_convert on with error

Example 5 The user executing this command now operates within the
server as the login “mary” and Mary’s server user ID:

set proxy "mary"

Example 6 An alternative way of stating example 5:

set session authorization "mary"

Example 7 Returns five rows for each succeeding fetch statement
requested by a client using test_cursor:

set cursor rows 5 for test_cursor

Example 8 Inserts a value of 100 into the IDENTITY column of the
stores_south table, then prohibits further explicit inserts into this column.
Note the use of the syb_identity keyword; Adaptive Server replaces the
keyword with the name of the IDENTITY column:

set identity_insert stores_south on
go
insert stores_south (syb_identity)
values (100)
go
set identity_insert stores_south off
go

Example 9 Implements read-locks with each select statement in a
transaction for the duration of that transaction:

set transaction isolation level 3

Example 10 Deactivates the user’s System Administrator role for the
current session:

set role "sa_role" off

Example 11 Tells Adaptive Server to display a warning message if you
use a Transact-SQL extension:

set

670

set fipsflagger on

Then, if you use nonstandard SQL, like this:

use pubs2
go

Adaptive Server displays:

SQL statement on line number 1 contains Non-ANSI
text. The error is caused due to the use of use
database.

Example 12 Tells Adaptive Server to evaluate NULL-valued operands of
equality (=) and inequality (!=) comparisons and aggregate functions in
compliance with the entry level SQL92 standard:

set ansinull on

When you use set ansinull on, aggregate functions and row aggregates
raise the following SQLSTATE warning when Adaptive Server finds null
values in one or more columns or rows:

Warning - null value eliminated in set function

If the value of either the equality or the inequality operands is NULL, the
comparison’s result is UNKNOWN. For example, the following query
returns no rows in ansinull mode:

select * from titles where price = null

If you use set ansinull off, the same query returns rows in which price is
NULL.

Example 13 Causes Adaptive Server to generate an exception when
truncating a char, unichar, or nchar string:

set string_rtruncation on

If an insert or update statement would truncate a string, Adaptive Server
displays:

string data, right truncation

Example 14 Tells Adaptive Server to treat any character string enclosed
in double quotes as an identifier. The table name “!*&strange_table” and
the column name “emp’s_name” are legal identifier names while
quoted_identifier is on:

set quoted_identifier on
go
create table "!*&strange_table"

CHAPTER 7 Commands

671

("emp’s_name" char(10),
age int)

go
set quoted_identifier off
go

Example 15 Specifies that Component Integration Services handles
outbound RPC requests by default:

set cis_rpc_handling on

Example 16 Specifies that when a transaction is pending, the RPC is
handled by the Component Integration Services access methods rather
than by the Adaptive Server site handler:

set transactional_rpc on

Example 17 Activates the “doctor” role. This command is used by users
to specify the roles they want activated:

set role doctor_role on

Example 18 Activates the “doctor” role when the user enters the
password:

set role doctor_role with passwd "physician" on

Example 19 Deactivates the “doctor” role:

set role doctor_role off

Example 20 Specifies a maximum degree of parallelism of 4 for parallel
index scans and parallel table scans on nonpartitioned tables:

set scan_parallel_degree 4

Example 21 Subsequent commands in the session or stored procedure
wait 5 seconds to acquire locks before generating an error message and
failing:

set lock wait 5

Example 22 Subsequent commands in the session or stored procedure
return an error and fail if they cannot get requested locks immediately:

set lock nowait

Example 23 Subsequent commands in the current session or stored
procedure wait indefinitely long to acquire locks:

set lock wait

set

672

Example 24 All subsequent queries in the session run at the repeatable
reads transaction isolation level:

set transaction isolation level 2

Example 25 Enables capturing abstract plans to the dev_plans group:

set plan dump dev_plans on

Example 26 Enables loading of abstract plans from the dev_plans group
for queries in the current session:

set plan load dev_plans on

Example 27 Assigns this user:

• The client name alison

• The host name money1

• The application name webserver2

set clientname 'alison'
set clienthostname 'money1'
set clientapplname 'webserver2'

Usage • Some set options can be grouped together, as follows:

• parseonly, noexec, prefetch, showplan, rowcount, and nocount
control the way a query is executed. It does not make sense to set
both parseonly and noexec on. The default setting for rowcount is
0 (return all rows); the default for the others is off.

• The statistics options display performance statistics after each
query. The default setting for the statistics options is off. For more
information about noexec, prefetch, showplan and statistics, see
the Performance and Tuning Guide.

• You can update up to 1024 columns in the set clause using
literals, variables, or expressions returned from a subquery.

• offsets and procid are used in DB-Library to interpret results from
Adaptive Server. The default setting for these options is on.

• datefirst, dateformat, and language affect date functions, date
order, and message display. If used within a trigger or stored
procedure, these options do not revert to their previous settings.

CHAPTER 7 Commands

673

In the default language, us_english, datefirst is 1 (Sunday),
dateformat is mdy, and messages are displayed in us_english.
Some language defaults (including us_english) produce
Sunday=1, Monday=2, and so on; others produce Monday=1,
Tuesday=2, and so on.

set language implies that Adaptive Server should use the first
weekday and date format of the language it specifies, but does not
override an explicit set datefirst or set dateformat command
issued earlier in the current session.

• cursor rows and close on endtran affect the way Adaptive Server
handles cursors. The default setting for cursor rows with all
cursors is 1. The default setting for close on endtran is off.

• chained and transaction isolation level allow Adaptive Server to
handle transactions in a way that is compliant with the SQL
standards.

fipsflagger, string_rtruncation, ansinull, ansi_permissions, arithabort, and
arithignore affect aspects of Adaptive Server error handling and
compliance to SQL standards.

Note The arithabort and arithignore options were redefined for version 10.0
and later. If you use these options in your applications, examine them to
verify they are still producing the desired effect.

• You can use the cis_rpc_handling and transactional_rpc options only
when Component Integration Services is enabled.

• When the quoted_identifier option is set to on, you do not need to use
double quotes around an identifier if the syntax of the statement
requires that a quoted string contain an identifier. For example:

set quoted_identifier on
create table "1one" (c1 int)

However, object_id requires a string, so you must include the table
name in quotes to select the information:

select object_id('1one')

896003192

You can include an embedded double quote in a quoted identifier by
doubling the quote:

set

674

create table "embedded""quote" (c1 int)

However, there is no need to double the quote when the statement
syntax requires the object name to be expressed as a string:

select object_id('embedded"quote')

• parallel_degree and scan_parallel_degree limit the degree of
parallelism for queries, if Adaptive Server is configured for
parallelism. When you use these options, you give the optimizer a hint
to limit parallel queries to use fewer worker processes than allowed
by the configuration parameters. Setting these parameters to 0
restores the server-wide configuration values.

If you specify a number that is greater than the numbers allowed by
the configuration parameters, Adaptive Server issues a warning
message and uses the value set by the configuration parameter.

• If you use the set command inside a trigger or stored procedure, most
set options revert to their former settings after the trigger or procedure
executes.

The following options do not revert to their former settings after the
procedure or trigger executes, but remain for the entire Adaptive
Server session or until you explicitly reset them:

• datefirst

• dateformat

• identity_insert

• language

• quoted_identifier

• If you specify more than one set option, the first syntax error causes
all following options to be ignored. However, the options specified
before the error are executed, and the new option values are set.

• If you assign a user a client name, host name, or application name,
these assignments are only active for the current session. You must
reassign these the next time the user logs in. Although the new names
appear in sysprocesses, they are not used for permission checks, and
sp_who still shows the client connection as belonging to the original
login. For more information about setting user processes, see the
System Administration Guide.

CHAPTER 7 Commands

675

• All set options except showplan and char_convert take effect
immediately. showplan takes effect in the following batch. Here are
two examples that use set showplan on:

set showplan on
select * from publishers
go

pub_id pub_name city state
------- --------------------- ----------- ---
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

But:

set showplan on
go
select * from publishers
go
QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SELECT

FROM TABLE
publishers

Nested iteration
Table Scan
Ascending Scan.
Positioning at start of table.

pub_id pub_name city state
------ -------------------- ---------- ----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

set

676

Roles and set options

• When you log in to Adaptive Server, all system-defined roles granted
to you are automatically activated. User-defined roles granted to you
are not automatically activated. To automatically activate
user-defined roles granted to you, use sp_modifylogin. See
sp_modifylogin on page 1051. Use set role role_name on or set role
role_name off to turn roles on and off.

For example, if you have been granted the System Administrator role,
you assume the identity (and user ID) of Database Owner in the
current database. To assume your real user ID, execute this command:

set role "sa_role" off

If you are not a user in the current database, and if there is no “guest”
user, you cannot set sa_role off.

• If the user-defined role you intend to activate has an attached
password, you must specify the password to turn the role on. Thus,
you would enter:

set role "role_name" with passwd "password" on

Distributed transactions, CIS, and set options

• The behavior of the cis rpc handling configuration property and the set
transactional_rpc commands changed with the introduction of ASTC.
In versions earlier than 12.0, enabling cis rpc handling caused all RPCs
to be routed through CIS’s Client-Library connection. As a result,
whenever cis rpc handling was enabled, transactional_rpc behavior
occurred whether or not it had been specifically set. As of Adaptive
Server 12.0, this behavior has changed. If cis rpc handling is enabled
and transactional_rpc is off, RPCs within a transaction are routed
through the site handler. RPCs executed outside a transaction are sent
via CIS’s Client-Library connection.

• When Adaptive Server distributed transaction management services
are enabled, you can place RPCs within transactions. These RPCs are
called transactional RPCs. A transactional RPC is an RPC whose
work can be included in the context of a current transaction. This
remote unit of work can be committed or rolled back along with the
work performed by the local transaction.

CHAPTER 7 Commands

677

To use transactional RPCs, enable CIS and distributed transaction
management with sp_configure, then issue the set transactional_rpc
command. When set transactional_rpc is on and a transaction is
pending, the Adaptive Server (as opposed to the Adaptive Server site
handler) coordinates the RPC.

The set transactional_rpc command default is off. The set
cis_rpc_handling command overrides the set transactional_rpc
command. If you set cis_rpc_handling on, all outbound RPCs are
handled by Component Integration Services.

• See the Component Integration Services User’s Guide for a
discussion of using set transactional_rpc, set cis_rpc_handling, and
sp_configure.

Using proxies

Note Without explicit permission, neither the “sa_role” nor the “sso_role”
can issue the set proxy login_name command. To use set proxy login_name,
any user, including the System Security Officer, must have permission
explicitly granted by the System Security Officer.

• Before you can use the set proxy or set session authorization
command, a System Security Officer must grant permission to
execute set proxy or set session authorization from the master
database.

• Executing set proxy or set session authorization with the original
login_name reestablishes your previous identity.

• You cannot execute set proxy or set session authorization from within
a transaction.

• Adaptive Server permits only one level of login identity change.
Therefore, after you use set proxy or set session authorization to
change identity, you must return to your original identity before
changing it again. For example, assume that your login name is
“ralph”. To create a table as “mary”, create a view as “joe”, then return
to your own login identity. Use the following statements:

set proxy "mary"
create table mary_sales
(stor_id char(4),
ord_num varchar(20),
date datetime)

grant select on mary_sales to public

set

678

set proxy "ralph"
set proxy "joe"

create view joes_view (publisher, city,
state)

as select stor_id, ord_num, date
from mary_sales

set proxy "ralph"

Using lock wait

• By default, an Adaptive Server task that cannot immediately acquire
a lock waits until incompatible locks are released, then continues
processing. This is equivalent to set lock wait with no value specified
in the numsecs parameter.

• You can set a server-wide lock wait period by using sp_configure with
the lock wait period option.

• lock wait period, with the session-level setting set lock wait nnn, is only
applicable for user-defined tables. These settings have no influence
on system tables.

• A lock wait period defined at the session level or in a stored procedure
with the set lock command overrides a server-level lock-wait period.

• If set lock wait is used by itself, with no value for numsecs, all
subsequent commands in the current session wait indefinitely to
acquire requested locks.

• sp_sysmon reports the number of times that tasks waiting for a lock
could not acquire the lock within the waiting period.

Repeatable-reads transaction isolation level

• The repeatable-reads isolation level, also known as transaction
isolation level 2, holds locks on all pages read by the statement until
the transaction completes.

• A nonrepeatable read occurs when one transaction reads rows from a
table and a second transaction can modify the same rows and commit
the changes before the first transaction completes. If the first
transaction rereads the rows, they now have different values, so the
initial read is not repeatable. Repeatable reads hold shared locks for
the duration of a transaction, blocking transactions that update the
locked rows or rows on the locked pages.

CHAPTER 7 Commands

679

Using simulated statistics

• You can load simulated statistics into a database using the simulate
mode of the optdiag utility program. If set statistics simulate on has
been issued in a session, queries are optimized using simulated
statistics, rather than the actual statistics for a table.

Global variables affected by set options

• Table 7-34 lists the global variables that contain information about the
session options controlled by the set command.

Table 7-34: Global variables containing session options

Using fipsflagger with Java in the database

• When fipsflagger is on, Adaptive Server displays a warning message
when these extensions are used:

• The installjava utility

• The remove java command

• Column and variable declarations that reference Java classes as
datatypes

• Statements that use Java-SQL expressions for member references

• The status of fipsflagger does not affect arithmetic expressions
performed by Java methods.

Global variable Description

@@char_convert Contains 0 if character set conversion not in effect. Contains 1 if character set
conversion is in effect.

@@isolation Contains the current isolation level of the Transact-SQL program. @@isolation takes
the value of the active level (0, 1, or 3).

@@options Contains a hexadecimal representation of the session’s set options.

@@parallel_degree Contains the current maximum parallel degree setting.

@@rowcount Contains the number of rows affected by the last query. @@rowcount is set to 0 by any
command that does not return rows, such as an if, update, or delete statement. With
cursors, @@rowcount represents the cumulative number of rows returned from the
cursor result set to the client, up to the last fetch request.

@@rowcount is updated even when nocount is on.

@@scan_parallel_degree Contains the current maximum parallel degree setting for nonclustered index scans.

@@textsize Contains the limit on the number of bytes of text or image data a select returns. Default
limit is 32K bytes for isql; the default depends on the client software. Can be changed
for a session with set textsize.

@@tranchained Contains the current transaction mode of the Transact-SQL program. @@tranchained
returns 0 for unchained or 1 for chained.

set

680

• For more information about Java in the database, see Java in Adaptive
Server Enterprise.

Standards SQL92 – Compliance level: Transact-SQL extension.

The SQL92 standard specifies behavior that differs from Transact-SQL
behavior in earlier Adaptive Server versions. Compliant behavior is
enabled by default for all Embedded-SQL precompiler applications. Other
applications needing to match this standard of behavior can use the set
options listed in Table 7-35.

Table 7-35: Options to set for entry level SQL92 compliance

Permissions In general, set permission defaults to all users and no special permissions
are required to use it. Exceptions include set role, set proxy, and set session
authorization.

To use set role, a System Administrator or System Security Officer must
have granted you the role. If you gain entry to a database only because you
have a certain role, you cannot turn that role off while you are using the
database. For example, if you are not normally authorized to use a
database info_plan, but you use it as a System Administrator, Adaptive
Server returns an error message if you try to set sa_role off while you are
still in info_plan.

To use set proxy or set session authorization, you must have been granted
permission by a System Security Officer.

See also Commands create trigger, fetch, insert, grant, lock table, revoke

Functions convert

Utilities isql, optdiag

Option Setting

ansi_permissions on

ansinull on

arithabort off

arithabort numeric_truncation on

arithignore off

chained on

close on endtran on

fipsflagger on

quoted_identifier on

string_rtruncation on

transaction isolation level 3

CHAPTER 7 Commands

681

setuser
Description Allows a Database Owner to impersonate another user.

Syntax setuser ["user_name"]

Examples The Database Owner temporarily adopts Mary’s identity in the database in
order to grant Joe permissions on authors, a table owned by Mary:

setuser "mary"
go
grant select on authors to joe
setuser
go

Usage • The Database Owner uses setuser to adopt the identity of another user
in order to use another user’s database object, to grant permissions, to
create an object, or for some other reason.

• When the Database Owner uses the setuser command, Adaptive
Server checks the permissions of the user being impersonated instead
of the permissions of the Database Owner. The user being
impersonated must be listed in the sysusers table of the database.

• setuser affects permissions only in the local database. It does not
affect remote procedure calls or accessing objects in other databases.

• The setuser command remains in effect until another setuser
command is given or until the current database is changed with the
use command.

• Executing the setuser command with no user name reestablishes the
Database Owner’s original identity.

• System Administrators can use setuser to create objects that will be
owned by another user. However, since a System Administrator
operates outside the permissions system, she or he cannot use setuser
to acquire another user’s permissions.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions setuser permission defaults to the Database Owner and is not transferable.

See also Commands grant, revoke, use

shutdown

682

shutdown
Description Shuts down the Adaptive Server from which the command is issued, its local

Backup Server, or a remote Backup Server. This command can be issued only
by a System Administrator.

Syntax shutdown [srvname] [with {wait | nowait}]

Parameters srvname
 is the logical name by which the Backup Server is known in the Adaptive
Server’s sysservers system table. This parameter is not required when
shutting down the local Adaptive Server.

with wait
is the default. This shuts down the Adaptive Server or Backup Server
gracefully.

with nowait
shuts down the Adaptive Server or Backup Server immediately, without
waiting for currently executing statements to finish.

Note Use of shutdown with nowait can lead to gaps in IDENTITY column
values.

Examples Example 1 Shuts down the Adaptive Server from which the shutdown
command is issued:

shutdown

Example 2 Shuts down the Adaptive Server immediately:

shutdown with nowait

Example 3 Shuts down the local Backup Server:

shutdown SYB_BACKUP

Example 4 Shuts down the remote Backup Server REM_BACKUP:

shutdown REM_BACKUP

Usage • Unless you use the nowait option, shutdown attempts to bring Adaptive
Server down gracefully by:

• Disabling logins (except for the System Administrator)

• Performing a checkpoint in every database

• Waiting for currently executing SQL statements or stored procedures
to finish

CHAPTER 7 Commands

683

Shutting down the server without the nowait option minimizes the
amount of work that must be done by the automatic recovery process.

• Unless you use the nowait option, shutdown backup_server waits for
active dumps and/or loads to complete. Once you issue a shutdown
command to a Backup Server, no new dumps or loads that use this
Backup Server can start.

• Use shutdown with nowait only in extreme circumstances. In Adaptive
Server, issue a checkpoint command before executing a shutdown with
nowait.

• You can halt only the local Adaptive Server with shutdown; you
cannot halt a remote Adaptive Server.

• You can halt a Backup Server only if:

• It is listed in your sysservers table. Use sp_addserver to add
entries to sysservers.

• It is listed in the interfaces file for the Adaptive Server where you
execute the command.

• Use sp_helpserver to determine the name by which a Backup Server
is known to the Adaptive Server. Specify the Backup Server’s name—
not its network_name—as the srvname parameter. For example:

sp_helpserver
name network_name status id
---------- ------------- ------------------------------------ --
REM_BACKUP WHALE_BACKUP timeouts, no net password encryption 3
SYB_BACKUP SLUG_BACKUP timeouts, net password encryption 1
eel eel 0
whale whale timeouts, no net password encryption 2

To shut down the remote Backup Server named WHALE_BACKUP,
use:

shutdown REM_BACKUP

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions shutdown permission defaults to System Administrators and is not
transferable.

See also Commands alter database

System procedures sp_addserver, sp_helpserver

truncate table

684

truncate table
Description Removes all rows from a table.

Syntax truncate table [[database.]owner.]table_name

Parameters table_name
is the name of the table to truncate. Specify the database name if the
table is in another database, and specify the owner’s name if more than
one table of that name exists in the database. The default value for
owner is the current user, and the default value for database is the
current database.

Examples Removes all data from the authors table:

truncate table authors

Usage • truncate table deletes all rows from a table. The table structure and all
the indexes continue to exist until you issue a drop table command.
The rules, defaults, and constraints that are bound to the columns
remain bound, and triggers remain in effect.

• Adaptive Server no longer uses distribution pages; statistical
information is now stored in the tables sysstatistics and systabstats.

During truncate table, statistical information is no longer deleted
(deallocated), so you need not run update statistics after adding data.

truncate table does not delete statistical information for the table.

• truncate table is equivalent to—but faster than—a delete command
without a where clause. delete removes rows one at a time and logs
each deleted row as a transaction; truncate table deallocates whole
data pages and makes fewer log entries. Both delete and truncate table
reclaim the space occupied by the data and its associated indexes.

• Because the deleted rows are not logged individually, truncate table
cannot fire a trigger.

• You cannot use truncate table if another table has rows that reference
it. Delete the rows from the foreign table, or truncate the foreign table,
then truncate the primary table.

• You cannot use the truncate table command on a partitioned table.
Unpartition the table with the unpartition clause of the alter table
command before issuing the truncate table command.

CHAPTER 7 Commands

685

You can use the delete command without a where clause to remove all
rows from a partitioned table without first unpartitioning it. This
method is generally slower than truncate table, since it deletes one row
at a time and logs each delete operation.

Standards SQL92 – Compliance level: Entry-level compliant.

Permissions truncate table permission defaults to the table owner and is not
transferable. To truncate a system audit table (sysaudits_01, sysaudits_02,
sysaudits_03, and so on, through sysaudits_08), you must be a System
Security Officer.

See also Commands create trigger, delete, drop table

union operator

686

union operator
Description Returns a single result set that combines the results of two or more queries.

Duplicate rows are eliminated from the result set unless the all keyword is
specified.

Syntax select select_list [into clause]
[from clause] [where clause]
[group by clause] [having clause]

[union [all]
select select_list

[from clause] [where clause]
[group by clause] [having clause]]...

[order by clause]
[compute clause]

Parameters union
creates the union of data specified by two select statements.

all
includes all rows in the results; duplicates are not removed.

into
creates a new table based on the columns specified in the select list and
the rows chosen in the where clause. The first query in the union
operation is the only one that can contain an into clause.

Examples Example 1 The result set includes the contents of the stor_id and
stor_name columns of both the sales and sales_east tables:

select stor_id, stor_name from sales
union
select stor_id, stor_name from sales_east

Example 2 The into clause in the first query specifies that the results table
holds the final result set of the union of the specified columns of the
publishers, stores, and stores_east tables:

select pub_id, pub_name, city into results
from publishers
union
select stor_id, stor_name, city from stores
union
select stor_id, stor_name, city from stores_east

Example 3 First, the union of the specified columns in the sales and
sales_east tables is generated. Then, the union of that result with publishers
is generated. Finally, the union of the second result and authors is
generated:

CHAPTER 7 Commands

687

select au_lname, city, state from authors
union
((select stor_name, city, state from sales
union
select stor_name, city, state from sales_east)
union
select pub_name, city, state from publishers)

Usage • The total number of tables that can appear on all sides of a union query
is 256.

• You can use union in select statements, for example:

create view
select * from Jan1998Sales
union all
select * from Feb1998Sales
union all

• The order by and compute clauses are allowed only at the end of the
union statement to define the order of the final results or to compute
summary values.

• The group by and having clauses can be used only within individual
queries and cannot be used to affect the final result set.

• The default evaluation order of a SQL statement containing union
operators is left-to-right.

• Since union is a binary operation, parentheses must be added to an
expression involving more than two queries to specify evaluation
order.

• The first query in a union statement may contain an into clause that
creates a table to hold the final result set. The into statement must be
in the first query, or you receive an error message (see Example 2).

• The union operator can appear within an insert...select statement. For
example:

insert into sales.overall
select * from sales
union
select * from sales_east

• All select lists in a SQL statement must have the same number of
expressions (column names, arithmetic expressions, aggregate
functions, and so on). For example, the following statement is invalid
because the first select list contains more expressions than the second:

union operator

688

/* Example of invalid command--shows imbalance */
/* in select list items */
select au_id, title_id, au_ord from titleauthor
union
select stor_id, date from sales

• Corresponding columns in the select lists of union statements must
occur in the same order, because union compares the columns
one-to-one in the order given in the individual queries.

• The column names in the table resulting from a union are taken from
the first individual query in the union statement. To define a new
column heading for the result set, do it in the first query. Also, to refer
to a column in the result set by a new name (for example, in an order
by statement), refer to it by that name in the first select statement. For
example, the following query is correct:

select Cities = city from stores
union
select city from stores_east
order by Cities

• The descriptions of the columns that are part of a union operation do
not have to be identical. Table 7-36 lists the rules for the datatypes and
the corresponding column in the result table.

Table 7-36: Resulting datatypes in union operations

Datatype of columns in union operation Datatype of corresponding column in result table

Not datatype-compatible (data conversion is not
handled implicitly by Adaptive Server)

Error returned by Adaptive Server.

Both are fixed-length character with lengths L1
and L2

Fixed-length character with length equal to the greater of L1
and L2.

Both are fixed-length binary with lengths L1 and
L2

Fixed-length binary with length equal to the greater of L1 and
L2.

Either or both are variable-length character Variable-length character with length equal to the maximum of
the lengths specified for the column in the union.

Either or both are variable-length binary Variable-length binary with length equal to the maximum of
the lengths specified for the columns in the union.

Both are numeric datatypes (for example, smallint,
int, float, money)

A datatype equal to the maximum precision of the two
columns. For example, if a column in table A is of type int and
the corresponding column in table B is of type float, then the
datatype of the corresponding column of the result table is float,
because float is more precise than int.

Both column descriptions specify NOT NULL Specifies NOT NULL.

CHAPTER 7 Commands

689

Restrictions

• You cannot use the union operator in a subquery.

• You cannot use the union operator with the for browse clause.

• You cannot use the union operator on queries that select text or image
data.

Standards SQL92 – Compliance level: Entry-level compliant

The following are Transact-SQL extensions:

• The use of union in the select clause of an insert statement

• Specifying new column headings in the order by clause of a select
statement when the union operator is present in the select statement

See also Commands compute clause, declare, group by and having clauses, order
by clause, select, where clause

Functions convert

update

690

update
Description Changes data in existing rows, either by adding data or by modifying

existing data.

Syntax update [[database.]owner.]{table_name | view_name}
set [[[database.]owner.]{table_name.|view_name.}]

column_name1 =
{expression1 | NULL | (select_statement)} |

variable_name1 =
{expression1 | NULL | (select_statement)}

[, column_name2 =
{expression2 | NULL | (select_statement)}]... |

[, variable_name2 =
{expression2 | NULL | (select_statement)}]...

[from [[database.]owner.]{view_name [readpast]|
table_name [readpast]

[(index {index_name | table_name}
[prefetch size][lru|mru])]}

[,[[database.]owner.]{view_name [readpast]|
table_name [readpast]

[(index {index_name | table_name }
[prefetch size][lru|mru])]}]

...]
[where search_conditions]
[plan "abstract plan"]

update [[database.]owner.]{table_name | view_name}
set [[[database.]owner.]{table_name.|view_name.}]

column_name1 =
{expression1 | NULL | (select_statement)} |

variable_name1 =
{expression1 | NULL | (select_statement)}

[, column_name2 =
{expression2 | NULL | (select_statement)}]... |

[, variable_name2 =
{expression2 | NULL | (select_statement)}]...

where current of cursor_name

Parameters table_name | view_name
is the name of the table or view to update. Specify the database name if
the table or view is in another database, and specify the owner’s name
if more than one table or view of that name exists in the database. The
default value for owner is the current user, and the default value for
database is the current database.

CHAPTER 7 Commands

691

set
specifies the column name or variable name and assigns the new value.
The value can be an expression or a NULL. When more than one
column name or variable name and value are listed, they must be
separated by commas.

from
uses data from other tables or views to modify rows in the table or view
you are updating.

readpast
causes the update command to modify unlocked rows only on
datarows-locked tables, or rows on unlocked pages, for
datapages-locked tables. update...readpast silently skips locked rows or
pages rather than waiting for the locks to be released.

where
is a standard where clause (see where clause).

index {index_name | table_name}
 index_name specifies the index to be used to access table_name. You
cannot use this option when you update a view.

update

692

prefetch size
specifies the I/O size, in kilobytes, for tables bound to caches with large
I/Os configured. You cannot use this option when you update a view.
sp_helpcache shows the valid sizes for the cache to which an object is
bound or for the default cache. To configure the data cache size, use
sp_cacheconfigure.

When using prefetch and designating the prefetch size (size), the
minimum is 2K and any power of two on the logical page size up to
16K. prefetch size options in kilobytes are:

The prefetch size specified in the query is only a suggestion. To allow
the size specification configure the data cache at that size. If you do not
configure the data cache to a specific size, the default prefetch size is
used.

If Component Integration Services is enabled, you cannot use prefetch
for remote servers.

lru | mru
specifies the buffer replacement strategy to use for the table. Use lru to
force the optimizer to read the table into the cache on the MRU/LRU
(most recently used/least recently used) chain. Use mru to discard the
buffer from cache and replace it with the next buffer for the table. You
cannot use this option when you update a view.

where current of
causes Adaptive Server to update the row of the table or view indicated
by the current cursor position for cursor_name.

index_name
is the name of the index to be updated. If an index name is not specified,
the distribution statistics for all the indexes in the specified table are
updated.

Logical page size Prefetch size options

2 2, 4, 8 16

4 4, 8, 16, 32

8 8, 16, 32, 64

16 16, 32, 64, 128

CHAPTER 7 Commands

693

plan "abstract plan"
specifies the abstract plan to use to optimize the query. It can be a full
or partial plan, specified in the abstract plan language. See Chapter 30,
“Creating and Using Abstract Plans,” in the Performance and Tuning
Guide for more information.

Examples Example 1 All the McBaddens in the authors table are now MacBaddens:

update authors
set au_lname = "MacBadden"
where au_lname = "McBadden"

Example 2 Modifies the total_sales column to reflect the most recent sales
recorded in the sales and salesdetail tables. This assumes that only one set
of sales is recorded for a given title on a given date, and that updates are
current:

update titles
set total_sales = total_sales + qty
from titles, salesdetail, sales
where titles.title_id = salesdetail.title_id

and salesdetail.stor_id = sales.stor_id
and salesdetail.ord_num = sales.ord_num
and sales.date in

(select max(sales.date) from sales)

Example 3 Changes the price of the book in the titles table that is currently
pointed to by title_crsr to $24.95:

update titles
set price = 24.95
where current of title_crsr

Example 4 Finds the row for which the IDENTITY column equals 4 and
changes the price of the book to $18.95. Adaptive Server replaces the
syb_identity keyword with the name of the IDENTITY column:

update titles
set price = 18.95
where syb_identity = 4

Example 5 Updates the titles table using a declared variable:

declare @x money
select @x = 0
update titles

set total_sales = total_sales + 1,
@x = price
where title_id = "BU1032"

update

694

Example 6 Updates rows on which another task does not hold a lock:

update salesdetail set discount = 40
from salesdetail readpast

where title_id like "BU1032"
and qty > 100

Usage • Use update to change values in rows that have already been inserted.
Use insert to add new rows.

• You can refer to as many as 15 tables in an update statement.

• update interacts with the ignore_dup_key, ignore_dup_row, and
allow_dup_row options set with the create index command. See create
index for more information.

• You can define a trigger that takes a specified action when an update
command is issued on a specified table or on a specified column in a
table.

Using variables in update statements

• You can assign variables in the set clause of an update statement,
similarly to setting them in a select statement.

• Before you use a variable in an update statement, you must declare the
variable using declare, and initialize it with select, as shown in
Example 5.

• Variable assignment occurs for every qualified row in the update.

• When a variable is referenced on the right side of an assignment in an
update statement, the current value of the variable changes as each
row is updated. The current value is the value of the variable just
before the update of the current row. The following example shows
how the current value changes as each row is updated.

Suppose you have the following statement:

declare @x int
select @x=0
update table1

set C1=C1+@x, @x=@x+1
where column2=xyz

The value of C1 before the update begins is 1. The following table
shows how the current value of the @x variable changes after each
update:

CHAPTER 7 Commands

695

• When multiple variable assignments are given in the same update
statement, the values assigned to the variables can depend on their
order in the assignment list, but they might not always do so. For best
results, do not rely on placement to determine the assigned values.

• If multiple rows are returned and a nonaggregating assignment of a
column to a variable occurs, then the final value of the variable is the
last row processed; therefore, it might not be useful.

• An update statement that assigns values to variables need not set the
value of any qualified row.

• If no rows qualify for the update, the variable is not assigned.

• A variable that is assigned a value in the update statement cannot be
referenced in subquery in that same update statement, regardless of
where the subquery appears in that update statement.

• A variable that is assigned a value in the update statement cannot be
referenced in a where or having clause in that same update statement.

• In an update driven by a join, a variable that is assigned a value in the
right hand side of the update statement uses columns from the table
that is not being updated. The result value depends on the join order
chosen for the update and the number of rows that qualify from the
joined table.

• Updating a variable is not affected by a rollback of the update
statement because the value of the updated variable is not stored on
disk.

Using update with transactions

• When you set chained transaction mode on, and no transaction is
currently active, Adaptive Server implicitly begins a transaction with
the update statement. To complete the update, you must either commit
the transaction or rollback the changes. For example:

update stores set city = 'Concord'
where stor_id = '7066'

Row
Initial C1
value

Initial @x
value

Calculations:
C1+@x= updated C1

Updated
C1 value

Calculations:
@x+1= updated @x

Updates
value

A 1 0 1+0 1 0+1 1

B 1 1 1+1 2 1+1 2

C 2 2 2+2 4 2+1 3

D 4 3 4+3 7 3+1 4

update

696

if exists (select t1.city, t2.city
from stores t1, stores t2
where t1.city = t2.city
and t1.state = t2.state
and t1.stor_id < t2.stor_id)

rollback transaction
else

commit transaction

This batch begins a transaction (using chained transaction mode) and
updates a row in the stores table. If it updates a row containing the
same city and state information as another store in the table, it rolls
back the changes to the stores table and ends the transaction.
Otherwise, it commits the updates and ends the transaction.

• Adaptive Server does not prevent you from issuing an update
statement that updates a single row more than once in a given
transaction. For example, both of these updates affect the price of the
book with title_id MC2022, since its type id “mod_cook”:

begin transaction
update titles
set price = price + $10
where title_id = "MC2222"
update titles
set price = price * 1.1
where type = "mod_cook"

Using joins in updates

• Performing joins in the from clause of an update is an Transact-SQL
extension to the ANSI standard SQL syntax for updates. Because of
the way an update statement is processed, updates from a single
statement do not accumulate. That is, if an update statement contains
a join, and the other table in the join has more the one matching value
in the join column, the second update is not based on the new values
from the first update but on the original values. The results are
unpredictable, since they depend on the order of processing. Consider
this join:

update titles set total_sales = total_sales + qty
from titles t, salesdetail sd
where t.title_id = sd.title_id

CHAPTER 7 Commands

697

The total_sales value is updated only once for each title_id in titles, for
one of the matching rows in salesdetail. Depending on the join order
for the query, on table partitioning, or on the indexes available, the
results can vary each time. But each time, only a single value from
salesdetail is added to the total_sales value.

If the intention is to return the sum of the values that match the join
column, the following query, using a subquery, returns the correct
result:

update titles set total_sales = total_sales +
(select isnull(sum(qty),0)

from salesdetail sd
where t.title_id = sd.title_id)

from titles t

Using update with character data

• Updating variable-length character data or text columns with the
empty string ("") inserts a single space. Fixed-length character
columns are padded to the defined length.

• All trailing spaces are removed from variable-length column data,
except when a string contains only spaces. Strings that contain only
spaces are truncated to a single space. Strings longer than the
specified length of a char, nchar, unichar, varchar, univarchar, or
nvarchar column are silently truncated unless you set
string_rtruncation on.

• An update to a text column initializes the text column, assigns it a
valid text pointer, and allocates at least one text page.

Using update with cursors

• To update a row using a cursor, define the cursor with declare cursor,
then open it. The cursor name cannot be a Transact-SQL parameter or
a local variable. The cursor must be updatable, or Adaptive Server
returns an error. Any update to the cursor result set also affects the
base table row from which the cursor row is derived.

• The table_name or view_name specified with an update...where
current of must be the table or view specified in the first from clause of
the select statement that defines the cursor. If that from clause
references more than one table or view (using a join), you can specify
only the table or view being updated.

update

698

After the update, the cursor position remains unchanged. You can
continue to update the row at that cursor position, provided another
SQL statement does not move the position of that cursor.

• Adaptive Server allows you to update columns that are not specified
in the list of columns of the cursor’s select_statement, but that are part
of the tables specified in the select_statement. However, when you
specify a column_name_list with for update, and you are declaring the
cursor, you can update only those specific columns.

Updating IDENTITY columns

• You cannot update a column with the IDENTITY property, either
through its base table or through a view. To determine whether a
column was defined with the IDENTITY property, use sp_help on the
column’s base table.

• An IDENTITY column selected into a result table observes the
following rules with regard to inheritance of the IDENTITY property:

• If an IDENTITY column is selected more than once, it is defined
as NOT NULL in the new table. It does not inherit the
IDENTITY property.

• If an IDENTITY column is selected as part of an expression, the
resulting column does not inherit the IDENTITY property. It is
created as NULL if any column in the expression allows nulls;
otherwise, it is NOT NULL.

• If the select statement contains a group by clause or aggregate
function, the resulting column does not inherit the IDENTITY
property. Columns that include an aggregate of the IDENTITY
column are created NULL; others are created NOT NULL.

• An IDENTITY column that is selected into a table with a union
or join does not retain the IDENTITY property. If the table
contains the union of the IDENTITY column and a NULL
column, the new column is defined as NULL. Otherwise, it is
defined as NOT NULL.

Updating data through views

• You cannot update views defined with the distinct clause.

CHAPTER 7 Commands

699

• If a view is created with check option, each row that is updated through
the view must remain visible through the view. For example, the
stores_cal view includes all rows of the stores table where state has a
value of “CA”. The with check option clause checks each update
statement against the view’s selection criteria:

create view stores_cal
as select * from stores
where state = "CA"
with check option

An update statement such as this one fails if it changes state to a value
other than “CA”:

update stores_cal
set state = "WA"
where store_id = "7066"

• If a view is created with check option, all views derived from the base
view must satisfy the view’s selection criteria. Each row updated
through a derived view must remain visible through the base view.

Consider the view stores_cal30, which is derived from stores_cal. The
new view includes information about stores in California with
payment terms of “Net 30”:

create view stores_cal30
as select * from stores_cal
where payterms = "Net 30"

Because stores_cal was created with check option, all rows updated
through stores_cal30 must remain visible through stores_cal. Any row
that changes state to a value other than “CA” is rejected.

Notice that stores_cal30 does not have a with check option clause of its
own. Therefore, you can update a row with a payterms value other
than “Net 30” through stores_cal30. For example, the following
update statement would be successful, even though the row would no
longer be visible through stores_cal30:

update stores_cal30
set payterms = "Net 60"
where stor_id = "7067"

• You cannot update a row through a view that joins columns from two
or more tables, unless both of the following conditions are true:

• The view has no with check option clause, and

• All columns being updated belong to the same base table.

update

700

• update statements are allowed on join views that contain a with check
option clause. The update fails if any of the affected columns appear
in the where clause in an expression that includes columns from more
than one table.

• If you update a row through a join view, all affected columns must
belong to the same base table.

Using index, prefetch, or lru | mru

• index, prefetch, and lru | mru override the choices made by the
Adaptive Server optimizer. Use them with caution, and always check
the performance impact with set statistics io on. For more information
about using these options, see the Performance and Tuning Guide.

Using readpast

• The readpast option applies only to data-only-locked tables. readpast
is ignored if it is specified for an allpages-locked table.

• The readpast option is incompatible with the holdlock option. If both
are specified in the same select command, an error is generated and
the command terminates.

• If the session-wide isolation level is 3, the readpast option is ignored.

• If the transaction isolation level for a session is 0, update commands
using readpast do not issue warning messages. For datapages-locked
tables, these commands modify all rows on all pages that are not
locked with incompatible locks. For datarows-locked tables, they
affect all rows that are not locked with incompatible locks.

• If an update command with the readpast option applies to two or more
text columns, and the first text column checked has an incompatible
lock on it, readpast locking skips the row. If the column does not have
an incompatible lock, the command acquires a lock and modifies the
column. Then, if any subsequent text column in the row has an
incompatible lock on it, the command blocks until it can obtain a lock
and modify the column.

• For more information on readpast locking, see the Performance and
Tuning Guide.

Standards SQL92 – Compliance level: Entry-level compliant.

The following are Transact-SQL extensions:

CHAPTER 7 Commands

701

• The use of a from clause or a qualified table or column name are
Transact-SQL extensions detected by the FIPS flagger. Updates
through a join view or a view of which the target list contains an
expression are Transact-SQL extensions that cannot be detected until
run time and are not flagged by the FIPS flagger.

• The use of variables.

• readpast

Permissions update permission defaults to the table or view owner, who can transfer it
to other users.

If set ansi_permissions is on, you need update permission on the table
being updated and, in addition, you must have select permission on all
columns appearing in the where clause and on all columns following the
set clause. By default, ansi_permissions is off.

See also Commands – alter table, create default, create index, create rule, create
trigger, insert, where clause

Functions – ptn_data_pgs

System procedures – sp_bindefault, sp_bindrule, sp_help,
sp_helpartition, sp_helpindex, sp_unbindefault, sp_unbindrule

update all statistics

702

update all statistics
Description Updates all statistics information for a given table.

Syntax update all statistics table_name

Parameters table_name
is the name of the table for which statistics are being updated.

Examples Updates index and partition statistics for the salesdetail table:

update all statistics salesdetail

Usage • update all statistics updates all statistics information for a given table.
Adaptive Server keeps statistics about the distribution of pages within
a table, and uses these statistics when considering whether or not to
use a parallel scan in query processing on partitioned tables, and
which index(es) to use in query processing. The optimization of your
queries depends on the accuracy of the stored statistics.

• update all statistics updates statistics for all columns in a table and
updates partition statistics, if the table is partitioned.

• If the table is not partitioned, update all statistics runs only update
statistics on the table.

• If the table is partitioned and has no indexes, update all statistics runs
update partition statistics on the table. If the table is partitioned and has
indexes, update all statistics runs update statistics and update partition
statistics on the table.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions update all statistics permission defaults to the table owner and is not
transferrable.

See also Commands – update statistics, update partition statistics

CHAPTER 7 Commands

703

update partition statistics
Description Updates information about the number of pages in each partition for a

partitioned table.

Syntax update partition statistics table_name [partition_number]

Parameters table_name
is the name of a partitioned table.

partition_number
is the number of the partition for which you are updating information.
If you do not specify a partition number, update partition statistics
updates the number of data pages in all partitions in the specified table.

Usage • Adaptive Server keeps statistics about the distribution of pages within
a partitioned table and uses these statistics when considering whether
to use a parallel scan in query processing. The optimization of your
queries depends on the accuracy of the stored statistics. If Adaptive
Server crashes, the distribution information could be inaccurate.

To see if the distribution information is accurate, use the data_pgs
function to determine the number of pages in the table, as follows:

select data_pgs(sysindexes.id, doampg)
from sysindexes
where sysindexes.id = object_id("table_name")

Then, use sp_helpartition on the table and add up the numbers in the
“ptn_data_pgs” column of the output. The sum of the total of the
number of pages that sp_helpartition reports should be slightly greater
than the number returned by data_pgs because sp_helpartition’s page
count includes OAM pages.

If the distribution information is inaccurate, run update partition
statistics on the table. While updating the distribution information,
update partition statistics locks the OAM page and the control page of
the partition.

• When you run update partition statistics on a table that contains data,
or you create an index on a table that contains data, the controlpage
column in syspartitions is updated to point to the control page for the
partition.

• update partition statistics updates control page values used to estimate
the number of pages in a table. These statistics are used by
sp_helpartition.

Standards SQL92 – Compliance level: Transact-SQL extension.

update partition statistics

704

Permissions update partition statistics permission defaults to the table owner and is not
transferable.

See also Commands – alter table, update all statistics

Functions – ptn_data_pgs

System procedures – sp_helpartition

CHAPTER 7 Commands

705

update statistics
Description Updates information about the distribution of key values in specified

indexes or for specified columns, for all columns in an index or for all
columns in a table.

Syntax update statistics table_name
[[index_name] | [(column_list)]]
[using step values]
[with consumers = consumers]

update index statistics table_name [index_name]
[using step values]
[with consumers = consumers]

Parameters table_name
When used with update statistics, table_name is the name of the table
with which the index is associated. table_name is required, since
Transact-SQL does not require index names to be unique in a database.

index_name
is the name of the index to be updated. If an index name is not specified,
the distribution statistics for all the indexes in the specified table are
updated.

column_list
is a comma-separated list of columns.

using step values
specifies the number of histogram steps. The default value is 20, for
columns where no statistics exist. If statistics for a column already exist
in sysstatistics, the default value is the current number of steps.

with consumers = consumers
specifies the number of consumer processes to be used for a sort when
column_list is provided and parallel query processing is enabled.

index
specifies that statistics for all columns in an index are to be updated.

Examples Example 1 Generates statistics for the price column of the titles table:

update statistics titles (price) using 40 values

Example 2 Generates statistics for all columns in all indexes of the
authors table:

update index statistics authors

Example 3 Generates statistics for all columns in the au_names_ix index
of the authors table:

update statistics

706

update index statistics authors au_names_ix

Usage • Adaptive Server keeps statistics about the distribution of the key
values in each index, and uses these statistics in its decisions about
which index(es) to use in query processing.

• When you create a nonclustered index on a table that contains data,
update statistics is automatically run for the new index. When you
create a clustered index on a table that contains data, update statistics
is automatically run for all indexes.

• The optimization of your queries depends on the accuracy of the
statistics. If there is significant change in the key values in your index,
you should rerun update statistics on that index or column. Use the
update statistics command if a great deal of data in an indexed column
has been added, changed, or removed (that is, if you suspect that the
distribution of key values has changed).

• update statistics, when used with a table name and an index name,
updates statistics for the leading column of an index. If update
statistics is used with just a table name, it updates statistics for the
leading columns of all indexes on the table.

• update index statistics, when used with a table name and an index
name, updates statistics for all columns in the specified index. If
update index statistics is used with just a table name, it updates
statistics for all columns in all indexes of the table.

• Specifying the name of an unindexed column or the nonleading
column of an index generates statistics for that column without
creating an index.

• Specifying more than one column in a column list generates or
updates a histogram for the first column, and density statistics for all
prefix subsets of the list of columns.

• If you use update statistics to generate statistics for a column or list of
columns, update statistics must scan the table and perform a sort.

• The with consumers clause is designed for use on partitioned tables on
RAID devices, which appear to Adaptive Server as a single I/O
device, but which are capable of producing the high throughput
required for parallel sorting. For more information, see Chapter 24,
“Parallel Sorting,” in the Performance and Tuning Guide.

• Table 7-37 shows the types of scans performed during update
statistics, the types of locks acquired, and when sorts are needed.

CHAPTER 7 Commands

707

Table 7-37: Locking, scans, and sorts during update statistics

• The update index statistics command generates a series of update
statistics operations that use the same locking, scanning, and sorting
as the equivalent index-level and column-level command. For
example, if the salesdetail table has a nonclustered index named
sales_det_ix on salesdetail(stor_id, ord_num, title_id), this command:

update index statistics salesdetail

performs these update statistics operations:

update statistics salesdetail sales_det_ix
update statistics salesdetail (ord_num)
update statistics salesdetail (title_id)

• The update all statistics commands generates a series of update
statistics operations for each index on the table, followed by a series
of update statistics operations for all unindexed columns, followed by
an update partition statistics operation.

update statistics specifying Scans and sorts performed Locking

Table name

Allpages-locked table Table scan, plus a leaf-level scan
of each nonclustered index

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan, plus a leaf-level scan
of each nonclustered index and
the clustered index, if one exists

Level 0; dirty reads

Table name and clustered index name

Allpages-locked table Table scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and nonclustered index name

Allpages-locked table Leaf level index scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable
and sorts the worktable

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan; creates a worktable
and sorts the worktable

Level 0; dirty reads

update statistics

708

• update statistics is not run on system tables in the master database
during upgrade from earlier versions. Indexes exist on columns
queried by most system procedures, and running update statistics on
these tables is not required for normal usage. However, running
update statistics is allowed on all system tables in all databases, except
those that are not normal tables. These tables, which are built from
internal structures when queried, include syscurconfigs, sysengines,
sysgams, syslisteners, syslocks, syslogs, syslogshold, sysmonitors,
sysprocesses, syssecmechs, systestlog and systransactions.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions update statistics permission defaults to the table owner and is not
transferable. The command can also be executed by the Database Owner,
who can impersonate the table owner by running the setuser command.

See also Commands – delete statistics

CHAPTER 7 Commands

709

use
Description Specifies the database with which you want to work.

Syntax use database_name

Parameters database_name
is the name of the database to open.

Examples use pubs2
go

The current database is now pubs2.

Usage • The use command must be executed before you can reference objects
in a database.

• use cannot be included in a stored procedure or a trigger.

• sp_addalias adds an alias, which permits a user to use a database
under another name to gain access to that database.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions If the database has a “guest” account, all users can use the database. If the
database does not have a “guest” account, you must be a valid user in the
database, have an alias in the database, or be a System Administrator or
System Security Officer.

See also Commands – create database, drop database

System procedures – sp_addalias, sp_adduser, sp_modifylogin

waitfor

710

waitfor
Description Specifies a specific time, a time interval, or an event for the execution of

a statement block, stored procedure, or transaction.

Syntax waitfor { delay time | time time | errorexit
| processexit | mirrorexit }

Parameters delay
instructs Adaptive Server to wait until the specified amount of time has
passed, up to a maximum of 24 hours.

time
instructs Adaptive Server to wait until the specified time.

time
a time in one of the acceptable formats for datetime data, or a variable
of character type. You cannot specify dates—the date portion of the
datetime value is not allowed.

errorexit
instructs Adaptive Server to wait until a kernel or user process
terminates abnormally.

processexit
instructs Adaptive Server to wait until a kernel or user process
terminates for any reason.

mirrorexit
instructs Adaptive Server to wait for a mirror failure.

Examples Example 1 At 2:20 p.m., the chess table is updated with my next move,
and a procedure called sendmail inserts a row in a table owned by Judy,
notifying her that a new move now exists in the chess table:

begin
waitfor time "14:20"
insert chess(next_move)

values('Q-KR5')
execute sendmail 'judy'

end

Example 2 After 10 seconds, Adaptive Server prints the message
specified:

declare @var char(8)
select @var = "00:00:10"
begin

waitfor delay @var

CHAPTER 7 Commands

711

print "Ten seconds have passed. Your time
is up."

end

Example 3 After any process exits abnormally, Adaptive Server prints the
message specified:

begin
waitfor errorexit
print "Process exited abnormally!"

end

Usage • After issuing the waitfor command, you cannot use your connection to
Adaptive Server until the time or event that you specified occurs.

• You can use waitfor errorexit with a procedure that kills the abnormally
terminated process, to free system resources that would otherwise be
taken up by an infected process.

• To find out which process terminated, check the sysprocesses table
with sp_who.

• The time you specify with waitfor time or waitfor delay can include
hours, minutes, and seconds. Use the format “hh:mi:ss”, as described
in “Date and time datatypes.”

The following example instructs Adaptive Server to wait until 4:23
p.m:

waitfor time "16:23"

 This statement instructs Adaptive Server to wait for 1 hour and 30
minutes:

waitfor delay "01:30"

• Changes in system time (such as setting the clock back for Daylight
Savings Time) can delay the waitfor command.

• You can use waitfor mirrorexit within a DB-Library program to notify
users when there is a mirror failure.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions waitfor permission defaults to all users. No permission is required to use it.

See also Commands – begin...end

Datatypes – Date and time datatypes

System procedures – sp_who

where clause

712

where clause
Description Sets the search conditions in a select, insert, update, or delete statement.

Syntax Search conditions immediately follow the keyword where in a select,
insert, update, or delete statement. If you use more than one search
condition in a single statement, connect the conditions with and or or.

where [not] expression comparison_operator expression

where [not] expression [not] like "match_string"
[escape "escape_character "]

where [not] expression is [not] null

where [not]
expression [not] between expression and expression

where [not]
expression [not] in ({value_list | subquery})

where [not] exists (subquery)

where [not]
expression comparison_operator
{any | all} (subquery)

where [not] column_name join_operator column_name

where [not] logical_expression

where [not] expression {and | or} [not] expression

Parameters not
negates any logical expression or keywords such as like, null, between,
in, and exists.

expression
is a column name, a constant, a function, a subquery, or any
combination of column names, constants, and functions connected by
arithmetic or bitwise operators. For more information about
expressions, see “Expressions” on page 219.

CHAPTER 7 Commands

713

comparison_operator
is one of the following:

In comparing char, nchar, unichar, varchar, univarchar, and nvarchar
data, < means closer to the beginning of the alphabet and > means closer
to the end of the alphabet.

Case and special character evaluations depend on the collating
sequence of the operating system on the machine on which Adaptive
Server is located. For example, lowercase letters may be greater than
uppercase letters, and uppercase letters may be greater than numbers.

Trailing blanks are ignored for the purposes of comparison. For
example, “Dirk” is the same as “Dirk ”.

In comparing dates, < means earlier and > means later. Put quotes
around all character and date data used with a comparison operator. For
example:

 = "Bennet"
 > "94609"

 See “User-defined datatypes” for more information about data entry
rules.

Operator Meaning

 = Equal to

 > Greater than

 < Less than

 >= Greater than or equal to

 <= Less than or equal to

 != Not equal to

 <> Not equal to

 !> Not greater than

 !< Not less than

where clause

714

like
is a keyword indicating that the following character string (enclosed by
single or double quotes) is a matching pattern. like is available for char,
varchar, unichar, univarchar, nchar, nvarchar, and datetime columns, but
not to search for seconds or milliseconds.

You can use the keyword like and wildcard characters with datetime data
as well as with char and varchar. When you use like with datetime
values, Adaptive Server converts the dates to standard datetime format,
then to varchar. Since the standard storage format does not include
seconds or milliseconds, you cannot search for seconds or milliseconds
with like and a pattern.

It is a good idea to use like when you search for datetime values, since
datetime entries may contain a variety of date parts. For example, if you
insert the value “9:20” into a column named arrival_time, the following
clause would not find it because Adaptive Server converts the entry into
“Jan 1, 1900 9:20AM.”:

where arrival_time = '9:20'

However, the following clause would find it:

where arrival_time like '%9:20%'

match_string
is a string of characters and wildcard characters enclosed in quotes.
Table 7-38 lists the wildcard characters.

Table 7-38: Wildcard characters

escape
specifies an escape character with which you can search for literal
occurrences of wildcard characters.

escape_character
is any single character. For more information, see “Using the escape
clause” on page 240.

is null
searches for null values.

Wildcard character Meaning

 % Any string of 0 or more characters

 _ Any single character

 [] Any single character within the specified range ([a-f]) or set ([abcdef])

 [^] Any single character that is not within the specified range ([^a-f]) or set ([^abcdef])

CHAPTER 7 Commands

715

between
is the range-start keyword. Use and for the range-end value. The
following range is inclusive:

where @val between x and y

The following range is not:

x and @val < y

Queries using between return no rows if the first value specified is
greater than the second value.

and
joins two conditions and returns results when both of the conditions are
true.

When more than one logical operator is used in a statement, and
operators are usually evaluated first. However, you can change the
order of execution with parentheses.

in
allows you to select values that match any one of a list of values. The
comparator can be a constant or a column name, and the list can be a set
of constants or, more commonly, a subquery. For information on using
in with a subquery, see the Transact-SQL User’s Guide. Enclose the list
of values in parentheses.

value_list
is a list of values. Put single or double quotes around character values,
and separate each value from the following one with a comma (see
example 7). The list can be a list of variables, for example:

in (@a, @b, @c)

However, you cannot use a variable containing a list, such as the
following, for a values list:

@a = "'1', '2', '3'"

exists
is used with a subquery to test for the existence of some result from the
subquery. For more information, see the Transact-SQL User’s Guide.

subquery
is a restricted select statement (order by and compute clauses and the
keyword into are not allowed) inside the where or having clause of a
select, insert, delete, or update statement, or a subquery. For more
information, see the Transact-SQL User’s Guide.

where clause

716

any
is used with >, <, or = and a subquery. It returns results when any value
retrieved in the subquery matches the value in the where or having
clause of the outer statement. For more information, see the
Transact-SQL User’s Guide.

all
is used with > or < and a subquery. It returns results when all values
retrieved in the subquery match the value in the where or having clause
of the outer statement. For more information, see the Transact-SQL
User’s Guide.

column_name
is the name of the column used in the comparison. Qualify the column
name with its table or view name if there is any ambiguity. For columns
with the IDENTITY property, you can specify the syb_identity keyword,
qualified by a table name where necessary, rather than the actual
column name.

join_operator
is a comparison operator or one of the join operators =* or *=. For more
information, see the Transact-SQL User’s Guide.

logical_expression
is an expression that returns TRUE or FALSE.

or
joins two conditions and returns results when either of the conditions is
true.

When more than one logical operator is used in a statement, or operators
are normally evaluated after and operators. However, you can change
the order of execution with parentheses.

Examples Example 1

where advance * $2 > total_sales * price

Example 2 Finds all the rows in which the phone number does not begin
with 415:

where phone not like '415%'

Example 3 Finds the rows for authors named Carson, Carsen, Karsen, and
Karson:

where au_lname like "[CK]ars[eo]n"

CHAPTER 7 Commands

717

Example 4 Finds the row of the sales_east table in which the IDENTITY
column has a value of 4:

where sales_east.syb_identity = 4

Example 5

where advance < $5000 or advance is null

Example 6

where (type = "business" or type = "psychology") and advance > $5500

Example 7

where total_sales between 4095 and 12000

Example 8 Finds the rows in which the state is one of the three in the list:

where state in ('CA', 'IN', 'MD')

Usage • where and having search conditions are identical, except that
aggregate functions are not permitted in where clauses. For example,
this clause is legal:

having avg(price) > 20

This clause is not legal:

where avg(price) > 20

For examples, see Chapter 2, “Transact-SQL Functions” for
information on the use of aggregate functions, and group by and
having clauses on page 534.

• Joins and subqueries are specified in the search conditions: see the
Transact-SQL User’s Guide for full details.

• The number of and and or conditions in a where clause is limited only
by the amount of memory available to run the query.

• The pattern string included in the like predicate is limited only by the
size of string that can be placed in a varchar.

• There are two ways to specify literal quotes within a char or varchar
entry. The first method is to use two quotes. For example, if you began
a character entry with a single quote, and you want to include a single
quote as part of the entry, use two single quotes:

'I don''t understand.'

Or use double quotes:

"He said, ""It's not really confusing."""

where clause

718

The second method is to enclose a quote in the opposite kind of
quotation mark. In other words, surround an entry containing double
quotes with single quotes (or vice versa). Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn"t there a better way?"'

• To enter a character string that is longer than the width of your screen,
enter a backslash (\) before going to the next line.

• If a column is compared to a constant or variable in a where clause,
Adaptive Server converts the constant or variable into the datatype of
the column so that the optimizer can use the index for data retrieval.
For example, float expressions are converted to int when compared to
an int column. For example:

where int_column = 2

 selects rows where int_column = 2.

• When Adaptive Server optimizes queries, it evaluates the search
conditions in where and having clauses, and determines which
conditions are search arguments (SARGs) that can be used to choose
the best indexes and query plan. All of the search conditions are used
to qualify the rows. For more information on search arguments, see
the Performance and Tuning Guide.

Standards SQL92 – Compliance level: Entry-level compliant.

See also Commands – delete, execute, group by and having clauses, insert, select,
update

Datatypes – Date and time datatypes

System procedures – sp_helpjoins

CHAPTER 7 Commands

719

while
Description Sets a condition for the repeated execution of a statement or statement

block. The statement(s) are executed repeatedly, as long as the specified
condition is true.

Syntax while logical_expression [plan "abstract plan"]
statement

Parameters logical_expression
is any expression that returns TRUE, FALSE, or NULL.

plan “abstract plan”
specifies the abstract plan to use to optimize the query. It can be a full
or partial plan, specified in the abstract plan language. Plans can only
be specified for optimizable SQL statements, that is, queries that access
tables. See Chapter 30, “Creating and Using Abstract Plans,” in the
Performance and Tuning Guide for more information.

statement
can be a single SQL statement, but is usually a block of SQL statements
delimited by begin and end.

Examples If the average price is less than $30, double the prices of all books in the
titles table. As long as it is still less than $30, the while loop keeps doubling
the prices. In addition to determining the titles whose price exceeds $20,
the select inside the while loop indicates how many loops were completed
(each average result returned by Adaptive Server indicates one loop):

while (select avg(price) from titles) < $30
begin

select title_id, price
from titles
where price > $20

update titles
set price = price * 2

end

Usage • The execution of statements in the while loop can be controlled from
inside the loop with the break and continue commands.

• The continue command causes the while loop to restart, skipping any
statements after the continue. The break command causes an exit from
the while loop. Any statements that appear after the keyword end,
which marks the end of the loop, are executed. The break and continue
commands are often activated by if tests.

For example:

while

720

while (select avg(price) from titles) < $30
begin

update titles
set price = price * 2

if (select max(price) from titles) > $50
break

else
if (select avg(price) from titles) > $30

continue
print "Average price still under $30"

end

select title_id, price from titles
where price > $30

This batch continues to double the prices of all books in the titles table
as long as the average book price is less than $30. However, if any
book price exceeds $50, the break command stops the while loop. The
continue command prevents the print statement from executing if the
average exceeds $30. Regardless of how the while loop terminates
(either normally or because of the break command), the last query
indicates which books are priced over $30.

• If two or more while loops are nested, the break command exits to the
next outermost loop. All the statements after the end of the inner loop
run, then the next outermost loop restarts.

 Warning! If a create table or create view command occurs within a
while loop, Adaptive Server creates the schema for the table or view
before determining whether the condition is true. This may lead to
errors if the table or view already exists.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions while permission defaults to all users. No permission is required to use it.

See also Commands – begin...end, break, continue, goto label

CHAPTER 7 Commands

721

writetext
Description Permits minimally logged, interactive updating of an existing text or image

column.

Syntax writetext [[database.]owner.]table_name.column_name
text_pointer [readpast] [with log] data

Parameters table_name.column_name
is the name of the table and text or image column to update. Specify the
database name if the table is in another database, and specify the
owner’s name if more than one table of that name exists in the database.
The default value for owner is the current user, and the default value for
database is the current database.

text_pointer
a varbinary(16) value that stores the pointer to the text or image data. Use
the textptr function to determine this value, as shown in example 1. text
and image data is not stored in the same set of linked pages as other table
columns. It is stored in a separate set of linked pages. A pointer to the
actual location is stored with the data; textptr returns this pointer.

readpast
specifies that the command should modify only unlocked rows. If the
writetext command finds locked rows, it skips them, rather than waiting
for the locks to be released.

with log
logs the inserted text or image data. The use of this option aids media
recovery, but logging large blocks of data quickly increases the size of
the transaction log, so make sure that the transaction log resides on a
separate database device. See create database, sp_logdevice, and the
System Administration Guide for details.

data
is the data to write into the text or image column. text data must be
enclosed in quotes. image data must be preceded by “0x”. Check the
information about the client software you are using to determine the
maximum length of text or image data that can be accommodated by the
client.

Examples Example 1 This example puts the text pointer into the local variable @val.
Then, writetext places the text string “hello world” into the text field
pointed to by @val:

declare @val varbinary(16)
select @val = textptr(copy) from blurbs

writetext

722

where au_id = "409-56-7008"
writetext blurbs.copy @val with log "hello world"

Example 2

declare @val varbinary(16)
select @val = textptr(copy)
from blurbs readpast

where au_id = "409-56-7008"
writetext blurbs.copy @val readpast with log "hello
world"

Usage • The maximum length of text that can be inserted interactively with
writetext is approximately 120K bytes for text and image data.

• By default, writetext is a minimally logged operation; only page
allocations and deallocations are logged, but the text or image data is
not logged when it is written into the database. To use writetext in its
default, minimally logged state, a System Administrator must use
sp_dboption to set select into/bulkcopy/pllsort to true.

• writetext updates text data in an existing row. The update completely
replaces all of the existing text.

• writetext operations are not caught by an insert or update trigger.

• writetext requires a valid text pointer to the text or image column. For
a valid text pointer to exist, a text column must contain either actual
data or a null value that has been explicitly entered with update.

Given the table textnull with columns textid and x, where x is a text
column that permits nulls, this update sets all the text values to NULL
and assigns a valid text pointer in the text column:

update textnull
set x = null

No text pointer results from an insert of an explicit null:

insert textnull values (2,null)

And, no text pointer results from an insert of an implicit null:

insert textnull (textid)
values (2)

• insert and update on text columns are logged operations.

• You cannot use writetext on text and image columns in views.

CHAPTER 7 Commands

723

• If you attempt to use writetext on text values after changing to a
multibyte character set, and you have not run dbcc fix_text, the
command fails, and an error message is generated, instructing you to
run dbcc fix_text on the table.

• writetext in its default, non-logged mode runs more slowly while a
dump database is taking place.

• The Client-Library functions dbwritetext and dbmoretext are faster and
use less dynamic memory than writetext. These functions can insert up
to 2GB of text data.

Using the readpast option

• The readpast option applies only to data-only-locked tables. readpast
is ignored if it is specified for an allpages-locked table.

• If the session-wide isolation level is 3, the readpast option is silently
ignored.

• If the transaction isolation level for a session is 0, writetext commands
using readpast do not issue warning messages. These commands at
session isolation level 0 modify the specified text column if the text
column is not locked with incompatible locks.

Standards SQL92 – Compliance level: Transact-SQL extension.

Permissions writetext permission defaults to the table owner, who can transfer it to other
users.

See also Commands – readtext

Datatypes – text and image datatypes

writetext

724

725

C H A P T E R 8 System Procedures

This chapter describes the system procedures, which are Sybase-supplied
stored procedures used for updating and getting reports from system
tables. “List of system procedures” on page 729 lists the system
procedures described in this volume.

Topics covered are:

Introduction to system procedures
System procedures are created by installmaster at installation. They are
located in the sybsystemprocs database, and owned by the System
Administrator.

Some system procedures can be run only in a specific database, but many
of them can be run in any database. You can create your own system
procedures that can be executed from any database. For more information,
see the System Administration Guide.

All system procedures execute at isolation level 1.

All system procedures report a return status. The following example
means that the procedure executed successfully:

return status = 0

The examples in this book do not include the return status.

Topics Page
Introduction to system procedures 725

Permissions on system procedures 726

Executing system procedures 726

Entering parameter values 727

Messages 728

System procedure tables 728

List of system procedures 729

Permissions on system procedures

726

Permissions on system procedures
Permissions for system procedures are set in the sybsystemprocs database.

Some system procedures can be run only by Database Owners. These
procedures make sure that the user executing the procedure is the owner
of the database from which they are being executed.

Other system procedures (for example, all the sp_help procedures) can be
executed by any user who has been granted permission, provided that the
permission was granted in sybsystemprocs. A user must have permission
to execute a system procedure either in all databases or in none of them.

A user who is not listed in sybsystemprocs..sysusers is treated as a “guest”
user in sybsystemprocs and is automatically granted permission on many
of the system procedures.

To deny a user permission on a system procedure, the System
Administrator must add the user to sybsystemprocs..sysusers and write a
revoke statement that applies to that procedure. The owner of a user
database cannot directly control permissions on the system procedures
within his or her own database.

Executing system procedures
If a system procedure is executed in a database other than sybsystemprocs,
it operates on the system tables in the database in which it was executed.
For example, if the Database Owner of pubs2 runs sp_adduser in pubs2,
the new user is added to pubs2..sysusers.

To run a system procedure in a specific database, either:

• Open that database with the use command and execute the procedure,
or

• Qualify the procedure name with the database name.

For example, the user-defined system procedure sp_foo, which executes
the db_name() system function, returns the name of the database in which
it is executed. When executed in the pubs2 database, it returns the value
“pubs2”:

exec pubs2..sp_foo

CHAPTER 8 System Procedures

727

pubs2
(1 row affected, return status = 0)

When executed in sybsystemprocs, it returns the value “sybsystemprocs”:

exec sybsystemprocs..sp_foo

sybsystemprocs
(1 row affected, return status = 0)

Entering parameter values
If a parameter value for a system procedure contains punctuation or
embedded blanks, or is a reserved word, you must enclose it in single or
double quotes. If the parameter is an object name qualified by a database
name or owner name, enclose the entire name in single or double quotes.

Note Do not use delimited identifiers as system procedure parameters;
they may produce unexpected results.

If a procedure has multiple optional parameters, you can supply
parameters in the following form instead of supplying all the parameters:

@parametername = value

The parameter names in the syntax statements match the parameter names
defined by the procedures.

For example, the syntax for sp_addlogin is:

sp_addlogin login_name, password [, defdb
[, deflanguage [, fullname]]]

To use sp_addlogin to create a login for “susan” with a password of
“wonderful”, a full name of Susan B. Anthony, and the server’s default
database and language, you can use:

sp_addlogin susan, wonderful,
@fullname="Susan B. Anthony"

This provides the same information as the command with all the
parameters specified:

sp_addlogin susan, wonderful, public_db,
us_english, "Susan B. Anthony"

Messages

728

You can also use “null” as a placeholder:

sp_addlogin susan, wonderful, null, null,
"Susan B. Anthony"

Do not enclose “null” in quotes.

SQL has no rules about the number of words you can put on a line or where
you must break a line. If you issue a system procedure followed by a
command, Adaptive Server attempts to execute the system procedure, then
the command. For example, if you execute the following command,
Adaptive Server returns the output from sp_help, then runs the checkpoint
command:

sp_help checkpoint

If you specify more parameters than the number of parameters expected
by the system procedure, the extra parameters are ignored by Adaptive
Server.

Messages
System procedures return informational and error messages, which are
listed with each procedure in this book. System procedure error messages
start at error number 17000.

Error messages from the functions and commands included in a procedure
are documented in Troubleshooting and Error Messages Guide.

System procedure tables
Several system procedure tables in the master database, such as
spt_values, spt_committab, spt_monitor, and spt_limit_types, are used by
system procedures to convert internal system values (for example, status
bits) into human-readable format.

spt_values is never updated. To see how it is used, execute sp_helptext to
look at the text for one of the system procedures that references it.

In addition, some system procedures create and then drop temporary
tables.

CHAPTER 8 System Procedures

729

List of system procedures
Table 8-1 provides a brief description of each system procedure.

Table 8-1: System procedures

Procedure Description

sp_activeroles on page 738 Displays all active roles granted to a user’s login.

sp_addalias on page 739 Allows an Adaptive Server user to be known in a database as another user.

sp_addauditrecord on page 740 Allows users to enter user-defined audit records (comments) into the audit
trail.

sp_addaudittable on page 742 Adds another system audit table after auditing is installed.

sp_addengine on page 744 Adds an engine to an existing engine group or, if the group does not exist,
creates an engine group and adds the engine.

sp_addexeclass on page 745 Creates or updates a user-defined execution class that you can bind to client
applications, logins, and stored procedures.

sp_addextendedproc on page
746

Creates an extended stored procedure (ESP) in the master database.

sp_addexternlogin on page 747 Creates an alternate login account and password to use when communicating
with a remote server through Component Integration Services.

sp_addgroup on page 750 Adds a group to a database. Groups are used as collective names in granting
and revoking privileges.

sp_addlanguage on page 751 Defines the names of the months and days, and the date format, for an
alternate language.

sp_addlogin on page 754 Adds a new user account to Adaptive Server.

sp_addmessage on page 757 Adds user-defined messages to sysusermessages for use by stored
procedure print and raiserror calls and by sp_bindmsg.

sp_addobjectdef on page 759 Specifies the mapping between a local table and an external storage location.

sp_add_qpgroup on page 762 Adds an abstract plan group.

sp_addremotelogin on page 763 Authorizes a new remote server user by adding an entry to
master.dbo.sysremotelogins.

sp_add_resource_limit on page
766

Creates a limit on the amount of server resources that a login or application
can use to execute a query, query batch, or transaction.

sp_addsegment on page 771 Defines a segment on a database device in the current database.

sp_addserver on page 773 Defines a remote server or defines the name of the local server.

sp_addthreshold on page 775 Creates a threshold to monitor space on a database segment. When free
space on the segment falls below the specified level, Adaptive Server
executes the associated stored procedure.

sp_add_time_range on page 779 Adds a named time range to Adaptive Server.

sp_addtype on page 782 Creates a user-defined datatype.

sp_addumpdevice on page 786 Adds a dump device to Adaptive Server.

sp_adduser on page 788 Adds a new user to the current database.

List of system procedures

730

sp_altermessage on page 790 Enables and disables the logging of a specific system-defined or
user-defined message in the Adaptive Server error log.

sp_audit on page 791 Allows a System Security Officer to configure auditing options.

sp_autoconnect on page 796 Defines a passthrough connection to a remote server for a specific user,
which allows the named user to enter passthrough mode automatically at
login.

sp_bindcache on page 798 Binds a database, table, index, text object, or image object to a data cache.

sp_bindefault on page 802 Binds a user-defined default to a column or user-defined datatype.

sp_bindexeclass on page 804 Associates an execution class with a client application, login, or stored
procedure.

sp_bindmsg on page 807 Binds a user message to a referential integrity constraint or check constraint.

sp_bindrule on page 808 Binds a rule to a column or user-defined datatype.

sp_cacheconfig on page 810 Creates, configures, reconfigures, drops, and provides information about
data caches.

sp_cachestrategy on page 819 Enables or disables prefetching (large I/O) and MRU cache replacement
strategy for a table, index, text object, or image object.

sp_changedbowner on page 822 Changes the owner of a database.

sp_changegroup on page 823 Changes a user’s group.

sp_checknames on page 825 Checks the current database for names that contain characters not in the 7-bit
ASCII set.

sp_checkreswords on page 826 Detects and displays identifiers that are Transact-SQL reserved words.
Checks server names, device names, database names, segment names,
user-defined datatypes, object names, column names, user names, login
names, and remote login names.

sp_checksource on page 839 Checks for the existence of the source text of the compiled object.

sp_chgattribute on page 841 Changes the max_rows_per_page value for future space allocations of a
table or index.

sp_clearpsexe on page 845 Clears the execution attributes of the client application, login, or stored
procedure that was set by sp_setpsexe.

sp_clearstats on page 846 Initiates a new accounting period for all server users or for a specified user.
Prints statistics for the previous period by executing sp_reportstats.

sp_cmp_all_qplans on page 849 Compares all abstract plans in two abstract plan groups.

sp_cmp_qplans on page 851 Compares two abstract plans.

sp_commonkey on page 853 Defines a common key—columns that are frequently joined—between two
tables or views.

sp_companion on page 855 Performs cluster operations such as configuring Adaptive Server as a
secondary companion in a high availability system and moving a companion
server from one failover mode to another

sp_configure on page 858 Displays or changes configuration parameters.

Procedure Description

CHAPTER 8 System Procedures

731

sp_copy_all_qplans on page 863 Copies all plans for one abstract plan group to another group.

sp_copy_all_qplans on page 863 Copies one abstract plan to an abstract plan group.

sp_countmetadata on page 865 Displays the number of indexes, objects, or databases in Adaptive Server.

sp_cursorinfo on page 867 Reports information about a specific cursor or all cursors that are active for
your session.

sp_dboption on page 870 Displays or changes database options.

sp_dbrecovery_order on page
878

Specifies the order in which user databases are recovered and lists the
user-defined recovery order of a database or all databases.

sp_dbremap on page 880 Forces Adaptive Server to recognize changes made by alter database. Run
this procedure only when instructed to do so by an Adaptive Server message.

sp_depends on page 884 Displays information about database object dependencies—the view(s),
trigger(s), and procedure(s) that depend on a specified table or view, and the
table(s) and view(s) that the specified view, trigger, or procedure depends
on.

sp_deviceattr on page 890 Changes the dsync setting of an existing database device file.

sp_diskdefault on page 892 Specifies whether or not a database device can be used for database storage
if the user does not specify a database device or specifies default with the
create database or alter database commands.

sp_displayaudit on page 894 Displays the status of audit options.

sp_displaylevel on page 898 Sets or shows which Adaptive Server configuration parameters appear in
sp_configure output.

sp_displaylogin on page 899 Displays information about a login account.

sp_displayroles on page 902 Displays all roles granted to another role, or displays the entire hierarchy
tree of roles in table format.

sp_dropalias on page 904 Removes the alias user name identity established with sp_addalias.

sp_drop_all_qplans on page 905 Deletes all abstract plans in an abstract plan group.

sp_dropdevice on page 906 Drops an Adaptive Server database device or dump device.

sp_dropengine on page 907 Drops an engine from a specified engine group or, if the engine is the last
one in the group, drops the engine group.

sp_dropexeclass on page 908 Drops a user-defined execution class.

sp_dropextendedproc on page
909

Removes an ESP from the master database.

sp_dropglockpromote on page
911

Removes lock promotion values from a table or database.

sp_dropgroup on page 912 Drops a group from a database.

sp_dropkey on page 913 Removes a key defined with sp_primarykey, sp_foreignkey, or
sp_commonkey from the syskeys table.

sp_droplanguage on page 915 Drops an alternate language from the server and removes its row from
master.dbo.syslanguages.

Procedure Description

List of system procedures

732

sp_droplogin on page 916 Drops an Adaptive Server user login by deleting the user’s entry in
master.dbo.syslogins.

sp_dropmessage on page 917 Drops user-defined messages from sysusermessages.

sp_dropobjectdef on page 918 Component Integration Services only – Deletes the external storage
mapping provided for a local object

sp_drop_qpgroup on page 920 Drops an abstract plan group.

sp_drop_qplan on page 921 Drops an abstract plan.

sp_dropremotelogin on page 922 Drops a remote user login.

sp_drop_resource_limit on page
923

Removes one or more resource limits from Adaptive Server.

sp_dropsegment on page 927 Drops a segment from a database or unmaps a segment from a particular
database device.

sp_dropserver on page 929 Drops a server from the list of known servers.

sp_dropthreshold on page 930 Removes a free-space threshold from a segment.

sp_drop_time_range on page 931 Removes a user-defined time range from Adaptive Server.

sp_droptype on page 932 Drops a user-defined datatype.

sp_dropuser on page 933 Drops a user from the current database.

sp_dumpoptimize on page 934 Specifies the amount of data dumped by Backup Server during the dump
database operation.

sp_estspace on page 942 Estimates the amount of space required for a table and its indexes, and the
time needed to create the index.

sp_export_qpgroup on page 947 Exports all plans for a specified user and abstract plan group to a user table.

sp_extendsegment on page 948 Extends the range of a segment to another database device.

sp_familylock on page 950 Reports information about all the locks held by a family (coordinating
process and its worker processes) executing a statement in parallel.

sp_find_qplan on page 953 Finds an abstract plan, given a pattern from the query text or plan text.

sp_flushstats on page 956 Flushes statistics from in-memory storage to the systabstats system table.

sp_forceonline_db on page 957 Provides access to all the pages in a database that were previously taken
offline by recovery.

sp_forceonline_page on page
960

Provides access to pages previously taken offline by recovery.

sp_foreignkey on page 962 Defines a foreign key on a table or view in the current database.

sp_freedll on page 964 Unloads a dynamic link library (DLL) that was previously loaded into XP
Server memory to support the execution of an ESP.

sp_getmessage on page 965 Retrieves stored message strings from sysmessages and sysusermessages
for print and raiserror statements.

sp_grantlogin on page 966 Windows NT only – When Integrated Security mode or Mixed mode (with
Named Pipes) is active, assigns Adaptive Server roles or default permissions
to Windows NT users and groups.

Procedure Description

CHAPTER 8 System Procedures

733

sp_ha_admin on page 968 Performs administrative tasks on Adaptive Servers configured with Sybase
Failover in a high availability system. sp_ha_admin is installed with the
installhavss script (insthasv on Windows NT).

sp_help on page 969 Reports information about a database object (any object listed in sysobjects)
and about Adaptive Server-supplied or user-defined datatypes.

sp_helpartition on page 975 Lists the first page and the control page for each partition in a partitioned
table.

sp_helpcache on page 978 Displays information about the objects that are bound to a data cache or the
amount of overhead required for a specified cache size.

sp_helpdb on page 988 Reports information about a particular database or about all databases.

sp_helpdevice on page 991 Reports information about a particular device or about all Adaptive Server
database devices and dump devices.

sp_helpextendedproc on page
993

Displays ESPs registered in the current database, along with their associated
DLL files.

sp_helpexternlogin on page 994 Component Integration Services only – Reports information about external
login names.

sp_helpgroup on page 995 Reports information about a particular group or about all groups in the
current database.

sp_helpindex on page 996 Reports information about the indexes created on a table.

sp_helpjava on page 998 Displays information about Java classes and associated JARs that are
installed in the database.

sp_helpjoins on page 1000 Lists the columns in two tables or views that are likely join candidates.

sp_helpkey on page 1002 Reports information about a primary, foreign, or common key of a particular
table or view, or about all keys in the current database.

sp_helplanguage on page 1004 Reports information about a particular alternate language or about all
languages.

sp_helplog on page 1005 Reports the name of the device that contains the first page of the transaction
log.

sp_helpobjectdef on page 1006 Component Integration Services only – Reports information about remote
object definitions. Shows owners, objects, type, and definition.

sp_help_qpgroup on page 1007 Reports information on an abstract plan group.

sp_help_qplan on page 1009 Reports information about an abstract plan.

sp_helpremotelogin on page
1010

Reports information about a particular remote server’s logins or about all
remote servers’ logins.

sp_help_resource_limit on page
1011

Reports information about all resource limits, limits for a given login or
application, limits in effect at a given time or day of the week, or limits with
a given scope or action.

sp_helprotect on page 1014 Reports information about permissions for database objects, users, groups,
or roles.

Procedure Description

List of system procedures

734

sp_helpsegment on page 1018 Reports information about a particular segment or about all segments in the
current database.

sp_helpserver on page 1021 Reports information about a particular remote server or about all remote
servers.

sp_helpsort on page 1022 Displays Adaptive Server’s default sort order and character set.

sp_helptext on page 1024 Prints the text of a system procedure, trigger, view, default, rule, or integrity
check constraint.

sp_helpthreshold on page 1026 Reports the segment, free-space value, status, and stored procedure
associated with all thresholds in the current database or all thresholds for a
particular segment.

sp_helpuser on page 1027 Reports information about a particular user or about all users in the current
database.

sp_hidetext on page 1028 Hides the source text for the specified compiled object.

sp_import_qpgroup on page 1030 Imports abstract plans from a user table into an abstract plan group.

sp_indsuspect on page 1032 Checks user tables for indexes marked as suspect during recovery following
a sort order change.

sp_listsuspect_db on page 1033 Lists all databases that have offline pages because of corruption detected on
recovery.

sp_listsuspect_object on page
1034

Lists all indexes in a database that are currently offline because of corruption
detected on recovery.

sp_listsuspect_page on page
1035

Lists all pages that are currently offline because of corruption detected on
recovery.

sp_lock on page 1036 Reports information about processes that currently hold locks.

sp_locklogin on page 1040 Locks an Adaptive Server account so that the user cannot log in, or displays
a list of all locked accounts.

sp_logdevice on page 1042 Moves the transaction log of a database with log and data on the same device
to a separate database device.

sp_loginconfig on page 1044 Windows NT only – Displays the value of one or all integrated security
parameters.

sp_logininfo on page 1046 Windows NT only – Displays all roles granted to Windows NT users and
groups with sp_grantlogin.

sp_logiosize on page 1048 Changes the log I/O size used by Adaptive Server to a different memory pool
when it is doing I/O for the transaction log of the current database.

sp_modifylogin on page 1051 Modifies the default database, default language, default role activation, or
full name for an Adaptive Server login account.

sp_modify_resource_limit on
page 1054

Changes a resource limit by specifying a new limit value or the action to take
when the limit is exceeded, or both.

sp_modify_time_range on page
1057

Changes the start day, start time, end day, and/or end time associated with a
named time range.

Procedure Description

CHAPTER 8 System Procedures

735

sp_modifythreshold on page 1062 Modifies a threshold by associating it with a different threshold procedure,
free-space level, or segment name. You cannot use sp_modifythreshold to
change the amount of free space or the segment name for the last-chance
threshold.

sp_monitor on page 1066 Displays statistics about Adaptive Server.

sp_object_stats on page 1074 Shows lock contention, lock wait-time, and deadlock statistics for tables and
indexes.

sp_passthru on page 1077 Component Integration Services only – Allows the user to pass a SQL
command buffer to a remote server.

sp_password on page 1079 Adds or changes a password for an Adaptive Server login account.

sp_placeobject on page 1081 Puts future space allocations for a table or an index on a particular segment.

sp_plan_dbccdb on page 1083 Recommends suitable sizes for new dbccdb and dbccalt databases, lists
suitable devices for dbccdb and dbccalt, and suggests a cache size and a
suitable number of worker processes for the target database.

sp_poolconfig on page 1085 Creates, drops, resizes, and provides information about memory pools
within data caches.

sp_primarykey on page 1090 Defines a primary key on a table or view.

sp_processmail on page 1091 Windows NT only – Reads, processes, sends, and deletes messages in the
Adaptive Server message inbox.

sp_procqmode on page 1093 Displays the query processing mode of a stored procedure, view, or trigger.

sp_procxmode on page 1095 Displays or changes the transaction modes associated with stored
procedures.

sp_recompile on page 1097 Causes each stored procedure and trigger that uses the named table to be
recompiled the next time it runs.

sp_remap on page 1098 Remaps a stored procedure, trigger, rule, default, or view from releases later
than 4.8 and earlier than 10.0 to be compatible with releases 10.0 and later.
Use sp_remap on pre-release 11.0 objects that the release 11.0 upgrade
procedure failed to remap.

sp_remoteoption on page 1099 Displays or changes remote login options.

sp_rename on page 1103 Changes the name of a user-created object or user-defined datatype in the
current database.

sp_renamedb on page 1105 Changes the name of a database. You cannot rename system databases or
databases with external referential integrity constraints.

sp_rename_qpgroup on page
1108

Renames an abstract plan group.

sp_reportstats on page 1109 Reports statistics on system usage.

sp_revokelogin on page 1111 Windows NT only – When Integrated Security mode or Mixed mode (with
Named Pipes) is active, revokes Adaptive Server roles and default
permissions from Windows NT users and groups.

sp_role on page 1112 Grants or revokes system roles to an Adaptive Server login account.

Procedure Description

List of system procedures

736

sp_sendmsg on page 1113 Sends a message to a User Datagram Protocol (UDP) port.

sp_serveroption on page 1115 Displays or changes remote server options.

sp_setlangalias on page 1119 Assigns or changes the alias for an alternate language.

sp_setrowlockpromote on page
1125

Sets or changes the lock promotion thresholds for a database, for a table, or
for Adaptive Server.

sp_setpsexe on page 1123 Sets custom execution attributes “on the fly” for an active client application,
login, or stored procedure.

sp_set_qplan on page 1124 Changes the text of the abstract plan of an existing plan without changing
the associated query.

sp_setsuspect_granularity on
page 1128

Displays and sets the recovery fault isolation mode.

sp_setsuspect_threshold on page
1131

On recovery, sets the maximum number of suspect pages that Adaptive
Server will allow in the specified database before taking the entire database
offline.

sp_showcontrolinfo on page 1132 Displays information about engine group assignments, bound client
applications, logins, and stored procedures.

sp_showexeclass on page 1134 Displays the execution class attributes and the engines in any engine group
associated with the specified execution class.

sp_showplan on page 1135 Displays the query plan for any user connection for the current SQL
statement (or a previous statement in the same batch). The query plan is
displayed in showplan format.

sp_showpsexe on page 1137 Displays execution class, current priority, and affinity for all processes
running on Adaptive Server.

sp_spaceused on page 1138 Displays estimates of the number of rows, the number of data pages, and the
space used by one table or by all tables in the current database.

sp_ssladmin on page 1141 Adds, deletes, or displays a list of server certificates for Adaptive Server.

sp_syntax on page 1143 Displays the syntax of Transact-SQL statements, system procedures,
utilities, and other routines, depending on which products and corresponding
sp_syntax scripts exist on Adaptive Server.

sp_sysmon on page 1145 Displays performance information.

sp_thresholdaction on page 1148 Executes automatically when the number of free pages on the log segment
falls below the last-chance threshold, unless the threshold is associated with
a different procedure. Sybase does not provide this procedure.

sp_transactions on page 1150 Reports information about active transactions.

sp_unbindcache on page 1157 Unbinds a database, table, index, text object, or image object from a data
cache.

sp_unbindcache_all on page
1159

Unbinds all objects that are bound to a cache.

sp_unbindefault on page 1160 Unbinds a created default value from a column or from a user-defined
datatype.

Procedure Description

CHAPTER 8 System Procedures

737

sp_unbindefault on page 1160 Unbinds a database, table, index, text object, or image object from a data
cache.

sp_unbindmsg on page 1164 Unbinds a user-defined message from a constraint.

sp_unbindrule on page 1165 Unbinds a rule from a column or from a user-defined datatype.

sp_volchanged on page 1167 Notifies the Backup Server™ that the operator performed the requested
volume handling during a dump or load.

sp_who on page 1171 Reports information about all current Adaptive Server users and processes
or about a particular user or process.

Procedure Description

sp_activeroles

738

sp_activeroles
Description Displays all active roles.

Syntax sp_activeroles [expand_down]

Parameters expand_down
shows the hierarchy tree of all active roles contained by your roles.

Examples Example 1

sp_activeroles

Role Name

sa_role
sso_role
oper_role
replication_role

Example 2

sp_activeroles expand_down

Role Name Parent Role Name Level
-------------------------------- -------------------
sa_role NULL 1
doctor_role NULL 1
oper_role NULL 1

Usage • sp_activeroles displays all your active roles and all roles contained by
those roles.

• For information about creating, managing, and using roles, see the System
Administration Guide.

Permissions Any user can execute sp_activeroles.

See also Commands alter role, create role, drop role, grant, revoke, set

Functions mut_excl_roles, proc_role, role_contain, role_name

System procedures sp_displayroles

CHAPTER 8 System Procedures

739

sp_addalias
Description Allows an Adaptive Server user to be known in a database as another user.

Syntax sp_addalias loginame, name_in_db

Parameters loginame
is the master.dbo.syslogins name of the user who wants an alternate identity
in the current database.

name_in_db
is the database user name to alias loginame to. The name must exist in both
master.dbo.syslogins and in the sysusers table of the current database.

Examples There is a user named “albert” in the database’s sysusers table and a login for
a user named “victoria” in master.dbo.syslogins. This command allows
“victoria” to use the current database by assuming the name “albert”:

sp_addalias victoria, albert

Usage • Executing sp_addalias maps one user to another in the current database.
The mapping is shown in sysalternates, where the two users’ suids (system
user IDs) are connected.

• A user can be aliased to only one database user at a time.

• A report on any users mapped to a specified user can be generated with
sp_helpuser, giving the specified user’s name as an argument.

• When a user tries to use a database, Adaptive Server checks sysusers to
confirm that the user is listed there. If the user is not listed there, Adaptive
Server then checks sysalternates. If the user’s suid is listed in sysalternates,
mapped to a database user’s suid, Adaptive Server treats the first user as
the second user while using the database.

If the user named in loginame is in the database’s sysusers table, Adaptive
Server does not use the user’s alias identity, because it checks sysusers and
finds the loginame before checking sysalternates, where the alias is listed.

Permissions Only the Database Owner or a System Administrator can execute sp_addalias.

See also Command use

System procedures sp_addlogin, sp_adduser, sp_dropalias, sp_helpuser

sp_addauditrecord

740

sp_addauditrecord
Description Allows users to enter user-defined audit records (comments) into the audit

trail.

Syntax sp_addauditrecord [text [, db_name [, obj_name
[, owner_name [, dbid [, objid]]]]]]

Parameters text
is the text of the message to add to the current audit table. The text is
inserted into the extrainfo field of the table.

db_name
is the name of the database referred to in the record. The name is
inserted into the dbname field of the current audit table.

obj_name
is the name of the object referred to in the record. The name is inserted
into the objname field of the current audit table.

owner_name
is the owner of the object referred to in the record. The name is inserted
into the objowner field of the current audit table.

dbid
is the database ID number of db_name. Do not enclose this integer value
in quotes. dbid is inserted into the dbid field of the current audit table.

objid
is the object ID number of obj_name. Do not enclose this integer value
in quotes. objid is inserted into the objid field of the current audit table.

Examples Example 1 Adds “I gave A. Smith permission to view the payroll table in
the corporate database. This permission was in effect from 3:10 to 3:30 pm
on 9/22/92.” to the extrainfo field; “corporate” to the dbname field;
“payroll” to the objname field; “dbo” to the objowner field; “10” to the dbid
field, and “1004738270” to the objid field of the current audit table:

sp_addauditrecord "I gave A. Smith permission to
view the payroll table in the corporate database.
This permission was in effect from 3:10 to 3:30 pm
on 9/22/92.", "corporate", "payroll", "dbo", 10,
1004738270

Example 2 Adds this record to the audit trail. This example uses
parameter names with the @ prefix, which allows you to leave some fields
empty:

sp_addauditrecord @text="I am disabling auditing

CHAPTER 8 System Procedures

741

briefly while we reconfigure the system",
@db_name="corporate"

Usage • Adaptive Server writes all audit records to the current audit table. The
current audit table is determined by the value of the current audit table
configuration parameter, set with sp_configure. An installation can
have up to eight system audit tables, named sysaudits_01,
sysaudits_02, and so forth, through sysaudits_08.

Note The records actually are first stored in the in-memory audit
queue, and the audit process later writes the records from the audit
queue to the current audit table. Therefore, you cannot count on an
audit record being stored immediately in the audit table.

• You can use sp_addauditrecord if:

• You have been granted execute permission on sp_addauditrecord
(No special role is required).

• Auditing is enabled (A System Security Officer used
sp_configure to turn on the auditing configuration parameter).

• The adhoc option of sp_audit is set to on.

Permissions Only a System Security Officer can execute sp_addauditrecord. The
Database Owner of sybsecurity (who must also be a System Security
Officer) can grant execute permission to other users.

See also System procedure sp_audit

sp_addaudittable

742

sp_addaudittable
Description Adds another system audit table after auditing is installed.

Syntax sp_addaudittable devname

Parameters devname
is the name of the device for the audit table. Specify a device name or
specify “default”. If you specify “default”, Adaptive Server creates the
audit table on the same device as the sybsecurity database. Otherwise,
Adaptive Server creates the table on the device you specify.

Examples Example 1 Creates a system audit table on auditdev2. If only one system
audit table (sysaudits_01) exists when you execute the procedure,
Adaptive Server names the new audit table sysaudits_02 and places it on
its own segment, called aud_seg_02, on auditdev2:

sp_addaudittable auditdev2

Example 2 Creates a system audit table on the same device as the
sybsecurity database. If two system audit tables (sysaudits_01 and
sysaudits_02) exist when you execute the procedure, Adaptive Server
names the new audit table sysaudits_03 and places it on its own segment,
called aud_seg_03, on the same device as the sybsecurity database:

sp_addaudittable "default"

Usage • Auditing must already be installed when you run sp_addaudittable.
Follow this procedure to add a system audit table:

a Create the device for the audit table, using disk init. For example,
run a command like this for UNIX:

disk init name = "auditdev2",
physname = "/dev/rxyla",
size = “5K”

b Add the device to the sybsecurity database with the alter database
command. For example, to add auditdev2 to the sybsecurity
database, use:

alter database sybsecurity on auditdev2

c Execute sp_addaudittable to create the table.

CHAPTER 8 System Procedures

743

• Adaptive Server names the new system audit table and the new
segment according to how many audit tables are already defined. For
example, if five audit tables are defined before you execute the
procedure, Adaptive Server names the new audit table sysaudits_06
and the new segment aud_seg_06. If you specify “default”, Adaptive
Server places the segment on the same device as the sybsecurity
database. Otherwise, Adaptive Server places the segment on the
device you name.

• A maximum of eight audit tables is allowed. If you already have eight
audit tables, and you attempt to execute sp_addaudittable to add
another one, Adaptive Server displays an error message.

• For information about how to install auditing, see the installation
documentation for your platform. See the System Administration
Guide for information on how to use auditing.

Permissions Only a uses who is both a System Administrator and a System Security
Officer to execute sp_addaudittable.

See also System procedure sp_audit

sp_addengine

744

sp_addengine
Description Adds an engine to an existing engine group or, if the group does not exist,

creates an engine group and adds the engine.

Syntax sp_addengine engine_number, engine_group

Parameters engine_number
is the number of the engine you are adding to the group. Legal values
are between 0 and a maximum equal to the number of configured online
engines minus one.

engine_group
is the name of the engine group to which you are adding the engine. If
engine_group does not exist, Adaptive Server creates it and adds the
engine to it. Engine group names must conform to the rules for
identifiers. For details, see Chapter 4, “Expressions, Identifiers, and
Wildcard Characters”

Examples If no engine group is called DS_GROUP, this statement establishes the
group. If DS_GROUP already exists, this statement adds engine number 2
to that group:

sp_addengine 2, DS_GROUP

Usage • sp_addengine creates a new engine group if the value of engine_group
does not already exist.

• The engine groups ANYENGINE and LASTONLINE are predefined.
ANYENGINE includes all existing engines. LASTONLINE specifies the
engine with highest engine number. A System Administrator can
create additional engine groups. You cannot modify predefined
engine groups.

• As soon as you use sp_bindexeclass to bind applications or logins to
an execution class associated with engine_group, the associated
process may start running on engine_number.

• Prior to making engine affinity assignments, study the environment
and consider the number of non-preferred applications and the
number of Adaptive Server engines available. See the Performance
and Tuning Guide for more information about non-preferred
applications.

Permissions Only a System Administrator can execute sp_addengine.

See also System procedures sp_addexeclass, sp_bindexeclass, sp_clearpsexe,
sp_dropengine, sp_setpsexe, sp_showcontrolinfo, sp_showexeclass,
sp_showpsexe, sp_unbindexeclass

CHAPTER 8 System Procedures

745

sp_addexeclass
Description Creates or updates a user-defined execution class that you can bind to

client applications, logins, and stored procedures.

Syntax sp_addexeclass classname, priority, timeslice, engine_group

Parameters classname
is the name of the new execution class.

priority
is the priority value with which to run the client application, login, or
stored procedure after it is associated with this execution class. Legal
values are HIGH, LOW, and MEDIUM.

timeslice
is the time unit assigned to processes associated with this class.
Adaptive Server currently ignores this parameter.

engine_group
identifies an existing group of engines on which processes associated
with this class can run.

Examples This statement defines a new execution class called DS with a priority
value of LOW and associates it with the engine group DS_GROUP:

sp_addexeclass "DS", "LOW", 0, "DS_GROUP"

Usage • sp_addexeclass creates or updates a user-defined execution class that
you can bind to client applications, logins, and stored procedures. If
the class already exists, the class attribute values are updated with the
values supplied by the user.

• Use the predefined engine group parameter ANYENGINE if you do not
want to restrict the execution object to an engine group.

• Use sp_addengine to define engine groups. Use sp_showexeclass to
display execution class attributes and the engines in any engine group
associated with the specified execution class. sp_showcontrolinfo lists
the existing engine groups.

Permissions Only a System Administrator can execute sp_addexeclass.

See also System procedures sp_addengine, sp_bindexeclass, sp_clearpsexe,
sp_dropengine, sp_dropexeclass, sp_setpsexe, sp_showcontrolinfo,
sp_showexeclass, sp_showpsexe, sp_unbindexeclass

sp_addextendedproc

746

sp_addextendedproc
Description Creates an extended stored procedure (ESP) in the master database.

Syntax sp_addextendedproc esp_name, dll_name

Parameters esp_name
is the name of the extended stored procedure. This name must be
identical to the name of the procedural language function that
implements the ESP. esp_name must be a valid Adaptive Server
identifier.

dll_name
is the name of the dynamic link library (DLL) file containing the
function specified by esp_name. The dll_name can be specified with
no extension or with its platform-specific extension, such as .dll on
Windows NT or .so on Sun Solaris. If an extension is specified, the
dll_name must be enclosed in quotation marks.

Examples Registers an ESP for the function named xp_echo, which is in the
sqlsrvdll.dll file. The name of the resulting ESP database object is also
xp_echo:

sp_addextendedproc xp_echo, "sqlsrvdll.dll"

Usage • Execute sp_addextendedproc from the master database.

• The esp_name is case sensitive. It must match the name of the
function in the DLL.

• The DLL represented by dll_name must reside on the server machine
on which the ESP is being created and the DLL directory must be in:

• Windows NT – $PATH

• Compaq Tru64 – $LD_LIBRARY_PATH

• HP – $SH_LIBRARY_PATH

If the file is not found, the search mechanism also searches
$SYBASE/dll on Windows NT and $SYBASE/lib on other platforms.

• On Windows NT – an ESP function should not call a C run-time signal
routine. This can cause XP Server to fail, because Open Server™ does
not support signal handling on Windows NT.

Permissions Only a System Administrator can execute sp_addextendedproc.

See also Commands create procedure

System procedures sp_dropextendedproc, sp_helpextendedproc

CHAPTER 8 System Procedures

747

sp_addexternlogin
Description Component Integration Services only Creates an alternate login

account and password to use when communicating with a remote server
through Component Integration Services.

Syntax sp_addexternlogin remote_server, login_name, remote_name
[, remote_password] [role_name]

Parameters remote_server
is the name of the remote server. The remote_server must be known to
the local server by an entry in the master.dbo.sysservers table.

login_name
is an account known to the local server. login_name must be
represented by an entry in the master.dbo.syslogins table. The “sa”
account, the “sso” account, and the login_name account are the only
users authorized to modify remote access for a given local user.

remote_name
is an account known to the remote_server and must be a valid account
on the node where the remote_server runs. This is the account used for
logging into the remote_server.

remote_password
is the password for remote_name.

role_name
is the Adaptive Server user’s assigned role. If role_name is specified,
login_name is ignored.

Examples Example 1 Tells the local server that when the login name “bobj” logs in,
access to the remote server OMNI1012 is by the remote name “jordan”
and the remote password “hitchpost”. Only the “bobj” account, the “sa”
account, and the “sso” account have the authority to add or modify a
remote login for the login name “bobj”:

sp_addexternlogin OMNI1012, bobj, jordan, hitchpost

Example 2 Shows a many-to-one mapping so that all Adaptive Server
Enterprise users that need a connection to DB2 can be assigned the same
name and password:

sp_addexternlogin DB2, NULL, login2, password2

Example 3 Adaptive Server Enterprise roles can also be assigned remote
logins. With this capability, anyone with a particular role can be assigned
a corresponding login name and password for a given remote server:

sp_addexternlogin

748

sp_addexternlogin DB2, NULL, login3, password3, role

Usage • sp_addexternlogin assigns an alternate login name and password to be
used when communicating with a remote server. It stores the
password internally in encrypted form.

Note You can use sp_addexternlogin only when Component
Integration Services is installed and configured.

• Mappings can be one-to-one (for specific users), role-to-one (role-
based) , many-to-one (server-based), or based on the client login and
password from the TDS loginrec.

• The login and password have a many to one mapping. That is, you can
assign all the users who need to log into a remote server the same
name and password.

• When several external logins are set for a user, the following
precedence will be followed for user connections to a remote server.
1) one-to-one mapping, 2) if there is no one-to-one mapping, active
role is used, 3) if neither one-to-one mapping nor active role is
present, then many-to-one mapping, 4) if none of the above is used
then Adaptive Server Enterprise login and password.

• You can assign external logins to Adaptive Server roles. You can
assign anyone with a particular role a corresponding login name and
password for any given remote server.

• When you establish a connection to a remote server for a user that has
more than one role active, each role is searched for an external login
mapping and uses the first mapping it finds to establish the login. This
is the same order as displayed by the stored procedure sp_activeroles.

• If you perform role mapping, and a user's role is changed (using set
role), any connections made to remote servers that used role mapping
must be disconnected. You cannot do this if a transaction is pending.
You cannot use set role if a transaction is active and remote
connections are present that used role mapping.

• Before running sp_addexternlogin, add the remote server to Adaptive
Server with sp_addserver.

• remote_name and remote_password must be a valid user and
password combination on the node where the server runs.

• Sites with automatic password expiration need to plan for periodic
updates of passwords for external logins.

CHAPTER 8 System Procedures

749

• Use sp_dropexternlogin to remove the definition of the external login.

• sp_addexternlogin cannot be used from within a transaction.

• The “sa” account and the login_name account are the only users who
can modify remote access for a given local user.

Permissions Only the login_name, a System Administrator, and a System Security
Officer can execute sp_addexternlogin.

See also System procedures sp_addserver, sp_dropexternlogin,
sp_helpexternlogin, sp_helpserver

sp_addgroup

750

sp_addgroup
Description Adds a group to a database. Groups are used as collective names in

granting and revoking privileges.

Syntax sp_addgroup grpname

Parameters grpname
is the name of the group. Group names must conform to the rules for
identifiers.

Examples Creates a group named accounting in the current database:

sp_addgroup accounting

Usage • sp_addgroup adds the new group to a database’s sysusers table. Each
group’s user ID (uid) is 16384 or larger (except “public,” which is
always 0).

• A group and a user cannot have the same name.

• Once a group has been created, add new users with sp_adduser. To
add an existing user to a group, use sp_changegroup.

• Every database is created with a group named “public”. Every user is
automatically a member of “public”. Each user can be a member of
one additional group.

Permissions Only the Database Owner, a System Administrator, or a System Security
Officer can execute sp_addgroup.

See also Commands grant, revoke

System procedures sp_adduser, sp_changegroup, sp_dropgroup,
sp_helpgroup

CHAPTER 8 System Procedures

751

sp_addlanguage
Description Defines the names of the months and days for an alternate language and its

date format.

Syntax sp_addlanguage language, alias, months, shortmons,
days, datefmt, datefirst

Parameters language
is the official language name for the language, entered in 7-bit ASCII
characters only.

alias
substitutes for the alternate language’s official name. Enter either
“null”, to make the alias the same as the official language name, or a
name you prefer. You can use 8-bit ASCII characters in an alias—
”français”, for example—if your terminal supports them.

months
is a list of the full names of the 12 months, ordered from January
through December, separated only by commas (no spaces allowed).
Month names can be up to 20 characters long and can contain 8-bit
ASCII characters.

shortmons
is a list of the abbreviated names of the 12 months, ordered from
January through December, separated only by commas (no spaces
allowed). Month abbreviations can be up to 9 characters long and can
contain 8-bit ASCII characters.

days
is a list of the full names of the seven days, ordered from Monday
through Sunday, separated only by commas (no spaces allowed). Day
names can be up to 30 characters long and can contain 8-bit ASCII
characters.

datefmt
is the date order of the date parts month/day/year for entering datetime
or smalldatetime data. Valid arguments are mdy, dmy, ymd, ydm, myd, or
dym. “dmy” indicates that dates are in day/month/year order.

datefirst
sets the number of the first weekday for date calculations. For example,
Monday is 1, Tuesday is 2, and so on.

sp_addlanguage

752

Examples This stored procedure adds French to the languages available on the server.
“null” makes the alias the same as the official name, “french”. Date order
is “dmy” – day/month/year. “1” specifies that lundi, the first item in the
days list, is the first weekday. Because the French do not capitalize the
names of the days and months except when they appear at the beginning
of a sentence, this example shows them being added in lowercase:

sp_addlanguage french, null,
"janvier,fevrier,mars,avril,mai,juin,juillet,
aout,septembre,octobre,novembre,decembre",
"jan,fev,mars,avr,mai,juin,jui,aout,sept,oct,
nov,dec",
"lundi,mardi,mercredi,jeudi,vendredi,samedi,
dimanche",
dmy, 1

Usage • Usually, you add alternate languages from one of Adaptive Server’s
Language Modules using the langinstall utility or the Adaptive Server
installation program. A Language Module supplies the names of the
dates and translated error messages for that language. However, if a
Language Module is not provided with your server, use
sp_addlanguage to define the date names and format.

• Use sp_modifylogin to change a user’s default language. If you set a
user’s default language to a language added with sp_addlanguage, and
there are no localization files for the language, the users receive an
informational message when they log in, indicating that their client
software could not open the localization files.

System Table Changes

• sp_addlanguage creates an entry in master.dbo.syslanguages,
inserting a unique numeric value in the langid column for each
alternate language. langid 0 is reserved for U.S. English.

• The language parameter becomes the official language name, stored
in the name column of master.dbo.syslanguages. Language names
must be unique. Use sp_helplanguage to display a list of the alternate
languages available on Adaptive Server.

• sp_addlanguage sets the alias column in master.dbo.syslanguages to
the official language name if NULL is entered for alias, but System
Administrators can change the value of syslanguage.alias with
sp_setlangalias.

• sp_addlanguage sets the upgrade column in master.dbo.syslanguages
to 0.

CHAPTER 8 System Procedures

753

Dates for Languages added with sp_addlanguage

• For alternate languages added with Language Modules, Adaptive
Server sends date values to clients as datetime datatype, and the
clients use localization files to display the dates in the user’s current
language. For date strings added with sp_addlanguage, use the convert
function to convert the dates to character data in the server, where
pubdate is datetime data and table is any table:

select convert(char, pubdate) from table

• When users perform data entry on date values and need to use date
names created with sp_addlanguage, the client must have these values
input as character data, and sent to the server as character data.

Permissions Only a System Administrator can execute sp_addlanguage.

See also Commands set

System procedures sp_droplanguage, sp_helplanguage,
sp_modifylogin, sp_setlangalias

Utilities langinstall

sp_addlogin

754

sp_addlogin
Description Adds a new user account to Adaptive Server; specifies the password

expiration interval, the minimum password length, and the maximum
number of failed logins allowed for a specified login at creation.

Syntax sp_addlogin loginame, passwd [, defdb]
[, deflanguage] [, fullname] [, passwdexp]
[, minpwdlen] [, maxfailedlogins]

Parameters loginame
is the user’s login name. Login names must conform to the rules for
identifiers.

passwd
is the user’s password. Passwords must be at least 6 characters long. If
you specify a shorter password, sp_addlogin returns an error message
and exits. Enclose passwords that include characters besides A-Z, a-z,
or 0-9 in quotation marks. Also enclose passwords that begin with 0-9
in quotation marks.

defdb
is the name of the default database assigned when a user logs into
Adaptive Server. If you do not specify defdb, the default, master, is
used.

deflanguage
is the official name of the default language assigned when a user logs
into Adaptive Server. The Adaptive Server default language, defined by
the default language id configuration parameter, is used if you do not
specify deflanguage.

fullname
is the full name of the user who owns the login account. This can be
used for documentation and identification purposes.

passwdexp
specifies the password expiration interval in days. It can be any value
between 0 and 32767, inclusive.

minpwdlen
specifies the minimum password length required for that login. The
values range between 0 and 30 characters.

maxfailedlogins
is the number of allowable failed login attempts. It can be any whole
number between 0 and 32767.

CHAPTER 8 System Procedures

755

Examples Example 1 Creates an Adaptive Server login for “albert” with the
password “longer1” and the default database corporate:

sp_addlogin albert, longer1, corporate

Example 2 Creates an Adaptive Server login for “claire”. Her password
is “bleurouge”, her default database is public_db, and her default language
is French:

sp_addlogin claire, bleurouge, public_db, french

Example 3 Creates an Adaptive Server login for “robertw”. His password
is “terrible2”, his default database is public_db, and his full name is
“Robert Willis”. Do not enclose null in quotes:

sp_addlogin robertw, terrible2, public_db, null,
"Robert Willis"

Example 4 Creates a login for “susan” with a password of “wonderful”,
a full name of “Susan B. Anthony”, and the server’s default database and
language. Do not enclose null in quotes:

sp_addlogin susan, wonderful, null, null, "Susan B.
Anthony"

Example 5 An alternative way of creating the login shown in example 4:

sp_addlogin susan, wonderful,
@fullname="Susan B. Anthony"

Usage • For ease of management, it is strongly recommended that all users’
Adaptive Server login names be the same as their operating system
login names. This makes it easier to correlate audit data between the
operating system and Adaptive Server. Otherwise, keep a record of
the correspondence between operating system and server login
names.

• After assigning a default database to a user with sp_addlogin, the
Database Owner or System Administrator must provide access to the
database by executing sp_adduser or sp_addalias.

• Although a user can use sp_modifylogin to change his or her own
default database at any time, a database cannot be used without
permission from the Database Owner.

• A user can use sp_password at any time to change his or her own
password. A System Security Officer can use sp_password to change
any user’s password.

sp_addlogin

756

• A user can use sp_modifylogin to change his or her own default
language. A System Administrator can use sp_modifylogin to change
any user’s default language.

• A user can use sp_modifylogin to change his or her own fullname. A
System Administrator can use sp_modifylogin to change any user’s
fullname.

Permissions Only a System Administrator or a System Security Officer can execute
sp_addlogin.

See also System procedures sp_addalias, sp_adduser, sp_droplogin,
sp_locklogin, sp_modifylogin, sp_password, sp_role

CHAPTER 8 System Procedures

757

sp_addmessage
Description Adds user-defined messages to sysusermessages for use by stored

procedure print and raiserror calls and by sp_bindmsg.

Syntax sp_addmessage message_num, message_text
[, language [, with_log [, replace]]]

Parameters message_num
is the message number of the message to add. The message number for
a user-defined message must be 20000 or greater.

message_text
is the text of the message to add. The maximum length is 1024 bytes.

language
is the language of the message to add. This must be a valid language
name in the syslanguages table. If this parameter is missing, Adaptive
Server assumes that messages are in the default session language
indicated by @@langid.

with_log
specifies whether the message is logged in the Adaptive Server error log
as well as in the Windows NT Event Log on Windows NT servers, if
logging is enabled. If with_log is TRUE, the message is logged,
regardless of the severity of the error. If with_log is FALSE, the
message may or may not be logged, depending on the severity of the
error. If you do not specify a value for with_log, the default is FALSE.

replace
specifies whether to overwrite an existing message of the same number
and languid. If replace is specified, the existing message is overwritten;
if replace is omitted, it is not. If you do not specify a value for replace,
the parameter’s default behavior specifies that the existing message will
not be overwritten.

Examples Example 1 Adds a message with the number 20001 to sysusermessages:

sp_addmessage 20001, "The table '%1!' is not owned
by the user '%2!'."

Example 2 Adds a message with the number 20002 to sysusermessages.
This message is logged in the Adaptive Server error log, as well as in the
Windows NT Event Log on Windows NT servers, if event logging is
enabled. If a message numbered 20002 exists in the default session
language, this message overwrites the old message:

sp_addmessage 20002, "The procedure'%1!' is not

sp_addmessage

758

owned by the user '%2!'.", NULL, TRUE, "replace"

Usage • sp_addmessage does not overwrite an existing message of the same
number and langid unless you specify @replace = “replace".

• print and raiserror recognize placeholders in the message text to print
out. A single message can contain up to 20 unique placeholders in any
order. These placeholders are replaced with the formatted contents of
any arguments that follow the message when the text of the message
is sent to the client.

The placeholders are numbered to allow reordering of the arguments
when Adaptive Server is translating a message to a language with a
different grammatical structure. A placeholder for an argument
appears as “%nn!”, a percent sign (%), followed by an integer from 1
to 20, followed by an exclamation point (!). The integer represents the
argument number in the string in the argument list. “%1!” is the first
argument in the original version, “%2!” is the second argument, and
so on.

Permissions Any user can execute sp_addmessage.

See also Commands print, raiserror

System procedures sp_altermessage, sp_bindmsg, sp_dropmessage,
sp_getmessage

CHAPTER 8 System Procedures

759

sp_addobjectdef
Description Component Integration Services only Specifies the mapping between

a local table and an external storage location.

Syntax sp_addobjectdef tablename, "objectdef" [,"objecttype"]

Parameters tablename
is the name of the object as it is defined in a local table. The tablename
can be in any of the following forms:

dbname.owner.object
dbname..object
owner.object
object

dbname and owner are optional. object is required. If you do not specify
an owner, the default (current user name) is used. If you specify a
dbname, it must be the current database name, and you must specify
owner or mark the owner with a placeholder in the format
dbname..object. Enclose any multipart tablename values in quotes.

objectdef
is a string naming the external storage location of the object. The
objecttype at objectdef can be a table, view, or read-only remote
procedure call (RPC) result set accessible to a remote server. A table,
view, or RPC uses the following format for objectdef:

server_name.dbname.owner.object

server_name and object are required. dbname and owner are optional,
but if they are not supplied, a placeholder in the format dbname..object,
is required.

See “Server Classes” in the Component Integration Services User’s
Guide for more information.

objecttype
is one of the values that specify the format of the object named by
objectdef. Table 8-2 describes the valid values. Enclose the objecttype
value in quotes.

Table 8-2: Allowable values for objecttype

Value Description

table Indicates that the object named by objectdef is a table accessible to a remote
server. This value is the default for objecttype.

view Indicates that the object named by objectdef is a view managed by a remote server
and processed as a table.

sp_addobjectdef

760

Table 8-3 summarizes how each objecttype is used.

Table 8-3: Summary of objecttype uses

Examples Example 1 Maps the local table accounts in the database finance to the
remote object pubs.dbo.accounts in the remote server named SYBASE.
The current database must be finance. A subsequent create table creates a
table in the pubs database. If pubs.dbo.accounts is an existing table, a
create existing table statement populates the table finance.dbo.accounts
with information about the remote table:

sp_addobjectdef "finance.dbo.accounts",
"SYBASE.pubs.dbo.accounts", "table"

Example 2 Maps the local table stockcheck to an RPC named stockcheck
on remote server NEWYORK in the database wallstreet with owner
“kelly”. The result set from RPC stockcheck is seen as a read-only table.
Typically, the next operation would be a create existing table statement for
the object stockcheck:

sp_addobjectdef stockcheck,
"NEWYORK.wallstreet.kelly.stockcheck", "rpc"

Usage • sp_addobjectdef specifies the mapping between a local table and an
external storage location. It identifies the format of the object at that
location.You can use sp_addobjectdef only when Component
Integration Services is installed and configured.

• sp_addobjectdef replaces the sp_addtabledef command.
sp_addobjectdef allows existing scripts to run without modification.
Internally, sp_addtabledef invokes sp_addobjectdef.

• Only the System Administrator can provide the name of another user
as a table owner.

• When objecttype is table, view, or rpc, the objectdef parameter takes
the following form:

rpc Indicates that the object named by objectdef is an RPC managed by a remote
server. Adaptive Server processes the result set from the RPC as a read-only table.

Value Description

objecttype
create
table

create
existing table

Write to
table

Read from
table

table Yes Yes Yes Yes

view No Yes Yes Yes

rpc No Yes No Yes

CHAPTER 8 System Procedures

761

"server_name.database.owner.tablename"

• server_name represents a server that has already been added to
sysservers by sp_addserver.

• database may not be required. Some server classes do not
support it.

• owner should always be provided, to avoid ambiguity. If you do
not specify owner, the remote object referenced may vary,
depending on whether or not the external login corresponds to the
remote object owner.

• tablename is the name of a remote server table.

• Use sp_addobjectdef before issuing any create table or create existing
table commands. create table is valid only for the objecttype values
table and file. When either create table or create existing table is used,
Adaptive Server checks sysattributes to determine whether any table
mapping has been specified for the object. Follow the objecttype
values view and rpc with create existing table statements.

• After the table has been created, all future references to the local table
name (by select, insert, delete and update) are mapped to the correct
location.

• For information about RMS, see the Component Integration Services
User’s Guide.

Permissions Any user can execute sp_addobjectdef.

See also Commands create existing table, create table, drop table

System procedures sp_addlogin, sp_addserver, sp_defaultloc,
sp_dropobjectdef, sp_helpserver

sp_add_qpgroup

762

sp_add_qpgroup
Description Adds an abstract plan group.

Syntax sp_add_qpgroup new_name

Parameters new_name
is the name of the new abstract plan group. Group names must be valid
identifiers.

Examples Creates a new abstract plan group named dev_plans:

sp_add_qpgroup dev_plans

Usage • Use sp_add_qpgroup to add abstract plan groups for use in capturing
or creating abstract plans. The abstract plan group must exist before
you can create, save, or copy plans into a group.

• sp_add_qpgroup cannot be run in a transaction.

Permissions Only a System Administrator or Database Owner can execute
sp_add_qpgroup.

See also Commands set

System procedures sp_help_qpgroup

CHAPTER 8 System Procedures

763

sp_addremotelogin
Description Authorizes a new remote server user by adding an entry to

master.dbo.sysremotelogins.

Syntax sp_addremotelogin remoteserver [, loginame [, remotename]]

Parameters remoteserver
is the name of the remote server to which the remote login applies. This
server must be known to the local server by an entry in the
master.dbo.sysservers table, which was created with sp_addserver.

Note This manual page uses the term “local server” to refer to the server
that is executing the remote procedures run from a “remote server.”

loginame
is the login name of the user on the local server. loginame must already
exist in the master.dbo.syslogins table.

remotename
is the name used by the remote server when logging into the local
server. All remotenames that are not explicitly matched to a local
loginame are automatically matched to a local name. In Example 1 , the
local name is the remote name that is used to log in. In Example 2 , the
local name is “albert.”

Examples Example 1 Creates an entry in the sysremotelogins table for the remote
server GATEWAY, for purposes of login validation. This is a simple way
to map remote names to local names when the local and remote servers
have the same users:

sp_addremotelogin GATEWAY

This example results in a value of -1 for the suid column and a value of
NULL for the remoteusername in a row of sysremotelogins.

Example 2 Creates an entry that maps all logins from the remote server
GATEWAY to the local user name “albert”. Adaptive Server adds a row to
sysremotelogins with Albert’s server user ID in the suid column and a null
value for the remoteusername:

sp_addremotelogin GATEWAY, albert

For these logins to be able to run RPCs on the local server, they must
specify a password for the RPC connection when they log into the local
server, or they must be “trusted” on the local server. To define these logins
as “trusted”, use sp_remoteoption.

sp_addremotelogin

764

Example 3 Maps a remote login from the remote user “pogo” on the
remote server GATEWAY to the local user “ralph”. Adaptive Server adds
a row to sysremotelogins with Ralph’s server user ID in the suid column
and “pogo” in the remoteusername column:

sp_addremotelogin GATEWAY, ralph, pogo

Usage • When a remote login is received, the local server tries to map the
remote user to a local user in three different ways:

• First, the local server looks for a row in sysremotelogins that
matches the remote server name and the remote user name. If the
local server finds a matching row, the local server user ID for that
row is used to log in the remote user. This applies to mappings
from a specified remote user.

• If no matching row is found, the local server searches for a row
that has a null remote name and a local server user ID other than
-1. If such a row is found, the remote user is mapped to the local
server user ID in that row. This applies to mappings from any
remote user from the remote server to a specific local name.

• Finally, if the previous attempts failed, the local server checks the
sysremotelogins table for an entry that has a null remote name and
a local server user ID of -1. If such a row is found, the local server
uses the remote name supplied by the remote server to look for a
local server user ID in the syslogins table. This applies when
login names from the remote server and the local server are the
same.

• The name of the local user may be different on the remote server.

• If you use sp_addremotelogin to map all users from a remote server to
the same local name, use sp_remoteoption to specify the “trusted”
option for those users. For example, if all users from the server
GOODSRV that are mapped to “albert” are to be “trusted”, use
sp_remoteoption as follows:

sp_remoteoption GOODSRV, albert, NULL, trusted, true

Logins that are not specified as “trusted” cannot execute RPCs on the
local server unless they specify passwords for the local server when
they log into the remote server. In Open Client™ Client-Library™,
the user can use the ct_remote_pwd routine to specify a password for
server-to-server connections. isql and bcp do not permit users to
specify a password for RPC connections.

CHAPTER 8 System Procedures

765

If users are logged into the remote server using “unified login”, these
logins are already authenticated by a security mechanism. These
logins must also be trusted on the local server, or the users must
specify passwords for the server when they log into the remote server.

• See the System Administration Guide for more information about
setting up servers for remote procedure calls and for using “unified
login.”

• Every remote login entry has a status. The default status for the trusted
option is false (not trusted). This means that when a remote login
comes in using that entry, the password is checked. If you do not
want the password to be checked, change the status of the trusted
option to true with sp_remoteoption.

Permissions Only a System Administrator can execute sp_addremotelogin.

See also System procedures sp_addlogin, sp_addserver, sp_dropremotelogin,
sp_helpremotelogin, sp_helprotect, sp_helpserver, sp_remoteoption

Utility isql

sp_add_resource_limit

766

sp_add_resource_limit
Description Creates a limit on the number of server resources that can be used by an

Adaptive Server login and/or an application to execute a query, query
batch, or transaction.

Syntax sp_add_resource_limit name, appname, rangename, limittype, limitvalue
[, enforced [, action [, scope]]]

Parameters name
is the Adaptive Server login to which the limit applies. You must
specify either a name or an appname or both. To create a limit that
applies to all users of a particular application, specify a name of NULL.

appname
is the name of the application to which the limit applies. You must
specify either a name or an appname or both. To create a limit that
applies to all applications used by an Adaptive Server login, specify an
appname of null. To create a limit that applies to a particular application,
specify the application name that the client program passes to the
Adaptive Server in the login packet.

rangename
is the time range during which the limit is enforced. The time range
must exist in the systimeranges system table of the master database at
the time you create the limit.

limittype
is the type of resource to limit. This must be one of the following:

limitvalue
is the maximum amount of the server resource (I/O cost, elapsed time
in seconds, or row count) that can be used by the login or application
before Adaptive Server enforces the limit. This must be a positive,
nonzero integer that is less than or equal to 231. The following table
indicates what value to specify for each limit type:

Limit type Description

row_count Limits the number of rows a query can return

elapsed_time Limits the number of seconds, in wall-clock time, that a query batch or transaction can run

io_cost Limits either the actual cost or the optimizer’s cost estimate for processing a query

Limit type Limit value

row_count The maximum number of rows that can be returned by a query before the limit is enforced.

elapsed_time The number of seconds, in wall-clock time, that a query batch or transaction can run before
the limit is enforced.

CHAPTER 8 System Procedures

767

enforced
determines whether the limit is enforced prior to or during query
execution. The following table lists the valid values for each limit type:

If you specify an enforced value of 3, Adaptive Server performs a
logical “or” of 1 and 2. For example, assume enforced is set to 3. If you
run a query whose io_cost exceeds the estimated cost, the specified
action is executed. If the query is within the limits specified for
estimated cost but exceeds the actual cost, the specified action is also
executed.

If you do not specify an enforced value, Adaptive Server enforces limit
2 for row_count and elapsed_time and limit 3 for io_cost. In other words,
if the limit type is io_cost, the specified action is executed if the query
exceeds either the estimated or actual cost.

action
is the action to take when the limit is exceeded. The following action
codes are valid for all limit types:

If you do not specify an action value, Adaptive Server uses a default
value of 2 (abort the query batch).

io_cost A unitless measure derived from the optimizer’s costing formula.

Limit type Limit value

enforced
code Description Limit type

1 Action is taken when the estimated I/O cost of
execution exceeds the specified limit.

io_cost

2 Action is taken when the actual row count,
elapsed time, or I/O cost of execution exceeds
the specified limit.

row_count

elapsed_time

io_cost

3 Action is taken when either the estimated cost
or the actual cost exceeds the specified limit.

io_cost

action code Description

1 Issues a warning

2 Aborts the query batch

3 Aborts the transaction

4 Kills the session

sp_add_resource_limit

768

scope
is the scope of the limit. Specify one of the following codes appropriate
to the type of limit:

If you do not specify a scope value, the limit applies to all possible
scopes for the limit type.

Examples Example 1 Creates a resource limit that applies to all users of the payroll
application during the early_morning time range. If the query batch takes
more than 120 seconds to execute, Adaptive Server issues a warning:

sp_add_resource_limit NULL, payroll, early_morning, elapsed_time, 120, 2,
1, 2

Example 2 Creates a resource limit that applies to all ad hoc queries and
applications run by “joe_user” during the midday time range. When a
query returns more than 5000 rows, Adaptive Server aborts the
transaction:

sp_add_resource_limit joe_user, NULL, midday, row_count, 5000, 2, 3, 1

Example 3 Creates a resource limit that applies to all ad hoc queries and
applications run by “joe_user” during the midday time range. When the
optimizer estimates that the I/O cost would exceed 650, Adaptive Server
aborts the transaction:

sp_add_resource_limit joe_user, NULL, midday, io_cost, 650, 1, 3, 1

Usage • You must enable sp_configure "allow resource limits" for resource
limits to take effect.

• Multiple resource limits can exist for a given user, application, limit
type, scope, and enforcement time, as long as their time ranges do not
overlap.

scope code Description Limit type

1 Query io_cost

row_count

2 Query batch (one or more SQL statements sent by the client to the server) elapsed_time

4 Transaction elapsed_time

6 Query batch and transaction elapsed_time

CHAPTER 8 System Procedures

769

• All limits for the currently active named time ranges and the “at all
times” range for a login and/or application name are bound to the
user’s session at login time. Therefore, if a user logs into Adaptive
Server independently of a given application, resource limits that
restrict the user in combination with that application do not apply. To
guarantee restrictions on that user, create a resource limit that is
specific to the user and independent of any application.

• Since either the user login name or application name, or both, are used
to identify a resource limit, Adaptive Server observes a predefined
search precedence while scanning the sysresourcelimits table for
applicable limits for a login session. The following table describes the
precedence of matching ordered pairs of login name and application
name:

If one or more matches are found for a given precedence level, no
further levels are searched. This prevents conflicts regarding similar
limits for different login/application combinations.

If no match is found at any level, no limit is imposed on the session.

• When you add, delete, or modify resource limits, Adaptive Server
rebinds the limits for each session for that login and/or application at
the beginning of the next query batch for that session.

• When you change the currently active time ranges, Adaptive Server
rebinds limits for the session. This rebinding occurs at the beginning
of the next query batch.

• You cannot associate the limits for a particular login, application, or
login/application combination with named time ranges that overlap
(except for limits that share the same time range).

For example, if a user is limited to retrieving 50 rows between 9:00
a.m. and 1:00 p.m., you cannot create a second resource limit for the
same user that limits him to retrieving 100 rows between 10:00 a.m.
and 12:00 noon. However, you can create a resource hierarchy by
assigning the 100-row limit to the user between 10:00 a.m. and 12:00
noon and assigning the 50-row limit to an application, like isql,
between 9:00 a.m. and 1:00 p.m.

Level Login name Application name

 1 “joe_user” payroll

 2 NULL payroll

 3 “joe_user” NULL

sp_add_resource_limit

770

• For more information on resource limits, see the System
Administration Guide.

Permissions Only a System Administrator can execute sp_add_resource_limit.

See also System procedures sp_configure, sp_drop_resource_limit,
sp_help_resource_limit, sp_modify_resource_limit

Utility isql

CHAPTER 8 System Procedures

771

sp_addsegment
Description Defines a segment on a database device in a database.

Syntax sp_addsegment segname, dbname, devname

Parameters segname
is the name of the new segment to add to the syssegments table of the
database. Segment names are unique in each database.

dbname
specifies the name of the database in which to define the segment. dbname
must be the name of the current database or match the database name
qualifying sp_addsegment.

devname
is the name of the database device in which to locate segname. A database
device can have more than one segment associated with it.

Examples Example 1 Creates a segment named indexes for the database pubs2 on the
database device named dev1:

sp_addsegment indexes, pubs2, dev1

Example 2 Creates a segment named indexes for the database pubs2 on the
database device named dev1:

disk init
name = "pubs2_dev",
physname = "/dev/pubs_2_dev",
vdevno = 9, size = 5120

go
alter database pubs2 on pubs2_dev = 2
go
pubs2..sp_addsegment indexes, pubs2, dev1

Usage • sp_addsegment defines segment names for database devices created with
disk init and assigned to a specific database with an alter database or create
database command.

• After defining a segment, use it in create table and create index commands
and in the sp_placeobject procedure to place a table or index on the
segment.

When a table or index is created on a particular segment, all subsequent
data for the table or index is located on the segment.

• Use the system procedure sp_extendsegment to extend the range of a
segment to another database device used by the same database.

sp_addsegment

772

• If a database is extended with alter database on a device used by that
database, the segments mapped to that device are also extended.

• The system and default segments are mapped to each database device
included in a create database or alter database command. The
logsegment is also mapped to each device, unless you place it on a
separate device with the log on extension to create database or with
sp_logdevice. See the System Administration Guide for more
information.

• If you attempt to use sp_addsegment in a database that has both data
and the log on the same device, Adaptive Server returns an error
message.

Permissions Only the Database Owner or a System Administrator can execute
sp_addsegment.

See also Commands alter database, create index, create table, disk init

System procedures sp_dropsegment, sp_extendsegment, sp_helpdb,
sp_helpdevice, sp_placeobject

CHAPTER 8 System Procedures

773

sp_addserver
Description Defines a remote server, or defines the name of the local server.

Syntax sp_addserver lname [, class [, pname]]

Parameters lname
is the name used to address the server on your system. sp_addserver
adds a row to the sysservers table if there is no entry already present for
lname. Server names must be unique and must conform to the rules for
identifiers.

class
identifies the category of server being added. Table 8-4 lists allowable
values for the class parameter:

Table 8-4: Allowable values for server_class parameter

pname
is the name in the interfaces file for the server named lname. This
enables you to establish local aliases for other Adaptive Servers or
Backup Servers that you may need to communicate with. If you do not
specify a pname, lname is used.

Examples Example 1 Adds an entry for a remote server named GATEWAY in
master.dbo.sysservers. The pname is also GATEWAY:

sp_addserver GATEWAY

Example 2 Adds an entry for a remote server named GATEWAY in
master.dbo.sysservers. The pname is VIOLET. If there is already a
sysservers entry for GATEWAY with a different pname, the pname of
server GATEWAY changes to VIOLET:

sp_addserver GATEWAY, null, VIOLET

class parameter
value Description

access_server Component Integration Services only – Server coded to the DirectConnect™ specification

db2 Component Integration Services only – Server accessible by Net-Gateway™ or MDI™
Database Gateway

direct_connect Component Integration Services only – functionally the same as access_server

local Local server (there can be only one) used only once after start-up, or after restarting Adaptive
Server, to identify the local server name so that it can appear in messages printed by Adaptive
Server

null Remote server with no category defined

sql_server Another Adaptive Server or Omni server (this is the default value)

sp_addserver

774

Example 3 Adds an entry for the local server named PRODUCTION:

sp_addserver PRODUCTION, local

Example 4 Adds an entry for a remote server known to the local server as
SQLSRV10. The remote server is of server class sql_server. The
network_name for SQLSRV10 is SS_MOSS:

sp_addserver SQLSRV10, sql_server, SS_MOSS

Usage • The sysservers table identifies the name of the local server and its
options, and any remote servers that the local server can communicate
with.

To execute a remote procedure call on a remote server, the remote
server must exist in the sysservers table.

• If lname already exists as a server name in the sysservers table,
sp_addserver changes the remote server’s srvnetname to the name
specified by pname. When it does this, sp_addserver reports which
server it changed, what the old network name was, and what the new
network name is.

• The installation or upgrade process for your server adds an entry in
sysservers for a Backup Server. If you remove this entry, you cannot
back up your databases.

• Adaptive Server requires that the Backup Server have an lname of
SYB_BACKUP. If you do not want to use that as the name of your
Backup Server, or if you have more than one Backup Server running
on your system, modify the pname for server SYB_BACKUP with
sp_addserver so that Adaptive Server can communicate with Backup
Server for database dumps and loads.

• If you specify an lname, pname and class that already exist in
sysservers, sp_addserver prints an error message and does not update
sysservers.

• Use sp_serveroption to set or clear server options.

• For information on using Component Integration Services, see the
Component Integration Services User’s Guide.

Permissions Only a System Security Officer can execute sp_addserver.

See also System procedures sp_addremotelogin, sp_dropremotelogin,
sp_dropserver, sp_helpremotelogin, sp_helpserver, sp_serveroption

CHAPTER 8 System Procedures

775

sp_addthreshold
Description Creates a threshold to monitor space on a database segment. When free

space on the segment falls below the specified level, Adaptive Server
executes the associated stored procedure.

Syntax sp_addthreshold dbname, segname, free_space, proc_name

Parameters dbname
is the database for which to add the threshold. This must be the name of
the current database.

segname
is the segment for which to monitor free space. Use quotes when
specifying the “default” segment.

free_space
is the number of free pages at which the threshold is crossed. When free
space in the segment falls below this level, Adaptive Server executes
the associated stored procedure.

proc_name
is the stored procedure to be executed when the amount of free space on
segname drops below free_space. The procedure can be located in any
database on the current Adaptive Server or on an Open Server.
Thresholds cannot execute procedures on remote Adaptive Servers.

Examples Example 1 Creates a threshold for segment1. When the free space on
segment1 drops below 200 pages, Adaptive Server executes the procedure
pr_warning:

sp_addthreshold mydb, segment1, 200, pr_warning

Example 2 Creates a threshold for the user_data segment. When the free
space on user_data falls below 100 pages, Adaptive Server executes a
remote procedure call to the Open Server mail_me procedure:

sp_addthreshold userdb, user_data, 100, "o_server...mail_me"

Example 3 Creates a threshold on the indexes segment of the pubs2
database. You can issue this command from any database:

pubs2..sp_addthreshold pubs2, indexes, 100, pr_warning

Usage • See the System Administration Guide for more information about
using thresholds.

sp_addthreshold

776

Crossing a threshold

• When a threshold is crossed, Adaptive Server executes the associated
stored procedure. Adaptive Server uses the following search path for
the threshold procedure:

• If the procedure name does not specify a database, Adaptive
Server looks in the database in which the threshold was crossed.

• If the procedure is not found in this database, and the procedure
name begins with “sp_”, Adaptive Server looks in the
sybsystemprocs database.

If the procedure is not found in either database, Adaptive Server sends
an error message to the error log.

• Adaptive Server uses a hysteresis value, the global variable
@@thresh_hysteresis, to determine how sensitive thresholds are to
variations in free space. Once a threshold executes its procedure, it is
deactivated. The threshold remains inactive until the amount of free
space in the segment rises to @@thresh_hysteresis pages above the
threshold. This prevents thresholds from executing their procedures
repeatedly in response to minor fluctuations in free space.

The last-chance threshold

• By default, Adaptive Server monitors the free space on the segment
where the log resides and executes sp_thresholdaction when the
amount of free space is less than that required to permit a successful
dump of the transaction log. This amount of free space, called the
last-chance threshold, is calculated by Adaptive Server and cannot be
changed by users.

• If the last-chance threshold is crossed before a transaction is logged,
Adaptive Server suspends the transaction until log space is freed. Use
sp_dboption to change this behavior for a particular database.
sp_dboption "abort tran on log full", true causes Adaptive Server to roll
back all transactions that have not yet been logged when the
last-chance threshold is crossed.

• Only databases that store their logs on a separate segment can have a
last-chance threshold. Use sp_logdevice to move the transaction log to
a separate device.

Creating additional thresholds

• Each database can have up to 256 thresholds, including the
last-chance threshold.

CHAPTER 8 System Procedures

777

• When you add a threshold, it must be at least 2 times
@@thresh_hysteresis pages from the closest threshold.

Creating threshold procedures

• Any user with create procedure permission can create a threshold
procedure in a database. Usually, a System Administrator creates
sp_thresholdaction in the sybsystemprocs database, and the Database
Owners create threshold procedures in user databases.

• sp_addthreshold does not verify that the specified procedure exists. It
is possible to add a threshold before creating the procedure it
executes.

• sp_addthreshold checks to ensure that the user adding the threshold
procedure has been directly granted the “sa_role”. All system roles
active when the threshold procedure is created are entered in
systhresholds as valid roles for the user writing the procedure.
However, only directly granted system roles are activated when the
threshold fires. Indirectly granted system roles and user-defined roles
are not activated.

• Adaptive Server passes four parameters to a threshold procedure:

• @dbname, varchar(30), which identifies the database

• @segmentname, varchar(30), which identifies the segment

• @space_left, int, which indicates the number of free pages
associated with the threshold

• @status, int, which has a value of 1 for last-chance thresholds and
0 for other thresholds

These parameters are passed by position rather than by name; your
threshold procedure can use other names for them, but it must declare
them in the order shown and with the correct datatypes.

• It is not necessary to create a different procedure for each threshold.
To minimize maintenance, you can create a single threshold
procedure in the sybsystemprocs database that is executed for all
thresholds in Adaptive Server.

• Include print and raiserror statements in the threshold procedure to
send output to the error log.

sp_addthreshold

778

Executing threshold procedures

• Tasks initiated when a threshold is crossed execute as background
tasks. These tasks do not have an associated terminal or user session.
If you execute sp_who while these tasks are running, the status
column shows “background”.

• Adaptive Server executes the threshold procedure with the
permissions the user had at the time he or she added the threshold,
minus any permissions that have since been revoked.

• Each threshold procedure uses one user connection, for as long as it
takes for the procedure to execute.

Changing or deleting thresholds

• Use sp_helpthreshold for information about existing thresholds.

• Use sp_modifythreshold to associate a threshold with a new threshold
procedure, free-space value, or segment. (You cannot change the
free-space value or segment name associated with the last-chance
threshold.)

Each time a user modifies a threshold, that user becomes the threshold
owner. When the threshold is crossed, Adaptive Server executes the
threshold with the permissions the owner had at the time he or she
modified the threshold, minus any permissions that have since been
revoked.

• Use sp_dropthreshold to drop a threshold from a segment.

Disabling free-space accounting

 Warning! System procedures cannot provide accurate information about
space allocation when free-space accounting is disabled.

• Use the no free space acctg option of sp_dboption to disable free-space
accounting on non-log segments.

• You cannot disable free-space accounting on log segments.

Permissions Only the Database Owner or a System Administrator can execute
sp_addthreshold.

See also Commands create procedure, dump transaction

Functions lct_admin

System procedures sp_dboption, sp_dropthreshold, sp_helpthreshold,
sp_modifythreshold, sp_thresholdaction

CHAPTER 8 System Procedures

779

sp_add_time_range
Description Adds a named time range to an Adaptive Server.

Syntax sp_add_time_range name, startday, endday,
starttime, endtime

Parameters name
is the name of the time range. Time range names must be 30 characters
or fewer. The name cannot already exist in the systimeranges system
table of the master database.

startday
is the day of the week on which the time range begins. This must be the
full weekday name for the default server language, as stored in the
syslanguages system table of the master database.

endday
is the day of the week on which the time range ends. This must be the
full weekday name for the default server language, as stored in the
syslanguages system table of the master database. The endday can fall
either earlier or later in the week than the startday or can be the same
day as the startday.

starttime
is the time of day when the time range begins. Specify the starttime in
terms of a 24-hour clock, with a value between “00:00” (midnight) and
“23:59” (11:59 p.m.). Use the following form:

"HH:MM"

endtime
is the time of day when the time range ends. Specify the endtime in
terms of a 24-hour clock, with a value between “00:00” (midnight) and
“23:59” (11:59 p.m.). Use the following form:

"HH:MM"

Note To create a time range that spans the entire day, specify both a start
time and an end time of “00:00”.

The endtime must occur later in the day than the starttime, unless
endtime is “00:00”.

Examples Example 1 Creates the business_hours time range, which is active
Monday through Friday, from 9:00 a.m. to 5:00 p.m.:

sp_add_time_range business_hours, monday, Friday, "09:00", "17:00"

sp_add_time_range

780

Example 2 Creates two time ranges, before_hours and after_hours, that,
together, span all non-business hours Monday through Friday. The
before_hours time range covers the period from 12:00 midnight to 9:00
a.m., Monday through Friday. The after_hours time range covers the
period from 6:00 p.m. through 12:00 midnight, Monday through Friday:

sp_add_time_range before_hours, Monday, Friday, "00:00", "09:00"

sp_add_time_range after_hours, Monday, Friday, "18:00", "00:00"

Example 3 Creates the weekends time range, which is 12:00 midnight
Saturday to 12:00 midnight Sunday:

sp_add_time_range weekends, Saturday, Sunday, "00:00", "00:00"

Example 4 Creates the Fri_thru_Mon time range, which is 9:00 a.m. to
5:00 p.m., Friday, Saturday, Sunday, and Monday:

sp_add_time_range Fri_thru_Mon, Friday, Monday, "09:00", "17:00"

Example 5 Creates the Wednesday_night time range, which is Wednesday
from 5:00 p.m. to 12:00 midnight:

sp_add_time_range Wednesday_night, Wednesday, Wednesday, "17:00", "00:00"

Usage • Adaptive Server includes one named time range, the “at all times”
time range. This time range covers all times, from the first day
through the last of the week, from 00:00 through 23:59. It cannot be
modified or deleted.

• Adaptive Server generates a unique ID number for each named time
range and inserts it into the systimeranges system table,

• When storing a time range in the systimeranges system table,
Adaptive Server converts its startday and endday values into integers.
For servers with a default language of us_english, the week begins on
Monday (day 1) and ends on Sunday (day 7).

• It is possible to create a time range that overlaps with one or more
other time ranges.

• Range days are contiguous, so the days of the week can wrap around
the end to the beginning of the week. In other words, Sunday and
Monday are contiguous days, as are Tuesday and Wednesday.

CHAPTER 8 System Procedures

781

• The active time ranges are bound to a session at the beginning of each
query batch. A change in the server’s active time ranges due to a
change in actual time has no effect on a session during the processing
of a query batch. In other words, if a resource limit restricts a query
batch during a given time range but a query batch begins before that
time range becomes active, the query batch that is already running is
not affected by the resource limit.

• The addition, modification, and deletion of time ranges using the
system procedures does not affect the active time ranges for sessions
currently in progress.

• If a resource limit has a transaction as its scope, and a change occurs
in the server’s active time ranges while a transaction is running, the
newly active time range does not affect the transaction currently in
progress.

• Changes to a resource limit that has a transaction as its scope does not
affect any transactions currently in progress.

• For more information on time ranges, see the System Administration
Guide.

Permissions Only a System Administrator can execute sp_add_time_range.

See also System procedures sp_add_resource_limit, sp_drop_time_range,
sp_modify_time_range

sp_addtype

782

sp_addtype
Description Creates a user-defined datatype.

Syntax sp_addtype typename,
phystype [(length) | (precision [, scale])]
[, "identity" | nulltype]

Parameters typename
is the name of the user-defined datatype. Type names must conform to
the rules for identifiers and must be unique in each database.

phystype
is the physical or Adaptive Server-supplied datatype on which to base
the user-defined datatype. You can specify any Adaptive Server
datatype except timestamp.

The char, varchar, unichar, univarchar, nchar, nvarchar, binary, and
varbinary datatypes expect a length in parentheses. If you do not supply
one, Adaptive Server uses the default length of 1 character.

The float datatype expects a binary precision in parentheses. If you do
not supply one, Adaptive Server uses the default precision for your
platform.

The numeric and decimal datatypes expect a decimal precision and
scale, in parentheses and separated by a comma. If you do not supply
them, Adaptive Server uses a default precision of 18 and a scale of 0.

Enclose physical types that include punctuation, such as parentheses or
commas, within single or double quotes.

identity
indicates that the user-defined datatype has the IDENTITY property.
Enclose the identity keyword within single or double quotes. You can
specify the IDENTITY property only for numeric datatypes with a scale
of 0.

IDENTITY columns store sequential numbers, such as invoice
numbers or employee numbers, that are generated by Adaptive Server.
The value of the IDENTITY column uniquely identifies each row in a
table. IDENTITY columns are not updatable and do not allow null
values.

CHAPTER 8 System Procedures

783

nulltype
indicates how the user-defined datatype handles null value entries.
Acceptable values for this parameter are null, NULL, nonull, NONULL,
"not null", and "NOT NULL". Any nulltype that includes a blank space
must be enclosed in single or double quotes.

If you omit both the IDENTITY property and the nulltype, Adaptive
Server creates the datatype using the null mode defined for the
database. By default, datatypes for which no nulltype is specified are
created NOT NULL (that is, null values are not allowed and explicit
entries are required). For compliance to the SQL standards, use the
sp_dboption system procedure to set the allow nulls by default option to
true. This changes the database’s null mode to NULL.

Examples Example 1 Creates a user-defined datatype called ssn to be used for
columns that hold social security numbers. Since the nulltype parameter is
not specified, Adaptive Server creates the datatype using the database’s
default null mode. Notice that varchar(11) is enclosed in quotation marks,
because it contains punctuation (parentheses):

sp_addtype ssn, "varchar(11)"

Example 2 Creates a user-defined datatype called birthday that allows null
values:

sp_addtype birthday, "datetime", null

Example 3 Creates a user-defined datatype called temp52 used to store
temperatures of up to 5 significant digits with 2 places to the right of the
decimal point:

sp_addtype temp52, "numeric(5,2)"

Example 4 Creates a user-defined datatype called row_id with the
IDENTITY property, to be used as a unique row identifier. Columns
created with this datatype store system-generated values of up to 10 digits
in length:

sp_addtype "row_id", "numeric(10,0)", "identity"

Example 5 Creates a user-defined datatype with an underlying type of
sysname. Although you cannot use the sysname datatype in a create table,
alter table, or create procedure statement, you can use a user-defined
datatype that is based on sysname:

sp_addtype systype, sysname

sp_addtype

784

Usage • sp_addtype creates a user-defined datatype and adds it to the systypes
system table. Once a user-defined datatype is created, you can use it
in create table and alter table statements and bind defaults and rules to
it.

• Build each user-defined datatype in terms of one of the Adaptive
Server-supplied datatypes, specifying the length or the precision and
scale, as appropriate. You cannot override the length, precision, or
scale in a create table or alter table statement.

• A user-defined datatype name must be unique in the database, but
user-defined datatypes with different names can have the same
definitions.

• If nchar or nvarchar is specified as the phystype, the maximum length
of columns created with the new type is the length specified in
sp_addtype multiplied by the value of @@ncharsize at the time the
type was added.

• If unichar or univarchar is specified as the phystype, the maximum
length of columns created with the new type is the length specified in
sp_addtype multiplied by the value of 2 at the time the type was
added.

• Each system type has a hierarchy, stored in the systypes system table.
User-defined datatypes have the same datatype hierarchy as the
physical types on which they are based. In a mixed-mode expression,
all types are converted to a common type, the type with the lowest
hierarchy.

Use the following query to list the hierarchy for each system-supplied
and user-defined type in your database:

select name, hierarchy
from systypes
order by hierarchy

Datatypes with the IDENTITY property

• If a user-defined datatype is defined with the IDENTITY property, all
columns created from it are IDENTITY columns. You can specify
IDENTITY, NOT NULL, or neither in the create or alter table
statement. Following are three different ways to create an IDENTITY
column from a user-defined datatype with the IDENTITY property:

create table new_table (id_col IdentType)
create table new_table (id_col IdentType
identity)

CHAPTER 8 System Procedures

785

create table new_table (id_col IdentType not
null)

• When you create a column with the create table or alter table
statement, you can override the null type specified with the
sp_addtype system procedure:

• Types specified as NOT NULL can be used to create NULL or
IDENTITY columns.

• Types specified as NULL can be used to create NOT NULL
columns, but not to create IDENTITY columns.

Note If you try to create a null column from an IDENTITY type,
the create or alter table statement fails.

Permissions Any user can execute sp_addtype.

See also Commands create default, create rule, create table

Datatypes User-defined datatypes

System procedures sp_bindefault, sp_bindrule, sp_dboption,
sp_droptype, sp_rename, sp_unbindefault, sp_unbindrule

sp_addumpdevice

786

sp_addumpdevice
Description Adds a dump device to Adaptive Server.

Syntax sp_addumpdevice {"tape" | "disk"}, logicalname,
physicalname [, tapesize]

Parameters "tape"
for tape drives. Enclose tape in quotes.

"disk"
is for a disk or a file device. Enclose disk in quotes.

logicalname
is the “logical” dump device name. It must be a valid identifier. Once
you add a dump device to sysdevices, you can specify its logical name
in the load and dump commands.

physicalname
is the physical name of the device. You can specify either an absolute
path name or a relative path name. During dumps and loads, the Backup
Server resolves relative path names by looking in Adaptive Server’s
current working directory. Enclose names containing
non-alphanumeric characters in quotation marks. For UNIX platforms,
specify a non-rewinding tape device name.

tapesize
is the capacity of the tape dump device, specified in megabytes.
OpenVMS systems ignore the tapesize parameter if specified. Other
platforms require this parameter for tape devices but ignore it for disk
devices. The tapesize should be at least five database pages (each page
requires 2048 bytes). Sybase recommends that you specify a capacity
that is slightly below the rated capacity for your device.

Examples Example 1 Adds a 40MB tape device. Dump and load commands can
reference the device by its physical name, /dev/nrmt8, or its logical name,
mytapedump:

sp_addumpdevice "tape", mytapedump, "/dev/nrmt8", 40

Example 2 Adds a disk device named mydiskdump. Specify an absolute
or relative path name and a file name:

sp_addumpdevice "disk", mydiskdump, "/dev/rxy1d/dump.dat"

Usage • sp_addumpdevice adds a dump device to the master.dbo.sysdevices
table. Tape devices are assigned a cntrltype of 3; disk devices are
assigned a cntrltype of 2.

CHAPTER 8 System Procedures

787

• To use an operating system file as a dump device, specify a device of
type disk and an absolute or relative path name for the physicalname.
Omit the tapesize parameter. If you specify a relative path name,
dumps are made to—or loaded from—the current Adaptive Server
working directory at the time the dump or load command executes.

• Ownership and permission problems can interfere with the use of disk
or file dump devices. sp_addumpdevice adds the device to the
sysdevices table, but does not guarantee that you can create a file as a
dump device or that users can dump to a particular device.

• The with capacity = megabytes clause of the dump database and dump
transaction commands can override the tapesize specified with
sp_addumpdevice. On platforms that do not reliably detect the
end-of-tape marker, the Backup Server issues a volume change
request after the specified number of megabytes have been dumped.

• When a dump device fails, use sp_dropdevice to drop it from
sysdevices. After replacing the device, use sp_addumpdevice to
associate the logical device name with the new physical device. This
avoids updating backup scripts and threshold procedures each time a
dump device fails.

• To add database devices to sysdevices, use the disk init command.

Permissions Only a System Administrator can execute sp_addumpdevice.

See also Commands disk init, dump database, dump transaction, load database,
load transaction

System procedures sp_dropdevice, sp_helpdevice

sp_adduser

788

sp_adduser
Description Adds a new user to the current database.

Syntax sp_adduser loginame [, name_in_db [, grpname]]

Parameters loginame
is the user’s name in master.dbo.syslogins.

name_in_db
is a new name for the user in the current database.

grpname
adds the user to an existing group in the database.

Examples Example 1 Adds “margaret” to the database. Her database user name is the
same as her Adaptive Server login name, and she belongs to the default
group, “public”:

sp_adduser margaret

Example 2 Adds “haroldq” to the database. When “haroldq” uses the
current database, his name is “harold.” He belongs to the fort_mudge
group, as well as to the default group “public”:

sp_adduser haroldq, harold, fort_mudge

Usage • The Database Owner executes sp_adduser to add a user name to the
sysusers table of the current database, enabling the user to access the
current database under his or her own name.

• Specifying a name_in_db parameter gives the new user a name in the
database that is different from his or her login name in Adaptive
Server. The ability to assign a user a different name is provided as a
convenience. It is not an alias, as provided by sp_addalias, since it is
not mapped to the identity and privileges of another user.

• A user and a group cannot have the same name.

• A user can be a member of only one group other than the default
group, “public”. Every user is a member of the default group,
“public”. Use sp_changegroup to change a user’s group.

• In order to access a database, a user must either be listed in sysusers
(with sp_adduser) or mapped to another user in sysalternates (with
sp_addalias), or there must be a “guest” entry in sysusers.

Permissions Only the Database Owner, a System Administrator, or a System Security
Officer can execute sp_adduser.

See also Commands grant, revoke, use

CHAPTER 8 System Procedures

789

System procedures sp_addalias, sp_addgroup, sp_changegroup,
sp_dropalias, sp_dropgroup, sp_helpuser

sp_altermessage

790

sp_altermessage
Description Enables and disables the logging of a system-defined or user-defined message

in the Adaptive Server error log.

Syntax sp_altermessage message_id, parameter, parameter_value

Parameters message_id
is the message number of the message to be altered. This is the number of
the message as it is recorded in the error column in the sysmessages or
sysusermessages system table.

parameter
is the message parameter to be altered. The maximum length is 30 bytes.
The only valid parameter is with_log.

parameter_value
is the new value for the parameter specified in parameter. The maximum
length is 5 bytes. Values are true and false.

Examples Specifies that message number 2000 in sysmessages should be logged in the
Adaptive Server error log and also in the Windows NT Event Log (if logging
is enabled):

sp_altermessage 2000, 'with_log', 'TRUE'

Usage • If the parameter_value is true, the specified message is always logged. If
it is false, the default logging behavior is used; the message may or may
not be logged, depending on the severity of the error and other factors.
Setting the parameter_value to false produces the same behavior that
would occur if sp_altermessage had not been called.

• On Windows NT servers, sp_altermessage also enables and disables
logging in the Windows NT Event Log.

Permissions Only the Database Owner or a System Administrator can execute
sp_altermessage.

See also System procedures sp_addmessage, sp_dropmessage

CHAPTER 8 System Procedures

791

sp_audit
Description Allows a System Security Officer to configure auditing options.

Syntax sp_audit option, login_name, object_name [,setting]

Parameters option
is the name of the auditing option to set. Table 8-5 lists the valid
auditing options.

Table 8-5: Auditing options

Option Description

adhoc Allows users to use sp_addauditrecord to add their own user-defined audit records to the audit
trail.

all Audits all actions performed by a particular user or by users with a particular role. You can only
use this option to specify system roles.

Note Auditing all actions does not affect whether users can add ad hoc audit records.

alter Audits the execution of the alter table or alter database commands.

bcp Audits the execution of the bcp in utility.

bind Audits the execution of sp_bindefault, sp_bindmsg, and sp_bindrule system procedures.

cmdtext Audits all actions of a particular user.

create Audits the creation of database objects.

dbaccess Audits access to the current database from another database.

dbcc Audits the execution of any dbcc command.

delete Audits the deletion of rows from a table or view.

disk Audits the execution of disk init, disk refit, disk reinit, disk mirror, disk unmirror, and disk remirror.

drop Audits the dropping of database objects.

dump Audits the execution of dump database or dump transaction.

errors Audits errors, whether fatal or not.

exec_procedure Audits the execution of a stored procedure.

exec_trigger Audits the execution of a trigger.

func_dbaccess Audits access to a database via a Transact-SQL function.

func_obj_access Audits access to a database object via a Transact-SQL function.

grant Audits the execution of the grant.

insert Audits the insertion of rows into a table or view.

load Audits the execution of the load database or load transaction.

login Audits all login attempts into Adaptive Server.

logout Audits all logout attempts from Adaptive Server.

reference Audits references between tables.

revoke Audits the execution of the revoke.

sp_audit

792

login_name
is the parameter that lets you specify all, a system role, or the name of a
specific login to be audited. However, system roles can only be
specified if you use the all option. You cannot audit individual options
for a system role.

rpc Audits the execution of remote procedure calls.

security Audits the following security-relevant events:

• Starting up or shutting down the server

• Activating or deactivating a role

• Issuing any of the following commands:

addcert
connect
dropcert
kill
online database
set proxy
set session authorization
sp_configure

• Using any of the following functions:

valid_user
proc_role (from within a system procedure)

• Regenerating the SSO passwords

select Audits the execution of the select.

setuser Audits the execution of the setuser.

table_access Audits access to any table by a specific user.

truncate Audits the execution of the truncate table.

unbind Audits the execution of the sp_unbindrule, sp_unbindmsg, and sp_unbindefault.

update Audits updates to rows in a table or view.

view_access Audits access to any view by a specific user.

Option Description

CHAPTER 8 System Procedures

793

object_name
is the name of the object to be audited. Valid values, depending on the
value you specified for option, are:

• The object name, including the owner’s name if you do not own the
object. For example, to audit a table named inventory that is owned
by Joe, you would specify joe.inventory for object_name.

• all for all objects.

• default table, default view, default procedure, or default trigger to
audit access to any new table, view, procedure, or trigger.

default table and default view are valid values for object_name when
you specify delete, insert, select, or update for the option parameter.
default procedure is valid when you specify the exec_procedure
option. default trigger is valid when you specify the exec_trigger
option.

See the System Administration Guide for more information about the
object_name values that are valid with each option value.

setting
is the level of auditing. If you do not specify a value for setting,
Adaptive Server displays the current auditing setting for the option.
Valid values for the setting parameter are described in the following
table:

If you specify pass for an option and later specify fail for the same
option, or vice versa, the result is equivalent to specifying on. Adaptive
Server generates audit records regardless of whether events pass or fail
permission checks. Settings of on or off apply to all auditing options.
Settings of pass and fail apply to all options except errors and adhoc. For
these options, only on or off applies. The initial, default value of all
options is off.

Examples Example 1 Initiates auditing for SSL security-relevant events. Both
successful and failed events are audited:

sp_audit "security", "all", "all", "on"

setting value Description

on Activates auditing for the specified option. Adaptive Server generates audit records for
events controlled by this option, whether the event passes or fails permission checks.

off Deactivates auditing for the specified option.

pass Activates auditing for events that pass permission checks.

fail Deactivates auditing for events that fail permission checks.

sp_audit

794

sample records added:

To view the events from sybsecurity:

select * from sybsecurity..sysaudits_01 where event=99

Example 2 Displays the setting of the security auditing option:

sp_audit "security", "all", "all"

Example 3 Initiates auditing for the creation of objects in the master
database, including create database.

sp_audit "create", "all", master, "on"

Example 4 Initiates auditing for the creation of all objects in the
db1database:

sp_audit "create", "all", db1, "on"

Example 5 Initiates auditing for all failed executions by a System
Administrator.

sp_audit "all", "sa_role", "all", "fail"

Example 6 Initiates auditing for all updates to future tables in the current
database. For example, if the current database is utility, all new tables
created in utility will be audited for updates. The auditing for existing tables
is not affected.

sp_audit "update", "all", "default table", "on"

Usage • sp_audit determines what will be audited when auditing is enabled.
No actual auditing takes place until you use sp_configure to set the
auditing parameter to on. Then, all auditing options that have been
configured with sp_audit take effect. For more information, see
sp_configure.

• If you are not the owner of the object being specified, qualify the
object_name parameter value with the owner’s name, in the following
format:

"ownername.objname"

• You cannot activate default auditing for the following options in the
tempdb database:

• delete

• insert

• select

CHAPTER 8 System Procedures

795

• update

• exec_procedure

• exec_trigger

• Table 8-6 lists the configuration parameters that control auditing.

Table 8-6: Configuration parameters that control auditing

The auditing, current_audit_table, and suspend_auditing_when_full
configuration parameters are dynamic and take effect immediately.
Because audit_queue_size affects memory allocation, the parameter is
static and does not take effect until Adaptive Server is restarted.

• For more information about configuring Adaptive Server for auditing,
see sp_configure in the System Administration Guide.

Permissions Only a System Security Officer can execute sp_audit.

See also System procedures sp_addauditrecord, sp_configure

Utility commands bcp

Configuration parameter Effect

auditing Enables or disables auditing for the server.

audit_queue_size Establishes the size of the audit queue.

current_audit_table Sets the current audit table. Adaptive Server writes all audit records to that table.

suspend_auditing_when_full Controls the behavior of the audit process when an audit device becomes full.

sp_autoconnect

796

sp_autoconnect
Description Component Integration Services only Defines a passthrough

connection to a remote server for a specific user, which allows the named
user to enter passthrough mode automatically at login.

Syntax sp_autoconnect server, {true|false}
[, loginame]

Parameters server
is the name of a server to which an automatic passthrough connection
is made. server must be the name of a remote server already added by
sp_addserver. This server cannot be the local server.

true | false
determines whether the automatic passthrough connection is enabled or
disabled for server. true enables the automatic connection. false
disables it.

loginame
specifies the name of the user for which automatic connection is
required. If no loginame is supplied, the autoconnect status is modified
for the current user.

Examples Example 1 The current user is automatically connected to the server
SYBASE the next time that user logs in. The user’s connection is placed
in passthrough mode:

sp_autoconnect SYBASE, true

Example 2 Disables the autoconnect feature for the user “steve”:

sp_autoconnect SYBASE, false, steve

Usage • sp_autoconnect defines a passthrough connection to a remote server
for a specific user, which allows the named user to enter passthrough
mode automatically at login.

• The System Administrator must grant connect to permission to the
login prior to executing sp_autoconnect.

• Use sp_autoconnect only when Component Integration Services is
installed and configured.

• Do not change the autoconnect status of the “sa” login account.

• Changing the autoconnect status does not occur immediately for users
who are currently connected. They must disconnect from the local
server, then reconnect before the change is made.

CHAPTER 8 System Procedures

797

• Use disconnect to exit passthrough mode.

Permissions Only a System Administrator can execute sp_autoconnect.

See also Commands connect to...disconnect, grant

System procedures sp_addlogin, sp_addserver, sp_passthru, sp_remotesql

sp_bindcache

798

sp_bindcache
Description Binds a database, table, index, text object, or image object to a data cache.

Syntax sp_bindcache cachename, dbname
[, [ownername.]tablename
[, indexname | "text only"]]

Parameters cachename
is the name of an active data cache.

dbname
is the name of the database to be bound to the cache or the name of the
database containing the table, index, text or image object to be bound to the
cache.

ownername
is the name of the table’s owner. If the table is owned by “dbo”, the owner
name is optional.

tablename
is the name of the table to be bound to the cache, or the name of the table
whose index, text object, or image object is to be bound to the cache.

indexname
is the name of the index to be bound to the cache.

text only
binds text or image objects to a cache. When this parameter is used, you
cannot give an index name at the same time.

Examples Example 1 Binds the titles table to the cache named pub_cache:

sp_bindcache pub_cache, pubs2, titles

Example 2 Binds the clustered index titles.title_id_cix to the pub_ix_cache:

sp_bindcache pub_ix_cache, pubs2, titles, title_id_cix

Example 3 Binds tempdb to the tempdb_cache:

sp_bindcache tempdb_cache, tempdb

Example 4 Binds the pubs2 transaction log, syslogs, to the cache named
logcache:

sp_bindcache logcache, pubs2, syslogs

Example 5 Binds the image chain for the au_pix table to the cache named
pub_cache:

sp_bindcache pub_cache, pubs2, au_pix, "text only"

CHAPTER 8 System Procedures

799

Usage • A database or database object can be bound to only one cache. You
can bind a database to one cache and bind individual tables, indexes,
text objects, or image objects in the database to other caches. The
database binding serves as the default binding for all objects in the
database that have no other binding. The data cache hierarchy for a
table or index is as follows:

• If the object is bound to a cache, the object binding is used.

• If the object is not bound to a cache, but the object’s database is
bound to a cache, the database binding is used.

• If neither the object nor its database is bound to a cache, the
default data cache is used.

• The cache and the object or database being bound to it must exist
before you can execute sp_bindcache. Create a cache with
sp_cacheconfig and restart Adaptive Server before binding objects to
the cache.

• Cache bindings take effect immediately, and do not require a restart
of the server. When you bind an object to a data cache:

• Any pages for the object that are currently in memory are cleared.

• When the object is used in queries, its pages are read into the
bound cache.

• You can bind an index to a different cache than the table it references.
If you bind a clustered index to a cache, the binding affects only the
root and intermediate pages of the index. It does not affect the data
pages (which are, by definition, the leaf pages of the index).

• To bind a database, you must be using the master database. To bind
tables, indexes, text objects, or image objects, you must be using the
database where the objects are stored.

• To bind any system tables in a database, you must be using the
database and the database must be in single-user mode. Use the
command:

sp_dboption db_name, "single user", true

For more information, see sp_dboption.

• You do not have to unbind objects or databases in order to bind them
to a different cache. Issuing sp_bindcache on an object that is already
bound drops the old binding and creates the new one.

sp_bindcache

800

• sp_bindcache needs to acquire an exclusive table lock when you are
binding a table or its indexes to a cache so that no pages can be read
while the binding is taking place. If a user holds locks on a table, and
you issue sp_bindcache on that object, the task doing the binding
sleeps until the locks are released.

• When you bind or unbind an object, all stored procedures that
reference the object are recompiled the next time they are executed.
When you change the binding for a database, all stored procedures
that reference objects in the bound database are recompiled the next
time they are executed.

• When you drop a table, index, or database, all associated cache
bindings are dropped. If you re-create the table, index, or database,
you must use sp_bindcache again if you want it bound to a cache.

• If a database or a database object is bound to a cache, and the cache is
dropped, the cache bindings are marked invalid, but remain stored in
the sysattributes system table(s). Warnings are printed in the error log
when Adaptive Server is restarted. If a cache of the same name is
created, the bindings become valid when Adaptive Server is restarted.

• The following procedures provide information about the bindings for
their respective objects: sp_helpdb for databases, sp_help for tables,
and sp_helpindex for indexes. sp_helpcache provides information
about all objects bound to a particular cache.

• Use sp_spaceused to see the current size of tables and indexes, and
sp_estspace to estimate the size of tables that you expect to grow. Use
sp_cacheconfig to see information about cache size and status, and to
configure and reconfigure caches.

Restrictions

• The master database, the system tables in master, and the indexes on
the system tables in master cannot be bound to a cache. You can bind
non-system tables from master, and their indexes, to caches.

• You cannot bind a database or an object to a cache if:

• Isolation level 0 reads are active on the table

• The task doing the binding currently has a cursor open on the
table

• If a cache has the type log only, you can bind a syslogs table only to
that cache. Use sp_cacheconfig to see a cache’s type.

Permissions Only a System Administrator can execute sp_bindcache.

CHAPTER 8 System Procedures

801

See also System procedures sp_cacheconfig, sp_configure, sp_help,
sp_helpcache, sp_helpdb, sp_helpindex, sp_poolconfig, sp_unbindcache,
sp_unbindcache_all

sp_bindefault

802

sp_bindefault
Description Binds a user-defined default to a column or user-defined datatype.

Syntax sp_bindefault defname, objname [, futureonly]

Parameters defname
is the name of a default created with create default statements to bind to
specific columns or user-defined datatypes.

objname
is the name of the table and column, or user-defined datatype, to which
the default is to be bound. If the objname parameter is not of the form
“table.column”, it is assumed to be a user-defined datatype. If the object
name includes embedded blanks or punctuation, or is a reserved word,
enclose it in quotation marks.

Existing columns of the user-defined datatype inherit the default
defname, unless you specify futureonly.

futureonly
prevents existing columns of a user-defined datatype from acquiring the
new default. This parameter is optional when you are binding a default
to a user-defined datatype. It is never used to bind a default to a column.

Examples Example 1 Assuming that a default named today has been defined in the
current database with create default, this command binds it to the startdate
column of the employees table. Each new row added to the employees
table has the value of the today default in the startdate column, unless
another value is supplied:

sp_bindefault today, "employees.startdate"

Example 2 Assuming that a default named def_ssn and a user-defined
datatype named ssn exist, this command binds def_ssn to ssn. The default
is inherited by all columns that are assigned the user-defined datatype ssn
when a table is created. Existing columns of type ssn also inherit the
default def_ssn, unless you specify futureonly (which prevents existing
columns of that user-defined datatype from inheriting the default), or
unless the column’s default has previously been changed (in which case
the changed default is maintained):

sp_bindefault def_ssn, ssn

Example 3 Binds the default def_ssn to the user-defined datatype ssn.
Because the futureonly parameter is included, no existing columns of type
ssn are affected:

sp_bindefault def_ssn, ssn, futureonly

CHAPTER 8 System Procedures

803

Usage • You can create column defaults in two ways: by declaring the default
as a column constraint in the create table or alter table statement or by
creating the default using the create default statement and binding it to
a column using sp_bindefault. Using create default, you can bind that
default to more than one column in the database.

• You cannot bind a default to an Adaptive Server-supplied datatype.

• You cannot bind a default to a system table.

• Defaults bound to a column or user-defined datatype with the
IDENTITY property have no effect on column values. Each time you
insert a row into the table, Adaptive Server assigns the next sequential
number to the IDENTITY column.

• If binding a default to a column, give the objname argument in the
form “table.column”. Any other format is assumed to be the name of
a user-defined datatype.

• If a default already exists on a column, you must remove it before
binding a new default. Use sp_unbindefault to remove defaults created
with sp_bindefault. To remove defaults created with create table or
alter table, use alter table to replace the default with NULL.

• Existing columns of the user-defined datatype inherit the new default
unless you specify futureonly. New columns of the user-defined
datatype always inherit the default. Binding a default to a user-defined
datatype overrides defaults bound to columns of that type; to restore
column bindings, unbind and rebind the column default.

• Statements that use a default cannot be in the same batch as their
sp_bindefault statement.

Permissions Only the object owner can execute sp_bindefault.

See also Commands create default, create table, drop default

System procedures sp_unbindefault

sp_bindexeclass

804

sp_bindexeclass
Description Associates an execution class with a client application, login, or stored

procedure.

Syntax sp_bindexeclass "object_name", "object_type", "scope", "classname"

Parameters object_name
is the name of the client application, login, or stored procedure to be
associated with the execution class, classname.

object_type
identifies the type of object_name. Use ap for application, lg for login,
or pr for stored procedure.

scope
is the name of a client application or login, or it can be NULL for ap and
lg objects. It is the name of the stored procedure owner (user name) for
objects. When the object with object_name interacts with the
application or login, classname attributes apply for the scope you set.

classname
specifies the type of class to associate with object_name. Values are:

• EC1, EC2, or EC3

• The name of a user-defined execution class

• ANYENGINE

Examples Example 1 This statement specifies that Transact-SQL applications will
execute with EC3 attributes for any login or application process (because
the value of scope is NULL) that invokes isql, unless the login or
application is bound to a higher execution class:

sp_bindexeclass 'isql', 'ap', NULL, 'EC3'

Example 2 This statement specifies that when a login with the System
Administrator role executes Transact-SQL applications, the login process
executes with EC1 attributes. If you have already executed the statement
in the first example, then any other login or client application that invokes
isql will execute with EC3 attributes:

sp_bindexeclass 'sa', 'lg', 'isql', 'EC1'

Example 3 This statement assigns EC3 attributes to the stored procedure
named my_proc owned by user kundu:

sp_bindexeclass 'my_proc', 'PR', 'kundu', 'EC3'

CHAPTER 8 System Procedures

805

Usage • sp_bindexeclass associates an execution class with a client
application, login, or stored procedure. Create execution classes with
sp_addexeclass.

• When scope is NULL, object_name has no scope. classname’s
execution attributes apply to all of its interactions. For example, if
object_name is an application name, the attributes apply to any login
process that invokes the application. If object_name is a login name,
the attributes apply to a particular login process for any application
invoked by the login process.

• When binding a stored procedure to an execution class, you must use
the name of the stored procedure owner (user name) for the scope
parameter. This narrows the identity of a stored procedure when there
are multiple invocations of it in the same database.

• Due to precedence and scoping rules, the execution class being bound
may or may not have been in effect for the object called object_name.
The object automatically binds itself to another execution class,
depending on other binding specifications, precedence, and scoping
rules. If no other binding is applicable, the object binds to the default
execution class, EC2.

• Binding fails when you attempt to bind an active process to an engine
group with no online engines.

• Adaptive Server creates a row in the sysattributes table containing the
object ID and user ID in the row that stores data for the binding.

• A stored procedure must exist before it can be bound.

• Stored procedure bindings must be done in the database in which the
stored procedure resides. Therefore, when binding system
procedures, execute sp_bindexeclass from within the sybsystemprocs
database.

• Only the “priority attribute” of the execution class is used when you
bind the class to a stored procedure.

• The name of the owner of a stored procedure must be supplied as the
scope parameter when you are binding a stored procedure to an
execution class. This helps to uniquely identify a stored procedure
when multiple stored procedures with the same name (but different
owners) exist in the database.

Permissions Only a System Administrator can execute sp_bindexeclass.

sp_bindexeclass

806

See also System procedures sp_addexeclass, sp_showexeclass,
sp_unbindexeclass

Utility isql

CHAPTER 8 System Procedures

807

sp_bindmsg
Description Binds a user message to a referential integrity constraint or check

constraint.

Syntax sp_bindmsg constrname, msgid

Parameters constrname
is the name of the integrity constraint to which you are binding a
message. Use the constraint clause of the create table command, or the
add constraint clause of the alter table command to create and name
constraints.

msgid
is the number of the user message to be bound to an integrity constraint.
The message must exist in the sysusermessages table in the local
database prior to calling sp_bindmsg.

Examples sp_bindmsg positive_balance, 20100

Binds user message number 20100 to the positive_balance constraint.

Usage • sp_bindmsg binds a user message to an integrity constraint by adding
the message number to the constraint row in the sysconstraints table.

• Only one message can be bound to a constraint. To change the
message for a constraint, just bind a new message. The new message
number replaces the old message number in the sysconstraints table.

• You cannot bind a message to a unique constraint because a unique
constraint does not have a constraint row in sysconstraints (a unique
constraint is a unique index).

• Use the sp_addmessage procedure to insert user messages into the
sysusermessages table.

• The sp_getmessage procedure retrieves message text from the
sysusermessages table.

• sp_help tablename displays all constraint names declared on
tablename.

Permissions Only the object owner can execute sp_bindmsg.

See also Commands alter table, create table

System procedures sp_addmessage, sp_getmessage, sp_unbindmsg

sp_bindrule

808

sp_bindrule
Description Binds a rule to a column or user-defined datatype.

Syntax sp_bindrule rulename, objname [, futureonly]

Parameters rulename
is the name of a rule. Create rules with create rule statements and bind
rules to specific columns or user-defined datatypes with sp_bindrule.

objname
is the name of the table and column, or user-defined datatype, to which
the rule is to be bound. If objname is not of the form “table.column”, it
is assumed to be a user-defined datatype. If the object name has
embedded blanks or punctuation, or is a reserved word, enclose it in
quotation marks.

futureonly
prevents existing columns of a user-defined datatype from inheriting
the new rule. This parameter is optional when you bind a rule to a
user-defined datatype. It is meaningless when you bind a rule to a
column.

Examples Example 1 Assuming that a rule named today has been created in the
current database with create rule, this command binds it to the startdate
column of the employees table. When a row is added to employees, the
data for the startdate column is checked against the rule today:

sp_bindrule today, "employees.startdate"

Example 2 Assuming the existence of a rule named rule_ssn and a
user-defined datatype named ssn, this command binds rule_ssn to ssn. In
a create table statement, columns of type ssn inherit the rule rule_ssn.
Existing columns of type ssn also inherit the rule rule_ssn, unless ssn’s
rule was previously changed (in which case the changed rule is maintained
in the future only):

sp_bindrule rule_ssn, ssn

Example 3 The rule rule_ssn is bound to the user-defined datatype ssn,
but no existing columns of type ssn are affected. futureonly prevents
existing columns of type ssn from inheriting the rule:

sp_bindrule rule_ssn, ssn, futureonly

Usage • Create a rule using the create rule statement. Then execute sp_bindrule
to bind it to a column or user-defined datatype in the current database.

CHAPTER 8 System Procedures

809

• Rules are enforced when an insert is attempted, not when sp_bindrule is
executed. You can bind a character rule to a column with an exact or
approximate numeric datatype, even though such an insert is illegal.

• You cannot use sp_bindrule to bind a check constraint for a column in a
create table statement.

• You cannot bind a rule to an Adaptive Server-supplied datatype or to a text
or an image column.

• You cannot bind a rule to a system table.

• If you are binding to a column, the objname argument must be of the form
“table.column”. Any other format is assumed to be the name of a
user-defined datatype.

• Statements that use a rule cannot be in the same batch as their sp_bindrule
statement.

• You can bind a rule to a column or user-defined datatype without
unbinding an existing rule. Rules bound to columns always take
precedence over rules bound to datatypes. Binding a rule to a column
replaces a rule bound to the datatype of that column; however, binding a
rule to a datatype does not replace a rule bound to a column of that
user-defined datatype.

• Existing columns of the user-defined datatype inherit the new rule unless
their rule was previously changed, or the value of the optional third
parameter is futureonly. New columns of the user-defined datatype always
inherit the rule.

Permissions Only the object owner can execute sp_bindrule.

See also Commands create rule, drop rule

System procedures sp_unbindrule

sp_cacheconfig

810

sp_cacheconfig
Description Creates, configures, reconfigures, and drops data caches, and provides

information about them.

Syntax sp_cacheconfig [cachename [,"cache_size[P|K|M|G]"]
[,logonly | mixed] [,strict | relaxed]]
[, "cache_partition=[1|2|4|8|16|32|64]"]

Parameters cachename
is the name of the data cache to be created or configured. Cache names must
be unique, and can be up to 30 characters long. A cache name does not have
to be a valid Adaptive Server identifier, that is, it can contain spaces and
other special characters.

cache_size
is the size of the data cache to be created or, if the cache already exists, the
new size of the data cache. The minimum size of a cache is 256 times the
logical page size of the server. Size units can be specified with P for pages,
K for kilobytes, M for megabytes, or G for gigabytes. The default is K. For
megabytes and gigabytes, you can specify floating-point values. The cache
size is in multiples of the logical page size.

logonly | mixed
specifies the type of cache.

strict | relaxed
specifies the cache replacement policy.

cache_partition
specifies the number of partitions to create in the cache. Each pool in the
cache must be at least one fourth the logical page size.

Examples Example 1 Creates the data cache pub_cache with 10MB of space. All space
is in the default logical page size memory pool:

sp_cacheconfig pub_cache, "10M"

Example 2 Reports the current configuration of pub_cache and any memory
pools in the cache:

sp_cacheconfig pub_cache

Example 3 Drops pub_cache at the next start of Adaptive Server:

sp_cacheconfig pub_cache, "0"

Example 4 Creates pub_log_cache and sets its type to logonly in a single step:

sp_cacheconfig pub_log_cache, "2000K", logonly

CHAPTER 8 System Procedures

811

Example 5 The first command creates the cache pub_log_cache with the
default type mixed. The second command changes its status to logonly. The
resulting configuration is the same as that in example 4:

sp_cacheconfig pub_log_cache, "2000K"
sp_cacheconfig pub_log_cache, logonly

Example 6 Creates a cache and sets the size, type, replacement policy and
number of cache partitions:

sp_cacheconfig 'newcache', '50M', mixed, strict, "cache_partition=2"

Usage • Creating data caches divides Adaptive Server’s single default data
cache into smaller caches. You can then configure pools within a data
cache to allow Adaptive Server to perform large I/O using
sp_poolconfig. You can bind tables, indexes, databases, and text or
image chains to a specific cache using sp_bindcache.

• The minimum cache size is 256 times the logical page size. For
example, a 4K server would have a minimum cache size of 1024K.

• When you first create a data cache:

• All space is allocated to the logical page size memory pool.

• The default type is mixed.

• Figure 8-1 shows a data cache for a 2K server with two user-defined
data caches configured and the following pools:

• The default data cache with a 2K pool and a 16K pool

• A user cache with a 2K pool and a 16K pool

• A log cache with a 2K pool and a 4K pool

sp_cacheconfig

812

Figure 8-1: Data cache with default and user-defined caches

• Creating, dropping, and changing the replacement policy or number
of partitions require a restart of Adaptive Server for the configuration
to take effect. You cannot configure pools or bind objects to caches
until the cache is active, that is, until the server has been restarted.

Other changes to data caches take effect without a restart, including
changing the type, creating, dropping, and resizing memory pools
with sp_poolconfig, changing the wash percentage of the pools, and
binding and unbinding objects.

• The default data cache must always have the type default, and no other
cache can have the type default.

• The Adaptive Server housekeeper task does not do any buffer
washing in caches with a type of logonly or in caches with a relaxed
LRU replacement policy.

D
ef

au
lt

D
at

aC
ac

he
U

se
r_

ta
bl

e_
C

ac
he

Lo
g_

C
ac

he

D
a

t
a

C

a
c

h
e

2K pool

2K pool

2K pool

16K pool

16K pool

4K pool

CHAPTER 8 System Procedures

813

• The following commands perform only 2K I/O: disk init, some dbcc
commands, and drop table. The dbcc checkdb and dbcc checktable
commands can perform large I/O for tables, but perform 2K I/O on
indexes. Table 8-7 shows cache usage, depending on the binding of
the database or object.

Table 8-7: Cache usage for Transact-SQL commands

• Recovery uses only the logical page size pool of the default data
cache. All pages for all transactions that must be rolled back or rolled
forward are read into and changed in this pool. Be sure that your
default logical page size pool is large enough for these transactions.

• When you use sp_cacheconfig with no parameters, it reports
information about all of the caches on the server. If you specify only
a cache name, it reports information about only the specified cache. If
you use a fragment of a cache name, it reports information for all
names matching “%fragment%”.

All reports include a block of information that reports information
about caches, and a separate block of data for each cache that provides
information about the pools within the cache.

The output below, from a server using 2K, shows the configuration
for:

• The default data cache with two pools: a 2K pool and a 16K pool.
The default data cache has 2 partitions.

• pubs_cache with two pools: 2K and 16K

• pubs_log, with the type set to logonly and cache replacement
policy set to relaxed, with a 2K pool and a 4K pool

Cache Name Status Type Config Value Run Value
 ----------------------- --------- -------- ------------ --------
default data cache Active Default 0.00 Mb 26.09 Mb
pubs_cache Active Mixed 10.00 Mb 10.00 Mb
pubs_log Active Log Only 2.40 Mb 2.40 M

Command
Database
bound

Table or index
is bound

Database or object
not bound

create index Bound cache N/A Default data cache

disk init N/A N/A Default data cache

dbcc checkdb Bound cache N/A Default data cache

dbcc checktable, indexalloc, tablealloc Bound cache Bound cache Default data cache

drop table Bound cache Bound cache Default data cache

sp_cacheconfig

814

------------- --------
Total 12.40 Mb 38.49 Mb

===
Cache: default data cache, Status: Active, Type: Default

Config Size: 0.00 Mb, Run Size: 26.09 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 2, Run Partition: 2

 IO Size Wash Size Config Size Run Size APF Percent
 -------- --------- ------------ ------------ -----------

2 Kb 3704 Kb 0.00 Mb 18.09 Mb 10
16 Kb 1632 Kb 8.00 Mb 8.00 Mb 10

===
Cache: pubs_cache, Status: Active, Type: Mixed

Config Size: 10.00 Mb, Run Size: 10.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

 IO Size Wash Size Config Size Run Size APF Percent
 -------- --------- ------------ ------------ -----------

2 Kb 1228 Kb 0.00 Mb 6.00 Mb 10
16 Kb 816 Kb 4.00 Mb 4.00 Mb 10

===
Cache: pubs_log, Status: Active, Type: Log Only

Config Size: 2.40 Mb, Run Size: 2.40 Mb
Config Replacement: relaxed LRU, Run Replacement: relaxed LRU
Config Partition: 1, Run Partition: 1

 IO Size Wash Size Config Size Run Size APF Percent
 -------- --------- ------------ ------------ -----------

2 Kb 206 Kb 0.00 Mb 1.01 Mb 10
16 Kb 272 Kb 1.40 Mb 1.39 Mb 10

Table 8-8 lists the meaning of the columns in the output:

Table 8-8: sp_cacheconfig output

Column Meaning

Cache Name The name of the cache.

Status One of the following:

• “Active”

• “Pend/Act”

• “Pend/Del”

These are explained following this table.

Type “Mixed” or “Log Only” for user-defined caches, “Default” for the default data cache.

I/O Size The size of I/O for a memory pool. This column is blank on the line that shows that cache
configuration.

CHAPTER 8 System Procedures

815

The status “Pend” is short for pending. It always occurs in
combination with either “Act” for Active or “Del” for Delete. It
indicates that a configuration action has taken place, but that the
server must be restarted in order for the changes to take effect.

When you first create a new cache, but have not yet restarted Adaptive
Server, the status is “Pend/Act”, meaning that the cache has just been
configured and will be active after a restart. If you set the size of a
cache to 0 to delete it, the status changes from “Active” to
“Pend/Del”, meaning that the cache still exists, and still functions, but
that it will be deleted at the next restart.

Wash Size The size of the wash area for the pool. As pages enter the wash area of the cache, they are written
to disk. This column is blank on the line that shows the cache configuration.

Config Value
or
Config Size

The size that the cache or pool will have after the next time Adaptive Server is restarted. These are
the values that take effect the next time Adaptive Server is restarted. If the value is 0, the size has
not been explicitly configured, and a default value will be used.

Run Value
or
Run Size

The size of the cache or pool now in use on Adaptive Server.

Config/ Run
Replacement

The cache policy (strict or relaxed) that will be used for the cache after the next restart, and the
current replacement policy. These will be different only if the policy has been changed since the
last reboot.

Config/Run
Partition

The number of cache partitions that will be used for the cache after the next restart, and the current
number of partitions. These will be different if sp_cacheconfig has been used to change the number
of partitions since the last reboot.

APF Percent The percentage of buffers in the pool that can hold buffers that have been fetched by asynchronous
prefetch, but have not been used.

Total The total size of data cache, if the report covers all caches, or the current size of the particular
cache, if you specify a cache name.

Column Meaning

sp_cacheconfig

816

Figure 8-2: Effects of restarts and sp_cacheconfig on cache status

• You can also configure caches and pools by editing the configuration
file. For more information, see the System Administration Guide.

Data cache memory

• When Adaptive Server is first installed, all data cache memory is
assigned to the logical page size pool of the cache named default data
cache. The default data cache is used by all objects that are not
explicitly bound to a data cache with sp_bindcache or whose
databases are not bound to a cache.

• When you create data caches, the memory allocation comes from the
default data cache. Memory for caches is allocated out of the memory
allocated to Adaptive Server with the total logical_memory
configuration parameter. To increase the amount of space available
for caches, increase total logical memory, or decrease other
configuration settings that use memory. If you need to decrease the
size of total logical memory, the space must be available in the default
data cache.

You cannot reduce the size of the default data cache to less than one
fourth a logical page. In most cases, the default cache should be much
larger than the minimum. This cache is used for all objects, including
system tables, that are not bound to another cache, and is the only
cache used during recovery. For more information, see the System
Administration Guide.

Delete:
sp_cacheconfig
mycache, 0

Create:
sp_cacheconfig
mycache, "100K"

Pend/Act

Active

Pend/Del

Restart
server

Restart
server

No entry

CHAPTER 8 System Procedures

817

• A data cache requires a small percentage of overhead for structures
that manage the cache. All cache overhead is taken from the default
data cache. To see the amount of overhead required for a specific size
of cache, use sp_helpcache, giving the size:

sp_helpcache "200M"
10.38Mb of overhead memory will be needed to
manage a cache of size 200M

Changing existing caches

• To change the size of an existing cache, specify the cache’s name and
the new size.

• If you increase the size of an existing cache, all of the added
space is placed in the logical page size pool.

• To reduce the size of an existing cache, all of the space must be
available in the logical page size pool. You may need to use
sp_poolconfig to move space from other pools to this pool.

• If you have a database or any nonlog objects bound to a cache, you
cannot change its type to logonly.

Using cache partitions

• Cache partitions can be used to reduce cache spinlock contention
without needing to create separate caches and bind database objects
to them. For more information on monitoring cache spinlock
contention, see the Performance and Tuning Guide.

• You can set the default number of cache partitions for all caches with
the configuration parameter global cache partition number. See the
System Administration Guide.

Dropping caches

• To drop or delete a data cache, change its size to 0, as shown in
example 3. When you set a cache’s size to 0, the cache is marked for
deletion, but it is not dropped until the next restart of the server. The
cache remains active, and all objects that are bound to that cache
continue to use it.

You cannot drop the default data cache.

• If you drop a cache that has objects bound to it, all of the object
bindings for the cache are marked invalid the next time you restart
Adaptive Server. A message is printed to the error log on restart,
giving the database ID, object ID and index ID:

00:95/11/05 18:20:39.42 server Cache binding

sp_cacheconfig

818

for database ’6’, object ’8’, index ’0’ is being
marked invalid in Sysattributes.

If you subsequently create a cache of the same name, bindings are
marked valid when the cache is activated.

• You cannot run sp_cacheconfig within a transaction.

Permissions Only a System Administrator can execute sp_cacheconfig to change cache
configurations. Any user can execute sp_cacheconfig to view cache
configurations.

See also System procedures sp_bindcache, sp_helpcache, sp_poolconfig,
sp_unbindcache, sp_unbindcache_all

CHAPTER 8 System Procedures

819

sp_cachestrategy
Description Enables or disables prefetching (large I/O) and MRU cache replacement

strategy for a table, index, text object, or image object.

Syntax sp_cachestrategy dbname, [ownername.]tablename
[, indexname | "text only" | "table only"
[, { prefetch | mru }, { "on" | "off"}]]

Parameters dbname
is the name of the database where the object is stored.

ownername
is the name of the table’s owner. If the table is owned by “dbo”, the
owner name is optional.

tablename
is the name of the table.

indexname
is the name of the index on the table.

text only
changes the cache strategy for a text or image object.

table only
changes the cache strategy for a table.

prefetch | mru
is prefetch or mru, and specifies which setting to change.

on | off
specifies the setting, "on" or "off", enclosed in quotes.

Examples Example 1 Displays information about cache strategies for the titles table:

sp_cachestrategy pubs2, titles

object name index name large IO MRU
------------------ ------------- -------- --------
dbo.titles titleidind ON ON

Example 2 Displays information about cache strategies for the titleind
index:

sp_cachestrategy pubs2, titles, titleind

Example 3 Disables prefetch on the titleind index of the titles table:

sp_cachestrategy pubs2, titles, titleind, prefetch, "off"

Example 4 Reenables MRU replacement strategy on the authors table:

sp_cachestrategy

820

sp_cachestrategy pubs2, authors, "table only", mru, "on"

Example 5 Reenables prefetching on the text pages of the blurbs table:

sp_cachestrategy pubs2, blurbs, "text only", prefetch, "on"

Usage • If memory pools for large I/O are configured for the cache used by a
table or an index, the optimizer can choose to prefetch data or index
pages by performing large I/Os of up to eight data pages at a time.
This prefetch strategy can be used on the data pages of a table or on
the leaf-level pages of a nonclustered index. By default, prefetching
is enabled for all tables, indexes, and text or image objects. Setting the
prefetch option to "off" disables prefetch for the specified object.

• The optimizer can choose to use MRU replacement strategy to fetch
and discard buffers in cache for table scans and index scans for I/O of
any size. By default, this strategy is enabled for all objects. Setting
mru to "off" disables this strategy. If you turn mru off for an object, all
pages are read into the MRU/LRU chain in cache, and they remain in
the cache until they are flushed by additional I/O. For more
information on cache strategies, see the Performance and Tuning
Guide.

• You can change the cache strategy only for objects in the current
database.

• When you use sp_cachestrategy without specifying the strategy and
setting, it reports the current settings for the object, as shown in
Example 1.

• To see the size, status and I/O size of all data caches on the server, use
sp_cacheconfig.

• Setting prefetch "on" has no effect on tables or indexes that are read
into a cache that allows only 2K I/O. The mru strategy can be used in
all caches, regardless of available I/O size.

Overrides

• If prefetching is turned on for a table or an index, you can override the
prefetching for a session with set prefetch "off". If prefetching is turned
off for an object, you cannot override that setting.

CHAPTER 8 System Procedures

821

• The prefetch, lru, and mru options to the select, delete and update
commands suggest the I/O size and cache strategy for individual
statements. If prefetching or MRU strategy is enabled for a table or an
index, you can override it for a query by specifying I/O the size of the
logical page size for prefetch, and by specifying lru strategy. For
example, the following command forces LRU strategy, logical page
size I/O, and a table scan of the titles table:

select avg(advance)
from titles (index titles prefetch 2 lru)

If you request a prefetch size, and the object’s cache is not configured
for I/O of the requested size, the optimizer chooses the best available
I/O size.

• If prefetching is enabled for an object with sp_cachestrategy, using a
prefetch specification of the logical page size in a select, update or
delete command overrides an earlier set prefetch "on" statement.
Specifying a larger I/O size in a select, update or delete command
does not override a set prefetch "off" command.

Permissions Only a System Administrator or the object owner can execute
sp_cachestrategy.

See also Commands delete, select, set, update

Stored procedures sp_cacheconfig, sp_poolconfig

sp_changedbowner

822

sp_changedbowner
Description Changes the owner of a user database.

Syntax sp_changedbowner loginame [, true]

Parameters loginame
is the login name of the new owner of the current database.

true
transfers aliases and their permissions to the new database owner.
Values are “true” and “TRUE”.

Examples Makes the user “albert” the owner of the current database:

sp_changedbowner albert

Usage • The new owner must not already be known as either a user or alias
(that is, the new owner must not already be listed in sysusers or
sysalternates). Executing sp_changedbowner with the single
parameter loginame changes the database ownership to loginame and
drops aliases of users who could act as the old “dbo.”

• After executing sp_changedbowner, the new owner is known as the
Database Owner inside the database.

• sp_changedbowner cannot transfer ownership of the system
databases.

• The new owner must already have a login name in Adaptive Server,
but must not have a database user name or alias name in the database.
To assign database ownership to such a user, drop the user name or
alias entry before executing sp_changedbowner.

• To grant permissions to the new owner, a System Administrator must
grant them to the Database Owner, since the user is no longer known
inside the database under any other name.

Permissions Only a System Administrator can execute sp_changedbowner.

See also Commands create database

System procedures sp_addlogin, sp_dropalias, sp_dropuser, sp_helpdb

CHAPTER 8 System Procedures

823

sp_changegroup
Description Changes a user’s group.

Syntax sp_changegroup grpname, username

Parameters grpname
is the name of the group. The group must already exist in the current
database. If you use “public” as the grpname, enclose it in quotes,
because it is a keyword.

username
is the name of the user to be added to the group. The user must already
exist in the current database.

Examples Example 1 The user “albert” is now a member of the “fort_mudge” group.
It doesn’t matter what group “albert” belonged to before:

sp_changegroup fort_mudge, albert

Example 2 Removes “albert” from the group he belonged to without
making him a member of a new group (all users are always members of
“public”):

sp_changegroup "public", albert

Usage • Executing sp_changegroup adds the specified user to the specified
group. The user is dropped from the group he or she previously
belonged to and is added to the one specified by grpname.

• New database users can be added to groups at the same time they are
given access to the database with sp_adduser.

• Groups are used as a collective name for granting and revoking
privileges. Every user is always a member of the default group,
“public”, and can belong to only one other group.

• To remove someone from a group without making that user a member
of a new group, use sp_changegroup to change the user’s group to
“public”, as shown above in Example 2.

• When a user changes from one group to another, the user loses all
permissions that he or she had as a result of belonging to the old group
and gains the permissions granted to the new group.

Permissions Only the Database Owner, a System Administrator, or a System Security
Officer can execute sp_changegroup.

See also Commands grant, revoke

sp_changegroup

824

System procedures sp_addgroup, sp_adduser, sp_dropgroup,
sp_helpgroup

CHAPTER 8 System Procedures

825

sp_checknames
Description Checks the current database for names that contain characters not in the

7-bit ASCII set.

Syntax sp_checknames

Parameters None.

Examples

sp_checknames

Looking for non 7-bit ASCII characters in the system tables
of database:
"master"

===
Table.Column name: "syslogins.password"

The following logins have passwords that contain non 7-bit
ASCII characters. If you wish to change them use "sp_password";
Remember, only the sa and the login itself may examine or change
the syslogins.password column:

 suid name
------ ------------------------------

1 sa
2 probe
3 bogususer

Usage • sp_checknames examines the names of all objects, columns, indexes,
user names, group names, and other elements in the current database
for characters outside of the 7-bit ASCII set. It reports illegal names
and gives instructions to make them compatible with the 7-bit ASCII
set.

• Run sp_checknames in every database on your server after upgrading
from a SQL Server of release 4.0.x or 4.2.x, and after using a default
character set that was not 7-bit ASCII.

• Follow the instructions in the sp_checknames report to correct all
non-ASCII names.

Permissions Any user can execute sp_checknames.

See also Commands update

System procedures sp_password, sp_rename, sp_renamedb

sp_checkreswords

826

sp_checkreswords
Description Detects and displays identifiers that are Transact-SQL reserved words.

Checks server names, device names, database names, segment names,
user-defined datatypes, object names, column names, user names, login
names, and remote login names.

Syntax sp_checkreswords [user_name_param]

Parameters user_name_param
is the name of a user in the current database. If you supply
user_name_param, sp_checkreswords checks only for objects that are
owned by the specified user.

Examples Example 1 This example shows the results if sp_checkreswords is
executed in the master database:

1> /* executed in the master database */
2> sp_checkreswords

Reserved Words Used as Database Object Names for Database master

Upgrade renames sysobjects.schema to sysobjects.schemacnt.

Owner

 dbo

 Table Reserved Word Column Names
 ------------------------------ ------------------------------
 authorization cascade

 Object Type Reserved Word Object Names
 ------------------------------ ------------------------------
 rule constraint
 stored procedure check
 user table arith_overflow
 user table authorization

 Owner

 lemur

 Table Reserved Word Column Names
 ------------------------------ ------------------------------

CHAPTER 8 System Procedures

827

 key close

 Table Reserved Word Index Names
 ------------------------------ ------------------------------
 key isolation

 Object Type Reserved Word Object Names
 ------------------------------ ------------------------------
 default isolation
 rule level
 stored procedure mirror
 user table key

 Reserved Word Datatype Names

 identity

 Database-wide Objects

 Reserved Word User Names

 at
 identity

 Reserved Word Login Names

 at
 identity

 Reserved Word as Database Names

 work

 Reserved Word as Language Names

 national

 Reserved Word as Server Names

 mirror

sp_checkreswords

828

 primary

 Reserved Word ServerNetNames

 mirror
 primary

Example 2 This example shows the results if sp_checkreswords is
executed in the user database user_db:

1> /* executed in the user database, user_db */
2> sp_checkreswords

Reserved Words Used as Database Object Names for Database user_db

 Upgrade renames sysobjects schema to sysobjects.schemacnt.

 Owner

 tamarin

 Table Reserved Word Column Names
 ------------------------------ ------------------------------
 cursor current
 endtran current
 key identity
 key varying
 schema primary
 schema references
 schema role
 schema some
 schema user
 schema work

 Table Reserved Word Index Names
 ------------------------------ ------------------------------
 key double

 Object Type Reserved Word Object Names
 ------------------------------ ------------------------------
 default escape
 rule fetch
 stored procedure foreign
 user table cursor
 user table key
 user table schema
 view endtran

CHAPTER 8 System Procedures

829

 Database-wide Objects

Found no reserved words used as names for database-wide objects.

Usage • sp_checkreswords reports the names of existing objects that are
reserved words. Transact-SQL does not allow words that are part of
any command syntax to be used as identifiers, unless you are using
delimited identifiers. Reserved words are pieces of SQL syntax, and
they have special meaning when you use them as part of a command.
For example, in pre-release 10.0 SQL Server, you could have a table
called work, and select data from it with this query:

select * from work

work was a new reserved word in SQL Server release 10.0, part of the
command commit work. Issuing the same select statement in release
10.0 or later causes a syntax error. sp_checkreswords finds identifiers
that would cause these problems.

• sp_checkreswords also finds reserved words, used as identifiers, that
were created using the set quoted_identifier option.

• Use sp_checkreswords before or immediately after upgrading to a
new release of Adaptive Server. For information on installing and
running this procedure before performing the upgrade, see the
installation documentation for your platform.

Run sp_checkreswords in the master database and in each user
database. Also run it in model and sybsystemprocs, if you have added
users or objects to those databases.

• The return status indicates the number of items found.

• If you supply a user name, sp_checkreswords checks for all of the
objects that can be owned by a user tables, indexes, views,
procedures, triggers, rules, defaults, and user-defined datatypes. It
reports all identifiers that are reserved words.

sp_checkreswords

830

• If your current database is not the master database, and you do not
provide a user name, sp_checkreswords checks for all of the objects
above, with a separate section in the report for each user name. It also
checks sysusers and syssegments for user names and segment names
that are reserved words. You only need to check model and
sybsystemprocs if you have added objects, users, or user-defined
datatypes.

• If your current database is master, and you do not provide a user
name, sp_checkreswords performs all of the checks above and also
checks sysdatabases, syslogins, syscharsets, sysservers,
sysremotelogins, sysdevices, and syslanguages for reserved words
used as the names of databases, local or remote logins, local and
remote servers, character sets, and languages.

Handling reported instances of reserved words

• If sp_checkreswords reports that reserved words are used as
identifiers, you have two options:

• Use sp_rename, sp_renamedb, or update the system tables to
change the name of the identifier.

• Use set quoted_identifier on if the reserved word is a table name,
view name, or column name. If most of your applications use
stored procedures, you can drop and re-create these procedures
with set quoted_identifier on, and quote all identifiers. All users
will be able to run the procedures, without having to use set
quoted_identifier on for their session. You can use set
quoted_identifier on, create views that give alternative names to
tables or columns, and change your applications to reference the
view instead.

The following example provides alternatives for the new
reserved words “key”, “level”, and “work”:

create view keyview
as
select lvl = "level", wrk = "work"
from "key"

The syntax for the set command is:

set quoted_identifier on

• If you do not either change the identifiers or use delimited identifiers,
any query that uses the reserved words as identifiers reports an error,
usually a syntax error. For example:

CHAPTER 8 System Procedures

831

select level, work from key
Msg 156, Level 15, State 1:
Server ’rosie’, Line 1:
Incorrect syntax near the keyword ’level’.

Note The quoted identifier option is a SQL92 option and may not be
supported by many client products that support other Adaptive Server
features. For example, you cannot use bcp on tables whose names are
reserved words.

Before choosing the quoted identifier option, perform a test on
various objects using all the tools you will use to access Adaptive
Server. Use set quoted_identifier on, create a table with a reserved
word for a name and reserved words for column names. If the client
product generates SQL code, it must enclose identifiers in double
quotes (if they are reserved words) and character constants in single
quotes.

• Procedures, triggers, and views that depend on objects whose names
have been changed may work after the name change, but will stop
working when the query plan is recompiled. Recompilation takes
place for many reasons, without notification to the user. To avoid
unsuspected loss of functionality, change the names of objects in
procedures, triggers, and views immediately after you change the
object name.

• Whether you change the object names or use delimited identifiers,
you must change all stored procedures, views, triggers, and
applications that include the reserved word. If you change object
names, you must change identifiers; if you use delimited identifiers,
you must add the set quoted_identifier option and quotation marks.

• If you do not have the text of your procedures, triggers, views, rules,
and defaults saved in operating system files, you can use defncopy to
copy the definitions from the server to files. See defncopy in the
Utility Guide.

Changing identifiers

• If you change the names of the items reported by sp_checkreswords,
you must change the names in all procedures, triggers, views, and
applications that reference the object using the reserved word.

• Dump your database before changing identifier names. After you
change the identifier names, run dbcc to determine that there are no
problems, and dump the database again.

sp_checkreswords

832

• If you are changing identifiers on an active production database:

• Perform the changes when the system is least busy, so that you
will disrupt as few users as possible.

• Prepare carefully by finding all Open Client DB-Library™
programs, windowing applications, stored procedures, triggers,
and scripts that use a particular identifier. This way, you can make
the edits needed in the source code, then change the identifiers
and replace the procedures and code as quickly as possible.

• The procedure sp_depends can help find procedures, views, and
triggers that use table and view names.

Using sp_rename to change identifiers

• The system procedure sp_rename renames tables, indexes, views,
procedures, triggers, rule, defaults, user-defined datatypes, and
columns. Use sp_renamedb to rename databases.

• Table 8-9 shows the types of identifiers that you can change with
sp_rename and lists other changes that may have to be made on the
server and in your application programs.

Table 8-9: sp_rename and changing identifiers

Identifier Remember To

Table name • Drop all procedures, triggers and views that reference the table, and re-create them with the
new name. Use sp_depends to find the objects that depend on the table.

• Change all applications or SQL source scripts that reference the table to use the new table
name.

• Change dbcc scripts that perform table-level checks using table names.

Index name • Drop any stored procedures that create or drop the index, and re-create them with the new
name.

• Change all applications or SQL source scripts that create or drop the index.

• Change dbcc scripts that perform index-level checks using index names.

View name • Drop all procedures, triggers, and views that reference the view, and re-create them with the
new name. Use sp_depends to find the objects that depend on the view.

• Change all applications or SQL source scripts that reference the view to use the new view
name.

Procedure name • Drop and re-create with the new procedure name all procedures and triggers that reference
the procedure.

• Change all applications or SQL source scripts that execute the procedure to use the new
name.

• If another server remotely calls the procedure, change applications on the remote server to
use the new procedure name.

CHAPTER 8 System Procedures

833

The following command changes the name of the view isolation to
isolated:

sp_rename "isolation", isolated

The following command changes the name of a column in the
renamed view isolated:

sp_rename "isolated.key", keyname

• Use sp_depends to get a list of all views, procedures, and triggers that
reference a view, procedure, or table that will be renamed. To use
sp_dependsafter renaming an object, give the new name. For
example:

sp_depends new_name

Renaming databases with sp_renamedb

• To change the name of a database, use sp_renamedb. The database
must be in single-user mode. Drop and re-create any procedures,
triggers, and views that explicitly reference the database name. For
more information, see sp_renamedb.

Trigger name • Change any SQL source scripts that create the trigger.

Rule name • Change any SQL source scripts that create the rule.

Default name • Change any SQL source scripts that create the default.

User-defined
datatype name

• Drop all procedures that create tables with user-defined datatypes, and re-create them with
the new name.

• Change any applications that create tables with user-defined datatypes.

Column name • Drop all procedures, triggers and views that reference the column, and re-create them with
the new column name.

• sp_depends cannot find column name references. The following query displays the names
of procedures, triggers, and views that reference a column named “key”:

select distinct sysobjects.name
from sysobjects, syscomments
where sysobjects.id = syscomments.id
and syscomments.text like "%key%"

• Change all applications and SQL source scripts that reference the column by name.

Identifier Remember To

sp_checkreswords

834

Changing other identifiers

• To change user names, login names, device names, remote server
names, remote server user names, segment names, and character set
and language names, first determine if you can drop the object or user,
then add or create it again. If you cannot do that, use the following
command to allow direct updates to system tables:

sp_configure “allow updates to system tables”, 1

Only a System Security Officer can set the allow updates to system
tables configuration parameter.

Errors during direct updates to system tables can create severe
problems in Adaptive Server. To determine whether you can drop the
objects or user, then re-create them, see Table 8-10.

Table 8-12 on page 836 shows possible dependencies on this set of
identifiers. See this table for possible dependencies, whether you
choose to upgrade by dropping and recreating objects, by using
delimited identifiers, or by performing direct updates to system tables.

Table 8-10: Alternatives to direct system tables updates when
changing identifiers

Identifier type Suggested actions to avoid updates to system tables

User names and login
names

To change the name of a user with no objects, first use sp_helprotect username in each
database to record the user’s permissions. Then, drop the user from all of the databases
(sp_dropuser), and drop the login (sp_droplogin). Finally, add the new login name
(sp_addlogin), add the new user name to the databases (sp_adduser), and restore the
user’s permissions with grant.

Device names If this device is completely allocated, you will not need to use its name in a create database
command, so you can leave the name unchanged.

Remote server names Unless there are large numbers of remote login names from the remote server, drop the
remote server (sp_dropserver) and add it with a new name (sp_addserver).

Remote server logins Drop the remote login with sp_dropremotelogin, add it with a new name using
sp_addremotelogin, and restore the user’s permission to execute procedures with grant.

Segment names These are rarely used, once objects have been created on the segments.

Character set and
language names

Languages and character sets have reserved words as identifiers only if a System
Administrator has created alternative languages with sp_addlanguage. Drop the language
with sp_droplanguage, and add it with a new name.

CHAPTER 8 System Procedures

835

 Warning! Direct updates to system tables can be very dangerous. You
can make mistakes that make it impossible for Adaptive Server to run
or make it impossible to access objects in your databases. Undertake
this effort when you are calm and collected, and when little or no
production activity is taking place on the server. If possible, use the
alternative methods described Table 8-10.

• The following example shows a “safe” procedure for updating a user
name, with all data modification preceded by a begin transaction
command. The System Security Officer executes the following
command:

sp_configure "allow updates to system tables", 1

Then you can execute the following:

begin transaction
update sysusers
set name = "workerbee"
where name = "work"

At this point, run the query, and check to be sure that the command
affected only the row that you intended to change. The only identifier
change that affects more than one row is changing the language name
in syslogins.

• If the query affected only the correct row, use commit transaction.

• If the query affected more than one row, or the incorrect row, use
rollback transaction, determine the source of the problem, and
execute the command correctly.

When you are finished, the System Security Officer turns off the allow
updates to system tables configuration parameter with this command:

sp_configure "allow updates to system tables", 0

 Warning! Only update system tables in a single database in each user
defined transaction. Do not issue a begin transaction command and
then update tables in several databases. Such actions can make
recovery extremely difficult.

sp_checkreswords

836

Table 8-11 shows the system tables and columns that you should update to
change reserved words. The tables preceded by “master.dbo.” occur only
in the master database. All other tables occur in master and in user
databases. Be certain you are using the correct database before you attempt
the update. You can check for the current database name with this
command:

select db_name()

Table 8-11: System table columns to update when changing
identifiers

Table 8-12 shows other changes that may have to be made on the server
and in your application programs:

Table 8-12: Considerations when changing identifiers

Type of identifier Table to update
Column
name

User name sysusers name

Login names master.dbo.syslogins name

Segment names syssegments name

Device name sysdevices name

Remote server name sysservers srvname

Remote server network name sysservers srvnetname

Character set names master.dbo.syscharsets name

Language name master.dbo.syslanguages

master.dbo.syslogins

name

language

Identifier Remember to

Login name Change the user name in each database where this person is a user.

User name Drop, edit, and re-create all procedures, triggers, and views that use qualified
(owner_name.object_name) references to objects owned by this user. Change all
applications and SQL source scripts that use qualified object names to use the new
user name. You do not have to drop the objects themselves; sysusers is linked to
sysobjects by the column that stores the user’s ID, not the user’s name.

Device name Change any SQL source scripts or applications that reference the device name to use
the new name.

Remote server name Change the name on the remote server. If the name that sp_checkreswords reports
is the name of the local server, you must restart the server before you can issue or
receive remote procedure calls.

Remote server network name Change the server’s name in the interfaces files.

Remote server login name Change the name on the remote server.

CHAPTER 8 System Procedures

837

Using delimited identifiers

• You can use delimited identifiers for table names, column names, and
view names. You cannot use delimited identifiers for other object
names.

• If you choose to use delimited identifiers, use set quoted_identifier on,
and drop and re-create all the procedures, triggers, and views that use
the identifier. Edit the text for those objects, enclosing the reserved
words in double quotes and enclosing all character strings in single
quotes.

The following example shows the changes to make to queries in order
to use delimited identifiers. This example updates a table named work,
with columns named key and level. Here is the pre-release 10.0 query,
which encloses character literals in double quotes, and the edited
version of the query for use with delimited identifiers:

/* pre-release 10.0 version of query */
update work set level = "novice"

where key = "19-732"
/* 10.0 or later version of query, using
** the quoted identifier option
*/
update "work" set "level" = 'novice'

where "key" = '19-732'

• All applications that use the reserved word as an identifier must be
changed as follows:

• The application must set the quoted identifier option on.

• All uses of the reserved word must be enclosed in double quotes.

• All character literals used by the application while the quoted
identifier option is turned on must be enclosed in single quotes.
Otherwise, Adaptive Server attempts to interpret them as object
names.

For example, the following query results in an error message:

Segment name Drop and re-create all procedures that create tables or indexes on the segment name.
Change all applications that create objects on segments to use the new segment
name.

Character set name None.

Language name Change both master.dbo.syslanguages and master.dbo.syslogins. The update to
syslogins may involve many rows. Also, change the names of your localization files.

Identifier Remember to

sp_checkreswords

838

set quoted_identifier on
select * from titles where title_id like "BU%"

Here is the correct query:

select * from titles where title_id like ’BU%’

• Stored procedures that you create while the delimited identifiers are
in effect can be run without turning on the option. (The allow updates
to system tables option also works this way.) This means that you can
turn on quoted identifier mode, drop a stored procedure, edit it to
insert quotation marks around reserved words used as identifiers, and
re-create the procedure. All users can execute the procedure without
using set quoted_identifier.

Permissions Only a System Administrator can execute sp_checkreswords.

See also Commands set

System procedures sp_configure, sp_depends, sp_rename,
sp_renamedb

Utilities defncopy

CHAPTER 8 System Procedures

839

sp_checksource
Description Checks for the existence of the source text of the compiled object.

Syntax sp_checksource [objname [, tabname [, username]]]

Parameters objname
is the compiled object to be checked for the existence of its source text.

tabname
is the name of the table or view to be checked for the existence of all
check constraints, defaults, and triggers defined on it.

username
is the name of the user who owns the compiled objects to be checked
for the existence of the source text.

Examples Example 1 Checks for the existence of the source text of all compiled
objects in the current database:

sp_checksource

Example 2 Checks for the existence of the source text of the view named
titleview:

sp_checksource titleview

Example 3 Checks for the existence of the source text of the view named
titls_vu that is owned by Mary:

sp_checksource title_vu, @username = Mary

Example 4 Checks for the existence of the source text of the custom
stored procedure list_phone_proc:

sp_checksource list_phone_proc

Example 5 Checks for the existence of the source text of all the check
constraints, triggers, and declarative defaults defined on the table named
my_tab:

sp_checksource @tabname = "my_tab"

Example 6 Checks for the existence of the source text of the view my_vu
and all check constraints, triggers, and defaults defined on the table
my_tab:

sp_checksource @objname = "my_vu", @tabname = "my_tab"

Example 7 Checks for the existence of the source text of all compiled
objects owned by Tom:

sp_checksource

840

sp_checksource @username = "Tom"

Usage • sp_checksource checks for the existence of the source text of the
specified compiled object. If the source text exists for the specified
object, sp_checksource returns 0. If the source text does not exist for
the specified object, sp_checksource returns 1.

• If you do not provide any parameters, sp_checksource checks the
existence of the source text for all compiled objects in the current
database.

• To use sp_checksource with no parameters, you must be the Database
Owner or System Administrator.

Permissions Only a Database Owner or System Administrator can execute
sp_checksource to check for the existence of the source text of compiled
objects that are owned by another user. Any user can execute
sp_checksource to check for the existence of the source text for his or her
own compiled objects.

See also System procedures sp_hidetext

CHAPTER 8 System Procedures

841

sp_chgattribute
Description Changes the max_rows_per_page, fillfactor, reservepagegap, or

exp_row_size value for future space allocations of a table or an index; sets
the concurrency_opt_threshold for a table.

Syntax sp_chgattribute objname, {"max_rows_per_page" | "fillfactor" |
"reservepagegap" | "exp_row_size"
concurrency_opt_threshold }, optvalue

sp_chgattribute "table_name", "identity_gap", set_number

Parameters objname
is the name of the table or index for which you want to change
attributes.

max_rows_per_page
specifies the row size. Use this option for tables with variable-length
columns.

fillfactor
specifies how full Adaptive Server will make each page when it is
re-creating an index or copying table pages as a result of a reorg rebuild
command or an alter table command to change the locking scheme. The
fillfactor percentage is relevant only at the time the index is rebuilt. Valid
values are 0–100.

reservepagegap
specifies the ratio of filled pages to empty pages that are to be left
during extent I/O allocation operations. For each specified num_pages,
an empty page is left for future expansion of the table. Valid values are
0–255. The default value is 0.

exp_row_size
reserves a specified amount of space for the rows in data-only locked
tables. Use this option to reduce the number of rows being forwarded,
which can be expensive during updates. Valid values are 0, 1, and any
value between the minimum and maximum row length for the table. 0
means a server-wide setting is applied, and 1 means to fully pack the
rows on the data pages.

sp_chgattribute

842

concurrency_opt_threshold
specifies the table size, in pages, at which access to a data-only-locked
table should begin optimizing for reducing I/O, rather than for
concurrency. If the table is smaller than the number of pages specified
by concurrency_opt_threshold, the query is optimized for concurrency
by always using available indexes; if the table is larger than the number
of pages specified by concurrency_opt_threshold, the query is optimized
for I/O instead. Valid values are -1 to 32767. Setting the value to 0
disables concurrency optimization. Use -1 to enforce concurrency
optimization for tables larger than 32767 pages. The default is 15 pages.

optvalue
is the new value. Valid values and default values depend on which
parameter is specified.

table_name
is the name of the table for which you want to change the identity gap.

identity_gap
indicates that you want to change the identity gap.

set_number
is the new size of the identity gap.

Examples Example 1 Sets the max_rows_per_page to 1 for the authors table for all
future space allocations:

sp_chgattribute authors, "max_rows_per_page", 1

Example 2 Sets the max_rows_per_page to 4 for the titleidind index for all
future space allocations:

sp_chgattribute "titles.titleidind", "max_rows_per_page", 4

Example 3 Specifies a fillfactor of 90 percent for pages in title_ix:

sp_chgattribute "titles.title_ix", "fillfactor", 90

Example 4 Sets the exp_row_size to 120 for the authors table for all future
space allocations:

sp_chgattribute authors, "exp_row_size", 120

Example 5 Sets the reservepagegap to 16 for the titleidind index for all
future space allocations:

sp_chgattribute "titles.titleidind", "reservepagegap", 16

Example 6 Turns off concurrency optimization for the titles table:

sp_chgattribute "titles",

CHAPTER 8 System Procedures

843

concurrency_opt_threshold, 0

Example 7 Sets the identity gap for mytable to 20:

sp_chgattribute "mytable", "identity_gap", 20

Example 8 Changes mytable to use the identity burning set factor setting
instead of the identity_gap setting:

sp_chgattribute "mytable", "identity_gap", 0

Usage • sp_chgattribute changes the max_rows_per_page, fillfactor,
reservepagegap, or exp_row_size value for future space allocations or
data modifications of the table or index. It does not affect the space
allocations of existing data pages. You can change these values for an
object only in the current database.

• Use sp_help to see the stored spance management values for a table.
Use sp_helpindex to see the stored space management values for an
index.

• Setting max_rows_per_page to 0 tells Adaptive Server to fill the data
or index pages and not to limit the number of rows (this is the default
behavior of Adaptive Server if max_rows_per_page is not set).

• Low values for optvalue may cause page splits. Page splits occur
when new data or index rows need to be added to a page, and there is
not enough room for the new row. Usually, the data on the existing
page is split fairly evenly between the newly allocated page and the
existing page.

• To approximate the maximum value for a nonclustered index, subtract
32 from the page size and divide the resulting number by the index
key size. The following statement calculates the maximum value of
max_rows_per_page for the nonclustered index titleind:

select
(select @@pagesize - 32) / minlen
from sysindexes where name = "titleind"

288

If you specify too high a value for optvalue, Adaptive Server returns
an error message specifying the highest value allowed.

• If you specify an incorrect value for max_rows_per_page, fillfactor,
reservepagegap, or exp_row_size, sp_chgattribute returns an error
message specifying the valid values.

sp_chgattribute

844

• For more information on max_rows_per_page, fillfactor,
reservepagegap, exp_row_size, and concurrency_opt_threshold, see
the Performance and Tuning Guide.

• For more information about identity gaps, see the section “Managing
Identity Gaps in Tables” in Chapter 7, “Creating Databases and
Tables” in the Transact-SQL User’s Guide.

Permissions Only the object owner can execute sp_chgattribute.

See also Commands alter table, create index, create table

System procedures sp_helpindex

CHAPTER 8 System Procedures

845

sp_clearpsexe
Description Clears the execution attributes of an Adaptive Server session that was set

by sp_setpsexe.

Syntax sp_clearpsexe spid, exeattr

Parameters spid
is the process ID of the session for which execution attributes are to be
cleared.

exeattr
identifies the execution attributes to be cleared. Values for exeattr are
“priority” and “enginegroup”.

Examples sp_clearpsexe 12, 'enginegroup'

Drops the engine group entry for process 12.

Usage • sp_clearpsexe clears the execution attributes of the session that was
set by sp_setpsexe. For more information, see the Performance and
Tuning Guide.

• If the execution attributes are not cleared during the lifetime of the
session, they are cleared when the session exits or terminates
abnormally.

• sp_clearpsexe fails if there are no online engines in the associated
engine group.

• When you drop an engine group entry, the session executes on an
engine group determined by a class definition or by the default class.

• Use sp_who to list process IDs (spids).

Permissions Only a System Administrator can execute sp_clearpsexe to clear priority
attributes for all users. Any user can execute sp_clearpsexe to clear the
priority attributes of tasks owned by that user.

See also System procedures sp_addexeclass, sp_bindexeclass,
sp_dropexeclass, sp_showexeclass, sp_unbindexeclass

sp_clearstats

846

sp_clearstats
Description Initiates a new accounting period for all server users or for a specified user.

Prints statistics for the previous period by executing sp_reportstats.

Syntax sp_clearstats [loginame]

Parameters loginame
is the user’s login name.

Examples Example 1 Initiates a new accounting period for all users.

sp_clearstats

Name Since CPU Percent CPU I/O Percent I/O
------ -------- ------ ----------- ------- -------------
probe Jun 19 1990 0 0% 0 0%
julie Jun 19 1990 10000 24.9962% 5000 24.325%
jason Jun 19 1990 10002 25.0013% 5321 25.8866%
ken Jun 19 1990 10001 24.9987% 5123 24.9234%
kathy Jun 19 1990 10003 25.0038% 5111 24.865%
(5 rows affected)
Total CPU Total I/O
--------- ---------
40006 20555
5 login accounts cleared.

Example 2 Initiates a new accounting period for the user “kathy.”

sp_clearstats kathy

Name Since CPU Percent CPU I/O Percent I/O
----- ----------- ----- ------------ ----- -----------
KATHY Jul 24 1990 498 49.8998% 483924 9.1829%
(1 row affected)
Total CPU Total I/O
--------- ----------
998 98392
1 login account cleared.

Usage • sp_clearstats creates an accounting period and should be run only at
the end of a period.

• Because sp_clearstats clears out the accounting statistics, you must
record the statistics before running the procedure.

• sp_clearstats updates the syslogins field accdate and clears the
syslogins fields totcpu and totio.

Permissions Only a System Administrator can execute sp_clearstats.

CHAPTER 8 System Procedures

847

See also System procedures sp_reportstats

sp_client_addr
Description Displays the IP (Internet Protocol) address of every Adaptive Server task

with an attached client application, including the spid and the client host
name.

Syntax sp_client addr[“spid”]

Parameters spid
 specifies one task for which you require an IP address.

Examples Example 1 lists IP addresses for all tasks.

sp_client_addr

spid hostname ipaddr

11 FRED 162.66.131.36
21 BARNEY 162.66.100.233
22 WILMA 162.66.100.206
23 BETTY 162.66.100.119
24 PEBBLES 162.66.100.125
25 BAMBAM 162.66.100.124
(6 rows affected)
(return status = 0)

Example 2 shows IP addresses for spid 21.

sp_client_addr 21

spid hostname ipaddr

21 BARNEY 162.66.100.233
(1 row affected)
(return status = 0)

Example 3 shows the result when a client application is not connected via
IP.

sp_client_addr 11

sp_client_addr

848

spid hostname ipaddr

11 FRED 0.0.0.0
(1 row affected)
(return status = 0)

Example 4 shows the result of a task with no attached client
(Housekeeper, for example).

sp_client_addr 9

spid hostname ipaddr

9 NULL
(1 row affected)
(return status = 0)

Example 5 shows the result when an incorrect spid is specified.

sp_client_addr 99

Msg 18934, Level 16, State 1:
Procedure "sp_client_addr", Line 32:
spid not found
(return status = 1)

Usage • If the client application is not attached by IP, the address appears as
0.0.0.0. Adaptive Server does not support display of addresses of
protocols other than IP.

• If a task has no attached client (Housekeeper, for instance), the IP
address appears as “NULL”. Tasks with no attached client are not
listed when you use sp_client_addr with no parameter.

Permissions Any user can execute sp_client_addr.

See also System procedures sp_who

CHAPTER 8 System Procedures

849

sp_cmp_all_qplans
Description Compares all abstract plans in two abstract plan groups.

Syntax sp_cmp_all_qplans group1, group2 [, mode]

Parameters group1, group2
are the names of the 2 abstract plan groups.

mode
is the display option, one of: counts, brief, same, diff, first, second,
offending and full. The default mode is counts.

Examples Example 1 Generate a default report on 2 abstract plan groups:

sp_cmp_all_qplans dev_plans, prod_plans

If the two query plans groups are large, this might take some time.
Query plans that are the same
 count

49
Different query plans that have the same association key
 count

1
Query plans present only in group ’dev_plans’ :
 count

1
Query plans present only in group ’prod_plans’ :
 count

0

Example 2 Generates a report using the brief mode:

sp_cmp_all_qplans dev_plans, prod_plans, brief

Usage • Use sp_cmp_all_qplans to check for differences in abstract plans in
two groups of plans.

• sp_cmp_all_qplans matches pairs of plans where the plans in each
group have the same user ID and query text. The plans are classified
as follows:

• Plans that are the same

• Plans that have the same association key in both groups, but have
different abstract plans. The association key is the group ID, user
ID and query text.

sp_cmp_all_qplans

850

• Plans that exist in one group, but do not exist in the other group

Table 8-13 shows the report modes and what type of information is
reported for each mode.

Table 8-13: Report modes for sp_cmp_all_qplans

• To compare two individual abstract plans, use sp_cmp_qplans. To see
the names of abstract plan groups, use sp_help_qpgroup.

• When a System Administrator or Database Owner runs
sp_cmp_all_qplans, it reports on all plans in the two groups. When
another user executes sp_cmp_all_qplans, it reports only on plans that
have the user’s ID.

Permissions Any user can execute sp_cmp_all_qplans.

See also System procedures sp_cmp_qplans

Mode Reported information

counts The counts of: plans that are the same, plans that have the same association key, but different groups,
and plans that exist in one group, but not the other. This is the default report mode.

brief The information provided by counts, plus the IDs of the abstract plans in each group where the plans are
different, but the association key is the same, and the IDs of plans that are in one group, but not in the
other.

same All counts, plus the IDs, queries, and plans for all abstract plans where the queries and plans match.

diff All counts, plus the IDs, queries, and plans for all abstract plans where the queries and plans are
different.

first All counts, plus the IDs, queries, and plans for all abstract plans that are in the first plan group, but not
in the second plan group.

second All counts, plus the IDs, queries, and plans for all abstract plans that are in the second plan group, but
not in the first plan group.

offending All counts, plus the IDs, queries, and plans for all abstract plans that have different association keys or
that do not exist in both groups. This is the combination of the diff, first and second modes

full All counts, plus the IDs, queries, and plans for all abstract plans. This is the combination of same and
offending modes.

CHAPTER 8 System Procedures

851

sp_cmp_qplans
Description Compares two abstract plans.

Syntax sp_cmp_qplans id1, id2

Parameters id1, id2
are the IDs of two abstract plans.

Examples Example 1

sp_cmp_qplans 411252620, 1383780087

The queries are the same.
The query plans are the same.

Example 2

sp_cmp_qplans 2091258605, 647777465

The queries are the same.
The query plans are different.

Usage • sp_cmp_qplans compares the queries, abstract plans, and hash keys of
two abstract plans, and reports whether the queries are the same, and
whether the plans are the same. It prints one of these messages for the
query:

• The queries are the same.

• The queries are different.

• The queries are different but have the same hash key.

It prints one of these messages for the abstract plan:

• The query plans are the same.

• The query plans are different.

• sp_cmp_qplans also prints a return status showing the results of the
comparison. The status values 1, 2 and 10 are additive. The status
values are show in Table 8-14

sp_cmp_qplans

852

Table 8-14: Return status values for sp_cmp_qplans

• To find the ID of a plan, use sp_help_qpgroup or sp_find_qplan. Plan
IDs are also returned by create plan and are included in showplan
output.

Permissions Any user can execute sp_cmp_qplans to compare plans that he or she
owns. Only a System Administrator or the Database Owner can compare
plans owned by another user.

See also System procedures sp_cmp_all_qplans, sp_help_qpgroup

Return value Meaning

0 The query text and abstract plans are the same.

+1 The queries and hash keys are different.

+2 The queries are different, but the hash keys are the same.

+10 The abstract plans are different.

100 One or both of the plan IDs does not exist.

CHAPTER 8 System Procedures

853

sp_commonkey
Description Defines a common key—columns that are frequently joined—between

two tables or views.

Syntax sp_commonkey tabaname, tabbname, col1a, col1b
[, col2a, col2b, ..., col8a, col8b]

Parameters tabaname
is the name of the first table or view to be joined.

tabbname
is the name of the second table or view to be joined.

col1a
is the name of the first column in the table or view tabaname that makes
up the common key. Specify at least one pair of columns (one column
from the first table or view and one from the second table or view).

col1b
is the name of the partner column in the table or view tabbname that is
joined with col1a in the table or view tabaname.

Examples Example 1 Defines a common key on titles.titleid and titleauthor.titleid:

sp_commonkey titles, titleauthor, title_id, title_id

Example 2 Assumes two tables, projects and departments, each with a
column named empid. This statement defines a frequently used join on the
two columns:

sp_commonkey projects, departments, empid, empid

Usage • Common keys are created in order to make explicit a logical
relationship that is implicit in your database design. The information
can be used by an application. sp_commonkey does not enforce
referential integrity constraints; use the primary key and foreign key
clauses of the create table or alter table command to enforce key
relationships.

• Executing sp_commonkey adds the key to the syskeys system table.
To display a report on the common keys that have been defined, use
sp_helpkey.

• You must be the owner of at least one of the two tables or views in
order to define a common key between them.

sp_commonkey

854

• The number of columns from the first table or view must be the same
as the number of columns from the second table or view. Up to eight
columns from each table or view can participate in the common key.
The datatypes of the common columns must also agree. For columns
that take a length specification, the lengths can differ. The null types
of the common columns need not agree.

• The installation process runs sp_commonkey on appropriate columns
of the system tables.

Permissions Only the owner of tabaname or tabbname can execute sp_commonkey.

See also Commands alter table, create table, create trigger

System procedures sp_dropkey, sp_foreignkey, sp_helpjoins,
sp_helpkey, sp_primarykey

CHAPTER 8 System Procedures

855

sp_companion
Description Performs cluster operations such as configuring Adaptive Server as a

secondary companion in a high availability system and moving a
companion server from one failover mode to another. sp_companion is run
from the secondary companion.

Syntax sp_companion
[server_name
{, configure

[, {with_proxydb | NULL}]
[, srvlogin]
[, server_password]
[, cluster_login]
[, cluspassword]]

| drop
| suspend
| resume
| prepare_failback
| do_advisory}

{, all
| help
| group attribute_name
| base attribute_name}

Parameters server_name
is the name of the Adaptive Server on which you are performing a
cluster operation.

configure
configures the server specified by server_name as the primary
companion in a failover configuration.

drop
permanently drops a companion from failover configuration. After the
command has completed, the servers are in single-server mode.

suspend
 temporarily removes the companions from a failover configuration.
After the command is completed, the companions are in suspended
mode.

resume
 reverses the suspend command and resumes normal companion mode
between the companions.

prepare_failback
 prepare the secondary companion to relinquish the primary
companion’s resources so it can failback.

sp_companion

856

do_advisory
 verifies that the secondary companion is compatible for successfully
performing the primary companion’s functions during failover mode.

• all – causes do_advisory the investigate all the parameters.

• help – displays information and syntax about the do_advisory
parameter.

• group attribute – limits do_advisory to investigate only the group
attributes.

• base attribute – limits do_advisory to investigate only the base
attributes.

with_proxydb
vreates proxy databases on the secondary companion for all database
other than the system databases – and all subsequent databases that are
added – when this parameter is included in the initial configuration of
the companion servers. By default, with_proxydb is disabled.

srvlogin
 is a user’s login to access the companion server. By default, the value
of srvlogin is “sa”.

srvpassword
is the user’s password to access the companion server. By default, the
value of srvpassword is null.

cluster_login
i the user’s login to log into the cluster. By default, the value of
cluster_login is “sa”.

cluspassword
is the users password you must provide to log into the cluster. By
default, the value of cluspassword is null.

Examples Example 1 Configures the Adaptive Server MONEY1 as the primary
companion:

sp_companion "MONEY1", configure

Example 2 Configures the Adaptive Server MONEY1 as the primary
companion and creates proxy databases on the secondary companion:

sp_companion "MONEY1", configure, with_proxydb, "sa", "sapsswd"

Example 3 Drops the Adaptive Server PERSONEL1 from the failover
configuration. After the command has completed, both the primary
companion and the secondary companion will be in single-server mode:

CHAPTER 8 System Procedures

857

sp_companion "PERSONEL1", "drop"

Example 4 Resumes normal companion mode for the companion server
(in this example, MONEY1):

sp_companion "MONEY1", "resume"

Example 5 Prepares the primary companion (in this example,
PERSONEL1) to change to normal companion mode and resume control
of the Adaptive Server that failed over:

sp_companion "PERSONEL1", "prepare_failback"

Example 6 Checks to make sure a cluster operation with the
PERSONEL1 companion will be successful. Because do_advisory in this
example uses the all parameter, it checks all the do_advisory attributes of
PERSONEL1 to make sure that none of them will prevent a successful
cluster operation, and that the secondary companion can successfully
perform the primary companion’s operations after failover is complete:

sp_companion "PERSONEL1", do_advisory, "all"

Example 7 Checks to make sure that none of the attributes for the
Component Integration Services (CIS) on the companion server is
compatible with the local server:

sp_companion "PERSONEL1", do_advisory, "CIS"

Usage • sp_companion performs cluster operations such as configuring
Adaptive Server as a secondary companion in a high availability
system. sp_companion also moves companion servers from one
failover mode to another (for example, from failover mode back to
normal companion mode). sp_companion is run from the secondary
companion.

• sp_companion is installed with the installhasvss (insthasv on
Windows NT), not the installmaster script. installhasvss is located in
$SYBASE/ASE-12_0/scripts.

• sp_companion automatically disables Sybase’s mirroring. Sybase
recommends that you use a third-party mirroring software to protect
your data from disk failures.

For complete information, see Using Sybase Failover in A High
Availability System. Before running the do_advisory command, make sure
to read the configuration chapter of this book as well as the do_advisory
chapter.

Permissions Only users with the ha_role can issue sp_companion.

sp_configure

858

sp_configure
Description Displays configuration parameters by group, their current values, their

default values, the value to which they have most recently been set, and
the amount of memory used by this setting. Displays only the parameters
whose display level is the same as or below that of the user.

Syntax sp_configure [configname [, configvalue] | group_name |
non_unique_parameter_fragment]

sp_configure "configuration file", 0, {"write" | "read" | "verify" | "restore"}
"file_name"

Parameters configname
displays the current value, default value, most recently changed value,
and amount of memory used by the setting for all parameters matching
parameter.

configvalue
resets configname to configvalue and displays the current value, default
value, configured value, and amount of memory used by configname.

sp_configure configname, 0, “default” resets configname to its default
value and displays current value, default value, configured value, and
amount of memory used by configname.

group_name
displays all configuration parameters in group_name, their current
values, their default values, the value (if applicable) to which they have
most recently been set, and the amount of memory used by this setting.

non_unique_parameter_fragment
displays all parameter names that match
non_unique_parameter_fragment, their current values, default values,
configured values, and the amount of memory used.

file_name
is the name of the file you want to us sp_configure on.

write
creates file_name from the current configuration. If file_name already
exists, a message is written to the error log and the existing file is
renamed using the convention file_name.001, file_name.002, and so on.
If you have changed a static parameter but have not restarted your
server, “write” gives you the currently running value for that parameter.

CHAPTER 8 System Procedures

859

read
performs validation checking on values contained in file_name and
reads those values that pass validation into the server. If any parameters
are missing from file_name, the current running values for those
parameters are used.

verify
performs validation checking on the values in file_name.

restore
creates file_name with the values in sysconfigures. This is useful if all
copies of the configuration file have been lost and you need to generate
a new copy.

Examples Example 1 Displays all configuration parameters by group, their current
values, their default values, the value (if applicable) to which they have
most recently been set, and the amount of memory used by this setting:

sp_configure

Example 2 Displays all configuration parameters that include the word
“identity”:

sp_configure "identity"
Configuration option is not unique.

Parameter Name Default Memory Used Config Value Run Value Unit Type
-------------- -------- ----------- ------------ --------- ------ ----
identity burning
set 1 0 1 1 id static
identity grab
size 0 0 0 0 id dyna
size of auto identit 10 0 10 10 bytes dyna
. . .

Example 3 Sets the system recovery interval in minutes to 3 minutes:

sp_configure "recovery interval in minutes", 3
Parameter Name Default Memory Used Config Value Run Value Unit Type
-------------- ------- ----------- ------------ --------- ------ ----
recovery interval 5 0 3 3 min dyn

Configuration option changed. The SQL Server need not be rebooted since the
option is dynamic.

Example 4 Resets the value for number of devices to the Adaptive Server
default:

sp_configure "number of device", 0, "default"

sp_configure

860

Usage • Any user can execute sp_configure to display information about
parameters and their current values, but not to modify parameters.
System Administrators can execute sp_configure to change the values
of most configuration parameters. Only System Security Officers can
execute certain parameters. These are listed under “Permissions” in
this section.

• sp_configure allows you to specify the value for configuration
paramters in unit specifiers. The unit specifiers are p or P for pages,
m or M for megabytes, and g or G for gigabytes. If you do not specify
a unit, and you are configuring a parameter that controls memory,
Adaptive Server uses the logical page size for the basic unit.

• When you execute sp_configure to modify a dynamic parameter:

• The configuration and run values are updated.

• The configuration file is updated.

• The change takes effect immediately.

• When you execute sp_configure to modify a static parameter:

• The configuration value is updated.

• The configuration file is updated.

• The change takes effect only when you restart Adaptive Server.

• When issued with no parameters, sp_configure displays a report of all
configuration parameters by group, their current values, their default
values, the value (if applicable) to which they have most recently been
set, and the amount of memory used by this setting:

• The default column in the report displays the value Adaptive
Server is shipped with. If you do not explicitly reconfigure a
parameter, it retains its default value.

• The memory used column displays the amount of memory used
by the parameter at its current value in kilobytes. Some related
parameters draw from the same memory pool. For instance, the
memory used for stack size and stack guard size is already
accounted for in the memory used for number of user connections.
If you added the memory used by each of these parameters
separately, it would total more than the amount actually used. In
the memory used column, parameters that “share” memory with
other parameters are marked with a hash mark (#).

CHAPTER 8 System Procedures

861

• The config_value column displays the most recent value to which
the configuration parameter has been set with sp_configure.

• The run_value column displays the value being used by Adaptive
Server. It changes after you modify a parameter’s value with
sp_configure and, for static parameters, after you restart Adaptive
Server. This is the value stored in syscurconfigs.value.

Note If the server uses a case-insensitive sort order, sp_configure
with no parameters returns a list of all configuration parameters
and groups in alphabetical order with no grouping displayed.

• Each configuration parameter has an associated display level. There
are three display levels:

• The “basic” level displays only the most basic parameters. It is
appropriate for very general server tuning.

• The “intermediate” level displays parameters that are somewhat
more complex, as well as showing you all the “basic” parameters.
This level is appropriate for a moderately complex level of server
tuning.

• The “comprehensive” level displays all parameters, including the
most complex ones. This level is appropriate for users who do
highly detailed server tuning.

The default display level is “comprehensive”. Setting one of the other
display levels lets you work with a subset of the configuration
parameter, shortening the amount of information displayed by
sp_configure.

The syntax for showing your current display level is:

sp_displaylevel

• For information on the individual configuration parameters, see the
System Administration Guide.

Permissions Any user can execute sp_configure to display information about
parameters and their current values.

Only System Administrators and System Security Officers can execute
sp_configure to modify configuration parameters.

Only System Security Officers can execute sp_configure to modify values
for:

sp_configure

862

• allow procedure grouping

• allow select on syscomments.text

• allow updates

• audit queue size

• auditing

• current audit table

• remote access

• suspend auditing when full

• systemwide password expiration

System Administrators can modify all other parameters.

See also Commands set

System procedures sp_dboption, sp_displaylevel, sp_helpconfig,
sp_monitorconfig

CHAPTER 8 System Procedures

863

sp_copy_all_qplans
Description Copies all plans for one abstract plan group to another group.

Syntax sp_copy_all_qplans src_group, dest_group

Parameters src_group
is the name of the source abstract plan group.

dest_group
is the name of the abstract plan group to which the plans are to be
copied.

Examples Copies all of the abstract plans in the dev_plans group to the ap_stdin
group:

sp_copy_all_qplans dev_plans, ap_stdin

Usage • The destination group must exist before you can copy plans into it. It
may contain plans.

• sp_copy_all_qplans calls sp_copy_qplan for each plan in the source
group. Each plan is copied as a separate transaction, so any problem
that keeps sp_copy_all_qplans from completing does not affect the
plans that have already been copied.

• sp_copy_qplan prints messages when it cannot copy a particular
abstract plan. You also see these messages when running
sp_copy_all_qplans.

• If the query text for a plan in the destination group exactly matches
the query text in the source group and the user ID is the same, the plan
is not copied, and a message giving the plan ID is sent to the user, but
the copying process continues with the next plan in the source group.

• Copying a very large number of abstract plans can take considerable
time, and also requires space on the system segment in the database
and space to log the changes to the database. Use sp_spaceused to
check the size of sysqueryplans, and sp_helpsegment for the system
and logsegment to check the space available.

Permissions Any user can execute sp_copy_all_qplans to copy an abstract plan that he
or she owns. Only the System Administrator or Database Owner can copy
plans that are owned by other users.

See also System procedures sp_copy_qplan, sp_help_qpgroup

sp_copy_qplan

864

sp_copy_qplan
Description Copies one abstract plan to an abstract plan group.

Syntax sp_copy_qplan src_id, dest_group

Parameters src_id
is the ID of the abstract plan to copy.

dest_group
is the name of the destination abstract plan group.

Examples sp_copy_qplan 2140534659, ap_stdin

Usage • The destination group must exist before you can copy an abstract plan
into it. You do not need to specify a source group, since plans are
uniquely identified by the plan ID.

• A new plan ID is generated when the plan is copied. The plan retains
the ID of the user who created it, even if the System Administrator or
Database Owner copies the plan. To assign a different user ID, a
System Administrator or Database Owner can use sp_export_qpgroup
and sp_import_qpgroup.

• If the query text for a plan in the destination group exactly matches
the query text in the source group and the user ID, the plan is not
copied, and a message giving the plan IDs is sent to the user.

• To copy all of the plans in an abstract plan group, use
sp_copy_all_qplans.

Permissions Any user can execute sp_copy_qplan to copy a plan that he or she owns.
Only the System Administrator or Database Owner can copy plans that are
owned by other users.

See also System procedures sp_copy_all_qplans, sp_help_qpgroup,
sp_help_qplan, sp_import_qpgroup

CHAPTER 8 System Procedures

865

sp_countmetadata
Description Displays the number of indexes, objects, or databases in Adaptive Server.

Syntax sp_countmetadata "configname" [, dbname]

Parameters configname
is either "open indexes", "open objects", or "open databases".

dbname
is the name of the database on which to run sp_countmetadata. If no
database name is given, sp_countmetadata provides a total count for all
databases.

Examples Example 1 Reports on the number of user objects in Adaptive Server. Use
this value to set the number of objects allowed in the database, plus space
for additional objects and temporary tables:

sp_configure "number of open objects", 310

sp_countmetadata "open objects"

There are 283 user objects in all database(s),
requiring 117.180 Kbytes of memory. The 'open
objects' configuration parameter is currently set to
a run value of 500.

Example 2 Reports on the number of indexes in Adaptive Server:

sp_countmetadata "open indexes", pubs2

There are 21 user indexes in pubs2 database(s),
requiring 8.613 kbytes of memory. The 'open indexes'
configuration parameter is currently set to 600.

Usage • sp_countmetadata displays the number of indexes, objects, or
databases in Adaptive Server, including the number of system
databases such as model and tempdb.

• Avoid running sp_countmetadata during Adaptive Server peak times.
It can cause contention on the sysindexes, sysobjects, and
sysdatabases system tables.

• You can run sp_countmetadata on a specified database if you want
information on a particular database. However, when configuring
caches for indexes, objects, or databases, run sp_countmetadata
without the database_name option.

sp_countmetadata

866

• The information on memory returned by sp_countmetadata can vary
by platform. For example, a database on Adaptive Server for
Windows NT could have a different sp_countmetadata result than the
same database on Sun Solaris. Information on the number of user
indexes, objects, or databases should be consistent, however.

• sp_countmetadata does not include temporary tables in its calculation.
Add 5 percent to the open objects value and 10 percent to the open
indexes value to accommodate temporary tables.

• If you specify a nonunique fragment of "open indexes", "open objects",
or "open databases" for configname, sp_countmetadata returns a list of
matching configuration parameter names with their configured values
and current values. For example:

sp_countmetadata "open"

Configuration option is not unique.
 option_name config_value run_value
 ------------------------------ ------------ -----------
 curread change w/ open cursors 1 1
 number of open databases 12 12
 number of open indexes 500 500
 number of open objects 500 500
 open index hash spinlock ratio 100 100
 open index spinlock ratio 100 100
 open object spinlock ratio 100 100

Permissions Only a System Administrator or the Database Owner can execute
sp_countmetadata.

See also System procedures sp_configure, sp_helpconfig, sp_monitorconfig

CHAPTER 8 System Procedures

867

sp_cursorinfo
Description Reports information about a specific cursor or all cursors that are active for

your session.

Syntax sp_cursorinfo [{cursor_level | null}] [, cursor_name]

Parameters cursor_level | null
is the level at which Adaptive Server returns information for the
cursors. You can specify the following for cursor_level:

If you want information about cursors with a specific cursor_name,
regardless of cursor level, specify null for this parameter.

cursor_name
is the specific name for the cursor. Adaptive Server reports information
about all active cursors that use this name at the cursor_level you
specify. If you omit this parameter, Adaptive Server reports information
about all the cursors at that level.

Examples Example 1 Displays the information about the cursor named authors_crsr
at level 0:

sp_cursorinfo 0, authors_crsr

Cursor name 'authors_crsr' is declared at nesting level '0'.
The cursor id is 327681
The cursor has been successfully opened 1 times.
The cursor was compiled at isolation level 0.
The cursor is not open.
The cursor will remain open when a transaction is commited or rolled back.
The number of rows returned for each FETCH is 1.
The cursor is read only.
There are 3 columns returned by this cursor.
The result columns are:
Name = 'au_id', Table = 'authors', Type = ID,

Length = 11 (read only)
Name = 'au_lname', Table = 'authors', Type = VARCHAR,
Length = 40 (read only)
Name = 'au_fname', Table = 'authors', Type = VARCHAR,
Length = 20 (read only)

Level Types of cursors

N Any cursors declared inside stored procedures at a specific procedure
nesting level. You can specify any positive number for its level.

0 Any cursors declared outside stored procedures.

-1 Any cursors from either of the above. You can substitute any negative
number for this level.

sp_cursorinfo

868

Example 2 Displays the information about any cursors named
author_sales declared by a user across all levels:

sp_cursorinfo null, author_sales

Cursor name 'author_sales' is declared on procedure 'au_sales'.
Cursor name 'author_sales' is declared at nesting level '1'.
The cursor id is 327682
The cursor has been successfully opened 1 times.
The cursor was compiled at isolation level 1.
The cursor is currently scanning at a nonzero isolation level.
The cursor is positioned after the last row.
The cursor will be closed when a transaction is commited or rolled back.
The number of rows returned for each FETCH is 1.
The cursor is updatable.
There are 3 columns returned by this cursor.
The result columns are:
Name = 'title_id', Table = 'titleauthor', Type = ID,

Length = 11 (updatable)
Name = 'title', Table = 'titles', Type = VARCHAR,

Length = 80 (updatable)
Name = 'total_sales', Table = 'titles', Type = INT (updatable)

Usage • If you do not specify either cursor_level or cursor_name, Adaptive
Server displays information about all active cursors. Active cursors
are those declared by you and allocated by Adaptive Server.

• Adaptive Server reports the following information about each cursor:

• The cursor name, its nesting level, its cursor ID, and the
procedure name (if it is declared in a stored procedure).

• The number of times the cursor has been opened.

• The isolation level (0, 1, or 3) in which it was compiled and in
which it is currently scanning (if open).

• Whether the cursor is open or closed. If the cursor is open, it
indicates the current cursor position and the number of rows
fetched.

• Whether the open cursor will be closed if the cursor’s current
position is deleted.

• Whether the cursor will remain open or be closed if the cursor’s
current transaction is committed or rolled back.

• The number of rows returned for each fetch of that cursor.

• Whether the cursor is updatable or read-only.

CHAPTER 8 System Procedures

869

• The number of columns returned by the cursor. For each column,
it displays the column name, the table name or expression result,
and whether it is updatable.

The output from sp_cursorinfo varies, depending on the status of the
cursor. In addition to the information listed, sp_cursorinfo displays the
showplan output for the cursor. For more information about showplan,
see the Performance and Tuning Guide.

Permissions Any user can execute sp_cursorinfo.

See also Commands declare cursor, set

sp_dboption

870

sp_dboption
Description Displays or changes database options.

Syntax sp_dboption [dbname, optname, {true | false}]

Parameters dbname
is the name of the database in which the option is to be set. You must be
using master to execute sp_dboption with parameters (that is, to change a
database option). You cannot, however, change option settings in the master
database.

optname
is the name of the option to be set. Adaptive Server understands any unique
string that is part of the option name. Use quotes around the option name if
it is a keyword or includes embedded blanks or punctuation.

true | false
true to turn the option on, false to turn it off.

Examples Example 1 Displays a list of the database options:

sp_dboption

Settable database options
 database_options

 abort tran on log full
 allow nulls by default
 auto identity
 dbo use only
 ddl in tran
identity in nonunique index
 no chkpt on recovery
 no free space acctg
 read only
 select into/bulkcopy/pllsort
 single user
 trunc log on chkpt
 trunc. log on chkpt.
 unique auto_identity index

Example 2 Makes the database pubs2 read only. The read string uniquely
identifies the read only option from among all available database options. Note
the use of quotes around the keyword read:

use pubs2
go
master..sp_dboption pubs2, "read", true

CHAPTER 8 System Procedures

871

go
checkpoint
go

Example 3 Makes the database pubs2 writable again:

pubs2..sp_dboption pubs2, "read", false
go
checkpoint
go

Example 4 Allows select into, bcp and parallel sort operations on tables in
the pubs2 database. The select into string uniquely identifies the select into/
bulkcopy option from among all available database options:

use pubs2
go
master..sp_dboption pubs2, "select into", true
go
checkpoint
go

Note Quotes are required around the option because of the embedded
space.

Example 5 Automatically defines 10-digit IDENTITY columns in new
tables created in mydb. The IDENTITY column, SYB_IDENTITY_COL, is
defined in each new table that is created without specifying either a
primary key, a unique constraint, or an IDENTITY column:

use mydb
go
master..sp_dboption mydb, "auto identity", true
go
checkpoint
go

Example 6 Automatically includes an IDENTITY column in the mydb
tables’ index keys, provided these tables already have an IDENTITY
column. All indexes created on the tables will be internally unique:

use master
go
sp_dboption mydb, "identity in nonunique index",
true
go
use mydb

sp_dboption

872

go
checkpoint
go

Example 7 Automatically includes an IDENTITY column with a unique,
nonclustered index for new tables in the pubs2 database:

use master
go
sp_dboption pubs2, "unique auto_identity index",
true
go
use pubs2
go
checkpoint
go

Usage • The master database option settings cannot be changed.

• To display a list of database options, execute sp_dboption with no
parameters from inside the master database.

• For a report on which database options are set in a particular database,
execute sp_helpdb.

• The no chkpt on recovery option disables the trunc log on chkpt option
when both are set with sp_dboption for the same database. This
conflict is especially possible in the tempdb database which has trunc
log on chkpt set to on as the default.

• The Database Owner or System Administrator can set or unset
particular database options for all new databases by executing
sp_dboption on model.

• After sp_dboption has been executed, the change does not take effect
until the checkpoint command is issued in the database for which the
option was changed.

Database options

• The abort tran on log full option determines the fate of a transaction that
is running when the last-chance threshold is crossed in the log
segment of the specified database. The default value is false, meaning
that the transaction is suspended and is awakened only when space
has been freed. If you change the setting to true, all user queries that
need to write to the transaction log are killed until space in the log has
been freed.

CHAPTER 8 System Procedures

873

• Setting the allow nulls by default option to true changes the default
value of a column from not null to null, in compliance with the SQL
standards. The Transact-SQL default value for a column is not null,
meaning that null values are not allowed in a column unless null is
specified in the create table or alter table column definition. allow nulls
by default true reverses this.

• While the auto identity option is set to true (on), a 10-digit IDENTITY
column is defined in each new table that is created without specifying
either a primary key, a unique constraint, or an IDENTITY column.
The column is not visible when you select all columns with the select
* statement. To retrieve it, you must explicitly mention the column
name, SYB_IDENTITY_COL, in the select list.

To set the precision of the automatic IDENTITY column, use the size
of auto identity column configuration parameter.

Though you can set auto identity to true in tempdb, it is not recognized
or used, and temporary tables created there do not automatically
include an IDENTITY column.

For a report on indexes in a particular table that includes the
IDENTITY column, execute sp_helpindex.

• While the dbo use only option is set to true (on), only the database’s
owner can use the database.

• When the ddl in tran option is set to true (on), you can use certain data
definition language commands in transactions. If ddl in tran is true in
a particular database, commands such as create table, grant, and alter
table are allowed inside transactions in that database. If ddl in tran is
true in the model database, the commands are allowed inside
transactions in all databases created after ddl in tran was set in model.

 Warning! Data definition language (DDL) commands hold locks on
system tables such as sysobjects. Avoid using them inside
transactions; if you must use them, keep the transactions short.

Using any DDL commands on tempdb within transactions may cause
your system to grind to a halt. Always leave ddl in tran set to false in
tempdb.

• The following commands can be used inside a user-defined
transaction when the ddl in tran option is set to true:

alter table – clauses other than partition and unpartition are allowed

sp_dboption

874

create default
create index
create procedure
create rule
create schema
create table
create trigger
create view
drop default
drop index
drop procedure
drop rule
drop table
drop trigger
drop view
grant
revoke

• The following commands cannot be used inside a user-defined
transaction under any circumstances:

alter database
alter table...lock
alter table...partition
alter table...unpartition
create database
disk init
dump database
dump transaction
drop database
load transaction
load database
select into
truncate table
update statistics

In addition, system procedures that create temporary tables or change
the master database cannot be used inside user-defined transactions.

• The identity in nonunique index option automatically includes an
IDENTITY column in a table’s index keys, so that all indexes created
on the table are unique. This database option makes logically
nonunique indexes internally unique, and allows these indexes to be
used to process updatable cursors and isolation level 0 reads.

CHAPTER 8 System Procedures

875

The table must already have an IDENTITY column for the identity in
nonunique index option to work, either from a create table statement
or by setting the auto identity database option to true before creating
the table.

Use identity in nonunique index if you plan to use cursors and isolation
level 0 reads on tables with nonunique indexes. A unique index
ensures that the cursor will be positioned at the correct row the next
time a fetch is performed on that cursor. If you plan to use cursors on
tables with unique indexes and any isolation level, you may want to
use the unique auto_identity index option.

For a report on indexes in a particular table that includes the
IDENTITY column, execute sp_helpindex.

• The no free space acctg option suppresses free-space accounting and
execution of threshold actions for the non-log segments. This speeds
recovery time because the free-space counts are not recomputed for
those segments.

• The no chkpt on recovery option is set to true (on) when an up-to-date
copy of a database is kept. In these situations, there is a “primary” and
a “secondary” database. Initially, the primary database is dumped and
loaded into the secondary database. Then, at intervals, the transaction
log of the primary database is dumped and loaded into the secondary
database.

If this option is set to false (off), the default condition, a checkpoint
record is added to a database after it is recovered when you restart
Adaptive Server. This checkpoint, which ensures that the recovery
mechanism will not be rerun unnecessarily, changes the sequence
number and causes a subsequent load of the transaction log from the
primary database to fail.

Setting this option to true (on) for the secondary database causes it not
to get a checkpoint from the recovery process so that subsequent
transaction log dumps from the primary database can be loaded into it.

• The read only option means that users can retrieve data from the
database, but cannot modify any data.

sp_dboption

876

• Setting the select into/bulkcopy/pllsort option to true (on) enables the
use of writetext, select into a permanent table, “fast” bulk copy into a
table that has no indexes or triggers, using bcp or the bulk copy library
routines, and parallel sort. A transaction log dump cannot recover
these minimally logged operations, so dump transaction to a dump
device is prohibited. After non-logged operations are completed, set
select into/bulk copy/pllsort to false (off) and issue dump database.

Issuing the dump transaction statement after unlogged changes have
been made to the database with select into, bulk copy, or parallel sort
produces an error message instructing you to use dump database
instead. (The writetext command does not have this protection.)

You do not have to set the select into/bulkcopy/pllsort option to true in
order to select into a temporary table, since tempdb is never recovered.
The option need not be set to true in order to run bcp on a table that
has indexes, because tables with indexes are always copied with the
slower version of bulk copy and are logged.

• When single user is set to true, only one user at a time can access the
database (single-user mode).

You cannot set single user to true in a user database from within a
stored procedure or while users have the database open. You cannot
set single user to true for tempdb.

• The trunc log on chkpt option means that if the transaction log has
more than 50 rows of committed transactions, the transaction log is
truncated (the committed transactions are removed) every time the
checkpoint checking process occurs (usually more than once per
minute). When the Database Owner runs checkpoint manually,
however, the log is not truncated. It may be useful to turn this option
on while doing development work, to prevent the log from growing.

While the trunc log on chkpt option is on, dump transaction to a dump
device is prohibited, since dumps from the truncated transaction log
cannot be used to recover from a media failure. Issuing the dump
transaction statement produces an error message instructing you to use
dump database instead.

CHAPTER 8 System Procedures

877

• When the unique auto_identity index option is set to true, it adds an
IDENTITY column with a unique, nonclustered index to new tables.
By default, the IDENTITY column is a 10-digit numeric datatype, but
you can change this default with the size of auto identity column
configuration parameter. As with auto identity, the IDENTITY column
is not visible when you select all columns with the select * statement.
To retrieve it, you must explicitly mention the column name,
SYB_IDENTITY_COL, in the select list.

If you need to use cursors or isolation level 0 reads with nonunique
indexes, use the identity in nonunique index option.

Though you can set unique auto_identity index to true in tempdb, it is
not recognized or used, and temporary tables created there do not
automatically include an IDENTITY column with a unique index.

• See the System Administration Guide for more information on
database options.

Permissions Only a System Administrator or the Database Owner can execute
sp_dboption with parameters to change database options. A user aliased to
the Database Owner cannot execute sp_dboption to change database
options. Any user can execute sp_dboption with no parameters to view
database options.

See also Commands checkpoint, select

System procedures sp_configure, sp_helpdb, sp_helpindex,
sp_helpjoins

Utilities bcp

sp_dbrecovery_order

878

sp_dbrecovery_order
Description Specifies the order in which user databases are recovered and lists the

user-defined recovery order of a database or all databases.

Syntax sp_dbrecovery_order
[database_name [, rec_order [, force]]]

Parameters database_name
The name of the database being assigned a recovery order or the
database whose user-defined recovery order is to be listed.

rec_order
The order in which the database is to be recovered. A rec_order of -1
deletes a specified database from the user-defined recovery sequence.

force
allows the user to insert a database into an existing recovery sequence
without putting it at the end.

Examples Example 1 Makes the pubs2 database the first user database to be
recovered following a system failure:

sp_dbrecovery_order pubs2, 1

Example 2 Inserts the pubs3 database into third position in a user-defined
recovery sequence. If another database was initially in third position, it is
moved to fourth position, and all databases following it are moved
accordingly:

sp_dbrecovery_order pubs3, 3, force

Example 3 Removes the pubs2 database from the user-defined recovery
sequence. Subsequently, pubs2 will be recovered after all databases with a
user-specified recovery order have recovered:

sp_dbrecovery_order pubs2, -1

Example 4 Lists the current recovery order of all databases with a
recovery order assigned through sp_dbrecovery_order:

sp_dbrecovery_order

Usage • You must be in the master database to use sp_dbrecovery_order to
enter or modify a user-specified recovery order. You can list the
user-defined recovery order of databases from any database.

CHAPTER 8 System Procedures

879

• To change the user-defined recovery position of a database, use
sp_dbrecovery_order to delete the database from the recovery
sequence, then use sp_dbrecovery_order to insert it into a new
position.

• System databases are always recovered before user databases. The
system databases and their recovery order are:

master
model
tempdb
sybsystemdb
sybsecurity
sybsystemprocs

• If no database is assigned a recovery order through
sp_dbrecovery_order, all user databases are recovered in order, by
database ID, after system databases.

• If database_name is specified, but no rec_order is given,
sp_dbrecovery_order shows the user-defined recovery position of the
specified database.

• If database_name is not specified, sp_dbrecovery_order lists the
recovery order of all databases with a user-assigned recovery order.

• The order of recovery assigned through sp_dbrecovery_order must be
consecutive, starting with 1 and containing no gaps between values.
The first database assigned a recovery order must be assigned a
rec_order of 1. If three databases have been assigned a recovery order
of 1, 2, and 3, you cannot assign the next database a recovery order of
5.

Permissions Only a System Administrator can execute sp_dbrecovery_order.

sp_dbremap

880

sp_dbremap
Description Forces Adaptive Server to recognize changes made by alter database. Run

this procedure only when instructed to do so by an Adaptive Server
message.

Syntax sp_dbremap dbname

Parameters dbname
is the name of the database in which the alter database command was
interrupted.

Examples An alter database command changed the database sample_db. This
command makes the changes visible to Adaptive Server:

sp_dbremap sample_db

Usage • If an alter database statement issued on a database that is in the
process of being dumped is interrupted, Adaptive Server prints a
message instructing the user to execute sp_dbremap.

• Any changes to sysusages during a database or transaction dump are
not copied into active memory until the dump completes, to ensure
that database mapping does not change during the dump. Running
alter database makes changes to system tables on the disk
immediately. In-memory allocations cannot be changed until a dump
completes. This is why alter database pauses.

When you execute sp_dbremap, it must wait until the dump process
completes.

• If you are instructed to run sp_dbremap, but do not do it, the space you
have allocated with alter database does not become available to
Adaptive Server until the next restart.

Permissions Only a System Administrator or Database Owner can execute
sp_dbremap.

See also Commands alter database, dump database, dump transaction

CHAPTER 8 System Procedures

881

sp_defaultloc
Description Component Integration Services only Defines a default storage

location for objects in a local database.

Syntax sp_defaultloc dbname, {"defaultloc"| NULL}
[, "defaulttype"]

Parameters dbname
is the name of a database being mapped to a remote storage location.
The database must already have been defined by a create database
statement. You cannot map system databases to a remote location.

defaultloc
is the remote storage location to which the database is being mapped.
To direct the server to delete an existing default mapping for a database,
supply NULL for this parameter. The value of defaultloc must end in a
period (.), as follows:

server.dbname.owner.

defaulttype
is one of the values that specify the format of the object named by
object_loc.The valid values are as follows. Enclose the defaulttype
value in quotes:

• table – indicates that the object named by object_loc is a table
accessible to a remote server. This value is the default for
defaulttype.

• view – indicates that the object named by object_loc is a view
managed by a remote server, processed as a table.

• rpc – indicates that the object named by object_loc is an RPC
managed by a remote server; processes the result set from the RPC
as a read-only table.

Examples Example 1 sp_defaultloc defines the remote storage location pubs.dbo. in
the remote server named SYBASE. It maps the database pubs to the
remote location. A “create table book1” statement would create a table
named book1 at the remote location. A create existing table statement for
bookN would require that pubs.dbo.bookN already exist at the remote
location, and information about table bookN would be stored in the local
table bookN:

sp_defaultloc pubs, "SYBASE.pubs.dbo.", "table"
create table pubs.dbo.book1 (bridges char(15))

sp_defaultloc

882

Example 2 Removes the mapping of the database pubs to a remote
location:

sp_defaultloc pubs, NULL

Example 3 Identifies the remote storage location wallst.nasdaq.dbo where
“wallst” is the value provided for server_name, “nasdaq” is provided for
database, and “dbo” is provided for owner. The RPC sybase must already
exist at the remote location. A “create existing table sybase” statement
would store information about the result set from RPC sybase in local
table ticktape. The result set from RPC sybase is regarded as a read-only
table. Inserts, updates and deletes are not supported for RPCs:

sp_defaultloc ticktape,"wallst.nasdaq.dbo.", "rpc"
create existing table sybase (bestbuy integer)

Usage • sp_defaultloc defines a default storage location for tables in a local
database. It maps table names in a database to a remote location. It
permits the user to establish a default for an entire database, rather
than issue an sp_addobjectdef command before every create table and
create existing table command.

• When defaulttype is table, view, or rpc, the defaultloc parameter takes
the form:

server_name.dbname.owner.

• Note that the defaultloc specification ends in a period (.).

• server_name represents a server already added to sysservers by
sp_addserver. The server_name parameter is required.

• dbname might not be required. Some server classes do not
support it.

• owner should always be provided to avoid ambiguity. If it is not
provided, the remote object actually referenced could vary,
depending on whether the external login corresponds to the
remote object owner.

• Issue sp_defaultloc before any create table or create existing table
statement. When either statement is used, the server uses the
sysattributes table to determine whether any table mapping has been
specified for the object about to be created or defined. If the mapping
has been specified, a create table statement directs the table to be
created at the location specified by object_loc. A create existing table
statement stores information about the existing remote object in the
local table.

CHAPTER 8 System Procedures

883

• If you issue sp_defaultloc on defaulttype view and then issue create
table, Component Integration Services creates a new table, not a view,
on the remote server.

• Changing the default location for a database does not affect tables that
have previously been mapped to a different default location.

• After tables in the database have been created, all future references to
tables in dbname (by select, insert, delete, and update) are mapped to
the correct location.

Permissions Any user can execute sp_defaultloc.

See also Commands create existing table, create table

System procedures sp_addobjectdef, sp_addserver, sp_helpserver

sp_depends

884

sp_depends
Description Displays information about database object dependencies—the view(s),

trigger(s), and procedure(s)—in the database that depend on a specified
table or view, and the table(s) and view(s) in the database on which the
specified view, trigger, or procedure depends.

Syntax sp_depends objname[, column_name]

Parameters objname
is the name of the table, view, Transact-SQL stored procedure, SQLJ
stored procedure, SQLJ function, or trigger to be examined for
dependencies. You cannot specify a database name. Use owner names
if the object owner is not the user running the command and is not the
Database Owner.

column_name
is the name of the column to be examined for dependencies.

Examples Example 1 Lists the database objects that depend on the table sysobjects:

sp_depends sysobjects

Example 2 Lists the database objects that depend on the titleview view, and
the database objects on which the titleview view depends:

sp_depends titleview

Things that the object references in the current
database.
object type updated selected
-------------- ----------- ------- -----
dbo.authors user table no no
dbo.titleauthor user table no no
dbo.titles user table no no
Things inside the current database that reference
the object.
object type
------------ ---------------
dbo.tview2 view

Example 3 Lists the database objects that depend on the titles table owned
by the user “mary”. The quotes are needed, since the period is a special
character:

sp_depends "mary.titles"

Example 4 The following example shows the column-level dependencies
for all columns of the sysobjects table:

CHAPTER 8 System Procedures

885

sp_depends sysobjects

Things inside the current database that reference the object.
object type
-- ----------------
dbo.sp_dbupgrade stored procedure
dbo.sp_procxmode stored procedure

Dependent objects that reference all columns in the table. Use sp_depends
on each column to get more information.
Columns referenced in stored procedures, views or triggers are not included
in this report.

Column Type Object Names or Column Names
----------------------- ------------ ------------------------------
cache permission column permission
ckfirst permission column permission
crdate permission column permission
deltrig permission column permission
expdate permission column permission
id index sysobjects (id)
id logical RI From syscolumns (id) To sysobjects (id)
id logical RI From syscomments (id) To sysobjects (id)
id logical RI From sysdepends (id) To sysobjects (id)
id logical RI From sysindexes (id) To sysobjects (id)
id logical RI From syskeys (depid) To sysobjects (id)
id logical RI From syskeys (id) To sysobjects (id)
id logical RI From sysobjects (id) To sysprocedures (id)
id logical RI From sysobjects (id) To sysprotects (id)
id logical RI sysobjects (id)
id permission column permission
indexdel permission column permission
instrig permission column permission
loginame permission column permission
name index ncsysobjects (name, uid)
name permission column permission
objspare permission column permission
schemacnt permission column permission
seltrig permission column permission
sysstat permission column permission
sysstat2 permission column permission
type permission column permission
uid index ncsysobjects (name, uid)
uid logical RI From sysobjects (uid) To sysusers (uid)
uid permission column permission
updtrig permission column permission

sp_depends

886

userstat permission column permission
versionts permission column permission

Example 5 The following example shows more details about the
column-level dependencies for the id column of the sysobjects table:

sp_depends sysobjects, id

Things inside the current database that reference the object.
object type
------------------------------------ -------------
dbo.sp_dbupgrade stored procedure
dbo.sp_procxmode stored procedure
Dependent objects that reference column id.
Columns referenced in stored procedures, views or triggers are not included
in this report.
Type Property Object Names or Column Names

Also see/Use command
---------- --------- ----------------------------------

index index sysobjects (id)

sp_helpindex, drop index,
sp_helpconstraint, alter table drop constraint

logical RI primary sysobjects (id)
sp_helpkey, sp_dropkey

logical RI foreign From syskeys (id) To sysobjects (id)
sp_helpkey, sp_dropkey

logical RI common From syscolumns (id) To sysobjects (id)
sp_helpkey, sp_dropkey

logical RI common From sysdepends (id) To sysobjects (id)
sp_helpkey, sp_dropkey

logical RI common From sysindexes (id) To sysobjects (id)
sp_helpkey, sp_dropkey

logical RI common From syskeys (depid) To sysobjects (id)
sp_helpkey, sp_dropkey

logical RI common From syscomments (id) To sysobjects (id)
sp_helpkey, sp_dropkey

logical RI common From sysobjects (id) To sysprotects (id)
sp_helpkey, sp_dropkey

logical RI common From sysobjects (id) To sysprocedures (id)
sp_helpkey, sp_dropkey

permission permission column permission
sp_helprotect, grant/revoke

Example 6 The following example shows the column-level dependencies
for all columns of the user-created table, titles:

CHAPTER 8 System Procedures

887

1> sp_depends titles

Things inside the current database that reference the object.
object type
----------------------------------- ---------------
dbo.deltitle trigger
dbo.history_proc stored procedure
dbo.title_proc stored procedure
dbo.titleid_proc stored procedure
dbo.titleview view
dbo.totalsales_trig trigger

Dependent objects that reference all columns in the table. Use sp_depends
on each column to get more information.
Columns referenced in stored procedures, views or triggers are not included
in this report.

Column Type Object Names or Column Names
------ ----- --
pub_id logical RI From titles (pub_id) To publishers (pub_id)
pubdate default datedflt
title index titleind (title)
title statistics (title)
title_id index titleidind (title_id)
title_id logical RI From roysched (title_id) To titles (title_id)
title_id logical RI From salesdetail (title_id) To titles (title_id)
title_id logical RI From titleauthor (title_id) To titles (title_id)
title_id logical RI titles (title_id)
title_id rule title_idrule
title_id statistics (title_id)
type default typedflt

Example 7 The following example shows more details about the
column-level dependencies for the pub_id column of the user-created titles
table:

sp_depends titles, pub_id

Things inside the current database that reference the object.
object type
------------------------------------ ----------------
dbo.deltitle trigger
dbo.history_proc stored procedure
dbo.title_proc stored procedure
dbo.titleid_proc stored procedure
dbo.titleview view

sp_depends

888

dbo.totalsales_trig trigger
Dependent objects that reference column pub_id.
Columns referenced in stored procedures, views or triggers are not
included in this report.
Type Property Object Names or Column Names

Also see/Use command
---------- --------- ---------------------

logical RI foreign From titles (pub_id) To publishers (pub_id)

sp_helpkey, sp_dropkey

Usage • Executing sp_depends lists all objects in the current database that
depend on objname, and on which objname depends. For example,
views depend on one or more tables and can have procedures or other
views that depend on them. An object that references another object
is dependent on that object. References to objects outside the current
database are not reported.

• Before you modify or drop a column, use sp_depends to determine if
the table contains any dependent objects that could be affected by the
modification. For example, if you modify a column to use a new
datatype, objects tied to the table may need to be redefined to be
consistent with the column’s new datatype.

• The sp_depends procedure determines the dependencies by looking at
the sysdepends table.

If the objects were created out of order (for example, if a procedure
that uses a view was created before the view was created), no rows
exist in sysdepends for the dependencies, and sp_depends does not
report the dependencies.

• The updated and selected columns in the report from sp_depends are
meaningful if the object being reported on is a stored procedure or
trigger. The values for the updated column indicate whether the stored
procedure updates the object. The selected column indicates whether
the object is being used for a read cursor or a data modification
statement.

• sp_depends follows these Adaptive Server rules for finding objects:

• If the user does not specify an owner name, and the user
executing the command owns an object with the specified name,
that object is used.

CHAPTER 8 System Procedures

889

• If the user does not specify an owner name, and the user does not
own an object of that name, but the Database Owner does, the
Database Owner’s object is used.

• If neither the user nor the Database Owner owns an object of that
name, the command reports an error condition, even if an object
exists in the database with that object name, but with a different
owner.

• If both the user and the Database Owner own objects with the
specified name, and the user wants to access the Database
Owner’s object, the name must be specified, as in
dbo.objectname.

• Objects owned by database users other than the user executing a
command and the Database Owner must always be qualified with the
owner’s name, as in Example 3.

• SQLJ functions and SQLJ stored procedures are Java methods
wrapped in SQL wrappers. See Java in Adaptive Server Enterprise for
more information.

• SQLJ functions and SQLJ stored procedures are database objects
for which you can list dependencies. The only dependencies of
SQLJ stored procedures and SQLJ functions are Java classes.

• If objname is a SQLJ stored procedure or SQLJ function,
sp_depends lists the Java class in the routine’s external name
declared in the create statement, not classes specified as the
return type or datatypes in the parameter list.

• SQLJ stored procedures and SQLJ functions can be listed as
dependencies of other database objects.

Permissions Any user can execute sp_depends.

See also Commands create procedure, create table, create view, execute

System procedures sp_help

sp_deviceattr

890

sp_deviceattr
Description UNIX platforms only Changes the dsync setting of an existing database

device file.

Syntax sp_deviceattr logicalname, optname, optvalue

Parameters logicalname
is the name of an existing database device. The device can be stored on
either an operating system file or a raw partition, but the dsync setting
is ignored for raw partitions.

optname
is the name of the setting to change. Currently, the only acceptable value
for optname is dsync.

optvalue
can be either “true” or “false.”

Examples Sets dsync on for the device named “file_device1”:

sp_deviceattr file_device1, dsync, true

Usage • For database devices stored on UNIX files, dsync determines whether
updates to the device take place directly on the storage media, or are
buffered by the UNIX file system.

When dsync is on, writes to the database device occur directly to the
physical storage media, and Adaptive Server can recover data on the
device in the event of a system failure.

When dsync is off, writes to the database device may be buffered by
the UNIX file system. The UNIX file system may mark an update as
being completed, even though the physical media has not yet been
modified. In the event of a system failure, there is no guarantee that
requests to update data have ever taken place on the physical media,
and Adaptive Server may be unable to recover the database.

• After using sp_deviceattr to change the dsync setting, you must reboot
Adaptive Server before the change takes affect.

• dsync is always on for the master device file. You cannot change the
dsync setting for a master device file with sp_deviceattr.

• The dsync value should be turned off only when the databases on the
device need not be recovered after a system failure. For example, you
may consider turning dsync off for a device that stores only the
tempdb database.

CHAPTER 8 System Procedures

891

• Adaptive Server ignores the dsync setting for devices stored on raw
partitions; updates to those devices are never buffered, regardless of
the dsync setting.

• dsync is not used on the Windows NT platform.

Permissions The user executing sp_deviceattr must have permission to update the
sysdevices table.

See also System procedures sp_helpdevice

sp_diskdefault

892

sp_diskdefault
Description Specifies whether or not a database device can be used for database

storage if the user does not specify a database device or specifies default
with the create database or alter database commands.

Syntax sp_diskdefault logicalname, {defaulton | defaultoff}

Parameters logicalname
is the logical name of the device as given in
master.dbo.sysdevices.name. The device must be a database device
rather than a dump device.

defaulton | defaultoff
defaulton designates the database device as a default database device;
defaultoff designates that the specified database device is not a default
database device.

Use defaulton after adding a database device to the system with disk init.
Use defaultoff to change the default status of the master device (which
is designated as a default device when Adaptive Server is first
installed).

Examples The master device is no longer used by create database or alter database
for default storage of a database:

sp_diskdefault master, defaultoff

Usage • A default database device is one that is used for database storage by
create database or alter database if the user does not specify a
database device name or specifies the keyword default.

• You can have multiple default devices. They are used in the order they
appear in the master.dbo.sysdevices table (that is, alphabetical order).
When the first default device is filled, the second default device is
used, and so on.

• When you first install Adaptive Server, the master device is the only
default database device.

Note Once you initialize devices to store user databases, use
sp_diskdefault to turn off the master device’s default status. This
prevents users from accidentally creating databases on the master
device and simplifies recovery of the master database.

• To find out which database devices are default database devices,
execute sp_helpdevice.

CHAPTER 8 System Procedures

893

Permissions Only a System Administrator can execute sp_diskdefault.

See also Commands alter database, create database, disk init

System procedures – sp_helpdevice

sp_displayaudit

894

sp_displayaudit
Description Displays the status of audit options.

Syntax sp_displayaudit ["procedure" | "object" | "login" | "database" | "global" |
"default_object" | "default_procedure" [, "name"]]

Parameters procedure
displays the status of audit options for the specified stored procedure or
trigger. If you do not specify a value for name, sp_displayaudit displays
the active audit options for all procedures and triggers in the current
database.

object
displays the status of audit options for the specified table or view. If you
do not specify a value for name, sp_displayaudit displays the active
audit options for all tables and views in the current database.

login
displays the status of audit options for the specified user login. If you
do not specify a value for name, sp_displayaudit displays the active
audit options for all logins in the master database.

database
displays the status of audit options for the specified database. If you do
not specify a value for name, sp_displayaudit displays the active audit
options for all databases on the server.

global
displays the status of the specified global audit option. If you do not
specify a value for name, sp_displayaudit displays the active audit
options for all procedures and triggers in the current database.

default_object
displays the default audit options that will be used for any new table or
view created on the specified database. If you do not specify a value for
name, sp_displayaudit displays the default audit options for all
databases with active default audit settings.

default_procedure
displays the default audit options that will be used for any new
procedure or trigger created on the specified database. If you do not
specify a value for name, sp_displayaudit displays the default audit
options for all databases with active default audit settings.

CHAPTER 8 System Procedures

895

name
is the information for the specified parameter, as described in the
following table:

Examples Example 1 When no parameter is specified, the status of each category
and all auditing options is displayed:

sp_displayaudit

Procedure/Trigger Audit Option Value Database
 ----------------- -------------- ----- ---------------------
 dbo.sp_altermessage exec_procedure on sybsystemprocs
 dbo.sp_help exec_procedure on sybsystemprocs
 dbo.sp_who exec_procedure on sybsystemprocs
No databases currently have default sproc/trigger auditing enabled.
No objects currently have auditing enabled.
No databases currently have default table/view auditing enabled.
No logins currently have auditing enabled.
No databases currently have auditing enabled.

Option Name Value
------------------------------ ------------------------------
adhoc off
dbcc off
disk off
errors off
login off
logout off
navigator_role off
oper_role off
replication_role off
rpc off
sa_role off
security off
sso_role off

Parameter Value for name

procedure Procedure or trigger name

object Table or view name

login User login

database Database name

global Global audit option

default_object Database name

default_procedure Database name

sp_displayaudit

896

Example 2 When no procedure name is specified, the status of all
procedure audit options is displayed:

sp_displayaudit "procedure"

Procedure/Trigger Audit Option Value Database
 ----------------- -------------- ----- ---------------------
 dbo.sp_altermessage exec_procedure on sybsystemprocs
 dbo.sp_help exec_procedure on sybsystemprocs
 dbo.sp_who exec_procedure on sybsystemprocs

Example 3 When you specify a name for the procedure, only the status of
that procedure is displayed:

sp_displayaudit "procedure", "sp_who"

Procedure/Trigger Audit Option Value Database
----------------- --------------- ----- ----------------------
dbo.sp_who exec_procedure on sybsystemprocs

Example 4 When no global audit option is specified, the status of all
global audit options is displayed:

sp_displayaudit "global"

Option Name Value
------------------------------ ------------------------------
adhoc off
dbcc off
disk off
errors off
login off
logout off
navigator_role off
oper_role off
replication_role off
rpc off
sa_role off
security off
sso_role off

Usage • sp_displayaudit displays the status of audit options.

• The following table shows the valid auditing options for each
parameter:

CHAPTER 8 System Procedures

897

• You cannot specify a value for name unless you first specify an object
type parameter.

• See the System Administration Guide for information on setting up
auditing.

Permissions Only a System Security Officer can execute sp_displayaudit.

See also System procedures sp_audit

Utilities bcp

Object type parameter Valid auditing options

procedure exec_procedure, exec_trigger

object delete, func_obj_access, insert, reference, select, update

login all, cmdtext, table_access, view_access

database alter, bcp, bind, create, dbaccess, drop, dump, func_dbaccess,
grant, load, revoke, setuser, truncate, unbind

global adhoc, dbcc, disk, errors, login, logout, navigator_role,
oper_role, replication_role, rpc, sa_role, security, sso_role

default_object delete, func_obj_access, insert, reference, select, update

default_procedure exec_procedure, exec_trigger

sp_displaylevel

898

sp_displaylevel
Description Sets or shows which Adaptive Server configuration parameters appear in

sp_configure output.

Syntax sp_displaylevel [loginame [, level]]

Parameters loginame
is the Adaptive Server login of the user for whom you want to set or
show the display level.

level
sets the display level to one of the following:

• “basic” display level shows just the most basic configuration
parameters. This level is appropriate for very general server tuning.

• “ intermediate” display level shows configuration parameters that
are somewhat more complex, as well as all the “basic” level
parameters. This level is appropriate for moderately complex
server tuning.

• “ comprehensive” display level shows all configuration
parameters, including the most complex ones. This level is
appropriate for highly detailed server tuning.

Examples Example 1 Shows the current display level for the user who invoked
sp_displaylevel:

sp_displaylevel

The current display level for login 'sa' is 'comprehensive'.

Example 2 Shows the current display level for the user “jerry”:

sp_displaylevel jerry

The current display level for login 'jerry' is 'intermediate'.

Example 3 Sets the display level to “comprehensive” for the user “jerry”:

sp_displaylevel jerry, comprehensive

The display level for login 'jerry' has been changed to 'comprehensive'.

Usage See the System Administration Guide for details about display levels and
configuration parameters.

Permissions Only a System Administrator can execute sp_displaylevel to set the display
level for another user. Any user can execute sp_displaylevel to set and
show his or her own display level.

See also System procedures sp_configure

CHAPTER 8 System Procedures

899

sp_displaylogin
Description Displays information about a login account. Also displays information

about the hierarchy tree above or below the login account when you so
specify.

Syntax sp_displaylogin [loginame [, expand_up | expand_down]]

Parameters loginame
is the user login account about which you want information if it is other
than your own. You must be a System Security Officer or System
Administrator to get information about someone else’s login account.

expand_up
specifies that Adaptive Server display all roles in the role hierarchy that
contain the loginame role.

expand_down
specifies that Adaptive Server display all roles in the role hierarchy that
are contained by the loginame role.

Examples Example 1 Displays information about your server login account:

sp_displaylogin

Suid: 1
Loginame: sa
Fullname:
Default Database: master
Default Language:
Auto Login Script:
Configured Authorization:

sa_role (default ON)
sso_role (default ON)
oper_role (default ON)

Locked: NO
Date of Last Password Change: Nov 16 1994 10:08AM

Example 2 Displays information about the login account “susanne”. The
information displayed varies, depending on the role of the user executing
sp_displaylogin:

sp_displaylogin susanne

Suid: 12
Loginame: susanne
Fullname:
Default Database: pubs2
Default Language:
Auto Login Script:

sp_displaylogin

900

Configured Authorization:
supervisor (default OFF)

Locked: NO
Date of Last Password Change: May 12 1997 11:09AM

Example 3 Displays information about all roles containing the role of the
login account “pillai”. The information displayed varies, depending on the
role of the user executing sp_displaylogin:

sp_displaylogin pillai, expand_up

Example 4 Displays the login security-related parameters configured for
a login:

sp_displaylogin joe

Suid: 294
Loginame: joe
Fullname: Joseph Resu
Default Database: master
Default Language:
Auto Login Script:
Configured Authorization:

intern_role (default OFF)
Locked: NO
Date of Last Password Change: Nov 24 1998 3:46PM
Password expiration interval : 5
Password expired : NO
Minimum password length:4
Maximum failed logins : 10
Current failed logins : 3

Usage • sp_displaylogin displays configured roles, so even if you have made a
role inactive with the set command, it is displayed.

• If there are any login triggers associated with the login in question,
they are listed after the Auto Login Script line. For more
information, see “Row-level access control” on page 406 of the
System Administration Guide.

• When you use sp_displaylogin to get information about your own
account, you do not need to use the loginame parameter.
sp_displaylogin displays your server user ID, login name, full name,
any roles that have been granted to you, date of last password change,
default database, default language, and whether your account is
locked.

• If you are a System Security Officer or System Administrator, you can
use the loginame parameter to access information about any account.

CHAPTER 8 System Procedures

901

Permissions Only a System Administrator or a System Security Officer can execute
sp_displaylogin with the loginame and expand parameters to get
information about other users’ login accounts. Any user can execute
sp_displaylogin to get information about his or her own login account.

See also Stored procedures sp_activeroles, sp_displayroles, sp_helprotect,
sp_modifylogin

sp_displayroles

902

sp_displayroles
Description Displays all roles granted to another role, or displays the entire hierarchy

tree of roles in table format.

Syntax sp_displayroles [grantee_name [, mode]]

Parameters grantee_name
is the login name of a user whose roles you want information about, or
the name of a role you want information about.

mode
is one of the following:

• expand_up – shows the role hierarchy tree for the parent levels

• expand_down – shows the role hierarchy tree for the child levels

• display_info – shows the login security-related parameters
configured for the specified role

Examples Example 1 Displays all roles granted to the user issuing the command:

sp_displayroles

Role Name

supervisor_role

Example 2 Displays all roles granted to supervisor_role:

sp_displayroles "supervisor_role"

Role Name

clerk

Example 3 Displays the active roles granted to login “susanne” and the
roles below it in the hierarchy:

sp_displayroles susanne, expand_down

Role Name Parent Role Name Level
----------------- ---------------------- ------
supervisor_role NULL 1
clerk_role supervisor_role 2

Example 4 Displays the active roles granted to intern_role and the roles
above it in the hierarchy:

sp_displayroles "intern_role", expand_up

CHAPTER 8 System Procedures

903

Example 5 Shows the login security-related parameters configured for the
specified role:

sp_displayroles physician_role, "display_info"

Role name = physician_role
Locked : NO
Date of Last Password Change : Oct 31 1999 3:33PM
Password expiration interval = 5
Password expired : NO
Minimum password length = 4
Maximum failed logins = 10
Current failed logins = 3

Usage • When you specify the optional parameter expand_up or expand_down
all directly granted roles contained by or containing the specified role
name are displayed.

• See “User-Defined Login Security” in the System Administration
Guide for more information.

Permissions Only a System Administrator or a System Security Officer can execute
sp_displayroles to display information on roles activated by any other user.
Any user can execute sp_displayroles to see his or her own active roles.

See also Commands alter role, create role, drop role, grant, revoke, set

System procedures sp_activeroles, sp_displaylogin, sp_helprotect,
sp_modifylogin

sp_dropalias

904

sp_dropalias
Description Removes the alias user name identity established with sp_addalias.

Syntax sp_dropalias loginame

Parameters loginame
is the name (in master.dbo.syslogins) of the user who was aliased to another
user.

Examples Assuming that “victoria” was aliased (for example, to the Database Owner) in
the current database, this statement drops “victoria” as an aliased user from the
database:

sp_dropalias victoria

Usage • Executing the sp_dropalias procedure deletes an alternate suid mapping for
a user from the sysalternates table.

• When a user’s alias is dropped, he or she no longer has access to the
database for which the alias was created.

• You cannot drop the alias of a user who owns objects in the database that
were created in version 12.0 or later. You must drop the objects before
dropping the login.

Permissions Only the Database Owner or a System Administrator can execute sp_dropalias.

See also System procedures sp_addalias, sp_adduser, sp_droplogin, sp_dropuser,
sp_helpuser

CHAPTER 8 System Procedures

905

sp_drop_all_qplans
Description Deletes all abstract plans in an abstract plan group.

Syntax sp_drop_all_qplans name

Parameters name
is the name of the abstract plan group from which to drop all plans.

Examples sp_drop_all_qplans dev_test

Usage • To drop individual plans, use sp_drop_qplan.

• To see the names of abstract plan groups in the current database, use
sp_help_qpgroup.

• sp_drop_all_qplans silently drops all plans in the group that belong to
the specified user, or all plans in the group, if it is executed by a
System Administrator or Database Owner.

Permissions Any user can execute sp_drop_all_qplans to drop plans that he or she owns.
Only a System Administrator or Database Owner can drop plans owned by
other users.

See also System procedures sp_drop_qplan, sp_help_qpgroup

sp_dropdevice

906

sp_dropdevice
Description Drops an Adaptive Server database device or dump device.

Syntax sp_dropdevice logicalname

Parameters logicalname
is the name of the device as listed in master.dbo.sysdevices.name.

Examples Example 1 Drops the device named tape5 from Adaptive Server:

sp_dropdevice tape5

Example 2 Drops the database device named fredsdata from Adaptive
Server. The device must not be in use by any database:

sp_dropdevice fredsdata

Usage • The sp_dropdevice procedure drops a device from Adaptive Server,
deleting the device entry from master.dbo.sysdevices.

• sp_dropdevice does not remove a file that is being dropped as a
database device; it makes the file inaccessible to Adaptive Server. Use
operating system commands to delete a file after using sp_dropdevice.

Permissions Only a System Administrator can execute sp_dropdevice.

See also Commands drop database

System procedures sp_addumpdevice, sp_helpdb, sp_helpdevice

CHAPTER 8 System Procedures

907

sp_dropengine
Description Drops an engine from a specified engine group or, if the engine is the last

one in the group, drops the engine group.

Syntax sp_dropengine engine_number, engine_group

Parameters engine_number
is the number of the engine you are dropping from the group. Values are
between 0 and a maximum equal to the number of configured online
engines, minus one.

engine_group
is the name of the engine group from which to drop the engine.

Examples This statement drops engine number 2 from the group called DS_GROUP.
If it is the last engine in the group, the group is also dropped:

sp_dropengine 2, DS_GROUP

Usage • sp_dropengine can be invoked only from the master database.

• If engine_number is the last engine in engine_group, Adaptive Server
also drops engine_group.

• The engine_number you specify must exist in engine_group.

Permissions Only a System Administrator can execute sp_dropengine.

See also System procedures sp_addengine

sp_dropexeclass

908

sp_dropexeclass
Description Drops a user-defined execution class.

Syntax sp_dropexeclass classname

Parameters classname
is the name of the user-defined execution class to be dropped.

Examples This statement drops the user-defined execution class DECISION:

sp_dropexeclass 'DECISION'

Usage • An execution class helps define the execution precedence used by
Adaptive Server to process tasks. See the Performance and Tuning
Guide for more information on execution classes and execution
attributes.

• classname must not be bound to any client application, login, or
stored procedure. Unbind the execution class first, using
sp_unbindexeclass, then drop the execution class, using
sp_dropexeclass.

• You cannot drop system-defined execution classes.

Permissions Only a System Administrator can execute sp_dropexeclass.

See also System procedures sp_addexeclass, sp_bindexeclass,
sp_showexeclass, sp_unbindexeclass

CHAPTER 8 System Procedures

909

sp_dropextendedproc
Description Removes an extended stored procedure (ESP).

Syntax sp_dropextendedproc esp_name

Parameters esp_name
is the name of the extended stored procedure to be dropped.

Examples Removes xp_echo:

sp_dropextendedproc xp_echo

Usage • sp_dropextendedproc must be executed from the master database.

• The esp_name is case sensitive. It must precisely match the name with
which the ESP was created.

Permissions Only a System Administrator can execute sp_dropextendedproc.

See also Commands drop procedure

System procedures sp_addextendedproc, sp_freedll,
sp_helpextendedproc

sp_dropexternlogin

910

sp_dropexternlogin
Description Component Integration Services only Drops the definition of a

remote login previously defined by sp_addexternlogin.

Syntax sp_dropexternlogin remote_server [, login_name] [, role_name]

Parameters remote_server
is the name of the remote server from which the local server is dropping
account access. The remote_server is known to the local server by an
entry in the master.dbo.sysservers table.

login_name
is a login account known to the local server. If login_name is not
specified, the current account is used. login_name must exist in the
master.dbo.syslogins table.

role_name
is the Adaptive Server user’s assigned role.

Examples Example 1 Drops the definition of an external login to the remote server
CIS1012 from “bobj”. Only the “bobj” account and the “sa” account can
add or modify a remote login for “bobj”:

sp_dropexternlogin CIS1012, bobj

Example 2 Drops the definition of an external login to the remote server
SSB from users with the sa_role:

sp_dropexternlogin SSB, NULL, sa_role

Usage • sp_dropexternlogin drops the definition of a remote login previously
defined to the local server by sp_addexternlogin.

• You cannot execute sp_dropexternlogin from within a transaction.

• The remote_server must be defined to the local server by
sp_addserver.

• To add and drop local server users, use the system procedures
sp_addalias and sp_droplogin.

Permissions Only login_name or a System Administrator can execute
sp_dropexternlogin.

See also System procedures sp_addexternlogin, sp_helpexternlogin,
sp_addlogin, sp_droplogin

CHAPTER 8 System Procedures

911

sp_dropglockpromote
Description Removes lock promotion values from a table or database.

Syntax sp_dropglockpromote {"database" | "table"}, objname

Parameters database | table
specifies whether to remove the lock promotion thresholds from a
database or table. The quotes are required because these are
Transact-SQL keywords.

objname
is the name of the table or database from which to remove the lock
promotion thresholds.

Examples Removes the lock promotion values from titles. Lock promotion for titles
now uses the database or server-wide values:

sp_dropglockpromote "table", titles

Usage • Use sp_dropglockpromote to drop lock promotion values set with
sp_setpglockpromote.

• When you drop a database’s lock promotion thresholds, tables that do
not have lock promotion thresholds configured will use the
server-wide values.

• When a table’s values are dropped, Adaptive Server uses the
database’s lock promotion thresholds if they are configured or the
server-wide values if they are not.

• Server-wide values can be changed with sp_setpglockpromote, but
cannot be dropped.

Permissions Only a System Administrator can execute sp_dropglockpromote.

See also System procedures sp_setpglockpromote

sp_dropgroup

912

sp_dropgroup
Description Drops a group from a database.

Syntax sp_dropgroup grpname

Parameters grpname
is the name of a group in the current database.

Examples The “purchasing” group has merged with the “accounting” group. These
commands move “martha” and “george”, members of the “purchasing”
group, to other groups before dropping the group. The group name
“public” is quoted because “public” is a reserved word:

sp_changegroup accounting, martha
sp_changegroup "public", george
sp_dropgroup purchasing

Usage • Executing sp_dropgroup drops a group name from a database’s
sysusers table.

• You cannot drop a group if it has members. You must execute
sp_changegroup for each member before you can drop the group.

Permissions Only the Database Owner, a System Administrator, or a System Security
Officer can execute sp_dropgroup.

See also System procedures sp_addgroup, sp_changegroup, sp_helpgroup

CHAPTER 8 System Procedures

913

sp_dropkey
Description Removes from the syskeys table a key that had been defined using

sp_primarykey, sp_foreignkey, or sp_commonkey.

Syntax sp_dropkey keytype, tabname [, deptabname]

Parameters keytype
is the type of key to be dropped. The keytype must be primary, foreign,
or common.

tabname
is the name of the key table or view that contains the key to be dropped.

deptabname
specifies the name of the second table in the relationship, if the keytype
is foreign or common. If the keytype is primary, this parameter is not
needed, since primary keys have no dependent tables. If the keytype is
foreign, this is the name of the primary key table. If the keytype is
common, give the two table names in the order in which they appear
with sp_helpkey.

Examples Example 1 Drops the primary key for the employees table. Any foreign
keys that were dependent on the primary key for employees are also
dropped:

sp_dropkey primary, employees

Example 2 Drops the common keys between the employees and projects
tables:

sp_dropkey common, employees, projects

Example 3 Drops the foreign key between the titleauthor and titles tables:

sp_dropkey foreign, titleauthor, titles

Usage • Executing sp_dropkey deletes the specified key from syskeys. Only
the owner of a table can drop a key from that table.

• Keys are created to make explicit a logical relationship that is implicit
in your database design. This information can be used by an
application.

• Dropping a primary key automatically drops any foreign keys
associated with it. Dropping a foreign key has no effect on a primary
key specified on that table.

sp_dropkey

914

• Executing sp_commonkey, sp_primarykey, or sp_foreignkey adds the
key to the syskeys system table. To display a report on the keys that
have been defined, execute sp_helpkey.

Permissions Only the owner of tabname can execute sp_dropkey.

See also System procedures sp_commonkey, sp_foreignkey, sp_helpkey,
sp_primarykey

CHAPTER 8 System Procedures

915

sp_droplanguage
Description Drops an alternate language from the server and removes its row from

master.dbo.syslanguages.

Syntax sp_droplanguage language [, dropmessages]

Parameters language
is the official name of the language to be dropped.

dropmessages
drops all Adaptive Server system messages in language. You cannot
drop a language with associated system messages without also dropping
its messages.

Examples Example 1 This example drops French from the available alternate
languages, if there are no associated messages:

sp_droplanguage french

Example 2 This example drops French from the available alternate
languages, if there are associated messages:

sp_droplanguage french, dropmessages

Usage • Executing sp_droplanguage drops a language from a list of alternate
languages by deleting its entry from the master.dbo.syslanguages
table.

• If you try to drop a language that has system messages, the request
fails unless you supply the dropmessages parameter.

Permissions Only a System Administrator can execute sp_droplanguage.

See also System procedures sp_addlanguage, sp_helplanguage

sp_droplogin

916

sp_droplogin
Description Drops an Adaptive Server user login by deleting the user’s entry from

master.dbo.syslogins.

Syntax sp_droplogin loginame

Parameters loginame
is the name of the user, as listed in master.dbo.syslogins.

Examples Drops the “victoria” login from Adaptive Server:

sp_droplogin victoria

Usage • Executing sp_droplogin drops a user login from Adaptive Server,
deleting the user’s entry from master.dbo.syslogins.

• Adaptive Server reuses a dropped login’s server user ID, which
compromises accountability. You can avoid dropping accounts
entirely and, instead, use sp_locklogin to lock any accounts that will
no longer be used.

If you need to drop logins, be sure to audit these events (using
sp_audit) so that you have a record of them.

• sp_droplogin deletes all resource limits associated with the dropped
login.

• sp_droplogin fails if the login to be dropped is a user in any database
on the server. Use sp_dropuser to drop the user from a database. You
cannot drop a user from a database if that user owns any objects in the
database.

• If the login to be dropped is a System Security Officer, sp_droplogin
verifies that at least one other unlocked System Security Officer’s
account exists. If not, sp_droplogin fails. Similarly, sp_droplogin
ensures that there is always at least one unlocked System
Administrator account.

Permissions Only a System Administrator or a System Security Officer can execute
sp_droplogin.

See also System procedures sp_addlogin, sp_audit, sp_dropuser, sp_locklogin

CHAPTER 8 System Procedures

917

sp_dropmessage
Description Drops user-defined messages from sysusermessages.

Syntax sp_dropmessage message_num [, language]

Parameters message_num
is the message number of the message to be dropped. Message numbers
must have a value of 20000 or higher.

language
is the language of the message to be dropped.

Examples Removes the French version of the message with the number 20002 from
sysusermessages:

sp_dropmessage 20002, french

Usage • The language parameter is optional. If included, only the message
with the indicated message_num in the indicated language is dropped.
If you do not specify a language, all messages with the indicated
message_num are dropped.

Permissions Only the Database Owner, a System Administrator, or the user who
created the message being dropped can execute sp_dropmessage.

See also System procedures sp_addmessage, sp_getmessage

sp_dropobjectdef

918

sp_dropobjectdef
Description Component Integration Services only Deletes the external storage

mapping provided for a local object.

Syntax sp_dropobjectdef "object_name"

Parameters object_name
 has the form dbname.owner.object, where:

• dbname is the name of the database containing the object whose storage
location you are dropping. dbname is optional; if present, it must be the
current database, and the owner or a placeholder is required.

• owner is the name of the owner of the object whose storage location you
are dropping. owner is optional; it is required if dbname is specified.

• object is the name of the local table for which external storage mapping
is to be dropped.

Examples Example 1 Deletes the entry from sysattributes that provided the external
storage mapping for a table known to the server as the colleges table in database
personnel:

sp_dropobjectdef "personnel.dbo.colleges"

Example 2 Deletes the entry from sysattributes that provided the external
storage mapping for the andrea.fishbone object, where andrea is the owner and
the local table name is fishbone:

sp_dropobjectdef "andrea.fishbone"

Usage • sp_dropobjectdef deletes the external storage mapping provided for a local
object. It replaces sp_droptabledef.

• Use sp_dropobjectdef after dropping a remote table with drop table.

• Dropping a table does not remove the mapping information from the
sysattributes table if it was added using sp_addobjectdef. It must be
explicitly removed using sp_dropobjectdef.

• The object_name can be in any of these forms:

• object

• owner.object

• dbname..object

• dbname.owner.object

CHAPTER 8 System Procedures

919

Permissions Only the Database Owner or a System Administrator can execute
sp_dropobjectdef. Only a System Administrator can execute
sp_dropobjectdef to remove mapping information for another user’s
object.

See also Commands create existing table, create table, drop table

System procedures sp_addobjectdef

sp_drop_qpgroup

920

sp_drop_qpgroup
Description Drops an abstract plan group.

Syntax sp_drop_qpgroup group

Parameters group
is the name of the abstract plan group to drop.

Examples Drops the abstract plan group “dev_test”:

sp_drop_qpgroup dev_test

Usage • You cannot drop the default groups, ap_stdin and ap_stdout.

• You cannot drop a group that contains plans. To drop all of the plans
in a a group, use sp_drop_all_qplans. To see a list of groups and the
number of plans they contain, use sp_help_qpgroup.

• sp_drop_qpgroup cannot be run in a transaction.

Permissions Only a System Administrator or Database Owner can execute
sp_drop_qpgroup.

See also System procedures sp_drop_all_qplans, sp_help_qpgroup

CHAPTER 8 System Procedures

921

sp_drop_qplan
Description Drops an abstract plan.

Syntax sp_drop_qplan id

Parameters id
is the ID of the abstract plan to drop.

Examples The abstract plan with the specified ID is dropped:

sp_drop_qplan 1760009301

Usage • To find the ID of a plan, use sp_help_qpgroup, sp_help_qplan, or
sp_find_qplan. Plan IDs are also returned by create plan and are
included in showplan output.

• To drop all abstract plans in a group, use sp_drop_all_qplans.

Permissions Any user can execute sp_drop_qplan to drop a plan he or she owns. Only
the System Administrator or the Database Owner can drop plans owned by
other others.

See also Commands create plan

System procedures sp_drop_all_qplans, sp_find_qplan,
sp_help_qpgroup, sp_help_qplan

sp_dropremotelogin

922

sp_dropremotelogin
Description Drops a remote user login.

Syntax sp_dropremotelogin remoteserver [, loginame [, remotename]]

Parameters remoteserver
is the name of the server that has the remote login to be dropped.

loginame
is the local server’s user name that is associated with the remote server in the
sysremotelogins table.

remotename
is the remote user name that gets mapped to loginame when logging in from
the remote server.

Examples Example 1 Drops the entry for the remote server named GATEWAY:

sp_dropremotelogin GATEWAY

Example 2 Drops the entry for mapping remote logins from the remote server
GATEWAY to the local user named “churchy”:

sp_dropremotelogin GATEWAY, churchy

Example 3 Drops the login for the remote user “pogo” on the remote server
GATEWAY that was mapped to the local user named “churchy”:

sp_dropremotelogin GATEWAY, churchy, pogo

Usage • Executing sp_dropremotelogin drops a user login from a remote server,
deleting the user’s entry from master.dbo.sysremotelogins.

• For a more complete discussion on remote logins, see sp_addremotelogin.

• To add and drop local server users, use the system procedures sp_addlogin
and sp_droplogin.

Permissions Only a System Administrator can execute sp_dropremotelogin.

See also System procedures sp_addlogin, sp_addremotelogin, sp_addserver,
sp_droplogin, sp_helpremotelogin, sp_helpserver

CHAPTER 8 System Procedures

923

sp_drop_resource_limit
Description Removes one or more resource limits from Adaptive Server.

Syntax sp_drop_resource_limit { name, appname }
[, rangename, limittype, enforced, action, scope]

Parameters name
is the Adaptive Server login to which the limit applies. To drop resource
limits that apply to all users of a particular application, specify the
appname and a name of NULL.

appname
is the application to which the limit applies. To drop resource limits that
apply to all applications used by the specified login, specify the login
name and an appname of NULL. To drop a limit that applies to a
particular application, specify the application name that the client
program passes to the Adaptive Server in the login packet.

rangename
is the time range during which the limit is enforced. This must be an
existing time range stored in the systimeranges system table or NULL
to delete all resource limits for the specified name, appname, limittype,
action, and scope, without regard to rangename.

limittype
is the type of resource being limited. This must be one of the following:

• row_count – drops only limits that restrict the number of rows a
query can return.

• elapsed_time – drops only limits that restrict the number of seconds
that a query batch or transaction can run.

• io_cost – drops only limits that restrict actual or estimated query
processing cost.

• NULL – drops all resource limits with the specified name, appname,
rangename, enforcement time, action, and scope, without regard to
limittype.

sp_drop_resource_limit

924

enforced
determines whether the limit is enforced prior to or during query
execution. The following table lists the valid values for each limit type:

action
is the action taken when the limit is exceeded. This must be one of the
following:

scope
is the scope of the limit. This must be one of the following:

Examples Example 1 Drops the single resource limit that kills the session whenever
joe’s use of the payroll application runs a query during the
friday_afternoon time range that results in excessive execution-time I/O
cost:

Enforced
code Description Limit type

1 Drops only limits for which action is taken when the estimated cost of execution
exceeds the specified limit.

io_cost

2 Drops only limits for which action is taken when the actual row count, elapsed time,
or cost of execution exceeds the specified limit.

row_count

elapsed_time

io_cost

3 Drops only limits for which action is taken when either the estimated cost (1) or the
actual cost (2) exceeds the specified limit.

io_cost

NULL Drops all resource limits with the specified name, appname, rangename, limittype,
and scope, without regard to when the action is enforced.

Action code Description

1 Drops only limits that issue a warning.

2 Drops only limits that abort the query batch.

3 Drops only limits that abort the transaction.

4 Drops only limits that kill the session.

NULL Drops all resource limits with the specified name, appname, rangename, limittype, enforcement
time, and scope, without regard to the action they take.

Scope code Description

1 Drops only limits that apply to queries.

2 Drops only limits that apply to query batches.

4 Drops only limits that apply to transactions.

6 Drops only limits that apply to both query batches and transactions.

NULL Drops all resource limits with the specified name, appname, rangename, limittype, enforcement
time, and action, without regard to their scope.

CHAPTER 8 System Procedures

925

sp_drop_resource_limit joe, payroll, friday_afternoon, io_cost, 2, 4, 1

Note If no resource limit matches these selection criteria,
sp_drop_resource_limit returns without error.

Example 2 Drops all limits that apply to joe’s use of the payroll
application:

sp_drop_resource_limit joe, payroll

Example 3 Drops all limits that apply to the user “joe”:

sp_drop_resource_limit joe

Example 4 Drops all resource limits that apply to the payroll application:

sp_drop_resource_limit NULL, payroll

Example 5 Drops all resource limits on the payroll application whose
action is to kill the session:

sp_drop_resource_limit NULL, payroll, NULL, NULL, NULL, 4, NULL

Usage • Use the sp_help_resource_limit system procedure to determine which
resource limits apply to a given user, application, or time of day.

• When you use sp_droplogin to drop an Adaptive Server login, all
resource limits associated with that login are also dropped.

• The deletion of a resource limit causes the limits for each session for
that login and/or application to be rebound at the beginning of the next
query batch for that session.

• See the System Administration Guide for more information on
resource limits.

Permissions Only a System Administrator can execute sp_drop_resource_limit.

See also System procedures sp_add_resource_limit, sp_droplogin,
sp_help_resource_limit, sp_modify_resource_limit

sp_droprowlockpromote

926

sp_droprowlockpromote
Description Removes row lock promotion threshold values from a database or table.

Syntax sp_droprowlockpromote {"database" | "table"}, objname

Parameters database | table
specifies whether to remove the row lock promotion thresholds from a
database or table.

objname
is the name of the database or table from which to remove the row lock
promotion thresholds.

Examples Removes the row lock promotion values from the sales table. Lock
promotion for sales now uses the database or server-wide values:

sp_droprowlockpromote "table", "sales"

Usage • Use sp_droprowlockpromote to drop row lock promotion values set
with sp_setrowlockpromote.

• When you drop a database’s row lock promotion thresholds,
datarows-locked tables that do not have row lock promotion
thresholds configured use the server-wide values. Use sp_configure to
check the value of the row lock promotion configuration parameters.

• When a table’s row lock promotion values are dropped, Adaptive
Server uses the database’s row lock promotion thresholds, if they are
configured, or the server-wide values, if no thresholds are set for the
database.

• To change the lock promotion thresholds for a database, you must be
using the master database. To change the lock promotion thresholds
for a table in a database, you must be using the database where the
table resides.

• Server-wide values can be changed with sp_setrowlockpromote. This
changes the values in the row lock promotion configuration
parameters, so there is no corresponding server option for
sp_droprowlockpromote.

Permissions Only a System Administrator can execute sp_droprowlockpromote.

See also System procedures sp_setrowlockpromote

CHAPTER 8 System Procedures

927

sp_dropsegment
Description Drops a segment from a database or unmaps a segment from a particular

database device.

Syntax sp_dropsegment segname, dbname [, device]

Parameters segname
is the name of the segment to be dropped.

dbname
is the name of the database from which the segment is to be dropped.

device
is the name of the database device from which the segment segname is
to be dropped. This parameter is optional, except when the system
segment system, default, or logsegment is being dropped from a
database device.

Examples Example 1 This command drops the segment indexes from the pubs2
database.

sp_dropsegment indexes, pubs2

Example 2 This command unmaps the segment indexes from the database
device dev1:

sp_dropsegment indexes, pubs2, dev1

Usage • You can drop a segment if it is not referenced by any table or index in
the specified database.

• If you do not supply the optional argument device, the segment is
dropped from the specified database. If you do supply a device name,
the segment is no longer mapped to the named database device, but
the segment is not dropped.

• Dropping a segment drops all thresholds associated with that
segment.

• When you unmap a segment from one or more devices, Adaptive
Server drops any thresholds that exceed the total space on the
segment. When you unmap the logsegment from one or more devices,
Adaptive Server recalculates the last-chance threshold.

• sp_placeobject changes future space allocations for a table or index
from one segment to another, and removes the references from the
original segment. After using sp_placeobject, you can drop the
original segment name with sp_dropsegment.

sp_dropsegment

928

• For the system segments system, default, and logsegment, you must
specify the device name from which you want the segments dropped.

Permissions Only the Database Owner or a System Administrator can execute
sp_dropsegment.

See also System procedures sp_addsegment, sp_addthreshold,
sp_helpsegment, sp_helpthreshold, sp_placeobject

CHAPTER 8 System Procedures

929

sp_dropserver
Description Drops a server from the list of known servers or drops remote logins and

external logins in the same operation.

Syntax sp_dropserver server [, droplogins]

Parameters server
is the name of the server to be dropped.

droplogins
 indicates that any remote logins for server should also be dropped.

Examples Example 1 This command drops the remote server GATEWAY:

sp_dropserver GATEWAY

Example 2 Drops the entry for the remote server RDBAM_ALPHA and
drops all remote logins and external logins for that server:

sp_dropserver RDBAM_ALPHA, droplogins

Usage • Executing sp_dropserver drops a server from the list of known servers
by deleting the entry from the master.dbo.sysservers table.

• Running sp_dropserver on a server that has associated entries in the
master.dbo.sysremotelogins table results in an error message stating
that you must drop the remote users before you can drop the server.
To drop all remote logins for a server when dropping the server, use
droplogins.

• Running sp_dropserver without droplogins against a server that has
associated entries in the sysattributes table results in an error. You
must drop the remote logins and external logins before you can drop
the server.

• The checks against sysattributes for external logins and for default
mapping to a server apply when Component Integration Services is
configured.

Permissions Only a System Security Officer can execute sp_dropserver.

See also System procedures sp_addserver, sp_dropremotelogin,
sp_helpremotelogin, sp_helpserver

sp_dropthreshold

930

sp_dropthreshold
Description Removes a free-space threshold from a segment.

Syntax sp_dropthreshold dbname, segname, free_space

Parameters dbname
is the database from which you are dropping the threshold. This must
be the name of the current database.

segname
is the segment whose free space is monitored by the threshold. Use
quotes when specifying the “default” segment.

free_space
is the number of free pages at which the threshold is crossed.

Examples Removes a threshold from segment1 of mydb. You must specify the
database, segment, and amount of free space to identify the threshold:

sp_dropthreshold mydb, segment1, 200

Usage • You cannot drop the last-chance threshold from the log segment.

• You can use the no free space acctg option of sp_dboption as an
alternative to sp_dropthreshold. This option disables free-space
accounting on non-log segments. You cannot disable free-space
accounting on log segments.

Permissions Only the Database Owner or a System Administrator can execute
sp_dropthreshold.

See also System procedures sp_addthreshold, sp_dboption, sp_helpthreshold,
sp_thresholdaction

CHAPTER 8 System Procedures

931

sp_drop_time_range
Description Removes a user-defined time range from Adaptive Server.

Syntax sp_drop_time_range name

Parameters name
is the name of the time range to be dropped.

Examples Removes the “evenings” time range:

sp_drop_time_range evenings

Usage • You cannot remove the “at all times” time range.

• You cannot drop a time range if a resource limit exists for that time
range.

• Dropping a time range does not affect the active time ranges for
sessions currently in progress.

• For more information on time ranges, see the System Administration
Guide.

Permissions Only a System Administrator can execute sp_drop_time_range.

See also System procedures sp_add_resource_limit, sp_add_time_range,
sp_modify_time_range

sp_droptype

932

sp_droptype
Description Drops a user-defined datatype.

Syntax sp_droptype typename

Parameters typename
is the name of a user-defined datatype that you own.

Examples Drops the user-defined datatype named birthday:

sp_droptype birthday

Usage • Executing sp_droptype deletes a user-defined datatype from systypes.

• A user-defined datatype cannot be dropped if it is referenced by tables
or another database object.

Permissions Only the Database Owner or datatype owner can execute sp_droptype.

See also Datatypes User-defined datatypes

System procedures sp_addtype, sp_rename

CHAPTER 8 System Procedures

933

sp_dropuser
Description Drops a user from the current database.

Syntax sp_dropuser name_in_db

Parameters name_in_db
is the user’s name in the current database’s sysusers table.

Examples Drops the user “albert” from the current database. The user “albert” can no
longer use the database:

sp_dropuser albert

Usage • sp_dropuser drops a user from the current database by deleting the
user’s row from sysusers.

• You cannot drop a user who owns objects in the database.

• You cannot drop a user who has granted permissions to other users.

• You cannot drop the Database Owner from a database.

• If other users are aliased to the user being dropped, their aliases are
also dropped. They no longer have access to the database.

• You cannot drop a user from a database if the user owns a stored
procedure that is bound to an execution class in that database. See
sp_bindexeclass.

Permissions Only the Database Owner, a System Administrator, or a System Security
Officer can execute sp_dropuser.

See also Commands grant, revoke, use

System procedures sp_addalias, sp_adduser, sp_bindexeclass,
sp_droplogin

sp_dumpoptimize

934

sp_dumpoptimize
Description Specifies the amount of data dumped by Backup Server during the dump

database operation.

Syntax sp_dumpoptimize [’archive_space =
{maximum | minimum | default }’]

sp_dumpoptimize [’reserved_threshold =
{nnn | default }’]

sp_dumpoptimize [’allocation_threshold =
{nnn | default }’]

Parameters archive_space
specifies the amount of the database you want dumped.

maximum
dumps the whole database without determining which pages are allocated or
not. The total space used by the archive image or images is equal to the size
of the database. Using this option has the same effect as using the options
reserved_threshold=0 and allocation_threshold=0.

minimum
dumps only the allocated pages, which results in the smallest possible
archive image. This option is useful when dumping to archive devices for
which the throughput is much smaller than that of the database devices such
as QIC tape drives. Using this option has the same effect as using the options
reserved_threshold=100 and allocation_threshold=100.

default
specifies that default values should be used.

When used with archive_space, this option dumps the database with the
reserved_threshold and allocation_threshold options set to their default
values. Use this to reset Backup Server to the default configuration.

When used with reserved_threshold, default specifies 85 percent.

When used with allocation_threshold, default specifies 40 percent.

reserved_threshold
dumps all the pages belonging to the database in a database disk if the
percentage of reserved pages in the disk is equal to or greater than nnn. For
example, if you specify nnn as 60 and if a database disk has a percentage of
reserved pages equal to or greater than 60 percent, then the entire disk is
dumped without determining which pages within that disk are allocated. The
default for this option is 85 percent.

CHAPTER 8 System Procedures

935

nnn
an integer value between 0 and 100 that represents the value of the
threshold. It is used to determine how much data to dump.

When used with reserved_threshold, if the percentage of reserved pages
in the disk is greater than the value specified, all the pages of the
database in a database disk are dumped.

When used with allocation_threshold, if the percentage of allocated
pages in an allocation unit is greater than the percentage specified for
allocation_threshold, all the pages within an allocation unit are dumped.

allocation_threshold
dumps all the pages in the allocation unit if the percentage of allocated
pages in the unit is equal to or greater than nnn. For example, if nnn is
specified as 70 and if the percentage of allocated pages in an allocation
unit is equal to or greater than 70 percent, then the entire allocation unit
is dumped without determining whether pages within that allocation
unit are allocated or not. If the reserved_threshold setting causes the
whole disk to be dumped, the allocation_threshold setting is ignored for
the disk. The default for this option is 40 percent.

Examples Example 1 This causes the whole database to be dumped:

sp_dumpoptimize 'archive_space=maximum'

Backup Server: 4.172.1.1: The value of 'reserved pages threshold' has been
set to 0%.
Backup Server: 4.172.1.2: The value of 'allocated pages threshold' has been
set to 0%.

Example 2 This causes only the allocated pages to be dumped, thereby
resulting in the smallest archive image:

sp_dumpoptimize 'archive_space=minimum'

Backup Server: 4.172.1.1: The value of 'reserved pages threshold' has been
set to 100%.
Backup Server: 4.172.1.2: The value of 'allocated pages threshold' has been
set to 100%.

Example 3 This causes the reserved threshold to be set to 85 percent and
the allocation threshold to be set to 40 percent:

sp_dumpoptimize 'archive_space=default'

Backup Server: 4.172.1.1: The value of 'reserved pages threshold' has been
set to 85%.
Backup Server: 4.172.1.2: The value of 'allocated pages threshold' has been
set to 40%.

sp_dumpoptimize

936

Example 4 Those disks in the database whose percentage of reserved
pages is greater than or equal to 60 percent are dumped without reading
allocation pages on this disk. For the remaining disks, the allocation pages
are read, and the last set value for the allocation_threshold is used. If the
allocation_threshold was not set after Backup Server was started, default
allocation_threshold of 40 percent is used:

sp_dumpoptimize 'reserved_threshold=60'

Backup Server: 4.172.1.3: The value of 'reserved pages threshold' has been
set to 60%.

Example 5 This causes the reserved threshold to be set to 85 percent. It
does not affect the allocation page threshold:

sp_dumpoptimize 'reserved_threshold=default'

Backup Server: 4.172.1.3: The value of 'reserved pages threshold' has been
set to 85%.

Example 6 Allocation pages are read for those disks whose reserved page
percentage is less than the last set value for the reserved_threshold and if
an allocation unit has 80 percent or more pages allocated, then the whole
allocation unit is dumped:

sp_dumpoptimize 'allocation_threshold=80'

Backup Server: 4.172.1.4: The value of 'allocated pages threshold' has been
set to 80%.

Example 7 This causes the allocation page threshold to be set to the
default of 40 percent. It does not affect the reserved pages threshold:

sp_dumpoptimize 'allocation_threshold=default'

Backup Server: 4.172.1.4: The value of 'allocated pages threshold' has been
set to 40%.

Example 8 Those disks in the database whose percentage of reserved
pages is greater than or equal to 60 percent are dumped without reading
allocation pages on this disk. For the remaining disks, the allocation pages
are read and if an allocation unit has 30 percent or more pages allocated,
then the whole allocation unit is dumped:

sp_dumpoptimize 'reserved_threshold=60', 'allocation_threshold=30'

Backup Server: 4.172.1.3: The value of 'reserved pages threshold' has been
set to 60%.
Backup Server: 4.172.1.4: The value of 'allocated pages threshold' has been
set to 30%.

CHAPTER 8 System Procedures

937

Example 9 This displays the current value of the thresholds:

sp_dumpoptimize

Backup Server: 4.171.1.1: The current value of 'reserved pages threshold'
is 60%
Backup Server: 4.171.1.2: The current value of 'allocated pages threshold'
is 30%.

Usage • When you set values with sp_dumpoptimize, those values are
immediately in affect without the need to restart Backup Server.
However, the changes are effective only until the Backup Server is
restarted. When Backup Server is restarted, the default values are
used.

• If you issue sp_dumpoptimize multiple times, the thresholds specified
by the last instance are used by later dumps. For example, if you first
set the reserved_threshold value, and later issue
archive_space=maximum, then that value overwrites the previous
value you set for reserved_threshold.

• Dumps of different databases can use different thresholds by
changing the sp_dumpoptimize values before each database dump.

• The optimal threshold values can vary from one database to another.
Therefore, the performance of a dump depends on both the I/O
configuration and the amount of used space in the database. The DBA
can determine the appropriate configuration for a database by
experimenting with dumps using different values and choosing the
one that results in the shortest dump time.

• You can use sp_dumpoptimize for both local and remote dumps.

• sp_dumpoptimize has no effect on the performance of a transaction log
dump or a load. Therefore, it need not be issued before dump
transaction, load database or load transaction operations.

• If sp_dumpoptimize is issued without any parameters, the current
value of the thresholds is displayed on the client.

• On configurations in which the archive device throughput is equal to
or higher than the cumulative throughput of all the database disks,
using archive_space=maximum may result in a faster dump. However,
on configurations in which the archive device throughput is less than
the cumulative throughput of all the database disks, using this option
may result in a slower dump.

sp_dumpoptimize

938

• The option names and the values for this procedure can be abbreviated
to the unique substring that identifies them. For example, ar = ma is
sufficient to uniquely identify the option archive_space=maximum.

• There can be zero or more blank space characters around the equal
sign (=) in the option string.

• The option names and their values are case insensitive.

• See the System Administration Guide for information on allocation
pages.

Permissions Only the System Administrator, the Database Owner, or users with the
Operator role can execute sp_dumpoptimize.

See also Commands dump database, dump transaction, load database, load
transaction

CHAPTER 8 System Procedures

939

sp_engine
Description Enables you to bring an engine online or offline.

Syntax sp_engine {“online” | [offline | can_offline] [, engine_id] |
[“shutdown”, engine_id]}

Parameters “online”
bring an engine online. The value of sp_configure “max online engines” must
be greater than the current number of engines online. , Becuase “online” is a
reserved keyword, you must use quotes.

offline
bring an engine offline. You can also use the engine_id parameter to specify
a specific engine to bring offline.

can_offline
returns information on whether an engine can be brought offline. can_offline
returns the Adaptive Server tasks with an affinity to this engine (for
example, during Omni or java.net tasks) if its state is online . If you do not
specify an engine_id, the command describes the status of the engine in
sysengines with the highest engine_id.

engine_id
the ID of the engine. The engine_id parameter is optional. If you do not
specify an engine_id, sp_engine uses the incremented or decremented value
for engine_id for the value of engine found within sysengines. That is, if
your system uses engines 0, 1, 2, and 3, and you do not specify an engine id,
sp_engine takes engine ID 3 offline, then engine ID 2, and so on.

“shutdown”
Forces an engine offline. If there are any tasks with an affinity to this engine,
they are killed after a five-minute wait. You must use quotes, as shutdown is
a reserved keyword.

Examples Example 1 Brings engine number one online. Messages are platform specific
(in this example, Sun Solaris was used):

sp_engine "online", 1
02:00000:00000:2001/10/26 08:53:40.61 kernel Network and device connection
limit is 3042.
02:00000:00000:2001/10/26 08:53:40.61 kernel SSL Plus security modules
loaded successfully.
02:00000:00000:2001/10/26 08:53:40.67 kernel engine 2, os pid 8624 online
02:00000:00000:2001/10/26 08:53:40.67 kernel Enabling Sun Kernel
asynchronous disk I/O strategy
00:00000:00000:2001/10/26 08:53:40.70 kernel ncheck: Network fc0330c8
online

sp_engine

940

Example 2 Describes the steps in taking an engine offline that is currently
running tasks with an affinity for this engine:

select engine, status from sysengines

engine status
------ ------
0 online
1 online
2 online
3 online

If you bring engine 1 offline:

sp_engine offline, 1
The following task(s) will affect the offline process:
spid: 19 has outstanding ct-lib connections.

And then run the same query as above, it now shows that engine 1 is in an
offline state:

select engine, status from sysengines

engine status
------ ------
0 online
1 in offline
2 online
3 online

As soon as the task that has an affinity to engine 1 finishes, Adaptive
Server issues a message similar to the following to the error log:

02:00000:00000:2001/10/26 09:02:09.05 kernel engine 1, os pid
8623 offline

Example 3 Determines whether engine 1 can be brought offline:

sp_engine can_offline, 1

Example 4 Takes engine 1 offline:

sp_engine offline, 1

Adaptive Server eventually returns a message similar to the following:

01:00000:00000:2001/11/09 16:11:11.85 kernel Engine 1 waiting for
affinitated process(es) before going offline
01:00000:00000:2001/11/09 16:11:11.85 kernel Process 917518 is preventing
engine 1 going offline
00:00000:00000:2001/11/09 16:16:01.90 kernel engine 1, os pid
21127 offline

CHAPTER 8 System Procedures

941

Example 5 Shuts down engine 1 :

sp_engine shutdown, 1

Usage • You cannot offline or shut down engine 0.

• You can determine the status of an engine, and which engines are
currently online with the following query:

select engine, status from sysengines
where status = "online"

• online and shutdown are keywords and must be enclosed in quotes.

• Engines can be brought online only if max online engines is greater
then the current number of engines with an online status, and if enough
CPU is available to support the additional engine.

• An engine offline may fail or may not immediately take effect if there
are server processes with an affinity to that engine.

Permissions You must be a System Administrator to bring engines online or offline.

sp_estspace

942

sp_estspace
Description Estimates the amount of space required for a table and its indexes, and the

time needed to create the index.

Syntax sp_estspace table_name, no_of_rows, fill_factor,
cols_to_max, textbin_len, iosec, page_size

Parameters table_name
is the name of the table. It must already exist in the current database.

no_of_rows
is the estimated number of rows that the table will contain.

fill_factor
is the index fillfactor. The default is null, which means that Adaptive
Server uses its default fillfactor.

cols_to_max
is a comma-separated list of the variable-length columns for which you
want to use the maximum length instead of the average. The default is
the average declared length of the variable-length columns.

textbin_len
is the length, per row, of all text and image columns. The default value
is 0. You need to provide a value only if the table stores text or image
data. text and image columns are stored in a separate set of data pages
from the rest of the table’s data. The actual table row stores a pointer to
the text or image value. sp_estspace provides a separate line of
information about the size of the text or image pages for a row.

iosec
is the number of disk I/Os per second on this machine. The default is 30
I/Os per second.

pagesize
allows you to estimate the space required for a given table—and all of
its indexes—if you migrate the table to a server of the specified page
size. You can either specify a page size (2048, 4096, 8192, 16384, or
2K, 4K, 8K, 16K) or NULL to use your current page size. If you do not
use “K” as a unit specifier, the default for pagesize is bytes. Because
page allocation allocates the same size page for various objects, the
page_size value applies to all page types (index, data, text and so on).

CHAPTER 8 System Procedures

943

Examples Example 1 Calculates the space requirements for the titles table and its
indexes, and the time required to create the indexes. The number of rows
is 10,000, the fillfactor is 50 percent, two variable-length columns are
computed using the maximum size for the column, and the disk I/O speed
is 25 I/Os per second:

sp_estspace titles, 10000, 50, "title,notes", 0, 25

name type idx_level Pages Kbytes
---------------- ------------ --------- ------------ ------------
titles data 0 3364 6728
titles text/image 0 0 0
titleidind clustered 0 21 43
titleidind clustered 1 1 2
titleind nonclustered 0 1001 2002
titleind nonclustered 1 54 107
titleind nonclustered 2 4 8
titleind nonclustered 3 1 2

Total_Mbytes

8.68

name type total_pages time_mins
------------------ ------------ ------------ ------------
titleidind clustered 3386 13
titleind nonclustered 1060 5
titles data 0 2

Example 2 Uses the average length of existing image data in the au_pix
table to calculate the size of the table with 1000 rows. You can also provide
this size as a constant:

declare @i int
select @i = avg(datalength(pic)) from au_pix
exec sp_estspace au_pix, 1000, null, null, 16, @i

au_pix has no indexes
name type idx_level Pages Kbytes
--------------- ------------ --------- --------- ---------
au_pix data 0 31 63
au_pix text/image 0 21000 42000

Total_Mbytes

41.08

sp_estspace

944

Example 3 Calculates the size of the titles table with 50,000 rows, using
defaults for all other values:

sp_estspace titles, 50000

name type idx_level Pages Kbytes
--------------- ------------ --------- ------------ ------------
titles data 0 4912 9824
titleidind clustered 0 31 61
titleidind clustered 1 1 2
titleind nonclustered 0 1390 2780
titleind nonclustered 1 42 84
titleind nonclustered 2 2 4
titleind nonclustered 3 1 2

Total_Mbytes

12.46

name type total_pages time_mins
------------------ ------------ ------------ ------------
titleidind clustered 4943 19
titleind nonclustered 1435 8

Example 4 This example is run after adding a clustered index to the blurbs
table:

declare @i int
select @i = avg(datalength(copy)) from blurbs
exec sp_estspace blurbs, 6, null, null, 16, @i, "16k"

name type idx_level Pages Kbytes
------------------------ ----------- --------- --------- -------
blurbs data 0 8 128
blurbs text/image 0 6 96
blurbs_ind clustered 0 1 16
blurbs_ind clustered 1 1 16

Total_Mbytes

0.25

name type total_pages time_mins
------------------------ ------------ ------------ ------------
blurbs_ind clustered 10 0
blurbs data 6 0

CHAPTER 8 System Procedures

945

This example is run on a 2K server, and indicates that the blurbs table
would require .25MB after it is migrated to a 16K server. Below is the
same query run on a 16K server, which verifies the .25MB space
requirement:

declare @i int
select @i = avg(datalength(copy)) from blurbs
exec sp_estspace blurbs, 6, null, null, 16, @i, "16k"

name type idx_level Pages Kbytes
------------------------ ------------ --------- --------- ------
blurbs data 0 8 128
blurbs text/image 0 6 96
blurbs_ind clustered 0 1 16
blurbs_ind clustered 1 1 16

Total_Mbytes

0.25

name type total_pages time_mins
----------------------- ------------ ------------ ----------
blurbs_ind clustered 10 0
blurbs data 6 0

Example 5 This example estimates that, if the blurbs table had a thousand
rows in it on a 2K server, it would require 1.99MB of space:

declare @i int
select @i = avg(datalength(copy)) from blurbs
exec sp_estspace blurbs, 1000, null, null, 16, @i, "2k"

name type idx_level Pages Kbytes
----------------------- ------------ --------- ------------ ------
blurbs data 0 16 32
blurbs text/image 0 1000 2000
blurbs_ind clustered 0 1 2
blurbs_ind clustered 1 1 2

Total_Mbytes

1.99

name type total_pages time_mins
----------------------- ------------ ------------ ---------
blurbs_ind clustered 18 0
blurbs data 1000 0

sp_estspace

946

Usage • To estimate the amount of space required by a table and its indexes:

a Create the table.

b Create all indexes on the table.

c Run sp_estspace, giving the table name, the estimated number of
rows for the table, and the optional arguments, as needed.

You do not need to insert data into the tables. sp_estspace uses
information in the system tables—not the size of the data in the
tables—to calculate the size of tables and indexes.

• If the auto identity option is set in a database, Adaptive Server
automatically defines a 10-digit IDENTITY column in each new table
that is created without specifying a primary key, a unique constraint, or
an IDENTITY column. To estimate how much extra space is required
by this column:

a In the master database, use sp_dboption to turn on the auto identity
option for the database.

b Create the table.

c Run sp_estspace on the table and record the results.

d Drop the table.

e Turn the auto identity option off for the database.

f Re-create the table.

g Rerun sp_estspace on the table, and record the results.

• For information about tables or columns, use sp_help tablename.

Permissions Any user can execute sp_estspace.

See also Commands create index, create table

System procedures sp_dboption, sp_help

CHAPTER 8 System Procedures

947

sp_export_qpgroup
Description Exports all plans for a specified user and abstract plan group to a user

table.

Syntax sp_export_qpgroup usr, group, tab

Parameters usr
is the name of the user who owns the abstract plans to be exported.

group
is the name of the abstract plan group that contains the plans to be
exported.

tab
is the name of a table into which to copy the plans. It must be a table in
the current database. You can specify a database name, but not an owner
name, in the form dbname..tablename. The total length must be 30
characters or less.

Examples Creates a table called moveplans containing all the plans for the user
“freidak” that are in the ap_stdout group:

sp_export_qpgroup freidak, ap_stdout, "tempdb..moveplans"

Usage • sp_export_qpgroup copies plans from an abstract plan group to a user
table. With sp_import_qpgroup, it can be used to copy abstract plans
groups between servers and databases or to assign user IDs to copied
plans.

• The user table name that you specify cannot exist before you run
sp_export_qpgroup. The table is created with a structure identical to
that of sysqueryplans.

• sp_export_qpgroup uses select...into to create the table to store the
copied plans. You must use sp_dboption to enable
select into/bulkcopy/pllsort in order to use sp_export_qpgroup, or create
the table in tempdb.

Permissions Only a System Administrator or the Database Owner can execute
sp_export_qpgroup.

See also System procedures sp_copy_all_qplans, sp_copy_qplan, sp_dboption,
sp_import_qpgroup

sp_extendsegment

948

sp_extendsegment
Description Extends the range of a segment to another database device.

Syntax sp_extendsegment segname, dbname, devname

Parameters segname
is the name of the existing segment previously defined with
sp_addsegment.

dbname
is the name of the database on which to extend the segment. dbname
must be the name of the current database.

devname
is the name of the database device to be added to the current database
device range already included in segname.

Examples Extends the range of the segment indexes for the database pubs2 on the
database device dev2:

sp_extendsegment indexes, pubs2, dev2

Usage • A segment can be extended over several database devices.

• If the logsegment segment is extended, any other segments on the
device are dropped and the device is used for the log segment
exclusively.

• When you extend the logsegment segment, Adaptive Server
recalculates its last-chance threshold.

• To associate a segment with a database device, create or alter the
database with a reference to that device. A database device can have
more than one segment associated with it.

• After defining a segment, you can use it in the create table and create
index commands to place the table or index on the segment. If you
create a table or index on a particular segment, subsequent data for the
table or index is located on that segment.

Permissions Only the Database Owner or a System Administrator can execute
sp_extendsegment.

See also Commands alter database, create index, create table

System procedures sp_addsegment, sp_dropsegment, sp_helpdb,
sp_helpdevice, sp_helpsegment, sp_placeobject

CHAPTER 8 System Procedures

949

sp_extengine
Description Starts and stops EJB Server. Displays status information about EJB Server.

Syntax sp_extengine 'ejb_server', '{ start | stop | status }'

Parameters ejb_server
the logical name of the EJB Server.

start
starts the EJB Server.

stop
shuts down the EJB Server.

status
displays status information about the EJB Server.

Examples Example 1 Informs user that the EJB Server SYB_EJB is running:

sp_extengine 'SYB_EJB', 'status'

Enterprise java bean server is up and running.

Example 2 Shuts down the EJB Server SYB_EJB:

sp_extengine 'SYB_EJB', 'stop'

Usage • You must have a valid Adaptive Server EJB Server site license to use
sp_extengine.

• See the User’s Guide to EJB Server for more information.

Permissions Only a System Administrator can execute sp_extengine.

sp_familylock

950

sp_familylock
Description Reports information about all the locks held by a family (coordinating

process and its worker processes) executing a statement in parallel.

Syntax sp_familylock [fpid1 [, fpid2]]

Parameters fpid1
is the family identifier for a family of worker processes from the
master.dbo.sysprocesses table. Run sp_who or sp_lock to get the spid of
the parent process.

fpid2
is the Adaptive Server process ID number for another lock.

Examples Displays information about the locks held by all members of the family
with an fid of 5:

sp_familylock 5

fid spid locktype table_id page dbname class context
--- ---- ---------- -------- ---- ------ ------------- --------
5 5 Sh_intent 176003658 0 userdb Non cursor lock Sync-pt duration
request
5 5 Sh_intent-blk 208003772 0 userdb Non cursor lock Sync-pt
duration request
5 6 Sh_page 208003772 3972 userdb Non cursor lock Sync-pt duration
request
5 7 Sh_page 208003772 3973 userdb Non cursor lock Sync-pt duration
request
5 8 Sh_page 208003772 3973 userdb Non cursor lock Sync-pt duration
request

Usage • sp_familylock with no parameter reports information on all processes
belonging to families that currently hold locks. The report is identical
to the output from sp_lock; however, sp_familylock allows you to
generate reports based on the family ID, rather than the process ID. It
is useful for detecting family deadlocks.

• Use the object_name system function to derive a table’s name from its
ID number.

• The “locktype” column indicates whether the lock is a shared lock
(“Sh” prefix), an exclusive lock (“Ex” prefix) or an update lock, and
whether the lock is held on a table (“table” or “intent”) or on a page
(“page”).

CHAPTER 8 System Procedures

951

The “blk” suffix in the “locktype” column indicates that this process
is blocking another process that needs to acquire a lock. As soon as
this process completes, the other process(es) moves forward. The
“demand” suffix indicates that the process is attempting to acquire an
exclusive lock.

• The “class” column indicates whether a lock is associated with a
cursor. It displays one of the following:

• “Non cursor lock” indicates that the lock is not associated with a
cursor.

• “Cursor Id number” indicates that the lock is associated with the
cursor ID number for that Adaptive Server process ID.

• A cursor name indicates that the lock is associated with the cursor
cursor_name that is owned by the current user executing sp_lock.

• The “fid” column identifies the family (including the coordinating
process and its worker processes) to which a lock belongs. Values for
“fid” are as follows:

• A zero value indicates that the task represented by the spid is
executed in serial. It is not participating in parallel execution.

• A nonzero value indicates that the task (spid) holding the lock is
a member of a family of processes (identified by “fid”) executing
a statement in parallel. If the value is equal to the spid, it indicates
that the task is the coordinating process in a family executing a
query in parallel.

• The “context” column identifies the context of the lock. Worker
processes in the same family have the same context value. Values for
“context” are as follows:

• “NULL” means that the task holding this lock is either executing
a query in serial or is a query being executed in parallel in
transaction isolation level 1.

• “FAM_DUR” means that the task holding the lock will hold the
lock until the query is complete.

A lock’s context may be “FAM_DUR” if the lock is a table lock
held as part of a parallel query, if the lock is held by a worker
process at transaction isolation level 3, or if the lock is held by a
worker process in a parallel query and must be held for the
duration of the transaction.

Permissions Any user can execute sp_familylock.

sp_familylock

952

See also Commands kill, select

System procedures sp_lock, sp_who

CHAPTER 8 System Procedures

953

sp_find_qplan
Description Finds an abstract plan, given a pattern from the query text or plan text.

Syntax sp_find_qplan pattern [, group]

Parameters pattern
is a string to find in the text of the query or abstract plan.

group
is the name of the abstract plan group.

Examples Example 1 Reports on all abstract plans that have the string “from titles”
in the query:

sp_find_qplan "%from titles%"

gid id text
--- ----------- --
2 921054317 select count(*) from titles
2 921054317

(plan
(i_scan t_pub_id_ix titles)
()

)
(prop titles

(parallel 1)
(prefetch 16)
(lru)

)
5 937054374 select type, avg(price) from titles group by type
5 937054374

(plan
(store Worktab1

(i_scan type_price titles)
)
(t_scan (work_t Worktab1))

)
(prop titles

(parallel 1)
(prefetch 16)
(lru)

Example 2 Finds all plans that include a table scan operator:

sp_find_qplan "%t_scan%"

Example 3 Uses the range pattern matching to look for strings such as
“table1”, “table2”, and so forth, in plans in the dev_plans group:

sp_find_qplan

954

sp_find_qplan "%table[0-9]%", dev_plans

Usage • Use sp_find_qplan to find an abstract plan that contains a particular
string. You can match strings from either the query text or from the
abstract plan text.

• For each matching plan, sp_find_qplan prints the group ID, plan ID,
query text and abstract plan text.

• If you include a group name, sp_find_qplan searches for the string in
the specified group. If you do not provide a group name, sp_find_plan
searches all queries and plans for all groups.

• You must supply the “%” wildcard characters, as shown in the
examples, unless you are searching for a string at the start or end of a
query or plan. You can use any Transact-SQL pattern matching
syntax, such as that shown in Example 3.

• The text of queries in sysqueryplans is broken into 255-byte column
values. sp_find_qplan may miss matches that span one of these
boundaries, but finds all matches that are less than 127 bytes, even if
they span two rows.

Permissions Any user can execute sp_find_qplan. It reports only on abstract plans
owned by the user who executes it, except when executed by a System
Administrator or the Database Owner.

See also System procedures sp_help_qpgroup, sp_help_qplan

CHAPTER 8 System Procedures

955

sp_fixindex
Description Repairs the index on one of your system tables when it has been corrupted.

Syntax sp_fixindex dbname, table_name, index_id

Parameters dbname
is the database name

table_name
is the table name

index_id
is the ID of the index you want to fix

Examples In this example, sp_fixindex repairs the clustered index on the
sysprocedures table of the pubs2 database:

1> sp_fixindex pubs2, sysprocedures, 1
2> go

Usage Warning! Do not run sp_fixindex on the clustered index of the sysobjects
or sysindexes tables or on user tables. If you do, sp_fixindex returns the
following error message:

The index with id 1 on sysobjects cannot be
recreated.

Before you run sp_fixindex, make sure your database is in single-user mode,
and is reconfigured to allow updates to system tables.

After you run sp_fixindex:

• Use the dbcc checktable command to verify that the corrupted index
has been fixed

• Disallow updates to system tables using sp_configure

• Turn off single-user mode

Do not run sp_fixindex on user tables.

Repairing a nonclustered index on sysobjects using sp_fixindex requires
additional steps.

Permissions Only SA can run sp_fixindex.

See also For more information on sp_fixindex, see Chapter 2, “Encyclopedia of
Tasks” in the Troubleshooting and Error Message Guide.

sp_flushstats

956

sp_flushstats
Description Flushes statistics from in-memory storage to the systabstats system table.

Syntax sp_flushstats objname

Parameters objname
is the name of a table.

Examples Flushes statistics for the titles table:

sp_flushstats titles

Usage • Some statistics in the systabstats table are updated in in-memory
storage locations and flushed to systabstats periodically, to reduce
overhead and contention on systabstats.

• If you query systabstats using SQL, executing sp_flushstats
guarantees that in-memory statistics are flushed to systabstats.

• The optdiag command always flushes in-memory statistics before
displaying output.

• The statistics in sysstatistics are changed only by data definition
language commands and do not require the use of sp_flushstats.

Permissions Only a System Administrator can execute sp_flushstats.

CHAPTER 8 System Procedures

957

sp_forceonline_db
Description Provides access to all the pages in a database that were previously marked

suspect by recovery.

Syntax sp_forceonline_db dbname,
{"sa_on" | "sa_off" | "all_users"}

Parameters dbname
is the name of the database to be brought online.

sa_on
allows only users with the sa_role access to the specified page.

sa_off
revokes access privileges created by a previous invocation of
sp_forceonline_page with sa_on.

all users
allows all users access to the specified page.

Examples Example 1 Allows the System Administrator access to all suspect pages
in the pubs2 database:

sp_forceonline_db pubs2, "sa_on"

Example 2 Revokes access to all suspect pages in the pubs2 database
from the System Administrator. Now, no one can access the suspect pages
in pubs2:

sp_forceonline_db pubs2, "sa_off"

Example 3 Allows all users access to all pages in the pubs2 database:

sp_forceonline_db pubs2, "all_users"

Usage • A page that is forced online is not necessarily repaired. Corrupt pages
can also be forced online. Adaptive Server does not perform any
consistency checks on pages that are forced online.

• sp_forceonline_page with all users cannot be reversed. When pages
have been brought online for all users, you cannot take them offline
again.

• sp_forceonline_db cannot be used in a transaction.

• To bring only specific offline pages online, use sp_forceonline_page.

Permissions Only a System Administrator can execute sp_forceonline_db.

See also System procedures sp_forceonline_page, sp_listsuspect_db,
sp_listsuspect_page, sp_setsuspect_granularity, sp_setsuspect_threshold

sp_forceonline_object

958

sp_forceonline_object
Description Provides access to an index previously marked suspect by recovery.

Syntax sp_forceonline_object dbname, objname, indid,
{sa_on | sa_off | all_users} [, no_print]

Parameters dbname
is the name of the database containing the index to be brought online.

objname
is the name of the table.

indid
is the index ID of the suspect index being brought online.

sa_on
allows only users with the sa_role to access the specified index.

sa_off
revokes access privileges created by a previous invocation of
sp_forceonline_object with sa_on.

all_users
allows all users to access the specified index.

no_print
skips printing a list of other suspect objects after the specified object is
brought online.

Examples Example 1 Allows a System Administrator to access the index with indid
3 on the titles table in the pubs2 database:

sp_forceonline_object pubs2, titles, 3 , sa_on

Example 2 Revokes access to the index from the System Administrator.
Now, no one has access to this index:

sp_forceonline_object pubs2, titles, 3, sa_off

Example 3 Allows all users to access the index on the titles table in the
pubs2 database:

sp_forceonline_object pubs2, titles, 3, all_users

Usage • If an index on a data-only-locked table has suspect pages, the entire
index is taken offline during recovery. Offline indexes are not
considered by the query optimizer. Indexes on allpages-locked tables
are not taken completely offline during recovery; only individual
pages of these indexes are taken offline. These pages can be brought
online with sp_forceonline_page.

CHAPTER 8 System Procedures

959

• Use sp_listsuspect_object to see a list of databases that are offline.

• To repair a suspect index, use sp_forceonline_object with sa_on
access. Then, drop and re-create the index.

Note If the index is on systabstats or sysstatistics (the only
data-only-locked system tables) call Sybase Technical Support for
assistance.

• sp_forceonline_object with all_users cannot be reversed. When an
index has been brought online for all users, you cannot take it offline
again.

• An index that is forced online is not necessarily repaired. Corrupt
indexes can be forced online. Adaptive Server does not perform any
consistency checks on indexes that are forced online.

• sp_forceonline_object cannot be used in a transaction.

• sp_forceonline_object works only for databases in which the recovery
fault isolation mode is “page.” Use sp_setsuspect_granularity to
display the recovery fault isolation mode for a database.

• To bring all of a database’s offline pages and indexes online in a single
command, use sp_forceonline_db.

• For more information on recovery fault isolation, see the System
Administration Guide.

Permissions Only a System Administrator can execute sp_forceonline_object.

See also System procedures sp_listsuspect_object, sp_setsuspect_granularity

sp_forceonline_page

960

sp_forceonline_page
Description Provides access to pages previously marked suspect by recovery.

Syntax sp_forceonline_page dbname, pgid,
{"sa_on" | "sa_off" | "all_users"}

Parameters dbname
is the name of the database containing the pages to be brought online.

pgid
is the page identifier of the page being brought online.

sa_on
allows only users with the sa_role access to the specified page.

sa_off
revokes access privileges created by a previous invocation of
sp_forceonline_page with sa_on.

all_users
allows all users access to the specified page.

Examples Example 1 Allows a System Administrator access to page 312 in the
pubs2 database:

sp_forceonline_page pubs2, 312, "sa_on"

Example 2 Revokes access to page 312 in the pubs2 database from the
System Administrator. Now, no one has access to this page:

sp_forceonline_page pubs2, 312, "sa_off"

Example 3 Allows all users access to page 312 in the pubs2 database:

sp_forceonline_page pubs2, 312, "all_users"

Usage • sp_forceonline_page with all_users cannot be reversed. When pages
have been brought online for all users, you cannot take them offline
again.

• A page that is forced online is not necessarily repaired. Corrupt pages
can also be forced online. Adaptive Server does not perform any
consistency checks on pages that are forced online.

• sp_forceonline_page cannot be used in a transaction.

• sp_forceonline_page works only for databases in which the recovery
fault isolation mode is "page." Use sp_setsuspect_granularity to
display the recovery fault isolation mode for a database.

CHAPTER 8 System Procedures

961

• To bring all of a database’s offline pages online in a single command,
use sp_forceonline_db.

Permissions Only a System Administrator can use sp_forceonline_page.

See also System procedures sp_forceonline_db, sp_listsuspect_db,
sp_listsuspect_page, sp_setsuspect_granularity, sp_setsuspect_threshold

sp_foreignkey

962

sp_foreignkey
Description Defines a foreign key on a table or view in the current database.

Syntax sp_foreignkey tabname, pktabname, col1 [, col2] ...
[, col8]

Parameters tabname
is the name of the table or view that contains the foreign key to be
defined.

pktabname
is the name of the table or view that has the primary key to which the
foreign key applies. The primary key must already be defined.

col1
is the name of the first column that makes up the foreign key. The
foreign key must have at least one column and can have a maximum of
eight columns.

Examples Example 1 The primary key of the publishers table is the pub_id column.
The titles table also contains a pub_id column, which is a foreign key of
publishers:

sp_foreignkey titles, publishers, pub_id

Example 2 The primary key of the parts table has been defined with
sp_primarykey as the partnumber and subpartnumber columns. The orders
table contains the columns part and subpart, which make up a foreign key
of parts:

sp_foreignkey orders, parts, part, subpart

Usage • sp_foreignkey adds the key to the syskeys table. Keys make explicit a
logical relationship that is implicit in your database design.

• sp_foreignkey does not enforce referential integrity constraints; use
the foreign key clause of the create table or alter table command to
enforce a foreign key relationship.

• The number and order of columns that make up the foreign key must
be the same as the number and order of columns that make up the
primary key. The datatypes (and lengths) of the primary and foreign
keys must agree, but the null types need not agree.

• The installation process runs sp_foreignkey on the appropriate
columns of the system tables.

• To display a report on the keys that have been defined, execute
sp_helpkey.

CHAPTER 8 System Procedures

963

Permissions Only the owner of the table or view can execute sp_foreignkey.

See also Commands alter table, create table, create trigger

System procedures sp_commonkey, sp_dropkey, sp_helpjoins,
sp_helpkey, sp_primarykey

sp_freedll

964

sp_freedll
Description Unloads a dynamic link library (DLL) that was previously loaded into XP

Server memory to support the execution of an extended stored procedure
(ESP).

Syntax sp_freedll dll_name

Parameters dll_name
is the file name of the DLL being unloaded from XP Server memory.

Examples Unloads the sqlsrvdll.dll DLL:

sp_freedll "sqlsrvdll.dll"

Usage • sp_freedll cannot be executed from within a transaction.

• sp_freedll cannot free the DLL of a system ESP.

• An alternative to unloading a DLL explicitly, using sp_freedll, is to
specify that DLLs always be unloaded after the ESP request that
invoked them terminates. To do this, set the esp unload dll
configuration parameter to 1 or start xpserver with the -u option.

• sp_freedll can be used to update an ESP function in a DLL without
shutting down XP Server or Adaptive Server.

• If you use sp_freedll to unload a DLL that is in use, sp_freedll will
succeed, causing the ESP currently using the DLL to fail.

Permissions Only a System Administrator can execute sp_freedll.

See also System procedures sp_addextendedproc, sp_dropextendedproc,
sp_helpextendedproc

CHAPTER 8 System Procedures

965

sp_getmessage
Description Retrieves stored message strings from sysmessages and sysusermessages

for print and raiserror statements.

Syntax sp_getmessage message_num, result output [, language]

Parameters message_num
is the number of the message to be retrieved.

result output
is the variable that receives the returned message text, followed by a
space and the keyword output. The variable must have a datatype of
char, unichar, nchar, varchar, univarchar, or nvarchar.

language
is the language of the message to be retrieved. language must be a valid
language name in syslanguages table. If you include language, the
message with the indicated message_num and language is retrieved. If
you do not include language, then the message for the default session
language, as indicated by the variable @@langid, is retrieved.

Examples Example 1 Retrieves message number 20001 from sysusermessages:

declare @myvar varchar(200)
exec sp_getmessage 20001, @myvar output

Example 2 Retrieves the French language version of message number
20010 from sysusermessages:

declare @myvar varchar(200)
exec sp_getmessage 20010, @myvar output, french

Usage • Any application can use sp_getmessage, and any user can read the
messages stored in sysmessages and sysusermessages.

Permissions Any user can execute sp_getmessage.

See also Commands print, raiserror

System procedures sp_addmessage, sp_dropmessage

sp_grantlogin

966

sp_grantlogin
Description Windows NT only Assigns Adaptive Server roles or default permissions

to Windows NT users and groups when Integrated Security mode or
Mixed mode (with Named Pipes) is active.

Syntax sp_grantlogin {login_name | group_name}
["role_list" | default]

Parameters login_name
is the network login name of the Windows NT user.

group_name
is the Windows NT group name.

role_list
is a list of the Adaptive Server roles granted. The role list can include
one or more of the following role names: sa_role, sso_role, oper_role. If
you specify more than one role, separate the role names with spaces, not
commas.

default
specifies that the login_name or group_name receive default
permissions assigned with the grant statement or sp_role procedure.

Examples Example 1 Assigns the Adaptive Server oper_role to the Windows NT
user “jeanluc”:

sp_grantlogin jeanluc, oper_role

Example 2 Assigns the default value to the Windows NT user “valle”.
User “valle” receives any permissions that were assigned to her via the
grant command or sp_role procedure:

sp_grantlogin valle

Example 3 Assigns the Adaptive Server sa_role and sso_role to all
members of the Windows NT administrators group:

sp_grantlogin Administrators, "sa_role sso_role"

Usage • You must create the Windows NT login name or group before
assigning roles with sp_grantlogin. See your Windows NT
documentation for details.

• sp_grantlogin is active only when Adaptive Server is running in
Integrated Security mode or Mixed mode when the connection is
Named Pipes. If Adaptive Server is running under Standard mode or
Mixed mode with a connection other than Named Pipes, use grant and
sp_role instead.

CHAPTER 8 System Procedures

967

• If you do not specify a role_list or default, the procedure automatically
assigns the default value.

• The default value does not indicate an Adaptive Server role. It
specifies that the user or group should receive any permissions that
were assigned to it via the grant command or sp_role procedure.

• Using sp_grantlogin with an existing login_name or group_name
overwrites the user’s or group’s existing roles.

Permissions Only a System Administrator can execute sp_grantlogin.

See also Commands grant, setuser

System procedures sp_addlogin, sp_displaylogin, sp_droplogin,
sp_locklogin, sp_logininfo, sp_modifylogin, sp_revokelogin, sp_role

sp_ha_admin

968

sp_ha_admin
Description Performs administrative tasks on Adaptive Servers configured with Sybase

Failover in a high availability system. sp_ha_admin is installed with the
installhavss script on UNIX platforms or the insthasv script on Windows NT.

Syntax sp_ha_admnin [cleansessions | help]

Parameters cleansessions
removes old entries from syssessions. Old syssessions entries are typically
left behind because either Adaptive Server failed to clean up syssessions
during a reboot, or because a client failed to connect to Adaptive Server.

help
displays the syntax for sp_ha_admin.

Examples Example 1 Removes old entries from syssessions left by a client connection
that did not exit correctly:

sp_ha_admin cleansessions
(return status = 0)

Example 2 Displays the syntax for sp_ha_admin:

sp_ha_admin "help"

sp_ha_admin Usage: sp_ha_admin command [, option1 [,
option2]]
sp_ha_admin commands:
sp_ha_admin 'cleansessions'
sp_ha_admin 'help'
(return status = 0)

Usage • sp_ha_admin performs administrative tasks on Adaptive Server that are
configured for Sybase’s Failover in a high availability system.
sp_ha_admin is not installed using the installmaster script; instead, use the
installhavss script that installs and configures for Sybase’s Failover
(insthasv on Windows NT).

• sp_ha_admin returns a 0 if it successfully cleaned up syssessions, and
returns a 1 if it encounters an error.

• sp_ha_admin enters a message in the errorlog if it could not remove any
entries from syssessions (for example, if it could not get a lock on
syssessions).

• To view all the current entries in syssessions, enter:

select * from syssessions

Permissions Only the a System Administrator with the ha_role can execute sp_ha_admin.

CHAPTER 8 System Procedures

969

sp_help
Description Reports information about a database object (any object listed in sysobjects)

and about system or user-defined datatypes.

Syntax sp_help [objname]

Parameters objname
is the name of any object in sysobjects or any user-defined datatype or
system datatype in systypes. You cannot specify database names. objname
can include tables, views, stored procedures, logs, rules, defaults, triggers,
referential constraints, and check constraints. Use owner names if the object
owner is not the user running the command and is not the Database Owner.

Examples Example 1 Displays a list of objects in sysobjects and displays each object’s
name, owner, and object type. Also displays a list of each user-defined datatype
in systypes, indicating the datatype name, storage type, length, null type,
default name, and rule name. Null type is 0 (null values not allowed) or 1 (null
values allowed):

sp_help

Example 2 Displays information about the publishers table. sp_help also lists
any attributes assigned to the specified table and its indexes, giving the
attribute’s class, name, integer value, character value, and comments. The
above example shows cache binding attributes for the publishers table:

sp_help publishers

Name Owner Object_Type
-------------------------- --------------------------- -----------
publishers dbo user table
(1 row affected)

 Data_located_on_segment When_created
------------------------------ --------------------------
default Apr 25 2002 10:28AM

Column_name Type Length Prec Scale Nulls Default_name
Rule_name Access_Rule_name Identity
---------- ---- ------ ----- ----- ----- ----------- -----------
--------------- ------------------------------ --------
pub_id char 4 NULL NULL 0 NULL
pub_idrule NULL 0
pub_name varchar 40 NULL NULL 1 NULL
NULL NULL 0
city varchar 20 NULL NULL 1 NULL
NULL NULL 0
state char 2 NULL NULL 1 NULL

sp_help

970

NULL NULL 0

index_name index_description index_keys

index_max_rows_per_page index_fillfactor index_reservepagegap
index_created
----------- ---------------------------------- -----------------
-------------------------- -------------------- --------------------
pubind clustered, unique located on default pub_id

0 0 0
Apr 25 2002 10:28AM
(1 row affected)

keytype object related_object
object_keys related_keys
---------- ------------ ------------------
--------------------- ---------------------
primary publishers -- none --
pub_id, *, *, *, *, *, *, * *, *, *, *, *, *, *, *
foreign titles publishers
pub_id, *, *, *, *, *, *, pub_id, *, *, *, *, *, *, *
(1 row affected)
Object is not partitioned.
Lock scheme Allpages
The attribute 'exp_row_size' is not applicable to tables with allpages lock
scheme.
The attribute 'concurrency_opt_threshold' is not applicable to tables with
allpages lock scheme.
exp_row_size reservepagegap fillfactor max_rows_per_page identity_gap
------------ -------------- ---------- ----------------- ------------

0 0 0 0 0
concurrency_opt_threshold

0

Example 3 Displays information about a partitioned table (in this
example, the titles table was first altered to have four partitions):

sp_help titles

Name Owner Object_Type
-------------------------- --------------------------- -----------
titles dbo user table
(1 row affected)

 Data_located_on_segment When_created

CHAPTER 8 System Procedures

971

------------------------------ --------------------------
default Apr 25 2002 10:28AM

Column_name Type Length Prec Scale Nulls Default_name
Rule_name Access_Rule_name Identity
---------- ---- ------- ----- ----- ----- ------------
--------------- ------------------------------ --------
title_id tid 6 NULL NULL 0 NULL
title_idrule NULL 0
title varchar 80 NULL NULL 0 NULL
NULL NULL 0
type char 12 NULL NULL 0 typedflt
NULL NULL 0
pub_id char 4 NULL NULL 1 NULL
NULL NULL 0
price money 8 NULL NULL 1 NULL
NULL NULL 0
advance money 8 NULL NULL 1 NULL
NULL NULL 0
total_sales int 4 NULL NULL 1 NULL
NULL NULL 0
notes varchar 200 NULL NULL 1 NULL
NULL NULL 0
pubdate datetime 8 NULL NULL 0 datedflt
NULL NULL 0
contract bit 1 NULL NULL 0 NULL
NULL NULL 0
index_name index_description index_keys

index_max_rows_per_page index_fillfactor index_reservepagegap
index_created
----------- ---------------------------------- -----------------
----------------------- -------------------- -------------------

titleidind clustered, unique located on default title_id
Apr 25 2002 10:28AM
titleind nonclustered located on default title
Apr 25 2002 10:28AM

(2 rows affected)

keytype object related_object
object_keys related_keys
---------- ------------ ------------------
--------------------- ---------------------
foreign roysched titles

sp_help

972

title_id, *, *, *, *, *, *, * title_id, *, *, *, *, *, *, *
foreign salesdetail titles
title_id, *, *, *, *, *, *, * title_id, *, *, *, *, *, *,
foreign titleauthor titles
title_id, *, *, *, *, *, *, * title_id, *, *, *, *, *, *,
foreign titles publishers
pub_id, *, *, *, *, *, *, * pub_id, *, *, *, *, *, *, *
primary titles -- none --
title_id, *, *, *, *, *, *, * *, *, *, *, *, *, *, *

(1 row affected)
partitionid firstpage controlpage ptn_data_pages
----------- ----------- ---------- --------------

1 784 785 1
2 713 712 1
3 721 720 1
4 945 944 1

Partitions Average Pages Maximum Pages Minimum Pages Ratio (Max/Avg)
---------- ------------- -------------- ------- ----------

4 1 1 1 1.000000
Lock scheme Allpages
The attribute 'exp_row_size' is not applicable to tables with allpages lock
scheme.
The attribute 'concurrency_opt_threshold' is not applicable to tables with
allpages lock scheme.
exp_row_size reservepagegap fillfactor max_rows_per_page identity_gap
------------ -------------- ---------- ----------------- ------------

0 0 0 0 0
concurrency_opt_threshold

0

Example 4 Displays information about the trigger marytrig owned by user
“mary”. The quotes are needed, because the period is a special character:

sp_help "mary.marytrig"

Name Owner Object_type
------------ ------------------ ----------------
marytrig mary trigger

Data_located_on_segment When_created
----------------------- --------------------------
not applicable Mar 20 2002 2:03PM

Example 5 Displays information about the system datatype money:

sp_help money

CHAPTER 8 System Procedures

973

Type_name Storage_type Length Prec Scale Nulls Defaul_name
--------- ------------ ------- ----- ----- ----- ------------
Rule_name Access_Rule_name Identity
--------- ---------------- --------
money money 8 NULL NULL 1 NULL
NULL NULL 0

Example 6 Displays information about the user-defined datatype
identype. The report indicates the base type from which the datatype was
created, whether it allows nulls, the names of any rules and defaults bound
to the datatype, and whether it has the IDENTITY property:

sp_help identype

Type_name Storage_type Length Prec Scale Nulls Defaul_name
--------- ------------ ------- ----- ----- ----- ------------
Rule_name Access_Rule_name Identity
--------- ---------------- --------
identype numeric 4 NULL NULL 1 NULL
NULL NULL 1

Usage • sp_help looks for an object in the current database only.

• sp_help follows the Adaptive Server rules for finding objects:

• If you do not specify an owner name, and you own an object with
the specified name, sp_help reports on that object.

• If you do not specify an owner name, and do not own an object
of that name, but the Database Owner does, sp_help reports on
the Database Owner’s object.

• If neither you nor the Database Owner owns an object with the
specified name, sp_help reports an error condition, even if an
object with that name exists in the database for a different owner.
Qualify objects that are owned by database users other than
yourself and the Database Owner with the owner’s name, as
shown in Example 4.

• If both you and the Database Owner own objects with the
specified name, and you want to access the Database Owner’s
object, specify the name in the format dbo.objectname.

• sp_help works on temporary tables if you issue it from tempdb.

• Columns with the IDENTITY property have an “Identity” value of 1;
others have an “Identity” value of 0. In example 2, there are no
IDENTITY columns.

sp_help

974

• sp_help lists any indexes on a table, including indexes created by
defining unique or primary key constraints in the create table or alter
table statements. It also lists any attributes associated with those
indexes. However, sp_help does not describe any information about
the integrity constraints defined for a table. Use sp_helpconstraint for
information about any integrity constraints.

• sp_help displays the following new settings:

• The locking scheme, which can be set with create table and
changed with alter table

• The expected row size, which can be set with create table and
changed with sp_chgattribute

• The reserve page gap, which can be set with create table and
changed with sp_chgattribute

• The row lock promotion settings, which can be set or changed
with sp_setrowlockpromote and dropped with
sp_droprowlockpromote

• sp_help includes the report from sp_helpindex, which shows the order
of the keys used to create the index and the space management
properties.

• When Component Integration Services is enabled, sp_help displays
information on the storage location of remote objects.

• sp_help reports information about SQLJ stored procedures and SQLJ
functions. See Java in Adaptive Server Enterprise for more
information about SQLJ routines.

Permissions Any user can execute sp_help.

See also Commands create table, alter table

System procedures sp_chgattribute, sp_droprowlockpromote,
sp_helpconstraint, sp_helpindex, sp_setrowlockpromote

CHAPTER 8 System Procedures

975

sp_helpartition
Description Lists the partition number, first page, control page, and number of data

pages and summary size information for each partition in a partitioned
table.

Syntax sp_helpartition [table_name]

Parameters table_name
is the name of a partitioned table in the current database. If the table
name is not supplied, the owner, tables name, and number of partitions
is printed for all user tables in the database.

Examples Returns information about the partitions in sales:

sp_helpartition sales

partitionid firstpage controlpage ptn_data_pages
----------- ----------- ----------- --------------

1 313 314 4227
2 12802 12801 4285
3 25602 25601 4404
4 38402 38401 4523
5 51202 51201 4347
6 64002 64001 4285

(6 rows affected)
Partitions Average Pages Maximum Pages Minimum Pages Ratio (Max/Avg)
---------- ------------- ------------- ------------- ---------------

6 4345 4523 4227 1.040967

Usage • sp_helpartition lists the partition number, first page, control page, and
number of data pages for each partition in a partitioned table. The
number of pages per partition shows how evenly the data is
distributed between partitions.

The summary information display the number of partitions, the
average number of pages per partition, the minimum and maximum
number of pages, and the ratio between the average number of pages
and the maximum number. This ratio is used during query
optimization. If the ratio is 2 or greater (meaning that the maximum
size is twice as large as the average size), the optimizer chooses a
serial query plan rather than a parallel plan.

sp_helpartition

976

• Partitioning a table creates additional page chains. Use the partition
clause of the alter table command to partition a table. Each chain has
its own last page, which is available for concurrent insert operations.
This improves insert performance by reducing page contention. If the
table is spread over multiple physical devices, partitioning improves
insert performance by reducing I/O contention while Adaptive Server
is flushing data from cache to disk.

• Partitioning a table does not affect its performance for update or
delete commands.

• Use the unpartition clause of the alter table command to concatenate all
existing page chains.

• Neither partitioning nor unpartitioning a table moves existing data.

• To change the number of partitions in a table, first use the unpartition
clause of alter table to concatenate its page chains. Then use the
partition clause of alter table to repartition the table.

• sp_helpartition looks only in the current database for the table.

• Use sp_helpsegment to display the number of used and free pages on
the segment on where the partitioned table is stored.

Accuracy of results

• The values reported in the “data_pages” column may be greater than
the actual values. To determine whether the count is inaccurate, run
sp_statistics and sp_helpartition to compare the data page count. The
count provided by sp_statistics is always accurate.

If the page count reported by sp_statistics differs from the sum of the
partition pages reported by sp_helpartition by more then 5 percent, run
one of the following commands to update the partition statistics:

• dbcc checkalloc

• dbcc checkdb

• dbcc checktable

• update all statistics

• update partition statistics

Then, rerun sp_helpartition for an accurate report.

Permissions Any user can execute sp_helpartition.

See also Catalog system procedures sp_statistics

CHAPTER 8 System Procedures

977

Commands alter table, insert

System procedures sp_helpsegment

sp_helpcache

978

sp_helpcache
Description Displays information about the objects that are bound to a data cache or

the amount of overhead required for a specified cache size.

Syntax sp_helpcache {cache_name | "cache_size[P|K|M|G]"}

Parameters cache_name
is the name of an existing data cache.

cache_size
specifies the size of the cache, specified by P for pages, K for kilobytes,
M for megabytes, or G for gigabytes. The default is K.

Examples Example 1 Displays information about items bound to pub_cache:

sp_helpcache pub_cache

Example 2 Shows the amount of overhead required to create an 80MB
data cache:

sp_helpcache "80M"

Example 3 Displays information about all caches and all items bound to
them:

sp_helpcache

Usage • To see the size, status, and I/O size of all data caches on the server, use
sp_cacheconfig.

• When you configure data caches with sp_cacheconfig, all the memory
that you specify is made available to the data cache. Overhead for
managing the cache is taken from the default data cache. The
sp_helpcache displays the amount of memory required for a cache of
the specified size.

• To bind objects to a cache, use sp_bindcache. To unbind a specific
object from a cache, use sp_unbindcache. To unbind all objects that
are bound to a specific cache, use sp_unbindcache_all.

• The procedure sp_cacheconfig configures data caches. The procedure
sp_poolconfig configures memory pools within data caches.

• sp_helpcache computes overhead accurately up to 74GB.

Permissions Any user can execute sp_helpcache.

See also System procedures sp_bindcache, sp_cacheconfig, sp_poolconfig,
sp_unbindcache, sp_unbindcache_all

CHAPTER 8 System Procedures

979

sp_helpconfig
Description Reports help information on configuration parameters.

Syntax sp_helpconfig "configname", ["size"]

Parameters configname
is the configuration parameter being queried, or a non-unique parameter
fragment.

size
is the size of memory, specified by B (bytes), K (kilobytes), M
(megabytes), G (gigabytes), or P (pages). Used without the type of size
specified, size specifies the number of the entity being configured using
this parameter, for examples, locks, open indexes, and so on. size is
ignored if configname is not a unique parameter name.

Examples Example 1 Returns a report on all configuration options that start with
“allow”:

sp_helpconfig "allow"

Configuration option is not unique.
 option_name config_value run_value
 ------------------------------ ------------ -----------
 allow backward scans 1 1
 allow nested triggers 1 1
 allow procedure grouping 1 1
 allow remote access 1 1
 allow resource limits 0 0
 allow sendmsg 0 0
 allow sql server async i/o 1 1
 allow updates to system tables 0 0

Example 2 Returns a report on how much memory is needed to create a
metadata cache for 421 object descriptors:

sp_helpconfig "open objects", "421"

number of open objects sets the maximum number of database objects that are
open at one time on SQL Server. The default run value is 500.

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -----------

100 2147483647 500 500 243

Configuration parameter, 'number of open objects', will consume 207K of
memory if configured at 421.

sp_helpconfig

980

Example 3 Returns a report on how many database descriptors would fill
a 1MB database cache:

sp_helpconfig "open databases", "1M"

number of open databases sets the maximum number of databases that can be
open at one time on SQL Server. The default run value is 12.

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -----------

5 2147483647 12 12 433

Configuration parameter, 'number of open databases', can be configured to
28 to fit in 1M of memory.

Example 4 Returns a report on how many locks will use 512K of memory:

sp_helpconfig "number of locks", "512K"

number of locks sets the number of available locks. The default run value
is 5000.

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -----------

1000 2147483647 5000 5000 528

Configuration parameter 'number of locks', can be configured to 4848 to fit
in 512K of memory.

Example 5 Returns a report on the status of the allow updates to system
tables configuration parameter:

sp_helpconfig "allow updates to system tables"

allow updates to system tables allows system tables to be updated directly.
The default is 0 (off).

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -----------

0 1 0 0 0

CHAPTER 8 System Procedures

981

Usage • sp_helpconfig reports help information on configuration parameters,
such as how much memory would be needed if the parameter were set
to a certain value. sp_helpconfig also displays the current setting, the
amount of memory used for that setting, the default value, and the
minimum and maximum settings.

Note The “maximum value” setting refers to the largest number that
the parameter’s datatype can accept, rather than to an actual
configurable value.

In many cases, the maximum allowable values for configuration
parameters are extremely high. The maximum value for your server is
usually limited by available memory and other resources, rather than
by configuration parameter limitations.

• If you use a nonunique parameter fragment for configname,
sp_helpconfig returns a list of matching parameters with their
configured values and current values. See Example 1.

Planning metadata cache configuration

• Use sp_helpconfig when you are planning a metadata cache
configuration for a server.

For example, suppose you were planning to move a database that
contained 2000 user indexes to a different server. To find how much
memory you would need to configure for that server so that it would
accommodate the database’s user indexes, enter the following
command:

sp_helpconfig "open indexes", "2000"

number of open indexes sets the maximum number of indexes that can be
open at one time on SQL Server. The default run value is 500.

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -----------

100 2147483647 500 500 208

Configuration parameter, ’number of open indexes’, will consume 829k of
memory if configured at 2000.

Alternatively, suppose you had 1MB of memory available for the
index cache, and you needed to know how many index descriptors it
would support. Run the following command:

sp_helpconfig "open indexes", "1M"

sp_helpconfig

982

number of open indexes sets the maximum number of indexes that can be
open at one time on SQL Server. The default run value is 500.

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -----------

100 2147483647 500 500 208

Configuration parameter ’number of open indexes’, can be configured to
2461 to fit in 1M of memory.

Based on this output, if you have 1MB of memory, you can create an
index descriptor cache that can contain a maximum of 2461 index
descriptors. To create this cache, set the number of open indexes
configuration parameter as follows:

sp_configure "number of open indexes", 2461

Using sp_helpconfig with sybdiagdb (Sybase Technical Support only)

Note Sybase Technical Support may create the sybdiagdb database on
your system for debugging purposes. This database holds diagnostic
configuration data, and is for use by Sybase Technical Support only.

The following configname options have been added to sp_helpconfig for
Sybase Technical Support to use with the sybdiagdb database:

• number of ccbs – the number of configurable action point control
blocks available to aid debugging.

• caps per ccb – the maximum number of configurable action points
that can be configured at any one time within one configurable action
point.

• average cap size – the estimated number of bytes of memory required
to store the information associated with a typical configurable action
point.

For example:

sp_helpconfig "number of ccbs"

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -----------
0 100 0 0 0

sp_helpconfig "caps per ccb"

Minimum Value Maximum Value Default Value Current Value Memory Used

CHAPTER 8 System Procedures

983

------------- ------------- ------------- ------------- -----------
5 500 50 50 0

sp_helpconfig "average cap size"

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -----------
100 10000 200 200 0

Permissions The options specified in “Using sp_helpconfig with sybdiagdb (Sybase
Technical Support only)” on page 982 can be used only by Sybase
Technical Support. Any user can execute sp_helpconfig with other
configname options.

See also System procedures sp_configure, sp_countmetadata, sp_monitorconfig

sp_helpconstraint

984

sp_helpconstraint
Description Reports information about integrity constraints used in the specified

tables.

Syntax sp_helpconstraint [objname] [, detail]

Parameters objname
is the name of a table that has one or more integrity constraints defined
by a create table or alter table statement.

detail
returns information about the constraint’s user or error messages.

Examples Example 1 Displays the constraint information for the store_employees
table in the pubs3 database. The store_employees table has a foreign key
to the stores table (stor_id) and a self-reference (mgr_id references
emp_id):

sp_helpconstraint store_employees

name defn
--------------------------- --------------------------------
store_empl_stor_i_272004000 store_employees FOREIGN KEY

(stor_id) REFERENCES stores(stor_id)
store_empl_mgr_id_288004057 store_employees FOREIGN KEY

(mgr_id) SELF REFERENCES
store_employees(emp_id)

store_empl_2560039432 UNIQUE INDEX(emp_id) :
NONCLUSTERED, FOREIGN REFERENCE

(3 rows affected)

Total Number of Referential Constraints: 2

Details:
-- Number of references made by this table: 2
-- Number of references to this table: 1
-- Number of self references to this table: 1

Formula for Calculation:
Total Number of Referential Constraints
= Number of references made by this table
+ Number of references made to this table
- Number of self references within this table

CHAPTER 8 System Procedures

985

Example 2 Displays more detailed information about the
pubs3..salesdetail constraints, including the constraint type and any
constraint error messages:

sp_helpconstraint titles, detail

name type
defn

msg
------------------------------ ------------------------

--
--

datedflt default value
create default datedflt as getdate()

typedflt default value
 create default typedflt as "UNDECIDED"

titles_pub_id_96003373 referential constraint
titles FOREIGN KEY (pub_id) REFERENCES publishers(pub_id)

standard system error message number : 547

roysched_title__144003544 referential constraint
roysched FOREIGN KEY (title_id) REFERENCES titles(title_id)

standard system error message number : 547

salesdetai_title__368004342 referential constraint
salesdetail FOREIGN KEY (title_id) REFERENCES titles(title_id)

standard system error message number : 547

titleautho_title__432004570 referential constraint
titleauthor FOREIGN KEY (title_id) REFERENCES titles(title_id)

standard system error message number : 547

titles_800033162 unique constraint
UNIQUE INDEX (title_id) : NONCLUSTERED, FOREIGN REFERENCE

standard system error message number : 2601

(7 rows affected)

Total Number of Referential Constraints: 4

Details:
-- Number of references made by this table: 1
-- Number of references to this table: 3
-- Number of self references to this table: 0

sp_helpconstraint

986

Formula for Calculation:
Total Number of Referential Constraints
= Number of references made by this table
+ Number of references made to this table
- Number of self references within this table.

Example 3 Displays a listing of all tables in the pubs3 database:

sp_helpconstraint

id name Num_referential_constraints
----------- ------------------------ ---------------------------

80003316 titles 4
16003088 authors 3

176003658 stores 3
256003943 salesdetail 3
208003772 sales 2
336004228 titleauthor 2
896006223 store_employees 2
48003202 publishers 1

128003487 roysched 1
400004456 discounts 1
448004627 au_pix 1
496004798 blurbs 1

(11 rows affected)

Usage • sp_helpconstraint prints the name and definition of the integrity
constraint, and the number of references used by the table. The detail
option returns information about the constraint’s user or error
messages.

• Running sp_helpconstraint with no parameters lists all the tables
containing references in the current database, and displays the total
number of references in each table. sp_helpconstraint lists the tables in
descending order, based on the number of references in each table.

• sp_helpconstraint reports only the integrity constraint information
about a table (defined by a create table or alter table statement). It does
not report information about rules, triggers, or indexes created using
the create index statement. Use sp_help to see information about rules,
triggers, and indexes for a table.

• For constraints that do not have user-defined messages, Adaptive
Server reports the system error message associated with the
constraint. Query sysmessages to obtain the actual text of that error
message.

CHAPTER 8 System Procedures

987

• You can use sp_helpconstraint only for tables in the current database.

• If a query exceeds the configured number of auxiliary scan
descriptors, Adaptive Server returns an error message. You can use
sp_helpconstraint to determine the necessary number of scan
descriptors. See the System Administration Guide or more
information on the number of aux scan descriptors configuration
parameter.

• A System Security Officer can prevent the source text of constraint
definitions from being displayed to most users who execute
sp_helpconstraint. To restrict select permission on the text column of
the syscomments table to the object owner or a System Administrator,
use sp_configure to set the select on syscomments.text column
parameter to 0. This restriction is required to run Adaptive Server in
the evaluated configuration. See the System Administration Guide for
more information about the evaluated configuration.

Permissions Any user can execute sp_helpconstraint.

See also Commands alter table, create table

System procedures sp_configure, sp_help, sp_helpdb,
sp_monitorconfig

sp_helpdb

988

sp_helpdb
Description Reports information about a particular database or about all databases.

Syntax sp_helpdb [dbname]

Parameters dbname
is the name of the database on which to report information. Without this
optional parameter, sp_helpdb reports on all databases. dbname can
include wildcard characters to return all databases that match the
specified pattern.

Examples Example 1 Displays information about all the databases in Adaptive
Server:

sp_helpdb

name db_size owner dbid created status
-------------- -------- ----- ---- -------------- ------------------
master 5.0 MB sa 1 Jan 01, 1900 no options set
model 2.0 MB sa 3 Jan 01, 1900 no options set
pubs2 2.0 MB sa 6 Sep 20, 1995 no options set
sybsystemprocs 16.0 MB sa 4 Sep 20, 1995 trunc log on chkp
tempdb 2.0 MB sa 2 Sep 20, 1995 select into/bulkcopy

Example 2 Issued from within pubs2, displays information about the
pubs2 database, and includes segment information:

sp_helpdb pubs2

name db_size owner dbid created status
----- ------- ----- ---- ------------ ----------------------
pubs2 2.0 MB sa 4 Mar 05, 1993 abort tran when log full
device_fragments size usage free kbytes
----------------- ------ ------------ -------------
master 2.0 MB data and log 576
device segment
------------------------------ ------------------------------
master default
master logsegment
master system
name attribute_class attribute int_value char_value comments
------- --------------- ------------- --------- ----------- --------
pubs2 buffer manager cache binding 1 pubs2_cache NULL

Example 3 Not issued from within pubs2, displays information about the
pubs2 database:

CHAPTER 8 System Procedures

989

sp_helpdb pubs2

name db_size owner dbid created status

----- ------- ----- ---- ------------ ----------------------
pubs2 2.0 MB sa 4 Mar 05, 1993 abort tran when log full
device_fragments size usage free kbytes
----------------- ------ ------------ -------------
master 2.0 MB data and log 576
name attribute_class attribute int_value char_value comments
------- --------------- ------------- --------- ----------- --------
pubs2 buffer manager cache binding 1 pubs2_cache NULL

Example 4 Displays the row lock promotion attributes set for the pubtune
database:

sp_helpdb pubtune

name attribute_class
attribute int_value

char_value
comments

pubtune lock strategy

row lock promotion NULL
PCT = 95, LWM = 300, HWM = 300

Usage • sp_helpdb reports on the specified database when dbname is given. If
no value is supplied for dbname, sp_helpdb reports on all the
databases listed in master.dbo.sysdatabases.

• For log segment disk pieces in a dedicated log database, sp_helpdb
issues "not applicable" for the free space field in its per-disk-piece
repor. sp_helpdb also includes a column titled free pages, which is the
value for the number of free pages the log segment has.

• dbname can include wildcard characters to return all databases that
match the specified pattern. See Chapter 4, “Expressions, Identifiers,
and Wildcard Characters,” in Reference Manual Volume 1: Building
Blocks for details about using wildcard characters.

• Executing sp_helpdb dbname from dbname includes free space and
segment information in the report.

• sp_helpdb displays information about a database’s attributes, giving
the attribute’s class, name, integer value, character value, and
comments, if any attributes are defined. Example 3 shows cache
binding attributes for the pubs2 database.

sp_helpdb

990

• sp_helpdb reports if a database is offline.

• sp_helpdb reports row lock promotion thresholds, if any are defined
for the database.

• A database created with the for load option has a status of “don’t
recover” in the output from sp_helpdb.

• When Component Integration Services is enabled, sp_helpdb lists the
default storage location for the specified database or all databases. If
there is no default storage location, the display indicates “NULL”.

Permissions Any user can execute sp_helpdb.

See also Commands alter database, create database

System procedures sp_configure, sp_dboption, sp_rename

CHAPTER 8 System Procedures

991

sp_helpdevice
Description Reports information about a particular device or about all Adaptive Server

database devices and dump devices.

Syntax sp_helpdevice [devname]

Parameters devname
is the name of the device about which to report information. If you omit
this parameter, sp_helpdevice reports on all devices.

Examples Example 1 Displays information about all the devices on Adaptive Server:

sp_helpdevice

device_name physical_name description
----------- -------------- ---
diskdump null disk, dump device
master d_master special, default disk, dsync on,physical

disk, 10 MB
status cntrltype device_number low high
------ ---------- ------------- ---- -----
16 2 0 0 20000
3 0 0 0 5120

Example 2 Reports information about the dump device named diskdump:

sp_helpdevice diskdump

Usage • sp_helpdevice displays information on the specified device, when
devname is given, or on all devices in master.dbo.sysdevices, when no
argument is given.

• The sysdevices table contains dump devices and database devices.

Database devices can be designated as default devices, which means
that they can be used for database storage. This can occur when a user
issues create database or alter database and does not specify a
database device name or gives the keyword default. To make a
database device a default database device, execute the system
procedure sp_diskdefault.

• Add database devices to the system with disk init. Add dump devices
with sp_addumpdevice.

• The number in the “status” column corresponds to the status
description in the “description” column.

sp_helpdevice

992

The “cntrltype” column specifies the controller number of the device.
The “cntrltype” is 2 for disk or file dump devices and 3–8 for tape
dump devices. For database devices, the “cntrltype” is usually 0
(unless your installation has a special type of disk controller).

The “device_number” column is 0 for dump devices, 0 for the master
database device, and between 1 and 255 for other database devices.
sp_helpdevice may report erroneous negative numbers for device
numbers greater than 126.

The “low” and “high” columns represent virtual page numbers, each
of which is unique among all the devices in Adaptive Server.

Permissions Any user can execute sp_helpdevice.

See also Commands disk init, dump database, dump transaction, load database,
load transaction

System procedures sp_addumpdevice, sp_deviceattr, sp_diskdefault,
sp_dropdevice, sp_logdevice

CHAPTER 8 System Procedures

993

sp_helpextendedproc
Description Displays extended stored procedures (ESPs) in the current database, along

with their associated DLL files.

Syntax sp_helpextendedproc [esp_name]

Parameters esp_name
is the name of the extended stored procedure. It must be a procedure in
the current database.

Examples Example 1 Lists the xp_cmdshell ESP and the name of the DLL file in
which its function is stored:

use sybsystemprocs
go
sp_helpextendedproc xp_cmdshell

ESP Name DLL Name
----------- ----------
xp_cmdshell sybsyesp

Example 2 Lists all the ESPs in the current database, along with the
names of the DLL files in which their functions are stored:

sp_helpextendedproc

ESP Name DLL Name
----------- ----------
xp_freedl sybsyesp
xp_cmdshell sybsyesp

Usage • If the esp_name is omitted, sp_helpextendedproc lists all the extended
stored procedures in the database.

• The esp_name is case sensitive. It must match the esp_name used to
create the ESP.

Permissions Only a System Administrator can execute sp_helpextendedproc to see all
the ESPs in the database. All users can execute sp_helpextendedproc to see
ESPs owned by themselves or by the Database Owner.

See also Commands create procedure, drop procedure

Extended system procedure xp_cmdshell

System procedures sp_addextendedproc, sp_dropextendedproc

sp_helpexternlogin

994

sp_helpexternlogin
Description Component Integration Services only Reports information about

external login names.

Syntax sp_helpexternlogin [remote_server] [, login_name] [, role_name]

Parameters remote_server
is the name of the remote server that has been added to the local server
with sp_addserver.

login_name
is a login account on the local server.

role_name
is the Adaptive Server user’s assigned role.

Examples Example 1 Displays all remote servers, local login names, role names, and
external logins:

sp_helpexternlogin

Example 2 Displays local login names, role names, and external logins
for the server named SSB:

sp_helpexternlogin SSB

Example 3 Displays remote servers, local login names and external logins
for the user named “milo”:

sp_helpexternlogin NULL, milo

Example 4 Displays external logins for remote server SSB where the
local user name is “trixi”:

sp_helpexternlogin SSB, trixi

Example 5 Displays external logins for remote server SSB for local users
with sa_role:

sp_helpexternlogin SSB, NULL, sa_role

Usage • sp_helpexternlogin displays all remote servers, the user’s local login
name, role name, and the user’s external login name.

• Add remote servers with sp_addserver. Add local logins with
sp_addlogin.

Permissions Any user can execute sp_helpexternlogin.

See also System procedures sp_addexternlogin, sp_addlogin, sp_addserver,
sp_dropexternlogin, sp_helpserver

CHAPTER 8 System Procedures

995

sp_helpgroup
Description Reports information about a particular group or about all groups in the

current database.

Syntax sp_helpgroup [grpname]

Parameters grpname
is the name of a group in the database created with sp_addgroup.

Examples Example 1 Displays information about all groups in the current database:

sp_helpgroup

Group_name Group_id
--------------- --------
hackers 16384
public 0:

Example 2 Displays information about the group “hackers”:

sp_helpgroup hackers

Group_name Group_id Users_in_group Userid
----------- --------- -------------- ------
hackers 16384 ann 4
hackers 16384 judy 3

Usage • To get a report on the default group, “public,” enclose the name
“public” in single or double quotes (“public” is a reserved word).

• If there are no members in the specified group, sp_helpgroup displays
the header, but lists no users, as follows:

Group_name Group_id Users_in_group Userid
----------- --------- -------------- ------

Permissions Any user can execute sp_helpgroup.

See also Commands grant, revoke

System procedures sp_addgroup, sp_changegroup, sp_dropgroup,
sp_helprotect, sp_helpuser

sp_helpindex

996

sp_helpindex
Description Reports information about the indexes created on a table.

Syntax sp_helpindex objname

Parameters objname
is the name of a table in the current database.

Examples Example 1 Displays the types of indexes on the sysobjects table:

sp_helpindex sysobjects

index_name index_description
index_keys
index_max_rows_per_page index_fillfactor index_reservepagegap

 -------------------- --
----------------------- ---------------- --------------------

 sysobjects clustered, unique located on system
id

0 0 0
 ncsysobjects nonclustered, unique located on system

name,uid
0 0 0

Example 2 The index on publ_ix was created with pub_id in ascending
order and pubdate in descending order:

sp_helpindex titles

index_name index_description
index_keys
index_max_rows_per_page index_fillfactor index_reservepagegap

---------------- --
title_id_ix nonclustered, unique located on default

title_id
0 0 0

publ_ix nonclustered located on default
pub_id, pubdate DESC

0 0 8
title_ix clustered, allow duplicate rows located on default

title
0 90 0

Usage • sp_helpindex lists any indexes on a table, including indexes created by
defining unique or primary key constraints defined by a create table
or alter table statement.

CHAPTER 8 System Procedures

997

• sp_helpindex displays any attributes (for example, cache bindings)
assigned to the indexes on a table.

• sp_helpindex displays:

• The max_rows_per_page setting of the indexes.

• Information about clustered indexes on data-only locked tables

The index ID (indid) of a clustered index in data-only locked
tables is not equal to 1.

• The column order of the keys, to indicate whether they are in
ascending or descending order.

• Space manage property values.

• The key column name followed by the order. Only descending
order is displayed. For example, if there is an index on column a
ASC, b DESC, c ASC, “index_keys” shows “a, b DESC, c”.

Permissions Any user can execute sp_helpindex.

See also Commands create index, drop index, update statistics

System procedures sp_help, sp_helpkey

sp_helpjava

998

sp_helpjava
Description Displays information about Java classes and associated JARs that are installed

in the database.

Syntax sp_helpjava ["class" [, java_class_name [, “detail” | “depends”]] |
"jar" [, jar_name [, “depends”]]]

Parameters "class" | "jar"
specifies whether to display information about a class or a JAR. Both “class”
and “jar” are keywords, so the quotes are required.

java_class_name
the name of the class about which you want information. The class must be
a system class or a user-defined class that is installed in the database.

detail
specifies that you want to see detailed information about the class.

depends
lists all the database objects that depend on the specified class or classes in
the JAR, including SQLJ functions, SQLJ stored procedures, views,
Transact-SQL stored procedures, and tables.

jar_name
the name of the JAR for which you want to see information. The JAR must
be installed in the database using installjava.

Examples Example 1 Displays the names of all classes and associated JAR files installed
in the database:

sp_helpjava

Example 2 Displays the name of all classes:

sp_helpjava "class"

Example 3 Displays detailed information about the Address class:

sp_helpjava "class", Address, detail
Class
--
Address

(1 row affected)
Class Modifiers
--
 public synchronized

 Implemented Interfaces

CHAPTER 8 System Procedures

999

 --
 java.io.Serializable

 Extended Superclass
 --
 java.lang.Object

 Constructors
 --
 public Address()
 public Address(java.lang.String,java.lang.String)

 Methods
 --
 public final native java.lang.Class java.lang.Object.getClass()
 public native int java.lang.Object.hashCode()
 public boolean java.lang.Object.equals(java.lang.Object)
 public java.lang.String java.lang.Object.toString()
 public final native void java.lang.Object.notify()
 public final native void java.lang.Object.notifyAll()
 public final native void java.lang.Object.wait(long) throws
java.lang.InterruptedException
 public final void java.lang.Object.wait(long,int) throws
java.lang.InterruptedException
 public final void java.lang.Object.wait() throws
java.lang.InterruptedException
 public java.lang.String Address.display()
 public void Address.removeLeadingBlanks()

 Fields

 public java.lang.String Address.street
 public java.lang.String Address.zip

Usage • The depends parameter lists dependencies of a class or classes if the
class is listed in the external name clause of a create statement for a
SQLJ routine or is used as a datatype of a column in the database.

• See Java in Adaptive Server Enterprise for more information about
Java in the database.

Permissions Any user can execute sp_helpjava.

See also Commands remove java

Utilities extractjava, installjava

sp_helpjoins

1000

sp_helpjoins
Description Lists the columns in two tables or views that are likely join candidates.

Syntax sp_helpjoins lefttab, righttab

Parameters lefttab
is the first table or view.

righttab
is the second table or view. The order of the parameters does not matter.

Examples Example 1 Displays a list of columns that are likely join candidates in the
sales and salesdetail tables:

sp_helpjoins sales, salesdetail

a1 a2 b1 b2 c1 c2
d1 d2 e1 e2 f1 f2

g1 g2 h1 h2
-------- -------- -------- -------- -------- --------

-------- -------- -------- -------- -------- --------
-------- -------- -------- --------

stor_id stor_id ord_num ord_num NULL NULL
NULL NULL NULL NULL NULL NULL

NULL NULL NULL NULL

Example 2 Displays a list of columns that are likely join candidates in the
sysobjects and syscolumns system tables:

sp_helpjoins sysobjects, syscolumns

a1 a2 b1 b2 c1 c2 d1 d2 e1 e2
f1 f2 g1 g2 h1 h2

---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ----

id id NULL NULL NULL NULL NULL NULL NULL NULL
NULL NULL NULL NULL NULL NULL

Usage • The column pairs that sp_helpjoins displays come from either of two
sources. sp_helpjoins checks the syskeys table in the current database
to see if any foreign keys have been defined with sp_foreignkey on the
two tables, then checks to see if any common keys have been defined
with sp_commonkey on the two tables. If sp_helpjoins does not find
any foreign keys or common keys there, it checks for keys with the
same user-defined datatypes. If that fails, it checks for columns with
the same name and datatype.

• sp_helpjoins does not create any joins.

CHAPTER 8 System Procedures

1001

Permissions Any user can execute sp_helpjoins.

See also System procedures sp_commonkey, sp_foreignkey, sp_helpkey,
sp_primarykey

sp_helpkey

1002

sp_helpkey
Description Reports information about a primary, foreign, or common key of a

particular table or view, or about all keys in the current database.

Syntax sp_helpkey [tabname]

Parameters tabname
is the name of a table or view in the current database. If you do not
specify a name, the procedure reports on all keys defined in the current
database.

Examples Displays information about the keys defined in the current database. The
“object_keys” and “related_keys” columns refer to the names of the
columns that make up the key:

sp_helpkey

keytype object related_object object_keys related_keys
------- ------- -------------- --------------- --------------
primary authors -- none -- au_id,*,*,*,*,*,*,* *,*,*,*,*,*,*,*
foreign titleauthor authors au_id,*,*,*,*,*,*,* au_id,*,*,*,*,*,

,

Usage • sp_helpkey lists information about all primary, foreign, and common
key definitions that reference the table tabname or, if tabname is
omitted, about all the keys in the database. Define these keys with the
sp_primarykey, sp_foreignkey, and sp_commonkey system procedures.

• sp_helpkey does not provide information about the unique or primary
key integrity constraints defined by a create table statement. Use
sp_helpconstraint to determine what constraints are defined for a
table.

• Create keys to make explicit a logical relationship that is implicit in
your database design so that applications can use the information.

• If you specify an object name, sp_helpkey follows the Adaptive
Server rules for finding objects:

• If you do not specify an owner name, and you own an object with
the specified name, sp_helpkey reports on that object.

• If you do not specify an owner name, and you do not own an
object of that name, but the Database Owner does, sp_helpkey
reports on the Database Owner’s object.

CHAPTER 8 System Procedures

1003

• If neither you nor the Database Owner owns an object with the
specified name, sp_helpkey reports an error condition, even if an
object with that name exists in the database for a different owner.

• If both you and the Database Owner own objects with the
specified name, and you want to access the Database Owner’s
object, specify the name in the form dbo.objectname.

• Qualify objects that are owned by database users other than yourself
and the Database Owner with the owner’s name, as in
“mary.myproc”.

Permissions Any user can execute sp_helpkey.

See also Commands create trigger

System procedures sp_commonkey, sp_foreignkey, sp_primarykey

sp_helplanguage

1004

sp_helplanguage
Description Reports information about a particular alternate language or about all

languages.

Syntax sp_helplanguage [language]

Parameters language
is the name of the alternate language you want information about.

Examples Example 1 Displays information about the alternate language, “french”:

sp_helplanguage french

langid dateformat datefirst upgrade name
alias
months
shortmonths
days

------ ---------- --------- ----------- -----------------------

1 dmy 1 0 french
french
janvier,février,mars,avril,mai,juin,juillet,août,septembre,

octobre,novembre,décembre
jan,fév,mar,avr,mai,jui,juil,aoû,sep,oct,nov,déc
lundi,mardi,mercredi,jeudi,vendredi,samedi,dimanche

Example 2 Displays information about all installed alternate languages:

sp_helplanguage

Usage • sp_helplanguage reports on a specified language, when the language
is given, or on all languages in master.dbo.syslanguages, when no
language is supplied.

Permissions Any user can execute sp_helplanguage.

See also System procedures sp_addlanguage, sp_droplanguage,
sp_setlangalias

CHAPTER 8 System Procedures

1005

sp_helplog
Description Reports the name of the device that contains the first page of the

transaction log.

Syntax sp_helplog

Parameters None.

Examples sp_helplog

In database 'master', the log starts on device
'master'.

Usage • sp_helplog displays the name of the device that contains the first page
of the transaction log in the current database.

Permissions Any user can execute sp_helplog.

See also Commands alter database, create database

System procedures sp_helpdevice, sp_logdevice

sp_helpobjectdef

1006

sp_helpobjectdef
Description Component Integration Services only Reports owners, objects, and

type information for remote object definitions.

Syntax sp_helpobjectdef [object_name]

Parameters object_name
is the name of the object as it is defined in the sysattributes table. The
object_name can be in any of the following forms:

• dbname.owner.object

• dbname..object

• owner.object

• object

dbname and owner are optional. object is required. If owner is not
supplied, the owner defaults to the current user name. If dbname is
supplied, it must be the current database, and owner must be supplied
or marked with the placeholder dbname..object. Enclose a multipart
object_name in quotes.

Examples Example 1 Displays all remote object definitions in the current database:

sp_helpobjectdef

Example 2 Displays remote object definitions for the tb1 table owned by
the Database Owner:

sp_helpobjectdef "dbo.tb1"

Usage • If no object_name is supplied, sp_helpobjectdef displays all remote
object definitions.

• A server name is not permitted in the object_name parameter.

Permissions Any user can execute sp_helpobjectdef.

See also Commands create table, create existing table, drop table

System procedures sp_addobjectdef, sp_dropobjectdef, sp_helpserver

CHAPTER 8 System Procedures

1007

sp_help_qpgroup
Description Reports information on an abstract plan group.

Syntax sp_help_qpgroup [group [, mode]]

Parameters group
is the name of an abstract plan group.

mode
is the type of report to print, one of the following:

Examples Example 1 Reports summary information about all abstract plan groups in
the database:

sp_help_qpgroup

Group GID Plans
----------------------- ----------- -----------
ap_stdin 1 0
ap_stdout 2 0
dev_test 3 209

Example 2 Reports on the test_plans group:

sp_help_qpgroup test_plans

Query plans group ’test_plans’, GID 8

 Total Rows Total QueryPlans

Mode Information returned

full The number of rows and number of plans in the group, the number of plans that use two or more rows,
the number of rows and plan IDs for the longest plans, and number of hash keys and hash key collision
information. This is the default report mode.

stats All of the information from the “full” report, except hash key information.

hash The number of rows and number of abstract plans in the group, the number of hash keys, and hash-key
collision information.

list The number of rows and number of abstract plans in the group, and the following information for each
query/plan pair: hash key, plan ID, first few characters of the query, and the first few characters of the
plan.

queries The number of rows and number of abstract plans in the group, and the following information for each
query: hash key, plan ID, first few characters of the query.

plans The number of rows and number of abstract plans in the group, and the following information for each
plan: hash key, plan ID, first few characters of the plan.

counts The number of rows and number of abstract plans in the group, and the following information for each
plan: number of rows, number of characters, hash key, plan ID, first few characters of the query.

sp_help_qpgroup

1008

 ----------- ----------------
6 3

sysqueryplans rows consumption, number of query
plans per row count

 Rows Plans
 ----------- -----------

2 3

 Hashkeys

3
There is no hash key collision in this group.

Usage • When used with an abstract plan group name, and no mode parameter,
the default mode for sp_help_qpgroup is full.

• Hash-key collisions indicate that more than one plan for a particular
user has the same hash-key value. When there are hash key collisions,
the query text of each query with the matching hash key must be
compared to the user’s query text in order to identify the matching
query, so performance is slightly degraded.

Permissions Any user can execute sp_help_qpgroup.

See also System procedures sp_help_qplan

CHAPTER 8 System Procedures

1009

sp_help_qplan
Description Reports information about an abstract plan.

Syntax sp_help_qplan id [, mode]

Parameters id
is the ID of the abstract plan.

mode
is the type of report to print, one of the following:

Examples Example 1 Prints the brief abstract plan report:

sp_help_qplan 800005881
gid hashkey id
 ----------- ----------- -----------

5 2054169974 937054374

 query
--
 select type, avg(price) from titles group by type

 plan
--
 (plan

(store Worktab1
(i_scan type_price titles)

)
(t_scan (...

Example 2 Prints the full abstract plan report:

sp_help_qplan 784005824, full

Usage • If you do not supply a value for the mode parameter, the default is
brief.

Permissions Any user can execute sp_help_qplan to see the abstract plan of a query that
he or she owns. Only the System Administrator and the Database Owner
can display an abstract plan owned by another user.

See also System procedures sp_find_qplan, sp_help_qpgroup

mode Information returned

full The plan ID, group ID, and hash key, and the full query and plan text.

brief The same as full, but only prints about 80 characters of the query and
plan, rather than the full query and plan. This is the default mode.

list The hash key, ID, and first 20 characters of the query and plan.

sp_helpremotelogin

1010

sp_helpremotelogin
Description Reports information about a particular remote server’s logins or about all

remote server logins.

Syntax sp_helpremotelogin [remoteserver [, remotename]]

Parameters remoteserver
is the name of the server about which to report remote login
information.

remotename
is the name of a particular remote user on the remote server.

Examples Example 1 Displays information about all the remote users of the remote
server GATEWAY:

sp_helpremotelogin GATEWAY

Example 2 Displays information about all the remote users of all the
remote servers known to the local server:

sp_helpremotelogin

Usage • sp_helpremotelogin reports on the remote logins for the specified
server, when remoteserver is given, or on all servers, when no
parameter is supplied.

Permissions Any user can execute sp_helpremotelogin.

See also System procedures sp_addremotelogin, sp_dropremotelogin,
sp_helpserver

CHAPTER 8 System Procedures

1011

sp_help_resource_limit
Description Reports on resource limits.

Syntax sp_help_resource_limit [name [, appname [, limittime
[, limitday [, scope [, action]]]]]]

Parameters name
is the Adaptive Server login to which the limits apply. For information
about limits that govern a particular login, specify the login name. For
information about limits without regard to login, specify null.

Note If you are not a System Administrator, specify your own login, or a
login of NULL, to display information about the resource limits that apply
to you.

appname
is the name of the application to which the limit applies. For
information about limits that govern a particular application, specify the
application name that the client program passes to the Adaptive Server
in the login packet. For information about limits without regard to
application, specify null.

limittime
is the time during which the limit is enforced. For information about
limits in effect at a given time, specify the time, with a value between
“00:00” and “23:59”, using the following form:

"HH:MM"

For information about limits without regard to time, specify null.

limitday
is any day on which the limit is enforced. For information about
resource limits in effect on a given day of the week, specify the full
weekday name for the default server language, as stored in the
syslanguages system table of the master database. For information
about limits without regard to the days on which they are enforced,
specify null.

scope
is the scope of the limit. Specify one of the following:

Scope code For help on all limits that govern

1 Queries

2 Query batches (one or more SQL statements sent by the client to the server)

sp_help_resource_limit

1012

action
is the action to take when the limit is exceeded. Specify one of the
following:

Examples Example 1 Lists all resource limits stored in the sysresourcelimits system
table:

sp_help_resource_limit

Example 2 Lists all limits for the user “joe_user”:

sp_help_resource_limit joe_user

Example 3 Lists all limits for the application my_app:

sp_help_resource_limit NULL, my_app

Example 4 Lists all limits enforced at 9:00 a.m.:

sp_help_resource_limit NULL, NULL, "09:00"

Example 5 An alternative way of listing the limits enforced at 9:00 a.m.:

sp_help_resource_limit @limittype = "09:00"

Example 6 Lists all limits enforced on Mondays:

sp_help_resource_limit NULL, NULL, NULL, Monday

Example 7 Lists any limit in effect for “joe_user” on Mondays at 9:00
a.m.:

sp_help_resource_limit joe_user, NULL, "09:00", Monday

Usage • sp_help_resource_limit reports on all resource limits, limits for a given
login or application, limits in effect at a given time or day of the week,
or limits with a given scope or action.

4 Transactions

6 Both query batches and transactions

NULL The specified name, appname, limittime, limitday, and action, without regard to their scope

Scope code For help on all limits that govern

Action code For help on all limits that

1 Issue a warning

2 Abort the query batch

3 Abort the transaction

4 Kill the session

NULL Govern the specified name, appname, limittime, limitday, and scope, without regard to the action
they take

CHAPTER 8 System Procedures

1013

• See the System Administration Guide for more information on
resource limits.

Permissions Any user can execute sp_help_resource_limit to list his or her own resource
limits. Only a System Administrator can execute sp_help_resource_limit to
list limits that apply to other users.

See also System procedures sp_add_resource_limit, sp_drop_resource_limit,
sp_modify_resource_limit

sp_helprotect

1014

sp_helprotect
Description Reports on permissions for database objects, users, groups, or roles.

Syntax sp_helprotect [name [, username [, "grant"
[,"none"|"granted"|"enabled"|role_name]]]]

Parameters name
is either the name of the table, view, stored procedure, SQLJ stored
procedure, SQLJ function, or the name of a user, user-defined role, or
group in the current database. If you do not provide a name,
sp_helprotect reports on all permissions in the database.

username
is a user’s name in the current database.

grant
displays the privileges granted to name with grant option.

none
ignores roles granted to the user when determining permissions granted.

granted
includes information on all roles granted to the user when determining
permissions granted.

enabled
includes information on all roles activated by the user when
determining permissions granted.

role_name
displays permission information for the specified role only, regardless
of whether this role has been granted to the user.

Examples Example 1 This series of grant and revoke statements, executing
sp_helprotect titles results in this display:

grant select on titles to judy
grant update on titles to judy
revoke update on titles(price) from judy
grant select on publishers to judy
with grant option

grantor grantee type action object column grantable
------- ------ ----- ------ ------ ------ ---------
dbo judy Grant Select titles All FALSE
dbo judy Grant Update titles advance FALSE
dbo judy Grant Update titles notes FALSE
dbo judy Grant Update titles pub_id FALSE
dbo judy Grant Update titles pubdate FALSE

CHAPTER 8 System Procedures

1015

dbo judy Grant Update titles title FALSE
dbo judy Grant Update titles title_id FALSE
dbo judy Grant Update titles total_sales FALSE
dbo judy Grant Update titles type FALSE
dbo judy Grant Select publishers all TRUE

Example 2 Issuing the following grant statement results in sp_helprotect
displaying the following:

grant select, update on titles(price, advance)
to mary
with grant option

go
sp_helprotect titles

grantor grantee type action object column grantable
------- ------- ------ ------- ------ ------ ---------
dbo mary Grant Select titles advance TRUE
dbo mary Grant Select titles price TRUE
dbo mary Grant Update titles advance TRUE
dbo mary Grant Update titles price TRUE

Example 3 Displays all the permissions that “judy” has in the database:

sp_helprotect judy

Example 4 Displays any permissions that “csmith” has on the sysusers
table, as well as whether “csmith” has with grant option which allows
“csmith” to grant permissions to other users:

sp_helprotect sysusers, csmith, null, doctor, "grant"

grantor grantee type action object column grantable
---dbo
doctor Grant Delete sysusers All FALSE

dbo doctor Grant Insert sysusers All FALSE
dbo doctor Grant References sysusers All FALSE
dbo doctor Grant Select sysattributes

All FALSE

(1 row affected)
(return status = 0)

Example 5 Displays information about the permissions that the doctor
role has in the database:

sp_helprotect doctor_role

sp_helprotect

1016

grantor grantee type action object column grantable

dbo doctor Grant Delete sysusers All FALSE
dbo doctor Grant Insert sysusers All FALSE
dbo doctor Grant References sysusers All FALSE
dbo doctor Grant Select sysattributes

All FALSE

(1 row affected)
(return status = 0)

Example 6 Displays information on all roles granted to “csmith”:

sp_helprotect sysusers, csmith, null, doctor_role, "granted"

grantor grantee type action object column grantable

dbo csmith Grant Update sysusers All FALSE
dbo doctor Grant Delete sysusers All FALSE
dbo doctor Grant Insert sysusers All FALSE
dbo doctor Grant References sysusers All FALSE

(1 row affected)
(return status = 0)

Example 7 Displays information on all active roles granted to “rpillai”:

sp_helprotect sysattributes, rpillai, null, intern, "enabled"

grantor grantee type action object column grantable
--------------- ---
dbo public Grant Select sysattributes All FALSE

(1 row affected)
(return status = 0)

Example 8 Advises that SQLJ function access is public:

sp_helprotect function_sqlj

Implicit grant to public for SQLJ functions.

Usage • sp_helprotect reports permissions on a database object. If you supply
the username parameter, only that user’s permissions on the database
object are reported. If name is not an object, sp_helprotect checks to
see if it is a user, a group, or a role. If it is, sp_helprotect lists the
permissions for the user, group, or role.

CHAPTER 8 System Procedures

1017

• sp_helprotect looks for objects and users in the current database only.

• If you do not specify an optional value such as granted, enabled, none, or
role_name, Adaptive Server returns information on all roles activated by
the current specified user.

• If the specified user is not the current user, Adaptive Server returns
information on all roles granted to the specified user.

• Displayed information always includes permissions granted to the group
in which the specified user is a member.

• In granting permissions, a System Administrator is treated as the object
owner. If a System Administrator grants permission on another user’s
object, the owner‘s name appears as the grantor in sp_helprotect output.

Permissions Any user can execute sp_helprotect to view his or her own permissions. Only a
System Security Officer can execute sp_helprotect to view permissions granted
to other users.

See also Commands grant, revoke

System procedures sp_activeroles, sp_displayroles

sp_helpsegment

1018

sp_helpsegment
Description Reports information about a particular segment or about all segments in the

current database.

Syntax sp_helpsegment [segname]

Parameters segname
is the name of the segment about which you want information. If you omit
this parameter, information about all segments in the current database
appears.

Examples Example 1 Reports information about all segments in the current database:

sp_helpsegment

segment name status
------- ------------------------------ ------

0 system 0
1 default 1
2 logsegment 0

Example 2 Reports information about the segment named order_seg,
including which database tables and indexes use that segment and the total
number of pages, free pages and used pages on the segment:

sp_helpsegment order_seg

segment name status
------- ------------------------------ ------

3 order_seg 0

device size free_pages
---------------------- -------------- -----------
tpcd_data1 25.0MB 8176
tpcd_data2 25.0MB 8512
tpcd_data3 25.0MB 8392
tpcd_data4 25.0MB 8272
tpcd_data5 25.0MB 8448
tpcd_data6 25.0MB 8512

table_name index_name indid
---------------------- ---------------------- ------
orders orders 0

total_size total_pages free_pages used_pages
-------------- ----------- ----------- -----------
150.0MB 76800 50312 26488

CHAPTER 8 System Procedures

1019

Example 3 Reports information about the default segment. The keyword
default must be enclosed in quotes:

sp_helpsegment "default"

Example 4 Reports information about the segment on which the
transaction log is stored:

sp_helpsegment logsegment

segment name status
------- ------------------------------ ------

2 logsegment 0

device size free_pages
---------------------- ----------------- -----------
tpcd_log1 20.0MB 10200

table_name index_name indid
---------------------- ------------------------- ------
syslogs syslogs 0

total_size total_pages free_pages used_pages
----------------- ----------- ----------- -----------
20.0MB 10240 10200 40

Usage • sp_helpsegment displays information about the specified segment,
when segname is given, or about all segments in the current database,
when no argument is given.

• When you first create a database, Adaptive Server automatically
creates the system, default, and logsegment segments. Use
sp_addsegment to add segments to the current database.

• If you specify a log segment from a dedicated log database for the
segname parameter, sp_helpsegment reports the number of free pages
in the log segment.

• The system, default, and logsegment segments are numbered 0, 1, and
2, respectively.

• The “status” column indicates which segment is the default pool of
space. Use sp_placeobject or the on segment_name clause of the
create table or create index command to place objects on specific
segments.

• The “indid” column is 0 if the table does not have a clustered index
and is 1 if the table has a clustered index.

sp_helpsegment

1020

Permissions Any user can execute sp_helpsegment.

See also Commands create index, create table

System procedures sp_addsegment, sp_dropsegment,
sp_extendsegment, sp_helpdb, sp_helpdevice, sp_placeobject

CHAPTER 8 System Procedures

1021

sp_helpserver
Description Reports information about a particular remote server or about all remote

servers.

Syntax sp_helpserver [server]

Parameters server
is the name of the remote server about which you want information.

Examples Example 1 Displays information about the remote server GATEWAY:

sp_helpserver GATEWAY

Example 2 Displays information about the local Backup Server:

sp_helpserver SYB_BACKUP

name network_name status id
---------- -------------- ------------------------------------ ---
SYB_BACKUP SYB_BACKUP timeouts, no net password encryption 1

Example 3 Displays information about all the remote servers known to
the local server:

sp_helpserver

Usage • sp_helpserver reports information about all servers in
master.dbo.sysservers or about a particular remote server, when
server is specified.

• When Component Integration Services is installed, sp_helpserver lists
the server class for each server.

Permissions Any user can execute sp_helpserver.

See also System procedures sp_addserver, sp_dropserver, sp_helpremotelogin,
sp_serveroption

sp_helpsort

1022

sp_helpsort
Description Displays Adaptive Server’s default sort order and character set.

Syntax sp_helpsort

Parameters None.

Examples For Class 1 (single-byte) character sets, sp_helpsort displays the name of
the server’s default sort order, its character set, and a table of its primary
sort values. On a 7-bit terminal, it appears as follows:

sp_helpsort

Sort Order Description

 Character Set = 1, iso_1

ISO 8859-1 (Latin-1) - Western European 8-bit character set.
 Sort Order = 50, bin_iso_1

Binary sort order for the ISO 8859/1 character set (iso_1).
Characters, in Order

! “ # $ % & ‘ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
! “ # $ % & ‘ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

On an 8-bit terminal, it appears as follows:

Sort Order Description

 Character Set = 1, iso_1

ISO 8859-1 (Latin-1) - Western European 8-bit character set.
 Sort Order = 50, bin_iso_1

Binary sort order for the ISO 8859/1 character set (iso_1).
Characters, in Order

! “ # $ % & ‘ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
¡ ¢ £ ¤ ¥ | § ¨ © ª ¬ – ® ¯ ° 2 3 ´ µ ¶ · ¸ 1 º 1/4 1/2 3/4 ¿ À
Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï D Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Y P ß à
á â ã ä å æ ç è é ê ë ì í î ï ñ ò ó ô õ ö ÷ ø ù ú û ü y p ÿ

CHAPTER 8 System Procedures

1023

For a Class 2 (multibyte) character set, the characters are not listed, but a
description of the character set is included. For example:

Sort Order Description

Character Set = 140, euc_jis

Japanese. Extended Unix Code mapping for JIS-X0201
(hankaku katakana) and JIS-X0208 (double byte) roman,
kana, and kanji.

Class 2 character set
Sort Order = 50, bin_eucjis

Binary sort order for Japanese using the EUC JIS
character set as a basis.

Usage • Binary sort order is the default.

Permissions Any user can execute sp_helpsort.

sp_helptext

1024

sp_helptext
Description Displays the source text of a compiled object.

Syntax sp_helptext objname [,number]

Parameters objname
is the name of the compiled object for which the source text is to be
displayed. The compiled object must be in the current database.

number
is an integer identifying an individual procedure, when objname
represents a group of procedures. This parameter tells sp_helptext to
display the source text for a specified procedure in the group.

Note Views, defaults, and other non-procedural objects are never
grouped; use number only for groups of procedures.

Examples Example 1 Displays the source text of pub_idrule. Since this rule is in the
pubs2 database, execute this command from pubs2:

sp_helptext pub_idrule

Lines of Text

1

text

create rule pub_idrule
as @pub_id in ("1389", "0736", "0877",

"1622", "1756")
or @pub_id like "99[0-9][0-9]"

Example 2 Displays the source text of sp_helptext. Since system
procedures are stored in sybsystemprocs, execute this command from
sybsystemprocs:

sp_helptext sp_helptext

Example 3 Displays the source text of the myproc group behavior where
you specify no number argument. The number of the procedure displays
beside the text:

sp_helptext myproc

Lines of Text

CHAPTER 8 System Procedures

1025

2
number
text

1
create procedure myproc; as select 1
2
create procedure myproc;2 as select 2
(2 rows affected)

Example 4 Displays the source text of myproc, specifying a procedure in
the myproc group but displaying no grouping number.

sp_helptext myproc, 2

Lines of Text

1
text

create procedure myproc;2 as select 2

Usage • sp_helptext prints out the number of rows in syscomments (255
characters long each) that are occupied by the compiled object,
followed by the source text of the compiled object.

• sp_helptext looks for the source text in the syscomments table in the
current database.

• You can encrypt the source text with sp_hidetext.

• When sp_helptext operates on a group of procedures, it prints the
number column from syscomments in addition to the source text.

• A System Security Officer can prevent the source text of compiled
objects from being displayed to most users who execute sp_helptext.
To restrict select permission on the text column of the syscomments
table to the object owner or a System Administrator, use sp_configure
to set the select on syscomments.text column parameter to 0. This
restriction is required to run Adaptive Server in the evaluated
configuration. See the System Administration Guide for more
information about the evaluated configuration.

Permissions Any user can execute sp_helptext.

See also System procedures sp_checksource, sp_configure, sp_hidetext

sp_helpthreshold

1026

sp_helpthreshold
Description Reports the segment, free-space value, status, and stored procedure

associated with all thresholds in the current database or all thresholds for
a particular segment.

Syntax sp_helpthreshold [segname]

Parameters segname
is the name of a segment in the current database.

Examples Example 1 Shows all thresholds on the log segment:

sp_helpthreshold logsegment

Example 2 Shows all thresholds on all segments in the current database:

sp_helpthreshold

Example 3 Shows all thresholds on the default segment. Note the use of
quotes around the reserved word “default”:

sp_helpthreshold "default"

Usage • sp_helpthreshold displays threshold information for all segments in
the current database. If you provide the name of a segment,
sp_helpthreshold lists all thresholds in that segment.

• The status column is 1 for the last-chance threshold and 0 for all other
thresholds. Databases that do not store their transaction logs on a
separate segment have no last-chance threshold.

Permissions Any user can execute sp_helpthreshold.

See also System procedures sp_addthreshold, sp_dropthreshold,
sp_helpsegment, sp_modifythreshold, sp_thresholdaction

CHAPTER 8 System Procedures

1027

sp_helpuser
Description Reports information about a particular user, group, or alias, or about all

users, in the current database.

Syntax sp_helpuser [name_in_db]

Parameters name_in_db
is the user’s name in the current database.

Examples Example 1 Displays information about all users in the current database:

sp_helpuser

Users_name ID_in_db Group_name Login_name
--------- -------- ---------- ----------
ann 4 hackers ann
dbo 1 public sa
guest 2 public NULL
judy 3 hackers judy

Example 2 Displays information about the Database Owner (user name
“dbo”):

sp_helpuser dbo

Users_name ID_in_db Group_name Login_name
---------- -------- ---------- ----------
dbo 1 public sa
Users aliased to user.
Login_name

andy
christa
howard
linda

Usage • sp_helpuser reports information about all users of the current
database. If you specify a name_in_db, sp_helpuser reports
information on the specified user only.

• If the specified user is not listed in the current database’s sysusers
table, sp_helpuser checks to see if the user is aliased to another user
or is a group name.

Permissions Any user can execute sp_helpuser.

See also System procedures sp_adduser, sp_dropuser, sp_helpgroup

sp_hidetext

1028

sp_hidetext
Description Hides the source text for the specified compiled object.

Syntax sp_hidetext [objname [, tabname [, username]]]

Parameters objname
specifies the compiled object for which to hide the source text.

tabname
specifies the name of the table or view for which to hide the source text.

username
specifies the name of the user who owns the compiled object for which to
hide the source text.

Examples Example 1 Hides the source text of all compiled objects in the current
database:

sp_hidetext

Example 2 Hides the source text of the user-defined stored procedure,
sp_sort_table, that is owned by Mary:

sp_hidetext @objname = "sp_sort_table", @username = "Mary"

Example 3 Hides the source text of the stored procedure pr_phone_list:

sp_hidetext "pr_phone_list"

Example 4 Hides the source text of all check constraints, defaults, and triggers
defined on the table my_tab:

sp_hidetext @tabname = "my_tab"

Example 5 Hides the source text of the view my_vu and all check constraints,
defaults, and triggers defined on the table my_tab:

sp_hidetext "my_vu", "my_tab"

Example 6 Hides the source text of all compiled objects that are owned by
Tom:

sp_hidetext @username = "Tom"

Usage • sp_hidetext hides the source text for the specified compiled object.

 Warning! Before executing sp_hidetext, make sure you have a backup of
the source text. The results of executing sp_hidetext are not reversible.

• If you do not provide any parameters, sp_hidetext hides the source text for
all compiled objects in the current database.

CHAPTER 8 System Procedures

1029

• See the Transact-SQL User’s Guide for more information about hiding
source text.

Permissions Any user can use sp_hidetext to hide the source text of his or her own compiled
objects. Only a Database Owner or a System Administrator can hide the source
text of compiled objects that are owned by another user or use sp_hidetext with
no parameters.

See also System procedures sp_checksource

sp_import_qpgroup

1030

sp_import_qpgroup
Description Imports abstract plans from a user table into an abstract plan group.

Syntax sp_import_qpgroup tab, usr, group

Parameters tab
is the name of a table from which to copy the plans. You can specify a
database name, but not an owner name, in the form dbname..tablename. The
total length must be 30 characters or less.

usr
is the name of the user whose ID should be assigned to the abstract plans
when they are imported.

group
is the name of the abstract plan group that contains the plans to be imported.

Examples Copies plans from the table moveplans to the new_plans group, giving them the
user ID for the Database Owner:

sp_import_qpgroup moveplans, dbo, new_plans

Usage • sp_import_qpgroup copies plans from a user table to an abstract plan group
in sysqueryplans. With sp_export_qpgroup, it can be used to copy abstract
plan groups between servers and databases, or to copy plans belonging to
one user and assign them the ID of another user.

• sp_import_qpgroup creates the abstract plan group if it does not exist when
the procedure is executed.

• If an abstract plan group exists when sp_import_qpgroup is executed, it
cannot contain any plans for the specified user. sp_import_qpgroup does
not check the query text to determine whether queries already exist in the
group. If you need to import plans for a user into a group where some plans
for the user already exist:

• Use sp_import_qpgroup to import the plans into a new plan group.

• Use sp_copy_all_qplans to copy the plans from the newly-created
group to the destination group. sp_copy_all_qplans does check
queries to be sure that no duplicate plans are created.

• If you no longer need the group you created for the import, drop the
plans in the group with sp_drop_all_qplans, then drop the group with
sp_drop_qpgroup.

• To create an empty table in order to bulk copy abstract plans, use:

select * into load_table

CHAPTER 8 System Procedures

1031

from sysqueryplans
where 1 = 2

Permissions Only a System Administrator or the Database Owner can execute
sp_import_qpgroup.

See also Commands create plan

System procedures sp_copy_all_qplans, sp_copy_qplan,
sp_drop_all_qplans, sp_drop_qpgroup, sp_export_qpgroup,
sp_help_qpgroup

sp_indsuspect

1032

sp_indsuspect
Description Checks user tables for indexes marked as suspect during recovery

following a sort order change.

Syntax sp_indsuspect [tab_name]

Parameters tab_name
is the name of the user table to be checked.

Examples Checks the table newaccts for indexes marked as suspect:

sp_indsuspect newaccts

Usage • sp_indsuspect with no parameter creates a list of all tables in the
current database that have indexes that need to be rebuilt as a result of
a sort order change. With a tab_name parameter, sp_indsuspect
checks the specified table for indexes marked as suspect during
recovery following a sort order change.

• Use sp_indsuspect to list all suspect indexes. The table owner or a
System Administrator can use dbcc reindex to check the integrity of
the listed indexes and to rebuild them if necessary.

Permissions Any user can execute sp_indsuspect.

See also Commands dbcc

CHAPTER 8 System Procedures

1033

sp_listsuspect_db
Description Lists all databases that currently have offline pages because of corruption

detected on recovery.

Syntax sp_listsuspect_db

Parameters None.

Examples Lists the databases that have suspect pages:

sp_listsuspect_db

Usage • sp_listsuspect_db lists the database name, number of suspect pages,
and number of objects containing suspect pages.

• Use sp_listsuspect_page to identify the suspect pages.

Permissions Any user can execute sp_listsuspect_db.

See also System procedures sp_listsuspect_page, sp_setsuspect_granularity,
sp_setsuspect_threshold

sp_listsuspect_object

1034

sp_listsuspect_object
Description Lists all indexes in a database that are currently offline because of

corruption detected on recovery.

Syntax sp_listsuspect_object [dbname]

Parameters dbname
is the name of the database.

Examples Example 1 Lists the suspect indexes in the current database:

sp_listsuspect_object

Example 2 Lists the suspect indexes in the pubs2 database:

sp_listsuspect_object pubs2

Usage • If an index on a data-only-locked table has suspect pages, the entire
index is taken offline during recovery. Offline indexes are not
considered by the query optimizer.

• Use the system procedure sp_forceonline_object to bring an offline
index online for repair.

• Indexes on allpages-locked tables are not taken completely offline
during recovery; only individual pages of these indexes are taken
offline. These pages can be brought online with
sp_forceonline_object.

• sp_listsuspect_object lists the database name, object ID, object name,
index ID, and access status for every suspect index in the specified
database or, if dbname is omitted, in the current user database.

• A value of SA_ONLY in the access column means that the index has
been forced online for System Administrator use only. A value of
BLOCK_ALL means that the index is offline for everyone.

• See the System Administration Guide for more information on
recovery fault isolation.

Permissions Any user can execute sp_listsuspect_object.

See also System procedures sp_forceonline_object

CHAPTER 8 System Procedures

1035

sp_listsuspect_page
Description Lists all pages in a database that are currently offline because of corruption

detected on recovery.

Syntax sp_listsuspect_page [dbname]

Parameters dbname
is the name of the database.

Examples Example 1 Lists the suspect pages in the current database:

sp_listsuspect_page

Example 2 Lists the suspect pages in the pubs2 database:

sp_listsuspect_page pubs2

Usage • sp_listsuspect_page lists the database name, page ID, object, index
ID, and access status for every suspect page in the specified database
or, if dbname is omitted, in the current user database.

• A value of SA_ONLY in the “access” column indicates that the page
has been forced online for System Administrator use only. A value of
BLOCK_ALL indicates that the page is offline for everyone.

Permissions Any user can execute sp_listsuspect_page.

See also System procedures sp_listsuspect_db, sp_setsuspect_granularity,
sp_setsuspect_threshold

sp_lock

1036

sp_lock
Description Reports information about processes that currently hold locks.

Syntax sp_lock [spid1 [, spid2]]

Parameters spid1
is the Adaptive Server process ID number from the
master.dbo.sysprocesses table. Run sp_who to get the spid of the
locking process.

spid2
is another Adaptive Server process ID number to check for locks.

Examples Example 1 This example shows the lock status of serial processes with
spids 7, 18, and 23 and two families of processes. The family with fid 1 has
the coordinating processes with spid 1 and worker processes with spids 8,
9, and 10. The family with fid 11 has the coordinating processes with spid
11 and worker processes with spids 12, 13, and 14:

sp_lock

The class column will display the cursor name for locks associated with a
cursor for the current user and the cursor id for other users.
fid spid locktype table_id page dbname class context
--- ---- ------------- ---------- ----- ------- -------------- -------
 0 7 Sh_intent 480004741 0 master Non Cursor Lock NULL
 0 18 Ex_intent 16003088 0 pubtune Non Cursor Lock NULL
 0 18 Ex_page 16003088 587 pubtune Non Cursor Lock NULL
 0 18 Ex_page 16003088 590 pubtune Non Cursor Lock NULL
 0 18 Ex_page 16003088 1114 pubtune Non Cursor Lock NULL
 0 18 Ex_page 16003088 1140 pubtune Non Cursor Lock NULL
 0 18 Ex_page 16003088 1283 pubtune Non Cursor Lock NULL
 0 18 Ex_page 16003088 1362 pubtune Non Cursor Lock NULL
 0 18 Ex_page 16003088 1398 pubtune Non Cursor Lock NULL
 0 18 Ex_page-blk 16003088 634 pubtune Non Cursor Lock NULL
 0 18 Update_page 16003088 1114 pubtune Non Cursor Lock NULL
 0 18 Update_page-blk 16003088 634 pubtune Non Cursor Lock NULL
 0 23 Sh_intent 16003088 0 pubtune Non Cursor Lock NULL
 0 23 Sh_intent 176003658 0 pubtune Non Cursor Lock NULL
 0 23 Ex_intent 208003772 0 pubtune Non Cursor Lock NULL
 1 1 Sh_intent 176003658 0 tpcd Non Cursor Lock Sync-pt
duration request
 1 1 Sh_intent-blk 208003772 0 tpcd Non Cursor Lock Sync-pt
duration request
 1 8 Sh_page 176003658 41571 tpcd Non Cursor Lock NULL
 1 9 Sh_page 176003658 41571 tpcd Non Cursor Lock NULL
 1 10 Sh_page 176003658 41571 tpcd Non Cursor Lock NULL

CHAPTER 8 System Procedures

1037

11 11 Sh_intent 176003658 0 tpcd Non Cursor Lock Sync-pt
duration request
11 12 Sh_page 176003658 41571 tpcd Non Cursor Lock NULL
11 13 Sh_page 176003658 41571 tpcd Non Cursor Lock NULL
11 14 Sh_page 176003658 41571 tpcd Non Cursor Lock NULL

Example 2 Displays information about the locks currently held by spid 7.

sp_lock 7

The class column will display the cursor name for locks associated with a
cursor for the current user and the cursor id for other users.
fid spid locktype table_id page dbname class context
--- ---- --------- --------- ---- ------ ---------------- ----------
 0 7 Sh_intent 480004741 0 master Non Cursor Lock NULL

Usage • sp_lock with no parameters reports information on all processes that
currently hold locks.

• The only user control over locking is through the use of the holdlock
keyword in the select statement.

• Use the object_name system function to derive a table’s name from its
ID number.

• sp_lock output is ordered by fid and then spid.

• The loid column identifies unique lock owner ID of the blocking
transaction. Even loid values indicate that a local transaction owns the
lock. Odd values indicate that an external transaction owns the lock.

• The locktype column indicates whether the lock is a shared lock (“Sh”
prefix), an exclusive lock (“Ex” prefix) or an update lock, and
whether the lock is held on a table (“table” or “intent”) or on a page
(“page”).

A “blk” suffix in the “locktype” column indicates that this process is
blocking another process that needs to acquire a lock. As soon as this
process completes, the other process(es) moves forward. A “demand”
suffix in the “locktype” column indicates that the process is
attempting to acquire an exclusive lock. See the Performance and
Tuning Guide for more information about lock types.

• The class column indicates whether a lock is associated with a cursor.
It displays one of the following:

• “Non Cursor Lock” indicates that the lock is not associated with
a cursor.

sp_lock

1038

• “Cursor Id number” indicates that the lock is associated with the
cursor ID number for that Adaptive Server process ID.

• A cursor name indicates that the lock is associated with the cursor
cursor_name that is owned by the current user executing sp_lock.

• The fid column identifies the family (including the coordinating
process and its worker processes) to which a lock belongs. Values for
fid are:

• A zero value indicates that the task represented by the spid is
executed serially. It is not participating in parallel execution.

• A nonzero value indicates that the task (spid) holding the lock is
a member of a family of processes (identified by fid) executing a
statement in parallel. If the value is equal to the spid, it indicates
that the task is the coordinating process in a family executing a
query in parallel.

• The context column identifies the context of the lock. Worker
processes in the same family have the same context value. Legal
values for “context” are as follows:

• “NULL” means that the task holding this lock is either a query
executing serially, or is a query executing in parallel in
transaction isolation level 1.

• “Sync-pt duration request” means that the task holding the lock
will hold the lock until the query is complete.

A lock’s context may be “Sync-pt duration request” if the lock is
a table lock held as part of a parallel query, if the lock is held by
a worker process at transaction isolation level 3, or if the lock is
held by a worker process in a parallel query and must be held for
the duration of the transaction.

• “Ind pg” indicates locks on index pages (allpages-locked tables
only)

• “Inf key” indicates an infinity key lock (for certain range queries
at transaction isolation level 3 on data-only-locked tables)

• “Range” indicates a range lock (for range queries at transaction
isolation level 3 on data-only-locked tables)

These new values may appear in combination with “Fam dur” (which
replaces “Sync pt duration”) and with each other, as applicable.

• The row column displays the row number for row-level locks.

CHAPTER 8 System Procedures

1039

• sp_lock output also displays the following lock types:

• “Sh_row” indicates shared row locks

• “Update_row” indicates update row locks

• “Ex_row” indicates exclusive row locks

Permissions Any user can execute sp_lock.

See also Commands kill, select

System procedures sp_familylock, sp_who

sp_locklogin

1040

sp_locklogin
Description Locks an Adaptive Server account so that the user cannot log in or

displays a list of all locked accounts.

Syntax sp_locklogin [loginame, "{lock | unlock}"]

Parameters loginame
is the name of the account to be locked or unlocked.

lock | unlock
specifies whether to lock or unlock the account.

Examples Example 1 Locks the login account for the user “charles”:

sp_locklogin charles, "lock"

Example 2 Displays a list of all locked accounts:

sp_locklogin

Usage • Locking an Adaptive Server login account prevents that user from
logging in. Use sp_locklogin instead of sp_droplogin for the following
reasons:

• You cannot drop a login who is a user in any database, and you
cannot drop a user from a database if the user owns any objects
in that database or has granted any permissions on objects to
other users.

• Adaptive Server may reuse the dropped login account’s server
user ID (suid) when the next login account is created. This occurs
only when the dropped login holds the highest suid in syslogins;
however, it could compromise accountability if execution of
sp_droplogin is not being audited. In addition, it is possible that
the user with the reused suid will actually be able to access
database objects that were authorized for the old suid.

• You cannot drop the last remaining System Security Officer’s or
System Administrator’s login account.

• sp_locklogin with no parameters returns a list of all the locked
accounts.

• You can lock an account that is currently logged in. The user receives
a warning that his or her account has been locked, but is not locked
out of the account until he or she logs out.

• A locked account can be specified as a Database Owner and can own
objects in any database.

CHAPTER 8 System Procedures

1041

• Locking an account that is already locked or unlocking an unlocked
account has no effect.

• When locking a System Security Officer’s login account, sp_locklogin
verifies that at least one other unlocked System Security Officer’s
account exists. Similarly, sp_locklogin verifies that there is always an
unlocked System Administrator’s account. An attempt to lock the last
remaining unlocked System Administrator or System Security Officer
account causes sp_locklogin to return an error message and fail.

Permissions Only a System Administrator or a System Security Officers can execute
sp_locklogin.

See also System procedures sp_addlogin, sp_droplogin, sp_modifylogin,
sp_password

sp_logdevice

1042

sp_logdevice
Description Moves the transaction log of a database with log and data on the same

device to a separate database device.

Syntax sp_logdevice dbname, devname

Parameters dbname
is the name of the database whose syslogs table, which contains the
transaction log, to put on a specific logical device.

devname
is the logical name of the device on which to put the syslogs table. This
device must be a database device associated with the database (named
in create database or alter database). Run sp_helpdb for a report on the
database’s devices.

Examples Example 1 Creates the database products and puts the table
products.syslogs on the database device logs:

create database products on default = "10M", logs = "2M"
go
sp_logdevice products, logs
go

Example 2 For the database test with log and data on the same device,
places the log for test on the log device logdev:

alter database test log on logdev
go
sp_logdevice test, logdev
go

Usage • The sp_logdevice procedure affects only future allocations of space
for syslogs. This creates a window of vulnerability during which the
first pages of your log remain on the same device as your data.
Therefore, the preferred method of placing a transaction log on a
separate device is the use of the log on option to create database,
which immediately places the entire transaction log on a separate
device.

• Place transaction logs on separate database devices, for both recovery
and performance reasons.

A very small, noncritical database could keep its log together with the
rest of the database. Such databases use dump database to back up the
database and log and dump transaction with truncate_only to truncate
the log.

CHAPTER 8 System Procedures

1043

• dbcc checkalloc and sp_helplog show some pages for syslogs still
allocated on the database device until after the next dump transaction.
After that, the transaction log is completely transferred to the device
named when you executed sp_logdevice.

• The size of the device required for the transaction log varies,
depending on the amount of update activity and the frequency of
transaction log dumps. As a rule, allocate to the log device 10 percent
to 25 percent of the space you allocate to the database itself.

• Use sp_logdevice only for a database with log and data on the same
device. Do not use sp_logdevice for a database with log and data on
separate devices.

• To increase the amount of storage allocated to the transaction log use
alter database. If you used the log on option to create database to place
a transaction log on a separate device, use the following to increase
the size of the log segment. If you did not use log on, execute
sp_logdevice:

sp_extendsegment segname, devname

The device or segment on which you put syslogs is used only for the
syslogs table. To increase the amount of storage space allocated for
the rest of the database, specify any device other than the log device
when you issue the alter database command.

• Use the disk init command to format a new database device for
databases or transaction logs.

• See the System Administration Guide for more information.

Permissions Only the Database Owner or a System Administrator can execute
sp_logdevice.

See also Commands alter database, create database, dbcc, disk init, dump
database, dump transaction, select

System procedures sp_extendsegment, sp_helpdevice, sp_helplog

sp_loginconfig

1044

sp_loginconfig
Description Windows NT only Displays the value of one or all integrated security

parameters.

Syntax sp_loginconfig ["parameter_name"]

Parameters parameter_name
is the name of the integrated security parameter you want to examine.
Values are:

login mode
default account
default domain
set host
key _
key $
key @
key #

Examples Example 1 Displays the values of all integrated security parameters:

sp_loginconfig

name config_item
---------------------- ----------------------
login mode standard
default account NULL
default domain NULL
set host false
key _ domain separator
key $ space
key @ space
key # -

Example 2 Displays the value of the login mode security parameter:

sp_loginconfig "login mode"

name config_item
---------------------- ----------------------
login mode standard

Usage • The values of integrated security parameters are stored in the
Windows NT Registry. See the chapter on login security in
Configuration Guide for Windows NT for instructions on changing the
parameters.

CHAPTER 8 System Procedures

1045

• sp_loginconfig displays the config_item values that were in effect
when you started Adaptive Server. If you changed the Registry values
after starting Adaptive Server, those values are not reflected in the
sp_loginconfig output.

Permissions Only a System Administrator can execute sp_loginconfig.

See also System procedures sp_revokelogin

sp_logininfo

1046

sp_logininfo
Description Windows NT only Displays all roles granted to Windows NT users and

groups with sp_grantlogin.

Syntax sp_logininfo ["login_name" | "group_name"]

Parameters login_name
is the network login name of the Windows NT user.

group_name
is the Windows NT group name.

Examples Example 1 Displays the permissions granted to the Windows NT user
“regularjoe”:

sp_logininfo regularjoe

account name mapped login name type privilege
--------------- ------------------ --------------- --------------
HAZE\regularjoe HAZE_regularjoe user 'oper_role'

Example 2 Displays all permissions that were granted to Windows NT
users and groups with sp_grantlogin:

sp_logininfo

account name mapped login name
type

privilege
---------------------- -------------------

--

BUILTIN\Administrators BUILTIN\Administrators
group

’sa_role sso_role oper_role sybase_ts_role navigator_role
replication_role’

HAZE\regularjoe HAZE_regularjoe
user

'oper_role'
PCSRE\randy PCSRE_alexander

user
'default'

Usage • sp_logininfo displays all roles granted to Windows NT users and
groups with sp_grantlogin.

CHAPTER 8 System Procedures

1047

• You can omit the domain name and domain separator (\) when
specifying the Windows NT user name or group name.

Permissions Only a System Administrator can execute sp_logininfo.

See also Commands grant, setuser

System procedures sp_displaylogin, sp_grantlogin, sp_revokelogin,
sp_role, sp_who

sp_logiosize

1048

sp_logiosize
Description Changes the log I/O size used by Adaptive Server to a different memory

pool when doing I/O for the transaction log of the current database.

Syntax sp_logiosize ["default" | "size" | "all"]

Parameters default
sets the log I/O size for the current database to Adaptive Server’s
default value (two logical pages), if a memory pool that is two logical
pages is available in the cache. Otherwise, Adaptive Server sets the log
I/O size to one logical page. Since default is a keyword, the quotes are
required when specifying this parameter.

size
is the size to set the log I/O for the current database. Values are
multiples of the logical page size, up to four times the amount. You must
enclose the value in quotes.

all
displays the log I/O size configured for all databases grouped by the
cache name.

Examples Example 1 Displays the log I/O size configured for the current database:

sp_logiosize

The transaction log for database 'master' will use I/O size of 2 Kbytes.

Example 2 Changes the log I/O size of the current database to use the 8K
memory pool. If the database’s transaction log is bound to a cache that
does not have an 8K memory pool, Adaptive Server returns an error
message indicating that such a pool does not exist, and the current log I/O
size does not change:

sp_logiosize "8"

Example 3 Changes the log I/O size of the current database to Adaptive
Server’s default value (one logical page size). If a memory pool the size of
the logical page size does not exist in the cache used by the transaction log,
Adaptive Server uses the 2K memory pool:

sp_logiosize "default"

Example 4 Displays the log I/O size configured for all databases:

sp_logiosize "all"

Cache name: default data cache
Data base Log I/O Size
------------------------------ ------------

CHAPTER 8 System Procedures

1049

master 2 Kb
tempdb 2 Kb
model 2 Kb
sybsystemprocs 2 Kb
pubs3 2 Kb
pubtune 2 Kb
dbccdb 2 Kb
sybsyntax 2 Kb

Usage • sp_logiosize displays or changes the log I/O size for the current
database. Any user can execute sp_logiosize to display the configured
log I/O size. Only a System Administrator can change the log I/O size.

• If you specify sp_logiosize with no parameters, Adaptive Server
displays the log I/O size of the current database.

• When you change the log I/O size, it takes effect immediately.
Adaptive Server records the new I/O size for the database in the
sysattributes table.

• Any value you specify for sp_logiosize must correspond to an existing
memory pool configured for the cache used by the database’s
transaction log. Specify these pools using the sp_poolconfig system
procedure.

Adaptive Server defines the default log I/O size of a database as two
logical pages, if a memory pool the size of two logical pages is
available in the cache. Otherwise, Adaptive Server sets the log I/O
size to one logical page (a memory pool of one logical page is always
present in any cache). For most work loads, a log I/O size of two
logical pages performs much better than one of one logical page, so
each cache used by a transaction log should have a memory pool the
size of a logical page. See the System Administration Guide and the
Performance and Tuning Guide for more information about
configuring caches and memory pools.

• If the transaction logs for one or more databases are bound to a cache
of type logonly, any memory pools in that cache that have I/O sizes
larger than the log I/O size defined for those databases will not be
used.

sp_logiosize

1050

For example, on a 2K server, assume that only two databases have their
transaction logs bound to a “log only” cache containing 2K, 4K, and 8K
memory pools. By default, sp_logiosize sets the log I/O size for these
parameters at 4K, and the 8K pool is not used. Therefore, to avoid wasting
cache space, be cautious when configuring the log I/O size.

• During recovery, only the logical page size memory pool of the default
cache is active, regardless of the log I/O size configured for a database.
Transactions logs are read into this pool of the default cache, and all
transactions that must be rolled back, or rolled forward, read data pages
into the default data cache.

Permissions Only a System Administrator can execute sp_logiosize to change the log I/O
size for the current database. Any user can execute sp_logiosize to display the
log I/O size values.

See also System procedures sp_cacheconfig, sp_poolconfig

CHAPTER 8 System Procedures

1051

sp_modifylogin
Description Modifies the default database, default language, default role activation, or full

name for an Adaptive Server login account. Changes the password expiration
interval, the minimum password length, and the maximum number of failed
logins allowed for a specified login.

Syntax sp_modifylogin {loginame | “all overrides”}, option, value

Parameters loginame
is the login account to be modified.

"all overrides"
removes the system overrides that were set using the "passwd expiration",
"min passwd length", or "max failed_logins" parameters. To remove all the
login-specific values, specify:

sp_modifylogin "all overrides" "option" -1

option
specifies the name of the option to be changed. The options are:

value
is the value of the option you specified for the option parameter. The value
parameter is a character datatype; therefore, quotes are required for positive
and negative numeric values.

Examples Example 1 Changes the default database for “sarah” to pubs2:

sp_modifylogin sarah, defdb, "pubs2"

Example 2 Sets the default language for “claire” to French:

sp_modifylogin claire, deflanguage, "french"

Option Definition

defdb The “home” database to which the user is connected when he or she logs in.

deflanguage The official name of the user’s default language.

fullname The user’s full name.

"add default role" The role or roles to be activated by default at login.

"drop default role" The role or roles to be dropped from the list of roles activated by default at login. This option
affects only user-defined roles, not system roles.

"passwd expiration" The password expiration interval in days. It can be anyvalue between 0 and 32767, inclusive.

"min passwd length" The minimum password length required for the specified login. It can be any value between
0 and 30, inclusive. 0 specifies that no password is required. The default is 6.

"max failed_logins" The number of allowable failed login attempts for the specified login. It can be any value
between 0 and 32767, inclusive.

sp_modifylogin

1052

Example 3 Changes the full name of user “clemens” to “Samuel
Clemens”:

sp_modifylogin clemens, fullname, "Samuel Clemens"

Example 4 Adds the specialist role to the list of roles activated by default
when user csmith logs in:

sp_modifylogin csmith, "add default role", specialist_role

Example 5 Drops the intern role from the list of roles activated by default
when user “hpillai” logs in:

sp_modifylogin hpillai, "drop default role", intern_role

Example 6 Changes the maximum number of failed login attempts for the
login “joe” to 40:

sp_modifylogin "joe", "max failed_logins", "40"

Example 7 Changes the overrides for maximum failed login attempts of
all logins to 3:

sp_modifylogin "all overrides", "max failed_logins", "3"

Example 8 Removes the overrides for maximum failed logins option for
all logins:

sp_modifylogin "all overrides", "max failed_logins", "-1"

Usage • Set a default database, language, or full name either with
sp_modifylogin or with sp_addlogin when first adding the user’s login
to Adaptive Server.

• If you do not specify a default database, the user’s default is
master.

• If you do not specify a language, the user’s default language is set
to the server’s default language.

• If you do not specify a full name, that column in syslogins
remains blank.

• If there are any login triggers associated with the login in question,
they are listed after the Auto Login Script line. For more
information, see “Row-level access control” on page 406 of the
System Administration Guide.

• For more information about password expiration interval, minimum
password length, and maximum number of failed logins, see
“User-Defined Login Security” in the System Administration Guide.

CHAPTER 8 System Procedures

1053

Changing a user’s default database

• After sp_modifylogin is executed to change the user’s default database,
the user is connected to the new defdb the next time he or she logs in.
However, the user cannot access the database until the Database
Owner gives the user access through sp_adduser or sp_addalias, or
unless there is a “guest” user in the database’s sysusers table. If the
user does not have access to the database by any of these means, she
or he is connected to master and an error message appears.

• If a user’s default database is dropped, or if the user is dropped from
the database, the user is connected to master on his or her next login,
and an error message appears.

• If a user’s default language is dropped from the server, the
server-wide default language is used as the initial language setting,
and a message appears.

Changing a user’s role activation

• Use sp_modifylogin to set a role to be activated by default at login or
to drop a role from those activated by default at login.

Permissions Only a System Administrator can execute sp_modifylogin to change the
default database, default language, or full name of another user. Only a
System Security Officer can execute sp_modifylogin to activate another
user’s roles by default at login. Any user can execute sp_modifylogin to
change his or her own login account.

See also System procedures sp_activeroles, sp_addalias, sp_addlogin,
sp_adduser, sp_displaylogin, sp_displayroles, sp_helprotect

sp_modify_resource_limit

1054

sp_modify_resource_limit
Description Changes a resource limit by specifying a new limit value, or the action to

take when the limit is exceeded, or both.

Syntax sp_modify_resource_limit {name, appname }
rangename , limittype , limitvalue , enforced , action , scope

Parameters name
is the Adaptive Server login to which the limit applies. You must
specify either a name or an appname or both. To modify a limit that
applies to all users of a particular application, specify a name of null.

appname
is the name of the application to which the limit applies. You must
specify either a name or an appname or both. If the limit applies to all
applications used by name, specify an appname of null. If the limit
governs a particular application, specify the application name that the
client program passes to the Adaptive Server in the login packet.

rangename
is the time range during which the limit is enforced. You cannot modify
this value, but you must specify a non-null value to uniquely identify
the resource limit.

limittype
is the type of resource to which the limit applies. You cannot modify
this value, but you must specify a non-null value to uniquely identify
the resource limit. The value must be one of the following:

limit_value
is the maximum amount of the server resource that the login or
application can use before Adaptive Server enforces the limit. This
must be a positive integer less than or equal to 231 or null to retain the
existing value. The following table indicates what value to specify for
each limit type:

Limit type Description

row_count Limits the number of rows a query can return

elapsed_time Limits the number of seconds in wall-clock time that a query batch or transaction can run

io_cost Limits either the actual cost, or the optimizer’s cost estimate, for processing a query

Limit type Limit value

row_count The maximum number of rows a query can return before the limit is enforced

elapsed_time The maximum number of seconds in wall-clock time that a query batch or transaction
can run before the limit is enforced

CHAPTER 8 System Procedures

1055

enforced
determines whether the limit is enforced prior to or during query
execution. You cannot modify this value. Use null as a placeholder.

action
is the action to take when the limit is exceeded. The following codes
apply to all limit types:

scope
is the scope of the limit. You cannot modify this value. You can use null
as a placeholder.

Examples Example 1 Modifies a resource limit that applies to all applications used
by “robin” during the weekends time range. The limit issues a warning
when a query is expected to return more than 3000 rows:

sp_modify_resource_limit robin, NULL, weekends, row_count, 3000, NULL,
1, NULL

Example 2 Modifies a resource limit that applies to the acctg application
on all days of the week and at all times of the day. The limit aborts the
query batch when estimated query processing time exceeds 45 seconds:

sp_modify_resource_limit NULL, acctg, "at all times", elapsed_time,
45, 2, 2, 6

Usage • You cannot change the login or application to which a limit applies or
specify a new time range, limit type, enforcement time, or scope.

• The modification of a resource limit causes the limits for each session
for that login and/or application to be rebound at the beginning of the
next query batch for that session.

• For more information, see the System Administration Guide.

Permissions Only a System Administrator can execute sp_modify_resource_limit.

io_cost A unitless measure derived from optimizer’s costing formula

Limit type Limit value

Action code Description

1 Issues a warning

2 Aborts the query batch

3 Aborts the transaction

4 Kills the session

null Retains the existing value

sp_modify_resource_limit

1056

See also System procedures sp_add_resource_limit, sp_drop_resource_limit,
sp_help_resource_limit

CHAPTER 8 System Procedures

1057

sp_modify_time_range
Description Changes the start day, start time, end day, and/or end time associated with

a named time range.

Syntax sp_modify_time_range name, startday, endday, starttime, endtime

Parameters name
is the name of the time range. This must be the name of a time range
stored in the systimeranges system table of the master database.

startday
is the day of the week on which the time range begins. This must be the
full weekday name for the default server language, as stored in the
syslanguages system table of the master database, or null to keep the
existing startday.

endday
is the day of the week on which the time range ends. This must be the
full weekday name for the default server language, as stored in the
syslanguages system table of the master database, or null to keep the
existing end day. The endday can fall either earlier or later in the week
than the startday, or it can be the same day as the startday.

starttime
 is time of day at which the time range begins. Specify the starttime in
terms of a twenty-four hour clock, with a value between 00:00 and
23:59. Use the following form, or null to keep the existing starttime:

"HH:MM"

endtime
is the time of day at which the time range ends. Specify the endtime in
terms of a twenty-four hour clock, with a value between 00:00
(midnight) and 23:59. Use the following form, or null to keep the
existing endtime:

"HH:MM"

The endtime must occur later in the day than the starttime, unless
endtime is 00:00.

Note For time ranges that span the entire day, specify a start time of
“00:00” and an end time of “23:59”.

Examples Example 1 Changes the end day of the business_hours time range from
Friday to Saturday. Retains the existing start day, start time, and end time:

sp_modify_time_range

1058

sp_modify_time_range business_hours, NULL, Saturday, NULL, NULL

Example 2 Specifies a new end day and end time for the before_hours
time range:

sp_modify_time_range before_hours, Monday, Saturday, NULL, "08:00"

Usage • You cannot modify the “at all times” time range.

• It is possible to modify a time range so that it overlaps with one or
more other time ranges.

• The modification of time ranges through the system stored procedures
does not affect the active time ranges for sessions currently in
progress.

• Changes to a resource limit that has a transaction as its scope does not
affect any transactions currently in progress.

• For more information, see the System Administration Guide.

Permissions Only a System Administrator can execute sp_modify_time_range.

See also System procedures sp_add_resource_limit, sp_add_time_range,
sp_drop_time_range

CHAPTER 8 System Procedures

1059

sp_modifystats
Description Allows the System Administrator to modify the density values of a

column—or columns—in sysstatistics

Syntax sp_modifystats [database].[owner].table_name,
{“column_group” | “all”},
MODIFY_DENSITY,
{range | total},
{absolute | factor},
“value”

Or,

sp_modifystats [database].[owner].table_name,
column_name,
REMOVE_SKEW_FROM_DENSITY

Parameters table_name
is the name of the table to change. Specify the database name if the table
is in another database, and specify the owner’s name if more than one
table of that name exists in the database. The default value for owner is
the current user, and the default value for database is the current
database.

column_group
an ordered list of column names. To change a statistic for multiple
columns (such as a density value), list the columns in the order used to
create the statistic. Separate the column names with commas. For
example, if your table has a density statistic on columns a1, a2, a3, a4:

• “a1” modifies column a1.

• “a1,a2,a3” modifies the column group a1,a2,a3,

• You can also use a wildcard character , %, with the column_group
parameter to represent a range of characters. For example,
“a1,%,a3” modifies the groups a1,a2,a3 and a1, a4, a3, and so on;
“a1,%” modifies the groups a1,a2 and a1,a2,a3, and so on, but not
a1; “a1%” modifies the groups a1,a2 and a1,a2,a3, and so on, as
well as a1.

all
modifies all column group for this table. Because “all” is a keyword, it
requires quotes.

sp_modifystats

1060

MODIFY_DENSITY
allows you to modify either the range or total density of a column or
column group to the granularity specified in the value parameter. Range
cell density represents the average number of duplicates of all values
that are represented by range cells in a histogram. See the Performance
and Tuning Guide for more information.

range
modifies the range cell density.

total
modifies the total cell density.

absolute
ignore the current value and use the number specified by the value
parameter.

factor
multiply the current statistical value by the value parameter.

value
is either the specified density value or a multiple for the current density.
Must be between zero and one, inclusive, if absolute is specified.

column_name
is the name of a column in that table.

REMOVE_SKEW_FROM_DENSITY
allows the System Administrator to change the total density of a column
to be equal to the range density, which is useful when data skew is
present. Total density represents the average number of duplicates for
all values, those in both frequency and range cells. Total density is used
to estimate the number of matching rows for joins and for search
arguments whose value is not known when the query is optimized. See
the Performance and Tuning Guide for more information.

REMOVE_SKEW_FROM_DENSITY also updates the total density of any
composite column statistics for which this column is the leading
attribute. Most commonly, a composite index for which this column is
the leading attribute would produce these composite column statistics,
but they can also be produced when you issue a composite update
statistics command.

Examples Example 1 Changes the range density for column group c00, c01 in table
tab_1 to 0.50000000:

sp_modifystats "tab_1", "c00, c01", MODIFY_DENSITY, range, absolute, "0.5"

CHAPTER 8 System Procedures

1061

Example 2 The total density for column group c00, c01 in tab_1 is
multiplied by .5. That is, divided in half:

sp_modifystats "tab_1", "c00,c01", MODIFY_DENSITY, total, factor, "0.5"

Example 3 The total density for all the columns in table tab_1 is
multiplied by .5.

sp_modifystats "tab_1", "all", MODIFY_DENSITY, total, factor, "0.5"

Example 4 Total density for all column groups starting with c12 is
changed to equal the range density.

sp_modifystats "tab_1", "c12" REMOVE_SKEW_FROM_DENSITY

Usage • Allows the System Administrator to modify the density values of
a column—or columns—in sysstatistics.

• Use optdiag to view a table’s statistics. See the Performance and
Tuning Guide for more information about table density and using
optdiag.

• Any modification you make to the statistics with sp_modifystats
is overwritten when you run update statistics. To make sure you
are using the most recent statistical modifications, you should run
sp_modifystats after you run update statistics.

• Because sp_modifystats modifies information stored in the
sysstatistics table, you should make a backup of statistics before
execute running sp_modifystats in a production system.

Permissions Only a System Administrator can execute sp_modifystats.

Tables used sysstatistics

See also Command update statistics

sp_modifythreshold

1062

sp_modifythreshold
Description Modifies a threshold by associating it with a different threshold procedure,

free-space level, or segment name. You cannot use sp_modifythreshold to
change the amount of free space or the segment name for the last-chance
threshold.

Syntax sp_modifythreshold dbname, segname, free_space
[, new_proc_name] [, new_free_space] [, new_segname]

Parameters dbname
is the database for which to change the threshold. This must be the name
of the current database.

segname
is the segment for which to monitor free space. Use quotes when
specifying the “default” segment.

free_space
is the number of free pages at which the threshold is crossed. When free
space in the segment falls below this level, Adaptive Server executes
the associated stored procedure.

new_proc_name
is the new stored procedure to execute when the threshold is crossed.
The procedure can be located in any database on the current Adaptive
Server or on an Open Server. Thresholds cannot execute procedures on
remote Adaptive Servers.

new_free_space
is the new number of free pages to associate with the threshold. When
free space in the segment falls below this level, Adaptive Server
executes the associated stored procedure.

new_segname
is the new segment for which to monitor free space. Use quotes when
specifying the “default” segment.

Examples Example 1 Modifies a threshold on the “default” segment of the mydb
database to execute when free space on the segment falls below 175 pages
instead of 200 pages. NULL is a placeholder indicating that the procedure
name is not being changed:

sp_modifythreshold mydb, "default", 200, NULL, 175

Example 2 Modifies a threshold on the data_seg segment of mydb so that
it executes the new_proc procedure:

sp_modifythreshold mydb, data_seg, 250, new_proc

CHAPTER 8 System Procedures

1063

Usage • For more information, see the System Administration Guide.

Crossing a threshold

• When a threshold is crossed, Adaptive Server executes the associated
stored procedure. Adaptive Server uses the following search path for
the threshold procedure:

• If the procedure name does not specify a database, Adaptive
Server looks in the database in which the threshold was crossed.

• If the procedure is not found in this database and the procedure
name begins with “sp_”, Adaptive Server looks in the
sybsystemprocs database.

If the procedure is not found in either database, Adaptive Server sends
an error message to the error log.

• Adaptive Server uses a hysteresis value, the global variable
@@thresh_hysteresis, to determine how sensitive thresholds are to
variations in free space. Once a threshold executes its procedure, it is
deactivated. The threshold remains inactive until the amount of free
space in the segment rises to @@thresh_hysteresis pages above the
threshold. This prevents thresholds from executing their procedures
repeatedly in response to minor fluctuations in free space.

The last-chance threshold

• By default, Adaptive Server monitors the free space on the segment
where the log resides and executes sp_thresholdaction when the
amount of free space is less than that required to permit a successful
dump of the transaction log. This amount of free space, the
last-chance threshold, is calculated by Adaptive Server and cannot
be changed by users.

• If the last-chance threshold is crossed before a transaction is logged,
Adaptive Server suspends the transaction until log space is freed. Use
sp_dboption to change this behavior for a particular database. Setting
the abort tran on log full option to true causes Adaptive Server to roll
back all transactions that have not yet been logged when the
last-chance threshold is crossed.

• You cannot use sp_modifythreshold to change the free-space value or
segment name associated with the last-chance threshold.

• Only databases that store their logs on a separate segment can have a
last-chance threshold. Use sp_logdevice to move the transaction log to
a separate device.

sp_modifythreshold

1064

Other thresholds

• Each database can have up to 256 thresholds, including the
last-chance threshold.

• Each threshold must be at least 2 times @@thresh_hysteresis pages
from the next closest threshold.

• Use sp_helpthreshold for information about existing thresholds.

• Use sp_dropthreshold to drop a threshold from a segment.

Creating threshold procedures

• Any user with create procedure permission can create a threshold
procedure in a database. Usually, a System Administrator creates
sp_thresholdaction in the master database, and Database Owners
create threshold procedures in user databases.

• sp_modifythreshold does not verify that the specified procedure exists.
It is possible to associate a threshold with a procedure that does not
yet exist.

• sp_modifythreshold checks to ensure that the user modifying the
threshold procedure has been directly granted the “sa_role”. All
system roles active when the threshold procedure is modified are
entered in systhresholds as valid roles for the user writing the
procedure. However, only directly granted system roles are activated
when the threshold fires. Indirectly granted system roles and
user-defined roles are not activated.

• Adaptive Server passes four parameters to a threshold procedure:

• @dbname, varchar(30), which identifies the database

• @segment_name, varchar(30), which identifies the segment

• @space_left, int, which indicates the number of free pages
associated with the threshold

• @status, int, which has a value of 1 for last-chance thresholds and
0 for other thresholds

These parameters are passed by position rather than by name; your
threshold procedure can use other names for them, but the procedure
must declare them in the order shown and with the correct datatypes.

• It is not necessary to create a different procedure for each threshold.
To minimize maintenance, create a single threshold procedure in the
sybsystemprocs database that can be executed by all thresholds.

CHAPTER 8 System Procedures

1065

• Include print and raiserror statements in the threshold procedure to
send output to the error log.

Executing threshold procedures

• Tasks that are initiated when a threshold is crossed execute as
background tasks. These tasks do not have an associated terminal or
user session. If you execute sp_who while these tasks are running, the
status column shows “background”.

• Adaptive Server executes the threshold procedure with the
permissions of the user who modified the threshold, at the time he or
she executed sp_modifythreshold, minus any permissions that have
since been revoked.

• Each threshold procedure uses one user connection, for as long as it
takes to execute the procedure.

Disabling free-space accounting

 Warning! System procedures cannot provide accurate information about
space allocation when free-space accounting is disabled.

• Use the no free space acctg option of sp_dboption to disable free-space
accounting on non-log segments.

• You cannot disable free-space accounting on log segments.

Permissions Only the Database Owner or a System Administrator can execute
sp_modifythreshold.

See also Commands create procedure, dump transaction

System procedures sp_addthreshold, sp_dboption, sp_dropthreshold,
sp_helpthreshold, sp_thresholdaction

sp_monitor

1066

sp_monitor
Description Displays statistics about Adaptive Server.

Syntax sp_monitor

Parameters None.

Examples Reports information about how busy Adaptive Server has been:

sp_monitor

last_run current_run seconds
------------------- ------------------- ---------
Jan 29 1987 10:11AM Jan 29 1987 10:17AM 314

cpu_busy io_busy idle
--------------- --------- --------------
4250(215)-68% 67(1)-0% 109(100)-31%

packets_received packets_sent packet_errors
---------------- ------------ ------------
781(15) 10110(9596) 0(0)

total_read total_write total_errors connections
----------- ------------------------- -----------
394(67) 5392(53) 0(0) 15(1)

Usage • Adaptive Server keeps track of how much work it has done in a series
of global variables. sp_monitor displays the current values of these
global variables and how much they have changed since the last time
the procedure executed.

• For each column, the statistic appears in the form
number(number)-number% or number(number).

• The first number refers to the number of seconds (for cpu_busy,
io_busy, and idle) or the total number (for the other columns)
since Adaptive Server restarted.

• The number in parentheses refers to the number of seconds or the
total number since the last time sp_monitor was run. The percent
sign indicates the percentage of time since sp_monitor was last
run.

CHAPTER 8 System Procedures

1067

For example, if the report shows cpu_busy as “4250(215)-68%”, it
means that the CPU has been busy for 4250 seconds since Adaptive
Server was last started, 215 seconds since sp_monitor last ran, and 68
percent of the total time since sp_monitor was last run.

For the total_read column, the value 394(67) means there have been
394 disk reads since Adaptive Server was last started, 67 of them
since the last time sp_monitor was run.

• Table 8-15 describes the columns in the sp_monitor report, the
equivalent global variables, if any, and their meanings. With the
exception of last_run, current_run and seconds, these column headings
are also the names of global variables—except that all global
variables are preceded by @@. There is also a difference in the units
of the numbers reported by the global variables—the numbers
reported by the global variables are not milliseconds of CPU time, but
machine ticks.

Table 8-15: Columns in the sp_monitor report

• The first time sp_monitor runs after Adaptive Server start-up, the
number in parentheses is meaningless.

Column
heading

Equivalent
variable Meaning

last_run Clock time at which the sp_monitor procedure last ran.

current_run Current clock time.

seconds Number of seconds since sp_monitor last ran.

cpu_busy @@cpu_busy Number of seconds in CPU time that Adaptive Server’s CPU was doing
Adaptive Server work.

io_busy @@io_busy Number of seconds in CPU time that Adaptive Server has spent doing
input and output operations.

idle @@idle Number of seconds in CPU time that Adaptive Server has been idle.

packets_received @@pack_received Number of input packets read by Adaptive Server.

packets_sent @@pack_sent Number of output packets written by Adaptive Server.

packet_errors @@packet_errors Number of errors detected by Adaptive Server while reading and writing
packets.

total_read @@total_read Number of disk reads by Adaptive Server.

total_write @@total_write Number of disk writes by Adaptive Server.

total_errors @@total_errors Number of errors detected by Adaptive Server while reading and writing.

connections @@connections Number of logins or attempted logins to Adaptive Server.

sp_monitor

1068

• Adaptive Server’s housekeeper task uses the server’s idle cycles to
write changed pages from cache to disk. This process affects the
values of the cpu_busy, io_busy, and idle columns reported by
sp_monitor. To disable the housekeeper task and eliminate these
effects, set the housekeeper free write percent configuration parameter
to 0:

sp_configure "housekeeper free write percent", 0

Permissions Only a System Administrator can execute sp_monitor.

See also System procedures sp_who

CHAPTER 8 System Procedures

1069

sp_monitorconfig
Description Displays cache usage statistics regarding metadata descriptors for indexes,

objects, and databases. sp_monitorconfig also reports statistics on auxiliary
scan descriptors used for referential integrity queries, and usage statistics
for transaction descriptors and DTX participants.

Syntax sp_monitorconfig "configname"

Parameters configname
is either all, or part of the configuration parameter name whose
monitoring information is being queried. Valid configuration
parameters are listed in the “Usage” section. Specifying all displays
descriptor help information for all indexes, objects, databases, and
auxiliary scan descriptors in the server.

Examples Example 1

sp_monitorconfig "open"

Configuration option is not unique.
option_name config_value run_value
------------------------------ ------------ -----------
curread change w/ open cursors 1 1
number of open databases 12 12
number of open indexes 500 500
number of open objects 500 500
open index hash spinlock ratio 100 100
open index spinlock ratio 100 100
open object spinlock ratio 100 100

Example 2 There are 283 active object metadata descriptors, with 217
free. The maximum used at a peak period since Adaptive Server was last
started is 300:

sp_monitorconfig "open objects"

Usage information at date and time: Apr 22 2002 2:49PM.
Name num_free num_active pct_act Max_Used Reused
-------------- -------- ---------- ------- -------- ------
number of open 217 283 56.60 300 No

You can then reset the size to 330, for example, to accommodate the 300
maximum used metadata descriptors, plus space for 10 percent more:

sp_configure "number of open objects", 330

Example 3 The maximum number of index metadata descriptors is 44:

sp_monitorconfig

1070

sp_monitorconfig "open indexes"

Usage information at date and time: Apr 22 2002 2:49PM.
Name num_free num_active pct_act Max_Used Reused
-------------- -------- ---------- -------- -------- ------
number of open 556 44 7.33 44 No

You can reset the size to 100, the minimum acceptable value:

sp_configure "number of open indexes", 100

Example 4 The number of active scan descriptors is 30, though Adaptive
Server is configured to use 200. Use the number of aux scan descriptors
configuration parameter to reset the value to at least 32. A safe setting is
36, to accommodate the 32 scan descriptors, plus space for 10 percent
more:

sp_monitorconfig "aux scan descriptors"

Usage information at date and time: Apr 22 2002 2:49PM.
Name num_free num_active pct_act Max_Used Reused
-------------- -------- ---------- -------- -------- ------
number of aux s 170 30 15.00 32 No

Example 5 Adaptive Server is configured for 5 open databases, all of
which have been used in the current session.

sp_monitorconfig "number of open databases"

Usage information at date and time: Apr 22 2002 2:49PM.
Name num_free num_active pct_act Max_Used Reused
-------------- -------- ---------- -------- -------- ------
number of open 0 5 100.00 5 Yes

However, as indicated by the Reused column, an additional database
needs to be opened. If all 5 databases are in use, an error may result, unless
the descriptor for a database that is not in use can be reused. To prevent an
error, reset number of open databases to a higher value.

Example 6 Only 10.2 percent of the transaction descriptors are currently
being used. However, the maximum number of transaction descriptors
used at a peak period since Adaptive Server was last started is 523:

sp_monitorconfig "txn to pss ratio"

CHAPTER 8 System Procedures

1071

Usage information at date and time: Apr 22 2002 2:49PM.
Name num_free num_active pct_act Max_Used Reused
-------------- -------- ---------- -------- -------- ------
number of open 784 80 10.20 523 NA

Example 7 Create a user table named #tmp_res_monitor, and save the
sp_monitorconfig result to this table:

create table #tmp_res_monitor(Name varchar(35), Num_free int,
Num_active int, Pct_act char(6), Max_Used int, Reuse_cnt int, Date
varchar(30))
go

sp_monitorconfig "number of locks", #tmp_res_monitor
go

select * from #tmp_res_monitor
go

Name num_free num_active pct_act Max_Used Reused
-------------- -------- ---------- -------- -------- ------
number of locks 4361 639 12.78 3288 -1 Apr 22 2002
10:06AM

Usage • sp_monitorconfig displays cache usage statistics regarding metadata
descriptors for indexes, objects, and databases, such as the number of
metadata descriptors currently in use by the server.

• sp_monitorconfig also reports the number of auxiliary scan descriptors
in use. A scan descriptor manages a single scan of a table when
queries are run on the table.

• sp_monitorconfig monitors the following resources:
•

additional network
memory

memory per worker
process

number of locks number of remote
logins

procedure cache
size

audit queue size number of alarms number of
mailboxes

number of remote
sites

size of global fixed
heap

heap memory per
user

number of aux scan
descriptors

number of
messages

number of sort
buffers

size of process
object heap

max cis remote
connection

number of devices number of open
databases

number of user
connections

size of shared class
heap

max memory number of dtx
participants

number of open
indexes

number of worker
processes

size of unilib cache

max number
network listeners

number of java
sockets

number of open
objects

partition groups txn to pss ratio

sp_monitorconfig

1072

• The columns in the sp_monitorconfig output provide the following
information:

• num_free – specifies the number of available metadata or
auxiliary scan descriptors not currently used.

• num_active – specifies the number of metadata or auxiliary scan
descriptors installed in cache (that is, active).

• pct_active – specifies the percentage of cached or active metadata
or auxiliary scan descriptors.

• Max_Used – specifies the maximum number of metadata or
auxiliary scan descriptors that have been in use since the server
was started.

• Reused – specifies whether a metadata descriptor was reused in
order to accommodate an increase in indexes, objects, or
databases in the server. The returned value is Yes, No or NA (for
configuration parameters that do not support the reuse
mechanism, such as the number of aux scan descriptors).

• Use the value in the Max_Used column as a basis for determining an
appropriate number of descriptors; be sure to add about 10 percent for
the final setting. For example, if the maximum number of index
metadata descriptors used is 142, you might set the number of open
indexes configuration parameter to 157.

• If the Reused column states Yes, reset the configuration parameter to
a higher value. When descriptors need to be reused, there can be
performance problems, particularly with open databases. An open
database contains a substantial amount of metadata information,
which means that to fill up an open database, Adaptive Server needs
to access the metadata on the disk many times; the server can also
have a spinlock contention problem. To check for spinlock
contention, use the system procedure sp_sysmon. For more
information, see the Performance and Tuning Guide. To find the
current number of indexes, objects, or databases, use
sp_countmetadata.

max online engines number of large i/o
buffers

number of remote
connections

permission cache
entries

CHAPTER 8 System Procedures

1073

• To get an accurate reading, run sp_monitorconfig during a normal
Adaptive Server peak time period. You can run sp_monitorconfig
several times during the peak period to ensure that you are actually
finding the maximum number of descriptors used.

Permissions Only a System Administrator can execute sp_monitorconfig.

See also System procedures sp_configure, sp_countmetadata, sp_helpconfig,
sp_helpconstraint, sp_sysmon

sp_object_stats

1074

sp_object_stats
Description Shows lock contention, lock wait-time, and deadlock statistics for tables

and indexes.

Syntax sp_object_stats interval [, top_n
[, dbname, objname [, rpt_option]]]

Parameters interval
specifies the time period for the sample. It must be in HH:MM:SS form,
for example “00:20:00”.

top_n
the number of objects to report, in order of contention. The default is 10.

dbname
the name of the database to report on. If no database name is given,
contention on objects in all databases is reported.

objname
the name of a table to report on. If a table name is specified, the database
name must also be specified.

rpt_option
must be either rpt_locks or rpt_objlist.

Examples Example 1 Reports lock statistics on the top 10 objects server-wide:

sp_object_stats "00:20:00"

Example 2 Reports only on tables in the pubtune database, and lists the
five tables that experienced the highest contention:

sp_object_stats "00:20:00", 5, pubtune

Example 3 Shows only the names of the tables that had the highest
locking activity, even if contention and deadlocking does not take place:

sp_object_stats "00:15:00", @rpt_option = "rpt_objlist"

Usage • sp_object_stats reports on the shared, update, and exclusive locks
acquired on tables during a specified sample period. The following
reports shows the titles tables:

Object Name: pubtune..titles (dbid=7,
objid=208003772,lockscheme=Datapages)

 Page Locks SH_PAGE UP_PAGE EX_PAGE$
 ---------- ---------- ---------- ----------
 Grants: 94488 4052 4828

CHAPTER 8 System Procedures

1075

 Waits: 532 500 776
 Deadlocks: 4 0 24
 Wait-time: 20603764 ms 14265708 ms 2831556 ms

Contention: 0.56% 10.98% 13.79%

 *** Consider altering pubtune..titles to Datarows locking.

• Table 8-16 shows the meaning of the values.

Table 8-16: Output of sp_object_stats

• sp_object_stats recommends changing the locking scheme when total
contention on a table is more than 15 percent, as follows:

• If the table uses allpages locking, it recommends changing to
datapages locking.

• If the table uses datapages locking, it recommends changing to
datarows locking.

• rpt_option specifies the report type:

• rpt_locks reports grants, waits, deadlocks and wait times for the tables
with the highest contention. rpt_locks is the default.

• rpt_objlist reports only the names of the objects that had the highest
level of lock activity.

• sp_object_stats creates a table named tempdb..syslkstats. This table is not
dropped when the stored procedure completes, so it can be queried by a
System Administrator using Transact-SQL.

• Only one user at a time should execute sp_object_stats. If more than one
user tries to run sp_object_stats simultaneously, the second command may
be blocked, or the results may be invalid.

• The tempdb..syslkstats table is dropped and re-created each time
sp_object_stats is executed.

• The structure of tempdb..syslkstats is described in Table 8-17.

Output row Value

Grants The number of times the lock was granted immediately.

Waits The number of times the task needing a lock had to wait.

Deadlocks The number of deadlocks that occurred.

Wait-times The total number of milliseconds that all tasks spent waiting for a lock.

Contention The percentage of times that a task had to wait or encountered a deadlock.

sp_object_stats

1076

Table 8-17: Columns in the tempdb..syslkstats table

The values in the stat_name column are composed of three parts:

• The first part is “ex” for exclusive lock, “sh” for shared lock, or “up”
for update lock.

• The second part is “pg” for page locks, or “row” for row locks.

• The third part is “grants” for locks granted immediately, “waits” for
locks that had to wait for other locks to be released, “deadlocks” for
deadlocks, and “waittime” for the time waited to acquire the lock.

• If you specify a table name, sp_object_stats displays all tables by that
name. If more than one user owns a table with the specified name, output
for these tables displays the object ID, but not the owner name.

Permissions Only a System Administrator can execute sp_object_stats.

See also Commands alter table

Column name Datatype Description

dbid smallint Database ID

objid int Object ID

lockscheme smallint Integer values 1–3: Allpages = 1, Datapages = 2, Datarows = 3

page_type smallint Data page = 0, or index page = 1

stat_name char(30) The statistics represented by this row

stat_value float The number of grants, waits or deadlocks, or the total wait time

CHAPTER 8 System Procedures

1077

sp_passthru
Description Component Integration Services only Allows the user to pass a SQL

command buffer to a remote server.

Syntax sp_passthru server, command, errcode, errmsg, rowcount
[, arg1, arg2, ... argn]

Parameters server
is the name of a remote server to which the SQL command buffer will be
passed. The class of this server must be a supported, non-local server class.

command
is the SQL command buffer. It can hold up to 255 characters.

errcode
is the error code returned by the remote server, if any. If no error occurred at
the remote server, the value returned is 0.

errmsg
is the error message returned by the remote server. It can hold up to 255
characters. This parameter is set only if errcode is a nonzero number;
otherwise NULL is returned.

rowcount
is the number of rows affected by the last command in the command buffer.
If the command was an insert, delete, or update, this value represents the
number of rows affected even though none were returned. If the last
command was a query, this value represents the number of rows returned
from the external server.

arg1 … argn
receives the results from the last row returned by the last command in the
command buffer. You can specify up to 250 arg parameters. All must be
declared as output parameters.

Examples Returns the date from the Oracle server in the output parameter @oradate. If
an Oracle error occurs, the error code is placed in @errcode and the
corresponding message is placed in @errmsg. The @rowcount parameter will
be set to 1:

sp_passthru ORACLE, "select date from dual", @errcode output,
@errmsg output, @rowcount output, @oradate output

sp_passthru

1078

Usage • sp_passthru allows the user to pass a SQL command buffer to a
remote server. The syntax of the SQL statement or statements being
passed is assumed to be the syntax native to the class of server
receiving the buffer. No translation or interpretation is performed.
Results from the remote server are optionally placed in output
parameters.

Use sp_passthru only when Component Integration Services is
installed and configured.

• You can include multiple commands in the command buffer. For some
server classes, the commands must be separated by semicolons. See
the Component Integration Services User’s Guide for a more
complete discussion of query buffer handling in passthru mode.

Return Parameters

• The output parameters arg1 ... argn will be set to the values of
corresponding columns from the last row returned by the last
command in the command buffer. The position of the parameter
determines which column’s value the parameter will contain. arg1
receives values from column 1, arg2 receives values from column 2,
and so on.

• If there are fewer optional parameters than there are returned
columns, the excess columns are ignored. If there are more
parameters than columns, the remaining parameters are set to NULL.

• An attempt is made to convert each column to the datatype of the
output parameter. If the datatypes are similar enough to permit
implicit conversion, the attempt will succeed. For information on
implicit conversion, see “Datatype conversion functions.” See the
Component Integration Services User’s Guide for information on
which datatype represents the datatypes from each server class when
in passthru mode.

Permissions Any user can execute sp_passthru.

See also System procedures sp_autoconnect, sp_remotesql

CHAPTER 8 System Procedures

1079

sp_password
Description Adds or changes a password for an Adaptive Server login account.

Syntax sp_password caller_passwd, new_passwd [, loginame]

Parameters caller_passwd
is your password. When you are changing your own password, this is
your old password. When a System Security Officer is using
sp_password to change another user’s password, caller_passwd is the
System Security Officer’s password.

new_passwd
is the new password for the user, or for loginame. It must be at least 6
bytes long. Enclose passwords that include characters besides A-Z, a-z,
or 0-9 in quotation marks. Also enclose passwords that begin with 0-9
in quotes.

loginame
the login name of the user whose account password is being changed by
the System Security Officer.

Examples Example 1 Changes your password from password from “3blindmice” to
“2mediumhot.” (Enclose the passwords in quotes because they begin with
numerals.):

sp_password "3blindmice", "2mediumhot"

Example 2 A System Security Officer whose password is “2tomato” has
changed Victoria’s password to “sesame1”:

sp_password "2tomato", sesame1, victoria

Example 3 Changes your password from NULL to “16tons.” Notice that
NULL is not enclosed in quotes (NULL is not a permissible new
password):

sp_password null, "16tons"

Example 4

PRODUCTION...sp_password figaro, lilacs

Changes your password on the PRODUCTION server from “figaro” to
“lilacs.”

Usage • Any user can change his or her password with sp_password.

• New passwords must be at least 6 characters long. They cannot be
NULL.

sp_password

1080

• The encrypted text of caller_passwd must match the existing
encrypted password of the caller. If it does not, sp_password returns
an error message and fails. master.dbo.syslogins lists passwords in
encrypted form.

• If a client program requires users to have the same password on
remote servers as on the local server, users must change their
passwords on all the remote servers before changing their local
passwords. Execute sp_password as a remote procedure call on each
remote server. See Example 4.

• You can set the systemwide password expiration configuration
parameter to establish a password expiration interval that forces all
Adaptive Server login accounts to change passwords on a regular
basis. See the System Administration Guide for more information.

Permissions Only a System Security Officer can execute sp_password to change
another user’s password. Any user can execute sp_password to change his
or her own password.

See also System procedures sp_addlogin, sp_adduser

CHAPTER 8 System Procedures

1081

sp_placeobject
Description Puts future space allocations for a table or index on a particular segment.

Syntax sp_placeobject segname, objname

Parameters segname
is the name of the segment on which to locate the table or index.

objname
is the name of the table or index for which to place subsequent space
allocation on the segment segname. Specify index names in the form
“tablename.indexname”

Examples Example 1 This places all subsequent space allocation for the table
authors on the segment named “segment3”:

sp_placeobject segment3, authors

Example 2 This command places all subsequent space allocation for the
employee table’s index named employee_nc on the segment named
indexes:

sp_placeobject indexes, 'employee.employee_nc'

Usage • You cannot change the location of future space allocations for system
tables.

• Placing a table or an index on a particular segment does not affect the
location of any existing table or index data. It affects only future space
allocation. Changing the segment used by a table or an index can
spread the data among multiple segments.

• If you use sp_placeobject with a clustered index, the table moves with
the index.

• You can specify a segment when you create a table or an index with
create table or create index. If you do not specify a segment, the data
goes on the default segment.

• When sp_placeobject splits a table or an index across more than one
disk fragment, the diagnostic command dbcc displays messages about
the data that resides on the fragments that were in use for storage
before sp_placeobject executed. Ignore those messages.

• You cannot use sp_placeobject on a partitioned table.

Permissions Only the table owner, Database Owner, or System Administrator can
execute sp_placeobject.

See also Commands alter table, dbcc

sp_placeobject

1082

System procedures sp_addsegment, sp_dropsegment,
sp_extendsegment, sp_helpindex, sp_helpsegment

CHAPTER 8 System Procedures

1083

sp_plan_dbccdb
Description Recommends suitable sizes for new dbccdb and dbccalt databases, lists

suitable devices for dbccdb and dbccalt, and suggests a cache size and a
suitable number of worker processes for the target database.

Syntax sp_plan_dbccdb [dbname]

Parameters dbname
specifies the name of the target database. If dbname is not specified,
sp_plan_dbccdb makes recommendations for all databases in
master..sysdatabases.

Examples Example 1 Returns configuration recommendations for creating a dbccdb
database suitable for checking the master database. The dbccdb database
already existed at the time this command was run, so the size of the
existing database is provided for comparison:

sp_plan_dbccdb master

Recommended size for dbccdb is 4MB.
dbccdb database already exists with size 8MB.
Recommended values for workspace size, cache size and process count are:
dbname scan ws text ws cache process count
master 64K 64K 640K 1

Example 2 Returns configuration recommendations for creating a dbccdb
database suitable for checking all databases in the server. No dbccdb
database existed at the time this command was run:

sp_plan_dbccdb

Recommended minimum size for dbccdb is 4MB.
Recommended values for workspace size, cache size and process count are:
dbname scan ws text ws cache process count
master 64K 64K 640K 1
tempdb 64K 64K 640K 1
model 64K 64K 640K 1
sybsystemprocs 272K 80K 640K 1
dbccdb 128K 64K 640K 1

Example 3 Returns configuration recommendations for creating a dbccdb
database suitable for checking pubs2:

sp_plan_dbccdb pubs2

Recommended size for dbccdb is 4MB.
Recommended devices for dbccdb are:

sp_plan_dbccdb

1084

Logical Device Name Device Size Physical Device Name
sprocdev 28672 /remote/sybase/devices/srv_sprocs_dat
tun_dat 8192 /remote/sybase/devices/srv_tun_dat
tun_log 4096 /remote/sybase/devices/srv_tun_log
Recommended values for workspace size, cache size and process count are:
dbname scan ws text ws cache process count
pubs2 64K 64K 640K 1

Usage • sp_plan_dbccdb recommends suitable sizes for creating new dbccdb
and dbccalt databases, lists suitable devices for the new database, and
suggests cache size and a suitable number of worker processes for the
target database.

• If you specify dbccdb, sp_plan_dbccdb recommends values for
dbccalt, the alternate database. If you specify dbccalt, sp_plan_dbccdb
recommends values for dbccdb.

• sp_plan_dbccdb does not report values for existing dbccdb and dbccalt
databases. To gather configuration parameters for an existing dbccdb
or dbccalt database, use sp_dbcc_evaluatedb.

• For information on the dbcc stored procedures for maintaining dbccdb
and for generating reports from dbccdb, see Chapter 11, “dbcc Stored
Procedures.”

Permissions Only the System Administrator or Database Owner can execute
sp_plan_dbccdb. Only the System Administrator can execute
sp_plan_dbccdb without specifying a database name.

See also Commands dbcc

System procedures sp_dbcc_evaluatedb

CHAPTER 8 System Procedures

1085

sp_poolconfig
Description Creates, drops, resizes, and provides information about memory pools

within data caches.

Syntax To create a memory pool in an existing cache, or to change pool size:

sp_poolconfig cache_name [, "mem_size [P|K|M|G]", "config_poolK"
[, "affected_poolK"]]

To change a pool’s wash size:

sp_poolconfig cache_name, "io_size ", "wash=size[P|K|M|G]"

To change a pool’s asynchronous prefetch percentage:

sp_poolconfig cache_name, "io_size ",
"local async prefetch limit=percent "

Parameters cache_name
is the name of an existing data cache.

mem_size
is the size of the memory pool to be created or the new total size for an
existing pool, if a pool already exists with the specified I/O size. The
minimum size of a pool is 512K. Specify size units with P for pages, K
for kilobytes, M for megabytes, or G for gigabytes. The default is
kilobytes.

config_pool
is the I/O size performed in the memory pool where the memory is to
be allocated or removed.

Valid I/O sizes are multiples of the logical page size, up to four times
the amount.

affected_pool
is the size of I/O performed in the memory pool where the memory is
to be deallocated. If affected_pool is not specified, the memory is taken
from the logical page size memory pool.

io_size
is the size of I/O performed in the memory pool where the wash size is
to be reconfigured. The combination of cache name and I/O size
uniquely identifies a memory pool.

wash=size
Changes the wash size (the point in the cache at which Adaptive Server
writes dirty pages to disk) for a memory pool.

sp_poolconfig

1086

local async prefetch limit=percent
sets the percentage of buffers in the pool that can be used to hold buffers
that have been read into cache by asynchronous prefetch, but that have
not yet been used.

Examples Example 1 Creates a 16K pool in the data cache pub_cache with 10MB of
space. All space is taken from the default 2K memory pool:

sp_poolconfig pub_cache, "10M", "16K"

Example 2 Moves 16MB of space to the 32K pool from the 64K pool of
pub_cache:

sp_poolconfig pub_cache, "16M", "32K", "64K"

Example 3 Reports the current configuration of pub_cache:

sp_poolconfig "pub_cache"

Example 4 Removes the 16K memory pool from pub_cache, placing all
of the memory assigned to it in the 2K pool:

sp_poolconfig pub_cache, "0K", "16K"

Example 5 Changes the wash size of the 2K pool in pubs_cache to 508K:

sp_poolconfig pub_cache, "2K", "wash=508K"

Example 6 Changes the asynchronous prefetch limit for the 2K pool to 15
percent:

sp_poolconfig pub_cache, "2K", "local async prefetch limit=15"

Usage • When you create a data cache with sp_cacheconfig, all space is
allocated to the logical page size memory pool. sp_poolconfig divides
the data cache into additional pools with larger I/O sizes.

• If no large I/O memory pools exist in a cache, Adaptive Server
performs I/O in 2K units, the size of a data page, for all of the objects
bound to the cache. You can often enhance performance by
configuring pools that perform large I/O. A 16K memory pool reads
and writes eight data pages in a single I/O operation.

• The combination of cache name and I/O size must be unique. In other
words, you can have only one pool of a given I/O size in a particular
data cache.

• Only one sp_poolconfig command can be active on a single cache at
one time. If a second sp_poolconfig command is issued before the first
one completes, it sleeps until the first command completes.

CHAPTER 8 System Procedures

1087

• Figure 8-3 shows a data cache on a server that uses 2K logical pages
with:

• The default data cache with a 2K pool and a 16K pool

• A user cache with a 2K pool and a 16K pool

• A log cache with a 2K pool and a 4K pool

Figure 8-3: Data cache with default and user-defined caches

• You can create pools with I/O sizes up to 16K in the default data
cache.

• The minimum size of a memory pool is 512K. You cannot reduce the
size of any memory pool in any cache to less than 512K by
transferring memory to another pool.

• Two circumstances can create pool less than 512K:

• If you attempt to delete a pool by setting its size to zero, and some
of the pages are in use, sp_poolconfig reduces the pool size as
much as possible, and prints a warning message. The status for
the pool is set to “Unavailable/deleted”.

D
ef

au
lt

D
at

aC
ac

he
U

se
r_

ta
bl

e_
C

ac
he

Lo
g_

C
ac

he

D
a

t
a

C

a
c

h
e

2K pool

2K pool

2K pool

16K pool

16K pool

4K pool

sp_poolconfig

1088

• If you attempt to move buffers to create a new pool, and enough
buffers cannot be moved to the new pool, sp_poolconfig moves as
many buffers as it can, and the cache status is set to
“Unavailable/too small.”

In both of these cases, you can retry to command at a later time. The
pool will also be deleted or be changed to the desired size when the
server is restarted.

• You can create memory pools while Adaptive Server is active; no
restart is needed for them to take effect. However, Adaptive Server
can move only “free” buffers (buffers that are not in use or that do not
contain changes that have not been written to disk). When you
configure a pool or change its size, Adaptive Server moves as much
memory as possible to the pool and prints an informational message
showing the requested size and the actual size of the pool. After a
restart of Adaptive Server, all pools are created at the configured size.

• The following commands perform only 2K I/O: create database, alter
database, some dbcc commands, disk init, and drop table. dbcc
checktable can perform large I/O, and dbcc checkdb performs large
I/O on tables and 2K I/O on indexes. Also, recovery uses only the 2K
memory pool: all pages are read into and changed in the 2K pool of
the default cache. Be sure that your default 2K pool is large enough
for these activities.

• Most Adaptive Servers perform best with I/O configured for
transactions logs that is twice the logical page size. Adaptive Server
uses the default I/O size of twice the logical page size if the default
cache or a cache with a transaction log bound to it is configured with
a memory pool twice the logical page size. Otherwise, it uses the
logical page size memory pool.

• You can increase the default log I/O size for a database using the
sp_logiosize system procedure. However, the I/O size you specify
must have memory pools of the same size in the cache bound to the
transaction log. If not, Adaptive Server uses the logical page size
memory pools.

Wash percentage

• The default value for the wash size is computed as follows:

• If the pool size is less than 300MB, the default wash size is set to
20 percent of the buffers in the pool

CHAPTER 8 System Procedures

1089

• If the pool size is greater than 300MB, the default wash size is 20
percent of the number of buffers in 300MB

• The minimum setting for the wash size is 10 buffers, and the
maximum setting is 80 percent of the size of the pool.

• Each memory pool contains a wash area at the least recently used
(LRU) end of the chain of buffers in that pool. Once dirty pages
(pages that have been changed while in cache) move into the wash
area, Adaptive Server initiates asynchronous writes on these pages.
The wash area must be large enough so that pages can be written to
disk before they reach the LRU end of the pool. Performance suffers
when Adaptive Server needs to wait for clean buffers.

The default percentage, placing 20 percent of the buffers in the wash
area, is sufficient for most applications. If you are using an extremely
large memory pool, and your applications have a very high data
modification rate, you may want to increase the size to 1 or 2 percent
of the pool. Contact Sybase Technical Support for more information
about choosing an effective wash size.

Local asynchronous prefetch percentage

• The default value for a pool’s asynchronous prefetch percentage is set
by the configuration parameter global async prefetch limit. The pool
limit always overrides the global limit.

• To disable prefetch in a pool (if the global limit is a nonzero number),
set the pool’s limit to 0.

• See the Performance and Tuning Guide for information on the
performance impact of changes to the asynchronous prefetch limit.

Permissions Only a System Administrator can execute sp_poolconfig to reconfigure
memory pools within data caches. Any user can use sp_poolconfig to get
information about memory pools.

See also System procedures sp_cacheconfig, sp_helpcache, sp_logiosize,
sp_unbindcache, sp_unbindcache_all

sp_primarykey

1090

sp_primarykey
Description Defines a primary key on a table or view.

Syntax sp_primarykey tabname, col1 [, col2, col3, ..., col8]

Parameters tabname
is the name of the table or view on which to define the primary key.

col1
is the name of the first column that makes up the primary key. The
primary key can consist of from one to eight columns.

Examples Example 1 Defines the au_id field as the primary key of the table authors:

sp_primarykey authors, au_id

Example 2 Defines the combination of the fields lastname and firstname
as the primary key of the table employees:

sp_primarykey employees, lastname, firstname

Usage • Executing sp_primarykey adds the key to the syskeys table. Only the
owner of a table or view can define its primary key. sp_primarykey
does not enforce referential integrity constraints; use the primary key
clause of the create table or alter table command to enforce a primary
key relationship.

• Define keys with sp_primarykey, sp_commonkey, and sp_foreignkey
to make explicit a logical relationship that is implicit in your database
design. An application program can use the information.

• A table or view can have only one primary key. To display a report on
the keys that have been defined, execute sp_helpkey.

• The installation process runs sp_primarykey on the appropriate
columns of the system tables.

Permissions Only the owner of the specified table or view can execute sp_primarykey.

See also Commands alter table, create table, create trigger

System procedures sp_commonkey, sp_dropkey, sp_foreignkey,
sp_helpjoins, sp_helpkey

CHAPTER 8 System Procedures

1091

sp_processmail
Description Windows NT only Reads, processes, sends, and deletes messages in the

Adaptive Server message inbox, using the xp_findnextmsg, xp_readmail,
xp_sendmail, and xp_deletemail system extended stored procedures
(ESPs).

Syntax sp_processmail [subject] [, originator [, dbuser
[, dbname [, filetype [, separator]]]]]

Parameters subject
is the subject header of the message. If you specify a subject but not an
originator, sp_processmail processes all unread messages in the inbox
that has the specified subject header. If you specify both subject and
originator, sp_processmail processes all unread messages with the
specified subject header sent by the specified originator. If you do not
specify either subject or originator, sp_processmail processes all the
unread messages in the Adaptive Server message inbox.

originator
is the sender of an incoming message. If you specify an originator and
do not specify a subject, sp_processmail processes all unread messages
in the inbox sent by the specified originator.

dbuser
specifies the Adaptive Server login name to use for the user context for
executing the query in the message. The default is “guest.”

dbname
specifies the database name to use for the database context for
executing the query in the message. The default is “master.”

filetype
specifies the file extension of the attached file that contains the results
of the query. The default is “.txt”.

separator
specifies the character to use as a column separator in the query results.
It is the same as the /s option of isql. The default is the tab character.

Examples Example 1 Processes all unread messages in the Adaptive Server inbox
with the subject header “SQL Report” submitted by mail user “janet”,
processes the received queries in the salesdb database as user “sa”, and
returns the query results to “janet” in a .res file attached to the mail
message. The columns in the returned results are separated by semicolons:

sp_processmail @subject="SQL REPORT", @originator="janet", @dbuser="sa",
@dbname="salesdb", @filetype="res", @separator=";"

sp_processmail

1092

Example 2 Processes all unread messages in the Adaptive Server inbox
as user “sa” in the master database and returns the query results in .txt files,
which are attached to the mail messages. The columns in the returned
results are separated by tab characters:

sp_processmail @dbuser="sa"

Usage • sp_processmail reads, processes, sends, and deletes messages in the
Adaptive Server message inbox, using the xp_findnextmsg,
xp_readmail, xp_sendmail, and xp_deletemail system ESPs.

• sp_processmail sends outgoing mail to the originator of the incoming
mail message being processed.

• sp_processmail uses the default parameters when invoking the ESPs,
except for the dbuser, dbname, attachname, and separator parameters
to xp_sendmail, which can be overridden by the parameters to
sp_processmail.

• sp_processmail processes all messages as Adaptive Server queries. It
reads messages from the Adaptive Server inbox and returns query
results to the sender of the message and all its cc’d and bcc’d
recipients in an attachment to an Adaptive Server message.
sp_processmail generates a name for the attached file consisting of
“syb” followed by five random digits, followed by the extension
specified by the filetype parameter; for example, “syb84840.txt.”

• sp_processmail deletes messages from the inbox after processing
them.

• The subject and originator parameters specify which messages
should be processed. If neither of these parameters is supplied,
sp_processmail processes all the unread messages in the Adaptive
Server message inbox.

• sp_processmail does not process attachments to incoming mail. The
query must be in the body of the incoming message.

Permissions Only a System Administrator can execute sp_processmail.

See also Extended stored procedures xp_deletemail, xp_findnextmsg,
xp_readmail, xp_sendmail, xp_startmail

Utility isql

CHAPTER 8 System Procedures

1093

sp_procqmode
Description Displays the query processing mode of a stored procedure, view, or trigger.

Syntax sp_procqmode [object_name [, detail]]

Parameters object_name
is the name of the stored procedure, view, or trigger whose query
processing mode you are examining. If you do not specify an
object_name, sp_procqmode reports on all procedures, views, and
triggers in the current database.

detail
returns information about whether the object contains a subquery, and
whether there is information about the object in syscomments.

Examples Example 1 Displays the query processing mode for all stored procedures
in the current database:

sp_procqmode

Object Owner.name Object Type Processing Mode
----------------- ---------------- --------------
dbo.au_info stored procedure pre-System 11
dbo.titleview view System 11 or later

Example 2 Displays the query processing mode of the stored procedure
old_sproc, reports whether old_sproc contains any subqueries, and reports
whether syscomments has information about old_sproc:

sp_procqmode old_sproc, detail

Object Owner.Name Object Type Processing Mode Subq Text
--------------------- ----------------- ------------------- ---- ----
dbo.au_info stored procedure pre-System 11 no yes

Example 3 Displays detailed reports for all objects in the database:

sp_procqmode null, detail

Usage • The processing mode identifies whether the object was created in
SQL Server release 10.0 or earlier. Objects created on release 10.x (or
earlier) servers are “pre-System 11” objects. Objects created on
release 11.0 or later servers are “System 11 or later” objects.

sp_procqmode

1094

• Subqueries in “pre-System 11” objects use a different processing
mode than subqueries in “System 11 or later” objects. Upgrading to
release 11.0 or later does not automatically change the processing
mode of the subquery.

In general, the “System 11 or later” processing mode is faster than
“pre-System 11” processing mode. To change the processing mode to
“System 11 or later”, drop and re-create the object. You cannot create
an object with “pre-System 11” processing on the current release of
Adaptive Server, so you may want to create the object with another
name and test it before dropping the version that uses “pre-System 11”
processing mode.

• The processing mode displayed for a given object is independent of
whether that object actually includes a subquery, and pertains only to
the specified object, not to any dependent objects. You must check
each object separately.

• The detailed report shows if the object contains a subquery, and
reports if text is available in syscomments (for sp_helptext to report,
or for the defncopy utility to copy out). sp_procqmode does not check
that the text in syscomments is valid or complete.

Permissions Only theDatabase Owner or object owner can execute sp_procqmode.

See also Stored Procedures sp_helptext

Utilities defncopy

CHAPTER 8 System Procedures

1095

sp_procxmode
Description Displays or changes the transaction modes associated with stored

procedures.

Syntax sp_procxmode [procname [, tranmode]]

Parameters procname
is the name of the stored procedure whose transaction mode you are
examining or changing.

tranmode
is the new transaction mode for the stored procedure. Values are
"chained", "unchained", and "anymode".

Examples Example 1 Displays the transaction mode for all stored procedures in the
current database:

sp_procxmode

procedure name user name transaction mode
------------------ --------- ----------------
byroyalty dbo Unchained
discount_proc dbo Unchained
history_proc dbo Unchained
insert_sales_proc dbo Unchained
insert_detail_proc dbo Unchained
storeid_proc dbo Unchained
storename_proc dbo Unchained
title_proc dbo Unchained
titleid_proc dbo Unchained

Example 2 Displays the transaction mode of the stored procedure
byroyalty:

sp_procxmode byroyalty

procedure name transaction mode
------------------------------ ----------------
byroyalty Unchained

Example 3 Changes the transaction mode for the stored procedure
byroyalty in the pubs2 database from “unchained” to “chained”:

sp_procxmode byroyalty, "chained"

sp_procxmode

1096

Usage • To change the transaction mode of a stored procedure, you must be the
owner of the stored procedure, the owner of the database containing
the stored procedure, or the System Administrator. The Database
Owner or System Administrator can change the mode of another
user’s stored procedure by qualifying it with the database and user
name. For example:

sp_procxmode "otherdb.otheruser.newproc", "chained"

• To use sp_procxmode, turn off chained transaction mode using the
chained option of the set command. By default, this option is turned
off.

• When you use sp_procxmode with no parameters, it reports the
transaction modes of every stored procedure in the current database.

• To examine a stored procedure’s transaction mode (without changing
it), enter:

sp_procxmode procname

• To change a stored procedure’s transaction mode, enter:

sp_procxmode procname, tranmode

• When you create a stored procedure, Adaptive Server tags it with the
current session’s transaction mode. This means:

• You can execute “chained” stored procedures only in sessions
using chained transaction mode.

• You can execute “unchained” stored procedures only in sessions
using unchained transaction mode.

To execute a particular stored procedure in either chained or
unchained sessions, set its transaction mode to “anymode”.

• If you attempt to run a stored procedure under the wrong transaction
mode, Adaptive Server returns a warning message, but the current
transaction, if any, is not affected.

Permissions Only a System Administrator, the Database Owner, or the owner of a
procedure can execute sp_procxmode to change the transaction mode. Any
user can execute sp_procxmode to display the transaction mode.

See also Commands begin transaction, commit, save transaction, set

CHAPTER 8 System Procedures

1097

sp_recompile
Description Causes each stored procedure and trigger that uses the named table to be

recompiled the next time it runs.

Syntax sp_recompile objname

Parameters objname
is the name of a table in the current database.

Examples Recompiles each trigger and stored procedure that uses the table titles the next
time the trigger or stored procedure is run:

sp_recompile titles

Usage • The queries used by stored procedures and triggers are optimized only
once, when they are compiled. As you add indexes or make other changes
to your database that affect its statistics, your compiled stored procedures
and triggers may lose efficiency. By recompiling the stored procedures and
triggers that act on a table, you can optimize the queries for maximum
efficiency.

• sp_recompile looks for objname only in the current database and
recompiles triggers and stored procedures only in the current database.
sp_recompile does not affect objects in other databases that depend on the
table.

• You cannot use sp_recompile on system tables.

Permissions Any user can execute sp_recompile.

See also Commands create index, update statistics

sp_remap

1098

sp_remap
Description Remaps a stored procedure, trigger, rule, default, or view from releases

later than 4.8 and prior to 10.0 to be compatible with releases 10.0 and
later. Use sp_remap on pre-existing objects that the upgrade procedure
failed to remap.

Syntax sp_remap objname

Parameters objname
is the name of a stored procedure, trigger, rule, default, or view in the
current database.

Examples Example 1 Remaps a stored procedure called myproc:

sp_remap myproc

Example 2 Remaps a rule called default_date. Execute a use my_db
statement to open the my_db database before running this procedure:

sp_remap "my_db..default_date"

Usage • If sp_remap fails to remap an object, drop the object from the database
and re-create it. Before running sp_remap on an object, it is a good
idea to copy its definition into an operating system file with the
defncopy utility. See the Utility Guide for more information about
defncopy.

• sp_remap can cause your transaction log to fill rapidly. Before
running sp_remap, use the dump transaction command to dump the
transaction log, as needed.

• You can use sp_remap only on objects in the current database.

• sp_remap makes no changes to objects that were successfully
upgraded to the current release.

Permissions Only a System Administrator or the owner of an object can execute
sp_remap.

See also Commands dump transaction

System procedures – sp_helptext

Utility programs defncopy

CHAPTER 8 System Procedures

1099

sp_remoteoption
Description Displays or changes remote login options.

Syntax sp_remoteoption [remoteserver [, loginame
[, remotename [, optname [, optvalue]]]]]

Parameters remoteserver
is the name of the server that will be executing RPCs on this server.

Note This manual page uses the term “local server” to refer to the server
that is executing the remote procedures that are run from a “remote
server.”

loginame
is the login name that identifies the local login for the remoteserver,
loginame, remotename combination.

remotename
is the remote user name that identifies the remote login for the
remoteserver, loginame, remotename combination.

optname
is the name of the option to change. Currently, there is only one option,
trusted, which means that the local server accepts remote logins from
other servers without user-access verification for the particular remote
login. The default is to use password verification. Adaptive Server
understands any unique string that is part of the option name. Use
quotes around the option name if it includes embedded blanks.

optvalue
is either true or false. true turns the option on, false turns it off.

Examples Example 1 Displays a list of the remote login options:

sp_remoteoption

Settable remote login options.
remotelogin_option

trusted

Example 2 Defines the remote login from the remote server GATEWAY
to be trusted; that is, the password is not checked:

sp_remoteoption GATEWAY, churchy, pogo, trusted, true

sp_remoteoption

1100

Example 3 Defines the remote login “pogo” from the remote server
GATEWAY as a login that is not trusted; that is, the password is checked:

sp_remoteoption GATEWAY, churchy, pogo, trusted, false

Example 4 Defines all logins from GATEWAY that map to login “albert”
on the local server to be trusted:

sp_remoteoption GATEWAY, albert, NULL, trusted, true

Usage • To display a list of the remote login options, execute sp_remoteoption
with no parameters.

• If you have used sp_addremotelogin to map all users from a remote
server to the same local name, specify trusted for those users. For
example, if all users from server GOODSRV that are mapped to
“albert” are trusted, specify:

sp_remoteoption GOODSRV, albert, NULL, trusted, true

If the logins are not specified as trusted, they cannot execute RPCs on
the local server unless they specify local server passwords when they
log into the remote server. When they use Open Client Client-Library,
users can specify a password for server-to-server connections with the
routine ct_remote_pwd. isql and bcp do not permit users to specify a
password for RPC connections.

If users are logged into the remote server using “unified login”, the
logins must also be trusted on the local server, or they must specify
passwords for the server when they log into the remote server.

See the System Administration Guide for more information about
setting up servers for remote procedure calls and for using “unified
login.”

Permissions Only a System Security Officer can execute sp_remoteoption.

See also System procedures sp_addremotelogin, sp_dropremotelogin,
sp_helpremotelogin

Utility isql

CHAPTER 8 System Procedures

1101

sp_remotesql
Description Component Integration Services only Establishes a connection to a

remote server, passes a query buffer to the remote server from the client,
and relays the results back to the client.

Syntax sp_remotesql server, query
[, query2, ... , query254]

Parameters server_name
is the name of a remote server defined with sp_addserver.

query
is a query buffer a with maximum length of 255 characters.

query2 … query254
is a query buffer with a maximum length of 255 characters. If supplied,
these arguments are concatenated with the contents of query1 into a
single query buffer.

Examples Example 1 Passes the query buffer to FREDS_SERVER, which interprets
select @@version and returns the result to the client. Adaptive Server does
not interpret the result:

sp_remotesql FREDS_SERVER, "select @@version"

Example 2 Illustrates the use of sp_remotesql in a stored procedure. This
example and example 1 return the same information to the client:

create procedure freds_version
as
exec sp_remotesql FREDS_SERVER, "select @@version"
go
exec freds_version
go

Example 3 The server concatenates two query buffers into a single buffer,
and passes the complete insert statement to the server DCO_SERVER for
processing. The syntax for the insert statement is a format that
DCO_SERVER understands. The returned information is not interpreted
by the server. This example also examines the value returned in @@error.

sp_remotesql DCO_SERVER,
"insert into remote_table
(numbercol,intcol, floatcol,datecol)",
"values (109.26,75, 100E5,'10-AUG-85')"
select @@error

Example 4 Illustrates the use of local variables as parameters to
sp_remotesql:

sp_remotesql

1102

declare @servname varchar(30)
declare @querybuf varchar(200)
select @servname = "DCO_SERV"
select @querybuf = "select table_name

from all_tables
where owner = 'SYS'"

exec sp_remotesql @servname, @querybuf

Usage • sp_remotesql establishes a connection to a remote server, passes a
query buffer to the remote server from the client, and relays the results
back to the client. The local server does not intercept results.

• You can use sp_remotesql within another stored procedure.

• The query buffer parameters must be a character expression with a
maximum length of 255 characters. If you use a query buffer that is
not char or varchar, you will receive datatype conversion errors.

• sp_remotesql sets the global variable @@error to the value of the last
error message returned from the remote server if the severity of the
message is greater than 10.

• If sp_remotesql is issued from within a transaction, Adaptive Server
verifies that a transaction has been started on the remote server before
passing the query buffer for execution. When the transaction
terminates, the remote server is directed to commit the transaction.
The work performed by the contents of the query buffer is part of the
unit of work defined by the transaction.

If transaction control statements are part of the query buffer, it is the
responsibility of the client to ensure that the transaction commit and
rollback occur as expected. Mixing Transact-SQL with transaction
control commands in the query buffer can cause unpredictable results.

• The local server manages the connection to the remote server.
Embedding connect to or disconnect commands in the query buffer
causes results that require interpretation by the remote server. This is
not required or recommended. Typically, the result is a syntax error.

Permissions Any user can execute sp_remotesql.

See also Commands connect to...disconnect

System procedures sp_addserver, sp_autoconnect, sp_passthru

CHAPTER 8 System Procedures

1103

sp_rename
Description Changes the name of a user-created object or user-defined datatype in the

current database.

Syntax sp_rename objname, newname [,“index” | “column”]

Parameters objname
is the original name of the user-created object (table, view, column,
stored procedure, index, trigger, default, rule, check constraint,
referential constraint, or user-defined datatype). If the object to be
renamed is a column in a table, objname must be in the form
“table.column”. If the object is an index, objname must be in the form
“table.indexname”.

newname
is the new name of the object or datatype. The name must conform to
the rules for identifiers and must be unique to the current database.

index
specifies that the object you are renaming is an index, not a column.
This argument allows you to rename an index that has the same name
as a column, without dropping and re-creating the index.

column
specifies that the object you are renaming is a column, not an index.
This argument is part of the same option as the index argument.

Examples Example 1 Renames the titles table to books:

sp_rename titles, books

Example 2 Renames the title column in the books table to bookname:

sp_rename "books.title", bookname

Example 3 Renames the titleind index in the books table to titleindex:

sp_rename "books.titleind", titleindex

Example 4 Renames the user-defined datatype tid to bookid:

sp_rename tid, bookid

Example 5 renames the title_id index in the titles table to isbn.

sp_rename "titles.title_id", isbn, "index"

Usage • sp_rename changes the name of a user-created object or datatype. You
can change only the name of an object or datatype in the database in
which you issue sp_rename.

sp_rename

1104

• When you are renaming a column or index, do not specify the table
name in newname. See Examples 2, 3, and 5.

• If a column and an index have the same name, use the [,“index” |
“column”] argument, which specifies whether to rename the index or
the column. In the following sample, assume that both an index and a
column named idx exist:

sp_rename "t.idx", new_idx, "column"

Column name has been changed. (Return status = 0)

sp_rename "t.idx", new_idx, "index"

Index name has been changed. (Return status = 0)

• You can change the name of a an object referenced by a view. For
example, if a view references the new_sales table and you rename
new_sales to old_sales, the view will reference old_sales.

• You cannot change the names of system objects and system datatypes.

 Warning! Procedures, triggers, and views that depend on an object
whose name has been changed work until they are dropped and
re-created. Also, the old object name appears in query results until the
user changes and re-creates the procedure, trigger, or view. Change
the definitions of any dependent objects when you execute
sp_rename. Find dependent objects with sp_depends.

Permissions Only the Database Owner or a System Administrator can use the setuser
command to assume another database user’s identity to rename objects
owned by other users. All users can execute sp_rename to rename their
own objects.

See also System procedures sp_depends, sp_rename

CHAPTER 8 System Procedures

1105

sp_renamedb
Description Changes the name of a user database.

Syntax sp_renamedb dbname, newname

Parameters dbname
is the original name of the database.

newname
is the new name of the database. Database names must conform to the
rules for identifiers and must be unique.

Examples Example 1 Renames the accounting database to financial:

sp_renamedb accounting, financial

Example 2 Renames the database named work, which is a Transact-SQL
reserved word, to workdb. This example shows how sp_dboption is used to
place the work database in single-user mode before renaming it and restore
it to multi-user mode afterward:

sp_dboption work, single, true
go
use work
go
checkpoint
go
sp_renamedb work, workdb
go
use master
go
sp_dboption workdb, single, false
go
use workdb
go
checkpoint
go

Usage • sp_renamedb changes the name of a database. You cannot rename
system databases or databases with external referential integrity
constraints.

• The System Administrator must place a database in single-user mode
with sp_dboption before renaming it and must restore it to multi-user
mode afterward.

sp_renamedb

1106

• sp_renamedb fails if any table in the database references, or is
referenced by, a table in another database. Use the following query to
determine which tables and external databases have foreign key
constraints on primary key tables in the current database:

select object_name(tableid), db_name(frgndbid)
from sysreferences
where frgndbid is not null

Use the following query to determine which tables and external
databases have primary key constraints for foreign key tables in the
current database:

select object_name(reftabid), db_name(pmrydbid)
from sysreferences
where pmrydbid is not null

Use alter table to drop the cross-database constraints in these tables.
Then, rerun sp_renamedb.

• When you change a database name:

• Drop all stored procedures, triggers, and views that include the
database name

• Change the source text of the dropped objects to reflect the new
database name

• Re-create the dropped objects

• Change all applications and SQL source scripts that reference the
database, either in a use database_name command or as part of a
fully qualified identifier (in the form
dbname.[owner].objectname)

• If you use scripts to run dbcc commands or dump database and dump
transaction commands on your databases, be sure to update those
scripts.

 Warning! Procedures, triggers, and views that depend on a database
whose name has been changed work until they are re-created. Change
the definitions of any dependent objects when you execute
sp_renamedb. Find dependent objects with sp_depends.

Permissions Only a System Administrator can execute sp_renamedb.

See also Commands create database

CHAPTER 8 System Procedures

1107

System procedures sp_changedbowner, sp_dboption, sp_depends,
sp_helpdb, sp_rename

sp_rename_qpgroup

1108

sp_rename_qpgroup
Description Renames an abstract plan group.

Syntax sp_rename_qpgroup old_name, new_name

Parameters old_name
is the current name of the abstract plan group.

new_name
is the new name for the group. The specified new_name cannot be the
name of an existing abstract plan group in the database.

Examples sp_rename_qpgroup dev_plans, prod_plans

Changes the name of the group from dev_plans to prod_plans.

Usage • Use sp_rename_qpgroup to rename an abstract plan group. You
cannot use the name of an existing plan group for the new name.

• sp_rename_qpgroup does not affect the contents of the renamed
group. IDs of existing abstract plans are not changed.

• You cannot rename the default abstract plan groups, ap_stdin and
ap_stdout.

• sp_rename_qpgroup cannot be run in a transaction.

Permissions Only a System Administrator or the Database Owner can execute
sp_rename_qpgroup.

See also System procedures sp_help_qpgroup

CHAPTER 8 System Procedures

1109

sp_reportstats
Description Reports statistics on system usage.

Syntax sp_reportstats [loginame]

Parameters loginame
is the login name of the user to show accounting totals for.

Examples Example 1 Displays a report of current accounting totals for all Adaptive
Server users:

sp_reportstats

Name Since CPU Percent CPU I/O Percent I/O
------ ----------- ----- ------------ ----- -------------
julie jun 19 1993 10000 24.9962% 5000 24.325%
jason jun 19 1993 10002 25.0013% 5321 25.8866%
ken jun 19 1993 10001 24.9987% 5123 24.9234%
kathy jun 19 1993 10003 25.0038% 5111 24.865%

Total CPU Total I/O
--------- ---------
40006 20555

Example 2 Displays a report of current accounting totals for user “kathy”:

sp_reportstats kathy

Name Since CPU Percent CPU I/O Percent I/O
------ ----------- ----- ------------ ----- -------------
kathy Jul 24 1993 498 49.8998% 48392 9.1829%

Total CPU Total I/O
--------- ----------
998 98392

Usage • sp_reportstats prints out the current accounting totals for all logins, as
well as each login’s individual statistics and percentage of the overall
statistics. sp_reportstats accepts one parameter, the login name of the
account to report. With no parameters, sp_reportstats reports on all
accounts.

• sp_reportstats does not report statistics for any process with a system
user ID (suid) of 0 or 1. This includes deadlock detection, checkpoint,
housekeeper, network, auditing, mirror handlers, and all users with
sa_role.

sp_reportstats

1110

• The units reported for “CPU” are machine clock ticks, not Adaptive
Server clock ticks.

• The “probe” user exists for the two-phase commit probe process,
which uses a challenge-and-response mechanism to access Adaptive
Server.

Permissions Only a System Administrator can execute sp_reportstats.

See also System procedures sp_clearstats, sp_configure

CHAPTER 8 System Procedures

1111

sp_revokelogin
Description Windows NT only Revokes Adaptive Server roles and default

permissions from Windows NT users and groups when Integrated Security
mode or Mixed mode (with Named Pipes) is active.

Syntax sp_revokelogin {login_name | group_name}

Parameters login_name
is the network login name of the Windows NT user.

group_name
is the Windows NT group name.

Examples Example 1 Revokes all permissions from the Windows NT user named
“jeanluc”:

sp_revokelogin jeanluc

Example 2 Revokes all roles from the Windows NT Administrators
group:

sp_revokelogin Administrators

Usage • Use sp_revokelogin only when Adaptive Server is running in
Integrated Security mode or Mixed mode, when the connection is
Named Pipes. If Adaptive Server is running in Standard mode, or in
Mixed mode using a connection other than Named Pipes, use the
revoke command.

• If you revoke a user’s roles and default privileges with sp_revokelogin,
that user can no longer log into Adaptive Server over a trusted
connection.

Permissions Only a System Administrator can execute sp_revokelogin.

See also Commands grant, revoke, setuser

System procedures sp_droplogin, sp_dropuser, sp_logininfo

sp_role

1112

sp_role
Description Grants or revokes roles to an Adaptive Server login account.

Syntax sp_role {"grant" | "revoke"}, rolename, loginame

Parameters grant | revoke
specifies whether to grant the role to or revoke the role from loginame.

rolename
is the role to be granted or revoked.

loginame
is the login account to or from which the role is to be granted or
revoked.

Examples Grants the System Administrator role to the login account named
“alexander”:

sp_role "grant", sa_role, alexander

Usage • sp_role grants or revokes roles to an Adaptive Server login account.

• When you grant a role to a user, it takes effect the next time the user
logs into Adaptive Server. Alternatively, the user can enable the role
immediately by using the set role command. For example, the
command enables the System Administrator role for the user:

set role sa_role on

• You cannot revoke a role from a user while the user is logged in.

• When users log in, all roles that have been granted to them are active
(on). To turn a role off, use the set command. For example, to
deactivate the System Administrator role, use the command:

set role "sa_role" off

Permissions Only a System Administrator can execute sp_role to grant the System
Administrator role to other users. Only a System Security Officer can
execute sp_role to grant any role other than “sa” to other users.

See also Commands grant, revoke, set

Functions proc_role

System procedures sp_displaylogin

CHAPTER 8 System Procedures

1113

sp_sendmsg
Description Sends a message to a User Datagram Protocol (UDP) port.

Syntax sp_sendmsg ip_address, port_number, message

Parameters ip_address
is the IP address of the machine where the UDP application is running.

port_number
is the port number of the UDP port.

message
is the message to send. It can be up to 255 characters in length.

Examples sp_sendmsg "120.10.20.5", 3456, "Hello World"

Usage • sp_sendmsg is not supported on Windows NT.

• To enable the use of UDP messaging, a System Security Officer must set
the configuration parameter allow sendmsg to 1.

• No security checks are performed with sp_sendmsg. Sybase strongly
recommends caution when using sp_sendmsg to send sensitive
information across the network. By enabling this functionality, the user
accepts any security problems which result from its use.

• This sample C program listens on a port that you specify and echoes the
messages it receives. For example, to receive the sp_sendmsg calls for
Example 1, use:

updmon 3456
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>

main(argc, argv)
int argc; char *argv[];
{

struct sockaddr_in sadr;
int portnum,sck,dummy,msglen;
char msg[256];

if (argc < 2) {
printf(“Usage: udpmon <udp portnum>\n”);

sp_sendmsg

1114

exit(1);
}

if ((portnum=atoi(argv[1])) < 1) {
printf(“Invalid udp portnum\n”);
exit(1);

}

if ((sck=socket(AF_INET,SOCK_DGRAM,IPPROTO_UDP)) < 0) {
printf(“Couldn’t create socket\n”);
exit(1);

}

sadr.sin_family = AF_INET;
sadr.sin_addr.s_addr = inet_addr(“0.0.0.0”);
sadr.sin_port = portnum;

if (bind(sck,&sadr,sizeof(sadr)) < 0) {
printf(“Couldn’t bind requested udp port\n”);
exit(1);

}

for (;;)
{

if((msglen=recvfrom(sck,msg,sizeof(msg),0,NULL,&dummy))
< 0)

printf(“Couldn’t recvfrom() from udp port\n”);
printf(“%.*s\n”, msglen, msg);

}
}

Permissions Any user can execute sp_sendmsg.

See also Function syb_sendmsg

CHAPTER 8 System Procedures

1115

sp_serveroption
Description Displays or changes remote server options.

Syntax sp_serveroption [server, optname, optvalue]

Parameters server
is the name of the remote server for which to set the option.

optname
is the name of the option to be set or unset. Table 8-18 lists the option
names.

Table 8-18: sp_serveroption options

Option Meaning

mutual authentication Valid for “rpc security model B” only – this option specifies that the local server
authenticates the remote server by retrieving the credential of the remote server and
verifying it with the security mechanism. With this service, the credentials of both
servers are authenticated and verified.

external engine auto start Specifies that EJB Server starts up each time Adaptive Server starts up. The default
is true; starting Adaptive Server also starts up EJB Server.

net password encryption Specifies whether to initiate connections with a remote server with the client side
password encryption handshake or with the normal (unencrypted password)
handshake sequence. The default is false, no network encryption.

readonly Component Integration Services only – specifies that access to the server named is
read only.

rpc security model A The default model for handling RPCs. This model does not support mutual
authentication, message integrity, or message confidentiality between the local server
and the remote server.

rpc security model B This model results in a single, secure physical connection established between the
local and remote servers. Logical connections for each RPC that is executed are
multiplexed over the single, secure, physical connection. This model supports mutual
authentication, message confidentiality via encryption, and message integrity.

security mechanism Valid for “rpc security model B” only – this option specifies the security mechanism
for the remote server. You must set this option to true to use security model B.

timeouts When unset (false), disables the normal timeout code used by the local server, so the
site connection handler does not automatically drop the physical connection after one
minute with no logical connection. The default is true.

use message confidentiality Valid for “rpc security model B” only – this option specifies that messages are
encrypted when sent to the remote server, and results from the remote server are
encrypted.

use message integrity Valid for “rpc security model B” only – this option specifies that messages between
the servers are checked for tampering.

sp_serveroption

1116

Adaptive Server accepts any unique string that is part of the option
name. Use quotes around the option name if it includes embedded
blanks.

optvalue
is true (on) or false (off) for all options except the security mechanism
option.

For the security mechanism option, specify the name of the security
mechanism. To see the names of the security mechanisms available on
a server, execute:

select * from syssecmechs

Examples Example 1 Displays a list of the server options:

sp_serveroption

Settable server options.

mutual authentication
net password encryption
readonly
rpc security model A
rpc security model B
security mechanism
timeouts
use message confidentiality
use message integrity
timeouts
net password encryption

Example 2 Tells the server not to time out inactive physical connections
with the remote server GATEWAY:

sp_serveroption GATEWAY, "timeouts", false

Example 3 Specifies that when connecting to the remote server
GATEWAY, GATEWAY sends back an encryption key to encrypt the
password to send to it:

sp_serveroption GATEWAY, "net password encryption", true

Example 4 Specifies that the EJB Server SYB_EJB starts up each time
Adaptive Server starts up:

sp_serveroption SYB_EJB, "external engine auto start", true

Example 5 Specifies that the security model for RPCs for the server
“TEST3” is security model B.

CHAPTER 8 System Procedures

1117

sp_serveroption TEST3, "rpc security model B", true

Example 6 Specifies that the security model to use for RPCs for “TEST3”
is DCE:

sp_serveroption TEST3, "security mechanism", dce

Example 7 Specifies that the local server will check the authenticity of the
remote server “TEST3”. With security model B, the remote server will
check the authenticity of the local server, whether or not this option is set:

sp_serveroption TEST3, "mutual authentication", true

Usage • To display a list of server options that can be set by the user, use
sp_serveroption with no parameters.

• Once timeouts is set to false, the site handlers will continue to run until
one of the two servers is shut down.

• The net password encryption option allows clients to specify whether
to send passwords in plain text or encrypted form over the network
when initiating a remote procedure call. If net password encryption is
true, the initial login packet is sent without passwords, and the client
indicates to the remote server that encryption is desired. The remote
server sends back an encryption key, which the client uses to encrypt
its passwords. The client then encrypts its passwords, and the remote
server uses the key to authenticate them when they arrive.

• To set network password encryption for a particular isql session, you
can use a command line option for isql. For more information, see the
Utility Programs manual for your platform.

• You cannot use the net password encryption option when connecting
to a pre-release 10.0 SQL Server.

• The options security mechanism, mutual authentication, use message
confidentiality, and use message integrity do not apply to security
model A.

• To use security model B, both the local server and the remote server
must use model B and both must use the same security mechanism.

• Se the System Administration Guide for more information on server
options.

Permissions Only a System Administrator can execute sp_serveroption to set the
timeouts option. Any user can execute sp_serveroption with no parameters
to display a list of options.

sp_serveroption

1118

Only a System Security Officer can set the net password encryption,
security mechanism, mutual authentication, use message confidentiality, and
use message integrity options.

See also System procedures sp_helpserver, sp_password

Utility isql

CHAPTER 8 System Procedures

1119

sp_setlangalias
Description Assigns or changes the alias for an alternate language.

Syntax sp_setlangalias language, alias

Parameters language
is the official language name of the alternate language.

alias
is the new local alias for the alternate language.

Examples sp_setlangalias french, français

This command assigns the alias name “français” for the official language
name “french”.

Usage • alias replaces the current value of syslanguages.alias for the official
name.

• The set language command can use the new alias in place of the
official language name.

Permissions Only a System Administrator can execute sp_setlangalias.

See also Commands set

System procedures sp_addlanguage, sp_droplanguage,
sp_helplanguage

sp_setpglockpromote

1120

sp_setpglockpromote
Description Sets or changes the lock promotion thresholds for a database, for a table,

or for Adaptive Server.

Syntax sp_setpglockpromote {"database" | "table"}, objname, new_lwm,
new_hwm, new_pct

sp_setpglockpromote server, NULL, new_lwm, new_hwm, new_pct

Parameters server
sets server-wide values for the lock promotion thresholds.

"database" | "table"
specifies whether to set the lock promotion thresholds for a database or
table. “database” and “table” are Transact-SQL keywords, so the quotes
are required.

objname
is either the name of the table or database for which you are setting the
lock promotion thresholds or null, if you are setting server-wide values.

new_lwm
specifies the value to set for the low watermark (LWM) threshold. The
LWM must be less than or equal to the high watermark (HWM). The
minimum value for LWM is 2. This parameter can be null.

new_hwm
specifies the value to set for the lock promotion HWM threshold. The
HWM must be greater than or equal to the LWM. The maximum HWM
is 2,147,483,647. This parameter can be null.

new_pct
specifies the value to set for the lock promotion percentage (PCT)
threshold. PCT must be between 1 and 100. This parameter can be null.

Examples Example 1 Sets the server-wide lock promotion LWM to 200, the HWM
to 300, and the PCT to 50:

sp_setpglockpromote "server", NULL, 200, 300, 50

Example 2 Sets lock promotion thresholds for the master database:

sp_setpglockpromote "database", master, 1000, 1100, 45

Example 3 Sets lock promotion thresholds for the titles table in the pubs2
database. This command must be issued from the pubs2 database:

sp_setpglockpromote "table", "pubs2..titles", 500, 700, 10

CHAPTER 8 System Procedures

1121

Example 4 Changes the HWM threshold to 1600 for the master database.
The thresholds were previously set with sp_setpglockpromote. This
command must be issued from the master database:

sp_setpglockpromote "database", master, @new_hwm=1600

Usage • sp_setpglockpromote configures the lock promotion values for a table,
for a database, or for Adaptive Server.

Adaptive Server acquires page locks on a table until the number of
locks exceeds the lock promotion threshold. sp_setpglockpromote
changes the lock promotion thresholds for an object, a database, or the
server. If Adaptive Server is successful in acquiring a table lock, the
page locks are released.

When the number of locks on a table exceeds the HWM threshold,
Adaptive Server attempts to escalate to a table lock. When the number
of locks on a table is below the LWM, Adaptive Server does not
attempt to escalate to a table lock. When the number of locks on a
table is between the HWM and LWM and the number of locks
exceeds the PCT threshold, Adaptive Server attempts to escalate to a
table lock.

• Lock promotion thresholds for a table override the database or
server-wide settings. Lock promotion thresholds for a database
override the server-wide settings.

• Lock promotion thresholds for Adaptive Server do not need
initialization, but you must initialize database and table lock
promotion thresholds by specifying LWM, HWM, and PCT with
sp_setpglockpromote, which creates a row for the object in
sysattributes when it is first run for a database or table. Once the
thresholds have been initialized, then they can be modified
individually, as in Example 4.

• For a table or a database, sp_setpglockpromote sets LWM, HWM, and
PCT in a single transaction. If sp_setpglockpromote encounters an
error while updating any of the values, then all changes are aborted
and the transaction is rolled back. For server-wide changes, one or
more thresholds may fail to be updated while others are successfully
updated. Adaptive Server returns an error message if any values fail
to be updated.

• To view the server-wide settings for the lock promotion thresholds,
use sp_configure "lock promotion" to see all three threshold values. To
view lock promotion settings for a database, use sp_helpdb. To view
lock promotion settings for a table, use sp_help.

sp_setpglockpromote

1122

Permissions Only a System Administrator can execute sp_setpglockpromote.

See also System procedures sp_configure, sp_dropglockpromote, sp_help,
sp_helpdb

CHAPTER 8 System Procedures

1123

sp_setpsexe
Description Sets custom execution attributes for a session while the session is active.

Syntax sp_setpsexe spid, exeattr, value

Parameters spid
is the ID of the session for which to set execution variables. Use sp_who
to see spids.

exeattr
identifies the execution attribute to be set. Values are priority and
enginegroup.

value
is the new value of exeattr. Values for each attribute are as follows:

• If exeattr is priority, value is HIGH, MEDIUM, or LOW.

• If exeattr is enginegroup, value is the name of an existing engine
group.

Examples This example sets the priority of the process with an ID of 1 to HIGH:

sp_setpsexe 1, "priority", "HIGH"

Usage • Execution attribute values specified with sp_setpsexe are valid for the
current session only and do not apply after the session terminates.

• Use sp_setpsexe with caution or it can result in degraded
performance. Changing attributes “on the fly”, using sp_setpsexe, can
help if the process is not getting CPU time; however, if the
performance problem is due to something else, such as locks,
changing execution attributes could make the problem worse.

• Because you can only set execution attributes for sessions,
sp_setpsexe cannot be set for a worker process spid.

• Except for the housekeeper spid, you cannot set execution attributes
for system spids.

• sp_setpsexe does not work if there are no online engines in the
associated engine group.

Permissions Only a System Administrator can execute sp_setpsexe without restriction.
Any user can execute sp_setpsexe to lower the priority of a process owned
by that user.

See also System procedures sp_addexeclass, sp_bindexeclass,
sp_dropexeclass, sp_showexeclass

sp_set_qplan

1124

sp_set_qplan
Description Changes the text of the abstract plan of an existing plan without changing

the associated query.

Syntax sp_set_qplan id, plan

Parameters id
is the ID of the abstract plan.

plan
is a new abstract plan.

Examples sp_set_qplan 563789159,
"(g_join (scan t1) (scan t2))"

Usage • Use sp_set_qplan to change the abstract plan of an existing plan. You
can specify a maximum of 255 characters for a plan. If the abstract
plan is longer than 255 characters, you can drop the old plan with
sp_drop_qplan and then use create plan to create a new plan for the
query.

• When you change a plan with sp_set_qplan, plans are not checked for
valid abstract plan syntax. Also, the plan is not checked for
compatibility with the SQL text. All plans modified with
sp_set_qplan should be immediately checked for correctness by
running the query for the specified ID.

• To find the ID of a plan, use sp_help_qpgroup, sp_help_qplan, or
sp_find_qplan. Plan IDs are also returned by create plan and are
included in showplan output.

Permissions Any user can execute sp_set_qplan to change the text for a plan that he or
she owns. Only the System Administrator or the Database Owner can
change the text for a plan that belongs to another user.

See also Commands create plan

System procedures sp_drop_qplan, sp_find_qplan, sp_help_qpgroup,
sp_help_qplan

CHAPTER 8 System Procedures

1125

sp_setrowlockpromote
Description Sets or changes row-lock promotion thresholds for a datarows-locked

table, for all datarows-locked tables in a database, or for all
datarows-locked tables on a server.

Syntax sp_setrowlockpromote "server", NULL, new_lwm, new_hwm, new_pct

sp_setrowlockpromote {"database" | "table"}, objname, new_lwm,
new_hwm, new_pct

Parameters server
sets server-wide values for the row lock promotion thresholds.

"database" | "table"
specifies whether to set the row-lock promotion thresholds for a
database or table.

objname
is either the name of the table or database for which you are setting the
row-lock promotion thresholds or null, if you are setting server-wide
values.

new_lwm
specifies the value to set for the low watermark (LWM) threshold. The
LWM must be less than or equal to the high watermark (HWM). The
minimum value for LWM is 2. This parameter can be null.

new_hwm
specifies the value to set for the high watermark (HWM) threshold. The
HWM must be greater than or equal to the LWM. The maximum HWM
is 2,147,483,647. This parameter can be null.

new_pct
specifies the value to set for the lock promotion percentage (PCT)
threshold. PCT must be between 1 and 100. This parameter can be null.

Examples Example 1 Sets row lock promotion values for all datarows-locked tables
in the engdb database:

sp_setrowlockpromote "database", engdb, 400, 400,95

Example 2 Sets row lock promotion values for the sales table:

sp_setrowlockpromote "table", sales, 250, 250, 100

Usage • sp_setrowlockpromote sets or changes row-lock promotion thresholds
for a table, a database, or Adaptive Server.

sp_setrowlockpromote

1126

Adaptive Server acquires row locks on a datarows-locked table until
the number of locks exceeds the lock promotion threshold. If
Adaptive Server is successful in acquiring a table lock, the row locks
are released.

When the number of row locks on a table exceeds the HWM,
Adaptive Server attempts to escalate to a table lock. When the number
of row locks on a table is below the LWM, Adaptive Server does not
attempt to escalate to a table lock. When the number of row locks on
a table is between the HWM and LWM, and the number of row locks
exceeds the PCT threshold as a percentage of the number of rows in a
table, Adaptive Server attempts to escalate to a table lock.

• Lock promotion is always two-tiered, that is, row locks are promoted
to table locks. Adaptive Server does not promote from row locks to
page locks.

• Lock promotion thresholds for a table override the database or
server-wide settings. Lock promotion thresholds for a database
override the server-wide settings.

• To change the lock promotion thresholds for a database, you must be
using the master database. To change the lock promotion thresholds
for a table in a database, you must be using the database where the
table resides.

• Server-wide row lock promotion thresholds can also be set with
sp_configure. When you use sp_setrowlockpromote to change the
values server-wide, it changes the configuration parameters, and
saves the configuration file. When you first install Adaptive Server,
the server-wide row lock promotion thresholds set by the
configuration parameters are:

See the System Administration Guide for more information.

• The system procedure sp_sysmon reports on row lock promotions.

row lock promotion HWM 200

row lock promotion LWM 200

row lock promotion PCT 100

CHAPTER 8 System Procedures

1127

• Database-level row lock promotion thresholds are stored in the
master..sysattributes table. If you dump a database, and load it only
another server, you must set the row lock promotion thresholds on the
new server. Object-level row lock promotion thresholds are stored in
the sysattributes table in the user database, and are included in the
dump.

Permissions Only a System Administrator can execute sp_setrowlockpromote.

See also System procedures sp_configure, sp_droprowlockpromote, sp_sysmon

sp_setsuspect_granularity

1128

sp_setsuspect_granularity
Description Displays or sets the recovery fault isolation mode for a user database,

which governs how recovery behaves when it detects data corruption.

Syntax sp_setsuspect_granularity [dbname
[, "database" | "page" [, "read_only"]]]

Parameters dbname
is the name of the database for which to display or set the recovery fault
isolation mode. For displaying, the default is the current database. For
setting, you must be in the master database and specify the target
dbname.

database
marks the entire database suspect, which makes it inaccessible, if the
recovery process detects that any of its data is suspect.

page
marks only the corrupt pages suspect, making them inaccessible, if
recovery detects corrupt data in the database. The rest of the data is
accessible.

read_only
if specified, marks the entire database read only if recovery marks any
pages suspect.

Examples Example 1 Displays the recovery fault isolation mode for the current
database:

sp_setsuspect_granularity

DB Name Cur. Suspect Gran. Cfg. Suspect Gran. Online mode
------- ------------------ ------------------ -----------
pubs2 database database read/write

Example 2 Displays the current and configured recovery fault isolation
mode for the pubs2 database:

sp_setsuspect_granularity pubs2

Example 3 The next time recovery runs in the pubs2 database, if any
corrupt pages are detected, only the suspect pages will be taken offline and
the rest of the database will be brought online:

sp_setsuspect_granularity pubs2, "page"

DB Name Cur. Suspect Gran. Cfg. Suspect Gran.
------------- ------------------ -----------------
pubs2 database database

CHAPTER 8 System Procedures

1129

sp_setsuspect_granularity: The new values will become effective
during the next recovery of the database ’pubs2’.

Example 4 The next time recovery runs in the pubs2 database, if any
corrupt pages are detected, only the suspect pages will be taken offline and
the rest of the database will be brought online in read only mode:

sp_setsuspect_granularity pubs2, "page", "read_only"

Example 5 The next time recovery runs in the pubs2 database, if any
corrupt data is detected, the entire database will be marked suspect and
taken offline:

sp_setsuspect_granularity pubs2, "database"

Usage • sp_setsuspect_granularity displays and sets the recovery fault
isolation mode. This mode governs whether recovery marks an entire
database or only the corrupt pages suspect when it detects that any
data that it requires has been corrupted. Se the System Administration
Guide for more information.

• The default recovery fault isolation mode of a user database is
“database”. You can set the recovery fault isolation mode only for a
user database, not for a system database.

• You must be in the master database to set the recovery fault isolation
mode.

• Data marked suspect due to corruption persists across Adaptive
Server start-ups. When certain pages have been marked suspect, they
remain offline after you reboot the server.

• When part or all of a database is marked suspect, the suspect data is
not accessible to users unless a System Administrator has made the
suspect data accessible with the sp_forceonline_dband
sp_forceonline_page procedures.

• General database corruption, such as a corrupt database log or the
unavailability of another resource not specific to a page, causes the
entire database to be marked suspect, even if the recovery fault
isolation mode is “page”.

• If you do not specify page or database, Adaptive Server displays the
current and configured settings. The current setting is the one that was
in effect the last time recovery was executed in the database. The
configured setting is the one that will be in effect the next time
recovery is executed in the database.

sp_setsuspect_granularity

1130

• If the database comes online in read_only mode, no user can modify
any of its data, including data that is unaffected by the suspect pages
and is thus online. However, the system administrator can make the
database writeable using the sp_dboption system procedure to set read
only to false. In this case, users could then modify the online data, but
the suspect data would remain inaccessible.

Permissions Only a System Administrator can execute sp_setsuspect_granularity to set
the recovery fault isolation mode. Any user can execute
sp_setsuspect_granularity to display the settings.

See also Commands dump database, dump transaction, load database

System procedures sp_dboption, sp_forceonline_db,
sp_forceonline_page, sp_listsuspect_db, sp_listsuspect_page,
sp_setsuspect_threshold

CHAPTER 8 System Procedures

1131

sp_setsuspect_threshold
Description Displays or sets the maximum number of suspect pages that Adaptive

Server allows in a database before marking the entire database suspect.

Syntax sp_setsuspect_threshold [dbname [, threshold]]

Parameters dbname
is the name of the database for which you want to display or set the
suspect escalation threshold. The default is the current database.

threshold
indicates the maximum number of suspect data pages that recovery will
allow before marking the entire database suspect. The default is 20
pages. The minimum is 0.

Examples Example 1 Sets the maximum number of suspect pages to 5. If there are
more than 5 suspect pages, recovery will mark the entire database suspect:

sp_setsuspect_threshold pubs2, 5

Example 2 Displays the current and configured settings for the suspect
escalation threshold for the pubs2 database:

sp_setsuspect_threshold pubs2

Example 3 Displays the current and configured settings for the recovery
fault isolation threshold for the current user database:

sp_setsuspect_threshold

Usage • You must be in the master database to set the suspect escalation
threshold with sp_setsuspect_threshold.

• If you do not specify the number of pages, Adaptive Server displays
the current and configured settings. The current setting is the one that
was in effect the last time recovery was executed in the database. The
configured setting is the one that will be in effect the next time
recovery is executed in the database.

Permissions Only a System Administrator can execute sp_setsuspect_threshold to set
the escalation threshold. Any user can execute sp_setsuspect_threshold to
display the current settings.

See also System procedures sp_forceonline_db, sp_forceonline_page,
sp_listsuspect_db, sp_listsuspect_page, sp_setsuspect_granularity

sp_showcontrolinfo

1132

sp_showcontrolinfo
Description Displays information about engine group assignments, bound client

applications, logins, and stored procedures.

Syntax sp_showcontrolinfo [object_type, object_name, spid]

Parameters object_type
is AP for application, LG for login, PR for stored procedure, EG for
engine group, or PS for process. If you do not specify an object_type or
specify an object_type of null, sp_showcontrolinfo displays information
about all types.

object_name
is the name of the application, login, stored procedure, or engine group.
Do not specify an object_name if you specify PS as the object_type. If
you do not specify an object_name (or specify an object_name of null),
sp_showcontrolinfo displays information about all object names.

spid
is the Adaptive Server process ID. Specify an spid only if you specify
PS as the object_type. If you do not specify an spid (or specify an spid
of null), sp_showcontrolinfo displays information for all spids. Use
sp_who to see spids.

Examples Example 1 Shows all user-assigned execution class-to-object bindings:

sp_showcontrolinfo

Example 2 Displays the execution class of the isql application:

sp_showcontrolinfo 'AP', 'isql'

Example 3 Displays the execution class for all processes assigned to
engine groups:

sp_showcontrolinfo 'PS'

Example 4 Displays the execution class for spid 7:

sp_showcontrolinfo 'PS', null, 7

Usage • When used with no parameters, sp_showcontrolinfo displays
information about all user-assigned engine group assignments, bound
client applications, logins, and stored procedures. When used with the
object_type parameter, sp_showcontrolinfo provides information on an
individual basis about application, login, or stored procedure bindings
to an execution class, engine group compositions, and session-level
attribute bindings. See the Performance and Tuning Guide for more
information.

CHAPTER 8 System Procedures

1133

• Unless object_type is PR, execute sp_showcontrolinfo from the master
database. If object_type is PR, execute sp_showcontrolinfo from the
database in which the procedure resides.

• If object_type is null, sp_showcontrolinfo displays execution class
information for objects that match the other parameters.

• If object_name is null, sp_showcontrolinfo displays the binding
information for all applications, logins, and stored procedures.

• If spid is null, sp_showcontrolinfo displays execution class information
for objects that match the other parameters.

Permissions Any user can execute sp_showcontrolinfo.

See also System procedures sp_addexeclass, sp_bindexeclass, sp_clearpsexe,
sp_dropengine, sp_dropexeclass, sp_showexeclass, sp_showpsexe,
sp_unbindexeclass, sp_who

Utility isql

sp_showexeclass

1134

sp_showexeclass
Description Displays the execution class attributes and the engines in any engine group

associated with the specified execution class.

Syntax sp_showexeclass [execlassname]

Parameters execlassname
is the name of an execution class.

Examples Example 1 Displays the priority and engine group attribute values for all
execution classes:

sp_showexeclass

classname priority engine_group engines
--------- ---------- ------------- -----------
EC1 HIGH ANYENGINE ALL
EC2 MEDIUM ANYENGINE ALL
EC3 LOW LASTONLINE 0

Example 2 Displays the attribute values of execution class EC1:

sp_showexeclass ’EC1’

classname priority engine_group engines
----------- ---------- ---------------------- -----------
EC1 HIGH ANYENGINE ALL

Usage • sp_showexeclass displays the execution class attributes and the
engines in any engine group associated with execlassname. See the
Performance and Tuning Guide for more information.

• If execlassname is NULL or absent, sp_showexeclass displays the
priority and engine group attribute values for all execution classes,
including the attribute values of the system-defined classes EC1, EC2,
and EC3.

Permissions Any user can execute sp_showexeclass.

See also System procedures sp_addexeclass, sp_bindexeclass,
sp_dropexeclass, sp_showcontrolinfo, sp_unbindexeclass

CHAPTER 8 System Procedures

1135

sp_showplan
Description Displays the showplan output for any user connection for the current SQL

statement or for a previous statement in the same batch.

Syntax sp_showplan spid, batch_id output, context_id output, stmt_num output

To display the showplan output for the current SQL statement without
specifying the batch_id, context_id, or stmt_num:

sp_showplan spid, null, null, null

Parameters spid
is the process ID for any user connection. Use sp_who to see spids.

batch_id
is a unique, nonnegative number for a batch

context_id
is a unique number for every procedure (or trigger) executed in a batch.

stmt_num
is the number of the current statement within a batch. The stmt_num
must be a positive number.

Examples Example 1 Displays the query plan for the current statement running in the
user session with a spid value of 99, as well as values for the batch_id,
context_id, and statement_id parameters. These values can be used to
retrieve query plans in subsequent iterations of sp_showplan for the user
session with a spid of 99:

declare @batch int
declare @context int
declare @statement int
exec sp_showplan 99, @batch output, @context output,
@statement output

Example 2 Displays the showplan output for the current statement
running in the user session with a spid value of 99:

sp_showplan 99, null, null, null

Usage • sp_showplan displays the showplan output for a currently executing
SQL statement or for a previous statement in the same batch.

• To see the query plan for the previous statement within the same
batch, execute sp_showplan again with the same parameter values, but
subtract 1 from the statement number. Using this method, you can
view all the statements in the statement batch back to query number
one.

sp_showplan

1136

• sp_showplan can be run independently of Adaptive Server Monitor™
Server.

• If the context_id is greater than 0 for a SQL batch, the current
statement is embedded in a stored procedure (or trigger) called from
the original SQL batch. Select the sysprocesses row with the same
spid value to display the procedure ID and statement ID.

Permissions Only a System Administrator can execute sp_showplan.

See also System procedures sp_who

CHAPTER 8 System Procedures

1137

sp_showpsexe
Description Displays execution class, current priority, and affinity for all client

sessions running on Adaptive Server.

Syntax sp_showpsexe [spid]

Parameters spid
is the Adaptive Server session ID for which you want a report. The spid
must belong to the application or login executing sp_showpsexe. Use
sp_who to list spids.

Examples Example 1 Displays execution class, current priority, and affinity for all
current client sessions:

sp_showpsexe

spid appl_name login_name
exec_class current_priority task_affinity

----- ----------- ----------- ---------- ---------------- -------------
 1 isql sa EC1 HIGH NONE
5 NULL NULL LOW NULL
7 ctisql sa EC2 MEDIUM NONE
8 ctisql sa EC2 MEDIUM NONE

Example 2 Displays the application name, login name, current priority,
and engine affinity of the process with spid 5:

sp_showpsexe 5

Usage • sp_showpsexe displays execution class, current priority, and affinity
for all sessions (objects with an spid). For more information, see the
Performance and Tuning Guide.

• If the spid is NULL or absent, sp_showpsexe reports on all sessions
currently running on Adaptive Server.

• sp_showpsexe does not report information for the following system
processes: deadlock, checkpoint, network, auditing, and mirror
handlers. It does display information for the housekeeper spid.

Permissions Any user can execute sp_showpsexe.

See also System procedures sp_addengine, sp_addexeclass, sp_bindexeclass,
sp_clearpsexe, sp_dropengine, sp_dropexeclass, sp_showcontrolinfo,
sp_showexeclass, sp_unbindexeclass

sp_spaceused

1138

sp_spaceused
Description Displays estimates of the number of rows, the number of data pages, the

size of indexes, and the space used by a specified table or by all tables in
the current database.

Syntax sp_spaceused [objname [,1]]

Parameters objname
is the name of the table on which to report. If omitted, a summary of
space used in the current database appears.

1
prints separate information on the table’s indexes and text/image
storage.

Examples Example 1 Reports on the amount of space allocated (reserved) for the
titles table, the amount used for data, the amount used for index(es), and
the available (unused) space:

sp_spaceused titles

name rowtotal reserved data index_size unused
---------- --------- --------- ------- ---------- ----------
titles 18 46 KB 6 KB 4 KB 36 KB

Example 2 In addition to information on the titles table, prints information
for each index on the table:

sp_spaceused titles, 1

index_name size reserved unused
 -------------------- ---------- ---------- ----------
 titleidind 2 KB 32 KB 24 KB
 titleind 2 KB 16 KB 14 KB

 name rowtotal reserved data index_size unused
---------- -------- --------- ------- ---------- ----------
titles 18 46 KB 6 KB 4 KB 36 KB

Example 3 Displays the space taken up by the text/image page storage
separately from the space used by the table. The object name for text/image
storage is “t” plus the table name:

sp_spaceused blurbs,1

index_name size reserved unused
-------------------- ---------- ---------- ----------

CHAPTER 8 System Procedures

1139

blurbs 0 KB 14 KB 12 KB
tblurbs 14 KB 16 KB 2 KB

name rowtotal reserved data index_size unused
---------- -------- ----------- ------- ---------- ----------
blurbs 6 30 KB 2 KB 14 KB 14 KB

Example 4 Prints a summary of space used in the current database:

sp_spaceused

database_name database_size
--------------- ---------------------------
master 5 MB
reserved data index_size unused
--------- --------- ----------- --------
2176 KB 1374 KB 72 KB 730 KB

Example 5 Reports on the amount of space reserved and the amount of
space available for the transaction log:

sp_spaceused syslogs

name rowtotal reserved data index_size unused
---------- --------- --------- ------- ---------- ----------
syslogs Not avail. 32 KB 32 KB 0 KB 0 KB

Usage • sp_spaceused displays estimates of the number of data pages, space
used by a specified table or by all tables in the current database, and
the number of rows in the tables. sp_spaceused computes the rowtotal
value using the rowcnt built-in function. This function uses a value for
the average number of rows per data page based on a value in the
allocation pages for the object. This method is very fast, but the
results are estimates, and update and insert activity change actual
values. The update statistics command, dbcc checktable, and dbcc
checkdb update the rows-per-page estimate, so rowtotal is most
accurate after one of these commands executes. Always use select
count(*) if you need exact row counts.

• sp_spaceused reports on the amount of space affected by tables,
clustered indexes, and nonclustered indexes.

• The amount of space allocated (reserved) reported by sp_spaceused
is a total of the data, index size, and available (unused) space.

sp_spaceused

1140

• Space used by text and image columns, which are stored as separate
database objects, is reported separately in the index_size column and
is included in the summary line for a table. The object name for
text/image storage in the index_size column is “t” plus the table name.

• When used on syslogs, sp_spaceused reports rowtotal as “Not
available”. See Example 5.

Permissions Any user can execute sp_spaceused.

See also Catalog stored procedures sp_statistics

Commands create index, create table, drop index, drop table

System procedures sp_helpindex

CHAPTER 8 System Procedures

1141

sp_ssladmin
Description Adds, deletes, or displays a list of server certificates for Adaptive Server.

Syntax sp_ssladmin [addcert, certificate_path [, password | NULL]]

sp_ssladmin [dropcert, certificate_path]

sp_ssladmin [lscert]

sp_ssladmin [help]

Parameters addcert
adds a certificate for the local server in the certificates file.

certificate_path
specifies the absolute path to the certificates file on the local server.

password
the password that is used to encrypt the private key when adding a new
server certificate to the certificates file.

NULL
used to require an attended atart-up of Adaptive Server by requesting
the password during start-up from the command line.

dropcert
deletes the certficate from the certificate file.

lscert
lists the certificates in the certificate file.

help
displays online help for sp_ssladmin.

Examples Example 1 This adds an entry for the local server, Server1.crt, in the
certificates file in the absolute path to /sybase/ASE-12_5/certificates
(x:\sybase\ASE-12_5\certificates on Windows). The private key is
encrypted with the password “mypassword”. The password should be the
one specified when you created the private key:

sp_ssladmin addcert, "/sybase/ASE-12_5/certificates/Server1.crt",
"mypassword"

Example 2 Deletes the certificate, Server1.crt from the certificates file
located in /sybase/ASE-12_5/certificates (x:\sybase\ASE-12_5\certificates
on Windows):

sp_ssladmin dropcert , "/sybase/ASE-12_5/certificates/Server1.crt"

Example 3 Lists of all server certificates on the local server:

sp_ssladmin

1142

sp_ssladmin lscert
go

certificate_path
--
/sybase/ASE-12_5/certificates/Server1.crt

Usage • The Adaptive Server listener must present to the client a certificate.
The common name in the certificate must match the common name
used by the client in the interfaces file. If they do not match, the server
authentication and login fail.

• When NULL is specified as the password, dataserver must be started
with a -y flag. This flag prompts the administrator for the private-key
password at the command line.

• The use of NULL as the password is intended to protect passwords
during the intitial configuration of SSL, before the SSL encrypted
session begins.

After restarting Adaptive Server with an SSL connection established,
use sp_ssladmin again, this time using the actual password. The
password is then encrypted and stored by Adaptive Server. Any
subsequent starts of Adaptive Server from the command line would
use the encrypted password; you do not have to specify the password
on the command line during start up.

• You can specify “localhost” as the hostname in the interfaces file
(sql.ini on Windows) to prevent clients from connecting remotely.
Only a local connection can be established, and the password is never
transmitted over a network connection.

Permissions You must have the System Security Officer role to use sp_ssladmin.

CHAPTER 8 System Procedures

1143

sp_syntax
Description Displays the syntax of Transact-SQL statements, system procedures,

utilities, and other routines for Adaptive Server, depending on which
products and corresponding sp_syntax scripts exist on your server.

Syntax sp_syntax word [, mod][, language]

Parameters word
is the name or partial name of a command or routine; for example,
“help”, to list all system procedures providing help. To include spaces
or Transact-SQL reserved words, enclose the word in quotes.

mod
is the name or partial name of one of the modules such as
“Transact-SQL” or “Utility”. Each sp_syntax installation script adds
different modules. Use sp_syntax without any parameters to see which
modules exist on your server.

language
is the language of the syntax description to be retrieved. language must
be a valid language name in the syslanguages table.

Examples Example 1 Displays all sp_syntax modules available on your server:

sp_syntax

sp_syntax provides syntax help for Sybase products.
These modules are installed on this Server:

Module

 OpenVMS
 Transact-SQL
 UNIX Utility
 System Procedure

Usage: sp_syntax command [, module [, language]]

Example 2 Displays the syntax and functional description of all routines
containing the word or word fragment “disk”. Since “disk” is a
Transact-SQL reserved word, enclose it in quotes:

sp_syntax "disk"

sp_syntax

1144

Usage • The text for sp_syntax is in the database sybsyntax. Load sp_syntax
and the sybsyntax database onto Adaptive Server with the installation
script described in configuration documentation for your platform. If
you cannot access sp_syntax, see your System Administrator for
information about installing it on your server.

• You can use wildcard characters within the command name you are
searching for. However, if you are looking for a command or function
that contains the literal “_”, you may get unexpected results, since the
underscore wildcard character represents any single character.

Permissions Any user can execute sp_syntax.

Tables used sybsyntax..sybsyntax

See also System procedures sp_helpdb

CHAPTER 8 System Procedures

1145

sp_sysmon
Description Displays performance information.

Syntax sp_sysmon begin_sample

sp_sysmon { end_sample | interval } [, section [, applmon]]

sp_sysmon { end_sample | interval } [, applmon]

Parameters begin_sample
starts sampling. You cannot specify a section when you specify
begin_sample.

end_sample
ends sampling and prints the report.

interval
specifies the time period for the sample. It must be in HH:MM:SS form,
for example “00:20:00”.

section
is the abbreviation for one of the sections printed by sp_sysmon. Table
8-19 lists the values and corresponding names of the report sections.

sp_sysmon

1146

Table 8-19: sp_sysmon report sections

applmon
specifies whether to print application detail, application and login
detail, or no application detail. The default is to omit the application
detail. Valid values are listed in Table 8-20.

Table 8-20: Values for applmon parameter to sp_sysmon

This parameter is only valid when printing the full report and when you
specify appmgmt for the section.

Examples Example 1 Prints monitor information after 10 minutes:

sp_sysmon "00:10:00"

Example 2 Prints only the “Disk Management” section of the sp_sysmon
report after 5 minutes:

Report section Parameter

Application Management appmgmt

Data Cache Management dcache

Disk I/O Management diskio

ESP Management esp

Index Management indexmgmt

Kernel Utilization kernel

Lock Management locks

Memory Management memory

Metadata Cache Management mdcache

Monitor Access to Executing SQL monaccess

Network I/O Management netio

Parallel Query Management parallel

Procedure Cache Management pcache

Recovery Management recovery

Task Management taskmgmt

Transaction Management xactmgmt

Transaction Profile xactsum

Worker Process Management wpm

Parameter Information reported

appl_only CPU, I/O, priority changes and resource limit violations by application name.

appl_and_login CPU, I/O, priority changes and resource limit violations by application name and login name.

no_appl Skips the by application or by login section of the report. This is the default.

CHAPTER 8 System Procedures

1147

sp_sysmon "00:05:00", diskio

Example 3 Starts the sample, executes procedures and a query, ends the
sample, and prints only the “Data Cache” section of the report:

sp_sysmon begin_sample
go
execute proc1
go
execute proc2
go
select sum(total_sales) from titles
go
sp_sysmon end_sample, dcache
go

Example 4 Prints the full report and includes application and login detail
for each login:

sp_sysmon "00:05:00", @applmon = appl_and_login

Usage • sp_sysmon displays information about Adaptive Server performance.
It sets internal counters to 0, then waits for the specified interval while
activity on the server causes the counters to be incremented. When the
interval ends, sp_sysmon prints information from the values in the
counters. See the Performance and Tuning Guide for more
information.

• To print only a single section of the report, use the values listed in
Table 8-20 for the second parameter.

• If you use sp_sysmon in batch mode, with begin_sample and
end_sample, the time interval between executions must be at least one
second. You can use waitfor delay "00:00:01" to lengthen the execution
time of a batch.

• During the sample interval, results are stored in signed integer values.
Especially on systems with many CPUs and high activity, these
counters can overflow. If you see negative results in your sp_sysmon
output, reduce your sample time.

Permissions Only a System Administrator can execute sp_sysmon.

sp_thresholdaction

1148

sp_thresholdaction
Description Executes automatically when the number of free pages on the log segment

falls below the last-chance threshold, unless the threshold is associated
with a different procedure. Sybase does not provide this procedure.

Syntax When a threshold is crossed, Adaptive Server passes the following
parameters to the threshold procedure by position:

sp_thresholdaction @dbname,
@segment_name,
@space_left,
@status

Parameters @dbname
is the name of a database where the threshold was reached.

@segment_name
is the name of the segment where the threshold was reached.

@space_left
is the threshold size, in logical pages.

@status
is 1 for the last-chance threshold; 0 for all other thresholds.

Examples Creates a threshold procedure for the last-chance threshold that dumps the
transaction log to a tape device:

create procedure sp_thresholdaction
@dbname varchar(30),
@segmentname varchar(30),
@space_left int,
@status int

as
dump transaction @dbname to tapedump1

Usage • sp_thresholdaction must be created by the Database Owner (in a user
database), or a System Administrator (in the sybsystemprocs
database), or a user with create procedure permission.

• You can add thresholds and create threshold procedures for any
segment in a database.

• When the last-chance threshold is crossed, Adaptive Server searches
for the sp_thresholdaction procedure in the database where the
threshold event occurs. If it does not exist in that database, Adaptive
Server searches for it in sybsystemprocs. If it does not exist in
sybsystemprocs, it searches master. If Adaptive Server does not find
the procedure, it sends an error message to the error log.

CHAPTER 8 System Procedures

1149

• sp_thresholdaction should contain a dump transaction command to
truncate the transaction log.

• By design, the last-chance threshold allows enough free space to
record a dump transaction command. There may not be enough space
to record additional user transactions against the database. Only
commands that are not recorded in the transaction log (select, fast bcp,
readtext, and writetext) and commands that might be necessary to free
additional log space (dump transaction, dump database, and alter
database) can be executed. By default, other commands are
suspended and a message is sent to the error log. To abort these
commands rather than suspend them, use the abort tran on log full
option of sp_dboption followed by the checkpoint command.

Waking suspended processes

• Once the dump transaction command frees sufficient log space,
suspended processes automatically awaken and complete.

• If fast bcp, writetext, or select into have resulted in unlogged changes
to the database since the last backup, the last-chance threshold
procedure cannot execute a dump transaction command. When this
occurs, use dump database to make a copy of the database, then use
dump transaction to truncate the transaction log.

• If this does not free enough space to awaken the suspended processes,
it may be necessary to increase the size of the transaction log. Use the
log on option of the alter database command to allocate additional log
space.

• As a last resort, System Administrators can use sp_who to determine
which processes are suspended, then use the kill command to kill them.

See also Commands create procedure, dump transaction

System procedures sp_addthreshold, sp_dboption, sp_dropthreshold,
sp_helpsegment, sp_helpthreshold, sp_modifythreshold, sp_who

sp_transactions

1150

sp_transactions
Description Reports information about active transactions.

Syntax sp_tranactions ["xid", xid_value] |
["state", {"heuristic_commit" | "heuristic_abort"
| "prepared" | "indoubt"} [, "xactname"]] |
["gtrid", gtrid_value]

Parameters xid_value
is a transaction name from the xactname column of
master.dbo.systransactions.

gtrid_value
is the global transaction ID name for a transaction coordinated by
Adaptive Server.

Examples Example 1 Displays general information about all active transactions:

sp_transactions

xactkey type coordinator starttime
state connection dbid spid loid
failover srvname namelen
xactname
------------------------------ ----------- -----------

----------------- ---------- ------ ------ -----------
-------------------------- ------------------------------ -------

0x00000b1700040000dd6821390001 Local None Jun 1 1999 3:47PM
Begun Attached 1 1 2
Resident Tx NULL 17
$user_transaction
0x00000b1700040000dd6821390001 Remote ASTC Jun 1 1999 3:47PM
Begun NA 0 8 0
Resident Tx caserv2 108

00000b1700040000dd6821390001-aa01f04ebb9a-00000b1700040000dd6821390001-aa0
1f04ebb9a-caserv1-caserv1-0002

Example 2 Displays detailed information for the specified transaction:

sp_transactions "xid",
"00000b1700040000dd6821390001-aa01f04ebb9a-00000b1700040000dd6821390001-aa
01f04ebb9a-caserv1-caserv1-0002"

xactkey type coordinator starttime
state connection dbid spid loid
failover srvname namelen

CHAPTER 8 System Procedures

1151

xactname
commit_node parent_node
gtrid
------------------------------ ----------- -----------

----------------- ---------- ------ ------ -----------
-------------------------- ------------------------------ -------

0x00000b2500080000dd6821960001 External ASTC Jun 1 1999 3:47PM
Begun Attached 1 8 139
Resident Tx NULL 108

00000b1700040000dd6821390001-aa01f04ebb9a-00000b1700040000dd6821390001-aa0
1f04ebb9a-caserv1-caserv1-0002

caserv1 caserv1
00000b1700040000dd6821390001-aa01f04ebb9a

Example 3 Displays general information about transactions that are in the
“prepared” state:

sp_transactions "state", "prepared"

Example 4 Displays only the transaction names of transactions that are in
the “prepared” state:

sp_transactions "state", "prepared", "xactname"

Example 5 Displays status information for transactions having the
specified global transaction ID:

sp_transactions "gtrid", "00000b1700040000dd6821390001-aa01f04ebb9a"

xactkey type coordinator starttime
state connection dbid spid loid
failover srvname namelen
xactname
commit_node
parent_node
------------------------------ ----------- -----------

----------------- ---------- ------ ------ -----------
-------------------------- ------------------------------ -------

sp_transactions

1152

0x00000b1700040000dd6821390001 Local None Jun 1 1999 3:47PM
Begun Attached 1 1 2
Resident Tx NULL 17
$user_transaction

caserv1
caserv1

Usage • sp_transactions translates data from the systransactions table to
display information about active transactions. systransactions itself
comprises data in the syscoordinations table, as well as in-memory
information about active transactions.

• sp_transactions with no keywords displays information about all
active transactions.

• sp_transactions with the xid keyword displays the gtrid, commit_node,
and parent_node columns only for the specified transaction.

• sp_transactions with the state keyword displays information only for
the active transactions in the specified state.

sp_transactions with both xid and xactname displays only the
transaction names for transactions in the specified state.

• sp_transactions with the gtrid keyword displays information only for
the transactions with the specified global transaction ID.

• sp_transactions replaces the sp_xa_scan_xact procedure provided
with XA-Library and XA-Server products.

• See Using Adaptive Server Distributed Transaction Management
Features for more information.

Column descriptions for sp_transactions output

• The xactkey column shows the internal transaction key that Adaptive
Server uses to uniquely identify the transaction.

• The type column indicates the type of transaction:

• “Local” means that the transaction was explicitly started on the
local Adaptive Server with a begin transaction statement.

• “Remote” indicates a transaction executing on a remote Adaptive
Server.

CHAPTER 8 System Procedures

1153

• “External” means that the transaction has an external coordinator
associated with it. For example, transactions coordinated by a
remote Adaptive Server, MSDTC, or an X/Open XA transaction
manager are flagged as “External.”

• “Dtx_State” is a special state for distributed transactions
coordinated by Adaptive Server. It indicates that a transaction on
the local server was either committed or aborted, but Adaptive
Server has been unable to resolve a branch of that transaction on
a remote participant. This may happen in cases where Adaptive
Server loses contact with a server it is coordinating.

• The coordinator column indicates the method or protocol used to
manage a distributed transaction:

• The starttime column indicates the time that the transaction started.

• The state column indicates the state of the transaction at the time
sp_transactions ran:

sp_transactions
“coordinator” value Meaning

None Transaction is not a distributed transaction and does not require a coordinating protocol.

ASTC Transaction is coordinated using the Adaptive Server transaction coordination services.

XA Transaction is coordinated by the X/Open XA-compliant transaction manager via the
Adaptive Server XA-Library interface. Such transaction managers include Encina,
CICS, and Tuxedo.

DTC Transaction is coordinated by MSDTC.

SYB2PC Transaction is coordinated using Sybase two-phase commit protocol.

sp_transactions
“state” value Meaning

Begun Transaction has begun but no updates have been performed.

Done Command Transaction completed an update command.

Done X/Open XA transaction has finished modifying data.

Prepared Transaction has successfully prepared.

In Command Transaction is currently modifying data.

In Abort Cmd Execution of the current command in the transaction has been aborted.

Committed Transaction has successfully committed, and the commit log record has been written.

In Post Commit Transaction has successfully committed, but is currently deallocating transaction resources.

In Abort Tran Transaction is being aborted. This may happen either as a result of an explicit command, or
because of a system failure.

In Abort Savept Transaction is being rolled back to a savepoint.

sp_transactions

1154

• The connection column indicates whether or not the transaction is
currently associated with a thread:

• “Attached” indicates that the transaction has an associated thread
of control.

• “Detached” indicates that there is no thread currently associated
with the transaction. Some external transaction managers, such as
CICS and TUXEDO, use the X/Open XA “suspend” and “join”
semantics to associate different threads with the same
transaction.

• The dbid column indicates the database ID of the database in which
transaction started.

• The spid column indicates the server process ID associated with the
transaction. If the transaction is “Detached,” the “spid” value is 0.

• The loid column indicates the unique lock owner ID from
master.dbo.systransactions.

• The failover column indicates the failover state for the transaction:

• “Resident Tx” indicates that the transaction started and is
executing on the same server. “Resident Tx” is displayed under
normal operating conditions, and on systems that do not utilize
Adaptive Server high availability features.

• “Failed-over Tx” is displayed after there has been a failover to a
secondary companion server. “Failed-over Tx” means that a
transaction originally started on a primary server and reached the
prepared state, but was automatically migrated to the secondary
companion server (for example, as a result of a system failure on
the primary server). The migration of a prepared transaction
occurs transparently to an external coordinating service.

Begun-Detached Transaction has begun, but there is no thread currently attached to it.

Done Cmd-Detached Transaction has finished modifying data, and no thread is currently attached to it.

Done-Detached Transaction will modify no more data, and no thread is currently attached to it.

Prepared-Detached Transaction has successfully prepared, and no thread is currently attached to it.

Heur Committed Transaction has been heuristically committed using the dbcc complete_xact command.

Heur Rolledback Transaction has been heuristically rolled back using the dbcc complete_xact command.

sp_transactions
“state” value Meaning

CHAPTER 8 System Procedures

1155

• “Tx by Failover-Conn” indicates that there was an attempt to start
the transaction on a designated server, but the transaction was
instead started on the secondary companion server. This occurs
when the original server has experienced a failover condition.

• The srvname column indicates the name of the remote server on
which the transaction is executing. This column is only meaningful
for remote transactions. For local and external transactions, srvname
is null.

• The namelen column indicates the total length of the xactname value.

• xactname is the transaction name. For local transactions, the
transaction name may be defined as part of the begin transaction
command. External transaction managers supply unique transaction
names in a variety of formats. For example, X/Open XA-compliant
transaction managers supply a transaction ID (xid) consisting of a
global transaction identifier and a branch qualifier, both of which are
stored in xactname.

• For transactions coordinated by Adaptive Server, the gtrid column
displays the global transaction ID. Transaction branches that are part
of the same distributed transaction share the same gtrid. You can use a
specific gtrid with the sp_transactions gtrid keyword to determine the
state of other transaction branches in the same distributed transaction.

sp_transactions cannot display the gtrid for transactions that have an
external coordinator. For transactions coordinated by an X/Open
XA-compliant transaction manager, MSDTC, or SYB2PC, the gtrid
column shows the full transaction name supplied by the external
coordinator.

• For transactions coordinated by Adaptive Server, the commit_node
column indicates the server that executes the outermost block of the
distributed transaction. This outermost block ultimately determines
the commit status of all subordinate transactions.

For transactions not coordinated by Adaptive Server, commit_node
displays one of the values described in Table 8-21.

Table 8-21: Values for commit_node and parent_node

Value Meaning

server_name Commit or parent node is an Adaptive Server with the specified server_name.

XATM Commit or parent node is an X/Open XA-compliant transaction manager.

MSDTCTM Commit or parent node is MSDTC.

SYB2PCTM Transaction is coordinated using SYB2PC protocol.

sp_transactions

1156

• For transactions coordinated by Adaptive Server, the parent_node
column indicates the server that is coordinating the external
transaction on the local server.

For transactions not coordinated by Adaptive Server, parent_node
displays one of the values described in Table 8-21.

Note The values for commit_node and parent_node can be different,
depending on the levels of hierarchy in the distributed transaction.

Permissions Any user can execute sp_transactions.

See also System procedures sp_lock, sp_who

CHAPTER 8 System Procedures

1157

sp_unbindcache
Description Unbinds a database, table, index, text object, or image object from a data cache.

Syntax sp_unbindcache dbname [,[owner.]tablename
[, indexname | "text only"]]

Parameters dbname
is the name of database to be unbound or the name of the database
containing the objects to be unbound.

owner
is the name of the table’s owner. If the table is owned by the Database
Owner, the owner name is optional.

tablename
is the name of the table to be unbound from a cache or the name of a table
whose index, text object, or image object is to be unbound from a cache.

indexname
is the name of an index to be unbound from a cache.

text only
unbinds text or image objects from a cache.

Examples Example 1 Unbinds the titles table from the cache to which it is bound:

sp_unbindcache pubs2, titles

Example 2 Unbinds the titleidind index from the from the cache to which it is
bound:

sp_unbindcache pubs2, titles, titleidind

Example 3 Unbinds the text or image object for the au_pix table from the cache
to which it is bound:

sp_unbindcache pubs2, au_pix, "text only"

Example 4 Unbinds the transaction log, syslogs, from its cache:

sp_unbindcache pubs2, syslogs

Usage • When you unbind a database or database object from a cache, all
subsequent I/O for the cache is performed in the default data cache. All
dirty pages in the cache being unbound are written to disk, and all clean
pages are cleared from the cache. See the Performance and Tuning Guide
for more information.

• Cache unbindings take effect immediately and do not require a restart of
the server.

sp_unbindcache

1158

• When you drop a database, table, or index, its cache bindings are
automatically dropped.

• To unbind a database, you must be using the master database. For
tables, indexes, text objects, or image objects, you must be using the
database where the objects are stored.

• To unbind any system tables in a database, you must be using the
database, and the database must be in single-user mode. Use the
command:

sp_dboption db_name, "single user", true

See sp_dboption for more information.

• The following procedures provide information about the bindings for
their respective objects: sp_helpdb for databases, sp_help for tables,
and sp_helpindex for indexes.

• sp_helpcache prints the names of objects bound to caches.

• sp_unbindcache needs to acquire an exclusive table lock when you are
unbinding a table or its indexes to a cache. No pages can be read while
the unbinding takes place. If a user holds locks on a table, and you
issue sp_unbindcache on that object, the sp_unbindcache task sleeps
until the locks are released.

• When you change the cache binding for an object with sp_bindcache
or sp_unbindcache, the stored procedures that reference the object are
recompiled the next time they are executed. When you change the
binding for a database, the stored procedures that reference objects in
the database are recompiled the next time they are executed.

• To unbind all objects from a cache, use the system procedure
sp_unbindcache_all.

Permissions Only a System Administrator can execute sp_unbindcache.

See also System procedures sp_bindcache, sp_dboption, sp_help, sp_helpdb,
sp_helpcache, sp_helpdb, sp_helpindex, sp_unbindcache_all

CHAPTER 8 System Procedures

1159

sp_unbindcache_all
Description Unbinds all objects that are bound to a cache.

Syntax sp_unbindcache_all cache_name

Parameters cache_name
 is the name of the data cache from which objects are to be unbound.

Examples Unbinds all databases, tables, indexes, text objects and image objects that
are bound to pub_cache:

sp_unbindcache_all pub_cache

Usage • When you unbind entities from a cache, all subsequent I/O for the
cache is performed in the default cache.

• To unbind individual objects from a cache, use the system procedure
sp_unbindcache.

• See sp_unbindcache for more information about unbinding caches.

Permissions Only a System Administrator can execute sp_unbindcache_all.

See also System procedures sp_bindcache, sp_helpcache, sp_unbindcache

sp_unbindefault

1160

sp_unbindefault
Description Unbinds a created default value from a column or from a user-defined

datatype.

Syntax sp_unbindefault objname [, futureonly]

Parameters objname
is the name of either the table and column or the user-defined datatype
from which to unbind the default. If the parameter is not of the form
“table.column”, then objname is assumed to be a user-defined datatype.
When unbinding a default from a user-defined datatype, any columns
of that type that have the same default as the user-defined datatype are
also unbound. Columns of that type, whose default has already been
changed, are unaffected.

futureonly
prevents existing columns of the specified user-defined datatype from
losing their defaults. It is ignored when unbinding a default from a
column.

Examples Example 1 Unbinds the default from the startdate column of the
employees table:

sp_unbindefault "employees.startdate"

Example 2 Unbinds the default from the user-defined datatype named ssn
and all columns of that type:

sp_unbindefault ssn

Example 3 Unbinds defaults from the user-defined datatype ssn, but does
not affect existing columns of that type:

sp_unbindefault ssn, futureonly

Usage • Use sp_unbindefault to remove defaults created with sp_bindefault.
Use alter table to drop defaults declared using the create table or alter
table statements.

• Columns of a user-defined datatype lose their current default unless
the default has been changed or the value of the optional second
parameter is futureonly.

• To display the text of a default, execute sp_helptext with the default
name as the parameter.

Permissions Only the object owner can execute sp_unbindefault.

See also Commands create default, drop default

CHAPTER 8 System Procedures

1161

System procedures sp_bindefault, sp_helptext

sp_unbindexeclass

1162

sp_unbindexeclass
Description Removes the execution class attribute previously associated with an client

application, login, or stored procedure for the specified scope.

Syntax sp_unbindexeclass object_name, object_type, scope

Parameters object_name
is the name of the application, login, or stored procedure for which to
remove the association to the execution class.

object_type
identifies the type of object_name as ap, lg, or pr for application, login,
or stored procedure.

scope
is the application name or the login name for which the unbinding
applies for an application or login. It is the stored procedure owner
name (user name) for stored procedures.

Examples Removes the association between “sa” login scoped to application isql and
an execution class. “sa” automatically binds itself to another execution
class, depending on other binding specifications, precedence, and scoping
rules. If no other binding is applicable, the object binds to the default
execution class, EC2:

sp_unbindexeclass 'sa', 'lg', 'isql'

Usage • The parameters must match an existing entry in the sysattributes
system table.

• If you specify a null value for scope, Adaptive Server unbinds the
object for which the scope is null, if there is one.

• A null value for scope does not indicate that unbinding should apply
to all bound objects.

• When unbinding a stored procedure from an execution class, you
must use the name of the stored procedure owner (user name) for the
scope parameter.

• Stored procedures can be dropped before or after unbinding.

• A user cannot be dropped from a database if the user owns a stored
procedure that is bound to an execution class in that database.

• Unbind objects of type PR before dropping them from the database.

CHAPTER 8 System Procedures

1163

• Unbinding will fail if the associated engine group has no online
engines and active processes are bound to the associated execution
class.

• Due to precedence and scoping rules, the execution class being
unbound may or may not have been in effect for the object called
object_name. The object automatically binds itself to another
execution class, depending on other binding specifications and
precedence and scoping rules. If no other binding is applicable, the
object binds to the default execution class, EC2.

Permissions Only a System Administrator can execute sp_unbindexeclass.

See also System procedures sp_addexeclass, sp_bindexeclass,
sp_dropexeclass, sp_showexeclass

Utility isql

sp_unbindmsg

1164

sp_unbindmsg
Description Unbinds a user-defined message from a constraint.

Syntax sp_unbindmsg constrname

Parameters constrname
is the name of the constraint from which a message is to be unbound.

Examples Unbinds a user-defined message from the constraint positive_balance:

sp_unbindmsg positive_balance

Usage • You can bind only one message to a constraint. To change the message
bound to a constraint, use sp_bindmsg; the new message number
replaces any existing bound message. It is not necessary to use
sp_unbindmsg first.

• To retrieve message text from the sysusermessages table, execute
sp_getmessage.

Permissions Only the object owner can execute sp_unbindmsg.

See also System procedures sp_addmessage, sp_bindmsg, sp_getmessage

CHAPTER 8 System Procedures

1165

sp_unbindrule
Description Unbinds a rule from a column or from a user-defined datatype.

Syntax sp_unbindrule objname [, futureonly [, “accessrule” | “all”]]

Parameters objname
is the name of the table and column or of the user-defined datatype from
which the rule is to be unbound. If the parameter is not of the form
“table.column”, then objname is assumed to be a user-defined datatype.
Unbinding a rule from a user-defined datatype also unbinds it from
columns of the same type. Columns that are already bound to a different
rule are unaffected.

futureonly
prevents columns of the specified user-defined datatype from losing
their rules. It is ignored when unbinding a rule from a column.

accessrule
indicates that you are unbinding the access rule bound to objname.

all
specifies that you are unbinding all rules bound to objname.

Examples Example 1 Unbinds the rule from the startdate column of the employees
table:

sp_unbindrule "employees.startdate"

Example 2 Unbinds the rule from the user-defined datatype named
def_ssn and all columns of that type:

sp_unbindrule def_ssn

Example 3 The user-defined datatype ssn no longer has a rule, but
existing ssn columns are unaffected:

sp_unbindrule ssn, futureonly

Example 4 You can use the all parameter to unbind both accesss rules and
domain rules. For example, to unbind all the access rules and domain rules
on the publishers table:

sp_unbindrule publishers, null, "all"

To unbind the access rule from a user-defined datatype for subsequent uses
of this datatype, issue:

sp_unbindrule def_ssn, futureonly, "accessrule"

sp_unbindrule

1166

To unbind both access rules and domain rules for subsequent uses of this
datatype, issue:

sp_unbindrule def_ssn, futureonly, "all"

Example 5 This access rule is bound to the publishers table:

sp_bindrule empl_access, "publishers.pub_id"

To unbind this rule, issue the following:

sp_unbindrule "empl_access", NULL, "accessrule"

Usage • Executing sp_unbindrule removes a rule from a column or from a
user-defined datatype in the current database. If you do not want to
unbind the rule from existing objname columns, use futureonly as the
second parameter.

• You cannot use sp_unbindrule to unbind a check constraint. Use alter
table to drop the constraint.

• To unbind a rule from a table column, specify the objname argument
in the form “table.column”.

• The rule is unbound from all existing columns of the user-defined
datatype unless the rule has been changed or the value of the optional
second parameter is futureonly.

• To display the text of a rule, execute sp_helptext with the rule name as
the parameter.

Permissions Only the object owner can execute sp_unbindrule.

See also Commands create rule, drop rule

System procedures sp_bindrule, sp_helptext

CHAPTER 8 System Procedures

1167

sp_volchanged
Description Notifies the Backup Server that the operator performed the requested

volume handling during a dump or load.

Syntax sp_volchanged session_id, devname, action
[, fname [, vname]]

Parameters session_id
identifies the Backup Server session that requested the volume change.
Use the @session_id parameter specified in the Backup Server’s
volume change request.

devname
is the device on which a new volume was mounted. Use the @devname
parameter specified in the Backup Server’s volume change request. If
the Backup Server is not located on the same machine as the Adaptive
Server, use the form:

device at backup_server_name

action
indicates whether the Backup Server should abort, proceed with, or retry
the dump or load.

fname
is the file to be loaded. If you do not specify a file name with
sp_volchanged, the Backup Server loads the file = filename parameter of
the load command. If neither sp_volchanged nor the load command
specifies which file to load, the Backup Server loads the first file on the
tape.

sp_volchanged

1168

vname
is the volume name that appears in the ANSI tape label. The Backup
Server writes the volume name in the ANSI tape label when overwriting
an existing dump, dumping to a brand new tape, or dumping to a tape
whose contents are not recognizable. If you do not specify a vname with
sp_volchanged, the Backup Server uses the dumpvolume value specified
in the dump command. If neither sp_volchanged nor the dump
command specifies a volume name, the Backup Server leaves the name
field of the ANSI tape label blank.

During loads, the Backup Server uses the vname to confirm that the
correct tape has been mounted. If you do not specify a vname with
sp_volchanged, the Backup Server uses the dumpvolume specified in the
load command. If neither sp_volchanged nor the load command
specifies a volume name, the Backup Server does not check the name
field of the ANSI tape label before loading the dump.

Examples The operator changes the tape, then issues the command:

sp_volchanged 8, "/dev/nrmt4", RETRY

The following message from Backup Server indicates that a mounted
tape’s expiration date has not been reached:

Backup Server: 4.49.1.1: OPERATOR: Volume to be overwritten on
'/dev/rmt4' has not expired: creation date on this volume is Sunday, Nov.
15, 1992, expiration date is Wednesday, Nov. 25, 1992.
Backup Server: 4.78.1.1: EXECUTE sp_volchanged

@session_id = 8,
@devname = '/auto/remote/pubs3/SERV/Masters/testdump',
@action = { 'PROCEED' | 'RETRY' | 'ABORT' }

Usage • If the Backup Server detects a problem with the currently mounted
volume, it requests a volume change:

• On OpenVMS systems – the Backup Server sends volume change
messages to the operator terminal on the machine on which it is
running. Use the with notify = client option of the dump or load
command to route other Backup Server messages to the terminal
session on which the dump or load request initiated.

• On UNIX systems – the Backup Server sends messages to the
client that initiated the dump or load request. Use the with notify =
operator_console option of the dump or load command to route
messages to the terminal where the Backup Server was started.

CHAPTER 8 System Procedures

1169

• After mounting another volume, the operator executes
sp_volchanged from any Adaptive Server that can communicate
with the Backup Server performing the dump or load. The
operator does not have to log into the Adaptive Server on which
the dump or load originated.

• On OpenVMS systems – the operating system—not the Backup
Server—requests a volume change when it detects the end of a
volume or when the specified drive is offline. The operator uses the
OpenVMS REPLY command to reply to these messages.

• On UNIX systems – the Backup Server requests a volume change
when the tape capacity has been reached. The operator mounts
another tape and executes sp_volchanged. Table 8-22 illustrates this
process.

Table 8-22: Changing tape volumes on a UNIX system

Sequence Operator, using isql Adaptive Server Backup Server

1 • Issues the dump database
command

2 • Sends dump request to
Backup Server

3 • Receives dump request
message from Adaptive Server

• Sends message for tape
mounting to operator

• Waits for operator’s reply

4 • Receives volume change
request from Backup Server

• Mounts tapes

• Executes sp_volchanged

5 • Checks tapes

• If tapes are okay, begins dump

• When tape is full, sends
volume change request to
operator

6 • Receives volume change
request from Backup Server

• Mounts tapes

• Executes sp_volchanged

sp_volchanged

1170

Permissions Any user can execute sp_volchanged.

See also Commands dump database, dump transaction, load database, load
transaction

Utility isql

7 • Continues dump

• When dump is complete, sends
messages to operator and
Adaptive Server

8 • Receives message that dump is
complete

• Removes and labels tapes

• Receives message that
dump is complete

• Releases locks

• Completes the dump
database command

Sequence Operator, using isql Adaptive Server Backup Server

CHAPTER 8 System Procedures

1171

sp_who
Description Reports information about all current Adaptive Server users and processes

or about a particular user or process.

Syntax sp_who [loginame | "spid"]

Parameters loginame
is the Adaptive Server login name of the user you are requesting a report
on.

spid
is the number of the process you are requesting a report on. Enclose
process numbers in quotes (Adaptive Server expects a char type).

Examples Example 1 Reports on the processes running on Adaptive Server. Process
11 (a select on a table) is blocked by process 8 (a begin transaction
followed by an insert on the same table). For process 8, the current
loginame is “robert”, but the original loginame is “sa”. Login “sa”
executed a set proxy command to impersonate the user “robert”:

sp_who

fid spid status loginame origname hostname blk_spid dbname
cmd blk_xloid

--- ----- -------- -------- -------- -------- ------- ------
------------------ ---------

0 1 recv sleep bird bird jazzy 0 master
AWAITING COMMAND 0x0000ed92

0 2 sleeping NULL NULL 0 master
NETWORK HANDLER 0x0000ed92

0 3 sleeping NULL NULL 0 master
MIRROR HANDLER 0x0000ed92

0 4 sleeping NULL NULL 0 master
AUDIT PROCESS 0x0000ed92

0 5 sleeping NULL NULL 0 master
CHECKPOINT SLEEP 0x0000ed92

0 6 recv sleep rose rose petal 0 master
AWAITING COMMAND 0x0000ed92

0 7 sleeping NULL NULL actor 0 sybsystemdb
ASTC HANDLER 0x0000ed92

0 8 running robert sa helos 0 master
SELECT 0x0000ed92

0 9 send sleep daisy daisy chain 0 pubs2
SELECT 0x0000ed92

0 10 alarm sleep lily lily pond 0 master
WAITFOR 0x0000ed92

0 11 lock sleep viola viola cello 8 pubs2

sp_who

1172

SELECT 0x0000ed92

Example 2 Reports on the processes being run by the user “victoria”:

sp_who victoria

Example 3 Reports what Adaptive Server process number 17 is doing:

sp_who "17"

Example 4 Reports on the processes running on Adaptive Server.
Although no user processes other than sp_who are running, the server still
shows activity. During idle cycles, the housekeeper task moves dirty
buffers into the buffer wash region:

sp_who

fid spid status loginame origname hostname blk_spid dbname
cmd block_xloid

---- ---- -------- -------- -------- -------- -------- ------
---------------- -----------

0 1 running sa sa helos 0 master
SELECT 0

0 2 sleeping NULL NULL 0 master
NETWORK HANDLER 0

0 3 sleeping NULL NULL 0 master
DEADLOCK TUNE 0

0 4 sleeping NULL NULL 0 master
MIRROR HANDLER 0

0 5 sleeping NULL NULL actor 0 master
ASTC HANDLER 0

0 6 sleeping NULL NULL 0 master
CHECKPOINT SLEEP 0

0 5 sleeping NULL NULL 0 master
HOUSEKEEPER 0

Usage • sp_who reports information about a specified user or Adaptive Server
process.

• Without parameters, sp_who reports which users are running what
processes in all databases.

• The columns returned by sp_who are:

• fid – identifies the family (including the coordinating process and
its worker processes) to which a lock belongs. For more
information, see sp_familylock.

CHAPTER 8 System Procedures

1173

• spid – identifies the process number. A System Administrator can
use this number with the Transact-SQL kill command to stop the
process.

• status – indicates whether the process is running or sleeping.

• loginame – the login or alias of the user who started the process.
For all system processes, loginame is NULL.

• origname – If the loginame is an alias, origname shows the real
login name. If not, origname shows the same information as
loginame.

• hostname – the name of the server on which the database resides.

• blk_spid – contains the process IDs of the blocking process, if
there is one. A blocking process (which may be infected or have
an exclusive lock) is one that is holding resources needed by
another process.

• dbname – indicates the name of the database on which the
process is running.

• cmd – identifies the command or process currently being
executed. Evaluation of a conditional statement, such as an if or
while loop, returns cond.

• block_xloid – identifies the unique lock owner ID of a blocking
transaction.

• Running sp_who on a single-engine server shows the sp_who process
currently running and all other processes that are runnable or in one
of the sleep states. In multi-engine servers, there can be a “running”
process for each engine.

• If you enable mirrored disks or remote procedure calls, the mirror
handler and the site handler also appear in the report from sp_who.

Permissions Any user can execute sp_who.

See also Commands kill

System procedures sp_familylock, sp_lock

sp_who

1174

1175

C H A P T E R 9 Catalog Stored Procedures

This chapter describes catalog stored procedures, which retrieve
information from the system tables in tabular form.

Topics covered are:

Overview
Table 9-1 lists the catalog stored procedures that are covered in this
chapter.

Table 9-1: Catalog stored procedures

Topics Page
Overview 1175

Specifying optional parameters 1176

Pattern matching 1177

System procedure tables 1177

ODBC datatypes 1178

Procedure Description

sp_column_privileges Returns permissions information for one or more columns in a table or view.

sp_columns Returns information about the type of data that can be stored in one or more columns.

sp_databases Returns a list of the databases in Adaptive Server.

sp_datatype_info Returns information about a particular datatype or about all supported datatypes.

sp_fkeys Returns information about foreign key constraints created in the current database with
the create table or alter table command.

sp_pkeys Returns information about primary key constraints created for a single table with the
create table or alter table command.

sp_server_info Returns a list of Adaptive Server attribute names and current values.

sp_special_columns Returns the optimal set of columns that uniquely identify a row in a table or view; can
also return a list of the columns that are automatically updated when any value in the row
is updated by a transaction.

sp_sproc_columns Returns information about a stored procedure’s input and return parameters.

sp_statistics Returns a list of indexes on a single table.

Specifying optional parameters

1176

Catalog stored procedures retrieve information from the system tables in
tabular form.

The catalog stored procedures, created by installmaster at installation, are
located in the sybsystemprocs database and are owned by the System
Administrator.

Many of them can be run from any database. If a catalog stored procedure
is executed from a database other than sybsystemprocs, it retrieves
information from the system tables in the database from which it was
executed.

All catalog stored procedures execute at isolation level 1.

All catalog stored procedures report a return status. For example, this
means that the procedure executed successfully. The examples in this book
do not include the return status:

return status = 0

Specifying optional parameters
If a parameter value for a catalog stored procedure contains punctuation or
embedded blanks, or is a reserved word, you must enclose it in single or
double quotes. If the parameter is an object name qualified by a database
name or owner name, enclose the entire name in single or double quotes.

Note Do not use delimited identifiers as catalog stored procedure
parameters. Doing so may produce unexpected results.

In many cases, it is more convenient to supply parameters to the catalog
stored procedures in the form:

@parametername = value

than to supply all the parameters. The parameter names in the syntax
statements match the parameter names defined by the procedures.

sp_stored_procedures Returns information about one or more stored procedures.

sp_table_privileges Returns privilege information for all columns in a table or view.

sp_tables Returns a list of objects that can appear in a from clause.

Procedure Description

CHAPTER 9 Catalog Stored Procedures

1177

For example, the syntax for sp_columns is:

sp_columns table_name [, table_owner]
[, table_qualifier] [, column_name]

To use sp_columns to find information about a particular column, you can
use:

sp_columns publishers, @column_name = "pub_id"

This provides the same information as the command with all of the
parameters specified:

sp_columns publishers, "dbo", "pubs2", "pub_id"

You can also use “null” as a placeholder:

sp_columns publishers, null, null, "pub_id"

If you specify more parameters then the number of parameters expected
by the system procedure, Adaptive Server ignores the extra parameters.

Pattern matching
Adaptive Server offers a wide range of pattern matching through regular
expressions. However, for maximum interoperability, assume only SQL
standards pattern matching (the % and _ wildcard characters).

System procedure tables
The catalog stored procedures sp_columns, sp_datatype_info,
sp_special_columns, and sp_sproc_columns use the catalog stored
procedure tables spt_datatype_info, spt_datatype_info_ext, and
spt_server_info in the sybsystemprocs database to convert internal system
values such as status bits into human-readable format.

The catalog stored procedures sp_column_privileges and
sp_table_privileges create and then drop temporary tables.

ODBC datatypes

1178

ODBC datatypes
Table 9-2 and Table 9-3 list the datatype code numbers and matching
datatype names returned by sp_columns and sp_sproc_columnsin the
“data_type” column. The source for the description is the Open Database
Connectivity (ODBC) Application Programming Interface (API).

Table 9-2: Code numbers for ODBC datatypes

Table 9-3: Code numbers for extended datatypes

Datatype Code #

char 1

decimal 3

double precision 8

float 6

integer 4

numeric 2

real 7

smallint 5

varchar 12

Datatype Code #

bigint -5

binary (bit datatype) -2

bit -7

date 9

java.lang.Object 1111

long varbinary -4

long varchar -1

time 10

timestamp 11

tinyint -6

varbinary (bit-varying datatype) -3

CHAPTER 9 Catalog Stored Procedures

1179

sp_column_privileges
Description Returns permissions information for one or more columns in a table or

view.

Syntax sp_column_privileges table_name [, table_owner
[, table_qualifier [, column_name]]]

Parameters table_name
is the name of the table. The use of wildcard characters in pattern
matching is not supported.

table_owner
is the name of the table owner. The use of wildcard characters in pattern
matching is not supported. If you do not specify the table’s owner,
sp_column_privileges looks for a table owned by the current user and
then for a table owned by the Database Owner.

table_qualifier
is the name of the database. Values are the name of the current database
and null.

column_name
is the name of the column whose permissions you want to display. Use
wildcard characters to request information for more than one column. If
you do not specify a column name, permissions information for all
columns in the specified table is returned.

Examples

sp_column_privileges discounts, null, null, discounttype

table_qualifier table_owner table_name column_name
grantor grantee privilege is_grantable

------------------- -------------- ------------------- ----------------
--------- ----------- ------------- ------------

pubs2 dbo discounts discounttype
dbo dbo SELECT YES

pubs2 dbo discounts discounttype
dbo dbo UPDATE YES

pubs2 dbo discounts discounttype
dbo dbo REFERENCE YES

pubs2 dbo discounts discounttype
dbo guest SELECT NO

pubs2 dbo discounts discounttype
dbo guest UPDATE NO

pubs2 dbo discounts discounttype
dbo guest REFERENCE NO

sp_column_privileges

1180

Usage • The results set for sp_column_privileges is:

Permissions Any user can execute sp_column_privileges.

Column Datatype Description

table_qualifier varchar(32) The name of the database in which the table specified for the table_name parameter
is stored.

table_owner varchar(32) The table owner. If no value was specified for the table_owner parameter, this value
is the current owner or the Database Owner.

table_name varchar(32) The name specified for the table_name parameter. This value cannot be NULL.

column_name varchar(32) The specified column name. If no column name was specified in the statement, the
results include all columns in the specified table.

grantor varchar(32) The name of the database user who has granted permissions on column_name to
grantee. This value cannot be NULL.

grantee varchar(32) The name of the database user who was granted permissions on column_name by
grantor. This value cannot be NULL.

privilege varchar(32) Identifies the column privilege. May be one of the following:

• SELECT – The grantee is permitted to retrieve data for the column.

• UPDATE – The grantee is permitted to update data in the column.

• REFERENCE – The grantee is permitted to refer to the column within a
constraint (for example, a unique, referential, or table check constraint).

is_grantable varchar(3) Indicates whether the grantee is permitted to grant the privilege to other users. The
values are YES, NO, and NULL.

CHAPTER 9 Catalog Stored Procedures

1181

sp_columns
Description Returns information about the type of data that can be stored in one or

more columns.

Syntax sp_columns table_name [, table_owner]
[, table_qualifier] [, column_name]

Parameters table_name
is the name of the table or view. Use wildcard characters to request
information about more than one table.

table_owner
is the owner of the table or view. Use wildcard characters to request
information about tables owned by more than one user. If you do not
specify a table owner, sp_columns looks for tables owned by the current
user and then for tables owned by the Database Owner.

table_qualifier
is the name of the database. This can be either the current database or
NULL.

column_name
is the name of the column for which you want information. Use
wildcard characters to request information about more than one
column.

Examples Example 1 Displays information about all columns in the publishers table
that begin with “p”:

sp_columns "publishers", null, null, "p%"

table_qualifier table_owner table_name column_name data_type type_name
precision length scale radix nullable remarks ss_data_type colid

---------------- ----------- ----------- ----------- --------- ----------
--------- ------ ----- ----- -------- ------- ------------ ----

pubs2 dbo publishers pub_id 1 char
NULL 4 NULL NULL 0 NULL 47 1

pubs2 dbo publishers pub_name 12 varchar
NULL 40 NULL NULL 1 NULL 39 2

Example 2 Displays information about all columns beginning with “st”
in tables that begin with “s”:

sp_columns "s%", null, null, "st%"

Usage • The results set for sp_columns is:

sp_columns

1182

• sp_columns reports the type_name as float, and data_type as 6 for
columns defined as double precision. The Adaptive Server double
precision datatype is a float implementation supports the range of
values as specified in the ODBC specifications.

Permissions Any user can execute sp_columns.

Column Datatype Description

table_qualifier varchar(32) The name of the database in which the table specified for the table_name
parameter is stored.

table_owner varchar(32) The table owner. If no value was specified for the table_owner parameter, this
value is the current owner or the Database Owner.

table_name varchar(32) NOT NULL.

column_name varchar(32) NOT NULL.

data_type smallint Integer code for ODBC datatype. If this is a datatype that cannot be mapped into
an ODBC type, it is NULL.

type_name varchar(30) String representing a datatype. The underlying DBMS presents this datatype
name.

precision int Number of significant digits.

length int Length in bytes of a datatype.

scale smallint Number of digits to the right of the decimal point.

radix smallint Base for numeric datatypes.

nullable smallint The value 1 means NULL is possible; 0 means NOT NULL.

remarks varchar(254)

ss_data_type smallint An Adaptive Server datatype.

colid tinyint A column appended to the results set.

column_def varchar(255)

sql_data_type smallint

sql_datetime_sub smallint

char_octet_length int

ordinal_position int

is_nullable varchar(3)

CHAPTER 9 Catalog Stored Procedures

1183

sp_databases
Description Returns a list of databases in Adaptive Server.

Syntax sp_databases

Parameters None.

Examples sp_databases

database_name database_size remarks
---------------- ------------- ------------
master 5120 NULL
model 2048 NULL
mydb 2048 NULL
pubs2 2048 NULL
sybsecurity 5120 NULL
sybsystemprocs 16384 NULL
tempdb 2048 NULL

Usage • The results set for sp_databases is:

Permissions Any user can execute sp_databases.

Column Datatype Description

database_name char(32) NOT NULL database name.

database_size int Size of database, in kilobytes.

remarks varchar(254) Adaptive Server always returns NULL.

sp_datatype_info

1184

sp_datatype_info
Description Returns information about a particular ODBC datatype or about all ODBC

datatypes.

Syntax sp_datatype_info [data_type]

Parameters data_type
is the code number for the specified ODBC datatype about which
information is returned. Datatype codes are listed in Table 9-2 on
page 1178 and Table 9-3 on page 1178.

Usage • The results set for sp_datatype_info is:

Permissions Any user can execute sp_datatype_info.

Column Datatype Description

type_name varchar(30) A DBMS-dependent datatype name (the same as the type_name column in the
sp_columns results set).

data_type smallint A code for the ODBC type to which all columns of this type are mapped.

precision int The maximum precision for the datatype on the data source. Zero is returned
for datatypes where precision is not applicable.

literal_prefix varchar(32) Character(s) used to prefix a literal. For example, a single quotation mark (') for
character types and 0x for binary.

literal_suffix varchar(32) Character(s) used to terminate a literal. For example, a single quotation mark
(') for character types and nothing for binary.

create_params varchar(32) A description of the creation parameters for this datatype.

nullable smallint The value 1 means this datatype can be created allowing null values; 0 means
it cannot.

case_sensitive smallint The value 1 means all columns of this type are case sensitive (for collations); 0
means they are not.

searchable smallint The value 1 means columns of this type can be used in a where clause.

unsigned_attribute smallint The value 1 means the datatype is unsigned; 0 means the datatype is signed.

money smallint The value 1 means it is a money datatype; 0 means it is not.

auto_increment smallint The value 1 means the datatype is automatically incremented; 0 means it is not.

local_type_name varchar(128) Localized version of the data source dependent name of the datatype.

CHAPTER 9 Catalog Stored Procedures

1185

sp_fkeys
Description Returns information about foreign key constraints created with the create

table or alter table command in the current database.

Syntax sp_fkeys pktable_name [, pktable_owner]
[, pktable_qualifier] [, fktable_name]
[, fktable_owner] [, fktable_qualifier]

Parameters pktable_name
is the name of the primary key table. The use of wildcard characters in
pattern matching is not supported. You must specify either the
pktable_name or the fktable_name, or both.

pktable_owner
is the name of the primary key table owner. The use of
wildcard characters in pattern matching is not supported. If you do not
specify the table owner, sp_fkeys looks for a table owned by the current
user and then for a table owned by the Database Owner.

pktable_qualifier
is the name of the database that contains the primary key table. This can
be either the current database or NULL.

fktable_name
is the name of the foreign key table. The use of wildcard characters in
pattern matching is not supported. Either the fktable_name or the
pktable_name, or both, must be given.

fktable_owner
is the name of the foreign key table owner. The use of
wildcard characters in pattern matching is not supported. If an
fktable_owner is not specified, sp_fkeys looks for a table owned by the
current user and then for a table owned by the Database Owner.

fktable_qualifier
is the name of the database that contains the foreign key table. This can
be either the current database or null.

Usage • sp_fkeys returns information about foreign key constraints created
with the create table or alter table command in the current database. A
foreign key is a key column in a table that logically depends on a
primary key column in another table.

• The results set for sp_fkeys is:

Column Datatype Description

pktable_qualifier varchar(32) The database that contains the primary key table.

sp_fkeys

1186

• Both the primary key and foreign key must have been declared in a
create table or alter table statement.

• If the primary key table name is supplied, but the foreign key table
name is NULL, sp_fkeys returns all tables that include a foreign key
to the given table. If the foreign key table name is supplied, but the
primary key table name is NULL, sp_fkeys returns all tables that are
related by a primary key/foreign key relationship to foreign keys in
the foreign key table.

• sp_fkeys does not return information about keys declared with
sp_commonkey, sp_foreignkey or sp_primarykey.

Permissions Any user can execute sp_fkeys.

pktable_owner varchar(32) The owner of the primary key table.

pktable_name varchar(32) NOT NULL.

pkcolumn_name varchar(32) NOT NULL.

fktable_qualifier varchar(32) The database that contains the foreign key table.

fktable_owner varchar(32) The owner of the foreign key table.

fktable_name varchar(32) NOT NULL.

fkcolumn_name varchar(32) NOT NULL.

key_seq smallint NOT NULL. The sequence number of the column in a multicolumn primary key.

update_rule smallint Action to be applied to the foreign key when the SQL operation is UPDATE. Zero
is returned for this column.

delete_rule smallint Action to be applied to the foreign key when the SQL operation is DELETE. Zero
is returned for this column.

Column Datatype Description

CHAPTER 9 Catalog Stored Procedures

1187

sp_pkeys
Description Returns information about primary key constraints created with the create

table or alter table command for a single table.

Syntax sp_pkeys table_name [, table_owner]
[, table_qualifier]

Parameters table_name
is the name of the table. The use of wildcard characters in pattern
matching is not supported.

table_owner
is the name of the table owner. The use of wildcard characters in pattern
matching is not supported. If table_owner is not specified, sp_pkeys
looks for a table owned by the current user and then for a table owned
by the Database Owner.

table_qualifier
is the name of the database that contains the table. This can be either the
current database or NULL.

Usage • The results set for sp_pkeys is:

• Primary keys must have been declared with the create table or alter
table statement, not with sp_primarykey.

• The term primary key refers to a logical primary key for a table.
Adaptive Server expects that every logical primary key has a unique
index defined on it and that this unique index is also returned in
sp_statistics.

Permissions Any user can execute sp_pkeys.

Column Datatype Description

table_qualifier varchar(32) The database name. This field can be NULL.

table_owner varchar(32) The table owner. If no value was specified for the table_owner parameter, this value
is the current owner or the Database Owner.

table_name varchar(32) NOT NULL.

column_name varchar(32) NOT NULL.

key_seq smallint NOT NULL. The sequence number of the column in a multicolumn primary key.

sp_server_info

1188

sp_server_info
Description Returns a list of Adaptive Server attribute names and current values.

Syntax sp_server_info [attribute_id]

Parameters attribute_id
is the integer ID of the server attribute.

Examples Example 1

sp_server_info 12

attribute_id attribute_name attribute_value
------------ ------------------------- --------------------------

12 MAX_OWNER_NAME_LENGTH 0

Example 2 Returns the list of server attributes, described by the
mandatory rows, and their values:

sp_server_info

Usage • The results set for sp_server_info is:

• The mandatory rows in the results set returned by sp_server_info are:

Column Datatype Description

attribute_id int NOT NULL.

attribute_name varchar(60) NOT NULL.

attribute_value varchar(255)

ID Server Attribute Name Description Value

1 DBMS_NAME Name of the DBMS. SQL SERVER

2 DBMS_VER Version of the DBMS. @@version

6 DBE_NAME Unused

10 OWNER_TERM Adaptive Server’s term for a table owner (the second
part of a three-part name).

owner

11 TABLE_TERM Adaptive Server’s term for a table (the third part of a
three-part name).

table

12 MAX_OWNER_NAME_LENGTH Maximum length of the name for a table owner (the
second part of a three-part name).

30

13 TABLE_LENGTH The maximum number of characters for a table
name.

30

14 MAX_QUAL_LENGTH Maximum length of the name for a table qualifier
(the first part of a three-part table name).

30

CHAPTER 9 Catalog Stored Procedures

1189

15 COLUMN_LENGTH The maximum number of characters for a column
name.

30

16 IDENTIFIER_CASE The case sensitivity of user-defined names (table
names, column names, and stored procedure names)
in the database (the case in which these objects are
presented in the system catalogs).

MIXED

18 COLLATION_SEQ The assumed ordering of the character set for this
server.

19 SAVEPOINT_SUPPORT Does the underlying DBMS support named
savepoints?

Y

20 MULTI_RESULT_SETS Does the underlying DBMS or the gateway itself
support multiple results sets (can multiple statements
be sent through the gateway, with multiple results
sets returned to the client)?

Y

22 ACCESSIBLE_TABLES In sp_tables, does the gateway return only tables,
views, and so on, that are accessible by the current
user (that is, the user who has at least select
privileges for the table)?

Y

100 USERID_LENGTH The maximum number of characters for a user name. 30

101 QUALIFIER_TERM Adaptive Server’s term for a table qualifier (the first
part of a three-part name).

database

102 NAMED_TRANSACTIONS Does the underlying DBMS support named
transactions?

Y

103 SPROC_AS_LANGUAGE Can stored procedures be executed as language
events?

Y

103 REMOTE_SPROC Can stored procedures be executed through the
remote stored procedure APIs in DB-Library?

Y

104 ACCESSIBLE_SPROC In sp_stored_procedures, does the gateway return
only stored procedures that are executable by the
current user?

Y

105 MAX_INDEX_COLS Maximum number of columns in an index for the
DBMS.

32

106 RENAME_TABLE Can tables be renamed? Y

107 RENAME_COLUMN Can columns be renamed? Y

108 DROP_COLUMN Can columns be dropped? Y

109 INCREASE_COLUMN_LENGTH Can column size be increased? N

110 DDL_IN_TRANSACTION Can DDL statements appear in transactions? Y

111 DESCENDING_INDEXES Are descending indexes supported? Y

112 SP_RENAME Can a stored procedure be renamed? Y

ID Server Attribute Name Description Value

sp_server_info

1190

15 COLUMN_LENGTH The maximum number of characters for a column
name.

30

16 IDENTIFIER_CASE The case sensitivity of user-defined names (table
names, column names, and stored procedure names)
in the database (the case in which these objects are
presented in the system catalogs).

MIXED

18 COLLATION_SEQ The assumed ordering of the character set for this
server.

19 SAVEPOINT_SUPPORT Does the underlying DBMS support named
savepoints?

Y

20 MULTI_RESULT_SETS Does the underlying DBMS or the gateway itself
support multiple results sets (can multiple statements
be sent through the gateway, with multiple results
sets returned to the client)?

Y

22 ACCESSIBLE_TABLES In sp_tables, does the gateway return only tables,
views, and so on, that are accessible by the current
user (that is, the user who has at least select
privileges for the table)?

Y

100 USERID_LENGTH The maximum number of characters for a user name. 30

101 QUALIFIER_TERM Adaptive Server’s term for a table qualifier (the first
part of a three-part name).

database

102 NAMED_TRANSACTIONS Does the underlying DBMS support named
transactions?

Y

103 SPROC_AS_LANGUAGE Can stored procedures be executed as language
events?

Y

103 REMOTE_SPROC Can stored procedures be executed through the
remote stored procedure APIs in DB-Library?

Y

104 ACCESSIBLE_SPROC In sp_stored_procedures, does the gateway return
only stored procedures that are executable by the
current user?

Y

105 MAX_INDEX_COLS Maximum number of columns in an index for the
DBMS.

32

106 RENAME_TABLE Can tables be renamed? Y

107 RENAME_COLUMN Can columns be renamed? Y

108 DROP_COLUMN Can columns be dropped? Y

109 INCREASE_COLUMN_LENGTH Can column size be increased? N

110 DDL_IN_TRANSACTION Can DDL statements appear in transactions? Y

111 DESCENDING_INDEXES Are descending indexes supported? Y

112 SP_RENAME Can a stored procedure be renamed? Y

ID Server Attribute Name Description Value

CHAPTER 9 Catalog Stored Procedures

1191

Permissions Any user can execute sp_server_info.

500 SYS_SPROC_VERSION The version of the catalog stored procedures
currently implemented.

01.01.2822

ID Server Attribute Name Description Value

sp_special_columns

1192

sp_special_columns
Description Returns the optimal set of columns that uniquely identify a row in a table

or view; can also return a list of timestamp columns, whose values are
automatically generated when any value in the row is updated by a
transaction.

Syntax sp_special_columns table_name [, table_owner]
[, table_qualifier] [, col_type]

Parameters table_name
is the name of the table or view. The use of wildcard characters in
pattern matching is not supported.

table_owner
is the name of the table or view owner. The use of wildcard characters
in pattern matching is not supported. If you do not specify the table
owner, sp_special_columns looks for a table owned by the current user
and then for a table owned by the Database Owner.

table_qualifier
is the name of the database. This can be either the current database or
NULL.

col_type
is “R” to return information about columns whose values uniquely
identify any row in the table, or “V” to return information about
timestamp columns, whose values are generated by Adaptive Server
each time a row is inserted or updated.

Examples Example 1

sp_special_columns systypes

scope column_name data_type type_name precision
length scale

------ ---------------- --------- ------------- --------
----------- ------

0 name 12 varchar 30
 30 NULL

Example 2

sp_special_columns @table_name=authors, @col_type=R

scope column_name data_type type_name precision
length scale

------ --------------------- --------- ------------ -----------
----------- ------

0 au_id 12 varchar 11

CHAPTER 9 Catalog Stored Procedures

1193

11 NULL

Usage • The results set for sp_special_columns is:

Permissions Any user can execute sp_special_columns.

Column Datatype Description

scope int NOT NULL. Actual scope of the row ID. Adaptive Server always returns 0.

column_name varchar(30) NOT NULL. Column identifier.

data_type smallint The integer code for an ODBC datatype. If this datatype cannot be mapped
to an ANSI/ISO type, the value is NULL. The native datatype name is
returned in the type_name column. (See the ODBC datatypes Table 9-2.)

type_name varchar(13) The string representation of the datatype. This is the datatype name as
presented by the underlying DBMS.

precision int The number of significant digits.

length int The length in bytes of the datatype.

scale smallint The number of digits to the right of the decimal point.

sp_sproc_columns

1194

sp_sproc_columns
Description Returns information about a stored procedure’s input and return

parameters.

Syntax sp_sproc_columns procedure_name [, procedure_owner]
[, procedure_qualifier] [, column_name]

Parameters procedure_name
is the name of the stored procedure. The use of wildcard characters in
pattern matching is not supported.

procedure_owner
is the owner of the stored procedure. The use of wildcard characters in
pattern matching is not supported. If no owner is specified,
sp_sproc_columns returns all columns.

procedure_qualifier
is the name of the database. This can be either the current database or
NULL.

column_name
is the name of the parameter about which you want information. If you
do not supply a parameter name, sp_sproc_columns returns information
about all input and return parameters for the stored procedure.

Usage • The results set for sp_sproc_columns is:

Column Datatype Description

procedure_qualifier varchar(30)

procedure_owner varchar(30)

procedure_name varchar(41) NOT NULL.

column_name varchar(30) NOT NULL.

column_type smallint

data_type smallint The integer code for an ODBC datatype. If this datatype cannot be mapped to
an ANSI/ISO type, the value is NULL. The native datatype name is returned
in the type_name column.

type_name char(30) The string representation of the datatype. This is the datatype name as
presented by the underlying DBMS.

precision int The number of significant digits.

length int The length in bytes of the datatype.

scale smallint The number of digits to the right of the decimal point.

radix smallint Base for numeric types.

nullable smallint The value 1 means this datatype can be created allowing null values; 0 means
it cannot.

CHAPTER 9 Catalog Stored Procedures

1195

• sp_sproc_columns reports the type_name as float, and data_type as 6
for parameters defined as double precision. The Adaptive Server
double precision datatype is a float implementation supports the range
of values as specified in the ODBC specifications.

Permissions Any user can execute sp_sproc_columns.

remarks varchar(254) NULL.

ss_data_type tinyint An Adaptive Server datatype.

colid tinyint An Adaptive Server specific column appended to the result set.

Column Datatype Description

sp_statistics

1196

sp_statistics
Description Returns a list of indexes on a single table.

Syntax sp_statistics table_name [, table_owner]
[, table_qualifier] [, index_name] [, is_unique]

Parameters table_name
is the name of the table. The use of wildcard character pattern matching
is not supported.

table_owner
is the owner of the table. The use of wildcard character pattern matching
is not supported. If table_owner is not specified, sp_statistics looks for
a table owned by the current user and then for a table owned by the
Database Owner.

table_qualifier
is the name of the database. This can be either the current database or
NULL.

index_name
is the index name. The use of wildcard character pattern matching is not
supported.

is_unique
is Y to return only unique indexes; otherwise, is N to return both unique
and nonunique indexes.

Examples sp_statistics publishers

table_qualifier table_owner
table_name non_unique
index_qualifier index_name
type seq_in_index column_name collation
cardinality pages

-------------------------------- --------------------------------
-------------------------------- ----------
-------------------------------- ---------------------------
------ ------------ -------------------------------- --------
----------- -----------

pubs2 dbo
publishers NULL
NULL NULL

0 NULL NULL NULL
3 1

pubs2 dbo
publishers 0
publishers pubind

CHAPTER 9 Catalog Stored Procedures

1197

1 1 pub_id A
3 1

Usage • The results set for sp_statistics is:

• The indexes in the results set appear in ascending order, ordered by
the non-unique, type, index_name, and seq_in_index columns.

• The index type hashed accepts exact match or range searches, but
searches involving pattern matching do not use the index.

Permissions Any user can execute sp_statistics.

Column Datatype Description

table_qualifier varchar(32) The database name. This field can be NULL.

table_owner varchar(32)

table_name varchar(32) NOT NULL.

non_unique smallint NOT NULL. The value 0 means unique, and 1 means not unique.

index_qualifier varchar(32)

index_name varchar(32)

type smallint NOT NULL. The value 0 means clustered, 2 means hashed, and 3 means other.

seq_in_index smallint NOT NULL.

column_name varchar(32) NOT NULL.

collation char(1) The value A means ascending; D means descending; and NULL means not
applicable.

cardinality int Number of rows in the table or unique values in the index.

pages int Number of pages to store the index or table.

sp_stored_procedures

1198

sp_stored_procedures
Description Returns information about one or more stored procedures.

Syntax sp_stored_procedures [sp_name [, sp_owner
[, sp_qualifier]]]

Parameters sp_name
is the name of the stored procedure. Use wildcard characters to request
information about more than one stored procedure.

sp_owner
is the owner of the stored procedure. Use wildcard characters to request
information about procedures that are owned by more than one user.

sp_qualifier
is the name of the database. This can be the current database or NULL.

Usage • sp_stored_procedures returns information about stored procedures in
the current database only.

• The results set for sp_stored_procedures is:

• sp_stored_procedures can return the name of stored procedures for
which the current user does not have execute permission. However, if
the server attribute accessible_sproc is “Y” in the results set for
sp_server_info, only stored procedures that are executable by the
current user are returned.

Permissions Any user can execute sp_stored_procedures.

Column Datatype Description

procedure_qualifier varchar(30) The name of the database.

procedure_owner varchar(30)

procedure_name varchar(41) NOT NULL.

num_input_params int NOT NULL. Always returns -1.

num_output_params int NOT NULL. The value >= 0 shows the number of parameters; -1 means the
number of parameters is indeterminate.

num_result_sets int NOT NULL. Always returns -1.

remarks varchar(254) NULL.

CHAPTER 9 Catalog Stored Procedures

1199

sp_table_privileges
Description Returns privilege information for all columns in a table or view.

Syntax sp_table_privileges table_name [, table_owner
[, table_qualifier]]

Parameters table_name
is the name of the table. The use of wildcard characters in pattern
matching is not supported.

table_owner
is the name of the table owner. The use of wildcard characters in pattern
matching is not supported. If you do not specify the table owner,
sp_table_privileges looks for a table owned by the current user and then
for a table owned by the Database Owner.

table_qualifier
is the name of the database. This can be either the current database or
NULL.

Usage • The results set for sp_table_privileges is:

Permissions Any user can execute sp_table_privileges.

Column Datatype Description

table_qualifier varchar(32) The name of the database. This field can be NULL.

table_owner varchar(32)

table_name varchar(32) NOT NULL.

grantor varchar(32) NOT NULL.

grantee varchar(32) NOT NULL.

privilege varchar(32) Identifies the table privilege. May be one of the following:

• SELECT – The grantee is permitted to retrieve data for one or more columns of
the table.

• INSERT – The grantee is permitted to insert new rows containing data for one or
more columns into the table.

• UPDATE – The grantee is permitted to update the data in one or more columns of
the table.

• DELETE – The grantee is permitted to delete rows of data from the table.

• REFERENCE – The grantee is permitted to refer to one or more columns of the
table within a constraint.

is_grantable varchar(3) Indicates whether the grantee is permitted to grant the privilege to other users. The
values are YES, NO, and NULL.

sp_tables

1200

sp_tables
Description Returns a list of objects that can appear in a from clause.

Syntax sp_tables [table_name] [, table_owner]
[, table_qualifier][, table_type]

Parameters table_name
is the name of the table. Use wildcard characters to request information
about more than one table.

table_owner
is the table owner. Use wildcard characters to request information about
more than one table.

table_qualifier
is the name of the database. Acceptable values are the name of the
current database and NULL.

table_type
is a list of values, separated by commas, giving information about all
tables of the table type(s) specified, including the following:

"'TABLE', 'SYSTEM TABLE', 'VIEW'"

Note Enclose each table type with single quotation marks, and enclose the
entire parameter with double quotation marks. Enter table types in
uppercase.

Examples sp_tables @table_type = "'TABLE', 'VIEW'"

This procedure returns information about all tables in the current database
of the type TABLE and VIEW and excludes information about system
tables.

Usage • Adaptive Server does not necessarily check the read and write
permissions on table_name. Access to the table is not guaranteed,
even if you can display information about it.

• The results set includes tables, views, and synonyms and aliases for
gateways to DBMS products.

• If the server attribute accessible_tables is “Y” in the results set for
sp_server_info, only tables that are accessible by the current user are
returned.

• The results set for sp_tables is:

CHAPTER 9 Catalog Stored Procedures

1201

Permissions Any user can execute sp_tables.

Tables used master.dbo.sysattributes, master.dbo.sysloginroles, master.dbo.syssrvroles,
sysroles

Column Datatype Description

table_qualifier varchar(30) The database name. This field can be NULL.

table_owner varchar(30)

table_name varchar(30) NOT NULL. The table name.

table_type varchar(32) NOT NULL. One of the following: 'TABLE',
'VIEW', 'SYSTEM TABLE'.

remarks varchar(254) NULL

sp_tables

1202

1203

C H A P T E R 1 0 System Extended Stored
Procedures

This chapter describes the system extended stored procedures (ESPs),
which are supplied by Sybase. ESPs are created by installmaster at
installation. They are located in the sybsystemprocs database and owned
by the System Administrator. They can be run from any database.

Topics covered are:

Overview
Table 10-1 lists the system extended stored procedures discussed in this
chapter.

Table 10-1: System extended stored procedures

Topics Page
Overview 1203

Permissions on system ESPs 1204

DLLs associated with system ESPs 1204

Using system ESPs 1204

Procedure Description Platform

xp_cmdshell Executes a native operating system command on the host system running
Adaptive Server.

All Supporting
DLLs

xp_deletemail Deletes a message from the Adaptive Server message inbox. NT Only

xp_enumgroups Displays groups for a specific Windows NT domain. NT Only

xp_findnextmsg Retrieves the message identifier of the next message in the Adaptive Server
message inbox.

NT Only

xp_logevent Provides for logging a user-defined event in the Windows NT Event Log. NT Only

xp_readmail Reads a message from the Adaptive Server message inbox. NT Only

xp_sendmail Sends a message to the specified recipients using the MAPI interface. NT Only

xp_startmail Starts an Adaptive Server mail session. NT Only

xp_stopmail Stops an Adaptive Server mail session. NT Only

Permissions on system ESPs

1204

Permissions on system ESPs
Permissions are set in the sybsystemprocs database.

Users with the sa_role have default execution permissions on the system
ESPs. These System Administrators can grant execution permissions to
other users.

DLLs associated with system ESPs
You can get the names of the DLLs associated with the system ESPs by
running sp_helpextendedproc in the sybsystemprocs database.

Using system ESPs
The system ESPs follow the same calling conventions as the regular
system procedures. The only additional requirement for system ESPs is
that the Open Server application, XP Server, must be running. Adaptive
Server starts XP Server the first time an ESP is invoked. XP Server
continues to run until you shut down Adaptive Server.

CHAPTER 10 System Extended Stored Procedures

1205

xp_cmdshell
Description Executes a native operating system command on the host system running

Adaptive Server.

Syntax xp_cmdshell command [, no_output]

Parameters command
is the operating system command string; maximum length is 255 bytes.

no_output
if specified, suppresses any output from the command.

Examples Example 1 Silently copies the file named log on the C drive to a file named
log.0102 on the A drive:

xp_cmdshell 'copy C:\log A:\log.0102', no_output

Example 2 Executes the operating system’s date command and returns
the current date as a row of data:

xp_cmdshell 'date'

Usage • xp_cmdshell returns any output, including operating system errors, as
rows of text in a single column.

• xp_cmdshell is run from the current directory of the XP Server.

• The width of the column of returned output is 80 characters. The
output is not formatted.

• xp_cmdshell cannot perform commands that require interaction with
the user, such as “login”.

• The user context in which an operating system command is executed
via xp_cmdshell is controlled by the value of the xp_cmdshell context
configuration parameter. If this parameter is set to 1 (the default),
xp_cmdshell restricts permission to users with System Administration
privileges at the operating system level. If this parameter is set to 0,
xp_cmdshell uses the security context of the operating system account
under which Adaptive Server is running. Therefore, using
xp_cmdshell with the xp_cmdshell context configuration parameter set
to 0, any user can execute operating system commands using the
permissions of the account running Adaptive Server. This account
may have fewer restrictions than the user’s own account.

See the System Administration Guide for more information about t
xp_cmdshell context.

xp_cmdshell

1206

• Regardless of the value of xp_cmdshell context, if the user who is
executing xp_cmdshell is not a System Administrator (does not have
the sa_role), a System Administrator must have granted that user
explicit permission to execute xp_cmdshell. For example, the
following statement grants “joe” permission to execute xp_cmdshell:

grant execute on xp_cmdshell to joe

• To find out if xp_cmdshell was successful in spawning an external
command XP Server, enter the following, where command is the
name of the command you ran with xp_cmdshell:

@ret = exec xp_cmdshell command

If xp_cmdshell was successful, @ret = exec xp_cmdshell command
returns a value of 0. If xp_cmdshell failed, @ret = exec xp_cmdshell
command returns a value of 1.

• To find out if the command you ran using xp_cmdshell was itself
successful, enter the following, where command is the name of the
command you ran with xp_cmdshell:

@ret = exec xp_cmdshell command, return_status

@ret = exec xp_cmdshell command, return_status causes xp_cmdshell
to return the actual exit status code of the command. If a failure
occurrs and XP Server cannot run the command, xp_cmdshell returns
a value of 1. If the command runs successfully, xp_cmdshell returns a
value of 0.

If the command was successful, @ret = exec xp_cmdshell command
returns a value of 0. If the command failed, @ret = exec xp_cmdshell
command returns a value of 1.

Note Both @ret = exec xp_cmdshell command and @ret = exec
xp_cmdshell command, return_status are backward-compatible. Old
stored procedures that do not use the return_status parameter treat
@ret = exec xp_cmdshell command, return_status as if it were @ret =
exec xp_cmdshell command.

Also, the no_output parameter can still be used in combination with
return_status, in any order.

Permissions By default, only a System Administrator can execute xp_cmdshell. A
System Administrator can grant execute permission to other users.

CHAPTER 10 System Extended Stored Procedures

1207

xp_deletemail
Description Windows NT only Deletes a message from the Adaptive Server message

inbox.

Syntax xp_deletemail [msg_id]

Parameters msg_id
is the message identifier of the mail message to be deleted.

Examples Example 1 Deletes from the Adaptive Server message inbox the message
with the message identifier specified in the cur_msg_id variable:

1> declare @cur_msg_id binary(255)
2> exec xp_deletemail @msg_id = @cur_msg_id

Example 2 Deletes the first message from the Adaptive Server message
inbox:

xp_deletemail

Usage • Obtain the msg_id using xp_findnextmsg.

• If the msg_id parameter is not used, the message to be deleted defaults
to the first message in the message inbox.

Permissions By default, only a System Administrator can execute xp_deletemail. A
System Administrator can grant this permission to other users.

xp_enumgroups

1208

xp_enumgroups
Description Windows NT only Displays groups for a specified Windows NT

domain.

Syntax xp_enumgroups [domain_name]

Parameters domain_name
is the Windows NT domain for which you are listing user groups.

Examples Example 1 Lists all user groups on the Windows NT computer running XP
Server:

xp_enumgroups

Example 2 Lists all user groups in the PCS domain:

xp_enumgroups 'PCS'

Usage • xp_enumgroups displays all local user groups if no parameter is
passed.

• A domain is a named collection of computers that share a common
user account database and security policy.

• A return status of 0 indicates success; 1 indicates failure.

Permissions By default, only a System Administrator can execute xp_enumgroups. A
System Administrator can grant this permission to other users.

CHAPTER 10 System Extended Stored Procedures

1209

xp_findnextmsg
Description Windows NT only Retrieves the next message identifier from the

Adaptive Server message inbox.

Syntax xp_findnextmsg @msg_id = @msg_id output [, type]
[, unread_only = {true | false}]

Parameters msg_id
on input, specifies the message identifier that immediately precedes the
one you are trying to retrieve. Places the retrieved message identifier in
the msg_id output parameter, which must be of type binary.

type
is the input message type based on the MAPI mail definition. The only
supported message type is CMC:IPM. A NULL value or no value
defaults to CMC:IPM.

unread_only
if this parameter is set to true, xp_findnextmsg considers only unread
messages. If this parameter is set to false, xp_findnextmsg considers all
messages, both read and unread, when retrieving the next message
identifier. The default is true.

Examples Example 1 Returns, in the @out_msg_id output variable, the message
identifier of the next unread message after the message specified by the
@out_msg_id:

xp_findnextmsg @msg_id = @out_msg_id output

Example 2 Returns, in the @out_msg_id output variable, the message
identifier of the next message after the message specified by the
@out_msg_id. The message may be read or unread:

xp_findnextmsg @msg_id = @out_msg_id output, NULL,
@unread_only = false

Usage • When xp_findnextmsg can find no more messages in the inbox, it
returns a status of 1.

• xp_deletemail and xp_readmail use the message identifier returned by
xp_findnextmsg.

Permissions By default, only a System Administrator can execute xp_findnextmsg. A
System Administrator can grant this permission to other users.

xp_logevent

1210

xp_logevent
Description Windows NT only Provides for logging a user-defined event in the

Windows NT Event Log from within Adaptive Server.

Syntax xp_logevent error_number, message [, type]

Parameters error_number
is the user-assigned error number. It must be equal to or greater than
50000.

message
is the text of the message that is displayed in the description field of the
event viewer. The maximum length of the message is 255 bytes.
Enclose the message in quotes.

type
describes the urgency of the event. Values are informational, warning,
and error. The default is informational. Enclose the value in quotes.

Examples Example 1 An informational event, number 55555, will be logged in the
Windows NT Event Log. The text of the description in the event detail
window is “Email message deleted”:

xp_logevent 55555, 'Email message deleted.'

Example 2 An error event, number 66666, will be logged in the Windows
NT Event Log. The text of the description in the event detail window is
“DLL not found”:

xp_logevent 66666, 'DLL not found.', 'error'

Usage • The following table describes the default event details for events
generated with xp_logevent:

Permissions Only a System Administrator can execute xp_logevent.

Detail Value

User N/A

Computer Name of machine running XP Server

Event ID 12

Source Name of Adaptive Server

Category User

CHAPTER 10 System Extended Stored Procedures

1211

xp_readmail
Description Windows NT only Reads a message from the Adaptive Server message

inbox.

Syntax xp_readmail [msg_id]
[, recipients output]
[, sender output]
[, date_received output]
[, subject output]
[, cc output]
[, message output]
[, attachments output]
[, suppress_attach = {true | false}]
[, peek = {true | false}]
[, unread = {true | false}]
[, msg_length output]
[, bytes_to_skip [output]]
[, type [output]]

Parameters msg _id
specifies the message identifier of the message to be read by
xp_readmail. If the msg_id parameter is not used, the message defaults
to the first unread message in the message box, if unread is true, or to
the first message in the message box, if unread is false.

recipients
is a semicolon-separated list of the recipients of the message.

sender
is the originator of the message.

date_received
is the date the message was received.

subject
is the subject header of the message.

cc
is a list of the message’s copied (cc’d) recipients (separated by
semicolons).

message
is the text of the message body. If the length of the message body,
obtained from the msg_length output parameter, is greater than 255, use
the byte_to_skip and msg_length parameters to read the message in
255-byte increments.

xp_readmail

1212

attachments
is a list of the temporary paths of the attachments (separated by
semicolons). attachments is ignored if suppress_attach is true.

suppress_attach
if set to true, prevents the creation of temporary files for attachments.
The default is true.

peek
if set to false, flags the message as unread after it has been read. If set
to true, flags the message as an unread message, even after it has been
read. The default is false.

unread_only
if set to true, xp_readmail considers only unread messages. If set to false,
xp_readmail considers all messages, whether they are flagged as read or
unread. The default is true.

msg_length
is the total length of the message, in bytes. Used with the bytes_to_skip
parameter, allows xp_readmail to read messages in 255-byte
increments.

bytes_to_skip
on input, if not 0, specifies the number of bytes to skip before reading
the next 255 bytes of the message into the message output parameter.
On output, contains the offset in the message (the previous value of
bytes_to_skip plus the msg_length that is output with the call) from
which to start reading the next 255-byte increment.

type
is the message type based on the MAPI mail definition. The only
supported message type is CMC:IPM. A NULL value or no value
defaults to CMC:IPM.

Examples Example 1 xp_readmail reads the first unread message in the message
inbox. It gets the message identifier for this message from the @msgid
variable, where it has been stored by the xp_findnextmsg ESP. xp_readmail
stores the sender’s name in the @originator variable and the message
body in the @mess variable:

declare @msgid binary(255)
declare @originator varchar(20)
declare @mess varchar(255)
exec xp_findnextmsg @msg_id = @msgid output
exec xp_readmail @msg_id = @msgid,
@sender = @originator output,

CHAPTER 10 System Extended Stored Procedures

1213

@message = @mess output

Example 2 Reads the first 255 bytes of the message for which the message
identifier is output by xp_findnextmsg. If the total length of the message
exceeds 255 bytes, reads the next 255 bytes and continues until there are
no more bytes to read:

declare @msgid binary(255)
declare @mess varchar(255)
declare @msg_length char(255)
declare @len int
declare @skip int
exec xp_findnextmsg @msgid output
exec xp_readmail @msg_id = @msgid,
@message = @mess output,
@msg_length = @len output,
@bytes_to_skip = @skip output
print @mess
if (@len > 255)
begin
 while (@skip < @len)
 begin
 xp_readmail @msg_id = @msgid,
 @message = @mess output,
 @bytes_to_skip = @skip output
 print @mess
 end
end

Usage • xp_readmail reads a message from the Adaptive Server message
inbox.

• To get the message identifier of the next message in the message
inbox, use xp_findnextmsg.

Permissions By default, only a System Administrator can execute xp_readmail. A
System Administrator can grant this permission to other users.

xp_sendmail

1214

xp_sendmail
Description Windows NT only Sends a message to the specified recipients. The

message is either text or the results of a Transact-SQL query.

Syntax xp_sendmail recipient [; recipient] . . .
[, subject]
[, cc_recipient] . . .
[, bcc_recipient] . . .
[, {query | message}]
[, attachname]
[, attach_result = {true | false}]
[, echo_error = {true | false}]
[, include_file [, include_file] . . .]
[, no_column_header = {true | false}]
[, no_output = {true | false}]
[, width]
[, separator]

[, dbuser]
[, dbname]
[, type]
[, include_query = {true | false}]

Parameters recipient
is the email address of the user who will receive the message. At least
one recipient is required. Separate multiple recipients with semicolons.

subject
is the optional message subject header. If not used, defaults to “Sybase
SQL Server Message”.

cc_recipient
is a list of the message’s copied (cc’d) recipients (separated by
semicolons).

bcc_recipient
is the list of the message’s blind- copied (bcc’d) recipients (separated by
semicolons).

query
is one or more Transact-SQL statements. The results are sent to the
recipients of the message. If query is used, message cannot be used.

message
is the text of the message being sent. If message is used, query cannot
be used. For the complete list of options that are ignored when you use
message, see the “Usage” section.

CHAPTER 10 System Extended Stored Procedures

1215

attachname
is the name of the file containing the results of a query, which is
included as an attachment to the message, when the query parameter is
used. If attachname is used, attach_result must be set to true. If
attach_result is true and attachname is not specified, the prefix of the
attached file’s generated file name is “syb” followed by 5 random digits
followed by the “.txt” extension, for example, syb84840.txt. This
parameter is ignored if the message parameter is used.

attach_result
if set to true, sends the results of a query as an attachment to the
message. If set to false, sends the results directly in the message body.
The default is false. This parameter is ignored if the message parameter
is used.

echo_error
if set to true, sends Adaptive Server messages, including the count of
rows affected message, along with the query results. If set to false, does
not send Adaptive Server messages. The default is true. This parameter
is ignored if the message parameter is used.

include_file
is a list of files to be included as attachments to the message, separated
by semicolons. The files can be specified as file names, path names, or
relative path names and can be either text or binary files.

no_column_header
if set to true, column headers are sent with query results. If set to false,
column headers are not sent. The default is false. This parameter is
ignored if the message parameter is used.

no_output
if set to true, no output is sent to the session that sent the mail. If set to
false, the session sending the mail receives output. The default is false.
This parameter is ignored if the message parameter is used.

width
specifies, in characters, the width of the results sets when query results
are sent in a message. width is the same as the /w option in isql. Result
rows are broken by the newline character when the specified width is
reached. The default is 80 characters. This parameter is ignored if the
message parameter is used.

xp_sendmail

1216

separator
specifies the character to be used as a column separator when query
results are sent in a message. separator is the same as the /s option in
isql. The default is the tab character. This parameter is ignored if the
message parameter is used.

dbuser
specifies the database user name to be assumed for the user context for
executing queries when the query parameter is used. The default is
“guest.” This parameter is ignored if the message parameter is used.

dname
specifies the database name to be assumed for the database context for
executing queries when the query parameter is used. The default is
“master.” This parameter is ignored if the message parameter is used.

type
is the input message type based on the MAPI mail definition. The only
supported message type is CMC:IPM. A NULL value or no value
defaults to CMC:IPM.

include_query
if set to true, the query or queries used in the query parameter are
appended to the results set. If set to false, the query is not appended. The
default is false. include_query is ignored if the message parameter is
used.

Examples Example 1 xp_sendmail sends a text message on the backup status of an
Adaptive Server to “sally” and “ramon” with a copy to the “admin” group:

xp_sendmail @recipient = "sally;ramon",
@subject = "Adaptive Server Backup Status",
@message = "Adaptive Server Backup for SERVER2 is
complete.",
@copy_recipient="admin"

Example 2 Sends “peter” the results of a query on the authors table. The
results are in an attachment to the message, which consists of a file named
au_lis.res, which is in the directory from which the server is being
executed:

xp_sendmail "peter",
@query = "select * from authors",
@attachname = "au_list.res",
@attach_result= true

CHAPTER 10 System Extended Stored Procedures

1217

Usage • The following parameters are related to the results of queries sent in
a message when the query parameter is used. They are ignored if the
message parameter is used instead: attachname, attach_result,
echo_error, no_column_header, no_output, width, separator, dbuser,
dname, include_query.

Permissions By default, only a System Administrator can execute xp_sendmail. A
System Administrator can grant this permission to other users.

xp_startmail

1218

xp_startmail
Description Windows NT only Starts an Adaptive Server mail session.

Syntax xp_startmail [mail_user] [, mail_password]

Parameters mail_user
is a mail profile name used by Adaptive Server to log into the Windows
NT mail system. If mail_user is not used, xp_startmail uses the mail user
name that was used to set up Sybmail’s Adaptive Server account.

mail_password
is the mail password used by Adaptive Server to log into the Windows
NT mail system. If mail_password is not used, xp_startmail uses the
mail password that was used to set up Sybmail’s Adaptive Server
account.

Examples Example 1 Starts an Adaptive Server mail session using the mail user
name and password for Sybmail’s user account:

xp_startmail

Example 2 Starts an Adaptive Server mail session with “mailuser” as the
profile name and the password associated with that profile name:

xp_startmail "mailuser", "tre55uu"

Usage • xp_startmail will not start an Adaptive Server mail session if one is
already running.

• An Adaptive Server mail session must be started, either by an explicit
call to xp_startmail or by configuring Adaptive Server to start an
Adaptive Server mail session automatically at start-up, before any
Sybmail-related system ESPs or the sp_processmail stored procedure
can be executed. See start mail session in the System Administration
Guide for information about initiating an Adaptive Server mail
session automatically at start-up.

• When the Windows NT automail session is not on, you must use the
mail_user and mail_password parameters with xp_startmail.

• To see the default mail_user value from the fullname field for the
“sybmail” user account, use the sp_displaylogin system procedure as
follows:

 sp_displaylogin sybmail

Permissions By default, only a System Administrator can execute xp_startmail. A
System Administrator can grant this permission to other users.

CHAPTER 10 System Extended Stored Procedures

1219

xp_stopmail
Description Windows NT only Stops an Adaptive Server mail session.

Syntax xp_stopmail

Parameters None

Examples Stops an Adaptive Server mail session:

xp_stopmail

Usage • Sybmail-related system ESPs and the sp_processmail stored
procedure cannot be executed after an Adaptive Server mail session
has been terminated with xp_stopmail.

Permissions By default, only a System Administrator can execute xp_stopmail. A
System Administrator can grant this permission to other users.

xp_stopmail

1220

1221

C H A P T E R 1 1 dbcc Stored Procedures

This chapter describes the dbcc stored procedures.

Topics covered are:

Overview
These procedures access the tables only in the dbccdb database or in the
alternate database, dbccalt. See the System Administration Guide for
details on setting up dbccdb or dbccalt. See Chapter 13, “dbccdb Tables,”
in the Reference Manual Volume 4, Tables for information on the tables
used in these databases.

Table 11-1 lists the dbcc stored procedures described in this chapter. For
details on the dbcc system procedure sp_plan_dbccdb, see
sp_plan_dbccdb. See the System Administration Guide for more
information on this system procedure and the dbcc stored procedures.

Table 11-1: dbcc stored procedures

Topics Page
Overview 1221

Specifying the object name and date 1222

Procedure name Description

sp_dbcc_alterws Changes the size of the specified workspace to a specified value, and initializes the
workspace.

sp_dbcc_configreport Generates a report that describes the configuration information used by the dbcc
checkstorage operation for the specified database.

sp_dbcc_createws Creates a workspace of the specified type and size on the specified segment and
database.

sp_dbcc_deletedb Deletes from dbccdb all the information related to the specified target database.

sp_dbcc_deletehistory Deletes the results of dbcc checkstorage operations performed on the target database
before the specified date and time.

sp_dbcc_differentialrepo
rt

Generates a report that highlights the changes in I/O statistics and faults that took
place between two dbcc operations

Specifying the object name and date

1222

Specifying the object name and date
Several dbcc stored procedures use parameters for the object name and
date. This section provides important information on specifying the object
name and date.

Specifying the object name
The object name specifies only the name of the table or index for which to
generate a report. When you specify an object name, you must also specify
a database name (dbname). You cannot specify an owner for the object. If
the specified object name is not unique in the target database, the system
procedure generates a report on all objects with the specified name.

Specifying the date
Use the following syntax to specify the date and time (optional):

mm/dd/yy[:hh:mm:ss]

A 24-hour clock is assumed.

When you specify the date, the system procedures interpret it as follows:

sp_dbcc_evaluatedb Recomputes configuration information for the target database and compares it to the
current configuration information.

sp_dbcc_faultreport Generates a report covering fault statistics for the dbcc checkstorage operations
performed for the specified object in the target database on the specified date.

sp_dbcc_fullreport Runs sp_dbcc_summaryreport, sp_dbcc_configreport,
sp_dbcc_statisticsreport, and sp_dbcc_faultreport.

sp_dbcc_runcheck Runs dbcc checkstorage on the specified database, then runs sp_dbcc_summaryreport
or a report you specify.

sp_dbcc_statisticsreport Generates an allocation statistics report on the specified object in the target database.

sp_dbcc_summaryreport Generates a summary report on the specified database.

sp_dbcc_updateconfig Updates the dbcc_config table in dbccdb with the configuration information of the
target database.

Procedure name Description

CHAPTER 11 dbcc Stored Procedures

1223

• If both the date and the time are specified, the dbcc operation that
completed at the specified date and time is selected for the report.

• If the specified date is the current date, and no time is specified, the
time is automatically set to the current time. The dbcc operation that
completed within the previous 24 hours with a finish time closest to
the current time is selected for the report.

• If the specified date is not the current date, and no time is specified,
the time is automatically set to “23:59:59”. The dbcc checkstorage
operation that completed with a finish date and time closest to the
specified date and system-supplied time is selected for the report.

For example, suppose the most recent dbcc checkstorage operation
completed on March 4, 1997 at 10:20:45.

If you specify the date as “03/04/97”, the system procedure interprets the
date as 03/04/97:23:59:59. This date and time are compared to the actual
finish date and time of 03/04/97:10:20:45.

If you specify the date as “03/04/97:10:00:00”, the operation that
completes at 10:20:45 is not selected for the report because only the
operations that complete on or before the specified time meet the criteria.

If you specify the date as “03/06/97”, no report is generated because the
most recent operation completed more than 24 hours earlier.

sp_dbcc_alterws

1224

sp_dbcc_alterws
Description Changes the size of the specified workspace to a specified value, and

initializes the workspace.

Syntax sp_dbcc_alterws dbname, wsname, "wssize[K|M]"

Parameters dbname
is the name of the database in which the workspace resides. Specify
either dbccdb and dbccalt.

wsname
specifies the name of the workspace to alter.

wssize
is the new size of the workspace, specified by K (kilobytes) or M
(megabytes). If you do not specify K or M, wssize specifies the number
of pages. Page size is platform-dependent. The minimum size for a
workspace is 24 pages.

Examples Changes the size of the scan_ws_000001 workspace on dbccdb to 30MB:

sp_dbcc_alterws dbccdb, scan_ws_000001, "30M"
Workspace scan_ws_000001 has been altered successfully to size 30MB

Usage • sp_dbcc_alterws changes the size of the specified workspace to the
specified value and initializes the workspace.

• To achieve maximum performance, make sure you have configured a
buffer pool of at least 16K before you alter a workspace.

• Use sp_plan_dbccdb to determine size estimates before altering the
workspace.

• The workspace must exist before it can be altered. For information on
creating workspaces, see sp_dbcc_createws.

• To delete a workspace, in dbccdb issue:

drop table workspace_name

• See the System Administration Guide for more information on the
scan and text workspaces, and the dbccalt database.

Permissions Only a System Administrator or the Database Owner can run
sp_dbcc_alterws.

See also Commands dbcc

dbcc stored procedures sp_dbcc_createws, sp_dbcc_evaluatedb

System procedures sp_plan_dbccdb, sp_helpdb

CHAPTER 11 dbcc Stored Procedures

1225

sp_dbcc_configreport
Description Generates a report that describes the configuration information used by the

dbcc checkstorage operation for the specified database.

Syntax sp_dbcc_configreport [dbname]

Parameters dbname
specifies the name of the database. If dbname is not specified, the report
contains information on all databases in dbccdb..dbcc_operation_log.

Examples Generates a report on the configuration information related to dbcc for the
sybsystemprocs database. The “Value” column lists the object name,
where applicable, and the size:

sp_dbcc_configreport

Reporting configuration information of database sybsystemprocs.

Parameter Name Value Size

database name sybsystemprocs 51200K
dbcc named cache default data cache 1024K
text workspace textws_001 (id = 544004969) 128K
scan workspace scanws_001 (id = 512004855) 1024K
max worker processes 1
operation sequence number 2

Usage • sp_dbcc_configreport generates a report that describes the
configuration information used by dbcc operations for the specified
database. This information is stored in the dbcc_config table.

• To evaluate the most current configuration parameters, run
sp_dbcc_updateconfig before running sp_dbcc_configreport.

• To change the configuration values for a workspace, use
sp_dbcc_alterws.

Permissions Any user can run sp_dbcc_configreport.

See also Commands dbcc

dbcc stored procedures sp_dbcc_alterws, sp_dbcc_fullreport,
sp_dbcc_statisticsreport, sp_dbcc_summaryreport, sp_dbcc_updateconfig

sp_dbcc_createws

1226

sp_dbcc_createws
Description Creates a workspace of the specified type and size on the specified

segment and database.

Syntax sp_dbcc_createws dbname, segname, [wsname], wstype, "wssize[K|M]"

Parameters dbname
is the name of the database in which the workspace is to be created.
Values are dbccdb and dbccalt.

segname
is the name of the segment for the workspace.

wsname
is the name of the workspace. If the value is null, sp_dbcc_createws
generates the name scan_ws_nnnnnn for the scan workspace and
text_ws_nnnnnn for the text workspace, where nnnnnn is a unique
6-digit number.

wstype
specifies the type of workspace to be create. Values are scan and text.

wssize
is the workspace size, specified with K (kilobytes) or M (megabytes). If
you do not specify K or M, wssize specifies the number of pages. The
minimum size for a workspace is 24 pages.

Examples Example 1 Creates a 10MB scan workspace named scan_ws_pubs2 on the
scanseg segment in dbccdb:

sp_dbcc_createws dbccdb, scanseg, scan_ws_pubs2, scan, "10M"

Example 2 Creates a 14MB scan workspace named text_ws_000001 on
the textseg segment in dbccdb:

sp_dbcc_createws dbccdb, textseg, text, "14M"

Usage • sp_dbcc_createws creates a workspace with the specified name and
size and initializes it.

• Before you create a workspace, create the segment with
sp_addsegment.

• Before you create a workspace, make sure you have configured a
buffer pool of at least 16K, to achieve maximum performance.

• When you create a workspace, make sure to add a 5% overhead on the
space needed on the device because of large page allocation scheme
used when creating the workspace.

CHAPTER 11 dbcc Stored Procedures

1227

• Use sp_plan_dbccdb to determine size estimates.

• After creating a workspace, run sp_dbcc_updateconfig to record the
new configuration information in dbcc_config.

• Each workspace must have a unique name.

• To delete a workspace, in dbccdb issue:

drop table workspace_name

• See the System Administration Guide for more information on the
scan and text workspaces.

• See the System Administration Guide for information on the dbccalt
database.

Permissions Only a System Administrator or the Database Owner can run
sp_dbcc_createws.

See also Commands dbcc

dbcc stored procedures sp_dbcc_alterws, sp_dbcc_evaluatedb

System procedures sp_addsegment, sp_plan_dbccdb, sp_helpsegment

sp_dbcc_deletedb

1228

sp_dbcc_deletedb
Description Deletes from dbccdb all the information related to the specified target

database.

Syntax sp_dbcc_deletedb [dbname]

Parameters dbname
specifies the name of the target database for which you want the
configuration information deleted. If you do not specify a value for
dbname, Adaptive Server deletes data from all databases in
dbccdb..dbcc_config. If the target database is dbccdb, and dbccalt exists,
Adaptive Server deletes the data from dbccalt.

Examples Deletes all information for the database named engdb from dbccdb:

sp_dbcc_deletedb "engdb"

All information for database engdb has been deleted from dbccdb.

Usage • sp_dbcc_deletedb deletes from dbccdb all the information related to
the specified target database, including configuration information and
the results of previous dbcc checkstorage operations.

• If the deleted database is dbccdb, and the dbccalt database exists,
sp_dbcc_deletedb deletes the configuration information and results of
dbccdb from dbccalt.

• To remove the results of dbcc checkstorage operations created before
a specific date, use sp_dbcc_deletehistory.

• See the System Administration Guide for information about the
dbccalt database.

Permissions Only a System Administrator or the Database Owner can run
sp_dbcc_deletedb.

See also Commands dbcc

dbcc stored procedures sp_dbcc_deletehistory, sp_dbcc_evaluatedb

System procedures sp_plan_dbccdb

CHAPTER 11 dbcc Stored Procedures

1229

sp_dbcc_deletehistory
Description Deletes the results of dbcc checkstorage operations performed on the target

database before the specified date and time.

Syntax sp_dbcc_deletehistory [cutoffdate [, dbname]]

Parameters cutoffdate
deletes all entries made on or before this date. This parameter is of type
datetime. If a date is not specified, only the results of the last operation
are retained. For more information, see “Specifying the date” on page
1222.

dbname
specifies the name of the database for which the data must be deleted.
If not specified, sp_dbcc_deletehistory deletes the history information
for all databases in dbccdb..dbcc_config.

Examples Deletes results of all operations performed on the database pubs2 on or
before March 4, 1997:

sp_dbcc_deletehistory "03/04/1997", "pubs2"

Usage • sp_dbcc_deletehistory deletes the results of dbcc checkstorage
operations performed on the target database before the specified date
and time.

• If the target database is dbccdb, and the dbccalt database exists,
sp_dbcc_deletehistory deletes historical data for dbccdb from dbccalt.

• The value specified for cutoffdate is compared to the finish time of
each dbcc operation.

• To see the dates when dbcc checkstorage was run so that you can
choose the value for cutoffdate, run sp_dbcc_summaryreport.

• See the System Administration Guide for information on the dbccalt
database.

Permissions Only a System Administrator or the Database Owner can run
sp_dbcc_deletehistory on a specific database. Only a System
Administrator can run sp_dbcc_deletehistory without specifying a
database name.

See also Commands dbcc

dbcc stored procedures sp_dbcc_deletedb, sp_dbcc_evaluatedb

System procedures sp_plan_dbccdb

sp_dbcc_differentialreport

1230

sp_dbcc_differentialreport
Description Generates a report that highlights the changes in I/O statistics and faults

that took place between two dbcc operations.

Syntax sp_dbcc_differentialreport [dbname [, objectname]],
[db_op] [, "date1" [, "date2"]]

Parameters dbname
specifies the name of the database. If you do not specify a dbname, the
report contains information on all databases in
dbccdb..dbcc_operation_log.

objectname
specifies the name of the table or index for which you want the report
generated. If object_name is not specified, statistics on all objects in the
target database are reported.

db_op
specifies the source of the data to be used for the report. The only value
is checkstorage. The report is generated on the data specified by db_op
on date1 and date2 for the specified object in the target database. If
dates are not specified, the last two operations of the type db_op are
compared.

date1
specifies the first date of a dbcc checkstorage operation to be compared.

date2
specifies the last date of a dbcc checkstorage operation to be compared.

Examples sp_dbcc_differentialreport master, sysprocedures,
checkstorage, "05/01/97", "05/04/97"

Generates a report that shows the changes in I/O statistics and faults that
occurred in the sysprocedures table between May 1, 1997 and May 4, 1997

Usage • sp_dbcc_differentialreport generates a report that highlights the
changes in I/O statistics and faults that occurred between two dbcc
operations. It compares counter values reported from two instances of
dbcc checkstorage. Only the values that have been changed are
reported.

• If only one date is specified, the results of the dbcc checkstorage
operation selected by the specified date are compared to the results of
the dbcc checkstorage operation immediately preceding the selected
operation.

CHAPTER 11 dbcc Stored Procedures

1231

• If no dates are specified, the results of last two dbcc checkstorage
operations are compared.

• If sp_dbcc_differentialreport returns a number for object_name, it
means the object was dropped after the dbcc checkstorage operation
completed.

• If no changes occurred between the specified operations,
sp_dbcc_differentialreport does not generate a report.

Permissions Any user can run sp_dbcc_differentialreport.

See also Commands dbcc

dbcc stored procedures sp_dbcc_fullreport, sp_dbcc_statisticsreport,
sp_dbcc_summaryreport, sp_dbcc_updateconfig

sp_dbcc_evaluatedb

1232

sp_dbcc_evaluatedb
Description Recomputes configuration information for the target database and

compares it to the current configuration information.

Syntax sp_dbcc_evaluatedb [dbname]

Parameters dbname
specifies the name of the target database. If dbname is not specified,
sp_dbcc_evaluatedb compares all databases listed in the dbcc_config
table.

Examples Recomputes configuration information for the current database,
sybsystemprocs, and suggests new values for some parameters:

sp_dbcc_evaluatedb

Recommended values for workspace size, cache size and worker process count
are:

Database name : sybsystemprocs
current scan workspace size : 400K suggested scan workspace size : 272K
current text workspace size : 208K suggested text workspace size : 208K
current cache size : 1024K suggested cache size : 640K
current process count : 1 suggested process count : 1

Usage • sp_dbcc_evaluatedb recomputes configuration information for the
target database and compares the data to the current configuration
information. It uses counter values recorded for the target database in
the dbcc_counters table.

• The cache size is the size of the 16K buffer pool in the cache. For a
2K buffer pool, the minimum size of this cache must be the
recommended value, plus 512.

• When the size and data distribution pattern of the target database
changes, run sp_dbcc_evaluatedb to optimize the configuration
information.

• To gather configuration information for the target database the first
time, use sp_plan_dbccdb.

• To make sure you are evaluating the most current configuration
parameters, run sp_dbcc_updateconfig before running
sp_dbcc_evaluatedb.

Permissions • Only System Administrator or the Database Owner can run
sp_dbcc_evaluatedb.

CHAPTER 11 dbcc Stored Procedures

1233

• Only a System Administrator can run sp_dbcc_evaluatedb without
specifying a database name.

See also Commands dbcc

dbcc stored procedures sp_dbcc_updateconfig

System procedures sp_plan_dbccdb

sp_dbcc_faultreport

1234

sp_dbcc_faultreport
Description Generates a report covering fault statistics for the dbcc checkstorage

operations performed for the specified object in the target database on the
specified date.

Syntax sp_dbcc_faultreport [report_type [, dbname
[, objectname [, date]]]]

Parameters report_type
specifies the type of fault report. Valid values are short and long. The
default is short.

dbname
specifies the name of the target database; for example,
master..sysdatabases. If dbname is not specified, the report contains
information on all databases in dbccdb..dbcc_operation_log.

object_name
specifies the name of the table or index for which you want the report
generated. If object_name is not specified, statistics on all objects in the
target database are reported.

date
specifies exact date and time that the dbcc checkstorage operation
finished. You can find this value in dbcc_operation_log.finish. You can
create the value by combining the date from start time and the hours and
minutes from end time in the sp_dbcc_summaryreport output. If you do
not specify date, Adaptive Server uses the date of the most recent
operation.

When you specify the date parameter, be certain that the time you enter
is later than the date of the operation. sp_dbcc_faultreport cannot report
faults that occur later than the time you enter in this parameter.

Note To focus on the date parameter, use “null” for all other parameters.
If you omit a parameter entirely, sp_dbc_faultreport cannot generate a
correct report.

Examples Example 1 Generates a short report of the faults found in tables in the
sybsystemprocs database. The report includes the table name, the index
number in which the fault occurred, the type code of the fault, a brief
description of the fault, and the page number on which the fault occurred:

sp_dbcc_faultreport "short"

CHAPTER 11 dbcc Stored Procedures

1235

Database Name : sybsystemprocs

 Table Name Index Type Code Description Page Number
 -------------- ------ --------- ------------------- -----------
 sysprocedures 0 100031 page not allocated 5702
 sysprocedures 1 100031 page not allocated 14151
 syslogs 0 100022 chain start error 24315
 syslogs 0 100031 page not allocated 24315

Example 2 Generates a long report of the faults found in tables in the
sybsystemprocs database. This example shows the first part of the output
of a long report. The complete report repeats the information for each
object in the target database in which dbcc checkstorage found a fault.
The data following the long string of numbers shown under the "page
header" field (“Header for 14151, next 14216, previous 14150 ...”)
describes the components of the "page header" string:

sp_dbcc_faultreport "long"

Generating 'Fault Report' for object sysprocedures in database
sybsystemprocs.

Type Code: 100031; Soft fault, possibly spurious
Page reached by the chain is not allocated.
page id: 14151
page header:
0x00003747000037880000374600000005000648B803EF0001000103FE0080000F
Header for 14151, next 14216, previous 14150, id = 5:1
 time stamp = 0x0001000648B8, next row = 1007, level = 0
 free offset = 1022, minlen = 15, status = 128(0x0080)
.
.
.

Example 3 Generates a short report of faults from all tables on all
databases, for an operation finished at a date and time found as an End
Time, from the output of sp_dbcc_summaryreport. It is important that you
use accurate end times in the date parameter; for instance, if you enter:

7/25/2000 9:58

instead of

7/25/2000 9:58:0:190

the report will generate faults only up to 9:58, not after it. You could use
9:59 if you do not want to enter the exact time the operation ends:

sp_dbcc_faultreport

1236

sp_dbcc_faultreport "short", NULL, NULL,
"07/25/00 9:59"

In this case the report will generate faults up to 9:59.

Usage • sp_dbcc_faultreport generates a report that shows all faults for the
specified object in the target database.

• sp_dbcc_faultreport issues numerous error message number 10028 If
you use:

• sp_placeobject to make an object that has existing allocations put
new allocations on a new segment.

• sp_dropsegment to remove a segment from a fragment that
contains allocations of an object assigned to that segment.

Error message number 100028 is an informational message
rather than an indication of a serious error. If you prefer not to
receive such messages, you can create your own reporting
procedure that does not report this (or any other) error. One way
to do this is to add the following to the very beginning of the
standard sp_dbcc_faultreport stored procedure in the
installdbccdb script:

print "removing 100028 errors from dbcc_faults table"
delete dbcc_faults where type_code = 100028

• If sp_dbcc_faultreport returns a number for object_name, it means the
object was dropped after the dbcc checkstorage operation completed.

• See the type_code column described in the System Administration
Guide for information on the fault ID.

• See the System Administration Guide for information on the fault
status.

Permissions Any user can run sp_dbcc_faultreport.

See also Commands dbcc

dbcc stored procedures sp_dbcc_fullreport, sp_dbcc_statisticsreport,
sp_dbcc_summaryreport, sp_dbcc_updateconfig

CHAPTER 11 dbcc Stored Procedures

1237

sp_dbcc_fullreport
Description Runs sp_dbcc_summaryreport, sp_dbcc_configreport,

sp_dbcc_statisticsreport, and sp_dbcc_faultreport short for
database..object_name on or before the specified date.

Syntax sp_dbcc_fullreport [dbname [, objectname [, date]]]

Parameters dbname
specifies the name of the database. For example, master..sysdatabases.
If you do not specify dbname, the report contains information on all
databases in dbccdb..dbcc_operation_log.

object_name
specifies the name of the table or index for which you want the report
generated. If you do not specify object_name, statistics on all objects in
the target database are reported.

date
specifies the date on which the dbcc checkstorage operation was
performed. If you do not specify a date, the date of the last operation is
used.

Examples Runs sp_dbcc_summaryreport, sp_dbcc_configreport,
sp_dbcc_statisticsreport, and sp_dbcc_faultreport short for the most recent
dbcc checkstorage operation run on the sysprocedures table in the master
database:

sp_dbcc_fullreport master, sysprocedures

Usage • sp_dbcc_fullreport runs sp_dbcc_summaryreport,
sp_dbcc_configreport, sp_dbcc_statisticsreport, and
sp_dbcc_faultreport short for database..object_name on or before the
specified date

Permissions Any user can run sp_dbcc_fullreport.

See also Commands dbcc

dbcc stored procedures sp_dbcc_statisticsreport,
sp_dbcc_summaryreport, sp_dbcc_updateconfig

sp_dbcc_runcheck

1238

sp_dbcc_runcheck
Description Runs dbcc checkstorage on the specified database, then runs

sp_dbcc_summaryreport or a report you specify.

Syntax sp_dbcc_runcheck dbname [, user_proc]

Parameters dbname
specifies the name of the database on which the check is to be
performed.

user_proc
specifies the name of the dbcc stored procedure or a user-created stored
procedure that is to be run instead of sp_dbcc_summaryreport.

Examples Example 1 Checks the database engdb and generates a summary report on
the information found:

sp_dbcc_runcheck "engdb"

Example 2 Checks the database pubs2 and generates a full report:

sp_dbcc_runcheck "pubs2", sp_dbcc_fullreport

Usage • sp_dbcc_runcheck runs dbcc checkstorage on the specified database.

• After the dbcc checkstorage operation is complete, sp_dbcc_runcheck
runs sp_dbcc_summaryreport to generate a summary report. If you
specify one of the other report-generating dbcc stored procedures for
dbcc_report, sp_dbcc_runcheck runs that procedure instead of
sp_dbcc_summaryreport. See the System Administration Guide for a
brief description and examples of all the report-generating stored
procedures provided with dbccdb.

• You can write your own report-generating stored procedure and
specify its name for user_proc. The stored procedure must be
self-contained. sp_dbcc_runcheck cannot pass any parameters to
Adaptive Server.

Permissions Only a System Administrator or the Database Owner can run
sp_dbcc_runcheck.

See also Commands dbcc

dbcc stored procedures sp_dbcc_summaryreport

CHAPTER 11 dbcc Stored Procedures

1239

sp_dbcc_statisticsreport
Description Generates an allocation statistics report on the specified object in the target

database.

Syntax sp_dbcc_statisticsreport [dbname [, objectname
[, date]]]

Parameters dbname
specifies the target database. If dbname is not specified, the report
contains information on all databases in dbccdb..dbcc_operation_log.

objectname
specifies the name of the table or index for which you want the report
generated. If you do not specify objectname, Adaptive Server reports
statistics on all objects in the target database.

date
specifies the date on which the dbcc checkstorage operation was
performed. If you do not specify date, Adaptive Server uses the date of
the most recent operation.

Examples Generates a statistics report on the sysobjects table in the sybsystemprocs
database:

sp_dbcc_statisticsreport 'sybsystemprocs', 'sysobjects'

Statistics Report on object sysobjects in database sybsystemprocs

 Parameter Name Index Id Value
 ------------------------- -------- ------------
 count 0 241.0
 max size 0 99.0
 max count 0 22.0
 bytes data 0 19180.0
 bytes used 0 22113.0
 count 1 14.0
 max size 1 9.0
 max level 1 0.0
 max count 1 14.0
 bytes data 1 56.0
 bytes used 1 158.0
 count 2 245.0
 max level 2 1.0
 max size 2 39.0
 max count 2 71.0
 bytes data 2 4377.0
 bytes used 2 6995.0

sp_dbcc_statisticsreport

1240

Parameter Name Index Id Partition Value Dev_name

 --------------- -------- --------- ------ -------------
 page gaps 0 1 13.0 master
 pages used 0 1 15.0 master
 extents used 0 1 3.0 master
 overflow pages 0 1 0.0 master
 pages overhead 0 1 1.0 master
 pages reserved 0 1 7.0 master
 page extent gaps 0 1 11.0 master
 ws buffer crosses 0 1 2.0 master
 page extent crosses 0 1 11.0 master
 pages used 1 1 2.0 master
 extents used 1 1 1.0 master
 overflow pages 1 1 0.0 master
 pages overhead 1 1 1.0 master
 pages reserved 1 1 6.0 master
 page extent gaps 1 1 0.0 master
 ws buffer crosses 1 1 0.0 master
 page extent crosses 1 1 0.0 master
 page gaps 2 1 4.0 master
 pages used 2 1 6.0 master
 extents used 2 1 1.0 master
 overflow pages 2 1 0.0 master
 pages overhead 2 1 1.0 master
 pages reserved 2 1 2.0 master
 page extent gaps 2 1 0.0 master
 ws buffer crosses 2 1 0.0 master
 page extent crosses 2 1 0.0 master

Usage • sp_dbcc_statisticsreport generates an allocation statistics report on the
specified object in the target database. It uses data from the
dbcc_counters table, which stores information about page utilization
and error statistics for every object in the target database.

• If sp_dbcc_statisticsreport returns a number for object_name, it means
the object was dropped after the dbcc checkstorage operation
completed.

• sp_dbcc_statisticsreport reports values recorded in the dbcc_counters
table for the datatypes 5000–5024 See the System Administration
Guide.

For bytes data, bytes used, and overflow pages,
sp_dbcc_statisticsreport reports the sum of the values reported for all
partitions and devices.

CHAPTER 11 dbcc Stored Procedures

1241

For count, max count, max size and max level, sp_dbcc_statisticsreport
reports the largest of the values reported for all partitions and devices.

sp_dbcc_statisticsreport reports information for each device and
partition used by objects in the target database for the following rows:

• extents used

• io errors

• page gaps

• page extent crosses

• page extent gaps

• page format errors

• pages reserved

• pages overhead

• pages misallocated

• pages not allocated

• pages not referenced

• pages used

The page gaps, page extent crosses, and page extent gaps indicate
how the data pages for the objects are distributed on the database
devices. Large values indicate less effectiveness in using larger buffer
sizes and in data prefetch.

• If multiple dbcc checkstorage operations were run on a target database
on the same day, sp_dbcc_statisticsreport generates a report based on
the results of the last dbcc checkstorage operation that finished before
the specified time.

Permissions Any user can run sp_dbcc_statisticsreport.

See also Commands dbcc

dbcc stored procedures sp_dbcc_fullreport, sp_dbcc_summaryreport,
sp_dbcc_updateconfig

sp_dbcc_summaryreport

1242

sp_dbcc_summaryreport
Description Generates a summary report on the specified database.

Syntax sp_dbcc_summaryreport [dbname [, date] [, opname]]

Parameters dbname
specifies the name of the database for which you want the report
generated. If you do not specify dbname, sp_dbcc_summaryreport
generates reports on all databases in dbccdb..dbcc_operation_log for
which the date is on or before the date and time specified by the date
option.

date
specifies the date on which dbcc checkstorage was performed. If you do
not specify a date, sp_dbcc_summaryreport uses the date of last dbcc
checkstorage operation performed on the target database. This
parameter is of the datatype datetime. If both the date and the time are
specified for date, summary results of all the operations performed on
or before the specified time are reported. If no date is specified, all
operations are reported.

opname
specifies the operation. opname may be either checkstorage, which is
the default, or checkverify, or both. If opname is not specified, reports
are generated for all operations.

Examples Example 1 Generates a summary report on the sybsystemprocs database,
providing information on all dbcc checkstorage and dbcc checkverify
operations performed:

sp_dbcc_summaryreport

DBCC Operation : checkstorage

Database Name Start time End Time Operation ID
Hard Faults Soft Faults Text Columns Abort Count

User Name
------------------ -------------------- ----------- ------------

----------- ----------- ------------ -----------

sybsystemprocs 05/11/1999 14:53:11 14:53:32:163 1
0 0 0 0

sa
sybsystemprocs 05/11/1999 14:55:06 14:55:29:200 2

0 0 0 0
sa

sybsystemprocs 05/11/1999 14:56:10 14:56:27:750 3

CHAPTER 11 dbcc Stored Procedures

1243

0 0 0 0
sa

DBCC Operation : checkverify

Database Name Start time End Time Operation ID
Hard Faults Soft Faults User Name

------------------ -------------------- ----------- ------------
-------------- --------------- ---------------------

sybsystemprocs 05/11/1999 14:55:29 14:55:29:310 2
0 0 sa

Example 2 Generates a summary report on the user database testdb,
providing information on all dbcc checkstorage operations performed.
dbcc checkstorage was the only operation run on this database, so no dbcc
checkverify information appears on the report:

sp_dbcc_summaryreport "testdb"

DBCC Operation : checkstorage

Database Name Start time End Time Operation ID
Hard Faults Soft Faults Text Columns Abort Count User Name

--------------- -------------------- ------------ ------------
----------- ----------- ------------ ----------- ----------------

testdb 05/11/1999 14:55:29 14:55:49:903 1
0 0 0 0 sa

 testdb 05/11/1999 14:55:50 14:56:9:546 2
0 0 0 0 sa

 testdb 05/11/1999 14:56:28 14:56:40:666 3
0 0 0 0 sa

Example 3 Generates a summary report on the sybsystemprocs database,
providing information on all dbcc checkverify operations performed.
Because dbcc checkverify was the specified operation, no dbcc
checkstorage information appears on the report:

sp_dbcc_summaryreport null, null, "checkverify"

DBCC Operation : checkverify
Database Name Start time End Time Operation ID

Hard Faults Soft Faults User Name
--------------- -------------------- ------------ ------------

-------------- --------------- ---------------------
sybsystemprocs 05/11/1999 14:55:29 14:55:29:310 2

0 0 sa

sp_dbcc_summaryreport

1244

Example 4 Generates a summary report on the sybsystemprocs database,
providing information on all dbcc checkstorage operations performed.
Because dbcc checkstorage was the specified operation, no dbcc
checkverify information appears on the report:

sp_dbcc_summaryreport sybsystemprocs, null, "checkstorage"

DBCC Operation : checkstorage

Database Name Start time End Time Operation ID
Hard Faults Soft Faults Text Columns Abort Count User Name

--------------- -------------------- ------------ ------------
----------- ----------- ------------ ----------- ---------

sybsystemprocs 05/11/1999 14:53:11 14:53:32:163 1
0 0 0 0 sa

sybsystemprocs 05/11/1999 14:55:06 14:55:29:200 2
0 0 0 0 sa

sybsystemprocs 05/11/1999 14:56:10 14:56:27:750 3
0 0 0 0 sa

Usage • sp_dbcc_summaryreport generates a summary report of checkstorage
or checkverify operations, or both, on the specified database.

• The report indicates the name of the database that was checked, the
start and end time of the dbcc checkstorage run and the number of soft
and hard faults found.

• The “Operation ID” column contains a number that identifies the
results of each dbcc checkstorage operation on a given database at a
specific time. The number provided in the report comes from the opid
column of the dbcc_operation_log table. See the System
Administration Guide for more information.

• The “Text Columns” column shows the number of non-null text
columns found by dbcc checkstorage during the run.

• The “Abort Count” column shows the number of tables that contained
errors, which caused dbcc checkstorage to abort the check on the
table. For details on the errors, run sp_dbcc_faultreport.

Permissions Any user can run sp_dbcc_summaryreport.

See also Commands dbcc

dbcc stored procedures sp_dbcc_fullreport, sp_dbcc_statisticsreport,
sp_dbcc_updateconfig

CHAPTER 11 dbcc Stored Procedures

1245

sp_dbcc_updateconfig
Description Updates the dbcc_config table in dbccdb with the configuration

information of the target database.

Syntax sp_dbcc_updateconfig dbname, type, "str1" [, "str2"]

Parameters dbname
is the name of the target database for which configuration information
is being updated.

type
specifies the type name from the dbcc_types table. Table 11-2 on
page 1246 shows the valid values for type.

str1
specifies the first configuration value for the specified type to be
updated in the dbcc_config table. Table 11-2 on page 1246 describes the
expected value of str1 for the specified type.

str2
specifies the second configuration value for the specified type that you
want to update in the dbcc_config table. Table 11-2 on page 1246
describes the expected value of str2 for the specified type.

Examples Example 1 Updates dbcc_config with the maximum number of worker
processes for dbcc checkstorage to use when checking the pubs2 database.
The new maximum number of worker processes is 4:

sp_dbcc_updateconfig pubs2, "max worker processes", "4"

Example 2 Updates dbcc_config with the size of the dbcc named cache
“pubs2_cache”. The new size is 10K:

sp_dbcc_updateconfig pubs2, "dbcc named cache", pubs2_cache, "10K"

Example 3 Updates dbcc_config with the new name of the scan workspace
for the pubs2 database. The new name is scan_pubs2. This update is made
after using sp_dbcc_alterws to change the name of the scan workspace:

sp_dbcc_updateconfig pubs2, "scan workspace", scan_pubs2

Example 4 Updates dbcc_config with the new name of the text workspace
for the pubs2 database. The new name is text_pubs2. This update is made
after using sp_dbcc_alterws to change the name of the text workspace:

sp_dbcc_updateconfig pubs2, "text workspace", text_pubs2

Example 5 Updates dbcc_config with the OAM count threshold value for
the pubs2 database. The new value is 5:

sp_dbcc_updateconfig

1246

sp_dbcc_updateconfig pubs2, "OAM count threshold", 5

Example 6 Updates dbcc_config with the I/O error abort value for the
pubs2 database. The new value is 3:

sp_dbcc_updateconfig pubs2, "IO error abort", 3

Example 7 Updates dbcc_config with the linkage error abort value for the
pubs2 database. The new value is 8:

sp_dbcc_updateconfig pubs2, "linkage error abort", 8

Usage • sp_dbcc_updateconfig updates the dbcc_config table for the target
database.

• If the name of the target database is dbccdb, and the database dbccalt
exists, sp_dbcc_updateconfig updates the dbcc_config table in dbccalt.

• If the target database name is not found in dbcc_config,
sp_dbcc_updateconfig adds it and sets the operation sequence number
to 0 before updating other configuration information.

• If the expected value for the specified type is a number,
sp_dbcc_updateconfig converts the values you provide for str1 and
str2 to numbers.

• Table 11-2 shows the valid type names to use for type and the
expected value for str1 or str2.

Table 11-2: Type names and expected values

• Se the System Administration Guide for more information on the type
names and values.

type name Value expected for str1 or str2

dbcc named cache The name of the cache, specified by str1, and the new size (in kilobytes or megabytes) or
the number of 2K pages, specified by str2.

IO error abort The new error count, specified by str1. The value must be a number greater than 0. str2 is
not used with this type.

linkage error abort The new linkage error count value specified in str1. The value must be a number greater
than 0. str2 is not used with this type.

max worker processes The new number of worker processes, specified by str1. The value must be a number
greater than 0. str2 is not used with this type.

OAM count threshold The new threshold count, specified by str1. The value must be a number greater than 0.
str2 is not used with this type.

scan workspace The new name for the scan workspace, specified by str1. str2 is not used with this type.

text workspace The new name of the text workspace, specified by str1. str2 is not used with this type.

CHAPTER 11 dbcc Stored Procedures

1247

Permissions Only a System Administrator or the Database Owner can run
sp_dbcc_updateconfig.

See also Commands dbcc

dbcc stored procedures sp_dbcc_alterws, sp_dbcc_evaluatedb

System procedures sp_plan_dbccdb

sp_dbcc_updateconfig

1248

1249

C H A P T E R 1 2 System Tables

System tables are tables supplied by Sybase.

The topics in this chapter include:

Locations of system tables
System tables may be located in:

• The master database,

• The sybsecurity database,

• The sybsystemdb database, or

• All databases.

Most tables in the master database are system tables. Some of these tables
also occur in user databases. They are automatically created when the
create database command is issued.

System tables in master
The following system tables occur only in the master database:

Topic Page
Locations of system tables 1249

Rules for using system tables 1252

System table Contents

syscharsets One row for each character set or sort order

sysconfigures One row for each configuration parameter that can be set by users

syscurconfigs Information about configuration parameters currently being used by Adaptive Server

sysdatabases One row for each database on Adaptive Server

sysdevices One row for each tape dump device, disk dump device, disk for databases, and disk partition
for databases

Locations of system tables

1250

System tables in sybsecurity
The following system tables occur only in the sybsecurity database:

System table in sybsystemdb
The following system table occurs only in the sybsystemdb database:

sysengines One row for each Adaptive Server engine currently online

syslanguages One row for each language (except U.S. English) known to the server

syslisteners One row for each type of network connection used by current Adaptive Server

syslocks Information about active locks

sysloginroles One row for each server login that possesses a system role

syslogins One row for each valid Adaptive Server user account

syslogshold Information about the oldest active transaction and the Replication Server® truncation point
for each database

sysmessages One row for each system error or warning

sysmonitors One row for each monitor counter

sysprocesses Information about server processes

sysremotelogins One row for each remote user

sysresourcelimits One row for each resource limit

syssecmechs Information about the security services available for each security mechanism that is
available to Adaptive Server

sysservers One row for each remote Adaptive Server

syssessions Only used when Adaptive Server is configured for Sybase’s Failover in a high availability
system. syssessions contains one row for each client that connects to Adaptive Server with
the failover property (for example, isql -Q)

syssrvroles One row for each server-wide role

systimeranges One row for each named time range

systransactions One row for each transaction

sysusages One row for each disk piece allocated to a database

System table Contents

System Table Contents

sysauditoptions One row for each global audit option

sysaudits_01 – sysaudits_08 The audit trail. Each audit table contains one row for each audit record

CHAPTER 12 System Tables

1251

System tables in all databases
The following system tables occur in all databases:

System Table Contents

syscoordinations One row for each remote participant of a distributed transaction

System table Contents

sysalternates One row for each Adaptive Server user mapped to a database user

sysattributes One row for each object attribute definition

syscolumns One row for each column in a table or view, and for each parameter in a procedure

syscomments One or more rows for each view, rule, default, trigger, and procedure, giving SQL definition
statement

sysconstraints One row for each referential and check constraint associated with a table or column

sysdepends One row for each procedure, view, or table that is referenced by a procedure, view, or trigger

sysgams Allocation bitmaps for an entire database

sysindexes One row for each clustered or nonclustered index, one row for each table with no indexes, and
an additional row for each table containing text or image data

sysjars One row for each Java archive (JAR) file that is retained in the database. Uses row-level
locking

syskeys One row for each primary, foreign, or common key; set by user (not maintained by Adaptive
Server)

syslogs Transaction log

sysobjects One row for each table, view, procedure, rule, trigger default, log, and (in tempdb only)
temporary object

syspartitions One row for each partition (page chain) of a partitioned table

sysprocedures One row for each view, rule, default, trigger, and procedure, giving internal definition

sysprotects User permissions information

sysqueryplans Abstract query plans and SQL text

sysreferences One row for each referential integrity constraint declared on a table or column

sysroles Maps server-wide roles to local database groups

syssegments One row for each segment (named collection of disk pieces)

sysstatistics One or more rows for each indexed column on a user table. May also contain rows for
unindexed column

systabstats One row for each table, plus one row for each nonclustered index

systhresholds One row for each threshold defined for the database

systypes One row for each system-supplied and user-defined datatype

sysusermessages One row for each user-defined message

Rules for using system tables

1252

About the sybdiagdb database
Sybase Technical Support may create the sybdiagdb database on your system
for debugging purposes. This database holds diagnostic configuration data for
use by Technical Support representatives. It should not be used by customers.

About the syblicenseslog table
The syblicenseslog table is described in syblicenseslog on page 1341. It is not
technically a system table, but you may need to consult it for license
information related to shutting down Adaptive Server.

Rules for using system tables
This section describes rules, restrictions and usage information for system
tables.

Permissions on system tables
Permissions for use of the system tables can be controlled by the database
owner, just like permissions on any other tables. By default, when Adaptive
Server is installed, the installmodel script grants select access to “public” (all
users) for most system tables and for most fields in the tables. However, no
access is given for some system tables, such as systhresholds, and no access is
given for certain fields in other system tables. For example, all users, by
default, can select all columns of sysobjects except audflags. To determine the
current permissions for a particular system table, execute:

sp_helprotect system_table_name

For example, to check the permissions of systhresholds in my_database,
execute:

sysusers One row for each user allowed in the database

sysxtypes One row for each extended, Java-SQL datatype. Uses row-level locking

System table Contents

CHAPTER 12 System Tables

1253

use my_database
go
sp_helprotect systhresholds
go

Locking schemes used for system tables
Unless noted otherwise, system tables use allpages locking.

Reserved columns
The word “reserved” in the column description means that the column is not
currently used by Adaptive Server.

Updating system tables
All direct updates on system tables are by default not allowed —even for the
database owner. Instead, Adaptive Server supplies system procedures to make
any normally needed updates and additions to system tables.

You can allow direct updates to the system tables if it becomes necessary to
modify them in a way that cannot be accomplished with a system procedure.
To accomplish this, a System Security Officer must reset the configuration
parameter called allow updates to system tables with the system procedure
sp_configure. For more information, see the System Administration Guide.

There are entries in some of the master database tables that should not be
altered by any user under any circumstances. For example, do not attempt to
modify syslogs with a delete, update, or insert command. In addition, an
attempt to delete all rows from syslogs will put Adaptive Server into an infinite
loop that eventually fills up the entire database.

Triggers on system tables
You cannot create triggers on system tables. If you try to create a trigger on a
system table, Adaptive Server returns an error message and cancels the trigger.

Rules for using system tables

1254

Aggregate functions and virtual tables
Aggregate functions cannot be used on virtual tables such as syslocks and
sysprocesses.

CHAPTER 12 System Tables

1255

sysalternates
All databases

Description sysalternates contains one row for each Adaptive Server user mapped (or
aliased) to a user of the current database. When a user tries to access a database,
Adaptive Server looks for a valid uid entry in sysusers. If none is found, it looks
in sysalternates.suid. If the user’s suid is found there, he or she is treated as the
database user whose suid is listed in sysalternates.altsuid.

On the Adaptive Server distribution media, there are no entries in sysalternates.

Columns The columns for sysalternates are:

Indexes Unique clustered index On suid.

Name Datatype Description

suid int Server user ID of user being mapped

altsuid int Server user ID of user to whom another user is mapped

sysattributes

1256

sysattributes
All databases

Description System attributes define properties of objects such as databases, tables,
indexes, users, logins, and procedures. sysattributes contains one row for each
of an object’s attribute definitions (configured by various system procedures).
master..sysattributes defines the complete set of valid attribute values and
classes for Adaptive Server as a whole. It also stores attribute definitions for
server-wide objects, such as databases and logins.

sysattributes should only be accessed indirectly using system procedures. The
permissions required for modifying sysattributes depend on the system
procedure you use.

Columns The columns for sysattributes are:

Name Datatype Description

class smallint The attribute class ID. This describes the category of the attribute. In
master..sysattributes, the special class 1 identifies all valid attributes for Adaptive
Server. Class 0 identifies valid classes of attributes.

attribute smallint The attribute ID.

object_type char(2) A one- or two-letter character ID that defines the type of object to associate with the
attribute.

object_cinfo varchar(30)
null

A string identifier for the object (for example, the name of an application). This field
is not used by all attributes.

object int null The object identifier. This may be an object ID, user ID, or database ID, depending
on the type of object. If the object is a part of a table (for example, an index), then this
column contains the object ID of the associated table.

object_info1 int null Defines additional information required to identify the object. This field is not used
by all attributes. The contents of this field depend on the attribute that is defined.

object_info2 int null Defines additional information required to identify the object. This field is not used
by all attributes. The contents of this field depend on the attribute that is defined.

object_info3 int null Defines additional information required to identify the object. This field is not used
by all attributes. The contents of this field depend on the attribute that is defined.

int_value int null An integer value for the attribute (for example, the display level of a user).

char_value varchar(255)
null

A character value for the attribute (for example, a cache name).

text_value text null A text value for the attribute.

image_value image null An image value for the attribute.

comments varchar(255)
null

Comments or additional information about the attribute definition.

CHAPTER 12 System Tables

1257

Indexes Unique clustered index On class, attribute, object_type, object, object_info1,
object_info2, object_info3, object_cinfo.

Nonclustered index On object_type, object, object_info1, object_info2,
object_info3, object_cinfo.

sysauditoptions

1258

sysauditoptions
sybsecurity database

Description sysauditoptions contains one row for each server-wide audit option and
indicates the current setting for that option. Other types of auditing option
settings are stored in other tables. For example, database-specific option
settings are stored in sysdatabases, and object-specific option settings are
stored in sysobjects. The default value for each option is 0, or “off.”
sysauditoptions can be accessed only by System Security Officers.

Columns The columns for sysauditoptions are:

Name Datatype Description

num smallint Number of the server-wide option.

val smallint Current value; one of the following:

0 = off
1 = pass
2 = fail
3 = on

minval smallint Minimum valid value for this option.

maxval smallint Maximum valid value for this option.

name varchar(30) Name of option.

sval varchar(30) String equivalent of the current value: for example, “on”, “off”, “nonfatal”.

comment varchar(255) Description of option.

CHAPTER 12 System Tables

1259

sysaudits_01 – sysaudits_08
sybsecurity database

Description These system tables contain the audit trail. Only one table at a time is active.
The active table is determined by the value of the current audit table
configuration parameter. An installation can have up to eight audit tables. For
example, if your installation has three audit tables, the tables are named
sysaudits_01, sysaudits_02, and sysaudits_03. An audit table contains one row
for each audit record.

Columns The columns for sysaudits_01 – sysaudits_08 are:

The extrainfo column contains a sequence of items separated by semicolons as
shown in Table 12-1:

Table 12-1: Items in the extrainfo column

Name Datatype Description

event smallint Type of event being audited. See Table 12-2 on page 1260.

eventmod smallint Further information about the event. Possible values are:

0 = no modifier for this event
1 = the event passed permission checking
2 = the event failed permission checking

spid smallint Server process ID of the process that caused the audit record to be written.

eventtime datetime Date and time of the audited event.

sequence smallint Sequence number of the record within a single event; some events require more
than one audit record.

suid smallint Server login ID of the user who performed the audited event.

dbid int null Database ID in which the audited event occurred or the object/stored
procedure/trigger resides, depending on the type of event.

objid int null ID of the accessed object or stored procedure/trigger.

xactid binary(6) null ID of the transaction containing the audited event. For a multi-database transaction,
this is the transaction ID from the database where the transaction originated.

loginname varchar(30) null Login name corresponding to the suid.

dbname varchar(30) null Database name corresponding to the dbid.

objname varchar(30) null Object name corresponding to the objid.

objowner varchar(30) null Name of the owner of objid.

extrainfo varchar(255) null Additional information about the audited event. This field contains a sequence of
items separated by semicolons. See Table 12-1.

Item Contents

Roles Lists the roles that are active. The roles are separated by blanks.

sysaudits_01 – sysaudits_08

1260

An example of an extrainfo column for the security-relevant event of changing
an auditing configuration parameter might be:

sso_role;suspend auditing when full;1;0;;;;

This extrainfo column indicates that a System Security Officer changed the
configuration parameter suspend auditing when full from 1 (suspend all
processes that involve an auditing event) to 0 (truncate the next audit table and
make it the current audit table). The other columns in the audit record give
other pertinent information. For example, the record contains the server user id
(suid) and the login name (loginname).

The event column values that pertain to each audit event are listed in Table 12-
2.

Table 12-2: Values in event and extrainfo column

Subcommand The name of the subcommand or command option that was used for the event. For
example, for the alter table command, the options add column or drop constraint might be
used. Multiple subcommands or options are separated by commas.

Previous value The value prior to the update if the event resulted in the update of a value.

Current value The new value if the event resulted in the update of a value.

Other information Additional security-relevant information that is recorded for the event.

Proxy information The original login name, if the event occurred while a set proxy was in effect.

Principal information The principal name from the underlying security mechanism, if the user’s login is the
secure default login, and the user logged into Adaptive Server via unified login. The value
of this field is NULL, if the secure default login is not being used.

Item Contents

Event Audit option
Command or
access audited extrainfo

1 adhoc User-defined
audit record

extrainfo is filled by the text parameter of sp_addauditrecord

2 alter alter database • Roles – Current active roles

• Subcommand– ALTER SIZE

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if a set proxy is in
effect

CHAPTER 12 System Tables

1261

3 alter alter table • Roles – Current active roles

• Subcommand – ADD COLUMN, REPLACE COLUMN, ADD
CONSTRAINT, or DROP CONSTRAINT

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if a set proxy is in
effect

4 bcp bcp in • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

6 bind sp_bindefault • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Name of default

• Proxy information – Original login name, if set proxy in effect

7 bind sp_bindmsg • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Message ID

• Proxy information – Original login name, if set proxy in effect

8 bind sp_bindrule • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Name of the rule

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

sysaudits_01 – sysaudits_08

1262

9 create create database • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

10 create create table • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

11 create create procedure • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

12 create create trigger • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

13 create create rule • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

CHAPTER 12 System Tables

1263

14 create create default • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Other information – NULL

• Current value – NULL

• Proxy information – Original login name, if set proxy in effect

15 create sp_addmessage • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Message Number

• Proxy information – Original login name, if set proxy in effect

16 create create view • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

17 dbaccess Any access to the
database by any
user

• Roles – Current active roles

• Subcommand – USE CMD or OUTSIDE REFERENCE

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

18 delete delete from a
table

• Roles – Current active roles

• Subcommand – DELETE

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

sysaudits_01 – sysaudits_08

1264

19 delete delete from a
view

• Roles – Current active roles

• Subcommand – DELETE

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

20 disk disk init • Roles – Current active roles

• Subcommand – disk init

• Previous value – NULL

• Current value – NULL

• Other information – Name of the disk

• Proxy information – Original login name, if set proxy in effect

21 disk disk refit • Roles – Current active roles

• Subcommand – disk refit

• Previous value – NULL

• Current value – NULL

• Other information – Name of the disk

• Proxy information – Original login name, if set proxy in effect

22 disk disk reinit • Roles – Current active roles

• Subcommand – disk reinit

• Previous value – NULL

• Current value – NULL

• Other information – Name of the disk

• Proxy information – Original login name, if set proxy in effect

23 disk disk mirror • Roles – Current active roles

• Subcommand – disk mirror

• Previous value – NULL

• Current value – NULL

• Other information – Name of the disk

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

CHAPTER 12 System Tables

1265

24 disk disk unmirror • Roles – Current active roles

• Subcommand – disk unmirror

• Previous value – NULL

• Current value – NULL

• Other information – Name of the disk

• Proxy information – Original login name, if set proxy in effect

25 disk disk remirror • Roles – Current active roles

• Subcommand – disk remirror

• Previous value – NULL

• Current value – NULL

• Other information – Name of the disk

• Proxy information – Original login name, if set proxy in effect

26 drop drop database • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

27 drop drop table • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

28 drop drop procedure • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

sysaudits_01 – sysaudits_08

1266

29 drop drop trigger • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

30 drop drop rule • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

31 drop drop default • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

32 drop sp_dropmessage • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Message number

• Proxy information – Original login name, if set proxy in effect

33 drop drop view • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

34 dump dump database • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

CHAPTER 12 System Tables

1267

35 dump dump transaction • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

36 errors Fatal error • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Error number.Severity.State

• Proxy information – Original login name, if set proxy in effect

37 errors Non-fatal error • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Error number.Severity.State

• Proxy information – Original login name, if set proxy in effect

38 exec_procedure Execution of a
procedure

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – All input parameters

• Proxy information – Original login name, if set proxy in effect

39 exec_trigger Execution of a
trigger

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

sysaudits_01 – sysaudits_08

1268

40 grant grant • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

41 insert insert into a table • Roles – Current active roles

• Subcommand

• If insert – INSERT

• If select into – INSERT INTO followed by the fully qualified
object name

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

42 insert insert into a view • Roles – Current active roles

• Subcommand – INSERT

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if a set proxy is in
effect

43 load load database • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

44 load load transaction • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

CHAPTER 12 System Tables

1269

45 login Any login to
Adaptive Server

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Host name of the machine from which
login was done

• Proxy information – Original login name, if set proxy in effect

46 logout Any logouts from
Adaptive Server

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Host name of the machine from which
login was done

• Proxy information – Original login name, if set proxy in effect

47 revoke revoke • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

48 rpc Remote
procedure call
from another
server

• Roles – Current active roles

• Subcommand – Name of client program

• Previous value – NULL

• Current value – NULL

• Other information – Server name, host name of the machine
from which the RPC was done.

• Proxy information – Original login name, if set proxy in effect

49 rpc Remote
procedure call to
another server

• Roles – Current active roles

• Subcommand – Procedure name

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

sysaudits_01 – sysaudits_08

1270

50 security Server start • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information

-dmasterdevicename
-iinterfaces file path
-Sservername
-eerrorfilename

• Proxy information – Original login name, if set proxy in effect

51 security Server shutdown • Roles – Current active roles

• Subcommand – shutdown

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

55 security Role toggling • Roles – Current active roles

• Subcommand – NULL

• Previous value – “on” or “off”

• Current value – “on” or “off”

• Other information – Name of the role being set

• Proxy information – Original login name, if set proxy in effect

61 table_access Table access • Roles – Current active roles

• Subcommand – SELECT, SELECT INTO, INSERT, UPDATE,
DELETE, REFERENCE, READTEXT, or WRITETEXT

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

62 select select from a
table

• Roles – Current active roles

• Subcommand – SELECT INTO, SELECT, or READTEXT

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

CHAPTER 12 System Tables

1271

63 select select from a
view

• Roles – Current active roles

• Subcommand – SELECT, SELECT INTO, or READTEXT

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

64 truncate truncate table • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

67 unbind sp_unbindefault • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

68 unbind sp_unbindrule • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

69 unbind sp_unbindmsg • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

sysaudits_01 – sysaudits_08

1272

70 update update to a table • Roles – Current active roles

• Subcommand – UPDATE or WRITETEXT

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

71 update update to a view • Roles – Current active roles

• Subcommand – UPDATE or WRITETEXT

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

73
Note This event
is audited
automatically. It
is not controlled
by an audit
option.

Turning the
auditing
parameter on
with sp_configure

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

74
Note This event
is audited
automatically. It
is not controlled
by an audit
option.

Turning the
auditing
parameter off
with sp_configure

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

76 security Regeneration of a
password by a
System Security
Officer (SSO)

• Roles – Current active roles

• Subcommand – Setting SSO password

• Previous value – NULL

• Current value – NULL

• Other information – Login name

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

CHAPTER 12 System Tables

1273

80 security proc_role within a
system procedure

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Required roles

• Proxy information – Original login name, if set proxy in effect

81 dbcc dbcc • Roles – Current active roles

• Subcommand – The dbcc subcommand name

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

82 security sp_configure • Roles – Current active roles

• Subcommand – Name of the configuration parameter

• Previous value – Old parameter value if command is setting a
new value

• Current value – New parameter value if command is setting a
new value

• Other information – Number of configuration parameter, if a
parameter is being set; name of configuration file, if a
configuration file is being used to set parameters

• Proxy information – Original login name, if set proxy in effect

83 security online database • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

84 setuser setuser • Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – Name of the user being set

• Proxy information – Original login name, if a set proxy is in
effect

Event Audit option
Command or
access audited extrainfo

sysaudits_01 – sysaudits_08

1274

85 func_obj_access,
func_dbaccess

Accesses to
objects and
databases via
Transact-SQL
functions

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

85 security valid_user • Roles – Current active roles

• Subcommand – valid_user

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

88 security set proxy or set
session
authorization

• Roles – Current active roles

• Subcommand – NULL

• Previous value – Previous suid

• Current value – New suid

• Other information – NULL

• Proxy information – Original login name, if set proxy or set
session authorization had no parameters; otherwise, NULL.

92 cmdtxt All actions of a
particular user, or
by users with a
particular role

• Roles – Current active roles

• Subcommand – NULL

• Previous value – NULL

• Current value – NULL

• Other information – NULL

• Proxy information – Original login name, if set proxy in effect

Event Audit option
Command or
access audited extrainfo

CHAPTER 12 System Tables

1275

syscharsets
master database only

Description syscharsets contains one row for each character set and sort order defined for
use by Adaptive Server. One of the sort orders is marked in
master..sysconfigures as the default sort order, which is the only one actually in
use.

Columns The columns for syscharsets are:

Indexes Unique clustered index On id, csid, type

Unique nonclustered index On name

Name Datatype Description

type smallint The type of entity this row represents. Numbers from 1001 to 1999 represent
character sets. Numbers from 2000 to 2999 represent sort orders.

id tinyint The ID for a character set or sort order. A sort order is defined by the
combination of the sort order ID and the character set ID (csid). The character
set is defined by id, which must be unique. Sybase reserves ID numbers 0–200.

csid tinyint If the row represents a character set, this field is unused. If the row represents
a sort order, this is the ID of the character set that sort order is built on. A
character set row with this ID must exist in this table.

status smallint Internal system status information bits.

name varchar(30) A unique name for the character set or sort order. Must contain only the 7-bit
ASCII letters A-Z or a-z, digits 0-9, and underscores (_), and begin with a letter.

description varchar(255) An optional description of the features of the character set or sort order.

definition image The internal definition of the character set or sort order. The structure of the
data in this field depends on the type.

sortfile varchar(30) null The name of the sort order file.

syscolumns

1276

syscolumns
All databases

Description syscolumns contains one row for every column in every table and view,
and a row for each parameter in a procedure.

Columns The columns for syscolumns are:

Name Datatype Description

id int ID of table to which this column belongs or of procedure with which this parameter
is associated

number smallint Sub-procedure number when the procedure is grouped (0 for non-procedure
entries)

colid smallint Column ID

status tinyint Bits 0–2 (values 1, 2, and 4) indicate bit positioning if the column uses the bit
datatype. If the column uses the text/image datatype, bits 0 and 1 indicate
replication status as follows:

• 01 = always replicate

• 10 = replicate only if changed

• 00 = never replicate

Bit 3 (value 8) indicates whether NULL values are legal in this column.

Bit 4 (value 16) indicates whether more than one check constraint exists for the
column.

Bits 5 and 6 are used internally.

Bit 7 (value 128) indicates an identity column.

Bit 8 is unused.

type tinyint Physical storage type; copied from systypes

length int Physical length of data; copied from systypes or supplied by user

offset smallint Offset into the row where this column appears; if negative, this is a variable-length
column

usertype smallint User type ID; copied from systypes

cdefault int ID of the procedure that generates default value for this column

domain int Constraint ID of the first rule or check constraint for this column

name sysname Column name

printfmt varchar(255)
null

Reserved

prec tinyint null Number of significant digits

scale tinyint null Number of digits to the right of the decimal point

CHAPTER 12 System Tables

1277

Indexes Unique clustered index On id, number, colid

remote_type int null Maps local names to remote names. Required by the access methods of
Component Integration Services to allow the software to pass native column
datatype information in parameters to servers of class access_server.

remote_name varchar(30)
null

Maps local names to remote names. Required by the access methods of
Component Integration Services to construct a query using the proper column
names for a remote table.

xstatus int null The status of a column with extended datatypes. The values are:

• 0 = in row

• 1 = off row

xstatus is NULL for columns that do not have an extended datatype.

xtype int null ID of the class.

Used if a column in a table or a parameter in a procedure has a Java class as its
datatype. When used, fields are not NULL, and the value of type is 0x39. Refer to
Java in Adaptive Server Enterprise for more information.

xdbid int null The database ID of the class. For system classes, the value is -1. Otherwise, the
value is the current database ID.

Used if a column in a table or a parameter in a procedure has a Java class as its
datatype. Fields are not NULL, and the value of type is 0x39. Refer to Java in
Adaptive Server Enterprise for more information.

accessrule int null The object ID of the access rule in sysprocedures. See “Row-level access
control“ in Chapter 11, “Managing User Permissions” of the System
Administration Guide for more information.

status2 int Indicates parameter mode of a SQLJ stored procedure, and the return type of a
SQLJ function.

Name Datatype Description

syscomments

1278

syscomments
All databases

Description syscomments contains entries for each view, rule, default, trigger, table
constraint, and procedure. The text column contains the original definition
statements. If the text column is longer than 255 bytes, the entries will span
rows. Each object can occupy up to 65,025 rows.

Columns The columns for syscomments are:

Note Do not delete the definition statements from the text column of
syscomments. These statements are required for the Adaptive Server
upgrade process. To encrypt a definition statement, run the system
procedure sp_hidetext. To see if a statement created in release 11.5 or later
was deleted, run sp_checksource. If the statement was deleted, you must
either recreate the object that created the statement or reinstall the
application that created the object, which will re-create the statement.

You can protect the text of a database object against unauthorized access
by restricting select permission on the text column of the syscomments
table to the owner of the object and the System Administrator. This
restriction, which applies to direct access through select statements as well
as access through stored procedures, is required in order to run Adaptive
Server in the evaluated configuration. To enact this restriction, a System
Security Officer must reset the parameter called allow select on
syscomments.text column with the system procedure sp_configure. For
information, see the System Administration Guide.

Indexes Unique clustered index On id, number, icolid2, colid, texttype

Name Datatype Description

id int Object ID to which this text applies

number smallint Sub-procedure number when the procedure is grouped (0 for non-procedure entries)

colid smallint Sequence of 255 rows for the object

texttype smallint 0 for system-supplied comment (for views, rules, defaults, triggers, and procedures); 1
for user-supplied comment (users can add entries that describe an object or column)

language smallint Reserved

text varchar(255)
null

Actual text of SQL definition statement

colid2 smallint Indicates next sequence of rows for the object (see colid above); object can have up to
255 sequences of 255 rows each

status smallint null

CHAPTER 12 System Tables

1279

sysconfigures
master database only

Description sysconfigures contains one row for each configuration parameter that can
be set by the user.

Columns The columns for sysconfigures are:

Table 12-3 provides information about the status column.

Table 12-3: Status column description

Name Datatype Description

config smallint Configuration parameter number.

value int The user-modifiable value for the parameter with integer datatype. Its value is 0 for
the parameters with character datatype.

comment varchar(255) Name of the configuration parameter.

status int Value that represents the type of configuration parameter. For details see Table 12-3.

name varchar(80)
null

Name of the configuration parameter (the same value as comment).

parent smallint null Configuration parameter number of the parent; if more than one parent, the
additional parent numbers are stored in sysattributes.

value2 varchar(255)
null

The user-modified value for the parameter with the character datatype. Its value is
NULL for parameters with integer datatype. It is also used to store the pool size of
a buffer pool.

value3 int null Stores the wash size of a buffer pool.

value4 int null Stores the asynchronous prefetch percents of a buffer pool.

Status type Value Description

CFG_NO_OPTIONS 0x0 Parameter has no options.

CFG_SYSTEM_OPTION 0x01 Parameter is a system option.

CFG_SYSTEM_GROUP 0x02 Parameter is a system group.

CFG_STATIC 0x04 Parameter is static.

CFG_DYNAMIC 0x08 Parameter is dynamic.

CFG_CALCULATED 0x10 Parameter is calculated.

CFG_READONLY 0x20 Parameter is readonly.

CFG_MEMORY_USED 0x40 Parameter consumes memory.

CFG_CONFIG_FILE 0x80 Parameter is externally visible.

CFG_SYSTEM_TAB 0x100 Parameter is only externally visible in system table.

CFG_EXTRAS_OPTION 0x200 Parameter is for CFG_EXTRAS not DS_CONFIG.

CFG_CFGBLK 0x400 Parameter is stored in the configuration block.

CFG_CACHE_GROUP 0x800 Parameter is a cache group.

sysconfigures

1280

Indexes Unique clustered index On name, parent, config

Nonclustered index On config, config

CFG_CACHE_OPTION 0x1000 Parameter is a cache option.

CFG_BUFFER_POOL_GROUP 0x2000 Parameter is a buffer pool group.

CFG_BUFFER_POOL_OPTION 0x4000 Parameter is a buffer pool option.

CFG_INTERNAL 0x8000 Parameter is for internal use only.

CFG_FNOF_LPAGESIZE 0x100000 Parameter entry depends on logical pagesize.

Status type Value Description

CHAPTER 12 System Tables

1281

sysconstraints
All databases

Description sysconstraints has one row for each referential constraint and check
constraint associated with a table or column.

Whenever a user declares a new check constraint or referential constraint
using create table or alter table, Adaptive Server inserts a row into the
sysconstraints table. The row remains until a user executes alter table to
drop the constraint. Dropping a table by executing drop table removes all
rows associated with that table from the sysconstraints table.

Columns The columns for sysconstraints are:

Indexes Clustered index On tableid, colid

Unique nonclustered index On constrid

Name Datatype Description

colid smallint Column number in the table

spare1 tinyint Unused

constrid int Object ID of the constraint

tableid int ID of the table on which the constraint is declared

error int Constraint specific error message

status int The type of constraint:

• 0x0040 = a referential constraint

• 0x0080 = a check constraint

spare2 int Unused

syscoordinations

1282

syscoordinations
sybsystemdb database only

Description syscoordinations contains information about remote Adaptive Servers
participating in distributed transactions (remote participants) and their
coordination states.

Columns The columns for syscoordinations are:

Table 12-4 lists the values for the state column:

Table 12-4: syscoordinations state values

Indexes Unique clustered index On xactkey, participant, owner

Name Datatype Description

participant smallint Participant ID

starttime datetime Date the transaction started

coordtype tinyint Value indicating the coordination method or protocol in the systransactions table
definition

owner tinyint Row owner (for internal use)

protocol smallint Reserved for internal use

state smallint Value indicating the current state of the remote participant (see Table 12-4)

bootcount int Reserved for internal use

dbid smallint Database ID at the start of the transaction.

logvers tinyint Reserved for internal use

spare smallint Reserved for internal use

status tinyint Reserved for internal use

xactkey binary(14) Unique Adaptive Server transaction key

gtrid varchar(255) Global transaction ID for distributed transactions coordinated by Adaptive Server
(reserved for internal use)

partdata varbinary(255) Reserved for internal use

srvname varchar(30) Name of local server (null for remote servers)

state value Participant state

1 Begun

4 Prepared

7 Committed

9 In Abort Tran

CHAPTER 12 System Tables

1283

syscurconfigs
master database only

Description syscurconfigs is built dynamically when queried. It contains an entry for
each of the configuration parameters, as does sysconfigures, but with the
current values rather than the default values. In addition, it contains four
rows that describe the configuration structure.

Columns The columns for syscurconfigs are:

Name Datatype Description

config smallint Configuration parameter number.

value int The current run value for the parameter with integer datatype. Its value is 0 for
the parameters with character datatype.

comment varchar(255) Amount of memory used by each configuration parameter, represented in a
string format. Values marked with a hash mark (#) share memory with other
parameters.

status int Either of the following:

• 1 – dynamic

• 0 – parameter takes effect when Adaptive Server is restarted

value2 varchar(255) The current run value for the parameter with the character datatype. Its value is
NULL for parameters with the integer datatype.

defvalue varchar(255) Default value of the configuration parameter.

minimum_value int Minimum value of the configuration parameter.

maximum_value int Maximum value of the configuration parameter.

memory_used int Integer value for the amount of memory used by each configuration parameter.

display_level int Display level of the configuration parameter. The values are 1, 5, and 10.

datatype int Datatype of the configuration parameter.

message_num varchar(20) Message number of the sp_helpconfig message for this configuration parameter.

apf_percent varchar(10) The current run value for the asynchronous prefetch percent for a buffer pool.
Valid only for rows that represent buffer pools.

syscurconfigs

1284

unit varchar(20) Unit of the parameter. Values are:

• not applicable – parameter has no units

• number – number of items

• clock ticks – number of clock ticks

• microseconds

• milliseconds

• seconds

• minutes

• hours

• days

• bytes

• kilobytes

• megabytes

• memory pages (2k)

• virtual pages (2k)

• logical pages

• percent

• ratio

• switch – a Boolean value

• id – ID number

• name

• rows

type varchar(10) Specifies whether a configuration parameter is declared dynamic or static in its
structure definition. Values are:

• dynamic – takes effect immediately

• static – takes effect after restarting Adaptive Server

Name Datatype Description

CHAPTER 12 System Tables

1285

sysdatabases
master database only

Description sysdatabases contains one row for each database in Adaptive Server.
When Adaptive Server is installed, sysdatabases contains entries for the
master database, the model database, the sybsystemprocs database, and the
tempdb database. If you have installed auditing, it also contains an entry
for the sybsecurity database.

Columns The columns for sysdatabases are:

Table 12-5 lists the bit representations for the status column.

Name Datatype Description

name sysname Name of the database

dbid smallint Database ID

suid int Server user ID of database owner

status smallint Control bits; those that the user can set with sp_dboption are so indicated in
Table 12-5

version smallint Unused

logptr int Pointer to transaction log

crdate datetime Creation date

dumptrdate datetime Date of the last dump transaction

status2 intn Additional control bits. See Table 12-6

audflags intn Audit settings for database

deftabaud intn Bit-mask that defines default audit settings for tables

defvwaud intn Bit-mask that defines default audit settings for views

defpraud intn Bit-mask that defines default audit settings for stored procedures

def_remote_type smallint Identifies the default object type to be used for remote tables if no storage
location is provided via the stored procedure sp_addobjectdef

def_remote_loc varchar(255) Identifies the default storage location to be used for remote tables if no storage
location is provided via the stored procedure sp_addobjectdef

status3 intn Additional control bits.

status4 intn Additional control bits.

sysdatabases

1286

Table 12-5: status control bits in the sysdatabases table

Table 12-6 lists the bit representations for the status2 column.

Table 12-6: status2 control bits in the sysdatabases table

Decimal Hex Status

4 0x04 • select into/bulkcopy

• Can be set by user

8 0x08 • trunc log on chkpt

• Can be set by user

16 0x10 • no chkpt on recovery

• Can be set by user

32 0x20 Database created with for load option, or crashed while
loading database, instructs recovery not to proceed

256 0x100 • Database suspect

• Not recovered

• Cannot be opened or used

• Can be dropped only with dbcc dbrepair

512 0x200 • ddl in tran

• Can be set by user

1024 0x400 • read only

• Can be set by user

2048 0x800 • dbo use only

• Can be set by user

4096 0x1000 • single user

• Can be set by user

8192 0x2000 • allow nulls by default

• Can be set by user

Decimal Hex Status

1 0x0001 abort tran on log full; can be set by user

2 0x0002 no free space acctg; can be set by user

4 0x0004 auto identity; can be set by user

8 0x0008 identity in nonunique index; can be set by user

16 0x0010 Database is offline

32 0x0020 Database is offline until recovery completes

64 0x0040 Internal use – Database is being recovered

128 0x0080 Database has suspect pages

256† 0x0100 Table structure written to disk

CHAPTER 12 System Tables

1287

† If this bit appears after recovery completes, the server may be under-
configured for open databases. Use sp_configure to increase this
parameter.

Indexes Unique clustered index On name

Unique nonclustered index On dbid

512 0x0200 Database is in the process of being upgraded

1024 0x0400 Database brought online for standby access

-32768 0xFFFF8000 Database has some portion of the log which is not on a log-only device

Decimal Hex Status

sysdepends

1288

sysdepends
All databases

Description sysdepends contains one row for each procedure, view, or table that is
referenced by a procedure, view, or trigger.

Columns The columns for sysdepends are:

Indexes Unique clustered index On id, number, depid, depnumber

Name Datatype Description

id int Object ID

number smallint Procedure number

depid int Dependent object ID

depnumber smallint Dependent procedure number

status smallint Internal status information

selall bit On if object is used in select * statement

resultobj bit On if object is being updated

readobj bit On if object is being read

CHAPTER 12 System Tables

1289

sysdevices
master database only

Description sysdevices contains one row for each tape dump device, disk dump device,
disk for databases, and disk partition for databases. There are four entries
in sysdevices in the Adaptive Server distribution media: one for the master
device (for databases), one for a disk dump device, and two for tape dump
devices.

Columns The columns for sysdevices are:

The bit representations for the status column, shown below, are additive.
For example, “3” indicates a physical disk that is also a default.

Table 12-7: Bit representations for the status column.

Name Datatype Description

low int Not used for dump devices – First virtual page number on database device

high int Last virtual page number on database device or dump device

status smallint Bitmap indicating type of device, default and mirror status. See Table 12-7.

cntrltype smallint Controller type:

• database device=0

• disk dump device or streaming tape=2

• tape dump device=3–8

name sysname Logical name of dump device or database device

phyname varchar(127) Name of physical device

mirrorname varchar(127) Name of mirror device

Decimal Hex Status

1 0x01 Default disk

2 0x02 Physical disk

4 0x04 Not used – Logical disk

8 0x08 Skip header

16 0x10 Dump device

32 0x20 Serial writes

64 0x40 Device mirrored

128 0x80 Reads mirrored

256 0x100 Secondary mirror side only

512 0x200 Mirror enabled

1024 0x400 Master device is mirrored

2048 0x800 Used internally – Mirror disabled

sysdevices

1290

Indexes Unique clustered index On name

4096 0x1000 Used internally – Primary device needs to be unmirrored

8192 0x2000 Used internally – Secondary device needs to be unmirrored

16384 0x4000 UNIX file device uses dsync setting (writes occur directly to physical media)

Decimal Hex Status

CHAPTER 12 System Tables

1291

sysengines
master database only

Description sysengines contains one row for each Adaptive Server engine currently online.

Columns The columns for sysengines are:

Name Datatype Description

engine smallint Engine number

osprocid int Operating system process ID (may be NULL)

osprocname char(32) Operating system process name (may be NULL)

status char One of: online, in offline, in create, in destroy, debug, bad status

affinitied int Number of Adaptive Server processes with affinity to this engine

cur_kpid int Kernel process ID of process currently running on this engine, if any

last_kpid int Kernel process ID of process that previously ran on this engine

idle_1 tinyint Reserved

idle_2 tinyint Reserved

idle_3 tinyint Reserved

idle_4 tinyint Reserved

starttime datetime Date and time engine came online

status char(12) Internal system status information.

sysgams

1292

sysgams
All databases

Description sysgams stores the global allocation map (GAM) for the database. The
GAM stores a bitmap for all allocation units of a database, with one bit per
allocation unit. You cannot select from or view sysgams.

CHAPTER 12 System Tables

1293

sysindexes
All databases

Description sysindexes contains one row for each clustered index, one row for each
nonclustered index, one row for each table that has no clustered index, and
one row for each table that contains text or image columns.

Columns The columns for sysindexes are:

Name Datatype Description

name sysname Index or table name

id int ID of a table, or ID of table to which index belongs

indid smallint • 0 if a table

• 1 if a clustered index on an allpages-locked table

• >1 if a nonclustered index or a clustered index on a data-only-locked table

• 255 if text, image or Java off-row structure (LOB structure)

doampg int Page number for the object allocation map of a table

ioampg int Page number for the allocation map of an index or (LOB structure)

oampgtrips int Number of times OAM pages cycle in the cache without being re-used, before
being flushed

status2 smallint Internal system status information (see Table 12-9)

ipgtrips int Number of times index pages cycle in the cache, without being reused, before
being flushed

first int If indid is 0 or 1, page number of the first data page. If indid is between 2 and
250, page number of first leaf-level index page.

root int If indid is 0 and table is an unpartitioned allpages-locked table, page number
of last page of page chain; unused for other types of pages. If indid is between
1 and 250, page number of root of index tree.

distribution int Unused. Formerly used to store the page number of the distribution page for
an index.

usagecnt smallint Reserved

segment smallint Number of segment in which object resides

status smallint Internal system status information (see Table 12-9)

maxrowsperpage smallint Maximum number of rows per page

minlen smallint Minimum size of a row

maxlen smallint Maximum size of a row

maxirow smallint Maximum size of a non-leaf index row

keycnt smallint Number of keys for a clustered index on an allpages-locked table; number of
keys, plus 1 for all other indexes

keys1 varbinary(255) Description of key columns if entry is an index

sysindexes

1294

Table 12-8 lists the bit representations for the status column.

Table 12-8: Status bits in the sysindexes table status column

Table 12-9 lists the bit representations for the status2 column.

Table 12-9: Status bits in the sysindexes table status2 column

keys2 varbinary(255) Description of key columns if entry is an index

soid tinyint Sort order ID that the index was created with; 0 if there is no character data in
the keys

csid tinyint Character set ID that the index was created with; 0 if there is no character data
in the keys

base_partition int Partition number, incremented by alter table...unpartition commands

fill_factor smallint Value for the fillfactor of a table set with sp_chgattribute

res_page_gap smallint Value for the reservepagegap on a table

exp_rowsize smallint Expected size of data rows

keys3 varbinary(255) Description of key columns if entry is an index

identitygap intn Identity gap for a table

crdate datetime Creation date

Name Datatype Description

Decimal Hex Status

1 0x1 Abort current command or trigger if attempt to insert duplicate key

2 0x2 Unique index

4 0x4 Abort current command or trigger if attempt to insert duplicate row; always 0 for
data-only-locked tables

16 0x10 Clustered index

64 0x40 Index allows duplicate rows, if an allpages-locked table; always 0 for data-only-locked
tables

128 0x80 Sorted object; not set for tables without clustered indexes or for text objects

512 0x200 sorted data option used in create index statement

2048 0x800 Index on primary key

32768 0x8000 Suspect index; index was created under another sort order

Decimal Hex Status

1 0x1 Index supports foreign key constraint

2 0x2 Index supports primary key/unique declarative constraint

4 0x4 Index includes an IDENTITY column

8 0x8 Constraint name not specified

16 0x10 Large I/Os (prefetch) not enabled for table, index, or text chain

32 0x20 MRU cache strategy not enabled for table, index, or text chain

CHAPTER 12 System Tables

1295

Indexes Unique clustered index On id, indid

64 0x40 Ascending inserts turned on for the table

256 0x0100 Index is presorted and does not need to be copied to new extents

512 0x0200 Table is a data-only-locked table with a clustered index

8192 0x2000 Index on a data-only-locked table is suspect

Decimal Hex Status

sysjars

1296

sysjars
All databases

Description sysjars contains one row for each Java archive (JAR) file that is retained
in the database. Uses row-level locking.

For more information about JAR files, Java classes, and Java datatypes,
see Java in Adaptive Server Enterprise.

Columns The columns for sysjars are:

Indexes Unique placement index On jid

Unique nonclustered index On jname

Name Datatype Description

sensitivity sensitivity Used by the Secure Adaptive Server.

jid int The ID of the JAR.

jstatus int Internal status information. Unused.

jname varchar(255) The JAR name.

jbinary image The contents of the JAR: the Java classes.

CHAPTER 12 System Tables

1297

syskeys
All databases

Description syskeys contains one row for each primary, foreign, or common key.

Columns The columns for syskeys are:

Indexes Clustered index On id

Name Datatype Description

id int Object ID

type smallint Record type

depid int Dependent object ID

keycnt int Number of non-null keys

size int Reserved

key1 ... key8 smallint Column ID

depkey1 ... depkey8 smallint Column ID

spare1 smallint Reserved

syslanguages

1298

syslanguages
master database only

Description syslanguages contains one row for each language known to Adaptive Server.
us_english is not in syslanguages, but it is always available to Adaptive Server.

Columns The columns for syslanguages are:

Indexes Unique clustered index On langid

Unique nonclustered index On alias, name

Name Datatype Description

langid smallint Unique language ID

dateformat char(3) Date order; for example, “dmy”

datefirst tinyint First day of the week—1 for Monday, 2 for Tuesday, and so on, up to 7 for Sunday

upgrade int Adaptive Server version of last upgrade for this language

name varchar(30) Official language name, for example, “french”

alias varchar(30) Alternate language name, for example, “français”

months varchar(251) Comma-separated list of full-length month names, in order from January to
December—each name is at most 20 characters long

shortmonths varchar(119) Comma-separated list of shortened month names, in order from January to
December—each name is at most 9 characters long

days varchar(216) Comma-separated list of day names, in order from Monday to Sunday—each name
is at most 30 characters long

CHAPTER 12 System Tables

1299

syslisteners
master database only

Description syslisteners contains a row for each network protocol available for
connecting with the current Adaptive Server. Adaptive Server builds
syslisteners dynamically when a user or client application queries the
table.

Columns The columns for syslisteners are:

Name Datatype Description

net_type char(32) Network protocol

address_info char(255) Information that uniquely identifies this Adaptive Server on the network, usually the
name of the current Adaptive Server and an identifying number, such as the server’s
port number for the protocol

syslocks

1300

syslocks
master database only

Description syslocks contains information about active locks. It is built dynamically
when queried by a user. No updates to syslocks are allowed.

Columns The columns for syslocks are:

Table 12-10 lists the bit representations for the type column.

Table 12-10: type control bits in the syslocks table

Table 12-11 lists the values for the fid column:

Name Datatype Description

id int Table ID

dbid smallint Database ID

page int Page number

type smallint Type of lock (bit values for the type column are listed in Table 12-10)

spid smallint ID of process that holds the lock

class varchar(30) Name of the cursor this lock is associated with, if any

fid smallint The family (coordinating process and its worker processes) to which the lock belongs.
fid values are listed in Table 12-11.

context tinyint Context type of lock request. context values are listed in Table 12-12.

row smallint Row number

loid int Unique lock owner ID

Decimal Hex Status

1 0x1 Exclusive table lock

2 0x2 Shared table lock

3 0x3 Exclusive intent lock

4 0x4 Shared intent lock

5 0x5 Exclusive page lock

6 0x6 Shared page lock

7 0x7 Update page lock

8 0x8 Exclusive row lock

9 0x9 Shared row lock

10 0xA Update row lock

11 0xB Shared next key lock

256 0x100 Lock is blocking another process

512 0x200 Demand lock

CHAPTER 12 System Tables

1301

Table 12-11: fid column values in the syslocks table

Table 12-12 lists the values for the context column:

Table 12-12: context column values in the syslocks table

Value Interpretation

0 The task represented by the spid is a single task executing a statement in serial.

Nonzero The task (spid) holding the lock is a member of a family executing a statement in parallel.

If the value is equal to the spid, it indicates that the task is the coordinating process in a family executing
a query in parallel.

Value Interpretation

null The task holding this lock is either executing a query in serial, or it is a query being executed in parallel
in transaction isolation level 1.

0x1 The task holding the lock will hold the lock until the query is complete. A lock’s context may be
FAM_DUR (0x1H) when:

• The lock is a table lock held as part of a parallel query.

• The lock is held by a worker process at transaction isolation level 3.

• The lock is held by a worker process in a parallel query and must be held for the duration of the
transaction.

0x2 Range lock held by serializable read task

0x4 Infinity key lock

0x8 Lock acquired on an index pages of an allpages-locked table

0x10 Lock on a page or row acquired to delete a row

0x20 Address lock acquired on an index page during a shrink or split operation

0x40 Intent lock held by a transaction performing repeatable reads. Valid only for shared intent and exclusive
intent locks on data-only locked tables.

sysloginroles

1302

sysloginroles
master database only

Description sysloginroles contains a row for each instance of a server login possessing
a system role. One row is added for each role granted to each login. For
example, if a single server user is granted “sa_role”, “sso_role”, and
“oper_role”, three rows are added to sysloginroles associated with that
user’s system user ID (suid).

Columns The columns for sysloginroles are:

Indexes Clustered index On suid

Name Datatype Description

suid int Server user ID

srid int Server role ID; one of the following:

• 0 = sa_role

• 1 = sso_role

• 2 = oper_role

• 4 = navigator_role

• 5 = replication_role

status smallint Reserved

CHAPTER 12 System Tables

1303

syslogins
master database only

Description syslogins contains one row for each valid Adaptive Server user account.

Columns The columns for syslogins are:

On the Adaptive Server distribution media, syslogins contains an entry in
which the name is “sa”, the suid is 1, and the password is null. It also
contains the entry “probe” with an unpublished password. The login
“probe” and the user “probe” exist for the two phase commit probe
process, which uses a challenge and response mechanism to access
Adaptive Server.

Table 12-13 lists the bit representations for the status column:

Name Datatype Description

suid int Server user ID

status smallint Status of the account (see Table 12-13)

accdate datetimn Date totcpu and totio were last cleared

totcpu int CPU time accumulated by login

totio int I/O accumulated by login

spacelimit int Reserved

timelimit int Reserved

resultlimit int Reserved

dbname sysname Name of database in which to put user when connection established

name sysname Login name of user

password varbinary(30) Password of user (encrypted)

language varchar(30) User’s default language

pwdate datetime Date the password was last changed

audflags int User’s audit settings

fullname varchar(30) Full name of the user

srvname varchar(30) Name of server to which a passthrough connection must be established if the
AUTOCONNECT flag is turned on.

logincount smallint Number of failed login attempts; reset to 0 by a successful login.

procid int Stores the login trigger registered with the login script option in sp_modifylogin.

syslogins

1304

Table 12-13: status control bits in the syslogins table

Indexes Unique clustered index On suid

Unique nonclustered index On name

Decimal Hex Status

1 0x1 Password contains fewer than 6 characters or is NULL

2 0x2 Account is locked

4 0x4 Password has expired

CHAPTER 12 System Tables

1305

syslogs
All databases

Description syslogs contains the transaction log. It is used by Adaptive Server for
recovery and roll forward. It is not useful to users.

You cannot delete from, insert into, or update syslogs. Every data
modification operation is logged, so before you can change syslogs, the
change must be logged. This means that a change operation on syslogs
adds a row to syslogs, which then must be logged, adding another row to
syslogs, and so on, producing an infinite loop. The loop continues until the
database becomes full.

Columns The columns for syslogs are:

Name Datatype Description

xactid binary(6) Transaction ID

op tinyint Number of update operation

syslogshold

1306

syslogshold
master database only

Description syslogshold contains information about each database’s oldest active
transaction (if any) and the Replication Server truncation point (if any) for
the transaction log, but it is not a normal table. Rather, it is built
dynamically when queried by a user. No updates to syslogshold are
allowed.

Columns The columns for syslogshold are:

Name Datatype Description

dbid smallint Database ID.

reserved int Unused.

spid smallint Server process ID of the user that owns the oldest active transaction (always 0 for
Replication Server).

page int Starting page number of active portion in syslogs defined by oldest transaction (or
the truncation page in syslogs for Replication Server).

xactid binary(6) ID of the oldest active transaction (always 0x000000 for Replication Server).

masterxactid binary(6) ID of the transaction’s master transaction (if any) for multi-database transactions;
otherwise 0x000000 (always 0x000000 for Replication Server).

starttime datetime Date and time the transaction started (or when the truncation point was set for
Replication Server).

name char(67) Name of the oldest active transaction. It is the name defined with begin transaction,
“$user_transaction” if no value is specified with begin transaction, or
“$chained_transaction” for implicit transactions started by the ANSI chained mode.
Internal transactions started by Adaptive Server have names that begin with the
dollar sign ($) and are named for the operation, or are named
“$replication_truncation_point” for Replication Server.

xloid int

CHAPTER 12 System Tables

1307

sysmessages
master database only

Description sysmessages contains one row for each system error or warning that can be
returned by Adaptive Server. Adaptive Server displays the error description on
the user’s screen.

Columns The columns for sysmessages are:

Indexes Clustered index On error, dlevel

Unique nonclustered index On error, dlevel, langid

Name Datatype Description

error int Unique error number

severity smallint Severity level of error

dlevel smallint Reserved

description varchar(1024) Explanation of error with placeholders for
parameters

langid smallint Language; null for us_english

sqlstate varchar(5) SQLSTATE value for the error

sysmonitors

1308

sysmonitors
master database only

Description sysmonitors contains one row for each monitor counter.

Columns The columns for sysmonitors are:

Name Datatype Description

field_name char(79) Name of the counter

group_name char(25) Group this counter belongs to

field_id smallint Unique identifier for the row

value int Current value of the counter

description varchar(255) Description of the counter; not used

CHAPTER 12 System Tables

1309

sysobjects
All databases

Description sysobjects contains one row for each table, view, stored procedure,
extended stored procedure, log, rule, default, trigger, check constraint,
referential constraint, and (in tempdb only) temporary object.

Columns The columns for sysobjects are:

Name Datatype Description

name sysname Object name

id int Object ID

uid int User ID of object owner

type char(2) One of the following object types:

D = default
F = SQLJ function
L = log
P = Transact-SQL or SQLJ procedure
PR = prepare objects (created by Dynamic SQL)
R = rule
RI = referential constraint
S = system table
TR = trigger
U = user table
V = view
XP = extended stored procedure

userstat smallint Application-dependent type information (32768 decimal [0x8000 hex] indicates to
Data Workbench® that a procedure is a report)

sysstat smallint Internal status information (256 decimal [0x100 hex] indicates that table is read-only)

indexdel smallint Index delete count (incremented if an index is deleted)

schemacnt smallint Count of changes in the schema of an object (incremented if a rule or default is added)

sysstat2 int Additional internal status information (see Table 12-14)

crdate datetime Date the object was created

expdate datetime Reserved

deltrig int Stored procedure ID of a delete trigger if the entry is a table. Table ID if the entry is a
trigger.

instrig int Stored procedure ID of a table’s insert trigger if the entry is a table

updtrig int Stored procedure ID of a table’s update trigger if the entry is a table

seltrig int Reserved

ckfirst int ID of first check constraint on the table

cache smallint Reserved

audflags int Object’s audit settings

sysobjects

1310

Table 12-14 lists the bit representations for the sysstat2 column:

Table 12-14: sysstat2 control bits in the sysobjects table

Indexes Unique clustered index On id

Unique nonclustered index On name, uid

objspare int Spare

versionts binary

loginame varchar(30) Login name of the user who created the object

Name Datatype Description

Decimal Hex Status

1 0x1 Table has a referential constraint

2 0x2 Table has a foreign key constraint

4 0x4 Table has more than one check constraint

8 0x8 Table has a primary key constraint

16 0x10 Stored procedure can execute only in chained transaction mode

32 0x20 Stored procedure can execute in any transaction mode

64 0x40 Table has an IDENTITY field

512 0x200 Table does not contain variable-length columns

1024 0x400 Table is remote

2048 0x800 Table is a proxy table created with the existing keyword

8192 0x2000 Table uses allpages locking scheme

16384 0x4000 Table uses datapages locking scheme

32768 0x8000 Table uses datarows locking scheme

65536 0x10000 Table was created in a version 11.9 or later version of the server

131072 0x20000 Table has a clustered index

242144 0x40000 Object represents an Embedded SQL procedure

33554432 0x2000000 Object represents a SQLJ stored procedure.

16777216 0x01000000 Object represents an access rule.

67108864 0x04000000 Object represents an OR access rule.

CHAPTER 12 System Tables

1311

syspartitions
All databases

Description syspartitions contains one row for each partition (page chain) of a
partitioned table.

Columns The columns for syspartitions are:

Indexes Unique clustered index On id, partitionid

Name Datatype Description

state smallint Internal information about the state of the partition

id int Object ID of the partitioned table

partitionid int Partition ID number

firstpage int Page number of the partition’s first page

controlpage int Page number of the partition’s control page

spare binary(32) Reserved

sysprocedures

1312

sysprocedures
All databases

Description sysprocedures contains entries for each view, default, rule, trigger,
procedure, declarative default, and check constraint. The plan or sequence
tree for each object is stored in binary form. If the sequence tree does not
fit into one entry, it is broken into more than one row. The sequence
column identifies the sub-rows.

Columns The columns for sysprocedures are:

Table 12-15 lists the bit representations for the type column.

Table 12-15: type control bits in the sysprocedures table

Indexes Unique clustered index On id, type, sequence, number

Name Datatype Description

type smallint Object type (see Table 12-15)

id int Object ID

sequence int Sequence number if more than one row is used to
describe this object

status smallint Internal system status

number smallint Sub-procedure number when the procedure is
grouped (0 for non-procedure entries)

version int

Decimal Hex Status

1 0x1 Entry describes a plan (reserved)

2 0x2 Entry describes a tree

CHAPTER 12 System Tables

1313

sysprocesses
master database only

Description sysprocesses contains information about Adaptive Server processes, but it
is not a normal table. It is built dynamically when queried by a user. No
updates to sysprocesses are allowed. Use the kill statement to kill a
process.

Columns The columns for sysprocesses are:

Name Datatype Description

spid smallint Process ID

kpid int Kernel process ID

enginenum int Number of engine on which process is being executed

status char(12) Process ID status. See Table 12-16.

suid int Server user ID of user who issued command

hostname char(10) Name of host computer

program_name char(16) Name of front-end module

hostprocess char(8) Host process ID number

cmd char(16) Command or process currently being executed. Evaluation of a conditional
statement, such as an if or while loop, returns cond.

cpu int Cumulative CPU time for process in ticks

physical_io int Number of disk reads and writes for current command

memusage int Amount of memory allocated to process

blocked smallint Process ID of blocking process, if any

dbid smallint Database ID

uid int ID of user who executed command

gid int Group ID of user who executed command

tran_name varchar(64) Name of the active transaction

time_blocked int Time blocked in seconds

network_pktsz int Current connection’s network packet size

fid smallint Process ID of the worker process’ parent

execlass varchar(30) Execution class that the process is bound to

priority varchar(10) Base priority associated with the process

affinity varchar(30) Name of the engine to which the process has affinity

id int Object ID of the currently running procedure (or 0 if no procedure is running)

stmtnum int The current statement number within the running procedure (or the SQL batch
statement number if no procedure is running)

linenum int The line number of the current statement within the running stored procedure (or
the line number of the current SQL batch statement if no procedure is running)

sysprocesses

1314

Table 12-16 lists the values for the status column:

Table 12-16: sysprocesses status column values

origsuid int Original server user ID. If this value is not NULL, a user with an suid of origsuid
executed set proxy or set session authorization to impersonate the user who
executed the command.

block_xloid int Unique lock owner ID of a lock that is blocking a transaction

clientname varchar(30) Name by which the user is know for the current session. This parameter is
optional

clienthostname varchar(30) Name by which the host is known for the current session. This parameter is
optional

clientapplname varchar(30) Name by which the application is known for the current session. This parameter
is optional

 sys_id smallint Unique identity of companion node

 ses_id int Unique identity of each client session

loggedindatetime datetime Shows the time and date when the client connected to Adaptive Server. See
“Row-level access control“ in Chapter 11, “Managing User Permissions” of the
System Administration Guide for more information..

ipaddr varchar IP address of the client where the login is made. See “Row-level access control“
in Chapter 11, “Managing User Permissions” of the System Administration Guide
for more information..

Name Datatype Description

Status Meaning

alarm sleep Waiting for alarm to wake process up (user executed a waitfor delay command)

background A process, such as a threshold procedure, run by Adaptive Server rather than by a user process

infected Server has detected a serious error condition; extremely rare

latch sleep Waiting on a latch acquisition

lock sleep Waiting on a lock acquisition

PLC sleep Waiting to access a user log cache

recv sleep Waiting on a network read

runnable In the queue of runnable processes

running Actively running on one of the server engines

send sleep Waiting on a network send

sleeping Waiting on a disk I/O, or some other resource (often indicates a process that is running, but doing
extensive disk I/O)

stopped Stopped process

sync sleep Waiting on a synchronization message from another process in the family

CHAPTER 12 System Tables

1315

sysprotects
All databases

Description sysprotects contains information on permissions that have been granted to,
or revoked from, users, groups, and roles.

Columns The columns for sysprotects are:

Indexes Unique clustered index On id, action, grantor, uid, protecttype

Name Datatype Description

id int ID of the object to which this permission applies.

uid int ID of the user, group, or role to which this permission applies.

action smallint One of the following permissions:

151 = references
167 = set proxy or set session authorization
193 = select
195 = insert
196 = delete
197 = update
198 = create table
203 = create database
205 = grant
206 = revoke
207 = create view
221 = create trigger
222 = create procedure
224 = execute
228 = dump database
233 = create default
235 = dump transaction
236 = create rule

protecttype tinyint One of the following values:

0 = grant with grant
1 = grant
2 = revoke

columns varbinary(133) Bitmap of columns to which this select or update permission applies. The bits
indicate the following:

• 0 – indicates all columns

• 1 – means permission applies to that column

• NULL – means no information

grantor int User ID of the grantor. If the grantor is a System Administrator, the user ID of the
object owner is used.

sysqueryplans

1316

sysqueryplans
All databases

Description sysqueryplans contains two or more rows for each abstract query plan.
Uses datarow locking.

Columns The columns for sysqueryplans are:

Indexes Unique clustered index On uid, gid, hashkey, id, type, sequence

Nonclustered unique index On id, type, sequence

Name Datatype Description

uid int User ID of user who captured the abstract plan.

gid int The abstract plan group ID under which the abstract plan was saved.

hashkey int The hash key over the SQL query text.

id int The unique ID if the abstract plan.

type smallint 10 if the text column contains query text or 100 if the text column contains
abstract plan text.

sequence smallint Sequence number if multiple rows are required for the text of the SQL
query or abstract plan.

status int Reserved.

text varchar(255) The SQL text, if type is 10, or the abstract query plan text, if the type is 100.

CHAPTER 12 System Tables

1317

sysreferences
All databases

Description sysreferences contains one row for each referential integrity constraint
declared on a table or column.

Columns The columns for sysreferences are:

Indexes Clustered index On tableid, frgndbname

Nonclustered index On constrid, frgndbname, indexid, pmrydbname, reftabid

Name Datatype Description

indexid smallint ID of the unique index on referenced columns

constrid int Object ID of the constraint from sysobjects

tableid int Object ID of the referencing table

reftabid int Object ID of the referenced table

keycnt tinyint Number of columns in the foreign key

status smallint Reserved

frgndbid smallint Database ID of the database that includes the referenced table (the table with the
foreign key).

pmrydbid smallint Database ID of the database that includes the referenced table (the table with the
primary key).

spare2 int Reserved

fokey1 ... fokey16 smallint Column ID of the first to the 16th referencing column

refkey1 ... refkey16 smallint Column ID of the first to the 16th referenced column

frgndbname varchar(30) Name of the database that includes the referencing table (the table with the
foreign key); NULL if the referencing table is in the current database

pmrydbname varchar(30) Name of the database that includes the referenced table (the table with the
primary key); NULL if the referenced table is in the current database

sysremotelogins

1318

sysremotelogins
master database only

Description sysremotelogins contains one row for each remote user that is allowed to
execute remote procedure calls on this Adaptive Server.

Columns The columns for sysremotelogins are:

Indexes Unique clustered index On remoteserverid, remoteusername

Name Datatype Description

remoteserverid smallint Identifies the remote server

remoteusername varchar(30) User’s login name on remote server

suid int Local server user ID

status smallint Bitmap of options

CHAPTER 12 System Tables

1319

sysresourcelimits
master database only

Description sysresourcelimits contains a row for each resource limit defined by
Adaptive Server. Resource limits specify the maximum amount of server
resources that can be used by a Adaptive Server login or an application to
execute a query, query batch, or transaction.

Columns The columns for sysresourcelimits are:

Indexes Clustered index On name, appname

Name Datatype Description

name varchar(30) null Login name

appname varchar(30) null Application name

rangeid smallint id column from systimeranges

limitid smallint id column from spt_limit_types

limitvalue int Value of limit

enforced tinyint Subset of the enforced column from spt_limit_types:

• 1 = prior to execution

• 2 = during execution

• 3 = both

actiontotake tinyint Action to take on a violation:

• 1 = issue warning

• 2 = abort query batch

• 3 = abort transaction

• 4 = kill session

scope tinyint Scope of user limit (a bitmap indicating one or more of the following):

• 1 = query

• 2 = query batch

• 4 = transaction

spare tinyint Reserved

sysroles

1320

sysroles
All databases

Description sysroles maps server role IDs to local role IDs.

Columns The columns for sysroles are:

When a database permission is granted to a role, if an entry for the role
does not exist in syssrvroles, Adaptive Server adds an entry to sysroles
map the local role ID (lrid) to the server-wide role ID (srid) in syssrvroles.

Indexes Unique clustered index On lrid

Name Datatype Description

id int Server role ID (srid)

lrid int Local role ID

type smallint Unused

status int Unused

CHAPTER 12 System Tables

1321

syssecmechs
master database only

Description syssecmechs contains information about the security services supported
by each security mechanism that is available to Adaptive Server. Unlike
other system tables, it is not created during installation. Instead, it is built
dynamically when queried by a user.

Columns The columns for syssecmechs are:

Name Datatype Description

sec_mech_name varchar(30) Name of the security mechanism; for example, “NT LANMANAGER”

available_service varchar(30) Name of the security service supported by the security mechanism; for example,
“unified login”

syssegments

1322

syssegments
All databases

Description syssegments contains one row for each segment (named collection of disk
pieces). In a newly created database, the entries are: segment 0 (system)
for system tables; segment 2 (logsegment) for the transaction log; and
segment 1 (default) for other objects.

Columns The columns for syssegments are:

Name Datatype Description

segment smallint Segment number

name sysname Segment name

status smallint Indicates which segment is the default segment

CHAPTER 12 System Tables

1323

sysservers
master database only

Description sysservers contains one row for each remote Adaptive Server, Backup
Server™, or Open Server™ on which this Adaptive Server can execute
remote procedure calls.

Columns The columns for sysservers are:

Table 12-17 lists the bit representations for the srvstatus column:

Table 12-17: status control bits in the sysservers table

Table 12-18 lists the server categories for the srvclass column:

Name Datatype Description

srvid smallint ID number (for local use only) of the remote server

srvstatus smallint Bitmap of options. See Table 12-17.

srvname varchar(30) Server name

srvnetname varchar(32) Interfaces file name for the server

srvclass smallint Server category defined by the class parameter of sp_addserver. See Table 12-18.

srvsecmech varchar(30) Security mechanism

srvcost smallint Provides the network cost in milliseconds for accessing a server over a network. Used
only by the Adaptive Server query optimizer for evaluating the cost of a query when
accessing a proxy table, the default is set to 1,000 ms.

Decimal Hex Status

0 0x0 Timeouts are enabled

1 0x1 Timeouts are disabled

2 0x2 Network password encryption is enabled

4 0x4 Remote server is read only

8 0x8 Use rpc security model A

16 0x10 Use rpc security model B

64 0x40 Use message confidentiality

128 0x80 Use message integrity

256 0x100 Mutual authentication

sysservers

1324

Table 12-18: Server categories is the sysservers table

Indexes Unique clustered index On srvid

Unique nonclustered index On srvname

srvclass Server category

0 Local Server

1 sql_server class server

3 direct_connect class server

4 DB2 class server

6 sds class server

7 ASEnterprise class server

8 ASAnywhere class server

9 ASIQ class server

CHAPTER 12 System Tables

1325

syssessions
master database only

Description syssessions is only used when Adaptive Server is configured for Sybase’s
Failover in a high availability system. syssessions contains one row for
each client that connects to Adaptive Server with the failover property (for
example, isql -Q). Clients that have an entry in syssessions during failover
are moved to the secondary companion. Clients that do not have an entry
in syssessions are dropped during failover. Clients that have an entry in
syssessions during failback are moved to the primary companion. Clients
that do not have an entry in syssessions during failback are dropped.

Columns The columns for syssessions are:

Name Datatype Description

 sys_id smallint Unique identity of companion node

 ses_id int Unique identity of each client session

state tinyint Describes whether the session is active or inactive

spare tinyint Reserved for future functionality

status smallint Reserved for future functionality

dbid smallint Reserved for future functionality

name varchar(30) Same as client’s login name as specified in syslogins

syssrvroles

1326

syssrvroles
master database only

Description syssrvroles contains a row for each system or user-defined role.

Columns The columns for syssrvroles are:

Table 12-19 lists the bit representations for the status column:

Table 12-19: status control bits in the syssrvroles table

Indexes Unique clustered index On srid

Name Datatype Description

srid int Server role ID

name varchar(30) Name of the role

password varinary(30) Password for the role (encrypted)

pwdate datetime Date the password was last changed

status smallint Bitmap for role status. See Table 12-19

logincount smallint Number of failed login attempts; reset to 0 by a
successful login.

Decimal Hex Status

2 0x2 Role is locked

4 0x4 Role is expired

CHAPTER 12 System Tables

1327

sysstatistics
All databases

Description sysstatistics contains one or more rows for each indexed column on a user
table. May also contain rows for unindexed column. Uses datarow
locking.

Columns The columns for sysstatistics are:

Indexes Unique clustered index On id, statid, colidarray, formatid, sequence

Name Datatype Description

statid smallint Reserved

id int Object ID of table

sequence int Sequence number if multiple rows are required
for this set of statistics

moddate datetime Date this row was last modified

formatid tinyint Type of statistics represented by this row

usedcount tinyint Number of fields c0 to c79 used in this row

colidarray varbinary(100) An ordered list of column IDs

c0...c79 varbinary(255) Statistical data

systabstats

1328

systabstats
All databases

Description systabstats contains one row for each clustered index, one row for each
nonclustered index, and one row for each table that has no clustered index.
Uses datarow locking.

Columns The columns for systabstats are:

Name Datatype Description

indid smallint 0 if a table; 1 if a clustered index on an allpages-
locked table; >1 if a nonclustered index or a
clustered index on a data-only-locked table;
statistics on text or image objects (255) are not
maintained in systabstats.

id int ID of table to which index belongs

activestatid smallint Reserved

indexheight smallint Height of the index; maintained if indid is greater
than 1

leafcnt int Number of leaf pages in the index; maintained if
indid is greater than 1

pagecnt int Number of pages in the table or index

rowcnt float Number of rows in the table; maintained for indid
of 0 or 1

forwrowcnt float Number of forwarded rows; maintained for indid of
0 or 1

delrowcnt float Number of deleted rows

dpagecrcnt float Number of extent I/Os that need to be performed to
read the entire table

ipagecrcnt float Number of extent I/Os that need to be performed to
read the entire leaf level of a nonclustered index

drowcrcnt float Number of page I/Os that need to be performed to
read an entire table

oamapgcnt int Number of OAM pages for the table, plus the
number of allocation pages that store information
about the table

extent0pgcnt int Count of pages that are on the same extent as the
allocation page

datarowsize float Average size of the data row

leafrowsize float Average size of a leaf row for nonclustered indexes
and clustered indexes data-only-locked tables

CHAPTER 12 System Tables

1329

Table 12-20 lists the bit representations for the status column:

Table 12-20: status bits in the systabstats table

Indexes Unique clustered index On id, indid

status int Internal system status information (see Table 12-
20)

spare1 int Reserved

spare2 float Reserved

rslastoam int Last OAM page visited by a reorg reclaim_space or
reorg compact command

rslastpage int Last data or leaf page visited by a reorg
reclaim_space or reorg compact command

frlastoam int Last OAM page visited by the reorg
forwarded_rows command

frlastpage int Last data page visited by the reorg forwarded_rows
command

conopt_thld smallint Concurrency optimization threshold

spare3 smallint Reserved

emptypgcnt int Number of empty pages in extents allocated to the
table or index

spare4 float Reserved

Decimal Hex Status

1 0x1 Statistics are the result of upgrade (not update statistics)

Name Datatype Description

systhresholds

1330

systhresholds
All databases

Description systhresholds contains one row for each threshold defined for the database.

Columns The columns for systhresholds are:

Indexes Unique clustered index On segment, free_space

Name Datatype Description

segment smallint Segment number for which free space is being
monitored.

free_space int Size of threshold, in 2K pages (4K for Status).

status smallint Bit 1 equals 1 for the logsegment’s last-chance
threshold, 0 for all other thresholds.

proc_name varchar(255) Name of the procedure that is executed when the
number of unused pages on segment falls below
free_space.

suid int The server user ID of the user who added the
threshold or modified it most recently.

currauth varbinary(255) A bit mask that indicates which roles were active
for suid at the time the threshold was added or
most recently modified. When the threshold is
crossed, proc_name executes with this set of
roles, less any that have been deactivated since
the threshold was added or last modified.

CHAPTER 12 System Tables

1331

systimeranges
master database only

Description systimeranges stores named time ranges, which are used by Adaptive
Server to control when a resource limit is active.

Columns The columns for systimeranges are:

Indexes Clustered index On id

Name Datatype Description

name varchar(30) Unique name of the time range.

id smallint Unique identifier for the time range. 1 represents the
“at all times” limit.

startday tinyint Day of week (1–7) for the beginning of the range.
Monday = 1, Sunday = 7.

endday tinyint Day of week (1–7) for the end of the range.
Monday = 1, Sunday = 7.

starttime varchar(10) Time of day for the beginning of the range.

endtime varchar(10) Time of day for the end of the range.

systransactions

1332

systransactions
master database only

Description systransactions contains information about Adaptive Server transactions,
but it is not a normal table. Portions of the table are built dynamically when
queried by a user, while other portions are stored in the master database.
Updates to the dynamically-built columns of systransactions are not
allowed.

Columns The columns for systransactions are:

Table 12-21 lists the values for the failover column:

Table 12-21: systransactions failover column values

Table 12-22 lists the values for the type column:

Name Datatype Description

xactkey binary(14) Unique Adaptive Server transaction key

starttime datetime Date the transaction started

failover int Value indicating the transaction failover state (see
Table 12-21)

type int Value indicating the type of transaction (see Table
12-22)

coordinato
r

int Value indicating the coordination method or
protocol (see Table 12-23)

state int Value indicating the current state of the transaction
(see Table 12-24)

connection int Value indicating the connection state (see Table 12-
25)

status int Internal transaction status flag

status2 int Additional internal transaction status flags.

spid smallint Server process ID, or 0 if the process is detached

masterdbid smallint Starting database of the transaction

loid int Lock owner ID

namelen smallint Length of “xactname” below

xactname varchar(255) Transaction name or XID

srvname varchar(30) Name of the remote server (null for local servers)

failover value Failover state

0 Resident Tx

1 Failed-over Tx

2 Tx by Failover-Conn

CHAPTER 12 System Tables

1333

Table 12-22: systransactions type column values

Table 12-23 lists the values for the coordinator column:

Table 12-23: systransactions coordinator column values

Table 12-24 lists the values for the state column:

Table 12-24: systransactions state column values

Table 12-25 lists the values for the connection column:

type value Transaction type

1 Local

3 External

98 Remote

99 Dtx_State

coordinator value Coordination method or protocol

0 None

1 Syb2PC

2 ASTC

3 XA

4 DTC

state value Transaction state

1 Begun

2 Done Command

3 Done

4 Prepared

5 In Command

6 In Abort Cmd

7 Committed

8 In Post Commit

9 In Abort Tran

10 In Abort Savept

65537 Begun-Detached

65538 Done Cmd-Detached

65539 Done-Detached

65540 Prepared-Detached

65548 Heur Committed

65549 Heur Rolledback

systransactions

1334

Table 12-25: systransactions connection column values

connection value Connection state

1 Attached

2 Detached

CHAPTER 12 System Tables

1335

systypes
All databases

Description systypes contains one row for each system-supplied and user-defined
datatype. Domains (defined by rules) and defaults are given, if they exist.

The rows that describe system-supplied datatypes cannot be altered.

Columns The columns for systypes are:

Table 12-26 lists each system-supplied datatype’s name, hierarchy, type
(not necessarily unique), and usertype (unique). The datatypes are ordered
by hierarchy. In mixed-mode arithmetic, the datatype with the lowest
hierarchy takes precedence:

Name Datatype Description

uid int User ID of datatype creator

usertype smallint User type ID

variable bit 1 if datatype is variable length; 0 otherwise

allownulls bit Indicates whether nulls are allowed for this
datatype

type tinyint Physical storage datatype

length int Physical length of datatype

tdefault int ID of system procedure that generates default for
this datatype

domain int ID of system procedure that contains integrity
checks for this datatype

name sysname Datatype name

printfmt varchar(255) Reserved

prec tinyint Number of significant digits

scale tinyint Number of digits to the right of the decimal point

ident tinyint 1 if column has the IDENTITY property, 0 if it does
not

hierarchy tinyint Precedence of the datatype in mixed mode
arithmetic

accessrule int The object ID of the access rule in sysprocedures.

xtypeid int The internal class ID

xdbid int The dbid where a class is installed:

• -1 = the system database

• -2 = the current database, or any dbid

systypes

1336

Table 12-26: Datatype names, hierarchy, types, and usertypes

Indexes Unique clustered index On name

Unique nonclustered index On usertype

Name hierarchy type usertype

floatn 1 109 14

float 2 62 8

datetimn 3 111 15

datetime 4 61 12

real 5 59 23

numericn 6 108 28

numeric 7 63 10

decimaln 8 106 27

decimal 9 55 26

moneyn 10 110 17

money 11 60 11

smallmoney 12 122 21

smalldatetime 13 58 22

intn 14 38 13

int 15 56 7

smallint 16 52 6

tinyint 17 48 5

bit 18 50 16

univarchar 19 155 35

unichar 20 135 34

reserved 21

varchar 22 39 2

sysname 22 39 18

nvarchar 22 39 25

char 23 47 1

nchar 23 47 24

varbinary 24 37 4

timestamp 24 37 80

binary 25 45 3

text 26 35 19

image 27 34 20

CHAPTER 12 System Tables

1337

sysusages
master database only

Description sysusages contains one row for each disk allocation piece assigned to a
database. Each database contains a specified number of database (logical)
page numbers. Each disk piece includes the segments on the Adaptive
Server distribution media, segments 0 and 1.

The create database command checks sysdevices and sysusages to find
available disk allocation pieces. One or more contiguous disk allocation
pieces are assigned to the database, and the mapping is recorded in
sysusages.

Columns The columns for sysusages are:

Indexes Unique clustered index On dbid, lstart

Unique nonclustered index On vstart

Name Datatype Description

dbid smallint Database ID

segmap int Bitmap of possible segment assignments

lstart int First database (logical) page number

size int Number of contiguous database (logical) pages

vstart int Starting virtual page number

pad smallint Unused

unreservedpgs int Free space not part of an allocated extent

crdate datetime Creation date

sysusermessages

1338

sysusermessages
All databases

Description sysusermessages contains one row for each user-defined message that can
be returned by Adaptive Server.

Columns The columns for sysusermessages are:

Indexes Clustered index On error

Unique nonclustered index On error, langid

Name Datatype Description

error varchar(1024) Unique error number. Must be 20,000 or higher.

uid int Server user ID (suser_id) of the message creator.

description varchar(1024) User-defined message with optional placeholders for parameters.

langid smallint Language ID for this message; null for us_english.

dlevel smallint Stores the with_log bit, which is used to call the appropriate routine to log a message.

CHAPTER 12 System Tables

1339

sysusers
All databases

Description sysusers contains one row for each user allowed in the database, and one
row for each group or role.

Columns The columns for sysusers are:

On the Adaptive Server distribution media, master..sysusers contains
some initial users: “dbo”, whose suid is 1 and whose uid is 1; “guest”,
whose suid is -1 and whose uid is 2; and “public”, whose suid is -2 and
whose uid is 0. In addition, both system-defined and user-defined roles are
listed in sysusers.

The user “guest” provides a mechanism for giving users not explicitly
listed in sysusers access to the database with a restricted set of
permissions. The “guest” entry in master means any user with an account
on Adaptive Server (that is, with an entry in syslogins) can access master.

The user “public” refers to all users. The keyword public is used with the
grant and revoke commands to signify that permission is being given to or
taken away from all users.

Indexes Unique clustered index On suid

Unique nonclustered index On name, uid

Name Datatype Description

suid int Server user ID, copied from syslogins.

uid int User ID, unique in this database, is used for granting and revoking permissions. User
ID 1 is “dbo”.

gid int Group ID to which this user belongs. If uid = gid, this entry defines a group. Negative
values may be used for user IDs (uid). Every suid associated with a group or a role in
sysusers is set to -2 (INVALID_SUID).

name sysname User or group name, unique in this database.

environ varchar(255) Reserved.

sysxtypes

1340

sysxtypes
All databases

Description sysxtypes contains one row for each extended, Java-SQL datatype. Uses
row-level locking.

Refer to Java in Adaptive Server Enterprise for more information about
Java-SQL classes and datatypes.

Columns The columns for sysxtypes are:

Indexes Unique placement index On xtid

Unique non-clustered index On xtname

Name Datatype Description

sensitivity sensitivity Used by the Secure Adaptive Server.

xtname varchar(255) The name of the extended type.

xtid int System-generated ID for the extended type.

xtstatus int Internal status information. Unused.

xtmetatype int Unused.

xtcontainer int The ID of the JAR file containing the class. Can be NULL.

xtsource text Source code for the extended type. Unused.

xtbinary image Object code for the extended type. For Java classes, it contains the class file.

CHAPTER 12 System Tables

1341

syblicenseslog
master database only

Description syblicenseslog contains one row for each update of the maximum number
of licenses used in Adaptive Server per 24-hour period. syblicenseslog is
updated every 24 hours. If Adaptive Server is shut down at any time,
License Use Manager logs the number of licenses currently being used in
syblicenseslog before the shutdown is complete. The 24 hour period
restarts when you start Adaptive Server.

Note syblicenseslog is not a system table. Its type is “U” and its object ID
is greater than 100.

Columns The columns for syblicenseslogs are:

Name Datatype Description

status smallint Status of the maximum number of licenses used; one of the following:

• 0 = number of licenses not exceeded

• 1 = number of licenses is exceeded

• -1 = housekeeper is unable to monitor number of licenses

logtime datetime Date and time the log was written

maxlicenses int Maximum number of licenses used during the 24-hour period

syblicenseslog

1342

1343

C H A P T E R 1 3 dbccdb Tables

In addition to the standard system tables included in all databases, the dbcc
management database, dbccdb, contains seven tables that define inputs to
and outputs from dbcc checkstorage. It also contains at least two
workspaces.

Topics include:

dbccdb workspaces
Workspaces are special tables in dbccdb that store intermediate results of
the dbcc checkstorage operation. Workspaces differ from worktables in
that they:

• Are preallocated contiguously to improve I/O performance

• Are persistent

• Do not reside in the tempdb database

When you create dbccdb, two workspaces, scan and text, are created
automatically. They are preallocated as follows:

• Scan workspace – contains a row for each page of the target database.
The allocation is approximately 1 percent of the database size. Each
row consists of a single binary(18) column.

• Text workspace – contains a row for each table in the target database
that contains text or image columns. The size of this table depends on
the design of the target database, but it is usually significantly smaller
than the scan workspace. Each row consists of a single binary(22)
column.

Topic Page
dbccdb workspaces 1343

dbccdb log 1345

dbccdb workspaces

1344

If either allocation is larger than needed by dbcc checkstorage, the
operation uses only what it requires. The allocation does not change. If the
text workspace allocation is too small, dbcc checkstorage reports this,
recommends a new size, and continues checking; however, not all text
chains are checked. If the scan workspace allocation is too small, the dbcc
checkstorage operation fails immediately.

You must have at least one scan and one text workspace, but you may
create as many as you need. While in use, the workspaces are locked so
that only one dbcc checkstorage operation can use them at any given time.
You can execute concurrent dbcc checkstorage operations by supplying
each one with a separate scan and text workspace.

For more information on creating workspaces, see the System
Administration Guide and the Adaptive Server Reference Manual.

Ideally, workspaces should be accessed only through dbcc checkstorage,
but this is not a requirement. dbcc checkstorage exclusively locks the
workspaces it uses, and the content of the workspaces is regenerated with
each execution of dbcc checkstorage. The workspaces do not contain any
secure data.

Note While the contents of the workspaces are accessible through SQL,
no interpretation of the binary values is available. Access through SQL
might return data from different dbcc checks mixed together. The presence
of a row in these tables does not ensure that it contains valid data. dbcc
tracks valid rows only during execution. That information is lost when the
operation completes.

Most of the update activity in dbccdb is performed in the text and scan
workspaces. The workspaces are preallocated, and only one dbcc
checkstorage operation can use the workspaces at any given time, so the
workspaces are less susceptible to corruption than most user tables.
Corruption in a workspace can cause the dbcc checkstorage operation to
fail or behave erratically. If this happens, drop and re-create the corrupt
workspace.

Checks of databases using different workspaces can proceed
simultaneously, but the performance of each operation might be degraded
as it competes for disk throughput.

To delete a workspace, in dbccdb, enter:

drop table workspace_name

CHAPTER 13 dbccdb Tables

1345

dbccdb log
The results of each dbcc checkstorage operation are recorded in the dbccdb
log. Updates to the text and scan workspaces are not recorded there.

The dbccdb log must be sized to handle updates to the tables. The log
requirement is related to the number of tables and indexes in the target
database. It is not related to the target database size.

To minimize the log requirement and the recovery time, use the truncate
log on checkpoint option with dbccdb.

dbcc_config

1346

dbcc_config
Description The dbcc_config table describes the currently executing or last completed

dbcc checkstorage operation. It defines:

• The location of resources dedicated to the dbcc checkstorage
operation

• Resource usage limits for the dbcc checkstorage operation

Columns The columns for dbcc_config are:

Primary key Combination of dbid and type_code

See also For information on initializing and updating dbcc_config, see the System
Administration Guide.

Column name Datatype Description

dbid smallint Matches the dbid from a row in sysindatabases.

type_code int Matches the type_code from a row in the dbcc_types table. Valid values are 1–9.

value int Specifies the value of the item identified by type_code. Can be null only if the
value of stringvalue is not null.

stringvalue varchar(255) Specifies the value of the item identified by type_code. Can be null only if the
value of value is not null.

CHAPTER 13 dbccdb Tables

1347

dbcc_counters
Description The dbcc_counters table stores the results of the analysis performed by

dbcc checkstorage. Counters are maintained for each database, table,
index, partition, device, and invocation of dbcc.

Columns The columns for dbcc_counters are:

Primary key Combination of dbid, id, indid, partitionid, devid, opid, and type_code

Column name Datatype Description

dbid smallint Identifies the target database.

id int Identifies the table. The value is derived from sysindexes and sysobjects.

indid smallint Identifies the index. The value is derived from sysindexes.

partitionid smallint Identifies the defined object-page affinity. The value is derived from sysindexes
and syspartitions.

devid smallint Identifies the disk device. The value is derived from sysdevices.

opid smallint Identifies the dbcc operation that was performed.

type_code int Matches the type_code column of a row in the dbcc_types table. Valid values are
5000 through 5024.

value real Matches the appropriate type_name for the given type_code as described in
dbcc_types.

dbcc_fault_params

1348

dbcc_fault_params
Description The dbcc_fault_params table provides additional descriptive information

for a fault entered in the dbcc_faults table.

Columns The columns for dbcc_fault_params are:

Each “value” column (intvalue, realvalue, binaryvalue, stringvalue, and
datevalue) can contain a null value. At least one must not be null. If more
than one of these columns contains a value other than null, the columns
provide different representations of the same value.

Primary key Combination of dbid, opid, faultid, and type_code

Column name Datatype Description

dbid smallint Identifies the target database.

opid smallint Identifies the dbcc operation that was performed.

faultid int Identifies the fault ID.

type_code int Defines the interpretation of the value, which is provided by the “value”
columns. Valid values are 1000–1009. They are described in dbcc_types.

intvalue int Specifies the integer value.

realvalue real Specifies the real value.

binaryvalue varbinary(255) Specifies the binary value.

stringvalue varchar(255) Specifies the string value.

datevalue datetime Specifies the date value.

CHAPTER 13 dbccdb Tables

1349

dbcc_faults
Description The dbcc_faults table provides a description of each fault detected by dbcc

checkstorage.

Columns The columns for dbcc_faults are:

Primary key Combination of dbid, id, indid, partitionid, devid, opid, faultid, and type_code

Column name Datatype Description

dbid smallint Identifies the target database.

id smallint Identifies the table. The value is derived from sysindexes and sysobjects.

indid smallint Identifies the index. The value is derived from sysindexes.

partitionid smallint Identifies the partition. The value is derived from sysindexes and syspartitions.
Counters are maintained for page ranges, so “partition” refers to the defined
object-page affinity, rather than the actual object page chain.

devid smallint Identifies the disk device. The value is derived from sysdevices

opid smallint Identifies the dbcc operation that was performed.

faultid int Provides a unique sequence number assigned to each fault recorded for the
operation.

type_code int Identifies the type of fault. Valid values are 100000–100032. They are described
in Table 13-1 on page 1352.

status int Classifies the fault. Valid values are:

• 0 – Soft fault, possibly transient

• 1– Hard fault

• 2 – Soft fault that proved to be transient

• 3 – Soft fault upgraded to a hard fault

• 5 – Repaired hard fault

• 7 – Repaired upgraded hard fault

• 9 – Hard fault not rapirable

• 11 – Soft fault upgraded to a hard fault and not repairable

• 16 – Soft fault, object dropped (inaccessible)

• 17 – Hard fault, object dropped (inaccessible)

• 18 – Transient soft fault, object dropped (inaccessible)

• 19 – Soft fault upgraded to a hard fault and object dropped (inaccessible)

For more information, see the System Administration Guide.

dbcc_operation_log

1350

dbcc_operation_log
Description The dbcc_operation_log table records the use of the dbcc checkstorage

operations.

Columns The columns for dbcc_operaiton_log are:

Summary results are recorded in the dbcc_operation_results table.

Primary key Combination of dbid, opid, and optype

Column Name Datatype Description

dbid smallint Identifies the target database

opid smallint Identifies the sequence number of the dbcc checkstorage operation. opid is an
automatically incrementing number, unique for each dbid and finish pair.

optype smallint The following value is valid for optype:

• 2 = checkstorage

suid int Identifies the user executing the command

start datetime Identifies when the operation started

finish datetime Identifies when the operation ended

CHAPTER 13 dbccdb Tables

1351

dbcc_operation_results
Description The dbcc_operation_results table provides additional descriptive

information for an operation recorded in the dbcc_operation_log table.

Columns The columns for dbcc_operation_results are:

Each “value” column (intvalue, realvalue, binaryvalue, stringvalue, and
datevalue) may contain a null value. At least one is not null. If more than
one of these columns contains a value other than null, the columns provide
different representations of the same value.

Results of the dbcc checkstorage operations include the number of:

• Hard faults found

• Soft faults found

• Operations stopped due to a hard error

Primary key Combination of dbid, opid, optype, and type_code

Column Name Datatype Description

dbid smallint Identifies the target database

opid smallint Identifies the dbcc operation ID

optype smallint Identifies the dbcc operation type

type_code int Defines the dbcc operation type. Valid values are 1000–1007. They are
described in Table 13-1 on page 1352.

intvalue int Specifies the integer value

realvalue real Specifies the real value

binaryvalue varbinary(255) Specifies the binary value

stringvalue varchar(255) Specifies the string value

datevalue datetime Specifies the date value

dbcc_types

1352

dbcc_types
Description The dbcc_types table provides the definitions of the data types used by

dbcc checkstorage. This table is not actually used by the dbcc stored
procedures. It is provided to facilitate the use of the other tables in dbccdb,
and to document the semantics of the data types. Type codes for operation
configuration, analysis data reported, fault classification, and fault report
parameters are included. If you create your own stored procedures for
generating reports, the values listed in the type_name column can be used
as report headings.

Columns The columns for dbcc_types are as follows.

Note To allow for future additions to dbcc_types, some type_code
numbers are not used at this time:

Table 13-1: dbcc Types

type_code type_name Description

1 max worker processes Optional – Specifies the maximum number of worker processes that can
be employed. This is also the maximum level of concurrent processing
used. Minimum value is 1.

2 dbcc named cache Specifies the size (in kilobytes) of the cache used by dbcc checkstorage
and the name of that cache.

3 scan workspace Specifies the ID and name of the workspace to be used by the database
scan.

4 text workspace Specifies the ID and name of the workspace to be used for text columns.

5 operation sequence
number

Specifies the number that identifies the dbcc operation that was started
most recently.

6 database name Specifies the name of the database in sysdatabases.

7 OAM count threshold Specifies the percentage by which the OAM counts must vary before they
can be considered to be an error.

8 IO error abort Specifies the number of I/O errors allowed on a disk before dbcc stops
checking the pages on that disk.

9 linkage error abort Specifies the number of linkage errors allowed before dbcc stops
checking the page chains of an object. Some kinds of page chain
corruptions might require a check to be stopped with fewer linkage error
than other kinds of page chain corruptions.

1000 hard fault count Specifies the number of persistent inconsistencies (hard faults) found
during the consistency check.

1001 soft fault count Specifies the number of suspect conditions (soft faults) found during the
consistency check.

CHAPTER 13 dbccdb Tables

1353

1002 checks aborted count Specifies the number of linkage checks that were stopped during the
consistency check.

1007 text column count Specifies the number of non-null text/image column values found during
the consistency check.

5000 bytes data Specifies (in bytes) the amount of user data stored in the partition being
checked.

5001 bytes used Specifies (in bytes) the amount of storage used to record the data in the
partition being checked. The difference between bytes used and bytes
data shows the amount of overhead needed to store or index the data.

5002 pages used Specifies the number of pages linked to the object being checked that are
actually used to hold the object.

5003 pages reserved Specifies the number of pages that are reserved for the object being
checked, but that are not allocated for use by that object. The difference
between (8 * extents used) and (pages used + pages reserved) shows the
total uncommitted deallocations and pages incorrectly allocated.

5004 pages overhead Specifies the number of pages used for the overhead functions such as
OAM pages or index statistics.

5005 extents used Specifies the number of extents allocated to the object in the partition
being checked. For object 99 (allocation pages), this value is the number
of extents that are not allocated to a valid object. Object 99 contains the
storage that is not allocated to other objects.

5006 count Specifies the number of component items (rows or keys) found on any
page in the part of the object being checked.

5007 max count Specifies the maximum number of component items found on any page
in the part of the object being checked.

5008 max size Specifies the maximum size of any component item found on any page
in the part of the object being checked.

5009 max level Specifies the maximum number of levels in an index. This datatype is not
applicable to tables.

5010 pages misallocated Specifies the number of pages that are allocated to the object, but are not
initialized correctly. It is a fault counter.

5011 io errors Specifies the number of I/O errors encountered. This datatype is a fault
counter.

5012 page format errors Specifies the number of page format errors reported. This datatype is a
fault counter.

5013 pages not allocated Specifies the number of pages linked to the object through its chain, but
not allocated. This datatype is a fault counter.

5014 pages not referenced Specifies the number of pages allocated to the object, but not reached
through its chains. This datatype is a fault counter.

5015 overflow pages Specifies the number of overflow pages encountered. This datatype is
only applicable to clustered indexes.

type_code type_name Description

dbcc_types

1354

5016 page gaps Specifies the number of pages not linked to the next page in ascending
sequence. This number indicates the amount of table fragmentation.

5017 page extent crosses Specifies the number of pages that are linked to pages outside of their
own extent. As the number of page extent crosses increases relative to
pages used or extents used, the effectiveness of large I/O buffers
decreases.

5018 page extent gaps Specifies the number of page extent crosses where the subsequent extent
is not the next extent in ascending sequence. Maximal I/O performance
on a full scan is achieved when the number of page extent gaps is
minimized. A seek or full disk rotation is likely for each gap.

5019 ws buffer crosses Specifies the number of pages that are linked outside of their workspace
buffer cache during the dbcc checkstorage operation. This information
can be used to size the cache, which provides high performance without
wasting resources.

5020 deleted rows Deleted rows, the number of deleted rows in the object

5021 forwarded rows Forwarded rows, number of forwarded rows in the object

5022 empty pages The number of pages allocated but not containing data

5023 pages with garbage Pages with garbage, number of pages that could benefit from garbage
collection

5024 non-contiguous free
space.

Non-contiguous free space, number of bytes of non-contiguous free
space

10000 page id Specifies the location in the database of the page that was being checked
when the fault was detected. All localized faults include this parameter.

10001 page header Specifies the hexadecimal representation of the header of the page that
was being checked when the fault was detected. This information is
useful for evaluating soft faults and for determining if the page has been
updated since it was checked. The server truncates trailing zeros.

10002 text column id Specifies an 8-byte hexadecimal value that gives the page, row, and
column of the reference to a text chain that had a fault. The server
truncates trailing zeros.

10003 object id Specifies a 9-byte hexadecimal value that provides the object id (table),
the partition id (partition of the table) if applicable, and the index id (index)
of the page or allocation being checked.

For example, if a page is expected to belong to table T1 because it is
reached from T1’s chain, but is actually allocated to table T2, the object
id for T1 is recorded, and the object id expected for T2 is recorded. The
server truncates trailing zeros.

type_code type_name Description

CHAPTER 13 dbccdb Tables

1355

10007 page id expected Specifies the page ID that is expected for the linked page when there is a
discrepancy between the page ID that is expected and the page ID that is
actually encountered.

For example, if you follow the chain from P1 to P2 when going forward,
then, when going backward, P1 is expected to come after P2. The value
of page id expected is P1, and the value of page id is P2. When the actual
value of P3 is encountered, it is recorded as page id actual.

10008 page id actual When there is a discrepancy between the page ID that is encountered and
the expected page ID, this value specifies the actual page ID that is
encountered. (See also, type_code 10007.)

For example, if you follow the chain from P1 to P2 when going forward,
then, when going backward, P1 is expected to come after P2. The value
of page id expected is P1, and the value of page id is P2. When the actual
value of P3 is encountered, it is recorded as page id actual.

10009 object id expected Specifies a 9-byte hexadecimal value that provides the expected object id
(table), the partition id (partition of the table) if applicable, and the index
id (index) of the page or allocation being checked.

For example, if a page is expected to belong to table T1 because it is
reached from T1’s chain, but is actually allocated to table T2, the object
id for T1 is recorded, and the object id expected for T2 is recorded. The
server truncates trailing zeros.

10010 data-only locked data
page header

Indicates the 44 byte page header for the page where the fault is located

10011 data-only locked b-tree
leaf page header

Indicates the 44 byte page header for the page where the fault is located

10012 data-only locked b-tree
header

Indicates the 44 byte page header for the page where the fault is located

100000 IO error Indicates that part of the identified page could not be fetched from the
device. This is usually caused by a failure of the operating system or the
hardware.

100001 page id error Indicates that the identifying ID (page number) recorded on the page is
not valid. This might be the result of a page being written to or read from
the wrong disk location, corruption of a page either before or as it is being
written, or allocation of a page without subsequent initialization of that
page.

100002 page free offset error Indicates that the end of data on a page is not valid. This event affects
insertions and updates on this page. It might affect some access to the
data on this page.

type_code type_name Description

dbcc_types

1356

100003 page object id error Indicates that the page appears to be allocated to some other table than
the one expected. If this is a persistent fault, it might be the consequence
of either:

• An incorrect page allocation, which might only result in the effective
loss of this page to subsequent allocation, or

• A corrupted page chain, which might prevent access to the data in the
corrupted chain

100004 timestamp error Indicates that the page has a timestamp that is later than the database
timestamp. This error can result in failure to recover when changes are
made to this page.

100005 wrong dbid error Indicates that the database ID dbid is stored on the database allocation
pages. When this ID is incorrect, the allocation page is corrupt and all the
indicated allocations are suspect.

100006 wrong object error Indicates that the page allocation is inconsistent. The page appears to
belong to one table or index, but it is recorded as being allocated to some
other table or index in the allocation page. This error differs from page
object id error in that the allocation is inconsistent, but the consequences
are similar.

100007 extent id error Indicates that an allocation was found for a table or index that is unknown
to dbcc checkstorage. Typically, this results in the inability to use the
allocated storage.

100008 fixed format error Indicates that the page incorrectly indicates that it contains only rows of
a single fixed length. dbcc checkstorage reports this error. dbcc
checktable does not report it, but does repair it.

100009 row format error Indicates that at least one row on the page is incorrectly formatted. This
error might cause loss of access to some or all the data on this page.

100010 row offset error Indicates that at least one row on the page is not located at the expected
page offset. This error might cause loss of access to some or all of the data
on this page.

100011 text pointer error Indicates that the location of the table row that points to the corrupted text
or image data. This information might be useful for correcting the
problem.

100012 wrong type error Indicates that the page has the wrong format. For example, a data page
was found in an index or a text/image column.

100013 non-OAM error This error is a special case of wrong type error. It is not reported as a
separate condition in the current release.

100014 reused page error Indicates that a page is reached by more than one chain and that the
chains belong to different objects. This error indicates illegal sharing of
a page through corrupt page chain linkages. Access to data in either or
both tables might be affected.

type_code type_name Description

CHAPTER 13 dbccdb Tables

1357

100015 page loop error Indicates that a page is reached a second time while following the page
chain for an object, which indicates a loop in the page chain. A loop can
result in a session hanging indefinitely while accessing data in that object.

100016 OAM ring error Indicates that a page is allocated but not reached by the page chains for
the object.Typically, this results in the inability to use the allocated
storage.

100017 OAM ring error Indicates that the OAM page ring linkages are corrupted. This might not
affect access to the data for this object, but it might affect insertions,
deletions, and updates to that data.

100018 missing OAM error Indicates that dbcc checkstorage found an allocation for the object that
was not recorded in the OAM. This error indicates a corruption that might
affect future allocations of storage, but probably does not affect access to
the presently stored data.

100019 extra OAM error Indicates that an allocation for this object was recorded in the OAM, but
it was not verified in the allocation page. This error indicates a corruption
that might affect future allocations of storage, but probably does not
affect access to the presently stored data.

100020 check aborted error Indicates that dbcc checkstorage stopped checking the table or index. To
prevent multiple fault reports, the check operation on a single chain might
be stopped without reporting this error. When an object contains several
page chains, failure of the check operation for one chain does not prevent
the continuation of the check operation on the other chains unless a fault
threshold is exceeded.

100021 chain end error Indicates that the end of the chain is corrupted. As a soft fault, it might
indicate only that the chain was extended or truncated by more than a few
pages during the dbcc checkstorage operation.

100022 chain start error Indicates that the start of a chain is corrupted or is not at the expected
location. If this is a persistent fault, access to data stored in the object is
probably affected.

100023 used count error Indicates an inconsistency between the count of the pages used that is
recorded in the OAM page and the count of the pages used that is
determined by examining the allocation pages.

100024 unused count error Indicates an inconsistency between the count of the pages reserved but
unused that is recorded in the OAM page and the count of the pages
reserved but unused that is determined by examining the allocation
pages.

100025 row count error Indicates an inconsistency between the row count recorded in the OAM
page and the row count determined by dbcc checkstorage.

100026 serialloc error Indicates a violation of the serial allocation rules applied to log
allocations.

type_code type_name Description

dbcc_types

1358

100027 text root error Indicates a violation of the format of the root page of a text or image
index. This check is similar to the root page checks performed by dbcc
textalloc.

100028 page misplaced Indicates that pages of this object were not found where they were
expected to be from examination of the system tables. This usually
indicates that sp_placeobject was used sometime in the past. In the
dbcc_counters table, all misplaced pages are counted together, rather
than being reported by device and partition.

100029 page header error Indicates an internal inconsistency in the page’s header other than the
kind described by the other type codes. The severity of this error depends
on the type of page and the inconsistency found.

100030 page format error Indicates an internal inconsistency in the page’s body other than the kind
described by the other type codes. The severity of this error depends on
the type of page and the inconsistency found.

100031 page not allocated Indicates that dbcc checkstorage reached an unallocated page by
following a page chain. This condition might affect access to data stored
in this object.

100032 page linkage error Indicates that dbcc checkstorage detected a fault with either the next or
previous linkage of an interior page of a chain. If this is a persistent fault,
access to data stored in the object is probably affected.

100033 non-contiguous free-
space error

Indicates an invalid or inconsistent value for the non-contiguous free
space on the page

100034 insert free space error Indicates an invalid or inconsistent value for the contiguous free space on
the page

100035 spacebits mismatch Indicates an inconsistency in the page fullness indicator

100036 deleted row count error Indicates an invalid or inconsistent value for the deleted row count on the
page

100037 Forwarded rows error Indicates an inconsistency between the forwarded rows indicator and the
number of forwarded rows on the page

100038 Page header type error Indicates that a Page header format indicator set incorrectly

type_code type_name Description

1359

Symbols
& (ampersand)

“and” bitwise operator 222
* (asterisk)

for overlength numbers 183
multiplication operator 221
select and 422

@ (at sign)
local variable name 436–437
procedure parameters and 512, 727
rule arguments and 371

\ (backslash)
character string continuation with 229, 718

::= (BNF notation)
in SQL statements xxv

^ (caret)
“exclusive or” bitwise operator 222
wildcard character 237, 239

: (colon)
preceding milliseconds 62, 107

, (comma)
in default print format for money values 16
not allowed in money values 17
in SQL statements xxvi
in user-defined datatypes 782

{} (curly braces)
in SQL statements xxvi

$ (dollar sign)
in identifiers 230
in money datatypes 17

.. (dots) in database object names 233, 759
= (equals sign)

for assigning variables 632
comparison operator 224
for renaming column headings 632

! (exclamation point)
error message placeholder 593

> (greater than)
comparison operator 224

>= (greater than or equal to) comparison operator 224
< (less than)

comparison operator 224
<= (less than or equal to) comparison operator 224
- (minus sign)

arithmetic operator 221
for negative monetary values 17
in integer data 11

!= (not equal to) comparison operator 224
<> (not equal to) comparison operator 224
!> (not greater than) comparison operator 224
!< (not less than) comparison operator 224
() (parentheses)

in expressions 228
in SQL statements xxv
in user-defined datatypes 782

% (percent sign)
arithmetic operator (modulo) 221
error message literal 595
error message placeholder 593
wildcard character 237

. (period)
preceding milliseconds 62, 107
separator for qualifier names 232

| (pipe)
“or” bitwise operator 222

%nn! (placeholder format) 593
+ (plus)

arithmetic operator 221
in integer data 11
null values and 224
string concatenation operator 223

(pound sign), temporary table identifier prefix 378
£ (pound sterling sign)

in identifiers 230
in money datatypes 17

?? (question marks)
for partial characters 606

“ ” (quotation marks)
comparison operators and 224

Index

Index

1360

enclosing constant values 65
enclosing datetime values 19
enclosing empty strings 227, 229
enclosing parameter values 727, 1176
enclosing reserved words 831
in expressions 229
literal specification of 229, 717
single, and quoted_identifier 837

/ (slash)
arithmetic operator (division) 221

[] (square brackets)
character set wildcard 237, 238
in SQL statements xxvi

[^] (square brackets and caret) character set wildcard 237
~ (tilde)

“not” bitwise operator 222
_ (underscore)

character string wildcard 237, 238
object identifier prefix 210, 230
in temporary table names 230

¥ (yen sign)
in identifiers 230
in money datatypes 17

Numerics
0 return status 725, 1176

stored procedures 359
“0x” 27, 28, 59

in defaults 323
in rules 371
writetext command and image data 721

2 isolation level (repeatable reads) 641
21st century numbers 19
7-bit ASCII characters, checking with sp_checknames

825
7-bit terminal, sp_helpsort output 1022
8-bit terminal, sp_helpsort output 1022

A
abbreviations

chars for characters, patindex 145, 147
chars for characters, readtext 605

date parts 61, 107
exec for execute 511
out for output 353, 512
tran for transaction, rollback command 625

abort option, lct_admin function 129
abort tran on log full database option 872
abs mathematical function 69
abstract plan groups

adding 762
dropping 920
exporting 947
importing 1030
renaming 1108

abstract plans
creating with create plan 349
information about 1009
viewing with sp_help_qplan 1009

accent sensitivity
compute and 312
dictionary sort order and 589
group by and 546

accent sensitivity, wildcard characters and 237
access

ANSI restrictions on tapes 509
access, object. See permissions; users
accounting, chargeback

sp_clearstats 846
sp_reportstats 1109–1110

accounts. See logins
ACF. See Application Context Facility
acos mathematical function 70
actions

modifying for resource limits 1055
resource limit information on 1012
specifying for resource limits 767

activation keyword, alter role 263
add keyword

alter role 263
alter table 268, 274

adding
abstract plan groups 762
aliases 739–761
columns to a table 267
constraints for tables 267
date strings 751–753
dump devices 786–787

Index

1361

engine groups 744
engines to a group 744
execution classes 745
foreign keys 962–963
group to a database 750
interval to a date 102
limits 766
logins to Server 754–756
messages to sysusermessages 595, 757–758
mirror device 458–460
mutually exclusive user-defined roles 263
named time ranges 779
objects to tempdb 394
passwords to roles 263
remote logins 763–765
resource limits 766
roles 369
rows to a table or view 550–558
segments 771–772
servers 773–774
space to a database 257–262
table constraints 267
thresholds 775–778
time ranges 779
timestamp column 200
user-defined datatypes 40, 782–785
user-defined roles 369
users to a database 788–789
users to a group 788–789, 823–824

addition operator (+) 221
adhoc auditing option 791
aggregate functions 47–53

See also row aggregates; individual function names
cursors and 51
difference from row aggregates 51
group by clause and 48, 49, 534, 537
having clause and 47, 535, 537
not used on virtual tables 1254
scalar aggregates 48, 537
vector aggregates 48
vector aggregates, group by and 537

aggregate-free expression, grouping by 535
aliases

table correlation names 635
aliases, column

compute clauses allowing 309

prohibited after group by 535, 536
aliases, language

assigning 1119
defining 751–753
syslanguages table 1298

aliases, server 773
aliases, user

See also logins; users
assigning 739
assigning different names compared to 788
database ownership transfer and 822
dropping 904, 933
help on 1027
sysalternates table 739, 904, 1255

all auditing option 791
all keyword

grant 522, 530
group by 534
negated by having clause 535
revoke 616
select 631, 645
subqueries including 225
union 686
where 716

allocation map. See object allocation Map (OAM)
allocation units

sysusages table 1337
allow nested triggers configuration parameter 415
allow nulls by default database option 873
allow updates to system tables configuration

parameter 1253
allow_dup_row option, create index 339
alter auditing option 791
alter database command 257–262

default keyword 257
dumping databases and 260
for load keyword 258
for proxy_update keyword 258
log on keyword 258
offline databases and 260
on keyword 257
sp_dbremap and 880
with override keyword 258

alter role command 263–266
activation keyword 263
add keyword 263

Index

1362

drop keyword 263
exclusive keyword 263
membership keyword 263
passwd keyword 263

alter table command 267–291
add keyword 268, 274
adding timestamp column 200
asc option 271
check option 273
clustered constraint 270
constraint keyword 270
default keyword 268
desc option 271
drop keyword 274
exp_row_size option 274
fillfactor option 271
foreign key constraint 273
identity keyword 269
lock allpages option 274
lock datapages option 274
lock datarows option 274
locking scheme 267
max_rows_per_page option 272
nonclustered constraint 270
on keyword 272
partition clause 274
primary key constraint 270
references constraint 273
replace keyword 274
reservepagegap option 272
sp_dboption and changing lock scheme 289
unique constraint 270
unpartition clause 274
user keyword 269
when is data copy required 285

alternate identity. See aliases, user
alternate languages. See languages, alternate
ampersand (&)

“and” bitwise operator 222
and (&)

bitwise operator 222
and keyword

in expressions 227
range-end 225, 715
in search conditions 715

angles, mathematical functions for 70

ANSI tape label
dumpvolume option to dump database 486
dumpvolume option to dump transaction 500
listonly option to load database 563
listonly option to load transaction 572

ansinull option, set 655
any keyword

in expressions 225
where clause 716

ANYENGINE engine group 744
application

attributes 170
Application Context Facility (ACF) 170
application context name 118
application context, getting 118
application context, listing 133
application context, setting 170
application contexts

removing 161
applications

applying resource limits to 766
dropping resource limits from 923
modifying resource limits for 1054
resource limit information on 1011

approximate numeric datatypes 14
arguments

See also logical expressions
numbered placeholders for, in print command 593,

594
in user-defined error messages 599
where clause, number allowed 718

arithabort option, set
arith_overflow and 9, 58, 657
mathematical functions and arith_overflow 63
mathematical functions and numeric_truncation

59, 64
arithignore option, set

arith_overflow and 58, 657
mathematical functions and arith_overflow 64

arithmetic
errors 63
expressions 220
operations, approximate numeric datatypes and 14
operations, exact numeric datatypes and 11
operations, money datatypes and 16
operators, in expressions 221

Index

1363

as keyword for renaming column headings 632
asc index option

alter table command 271, 279
create index command 336
create table command 381

ascending index order, specifying 267
ascending indexes 271
ascending order, asc keyword 586, 640
ASCII characters 71

checking for with sp_checknames 825
ascii string function 71
asin mathematical function 72
asterisk (*)

multiplication operator 221
overlength numbers 183
select and 422

asynchronous prefetch
configuring limits 1089

at option
create existing table 326
create proxy_table 366
create table 386
dump database 485
dump transaction 499
load database 562
load transaction 571

at sign (@)
local variable name 436–437
procedure parameters and 512, 727
rule arguments and 371

atan mathematical function 73
@@boottime global variable 213
@@char_convert global variable 213, 679
@@cis_rpc_handling global variable 213
@@cis_version global variable 213
@@client_csexpansion global variable 213
@@client_csid global variable 213
@@client_csname global variable 214
@@cmpstate global variable 214
@@connections global variable 214

sp_monitor and 1067
@@cpu_busy global variable 214

sp_monitor and 1067
@@curloid global variable 214
@@dbts global variable 214
@@error global variable 214

select into and 647
stored procedures and 356
user-defined error messages and 595, 602

@@errorlog global variable 214
@@failedoverconn global variable 214
@@guestuserid global variable 214
@@hacmpservername global variable 214
@@haconnection global variable 214
@@heapmemsize global variable 214
@@identity global variable 214, 555
@@idle global variable 214

sp_monitor and 1067
@@invaliduserid global variable 214
@@io_busy global variable 214

sp_monitor and 1067
@@isolation global variable 214, 679
@@kernel_addr global variable 214
@@kernel_size global variable 214
@@langid global variable 214, 598
@@language global variable 214
@@max_connections global variable 215
@@maxcharlen global variable 214
@@maxgroupid global variable 215
@@maxpagesize global variable 215
@@maxspid global variable 215
@@maxsuid global variable 215
@@maxuserid global variable 215
@@mempool_addr global variable 215
@@min_poolsize global variable 215
@@mingroupid global variable 215
@@minspid global variable 215
@@minsuid global variable 215
@@minuserid global variable 215
@@ncharsize global variable 215

sp_addtype and 784
@@nestlevel global variable 215, 515

nested procedures and 359
nested triggers and 415

@@nodeid global variable 215
@@options global variable 215, 679
@@pack_received global variable 215

sp_monitor and 1067
@@pack_sent global variable 215

sp_monitor and 1067
@@packet_errors global variable 215

sp_monitor and 1067

Index

1364

@@pagesize global variable 215
@@parallel_degree global variable 215, 679

set parallel_degree and 662
@@probesuid global variable 215
@@procid global variable 215
@@rowcount global variable 215, 679

cursors and 519
set nocount and 679
triggers and 414

@@scan_parallel_degree global variable 215, 679
set scan_parallel_degree and 665

@@servername global variable 216
@@shmem_flags global variable 216
@@spid global variable 216
@@sqlstatus global variable 216

fetch and 519
@@stringsize global variable 216
@@textcolid global variable 39, 216
@@textdbid global variable 39, 216
@@textobjid global variable 39, 216
@@textptr global variable 38, 216
@@textptr_parameters global variable 216
@@textsize global variable 39, 216, 679

readtext and 606
set textsize and 667

@@textts global variable 39, 216
@@thresh_hysteresis global variable 216

threshold placement and 776
@@timeticks global variable 216
@@total_errors global variable 216

sp_monitor and 1067
@@total_read global variable 216

sp_monitor and 1067
@@total_write global variable 216

sp_monitor and 1067
@@tranchained global variable 216, 679
@@trancount global variable 217
@@transactional_rpc global variable 217
@@transtate global variable 217
@@unicharsize global variable 217
@@version global variable 217, 593
@@version_as_integer global variable 217
atn2 mathematical function 74
attributes

execution classes 745
remote tables 328

server (sp_server_info) 1188
sp_addobjectdef and 761
value 118

attributes application,
lists all in all contexts 133

attributes, application 170
audit trail

adding comments 740
auditing

adding an audit table 742
options, displaying 894
sysauditoptions table 1258
sysaudits_01 – sysaudits_08 tables 1259

auditing options
adhoc 791
all 791
alter 791
bcp 791
bind 791
cmdtext 791
create 791
dbaccess 791
dbcc 791
delete 791
disk 791
drop 791
dump 791
errors 791
exec_procedure 791
exec_trigger 791
func_dbaccess 791
func_obj_access 791
grant 791
insert 791
load 791
login 791
logout 791
reference 791
revoke 791
rpc 792
security 792
select 792
setting 791
setuser 792
table_access 792
truncate 792

Index

1365

unbind 792
update 792
view_access 792

authority. See permissions
authorizations. See permissions
auto identity database option 873
automatic operations

checkpoints 298
datatype conversion 393
triggers 408
update of column, timestamp 17

avg aggregate function 75

B
backslash (\)

for character string continuation 229, 718
Backup Server

See also Utility Guide
amount dumped, specifiying 934
information about 1021
multiple 774
volume handling messages 1167–1170

backups
See also dump, database; dump, transaction log;

load, database; load, transaction log
disk mirroring and 459, 469
disk remirroring and 466
incremental. See dump, transaction log
master database 260

Backus Naur Form (BNF) notation xxv
base 10 logarithm function 136
base date 19
base tables. See tables
basic display level for configuration parameters 898
batch processing

create default and 323
execute 511, 515
return status 613–615
set options for 675

bcp (bulk copy utility)
changing locking scheme during 290
select into/bulkcopy/pllsort and 876

bcp auditing option 791
begin transaction command 293

commit and 304
rollback to 626

begin...end commands 292
if...else and 547
triggers and 409

between keyword 225
check constraint using 402
where 715

binary
datatypes 27–29
datatypes, “0x” prefix 27
datatypes, trailing zeros in 28
expressions 219
expressions, concatenating 223
representation of data for bitwise operations 222
sort 88, 179

binary datatype 27–29
binary datatypes

“0x” prefix 323, 371
binary operation, union 687
binary sort order of character sets 1023

order by and 589
bind auditing option 791
binding

data caches 798–801
defaults 323, 802–803
objects to data caches 798–801
rules 373, 808–809
unbinding and 473, 1157–1158, 1160
user messages to constraints 807

bit datatype 30
bitwise operators 222–223
blanks

See also spaces, character
catalog stored procedure parameter values 1176
character datatypes and 24–26, 553, 697
comparisons 224
empty string evaluated as 229
like and 238
removing leading, with ltrim function 138
removing trailing, with rtrim function 169
in system procedure parameter values 727

blocking process 560, 1313
sp_lock report on 951, 1037
sp_who report on 1173

blocksize option

Index

1366

dump database 485
dump transaction 499
load database 562
load transaction 571

BNF notation in SQL statements xxv
boolean (logical) expressions 219

select statements in 548
@@boottime global variable 213
brackets. See square brackets []
branching 521
break command 294, 719–720
browse mode

select 641
timestamp datatype and 17, 199

B-trees, index
fillfactor and 337

built-in function, ACF 118, 133
built-in functions 43–211

See also individual function names
aggregate 47
conversion 53
date 61
image 67
mathematical 62
security 64
string 64
system 66
text 67
type conversion 89–92

bulk copying. See bcp (bulk copy utility)
by row aggregate subgroup 51, 305
bytes

See also size
per row 277

bytes option, readtext 605

C
caches, data

binding objects to 798
configuring 810–818
dropping 817
information about 813, 978
logonly type 817
memory pools 1085–1089

overhead 817, 978
recovery and 813
status 815
unbinding all objects from 1159
unbinding objects from 1157

calculating dates 104
caldayofweek date part 107
calweekofyear date part 107
calyearofweek date part 107
canceling

See also rollback command
command at rowcount 665
duplicate updates or inserts 339
queries with adjusted plans 663
transactions with arithmetic errors 657
triggers 627

capacity option
dump database 486
dump transaction 500

cascade option, revoke 618, 621
cascading changes (triggers) 411
case expressions 295–297, 301–302, 581–582

null values and 296, 301, 581
case sensitivity

and identifiers 230
comparison expressions and 224, 237
compute and 311
group by and 545
in SQL xxvii
sort order and 589

catalog stored procedures 1175–1200
list of 1176
return status 1176
syntax 1176–1177

cdw. See caldayofweek date part
ceiling mathematical function 77
chained option, set 658
chained transaction mode

commit and 304
delete and 448
fetch and 518
insert and 554
open and 585
sp_procxmode and 1096
update and 695

chains of pages

Index

1367

partitions 274, 283
text or image data 32
unpartitioning 274

changes, canceling. See rollback command
changing

See also updating
constraints for tables 267
database options 870–877
database owners 822
database size 257–262
dbccdb workspace size 1224
language alias 1119
locking scheme 267, 274
memory pools within data caches 1085
names of abstract plan groups 1108
object names 1103–1104
passwords for login accounts 1079–1080
passwords for user-defined roles 266
resource limits 1054
table constraints 267
tables 267–291
thresholds 1062–1065
time ranges 1057
user’s group 823–824
user-defined roles 263
view definitions 422

changing system tables, dangers of 1253
char datatype 23–24

in expressions 228
row sort order and 590

char string function 79
@@char_convert global variable 213, 679
char_convert option, set 658
char_length string function 82
character data, avoiding “NULL” in 227
character datatypes 23–26
character expressions

blanks or spaces in 24–26
defined 219
syntax 220

character sets
changing names of 834, 837
checking with sp_checknames 825
checking with sp_checkreswords 830
conversion between client and server 658
conversion errors 235

fix_text upgrade after change in 429
iso_1 235
multibyte 235, 1023
multibyte, changing to 429
object identifiers and 235
set char_convert 658
sp_helpsort display of 1022

character sets in syscharsets system table 1275
character strings

continuation with backslash (\) 229
empty 229, 552
specifying quotes within 229
truncation 553, 667
wildcards in 235

characters
See also spaces, character
“0x” 27, 28, 59, 371
deleting, using stuff function 186
not converted with char_convert 658
number of 82
wildcard 235–241

chargeback accounting
sp_clearstats procedure 846–847
sp_reportstats procedure 1109–1110

charindex string function 81
chars or characters option, readtext 605
check constraints

binding user messages to 807
column definition conflict with 402
displaying source text of 1024
insert and 552
renaming 1103–1104
sysconstraints table 1281
system tables entries for 1309–1310, 1312

check option
alter table 273
create table 384

checkalloc option, dbcc 427
checkcatalog option, dbcc 427
checkdb option, dbcc 427
checker, consistency. See dbcc (Database Consistency

Checker)
checking passwords. See passwords; sp_remoteoption

system procedure
checkpoint command 298–299

setting database options and 872

Index

1368

checkpoint process 298–299
See also recovery; savepoints

checkstorage option, dbcc 427
checktable option, dbcc 428
checkverify option, dbcc 428
@@cis_rpc_handling global variable 213
cis_rpc_handling option, set command 659
@@cis_version global variable 213
clearing accounting statistics 846–847
client

character set conversion 658
client, host computer name and 123
@@client_csexpansion global variable 213
@@client_csid global variable 213
@@client_csname global variable 214
clientapplname option, set command 659
clienthostname option, set command 659
clientname option, set command 659
clients

dropping during failback 1325
close command 300
close on endtran option, set 659
closing cursors 300
clustered constraint

alter table 270
create table 381

clustered indexes
See also indexes
creating 335
fillfactor and 337
indid not equal to one 997
migration of tables to 342, 394
segments and 340, 342

cmd returned by sp_who 1173
cmdtext auditing option 791
@@cmpstate global variable 214
cntrltype option

disk init 454
disk reinit 463

coalesce keyword, case 301
codes

datatype 1184
ODBC datatype 1178

codes, soundex 180
col_length system function 84
col_name system function 85

collating sequence. See sort order
collision of database creation requests 319
collisions

hash key 1008
colon (:), preceding milliseconds 107
column data. See datatypes
column identifiers. See identifiers
column name

aliasing 600, 632
as qualifier 232
changing 833, 1103–1104
checking with sp_checknames 825
grouping by 535, 536
in parentheses 51
returning 85
union result set 688
views and 418

column pairs. See joins; keys
columns

adding data with insert 551
adding to table 267
check constraints conflict with definitions of 402
common key 853–854
creating indexes on 335–348
datatypes 1181
defaults for 323–325, 552, 802–803
dependencies, finding 833
foreign keys 962–963, 1185
group by and 535
identifying 232
joins and 1000
length definition 84
length of 84
list and insert 550
maximum number per table 277
null values and check constraints 402
null values and default 324, 373
number allowed in create index command 341
numeric, and row aggregates 51
order by 639
per table 277
permissions on 523, 1179
permissions revoked 617
primary key 1090
reserved 1253
returned by sp_who 1172

Index

1369

rules 552, 808–809
rules conflict with definitions of 373
sizes of (list) 2–4
unbinding defaults from 1160–1161
unbinding rules with sp_unbindrule 1165–1166
union of 688
variable-length, and sort order 589
views and 418

columns per table 277
comma (,)

default print format for money values 16
not allowed in money values 17
in SQL statements xxvi
in user-defined datatypes 782

command execution delay. See waitfor command
command permissions 527–528

See also object permissions; permissions
grant all 530
grant assignment of 522–533
levels 526
revoking 617

commands
create function 332
display syntax of 1143–1144
order-sensitive 528, 620
rowcount range for 665
statistics io for 666
statistics time information on 666
Transact-SQL, summary table 253–256

comments
adding to audit trail 740

commit command 303–304
begin transaction and 293, 304
rollback and 304, 626

commit work command. See commit command
common keys

See also foreign keys; joins; primary keys
defining 853–854
dropping 913
join candidates and 1000
reporting 1002–1003
syskeys table 1297

compact option, reorg command 611
companion servers

configuring 855–857
comparing plan groups 849

comparing plans 849, 851
comparing values

datatype conversion for 718
difference string function 113
in expressions 224
for sort order 589–590
timestamp 199
in where clause 718

comparison operators
See also relational expressions
in expressions 224
symbols for 224
where clause 713

compatibility, data
create default and 324
of rule to column datatype 372

compiled objects
checking for source text of 839
displaying source text of 1024
hiding source text of 1028

compiling
exec with recompile and 512
joins and table count 667
sp_recompile and 1097
time (statistics time) 666
without execution (noexec) 662

complete_xact option, dbcc 428
Component Integration Services

constraints for remote servers and 270, 273
composite indexes 335, 348
comprehensive display level for configuration

parameters 898
compressed backups

making 485, 498
unloading 561, 570

compute clause 305–312
order by and 588, 640
row aggregates and 50
select 640
without by 309

computing dates 104
concatenation

null values 224
using + operator 223

conceptual (logical) tables 411, 412
concurrency optimization 842

Index

1370

concurrency_opt_threshold option, sp_chgattribute
842

configuration parameters 256, 608
changing 858–862
display levels 898
help information on 979
system tables for 1279, 1283

conflicting roles 265
connect to command 313
@@connections global variable 214
consistency check. See dbcc (Database Consistency

Checker)
constants

and string functions 65
comparing in expressions 228
expression for 219
return parameters in place of 515

constraint keyword
alter table 270
create table 380

constraints
adding table 267
binding user messages to 807
changing table 267
create table 395
cross-database 401, 480
displaying source text of 1024
dropping table 267
error messages 397
indexes created by and max_rows_per_page 272
information about 975, 984
referential integrity 399
renaming 1103–1104
sysconstraints table 1281
sysreferences table 1317
system tables entries for 1278, 1309–1310
unbinding messages with sp_unbindmsg 1164
unique 397

consumer process 340
consumers option, update statistics command 705
contention, lock

monitoring with sp_object_stats 1074–1076
continuation lines, character string 229, 718
continue command 315

while loop 719
control pages for partitioned tables 283

syspartitions and 1311
updating statistics on 703

controller, device
sp_helpdevice and number 991

control-of-flow language
begin...end and 292
create procedure and 353

conventions
See also syntax
identifier name 232
Transact-SQL syntax xxv
used in the Reference Manual xxv

conversion
automatic values 8
between character sets 235
character value to ASCII code 71
columns 393
dates used with like keyword 22, 714
degrees to radians 154
implicit 8, 228
integer value to character value 79, 198
lower to higher datatypes 228
lowercase to uppercase 201, 202, 203, 204
null values and automatic 8, 393
radians to degrees 112
string concatenation 223
styles for dates 90
uppercase to lowercase 137
where clause and datatype 718

convert function 89–92
concatenation and 223
date styles 90

copying
databases with create database 319–321
the model database 319
plan groups 863
plans 863, 864
rows with insert...select 550
tables with select into 647

correlation names
table names 635

corrupt databases
listing 1033
recovery fault isolation mode 1128

corrupt indexes. See reindex option, dbcc
corrupt pages

Index

1371

bringing online 960–961
isolating on recovery 1128–1130, 1131
listing 1035

cos mathematical function 93
cot mathematical function 94
count aggregate function 95
count(*) aggregate function 95
counters, while loop. See while loop
CP 850 Alternative

lower case first 88, 179
no accent 88, 179
no case preference 88, 179

CP 850 Scandinavian
dictionary 88, 179
no case preference 88, 179

CPU usage
monitoring 1067

@@cpu_busy global variable 214
sp_monitor and 1067

create auditing option 791
create database command 316–322

default option 316
disk init and 456
for load keyword 317
for proxy_update keyword 317
log on keyword 316
log on option compared to sp_logdevice 1042
on keyword 316
permission 530
with default_location keyword 317
with override keyword 317

create default command 323–325
batches and 323

create existing table command 326–331
datatype conversions and 329
defining remote procedures 329
mapping to remote tables 326
server class changes 329

create function command 332
create index command 335–348

index options and locking modes 347
insert and 552
sp_extendsegment and 948
space management properties 346

create plan command 349
create procedure command 351–362

See also stored procedures; extended stored
procedures (ESPs)

order of parameters in 512, 514
return status and 359–360
select * in 357

create proxy_table command 366–367
mapping proxy tables to remote tables 366

create role command 368
grant all and 370

create rule command 371–374
create schema command 375–376
create table command 377–407

column order and 589
locking scheme specification 403
mapping proxy tables to remote tables 406
null values and 89, 227, 269, 380
sp_extendsegment and 948
space management properties 404

create trigger command 408–425, 530, 621
create view command 418–425
creating

abstract plan groups 762
databases 316–322
datatypes 782–785
dbccdb workspaces 1226
defaults 323–325
execution classes 745
extended stored procedures 351–362, 746
indexes 335–348
limits 766
named time ranges 779
resource limits 766
rules 371–373
schemas 375–376
tables 377–407, 633
tables, with identity column 403
thresholds 775–778
time ranges 779
triggers 408–417, 530, 621
user aliases 739
user groups 750
user-defined audit records 791
user-defined roles 368
views 418–425

@@curloid global variable 214
curly braces ({}) in SQL statements xxvi

Index

1372

currency symbols 17, 230
current database

changing 709
information from sp_helpdb 989
space used by 1138–1140

current date 120
current locks, sp_lock system procedure 560, 1036
current processes. See processes (server tasks)
current usage statistics 1109–1110
current user

roles of 172
suser_id system function 191
suser_name system function 192
user system function 207
user_id system function 208
user_name system function 209

cursor result set 441
datatypes and 518
returning rows 518

cursor rows option, set 659
cursors

aggregate functions and 51
closing 300
compute clause and 309
datatype compatibility 518
deallocating 435
declaring 438–443
deleting rows 448
fetching 518–520
grant and 529
group by and 537
Halloween problem 442
information about 867
opening 585
order by and 588
read-only 441
scans 441
scope 439
select and 646
union prohibited in updatable 687
updatable 441
updating rows 697

curunreservedpgs system function 97
custom audit records 791
custom datatypes. See user-defined datatypes
cwk. See calweekofyear date part

cyr. See calyearofweek date part
cyrillic characters 235

D
damaged database, removing and repairing 429
data caches

binding objects to 798
configuring 810–818
dropping 817
information about 813, 978
logonly type 817
memory pools 1085–1089
overhead 817, 978
recovery and 813
status 815
unbinding all objects from 1159
unbinding objects from 1157

data dependency. See dependencies, database object
data dictionary. See system tables
data integrity 552

See also referential integrity constraints
dbcc check for 426

data modification
text and image with writetext 721
update 690

data rows
size 1328

data_pgs system function 99
database design

dropping keys 913
logical relationships in 853, 962

database devices
alter database and 257
defaulton or defaultoff status 892–893
dropping 906
dropping segments from 927–928
dsynch setting of 890
listing of 991
new database 316
sp_helpdevice system procedure 991
status 892
sysdevices table 1289
system table entries for 1289
transaction logs on separate 459, 467

Index

1373

database dump. See dump, database; dump devices
database files. See files
database object owners

See also database owners; ownership
identifiers and 233
sp_depends system procedure and 884

database objects
See also individual object names
adding to tempdb 393
binding defaults to 802–803
binding rules to 808
binding to caches 798
dependencies of 884–889, 1288
finding 888, 973
ID number (object_id) 143
identifier names 229
listings of 969
permissions on 527, 1014
permissions when creating procedures 361
permissions when creating triggers 417
permissions when creating views 424
permissions when executing procedures 361
permissions when executing triggers 417
permissions when invoking views 424
referencing, create procedure and 357
remapping 1098
renaming 1103–1104
select_list 600–601, 632
sp_tables list of 1200
space used by 1138–1140
sysobjects table 1309–1310
user-defined datatypes as 40

database options 872–877
See also individual option names
listing 870–877
showing settings 872, 988

database owners
See also database object owners; permissions
adding users 788
changing 822
dbo use only database option 873
information about 1027
name as qualifier 232, 233
objects and identifiers 233
permissions granted by 522
transferring ownership 822

use of setuser 526
database recovery order

sp_dbrecovery_order system procedure 878–879
system databases and 879

databases
See also database objects
adding groups 750
adding users 788
backing up 484–496
binding to data caches 798, 799
changing user’s default 1051
checkalloc option (dbcc) 427
checkdb option (dbcc) 427
checking with sp_checknames 825
checkstorage option (dbcc) 427, 428
creating 316
creating with separate log segment 504
creation permission 321
default size 318
dropping 471
dropping row lock promotion thresholds for 926
dropping segments from 927–928
dropping users from 933
dumping 484–496
getting name of 111
help on 988
ID number, db_id function 110
increasing size of 257
information on storage space used 989, 1138
listing suspect 1033
listing suspect pages in 1035
listing with sp_databases 1183
listing with sp_helpdb 988
loading 561–569
lock promotion thresholds for 1121
number of server 319
offline, altering 260
options 870–877
ownership 822
recovering 561–569
removing and repairing damaged 429
renaming 1105–1107
running out of space in 1148
selecting 709
setting row lock promotion thresholds for 1125
storage information 1138

Index

1374

suspending 596
system tables entries for 1285
thresholds 1148
unbinding from data caches 1157
upgrading database dumps 567, 576
use command 709

datalength system function 101
compared to col_length 84

data-only locked tables
restrictions for adding, dropping, or modifying columns

286
dataserver utility command

See also Utility Programs manual
disk mirror and 460
disk remirror and 467

datatype conversions
binary and numeric data 60
bit information 60
character information 55, 56
column definitions and 393
convert function 91
date and time information 57
domain errors 59, 91
functions for 53–61
hexadecimal-like information 59
hextoint function 121
image 60, 91
implicit 54
inttohex function 126
money information 56
numeric information 56, 57
overflow errors 58
rounding during 56
scale errors 59

datatype precedence. See precedence
datatypes 1–41

See also user-defined datatypes; individual datatype
names

approximate numeric 14
binary 27–29
bit 30
codes 1178, 1184
comparison in union operations 688
compatibility of column and default 324
cursor result set and 518
date and time 18–22

datetime values comparison 224
decimal 12–13
defaults and 802–803
dropping user-defined 41, 932
exact numeric 10–13
hierarchy 6, 784, 1335
integer 11–12
invalid in group by and having clauses 537
list of 2, 1335
local variables and 436
mixed, arithmetic operations on 221
ODBC 1178
physical 782
sp_datatype_info information on 1184
sp_help information on 969–974
synonyms for 2
systypes table 1335–1336
trailing zeros in binary 28
unbinding defaults from 1160–1161
unbinding rules with sp_unbindrule 1165–1166
varbinary 177

datatypes, custom. See user-defined datatypes
date

getting current 120
date formats 19
date functions 61–62

See also individual function names
date parts

abbreviation names and values 61, 107
entering 19
order of 20, 660, 751

dateadd function 102
datediff function 104–105
datefirst option, set 106, 109, 660
dateformat option, set 20, 660
datename function 106
datepart function 107
dates

comparing 224
datatypes 18–22
default display settings 21
display formats 660
display formats, waitfor command 711
earliest allowed 19, 61, 102
entry formats 20
pre-1753 datatypes for 61, 102

Index

1375

datetime datatype 19–22
See also set command
comparison of 224
conversion 22
date functions and 108
values and comparisons 22

day date part 61, 107
day-long time ranges 779
dayofyear date part abbreviation and values 62, 107
days

alternate language 751
date style for 90
in time ranges 779

db_id system function 110
db_name system function 111
dbaccess auditing option 791
dbcc (Database Consistency Checker)

See also individual dbcc options
readtext and 606
scripts and sp_checkreswords 832
space allocation and 1081

dbcc (database consistency checker) 426–434
dbcc auditing option 791
dbcc traceon 432
dbcc tune 432
dbccdb database

changing workspace size in 1224
creating workspaces in 1226
deleting dbcc checkstorage history from 1229
deleting target database information from 1228
reporting allocation statistics from 1239
reporting comprehensive information from 1237
reporting configuration information from 1225,

1234, 1237
reporting fault information from 1230, 1234
reporting full details from 1237
reporting I/O statistics from 1230
stored procedures for use with 1221

dbid column, sysusages table 1337
DB-Library programs

browse mode 641
changing identifier names and 832
dbwritetext and dbmoretext, writetext compared

to 723
overflow errors 76, 190
prepare transaction 592

set options for 662, 672
waitfor mirrorexit and 711

dbo use only database option
setting with sp_dboption 873

dbrepair option, dbcc 429
@@dbts global variable 214
dd. See day date part
ddl in tran database option 873
deactivation of disk mirroring 468–470
deadlocks

descending scans and 590
deallocate cursor command 435
deallocating cursors 435
debugging aids

set showplan on 665
set sort_resources on 666
set statistics io on 666
triggers and 415

decimal datatype 12–13
decimal numbers

round function and 165
str function, representation of 183

decimal points
datatypes, allowing in 12
in integer data 11

declare command 436–437
declare cursor command 438–443
declaring

local variables 436
parameters 352

default database
See also sysdevices table
assigning with sp_addlogin 754
changing user’s 1051

default database devices
setting status with sp_diskdefault 892
sp_helpdevice and 991

default database size configuration parameter
in sysconfigures 318

default keyword
alter database 257
alter table 268
create table 379

default language id configuration parameter 754
default option

create database command 316

Index

1376

default segment
dropping 928
extending 261
mapping 772

default settings
changing login 756, 1051
configuration parameters 860
date display format 21
language 754
parameters for stored procedures 352
set command options 672
weekday order 109, 673

default Unicode multilingual 88, 179
default values

datatype length 89
datatype precision 89
datatype scale 89
datatypes when no length specified 352

defaulton | defaultoff option, sp_diskdefault 892
defaults 552

binding 802–803
checking name with sp_checkreswords 829
column 269
creating 323–325
definitions and create default 323–325
displaying source text of 1024
dropping 473
IDENTITY columns and 284
remapping 1098
renaming 833, 1103–1104
rules and 324, 373
system tables and 803
system tables entries for 1278, 1309–1310, 1312
unbinding 1160–1161

defining local variables 436–437
defncopy utility command 831
degree of parallelism

select and parallel 635
degrees mathematical function 112
degrees, conversion to radians 154
delayed execution (waitfor) 710
delete auditing option 791
delete command 444–450

readpast option 444
text row 38
triggers and 412

truncate table compared to 684
delete shared statistics command 451
delete statistics command 451
deleted rows

number of 1328
deleted table

triggers and 411, 412
deleting

See also dropping
dbcc checkstorage history from dbccdb 1229
files 906
plans 905, 921
target database information from dbccdb 1228
unlocked rows 444

delimited identifiers
testing 831
using 830, 837–838

density option
dump database 485
dump transaction 499
load database 562
load transaction 571

denying access to a user 1040
dependencies, database object

changing names of 831
recompilation and 1104
sp_depends system procedure 393, 884–889
sysdepends table 1288

desc index option
alter table command 279
create index command 336
create table command 381

desc option
alter table 271

descending index order, specifying 267
descending indexes 271
descending order (desc keyword) 586, 640
descending scans 590

deadlocks and 590
overflow pages and 591

detail option, sp_helpconstraint 984
device failure

dumping transaction log after 502, 504
device fragments

number of 319
sp_helpdb report on 988

Index

1377

device initialization. See initializing
devices

See also sysdevices table
changing names of 834, 836
disk mirroring to 458–460
dsync setting for 890
information on log 1005
master 260
numbering 453, 462
secondary 459
system tables entries for 1289

dictionary sort order 589
difference string function 113
direct updates

to system tables 834, 1253
dirty pages

updating 298–299
disabling mirroring. See disk mirroring
disconnect command 313
disk allocation pieces 1337
disk auditing option 791
disk controllers 454, 463
disk devices

adding 453–457, 786–787
mirroring 458–460
sysdevices table 1289
unmirroring 468–470

disk init command 453–457
master database backup after 455

disk mirror command 458–460
disk mirroring 458–460

database dump and 496
database load and 568
restarting 466–467
sp_who report on 1173
status in sysdevices table 1289
transaction log dump and 510
transaction log load and 578
unmirroring and 468–470
waitfor mirrorexit 710

disk option, sp_addumpdevice 786
disk refit command 461

create database and 320
disk reinit command 462–465

See also disk init command
disk remirror command 466–467

See also disk mirroring
disk unmirror command 468–470

See also disk mirroring
dismount option

dump database 486
dump transaction 500
load database 562
load transaction 571

display
character sets 1022
create procedure statement text 361
database options 870–877
procedures for information 354
setting for command-affected rows 661
source text of compiled objects 1024
syntax of modules 1143

distinct keyword
create view 418
select 632, 645

distributed Transaction Management (DTM) 1150,
1282

distributed transaction processing (DTP) 429
dividing tables into groups. See group by clause
division operator (/) 221
dollar sign ($)

in identifiers 230
in money datatypes 17

domain rules 552
create rule command 371
mathematical functions errors in 63
violations 552

“don’t recover” status of databases created for load
321

dots (..) for omitted name elements 233, 759
double precision datatype 15
double-byte characters. See Multibyte character sets
double-precision floating-point values 15
doubling quotes

in character strings 717
in expressions 229
in character strings 25

drop auditing option 791
drop database command 471–472

damaged databases and 429
drop default command 473
drop index command 475

Index

1378

drop keyword
alter role 263
alter table 274

drop logins option, sp_dropserver 929
drop procedure command 476–477

grouped procedures and 476, 512
drop role command 478
drop rule command 479
drop table command 480–481
drop trigger command 482
drop view command 483
dropdb option, dbcc dbrepair 429
dropmessages option, sp_droplanguage 915
dropping

See also deleting
abstract plan groups 920
aliased user 904
character with stuff function 186
constraints for tables 267
corrupt indexes 431
damaged database 429
database devices 906
databases 471–472
dbcc dbrepair database 429
defaults 324, 473
grouped procedures 351
groups 912
indexes 475
leading or trailing blanks 138
lock promotion thresholds 911
passwords from roles 263
plans 905, 921
procedures 476–477, 909
remote logins 922, 929
remote servers 929
resource limits 923
roles in a mutually exclusive relationship 263
row lock promotion thresholds 926
rows from a table 444–450, 480
rows from a table using truncate table 684
rules 479
segment from a database 927–928
table constraints 267
tables 480–481
tables with triggers 413
time ranges 931

triggers 413, 482
user from a database 933
user from a group 823
user-defined datatype 932
user-defined messages 917
user-defined roles 478
views 483
workspaces 1227, 1344

dsync setting 890
DTX Participants 1282
dump auditing option 791
dump database

compress option 485
dump database command 484–496

See also dump, database
after using create database 320
after using disk init 455
after using dump transaction with no_log 499
dump transaction and 490
master database and 490
select into and 648

dump devices
See also database devices; log device
adding 786–787
dropping 906
dump, database and 485
dump, transaction log and 499
listing 991
naming 485, 499, 506–507
number required 567
permission and ownership problems 787
sysdevices table and 1289
system tables entries for 1289

dump striping
database dumps and 486
transaction dumps and 500

dump transaction
compress option 498

dump transaction command 497–510
See also dump, transaction log
after using disk init 455
permissions for execution 510
select into/bulkcopy/pllsort and 503
sp_logdevice and 1042
standby_access option 502
trunc log on chkpt and 503

Index

1379

with no_log option 505
with no_truncate option 502, 504
with truncate_only option 504

dump, database
across networks 490
appending to volume 495–496
Backup Server and 492
Backup Server, remote 485
block size 485
commands used for 504
dismounting tapes 486
dump devices 485, 491
dump striping 486
dynamic 490
expiration date 487
file name 487, 492
initializing/appending 487
interrupted 880
loading 320, 561–569
master database 491
message destination 488
new databases and 490
overwriting 487, 495–496
remote 492
rewinding tapes after 487
scheduling 490–491
successive 495, 508
system databases 491
tape capacity 486
tape density 485
thresholds and 491
volume changes 495
volume name 486, 494

dump, transaction log
across networks 506
appending dumps 501
appending to volume 509
Backup Server, remote 507
command used for 504
dismounting tapes 500
dump striping 500
expiration date 501
file name 501, 507–508
initializing tape 501
initializing volume 509
insufficient log space option 505

loading 570–578
message destination 502
permissions problems 503
remote 507, 508
rewinding tapes after 501
scheduling 506
tape capacity 500
thresholds and 506
volume name 500, 508

dumping databases 934
dumpvolume option

dump database 486, 1168
dump transaction 500
load database 562
load transaction 571

duplicate rows
indexes and 335, 339
removing with union 686
text or image 39

duplication
of space for a new database 320
of a table with no data 648

duplication of text. See replicate string function
dw. See weekday date part
dy. See dayofyear date part
dynamic dumps 490, 506
dynamic execution of Transact-SQL commands 511
Dynamic Link Libraries (DLLs)

unloading 964

E
e or E exponent notation

approximate numeric datatypes 15
float datatype 5
money datatypes 17

8-bit terminal, sp_helpsort output 1022
else keyword. See if...else conditions
embedded spaces. See spaces, character
empty string (“ ”) or (’ ’)

not evaluated as null 227
as a single space 26, 229, 552
updating an 696

enable xact coordination configuration parameter
668

Index

1380

enclosing quotes in expressions 229
encryption

compiled object source text 1028
reversing 1028
role passwords 1326
user passwords 1303

end keyword 292
ending days of named time ranges 779
ending times of named time ranges 779
enforcing resource limits 767
engine option, dbcc 429
engines

sysengines table 1291
system tables entries for 1291

english language, U.S. See us_english language
equal to. See comparison operators
@@error global variable 214

select into and 647
stored procedures and 356
user-defined error messages and 595, 602

error handling
in character set conversion 658
dbcc and 433
domain or range 63
triggers and 415

error messages
12207 579, 580
character conversion 658
printing user-defined 595
system tables entries for 1307
user-defined 598–603

errorexit keyword, waitfor 710
@@errorlog global variable 214
errors

See also error messages; SQLSTATE codes
allocation 427, 430, 432
arithmetic overflow 58
convert function 55–59, 91
datatype conversion 379
divide-by-zero 58
domain 59, 91
number of 1067
numbers for user-defined 598
return status values 614
scale 59
trapping mathematical 63

errors auditing option 791
escape characters 240
escape keyword 240–241

where 714
ESPs. See Extended stored procedures
european characters in object identifiers 235
evaluation order 687
exact numeric datatypes 10–13

arithmetic operations and 11
exception report, dbcc tablealloc 430, 431
exclamation point (!)

error message placeholder 593
exclusive keyword

alter role 263
exclusive locks 950, 1037
exclusive option, lock table 579
exclusive row locks 1039
exec_procedure auditing option 791
exec_trigger auditing option 791
execute command 511–517

create procedure and 356
executing

extended stored procedures 511
procedures 511
Transact-SQL commands 511
user-defined procedures 511

execution
operating system commands 1205
specifying times for 710

execution delay. See waitfor command
exists keyword

in expressions 225
where 715

exit
unconditional, and return command 613–615
waitfor command 710

exp mathematical function 115
exp_row_size option

create table 385, 404
select into 633
setting before alter table...lock 282
sp_chgattribute 841
sp_help report on 974
specifying with create table 385
specifying with select into 633

expand_down parameter

Index

1381

sp_activeroles 738
sp_displayroles 902
sp-displayroles 902

explicit null value 227
explicit values for IDENTITY columns 555, 661
exponent, datatype (e or E)

approximate numeric types 15
float datatype 5
money types 17

exponential value 115
exporting plan groups 947
expressions

definition of 219
enclosing quotes in 229
evaluation order in 687
grouping by 536
including null values 225
insert and 550
name and table name qualifying 234
summary values for 309
types of xxvii, 219

extended columns, Transact-SQL 539, 541
extended stored procedures

C runtime signals not allowed 357
creating 351–362, 746
displaying 993
dropping 476, 909
executing 511
system tables entries for 1278, 1309–1310

extending
database storage 257
segments 948

extensions, Transact-SQL 539
extents 342

create table and 390
dbcc indexalloc report on index 430
dbcc report on table 431

external option
create existing table 326
create proxy_table 366
create table 385

F
@@failedoverconn global variable 214

failures, media
See also recovery
automatic failover and 468
disk remirror and 466
trunc log on chkpt database option and 876

family of worker processes
fid reported by sp_lock 1038
sp_familylock report on fid 950

fast option
dbcc indexalloc 430
dbcc tablealloc 430, 431

fault isolation
index level 958, 1034

fetch command 518–520
fetching cursors 518–520
fid (family ID) number 950

sp_lock report 1038
file names

configuration file 858
database dumps 492
DLL 353, 964
listing database dump with listonly 563
listing transaction log with listonly 572
transaction log dumps 501, 572

file option
dump database 487
dump transaction 501
load database 563
load transaction 572

files
See also tables; transaction log
deleting 906
inaccessible after sp_dropdevice 906
interfaces, and server names 773
localization 837
mirror device 458

fillfactor
create index and 337

fillfactor option
alter table 271
create index 337, 346
create table 382, 404
sp_chgattribute 841

fillfactor values
alter table...lock 281

finding

Index

1382

active roles 172
cache bindings 810, 978
character sets 1022, 1275
configuration parameters 979, 1279, 1283
constraints 984, 1281
current date 120
database ID 110, 1285
database name 111, 1285
database objects 973, 1309
database options 870
database settings 988, 1285
datatypes 969, 1335
device names 1289
devices 991
languages 1004, 1298
object definitions 1278, 1312
object dependencies 884, 888, 1288
object information 969
partition information 975, 1311
permission information 1315
permissions 1014
reserved words 826
resource limits 1011, 1319
roles 1320
segments 1018
server names 1021
server user ID 191
server user name 192
starting position of an expression 81
thresholds 1026
user aliases 211, 1255
user IDs 208
user names 207, 209
users in a database 1027, 1339
valid identifiers 210

FIPS flagger
insert extension not detected by 557
set option for 660
update extensions not detected by 700

fipsflagger option, set 660
first column parameter. See keys
first page

log device 1005
partition, displaying with sp_helpartition 975

first-of-the-months, number of 105
fix option

dbcc 427, 430, 432
dbcc indexalloc 430
dbcc tablealloc 427

fix_text option, dbcc 429, 434
fixed-length columns

binary datatypes for 27
character datatypes for 23
null values in 8
stored order of 589

float datatype 15
floating-point data 219

str character representation of 183
floor mathematical function 117
flushmessage option, set 660
for browse option, select 641

union prohibited in 689
for load keyword

alter database 258
create database command 317

for load option
create database 320

for proxy_update keyword
alter database 258
create database command 317

for read only option, declare cursor 438
for update option, declare cursor 438
forceplan option, set 660
forcing offline pages online 490
foreign key constraint

alter table 273
create table 384

foreign keys 397
dropping 913
inserting 962–963
sp_fkeys information on 1185
sp_helpkey and 1002
syskeys table 1297

forget_xact option, dbcc 429
format strings

print 593
raiserror 599
in user-defined error messages 599, 758

formats
See also dates
date 19
times in named time ranges 779

Index

1383

formats, date. See dates
formulas

max_rows_per_page of nonclustered indexes
843

forwarded rows
number of 1328

forwarded_rows option, reorg command 611
fragmentation, reducing 267
fragments, device space

sp_placeobject and 1081
free pages, curunreservedpgs system function 97
from keyword

delete 444
grant 526
load database 562
load transaction 571
select 634
sp_tables list of objects appearing in clause

1200
update 691

front-end applications, browse mode and 199
full name

changing with sp_modifylogin 1051
specifying with sp_addlogin 756

full option
dbcc indexalloc 430
dbcc tablealloc 430, 431

func_dbaccess auditing option 791
func_obj_access auditing option 791
functions 43

aggregate 47
conversion 53
date 61
image 67
mathematical 62
security 64
sortkey 177
string 64
system 66
text 67

functions, built-in, type conversion 89–92
future space allocation. See space allocation;

sp_placeobject system procedure
futureonly option

sp_bindefault 802
sp_bindrule 808, 809

sp_unbindefault 1160
sp_unbindrule 1165

G
GB Pinyin 88, 179
German language print message example 593
get_appcontext 118
getdate date function 120
getting application context 118
getting messages. See sp_getmessage system

procedure
global allocation map pages 1292
global audit options, sysauditoptions system table

1258
global variables

See also individual variable names
sp_monitor report on 1066

goto keyword 521
grammatical structure, numbered placeholders and

593
grand totals

compute 309
order by 588

grant auditing option 791
grant command 314, 522–533

all keyword 522
drop role permission not included in 478
public group and 524
roles and 532
sysprotects table 1315

grant option
sp_helprotect 1014
sp_role 1112

grant option for option, revoke 618
granting

create trigger permission 416, 530, 621
greater than. See comparison operators
Greek characters 235
group by clause 534–546

aggregate functions and 48, 49, 534, 537
having clause and 534–546
having clause and, in standard SQL 538
having clause and, in Transact-SQL 539
having clause and, sort orders 545

Index

1384

select 638–639
views and 423
without having clause 544

grouping
multiple trigger actions 409
procedures of the same name 351, 476, 512
table rows 537

groups
See also “public” group
changing 823–824
dropping 912
grant and 532
information about 995
revoke and 623
sp_addgroup 750
sp_adduser procedure 788
sysusers table entries for 1339
table rows 534
Windows NT domain 1208

guest users 208
permissions 532
sybsystemprocs database 726

@@guestuserid global variable 214

H
@@hacmpservername global variable 214
@@haconnection global variable 214
Halloween problem 442
hash-key collisions 1008
having clause 534–546

aggregate functions and 47, 535, 537
group by and 534–546
group by extensions in Transact-SQL and 539
negates all 535
select 639

headings, column 535
in views 418

@@heapmemsize global variable 214
help

sp_syntax display 1143
sp_sysmon display 1145

help reports
See also information (server); system procedures
constraints 984

database devices 991
database object 969
databases 988
datatypes 969
dump devices 991
extended stored procedures 993
groups 995
indexes 996
joins 1000
keys 1002
language, alternate 1004
logins 1010
permissions 1014
remote servers 1021
resource limits 1011
segments 1018
source text for compiled objects 1024
system procedures 969–1027
tables 969
thresholds 1026
users 1027

heuristic completion 428
hexadecimal numbers

“0x” prefix for 323
converting 59

hextoint function 121
hh. See hour date part
hierarchy

See also precedence
data cache bindings 799
datatype 1335
lock promotion thresholds 1121, 1126
operators 221
roles, displaying with sp_activeroles 738
user-defined datatypes 784

hierarchy of permissions. See permissions
hierarchy of roles. See role hierarchies
high availability

configuring Adaptive Server for 855
reconnection information 1325

histograms
specifying steps with create index 346
specifying steps with update statistics 705

historic dates, pre-1753 61, 102
holdlock keyword

readtext 604

Index

1385

select 637, 1037
host computer name 123
host process ID, client process 122
host_id system function 122
host_name system function 123
hour date part 62, 107
hour values date style 90

I
I/O

concurrency_opt_threshold and 842
configuring size 1085
devices, disk mirroring to 458
displaying total actual cost (statistics io) 666
limiting 767
log size 1048
prefetch and delete 445
prefetch and select 636
prefetch and update 692
usage statistics 1109

identifiers 229–235
case sensitivity and 230
delimited 830
quoted 830
renaming 234, 831
reserved words and 826–838
select 645
set quoted_identifier on 830, 837–838
sp_checkreswords and 830
system functions and 210

identities
alternate 739
sa_role and Database Owner 208, 676
server user (suser_id) 192
set proxy and 677
set session authorization and 677
setuser command 681
user (user_id) 208

identity burning set factor configuration parameter
554

IDENTITY columns
adding, dropping, or modifying with alter table

287
automatic 873, 877

creating tables with 403
database options using 874
defaults and 284
inserting values into 550
inserts into tables with 554–555
maximum value of 555
nonunique indexes 874
null values and 555
selecting 555, 649
updates not allowed 698
views and 422

identity gap
setting 403

@@identity global variable 214, 555
identity in nonunique index database option

setting with sp_dboption 874
identity keyword

alter table 269
create table 379
sp_addtype and 782

identity of user. See aliases; logins; users
identity_gap option

sp_chgattribute 842
identity_insert option, set 661
@@idle global variable 214

sp_monitor and 1067
IDs, server role

role_id 163
sysroles table 1320

IDs, time range 780
IDs, user

See also logins
database (db_id) 110
server user 192
stored procedure (procid) 663
user_id function for 191

if update clause, create trigger 408, 409, 414
if...else conditions 547–549

continue and 315
local variables and 437

ignore_dup_key option, create index 339
ignore_dup_row option, create index 339
image datatype 31–40

initializing 36
length of data returned 646, 667
null values in 36

Index

1386

order by not allowed 588
pointer values in readtext 604
prohibited actions on 38
size of 1138
storage on separate device 604
triggers and 412
union not allowed on 689
writetext to 721

image functions 67
immediate shutdown 682
impersonating a user. See setuser command
implicit conversion of datatypes 8, 228
importing abstract plan groups 1030
in keyword

alter table and 273
check constraint using 402
in expressions 225
where 715

inactive transaction log space 499
included groups, group by query 539
incremental backups. See dump, transaction log
index keys

asc option for ordering 343
desc option for ordering 343
maximum number of bytes 341
number of 341
ordering 343

index pages
allocation of 157
fillfactor effect on 271, 337, 382
leaf level 271, 335, 337, 382
locks on 1038
system functions 99, 157
total of table and 157

index_col system function 124
index_colorder function 125
indexalloc option, dbcc 430
indexes

See also clustered indexes; database objects;
nonclustered indexes

ascending 271
binding to data caches 798
checking name with sp_checknames 825
checking name with sp_checkreswords 829
composite 348
creating 335–348

dbcc indexalloc and 430
descending 271
dropping 475
estimating space and time requirements 942
IDENTITY columns in nonunique 874
information about 996
integrity checks (dbcc) 431
joins and 341
key values 706
listing 475
max_rows_per_page and 272, 383
naming 336
nonclustered 336
number allowed 341
object allocation maps of 430
order of, reported by sp_helpindex 997
page allocation check 430
renaming 832, 1103–1104
sp_placeobject space allocation for 1081–1082
sp_statistics information on 1196
space used by 1139
specifying order of 267
specifying sort order with alter table 279
specifying sort order with create index 343
specifying sort order with create table 395
suspect 1032
sysindexes table 37
system tables entries for 1293
truncate table and 684
types of 335
unbinding from data caches 1157
update index statistics on 705
update statistics on 341, 705
views and 341

infected processes
waitfor errorexit and 711

information (server)
configuration parameters 1279, 1283
current locks 1036
databases 1285–1287
display procedures 354
indexes 996
space usage 348
suspect indexes 1032
text 361

information about, reporting

Index

1387

cache bindings 800
current locks 1036
data caches 813
database devices 991
database objects 969
database owners 1027
databases 988
datatypes 969
dump devices 991
extended stored procedures 993
first page of log 1005
groups 995, 1027
indexes 996
join columns 1000
keys 1002
languages 1004
locks 1036, 1074
logins 1171
performance 1145
permissions 1014
remote server logins 1010
remote servers 1021
resource limits 1011
segments 1018
server processes 1171
server users 899, 1171
source text for compiled objects 1024
space usage 1138
statistics, monitor 1066
suspect indexes 1032
thresholds 1026
transaction log device 1005
users, database 1027

information messages (server). See error messages;
severity levels, error

init option
dump database 487
dump transaction 501

initializing
disk reinit and 455, 462–465
disk space 453–457
text or image columns 37

in-memory map 260
input packets, number of 1067
insert auditing option 791
insert command 550–558

create default and 323
IDENTITY columns and 554–555
null/not null columns and 422
triggers and 412, 414
update and 551
views and 422, 556–557

inserted table
triggers and 411, 412

inserting
automatic leading zero 28
spaces in text strings 181

int datatype 11
aggregate functions and 76, 190

integer data
in SQL 219

integer datatypes, converting to 59
integer remainder. See Modulo operator (%)
integrity of data

constraints 395
methods 396

integrity. See dbcc (database consistency checker);
referential integrity

intent table locks 950, 1037
interfaces file

changing server names in 836
sp_addserver and 773

intermediate display level for configuration parameters
898

internal datatypes of null columns 8, 393
See also datatypes

internal structures, pages used for 100, 157
interval, automatic checkpoint 298
into keyword

fetch 518
insert 550
select 633, 647
union 686

inttohex function 126
@@invaliduserid global variable 214
@@io_busy global variable 214

sp_monitor and 1067
is not null keyword in expressions 225
is null keyword

in expressions 225
where 714

is_sec_service_on security function 128

Index

1388

isnull system function 127
insert and 553
print and 595
select and 646

ISO 8859-5 Cyrillic dictionary 88, 179
ISO 8859-5 Russian dictionary 88, 179
ISO 8859-9 Turkish dictionary 88, 179
iso_1 character set 235
@@isolation global variable 214, 679
isolation levels

catalog stored procedures 1176
identity in nonunique index database option and 874
readpast option and 652
repeatable reads 641
system procedures 725

isql utility command
See also Utility Programs manual
approximate numeric datatypes and 15

J
Japanese character sets

object identifiers and 235
Java columns, adding 286
Java items

remove java command 609
sp_helpjava system procedure 998
sysjars table 1296
sysxtypes table 1340

joins
count or count(*) with 96
indexes and 341
information about 1000
null values and 226
number of tables considered by optimizer 667
sp_commonkey 853
table groups and 541

jtc option, set 661

K
@@kernel_addr global variable 214
@@kernel_size global variable 214
key columns

dropping with alter table 286
key values 706
keys, index. See index keys
keys, table 397

See also common keys; indexes
dropping 913
information about 1002
syskeys table 853, 962, 1090, 1297

keywords 243–246
as identifiers 826
Transact-SQL 230, 243–244

kill command 559–560
sp_who and 1173

L
labels

dump volumes 494, 568, 577
goto label 521

@@langid global variable 214, 598
language defaults 754

adding 751–753
changing user’s 756

@@language global variable 214
language option, set 661
languages, alternate

alias for 1119
changing names of 834, 837
checking with sp_checkreswords 830
date formats in 751
dropping 915
dropping messages in 917
effect on date parts 109
information on 1004
installing 751
official name 1119
structure and translation 593
syslanguages table 1004, 1298
system messages and 661, 965
system tables entries for 1298
user-defined messages 757
weekday order and 109, 673
without Language Modules 751

last-chance threshold
lct_admin function 130

Index

1389

last-chance thresholds 131, 776, 1063
LASTONLINE engine group 744
latin-1 English, French, German

dictionary 88, 179
no accent 88, 179
no case 88, 179
no case preference 88, 179

latin-1 Spanish
dictionary 88, 179
no accent 88, 179
no case 88, 179

lct_admin system function 131
leading blanks, removal with ltrim function 138
leading zeros, automatic insertion of 28
leaf levels of indexes

clustered index 271, 335, 337, 382
leaving a procedure. See return command
length

See also size
of expressions in bytes 101
of columns 84

less than. See comparison operators
levels

nested procedures and 358, 515
nesting triggers 415
@@nestlevel 359
permission assignment 526

license_enabled system function 132
like keyword

alter table and 273
check constraint using 402
searching for dates with 21
where 714
wildcard characters used with 237

limit types 766
elapsed time 766
I/O cost 766
modifying values 1054
number of rows returned 766
specifying values 766

limited days
modifying for time ranges 1057
resource limit information on 1011
specifying for time ranges 779

limited times
modifying for time ranges 1057

resource limit information on 1011
specifying for time ranges 779

linkage, page. See pages, data
linking users. See alias, user
list_appcontext 133
listing

database options 870
datatypes with types 6
devices 991
existing defaults 473
user group members 532

listing application context 133
listonly option

load database 563
load transaction 572

lists
catalog stored procedures 1175
commands 253–256
datatypes 2
dbcc stored procedures 1221
error return values 615
functions 44–47
reserved return status value 615
sort order choices and effects 589
system procedures 725–737
system tables 1249–1252

literal character specification
like match string 239
quotes (“ ”) 229

literal values
datatypes of 5
null 227

load auditing option 791
load database

compress option 561
load database command 561–569
load transaction

compress option 570
load transaction command 570–578
load, database 561–569

across networks 567, 568
Backup Server and 568
block size 562
cross-platform not supported 565, 574
disk mirroring and 568
dismounting tapes after 562

Index

1390

file name, listing 563
header, listing 564
load striping 562
message destination 564, 578
new database 320
remote 567
restricting use 566, 576
rewinding tapes after 563
size required 566
updates prohibited during 566
volume name 562

load, transaction log 570–578
disk mirroring and 578
dismounting tape after 571
dump devices 571
file name, listing 572
header, listing 572
load striping 571
message destination 573
point-in-time recovery 573
rewinding tape after 571
until_time 573
volume name 571

local alias, language 1119
local option, sp_addserver 773
local servers 773

See also remote servers; servers
local variables

declare (name and datatype) 436
raiserror and 599
in screen messages 593
in user-defined error messages 599

localization
changing language names and files 837

location of new database 316
lock | unlock option, sp_locklogin 1040
lock allpages option

alter table 274
create table command 385
select into command 633

lock datapages option
alter table 274
create table command 385
select into command 633

lock datarows option
alter table 274

alter table command 289
create table command 385
select into command 633

lock nowait option, set lock command 662
lock promotion thresholds 1120

dropping row with sp_droprowlockpromote 926
setting row with sp_setrowlockpromote 1125
sp_help report on 974
sp_helpdb report on database setting 988

lock table command 579
lock wait option, set command 662
locking

cache binding and 800
cache unbinding and 1158
control over 1036–1039
logins 1040
monitoring contention 1074
tables with lock table command 579
text for reads 604

locking scheme
changing 267, 274
changing with alter table 267
create table and 403
modifying 274
sp_help report on 974
specifying with select into 633

locks
deletes skipping locked rows 444
displaying information about 1036, 1074
exclusive page 950
exclusive table 950
exclusive table and page 1037
“FAM DUR” status 951
intent table 950, 1037
page 950, 1037
reported by sp_lock 1036
row 1039
selects skipping locked rows 650
shared page 950, 1037
shared table 950, 1037
sp_familylock system procedure 950–952
sp_lock system procedure 1036–1039
system tables entries for 1300
types of 950, 1037
updates skipping locked rows 690

lockscheme system function 134

Index

1391

log device
See also transaction logs
information 1005
purging a 491
space allocation 320, 433

log mathematical function 134, 135
log on keyword

alter database 258
create database 316

log on option
create database, and sp_logdevice 1042

log segment
dbcc checktable report on 428
not on its own device 428
sp_helplog report on 1005
sp_helpthreshold report on 1026

log10 mathematical function 136
logarithm, base 10 136
logging

messages 790
select into 647
text or image data 721
triggers and unlogged operations 413
user-defined events 1210
user-defined messages 757
writetext command 721

logical (conceptual) tables 411, 412
logical consistency. See dbcc (database consistency

checker)
logical device name 786, 892

disk mirroring 458
disk remirroring 466
disk unmirroring 468
new database 316
syslogs table 1042

logical expressions 219
if...else 547
syntax 220, 294
truth tables for 227
when...then 295, 301, 581

logical reads (statistics io) 666
login auditing option 791
logins

See also remote logins; users
accounting statistics 846, 1109
adding to Servers 754–756

alias 739, 904
applying resource limits to 766
changing current database owner 822
char_convert setting for 658
disabling 682
dropping 916, 929
dropping resource limits from 923
information about 1010
information on 899
locking 1040–1041
modifying accounts 1051–1053
modifying resource limits for 1054
number of 1067
options for remote 1099
password change 1079–1080
“probe” 1110, 1303
remote 922, 929
resource limit information on 1011
syslogins table 1303–1304
sysremotelogins table 763–765, 922, 929, 1318
unlocking 1040–1041

logout auditing option 791
logs. See segments; transaction logs
logsegment log storage

dropping 928
log10 mathematical function 136
loops

break and 294
continue and 315
goto label 521
syslogs changes and infinite 1305
trigger chain infinite 415
while 294, 719

lower and higher datatypes. See precedence
lower and higher roles. See role hierarchies
lower string function 137
lowercase letters, sort order and 589

See also case sensitivity
ltrim string function 138

M
machine ticks 1067
macintosh character set 235
mail messages, server

Index

1392

deleting 1207
processing 1091–1092
reading 1211
sending 1214
starting session 1218
stopping session 1219

making compressed backups 485, 498
mapping

databases 880
remote users 763
system and default segments 261
sysusages table 1337

markers, user-defined. See placeholders; savepoints
master database

See also recovery of master database; databases
alter database and 260
backing up 504
checking with sp_checkreswords 829
create database and 320
disk init and 455
disk mirror and 459
disk refit and 461
disk reinit and 462
disk remirror and 466
disk unmirror and 469
dropping databases and 471
sp_dboption and 872
system procedure tables 728
system tables 1249–1250
thresholds and 777, 1064
transaction log purging 491, 504

master device 260
matching

See also Pattern matching
name and table name 234

mathematical functions 62–64
max aggregate function 139
@@max_connections global variable 215
max_rows_per_page option

alter table 272, 281
changing with sp_relimit 841
create index 338, 346
create table 383, 404
select into 633
sp_chgattribute 841

@@maxcharlen global variable 214

@@maxgroupid global variable 215
maximum number of columns 277
maximum row size 277
@@maxpagesize global variable 215
@@maxspid global variable 215
@@maxsuid global variable 215
@@maxuserid global variable 215
membership keyword

alter role 263
memory

See also space
freeing from XP Server 964
mapping 880
releasing with deallocate cursor 435
used by configuration parameters 979

memory pools
configuring 1085
configuring asynchronous prefetch limits 1089
configuring wash percentage 1088
defaults 811
minimum size of 1087
sp_logiosize and 1048
transaction logs and 1088

@@mempool_addr global variable 215
message output parameter, sp_getmessage 965
messages

adding user-defined 757–758
dropping system with sp_droplanguage 915
dropping user-defined 917
language setting for 661, 917, 965
logging 790
mathematical functions and 64
number for 757, 790, 917, 965
printing user-defined 593–595
revoke 622
screen 593–595
sp_getmessage procedure 965
sysmessages table 1307
system procedure 728
sysusermessages table 757–758, 1338
trigger 412, 482
unbinding with sp_unbindmsg 1164
user-defined 1338

mi. See minute date part
midnights, number of 104
migration

Index

1393

of system log to another device 456
of tables to clustered indexes 342, 394

millisecond date part 62, 107
millisecond values, datediff results in 104
min aggregate function 141
@@min_poolsize global variable 215
@@mingroupid global variable 215
@@minspid global variable 215
@@minsuid global variable 215
minus sign (-)

in integer data 11
subtraction operator 221

@@minuserid global variable 215
minute date part 62, 107
mirror keyword, disk mirror 458
mirrorexit keyword

waitfor 710
mirroring. See disk mirroring
mistakes, user. See errors
mixed datatypes, arithmetic operations on 221
mm. See month date part
mode option, disk unmirror 468
model database

changing database options 872
copying the 319
user-defined datatypes in 40

modifying
configuration parameter display level 898
configuration parameters 858
databases 257
locking scheme 274
login accounts 1051
named time ranges 1057
resource limits 1054
roles 263
tables 267
thresholds 1062

modifying abstract plans 1124
modules, display syntax of 1143
modulo operator (%) 221
money

default comma placement 16
symbols 230

money datatype 17, 19
arithmetic operations and 16

monitoring

lock contention 1074
space remaining 775, 776, 1063
system activity 1066

month date part 61, 107
month values

alternate language 751, 1298
date part abbreviation and 61, 107
date style 90
short (abbreviated) 1298
syslanguages table 1298

moving
indexes 1081
tables 1081
transaction logs 1042
user to new group 823

MRU replacement strategy
disabling 819

ms. See millisecond date part
multibyte character sets

changing to 429
converting 56
fix_text upgrade for 429, 434
identifier names 235
nchar datatype for 23
readtext and 606
readtext using characters for 606
sort order 1023
sp_helpsort output 1023
wildcard characters and 239
writetext and 723

multicolumn index. See composite indexes
multilingual, Unicode 88, 179
multiple trigger actions 409
multiplication operator (*) 221
multitable views 700

See also views
delete and 422, 447

mut_excl_roles system function 142
mutual authentication option, sp_serveroption 1115
mutual exclusivity of roles

mut_excl_roles and 142
mutually exclusive roles 263

Index

1394

N
“N/A”, using “NULL” or 227
name of device

disk mirroring and 458
disk remirroring and 466
disk unmirroring and 468
dump device 485, 499
physical, disk reinit and 462
remote dump device 567

name option
disk init 453
disk reinit 462

named time ranges
adding 779
“at all times” 780, 931
changing active time ranges 781
creating 779
dropping 931
entire day 779
IDs for 780
modifying 1057
overlapping 780
systimeranges system table 1331

names
See also identifiers
alias 739, 904, 933
alias for table 635
assigning different, compared to aliases 788
changing database object 1103–1104
changing identifier 831
character set 1275
checking with sp_checknames 825
checking with sp_checkreswords 826
checking with valid_name 234
column, in views 418
date parts 61, 107
db_name function 111
DLL file 964
finding similar-sounding 180
host computer 123
index_col and index 124
object_name function 144
omitted elements of (..) 233
parameter, in create procedure 352
qualifying database objects 232, 235
remote user 922

segment 272, 340, 383, 386
server 773
server attribute 1188
setuser 681
sort order 1275
sorting groups of 545
suser_name function 192
user system function 207
user_name function 209
user’s full 754
view 483
weekday numbers and 109

naming
columns in views 418
conventions 229–235
cursors 439
database device 453
database objects 229–235
file 453
groups 750
identifiers 229–235
indexes 336
stored procedures 357
tables 378
temporary tables 393
time ranges 779
triggers 408
user-defined datatypes 40, 784
views 418

national character. See nchar datatype
natural logarithm 134, 135
nchar datatype 23–24
@@ncharsize global variable 215

sp_addtype and 784
negative sign (-) in money values 17
nested select statements. See select command;

subqueries
nesting

aggregate functions 48
begin...end blocks 292
cursors 867
if...else conditions 549
levels 358
levels of triggers 415
stored procedures 357, 515
string functions 65

Index

1395

triggers 415
while loops 720
while loops, break and 294

@@nestlevel global variable 215, 515
nested procedures and 359
nested triggers and 415

net password encryption option
sp_serveroption 1115

%nn! (placeholder format) 593
no chkpt on recovery database option

setting with sp_dboption 875
no free space acctg database option

setting with sp_dboption 875
no_log option, dump transaction 499
no_truncate option, dump transaction 502
nocount option, set 661
@@nodeid global variable 215
nodismount option

dump database 486
dump transaction 500
load database 562
load transaction 571

noexec option, set 662
nofix option, dbcc

checkalloc and 427
indexalloc and 430
tablealloc and 432

noholdlock keyword, select 604, 637
noinit option

dump database 487
dump transaction 501

nonclustered constraint
alter table 270
create table 381

nonclustered indexes 336
“none”, using “NULL” or 227
noserial option, disk mirror 458
not keyword

in expressions 225
where 712

not like keyword 236
not null keyword

create table 89, 269, 380
not null values

dropping defaults for 473
insert and 553

select statements and 646
sp_addtype and 783
spaces in 26
for user-defined data 783
views and 422

notify option
dump database 488
dump transaction 502
load database 564
load transaction 573

nounload option
dump database 487
dump transaction 501
load database 563
load transaction 571

nowait option
lock table command 579
set lock command 662

nowait option, shutdown 682
null keyword

create table 89, 269, 379, 380
in expressions 225

null string in character columns 186, 227
null values

check constraints and 402
column datatype conversion for 26
column defaults and 324, 373
default parameters as 226
defining 324, 392
dropping defaults for 473
in expressions 226
group by and 537
inserting substitute values for 553
new column 324
new rules and column definition 373
null defaults and 324, 373
select statements and 646
sort order of 588
sp_addtype and 782
stored procedures cannot return 615
text and image columns 36, 553
triggers and 414
for user-defined datatypes 782

nullif expressions 581–582
nullif keyword 581
number (quantity of)

Index

1396

active dumps or loads 492, 507, 567, 577
arguments and placeholders 594
arguments, in a where clause 718
bytes in returned text 606
bytes per row 277
clustered indexes 335
columns for index key 341
databases reported by sp_countmetadada 865
databases server can manage 319
deleted rows 1328
device fragments 319
different triggers 412
first-of-the-months 105
forwarded rows 1328
groups per user 823
having clause search arguments 535
index leaf pages 1328
index levels 1328
indexes 865
logical reads (statistics io) 666
messages per constraint 807
midnights 104
named segments 319
nesting levels 358
nesting levels, for triggers 415
nonclustered indexes 336, 341
OAM pages 1328
open objects 865
pages 1328
parameters in a procedure 437
physical reads (statistics io) 666
placeholders in a format string 594
rows 1328
rows in count(*) 95
rows reported by rowcnt 167
scans (statistics io) 666
steps for distribution histogram 339
stored procedure parameters 356
Sundays 105
tables allowed in a query 634
tables per database 390
updates 416
user-defined roles 369

number of characters
date interpretation and 22

number of columns

in an order by clause 588
per table 277, 390
in a view 421

number of pages
allocated to table or index 157
in an extent 342, 390
reserved_pgs function 157
statistics io and 666
used by table and clustered index (total) 205
used by table or index 99
used_pgs function 205
written (statistics io) 666

numbers
See also IDs, user
asterisks (**) for overlength 183
converting strings of 26
database ID 110
datatype code 1178
device 991
error return values (server) 614
global variable unit 1067
message 757, 790, 917, 965
object ID 143
ODBC datatype code 1178
odd or even binary 28
placeholder (%nn!) 593
procid setting 663
random float 155
same name group procedure 351, 476, 512
select list 639
spid (server process ID) 1171
statistics io 666
virtual device 453, 456, 462
weekday names and 109, 660, 751

numeric data
row aggregates and 51

numeric datatype 12
range and storage size 3

numeric expressions 219
round function for 165

nvarchar datatype 24
spaces in 24

Index

1397

O
object Allocation Map (OAM) pages 206

number of 1328
object allocation map (OAM) pages

dbcc indexalloc and 430
dbcc report on table 431

object names, database
See also identifiers
checking with sp_checknames 825
checking with sp_checkreswords 829
as parameters 352
in stored procedures 358, 360
user-defined datatype names as 40

object owners. See database object owners
object permissions

See also command permissions; permissions
grant 522–533
grant all 530

object_id system function 143
object_name system function 144
objects. See database objects; databases
ODBC. See Open Database Connectivity (ODBC) API

datatypes
of option, declare cursor 438
official language name 752, 1119

See also aliases; languages, alternate
offline databases and alter database command 260
offset position, readtext command 604
offsets option, set 662
on keyword

alter database 257
alter table 272
create database command 316
create index 340, 342
create table 383, 386

online database command 567, 583, 583–584
bringing databases online 567
dump transaction and 574
load transaction and 574
upgrades and 576

Open Client applications
connection security with 764
keywords 662
procid setting 663
set options for 662, 672

open command 585

Open Database Connectivity (ODBC) API datatypes
1178

opening cursors 585
operating system commands 1205
operators

arithmetic 221
bitwise 222–223
comparison 224
precedence 221

optdiag utility
flushing in-memory statistics 956
loading simulated statistics 452, 679
overwriting statistics with create index 346

optimization
queries (sp_recompile) 1097

optimized report
dbcc indexalloc 430
dbcc tablealloc 431

optimizer
join selectivity 667

options
See also configuration parameters
database 870–877
remote logins 1099–1100
remote servers 1115–1118

@@options global variable 215, 679
or keyword

in expressions 227
where 716

order
See also indexes; precedence; sort order
of arguments in translated strings 593
ascending sort 586, 640
of column list and insert data 550
of columns (fixed- and variable-length) 589
of creating indexes 342
of date parts 660, 751
descending sort 586, 640
error message arguments 593
of evaluation 687
of execution of operators in expressions 221
of names in a group 545
of null values 588
of date parts 20
of parameters in create procedure 512, 514
reversing character expression 158

Index

1398

for unbinding a rule 372
weekday numeric 109

order by clause 177, 586–591
compute by and 309, 588, 640
select and 639

order of commands 528, 620
original identity, resuming an (setuser command) 681
other users, qualifying objects owned by 235
output

dbcc 434
packets, number of 1067
zero-length string 595

output option
create procedure 353, 512
execute 512
return parameter 512
sp_getmessage 965

overflow errors
DB-Library 76, 190
set arithabort and 657

overhead
data caches 817
triggers 412

overlapping time ranges 780
override. See with override option
overwriting triggers 412, 482
owners. See database object owners; database owners
owners. See Database Owners; database object owners
ownership

See also permissions; setuser command
of command and object permissions 526
dump devices and 787
of objects being referenced 235
of rules 373
of stored procedures 362
of triggers 417
of views 425

P
@@pack_received global variable 215

sp_monitor and 1067
@@pack_sent global variable 215

sp_monitor and 1067
@@packet_errors global variable 215

sp_monitor and 1067
padding, data

blanks and 23, 552
underscores in temporary table names 230
with zeros 28

page locks
types of 950, 1037

page splits 272, 338, 383
pages

ratio of filled to empty 267
pages, control

syspartitions and 1311
updating statistics on 703

pages, data
See also index pages; table pages
allocation of 157
chain of 32, 274, 283–284
computing number of, with sp_spaceused 1139
data_pgs system function 99
extents and 343, 390
extents and dbcc tablealloc 431
extents reported by dbcc indexalloc 430
locks held on 950, 1037
multibyte characters and 429
number of 1328
reserved_pgs system function 157
statistics io and 666
used for internal structures 100, 157
used in a table or index 99, 205
used_pgs system function 205

pages, global allocation map 1292
pages, index

number of 1328
number used in nonclustered 205

pages, OAM (Object Allocation Map)
number of 206

pages, OAM (object allocation map)
dbcc indexalloc report on 430
dbcc report on table 431

pages, overflow
descending scans and 591

@@pagesize global variable 215
pagesize system function 145
pair of columns. See common keys; joins
pair, mirrored 468
parallel keyword, select command 635

Index

1399

@@parallel_degree global variable 215, 679
set parallel_degree and 662

parallel_degree option, set command 662
parameters, procedure

datatypes 352
defaults 352
execute and 512
naming 352
not part of transactions 516
ways to supply 512, 514, 727, 1176

parentheses ()
See also Symbols section of this index
in an expression 228
in SQL statements xxv
in user-defined datatypes 782

parseonly option, set 662
partial characters, reading 606
partition clause, alter table command 274
partition statistics

updating with update partition statistics 703
updating with update statistics 702

partitioned tables
alter table 274
size of 153

partitioning
tables 267

passthrough mode
connect to command 313
sp_autoconnect system procedure 796
sp_passthru system procedure 1077
sp_remotesql system procedure 1101

passwd keyword
alter role 263

passwords
adding to roles 263
adding to user-defined roles 265
changing for user-defined roles 266
date of last change 900
dropping from roles 263
dropping from user-defined roles 265
encryption over network 1117
roles and 263
setting with sp_addlogin 754
sp_password 1079–1080
sp_remoteoption and 1099
sp_serveroption and 1117

trusted logins or verifying 1099
user-defined roles and 368, 665

path name
DLL and extended stored procedures 353
dump device 786
mirror device 458
remote dump device 567

patindex string function 147
text/image function 39

pattern matching 235
See also String functions; wildcard characters
catalog stored procedure parameters 1177
charindex string function 81
difference string function 113
patindex string function 148

PC DB-Library. See DB-Library programs
percent sign (%)

error message placeholder 593
literal in error messages 595
modulo operator 221
wildcard character 237

performance
concurrency optimization 842
information about 1145
select into and 648
showplan and diagnostics 665
sort_resources and diagnostics 666
triggers and 412
writetext during dump database 723

period (.)
preceding milliseconds 107
separator for qualifier names 232

permissions
assigned by database owner 522
assigning 522
changing with setuser 681
command 527–528
creating with create schema 375–376
displaying user’s 899
dump devices and 787
for creating triggers 416, 530, 621
grant 522–533
granting 1014
information on 1014
new database owner 822
new database user 1053

Index

1400

object 527
“public” group 527–528
revoke command 616–623
revoking 1014
sp_column_privileges information on 1179
sysprotects table 1315
system procedures 726
system tables 1252
system tables entries for 1315

physical database consistency. See dbcc (database
consistency checker)

physical datatypes 782
physical device name 786
physical reads (statistics io) 666
physname option

disk init 453
disk reinit 462

pi mathematical function 150
placeholders

error message percent sign (%) 758
print message 593

plan
create procedure and 353
object 1312
set showplan on and 665
set sort_resources on and 666

plan groups
adding 762
comparing 849
copying 863
copying to a table 947
creating 762
dropping 920
dropping all plans in 905
exporting 947
information about 1007
reports 1007

plans
changing 1124
comparing 849, 851
copying 863, 864
creating with create plan 349
deleting 905
dropping 905, 921
finding 953
modifying 1124

searching for 953
sp_showplan output 1135

platform-independent conversion
hexadecimal strings to integer values 121
integer values to hexadecimal strings 126

plus (+)
arithmetic operator 221
in integer data 11
null values and 224
string concatenation operator 223

pointers
null for uninitialized text or image column 196
text and image page 196
text or image column 36, 39, 604

pointers, device. See segments
pools, memory

configuring 1085
defaults 811

pound sign (#) temporary table name prefix 378
pound sterling sign (£)

in identifiers 230
in money datatypes 17

power mathematical function 151
precedence

binding defaults to columns and datatypes 803
of lower and higher datatypes 228
of operators in expressions 221
order-sensitive commands and 528, 620
resource limits 769
rule binding 373, 809
of user-defined return values 615

preceding blanks. See blanks; spaces, character
precision, datatype

approximate numeric types 15
exact numeric types 12
money types 16
sp_help report on 972
user-defined datatypes 782

preference, uppercase letter sort order 589
prefetch

disabling 819
enabling 819

prefetch keyword
delete 445
select 636
set 663

Index

1401

update 692
prepare transaction command 592
primary key constraint

alter table 270
create table 381

primary keys 397
sp_dropkey procedure 913
sp_foreignkey and 962
sp_helpkey and 1002
sp_primarykey definition of 1090
syskeys table 1297
updating 410

primary option, disk unmirror 468
print command 593–595

local variables and 437
using raiserror or 595

printing user-defined messages 593–595
priority

sp_setpsexe 1123
privileges. See permissions
“probe” login account 1110, 1303
probe process, two-phase commit 1110, 1303
@@probesuid global variable 215
proc_role system function 152
procedure groups 476, 512
procedure option

create existing table 326
procedure plan, create procedure and 353
procedures. See stored procedures; system procedures
process logical name. See logical device name
process_limit_action option, set 663
processes (server tasks)

See also servers
checking locks held 1036
checking locks on 950–952, 1036–1039
ID number 559, 1171
infected, waitfor errorexit 711
killing 559–560
sp_showplan display of 1135–1136
sp_who report on 559, 1171–1173
sysprocesses table 1313
system tables entries for 1313

processexit keyword, waitfor 710
@@procid global variable 215
procid option, set 663
promotion, lock 1120

protection system
command and object permissions 526
groups 750
hierarchy of roles, groups and users 532
locking logins 1040
stored procedures 361
user-defined roles 369

proxy option, set 664
granting 523
revoking 617

proxy tables
mapping to remote tables 326
mapping to remote tables with create proxy_table

366
mapping to remote tables with create table 406

ptn_data_pgs system function 153
“public” group 532, 623, 1339

See also groups
grant and 524
information report 995
permissions 527–528
revoke and 618
sp_addgroup and 750
sp_adduser and 788
sp_changegroup and 823
sp_helpgroup report on 995

public keyword
grant 524
revoke 618

punctuation
characters allowed in identifiers 230
enclosing in quotation marks 727, 1176
in user-defined datatypes 782

Q
qq. See quarter date part
qualifier names 232, 235
quarter date part 61, 107
queries

compilation and optimization 1097
compilation without execution 662
execution settings 654–680
keywords list 662
sp_tables and 1200

Index

1402

syntax check (set parseonly) 662
trigger firing by 411
union 686–689
views and 421
with/without group by and having 537

query analysis
set noexec 662
set statistics io 666
set statistics time 666

query plans
recompiling with sp_recompile 1097
set showplan on and 665

query processing
limiting with sp_add_resource_limit 766
modes 1093–1094
set options for 654

question marks (??)
for partial characters 606

quiesce database command 596–597
quotation marks (“ ”)

comparison operators and 224
for empty strings 227, 229
enclosing constant values 65
enclosing datetime values 19
enclosing parameter values 727, 1176
enclosing reserved words 831
in expressions 229
literal specification of 229, 717
single, and quoted_identifier 837

quoted identifiers
testing 831
using 830, 837–838

quoted_identifier option, set 664

R
radians mathematical function 154
radians, conversion to degrees 112
raiserror command 598–603

compared to print 602
local variables and 437
using print or 595

rand mathematical function 155
range

See also numbers; size

of date part values 61, 107
datediff results 104
errors in mathematical functions 63
money values allowed 16
of recognized dates 19
set rowcount 665
specifying for resource limits 766
wildcard character specification of 238, 239

range locks 1038
range queries

and end keyword 225
between start keyword 225

ratio of filled to empty pages 267
read only database option

setting with sp_dboption 875
setting with sp_setsuspect_granularity 1128

read-only cursors 441
readonly option, sp_serveroption 1115
readpast option

delete command 444
isolation levels and 652
readtext command 605
select command 634
update command 691
writetext command 721

readtext command 604–607
text data initialization requirement 37

real datatype 15
rebuild option, reorg command 612
rebuild_text option, dbcc 430
rebuilding

automatic, of nonclustered index 342
indexes 431
system tables 430, 432
text and image data 430

reclaim_space option, reorg command 611
recompilation

create procedure with recompile option 353, 357
execute with recompile option 512
stored procedures 357, 1097

reconfigure command 608
records, audit 740
recovery

data caches and 813
displaying mode 1128
dump transaction and 506

Index

1403

forcing suspect pages online with
sp_forceonline_db 957

forcing suspect pages online with
sp_forceonline_page 960

listing offline pages 1035
listing suspect databases 1033
setting mode 1128
setting threshold 1131
to specified time in transaction log 575
time and checkpoint 298

recovery fault isolation 958, 1034
recovery of master database 491

after using create database 320
after using disk init 455

re-creating
indexes 431
procedures 360
tables 480
text and image data 430

recursions, limited 415
reducing

storage fragmentation 267
reference auditing option 791
reference information

catalog stored procedures 1175
datatypes 1
dbcc stored procedures 1221
dbcc tables 1343
reserved words 243
system extended stored procedures 1203
system procedures 725–728
system tables 1251
Transact-SQL commands 253–256
Transact-SQL functions 43

references constraint
alter table 273
create table 384

referencing, object. See dependencies, database object
referential integrity

triggers for 408–417
referential integrity constraints 267, 399, 490

binding user messages to 807
create table and 396
cross-database 401, 480
renaming 1103–1104
sysconstraints table 1281

sysobjects table 1309–1310
sysreferences table 1317

regulations
for finding objects 888, 973
sort order ties 589–590

reindex option, dbcc 431
after sp_indsuspect 1032

reinitializing, disk reinit and 462–465
relational expressions 220

See also comparison operators
remapping database objects 1098
remirroring. See disk mirroring
remote logins

See also logins; users
dropping 922
information on 1010
sp_remoteoption for 1099–1100
sysremotelogins table 763–765, 1318
system tables entries for 1318
trusted or untrusted mode 1099

remote procedure calls 646
execute and 516
rollback and 626
sp_password 1080
sysremotelogins table and 1318
sysservers table and 1323

remote procedures, defining 329
remote servers 646

See also servers
changing names of 834, 836
constraints for 270, 273
dropping logins 922
information on 1021
information on logins of 1010
names of 773
passwords on 1080
sp_remoteoption and 1099–1100
sysservers table 1323
system tables entries for 1323

remote users. See remote logins
remove java command 609–610
remove option, disk unmirror 468
removing application contexts 161
removing. See dropping; deleting
renaming 1103–1104

See also sp_rename system procedure

Index

1404

a database 1105–1107
identity of object owner 526
stored procedures 357
triggers 413
views 421
warnings about 1104, 1106

reorg command 611–612
repairing a damaged database 429
repeatable reads isolation level 641
repeated execution. See while loop
replace keyword, alter table 274
replacing user-defined messages 757
replicate string function 156
reporting from dbccdb database

allocation statistics 1239
comprehensive information 1237
configuration information 1225, 1234, 1237
fault information 1230, 1234
full details 1237
I/O statistics 1230

reports
plan groups 1007
sp_who 559, 1171–1173
types of dbcc 431

reserve option, lct_admin function 129
reserved columns 1253
reserved return status values 614
reserved words 243–246

See also keywords
catalog stored procedures and 1176
database object identifiers and 229, 230
as identifiers 826–838
SQL92 244
system procedures and 727
Transact-SQL 243–244

reserved_pgs system function 157
reservepagegap option

alter table 272, 281
create index 338, 346
create table 385, 404
select into 634
sp_chgattribute 841
sp_help report on 974

resource limits
creating 766
dropping 923

information about 1011
modifying 1054
sysresourcelimits table 1319
types of 766

restarting while loops 315
restarts, Server

after using disk refit 461
before using create database 318
using dataserver utility 460, 467

restoring
See also recovery
a damaged master database 461, 462
database with load database 561–569

results
See also output
of aggregate operations 537
cursor result set 441, 518
order by and sorting 586–591
of row aggregate operations 51

resume option, reorg 611
retain option, disk unmirror 468
retaindays option

dump database 487
dump transaction 501

retrieving
error message text 593, 965
similar-sounding words or names 180

return command 613–615
return parameters

output keyword 353, 512
return status

catalog stored procedures 1176
sp_checkreswords 829
stored procedure 511, 613
system procedures 725

reverse string function 158
reversing encryption of source text 1028
revoke auditing option 791
revoke command 616–623

object and command permissions 526
public group and 618
sysprotects table 1315

revoke option, sp_role 1112
revoking

create trigger permission 416, 530, 621
role privileges using with override 478

Index

1405

right string function 160
right-justification of str function 184
rm_appcontext 161
role hierarchies

role_contain and 162
role hierarchies, displaying

using sp_activeroles 738
using sp_displayroles 902

role option
grant 524
revoke 618
set command 664

role_contain system function 162
role_id system function 163
role_name system function 164
roles

adding passwords to 263
checking with proc_role 152
creating (user-defined) 368
displaying with sp_activeroles 738
dropping passwords from 263
granting 532
mutually exclusive 263
permissions and 532
showing system with show_role 172
stored procedure permissions and 532
sysroles table 1320
syssrvroles table 1326
turning on and off with set role 664

roles, system
in sysloginroles table 1302
revoking 618

roles, user-defined
limitations 369
mutual exclusivity and 142
revoking 618
turning on and off 665

rollback command 625–626
begin transaction and 293
commit and 304
triggers and 413, 415

rollback transaction command. See rollback
command

rollback trigger command 413, 627
rollback work command. See rollback command
rolling back processes

checkpoint and 298
parameter values and 516

round mathematical function 165
rounding 165

approximate numeric datatypes 15
datetime values 57
money values 16, 56
str string function and 183

row aggregates 51
compute and 50, 305
difference from aggregate functions 51

row length 277
row lock promotion thresholds

dropping with sp_droprowlockpromote 926
setting with sp_setrowlockpromote 1125
sp_helpdb report on database setting 988

row locks 1039
row size 277
rowcnt system function 167
@@rowcount global variable 215, 679

cursors and 519
set nocount and 679
triggers and 414

rowcount option, set 665
rows, data

number of 1328
rows, index

size of 1328
size of leaf 1328

rows, table
See also select command
aggregate functions applied to 537
comparison order of 589
computing number of, with sp_spaceused 1139
create index and duplication of 335, 339
deleting unlocked 444
deleting with truncate table 684
detail and summary results 51
displaying command-affected 661
grouping 534
insert 551
limiting how many returned 766
number of 167
row aggregates and 51
rowcount setting 665
scalar aggregates applied to 537

Index

1406

selecting unlocked 650
size of 1328
update 690
updating unlocked 690
ways to group 537

rpc auditing option 792
rpc security model A option, sp_serveroption 1115
rpc security model B option, sp_serveroption 1115
rtrim string function 169
rules

See also database objects
binding 373, 808–809
changing names of 833
checking name with sp_checkreswords 829
column definition conflict with 373
creating new 371–374
default violation of 324
displaying source text of 1024
dropping user-defined 479
insert and 552
naming user-created 371, 808
remapping 1098
renaming 1103–1104
system tables and 809
system tables entries for 1278, 1309–1310, 1312
unbinding 1165–1166

running a procedure with execute 511

S
save transaction command 628–629
savepoints

See also checkpoint process
rollback and 625
setting using save transaction 629

scalar aggregates
group by and 537
nesting vector aggregates within 48

scale, datatype 12
decimal 7
IDENTITY columns 12
loss during datatype conversion 10
numeric 7
in user-defined datatypes 782

@@scan_parallel_degree global variable 215, 679

set scan_parallel_degree and 665
scan_parallel_degree option, set 665
scans

cursor 441
number of (statistics io) 666

schemas 375–376
permissions 376

scope of cursors 439
scope of resource limits

changes to active time ranges and 781
information on 1011
specifying 768

search conditions
datetime data 21
group by and having query 535, 539
select 638
where clause 712–718

second date part 62, 107
secondary option, disk unmirror 468
seconds, datediff results in 104
security

See also permissions
command and object permissions 526
functions 64
views and 421

security auditing option 792
security functions 64
security mechanism option, sp_serveroption 1115
seed values

rand function 155
set identity_insert and 661

segmap column, sysusages table 1337
segment column, syssegments table 1322
segments

See also database devices; log segment; space
allocation

adding 771–772
changing names of 834, 837
changing table locking schemes 289
checking names with sp_checkreswords 830
clustered indexes on 342
creating indexes on 272, 340, 342, 383
dbcc checktable report on 428
dbcc indexalloc report on 430
dropping 927–928
extending 772, 948

Index

1407

information about 1018
mapping 772
mapping to a new device 261
monitoring remaining space 775–778, 1062–

1065
names of 272, 383, 386
number of named 319
placing objects on 340
separation of table and index 342, 394
sp_helpthreshold report on 1026
syssegments table 1322
system tables entries for 1322

select auditing option 792
select command 177, 630–653

aggregates and 47
altered rows and 277, 285
create procedure and 357
create view and 419
for browse 199
group by and having clauses 534
insert and 553
local variables and 437
restrictions in standard SQL 49
size of text data to be returned with 667
in Transact-SQL compared to standard SQL 49
variables and 436

select into command 633–648
not allowed with compute 53, 310, 640

select into/bulkcopy/pllsort database option
select into and 648
transaction log dumping and 503

select list 600–601, 632
order by and 639
union statements 687

select option, create view 418
selecting

unlocked rows 650
self_recursion option, set 416, 665
sentence order and numbered placeholders 593
separation, physical

of table and index segments 342, 394
of transaction log device 459, 467

sequence tree, object 1312
sequence. See order by clause; sort order
serial option, disk mirror 458
server aliases 773

server information options. See information (server)
server process ID number. See processes (server tasks)
server user name and ID

suser_id function 191
suser_name function for 192

@@servername global variable 216
servers

See also processes (server tasks); remote servers
adding 773–774
attribute names 1188
capacity for databases 319
dropping 929
information on remote logins 1010
local 773
monitoring activity of 1066
names of 773
options, changing with sp_serveroption 1115–

1118
remote 1021
setting row lock promotion thresholds for 1125
sp_server_info information on 1188
upgrading and sp_checknames 825
upgrading and sp_checkreswords 829

session authorization option, set 665
revoking 523, 617

set command 654–680
See also individual set options
default settings 672
inside a stored procedure 361
inside a trigger 412
lock wait 662
roles and 664
sp_setlangalias and language option 1119
statistics simulate 666
strict_dtm_enforcement 666
transaction isolation level 668
within update 691

set_appcontext 170
setting

auditing options 791
identity gap 403

setting application context 170
setuser auditing option 792
setuser command 681

user impersonation using 526
7-bit terminal, sp_helpsort output 1022

Index

1408

severity levels, error
user-defined messages 602

share option, lock table 579
shared keyword

select 637
shared locks 950, 1037
shared row locks 1039
shift-JIS binary order 88, 179
@@shmem_flags global variable 216
show_role system function 172
show_sec_services security function 173
showplan option, set 665
shutdown command 682–683
side option, disk unmirror 468
sign mathematical function 174
similar-sounding words. See soundex string function
sin mathematical function 175
single quotes. See quotation marks
single user database option

setting with sp_dboption 876
single-byte character sets

char datatype for 23
single-user mode 876

sp_renamedb and 1105
size

See also length; number (quantity of); range; size limit;
space allocation

column 84
columns in table 277
compiled stored procedure 357
composite index 336
database extension 258
estimation of a compiled stored procedure 357
floor mathematical function 117
identifiers (length) 230
image data to be returned with writetext 722
image datatype 31, 1138
initialized database device 456
log device 456, 1043
new database 316
of pi 150
readtext data 604, 606
recompiled stored procedures 357
row 277, 1328
set textsize function 667
tables 390

text data to be returned with select 667
text data to be returned with writetext 722
text datatype 31
text storage 1138
transaction log device 320, 456

size limit
approximate numeric datatypes 15
binary datatype 28
char columns 23
columns allowed per table 390
datatypes 2–4
datetime datatype 19
double precision datatype 15
exact numeric datatypes 11
fixed-length columns 23
float datatype 15
image datatype 28
integer value smallest or largest 117
money datatypes 17
nchar columns 24
nvarchar columns 24
print command 594
real datatype 15
smalldatetime datatype 19
tables per database 390
varbinary datatype 28
varchar columns 23

size of auto identity column configuration parameter
873, 877

size option
disk init 454, 463

skip_ncindex option, dbcc 427
slash (/)

division operator 221
smalldatetime datatype 19

date functions and 108
smallint datatype 11
smallmoney datatype 17, 19
sort operations (order by)

sorting plan for 666
sort order

See also order
ascending 586
changing, and sp_indsuspect system procedure

1032
character collation behavior 176, 177

Index

1409

choices and effects 588
comparison operators and 224
descending 586
group by and having and 545
groups of names 545
information about 1022
order by and 588
rebuilding indexes after changing 431
specifying index with alter table 279
specifying index with create index 343
specifying index with create table 395
syscharsets system table 1275

sort_merge option, set 665
sort_resources option, set 666
sortkey function 177
soundex string function 180
source text

checking for existence of 839
displaying 1024
encryption, reversing 1028
hiding 1028

sp_activeroles system procedure 738
sp_add_qpgroup system procedure 762
sp_add_resource_limit system procedure 766–770
sp_add_time_range system procedure 779–781
sp_addalias system procedure 739
sp_addauditrecord system procedure 740–741
sp_addaudittable system procedure 742
sp_addengine system procedure 744
sp_addexeclass system procedure 745
sp_addextendedproc system procedure 746
sp_addexternlogin system procedure 747–749
sp_addgroup system procedure 750
sp_addlanguage system procedure 751–753
sp_addlogin system procedure 754–756
sp_addmessage system procedure 757–758
sp_addobjectdef system procedure 759–761
sp_addremotelogin system procedure 763–765
sp_addsegment system procedure 771–772

in mixed data and log databases 772
sp_addserver system procedure 773–774
sp_addthreshold system procedure 775–778
sp_addtype system procedure 782–785
sp_addumpdevice system procedure 786–787
sp_adduser system procedure 788–789
sp_altermessage system procedure 790

sp_audit system procedure 791–795
sp_auditdisplay system procedure 894–897
sp_autoconnect system procedure 796–797
sp_bindcache system procedure 798–801
sp_bindefault system procedure 802–803

create default and 323, 803
user-defined datatypes and 41

sp_bindexeclass system procedure 804
sp_bindmsg system procedure 807
sp_bindrule system procedure 808–809

create rule and 372
user-defined datatypes and 41

sp_cacheconfig system procedure 810–818
sp_cachestrategy system procedure 819–821
sp_changedbowner system procedure 822
sp_changegroup system procedure 823–824

sp_dropgroup and 912
sp_checknames system procedure 825
sp_checkreswords system procedure 826–838

return status 829
sp_checksource system procedure 839
sp_chgattribute system procedure 841–844
sp_clearpsexe system procedure 845
sp_clearstats system procedure 846–847
sp_cmp_all_qplans system procedure 849
sp_cmp_qplans system procedure 851
sp_column_privileges catalog stored procedure

1179–1180
sp_columns catalog stored procedure 1181–1182

datatype code numbers 1178
and sp_datatype_info 1184

sp_commonkey system procedure 853–854
sp_companion system procedure 855–857
sp_configure system procedure 858–862

setting display levels for 898
sp_copy_all_qplans system procedure 863
sp_copy_qplan system procedure 864
sp_countmetadata system procedure 865
sp_cursorinfo system procedure 867–869
sp_databases catalog stored procedure 1183
sp_datatype_info catalog stored procedure 1184
sp_dbcc_alterws stored procedure 1224
sp_dbcc_configreport stored procedure 1225
sp_dbcc_createws stored procedure 1226–1227
sp_dbcc_deletedb stored procedure 1228
sp_dbcc_deletehistory stored procedure 1229

Index

1410

sp_dbcc_differentialreport stored procedure 1230–1231
sp_dbcc_evaluatedb stored procedure 1232–1233
sp_dbcc_faultreport stored procedure 1234–1236
sp_dbcc_fullreport stored procedure 1237
sp_dbcc_plandb system procedure 1083–1084
sp_dbcc_runcheck stored procedure 1238
sp_dbcc_statisticsreport stored procedure 1239–1241
sp_dbcc_summaryreport stored procedure 1242–1244
sp_dbcc_updateconfig stored procedure 1245–1247
sp_dboption system procedure 870–877

checkpoints and 298
sp_dbremap system procedure 880
sp_defaultloc system procedure 881–883
sp_depends system procedure 393, 884–889
sp_deviceattr system procedure 890–891
sp_diskdefault system procedure 892–893
sp_displaylevel system procedure 898
sp_displaylogin system procedure 899–901
sp_displayroles system procedure 902
sp_drop_all_qplans system procedure 905
sp_drop_qpgroup system procedure 920
sp_drop_qplan system procedure 921
sp_drop_resource_limit system procedure 923–925
sp_drop_time_range system procedure 931
sp_dropalias system procedure 904
sp_dropdevice system procedure 906
sp_dropengine system procedure 907
sp_dropexeclass system procedure 908
sp_dropextendedproc system procedure 909
sp_dropexternlogin system procedure (Component

Integration Services only) 910
sp_dropglockpromote system procedure 911
sp_dropgroup system procedure 912

See also sp_changegroup
sp_dropkey system procedure 913–914
sp_droplanguage system procedure 915
sp_droplogin system procedure 916
sp_dropmessage system procedure 917
sp_dropobjectdef system procedure (Component

Integration Services only) 918–919
sp_dropremotelogin system procedure 922
sp_droprowlockpromote system procedure 926
sp_dropsegment system procedure 927–928

sp_placeobject and 927
sp_dropserver system procedure 929
sp_dropthreshold system procedure 930

sp_droptype system procedure 932
sp_dropuser system procedure 933
sp_dumpoptimize system procedure 934–938
sp_engine system procedure 939–941
sp_estspace system procedure 942–946
sp_export_qpgroup system procedure 947
sp_extendsegment system procedure 948
sp_familylock system procedure 950–952
sp_find_qplan system procedure 953–954
sp_fkeys catalog stored procedure 1185–1186
sp_flushstats system procedure 956
sp_forceonline_db system procedure 957
sp_forceonline_object system procedure 958–959
sp_forceonline_page system procedure 960–961
sp_foreignkey system procedure 962–963
sp_freedll system procedure 964
sp_getmessage system procedure 965
sp_grantlogin system procedure (Windows NT only)

966
sp_ha_admin system procedure 968

installing with installhasvss 968
sp_help system procedure 41, 969–974
sp_help_qpgroup system procedure 1007–1008
sp_help_qplan system procedure 1009
sp_help_resource_limit system procedure 1011–

1013
sp_helpartition system procedure 975
sp_helpcache system procedure 978
sp_helpconfig system procedure 979–983
sp_helpconstraint system procedure 984–987
sp_helpdb system procedure 988–990
sp_helpdevice system procedure 991–992
sp_helpextendedproc system procedure 993
sp_helpexternlogin system procedure (Component

Integration Services only) 994
sp_helpgroup system procedure 995
sp_helpindex system procedure 996–997
sp_helpjava system procedure 998–999
sp_helpjoins system procedure 1000–1001
sp_helpkey system procedure 1002–1003
sp_helplanguage system procedure 1004
sp_helplog system procedure 1005
sp_helpobjectdef system procedure (Component

Integration Services only) 1006
sp_helpremotelogin system procedure 1010
sp_helprotect system procedure 1014–1017

Index

1411

sp_helpsegment system procedure 1018–1020
sp_helpserver system procedure 1021
sp_helpsort system procedure 1022–1023
sp_helptext system procedure 1024–1025
sp_helpthreshold system procedure 1026
sp_helpuser system procedure 1027
sp_hidetext system procedure 1028
sp_import_qpgroup system procedure 1030–1031
sp_indsuspect system procedure 1032
sp_listsuspect_db system procedure 1033
sp_listsuspect_object system procedure 1034
sp_listsuspect_page system procedure 1035
sp_lock system procedure 1036–1039
sp_locklogin system procedure 1040–1041
sp_logdevice system procedure 1042–1043

log on extension to create database and 1042
sp_loginconfig system procedure (Windows NT only)

1044–1045
sp_logininfo system procedure (Windows NT only)

1046–1047
sp_logiosize system procedure 1048
sp_modify_resource_limit system procedure 1054–

1056
sp_modify_time_range system procedure 1057–

1058
sp_modifylogin system procedure 1051–1053
sp_modifythreshold system procedure 1062–1065
sp_monitor system procedure 1066–1068
sp_monitorconfig system procedure 1069–1073
sp_object_stats system procedure 1074–1076
sp_passthru system procedure 1077–1078
sp_password system procedure 1079–1080
sp_pkeys catalog stored procedure 1187
sp_placeobject system procedure 1081–1082
sp_poolconfig system procedure 1085–1089
sp_primarykey system procedure 1090

sp_foreignkey and 962
sp_processmail system procedure 1091–1092
sp_procqmode system procedure 1093–1094
sp_procxmode system procedure 1095–1096
sp_recompile system procedure 1097
sp_remap system procedure 1098
sp_remoteoption system procedure 1099–1100
sp_remotesql system procedure 1101–1102
sp_rename system procedure 1103–1104
sp_rename_qpgroup system procedure 1108

sp_renamedb system procedure 833, 1105–1107
sp_reportstats system procedure 1109–1110
sp_revokelogin system procedure (Windows NT only)

1111
sp_role system procedure 1112
sp_sendmsg system procedure 1113–1114
sp_server_info catalog stored procedure 1188–1191

sp_tables and 1200
sp_serveroption system procedure 1115–1118
sp_set_qplan system procedure 1124
sp_setlangalias system procedure 1119
sp_setpglockpromote system procedure 1120–1122
sp_setpsexe system procedure 1123
sp_setrowlockpromote system procedure 1125
sp_setsuspect_granularity system procedure 1128–

1130
sp_setsuspect_threshold system procedure 1131
sp_showcontrolinfo system procedure 1132
sp_showexeclass system procedure 1134
sp_showplan system procedure 1135
sp_showpsexe system procedure 1137
sp_spaceused system procedure 1138–1140
sp_special_columns catalog stored procedure 1192
sp_sproc_columns catalog stored procedure 1194

datatype code numbers 1178
sp_ssladmin system procedure 1141–1142
sp_statistics catalog stored procedure 1196
sp_stored_procedures catalog stored procedure

1198
sp_server_info information 1189, 1190

sp_syntax system procedure 1143–1144
sp_sysmon system procedure 1145–1147
sp_table_privileges catalog stored procedure 1199
sp_tables catalog stored procedure 1200

sp_server_info information 1189, 1190
sp_thresholdaction system procedure 1148–1149

threshold procedure 776, 1063
sp_transactions system procedure 429, 1150–1156
sp_unbindcache system procedure 1157–1158
sp_unbindcache_all system procedure 1159
sp_unbindefault system procedure 473, 1160–1161
sp_unbindexeclass system procedure 1162
sp_unbindmsg system procedure 1164
sp_unbindrule system procedure 1165–1166

create rule and 372
drop rule and 479

Index

1412

sp_volchanged system procedure 1167–1170
sp_who system procedure 1171–1173

columns returned 1172
space

See also size; space allocation
adding to database 257–262
for a clustered index 271, 337, 343, 382
clustered indexes and max_rows_per_page 272, 338
database storage 271, 337, 343, 382
dbcc checktable reporting free 428
estimating table and index size 942–946
extents 342, 390
extents for indexes 430
for index pages 271, 337, 382
max_rows_per_page and 272, 338, 383
monitoring remaining with sp_modifythreshold

1062–1065
new database 316
for recompiled stored procedures 357
required for alter table...lock 289
required for reorg rebuild 612
retrieving inactive log 499
running out of 499
sp_spaceused procedure 1138–1140
for stored procedures 356
unused 1139
used on the log segment 428, 499

space allocation
See also database devices; segments
dbcc commands for checking 427–430
future 1081–1082
log device 320, 1043
pages 431
sp_placeobject procedure 1081–1082
system tables entries for 1337
sysusages table 1337
table 390, 427

space management properties
changing with sp_chgattribute 841
create index and 346
create table and 404

space reclamation
reorg reclaim_space for 611

space string function 181
spaces, character

See also blanks

in character datatypes 24–26
empty strings (“ ”) or (’ ’) as 227, 229
inserted in text strings 181
like datetime values and 22
not allowed in identifiers 230
update of 697

speed (Server)
binary and varbinary datatype access 27

speed (server)
create database for load 319
create index with sorted_data 339
dump transaction compared to dump database

506
execute 515
truncate table compared to delete 684
writetext compared to dbwritetext and dbmoretext

723
@@spid global variable 216
spid number 1313

sp_who output 1173
in sysaudits table 1259
in syslogshold 1306

spt_committab table 728
spt_datatype_info table 1177
spt_datatype_info_ext table 1177
spt_monitor table 728
spt_server_info table 1177
spt_values table 728
SQL (used with Sybase databases). See Transact-SQL
SQL standards

aggregate functions and 49
concatenation and 224
set options for 680
set session authorization and 665
SQL pattern matching 1177
user-defined datatypes and 783

SQLSTATE codes 247–252
exceptions 248–252

@@sqlstatus global variable 216
fetch and 519

sqrt mathematical function 182
square brackets []

caret wildcard character [^] and 237, 239
in SQL statements xxvi
wildcard specifier 237

square root mathematical function 182

Index

1413

ss. See second date part
standby_access option

dump transaction 502
online database 583

starting days of named time ranges 779
starting servers

disk mirroring of master device and 460
disk remirroring of master device and 467

starting times of named time ranges 779
startserver utility command

See also Utility Programs manual
disk mirror and 460
disk remirror and 467

statements
create trigger 409
in create procedure 353

statistics
deleting table and column with delete statistics

451
flushing to systabstats 956
generating for unindexed columns 706
returned by global variables 1066
simulated, loading 452, 679
sp_clearstats procedure 846
sp_monitor 1066
sp_reportstats 1109–1110
system tables and 1327, 1328

statistics clause, create index command 339
statistics io option, set 666
statistics simulate option, set command 666
statistics subquerycache option, set 666
statistics time option, set 666
status

database device 892
stored procedures execution 515

status bits in sysdevices 1289
stopping

procedures. See return command
servers 682

storage fragmentation, reducing 267
storage management

text and image data 37
stored procedure triggers. See triggers
stored procedures

See also database objects; system procedures
cache binding and 800, 1158

catalog 1175–1200
changing transaction modes with sp_procxmode

1095–1096
creating 351–362
for dbccdb database 1221
displaying query processing modes with

sp_procqmode 1093–1094
dropping 351, 476–477
dropping groups 476
executing 511
grouping 351, 512
ID numbers 663
naming 351
nesting 357, 515
object dependencies and 884–889, 1288
parseonly not used with 662
permissions granted 523
permissions revoked 617
procid option 663
remapping 1098
renamed database and 1106
renaming 357, 1103–1104
return status 359–360, 511, 515, 613
set commands in 654
sp_checkreswords and 830
sp_recompile and 1097
sp_sproc_columns information on 1194
sp_stored_procedures information on 1198
storage maximums 356
system tables entries for 1278, 1309–1310, 1312

str string function 183
strict dtm enforcement configuration parameter 666
strict_dtm_enforcement option, set command 666
string functions 64–66

See also text datatype
string_rtruncation option, set 667

insert and 553
update and 697

strings
print message 593
truncating 553, 697

strings, concatenating 223
@@stringsize global variable 216
stripe on option

dump database 486
dump transaction 500

Index

1414

load database 562
load transaction 571

structure
See also order
clustered and nonclustered index 335
configuration 1283

stuff string function 186
style values, date representation 90
subgroups, summary values for 309
subqueries

any keyword and 225
in expressions 225
order by and 588
union prohibited in 689

substring string function 187
subtraction operator (-) 221
suid (server user ID)

sysalternates table listing 1255
syslogins table listing 1303

sum aggregate function 189
summary values

generation with compute 309
sundays, number value 105
suser_id system function 191
suser_name system function 192
suspect databases, listing 1033
suspect indexes

See also reindex option, dbcc
forcing online 958, 1034

suspect pages
bringing online 957, 960–961
isolating on recovery 1128–1130, 1131
listing 1035

suspending databases 596
syb_identity keyword

select and 649
syb_sendmsg function 194
sybdiagdb database 982, 1252
syblicenseslog table 1252, 1341
sybsecurity database

dropping 471
system tables in 1250

sybsyntax database 1144
sybsystemdb database

system tables in 1250
sybsystemprocs database

permissions and 726
symbols

See also wildcard characters; Symbols section of this
index

arithmetic operator 221
comparison operator 224
in identifier names 230
matching character strings 237
money 230
in SQL statements xxv
wildcards 237

synonyms
chars and characters, patindex 145, 147
chars for characters, readtext 605
out for output 353, 512
tran, transaction, and work, commit command

303
tran, transaction, and work, rollback command

625
synonyms for datatypes 2
syntax

catalog stored procedures 1176–1177
check using set parseonly 662
checking for reserved words 829
display procedure (sp_syntax) 1143–1144

syntax conventions, Transact-SQL xxv
sysalternates table 1255

aliases 739
sp_dropalias and 904
sysusers table and 739

sysattributes table 1256–1257
sysauditoptions table 1258
sysaudits_01 – sysaudits_08 tables 1259–1274
syscharsets table 1275
syscolumns table 30, 427, 1276–1277
syscomments table 1278

default definitions in 324
procedure definitions in 361
rule definitions in 373
source text in 1025
trigger definitions in 416, 424

sysconfigures table 1279–1280
database size parameter 318

sysconstraints table 1281
sp_bindmsg and 807

syscoordinations table 1282

Index

1415

syscurconfigs table 1283
sysdatabases table 1183, 1285–1287
sysdepends table 1288
sysdevices table 892, 991, 1289–1290

disk init and 455
mirror names in 468

sysengines table 1291
sysgams table 1292
sysindexes table 1293–1295

composite indexes and 348
name column in 37

sysjars table 1296
syskeys table 1297

sp_dropkey and 913
sp_foreignkey and 962
sp_primarykey and 1090

syslanguages table 1004, 1298
sp_droplanguage and 915

syslisteners table 1299
syslkstats table 1075
syslocks table 1300–1301
sysloginroles table 1302
syslogins table 1303–1304
syslogs table 1042, 1305

See also recovery; transaction logs
danger of changing the 1253
infinite loop if changes to 1305
put on a separate device 459, 467, 1042
running dbcc checktable on 428

syslogshold table 1306
sysmessages table 1307

error message text 965
raiserror and 598

sysmonitors table 1308
sysobjects table 1309–1310

trigger IDs and 416
syspartitions table 1311
sysprocedures table 1312

trigger execution plans in 416
sysprocesses table 1313–1314
sysprotects table 1315

grant/revoke statements and 529, 621
sp_changegroup and 533

sysqueryplans table 1316
sysreferences table 1317
sysremotelogins table 763–765, 929, 1318

sp_dropremotelogin and 922
sysresourcelimits table 1319

applicable limits for a login session 769
sp_help_resource_limit and 1012

sysroles table 1320
syssecmechs table 1321
syssegments table 1322
sysservers table 1323–1324

Backup Server and 492, 507
load database and 568
sp_addserver and 773
sp_helpserver and 1021

syssessions
removing old entries 968

syssessions table 1325
syssrvroles table 1326

role_id system function and 163
sysstatistics table 1327

removing statistics with delete statistics 451
systabstats table 1328–1329

flushing statistics to 956
system activities

setting query-processing options for 654–680
shutdown 682

system databases
dumping 491

system datatypes. See datatypes
system extended stored procedures 1203–1219
system functions 66–67
system logical name. See logical device name
system messages

See also error messages; messages
language setting for 661

system messages, language setting for 661
system procedure tables 728

catalog stored procedures and 1177
system procedures

See also create procedure command; individual
procedure names

catalog stored 1175–1200
changing names of 832
create procedure and 351–362
displaying source text of 1024
displaying syntax of 1143–1144
dropping user-defined 476–477
extended stored procedures 1203–1219

Index

1416

help reports 969–1027
list of 725–737
permissions 726
return status 725
updating and 1253
using 725

system procedures results. See information (server)
system roles

displaying with sp_activeroles 738
revoking 618
show_role and 172
stored procedures and 532
sysloginroles table 1302
syssrvroles table 1326

system segment
alter database 261
dropping 928
mapping 772

system tables 1249–1341
See also tables; individual table names
affected by drop table 480
affected by drop view 483
allow updates to system tables parameter and 1253
binding to caches 799
changes dangerous to 1253
dbcc checkcatalog and 427
default definitions in 324
defaults and 803
direct updates dangerous to 835
direct updates to 1253
fixing allocation errors found in 430, 432
keys for 1297
lock table prohibited on 580
master database 1249–1250
permissions on 1252
rebuilding of 430, 432
rule information in 372
rules and 809
space allocation 1081
sysname datatype 31
triggers and 412, 1253
updating 725, 1253

systhresholds table 1330
systimeranges table 1331

ID number storage in 780
range name storage in 766

systransactions table 428, 1332–1334
systypes table 932, 1335–1336
sysusages table 1337
sysusermessages table 1338

error message text 965
raiserror and 598
sp_dropmessage and 917

sysusers table 1339
sysalternates table and 739, 1255

sysxtypes table 1340

T
table count option, set 667
table option

create table 385
table pages

See also pages, data
allocation with dbcc tablealloc 431
system functions 99

table_access auditing option 792
tablealloc option, dbcc 431
tables

allowed in a from clause 634
binding to data caches 798
changing 267–291
changing names of 832
checking name with sp_checkreswords 829
column information 1181
column permission information from

sp_column_privileges 1179–1180
common key between 853–854
creating duplicate 648
creating new 377–407, 633
creating with create schema 375–376
creating with identity column 403
dbcc checkdb and 427
dividing, with group by and having clauses 534–

546
dropping 480–481
dropping keys between 913
dropping row lock promotion thresholds for 926
estimating space for 942
external 366
identifying 232

Index

1417

index location 475, 706
joined common key 853–854
lock promotion thresholds for 1121
locks held on 950, 1037
locks, types of 950, 1037
migration to a clustered index 342, 394
names as qualifiers 232
with no data 648
number considered in joins 667
object allocation maps of 431
object dependencies and 884–889, 1288
partitioning 267, 274, 283–284
permissions on 522
permissions revoked 617
primary keys on 1090
proxy 326
renaming 1103–1104
setting row lock promotion thresholds for 1125
single-group 538
sp_placeobject space allocation for 1081–1082
sp_recompile and 1097
sp_table_privileges information on 1199
sp_tables 1200
space used by 1139
with suspect indexes 1032
system procedure 728, 1177
system tables entries for 1276, 1309–1310
Transact-SQL extension effects and querying

539
unbinding from data caches 1157
unpartitioning 267, 274
worktables 48

tan mathematical function 195
tangents, mathematical functions for 195
tape dump devices

adding 786–787
sysdevices table 1289

tape labels
listonly option to load database 563
listonly option to load transaction 572

tape option, sp_addumpdevice 786
tempdb database

adding objects to 394
auto identity database option and 873
sysobjects table and 393
system tables entries and 1309–1310

systypes table and 394
unique auto_identity index database option and

877
user-defined datatypes in 40

temporary names. See alias, user
temporary tables

create procedure and 360
create table and 378, 393
identifier prefix (#) 378
indexing 341
lock table prohibited on 580
naming 230, 393
sp_help and 973
system procedure 728

terminals
7-bit, sp_helpsort output example 1022
8-bit, sp_helpsort output example 1022

text
copying with defncopy 831
user-defined message 757

text datatype 31–40
convert command 39
converting 56
initializing with null values 36
initializing with update 697
length of data returned 646, 667
null values 36
order by not allowed 588
prohibited actions on 38
size of storage 1138
storage on separate device 604
textsize setting 667
triggers and 412
union not allowed on 689

text functions 67
text page pointer 84
text pointer values 196

readtext and 604
@@textcolid global variable 39, 216
@@textdbid global variable 39, 216
@@textobjid global variable 39, 216
textptr function 196, 604, 606
@@textptr global variable 38, 216
@@textptr_parameters global variable 216
@@textsize global variable 39, 216, 679

readtext and 606

Index

1418

set textsize and 667
textsize option, set 667
@@textts global variable 39, 216
textvalid function 197
Thai dictionary 88, 179
then keyword. See when...then conditions
@@thresh_hysteresis global variable 216

threshold placement and 776
threshold procedures 776

creating 1148
executing 778, 1065
parameters passed to 777, 1064

thresholds
adding 775–778
changing 1062–1065
crossing 776
database dumps and 491
disabling 778, 930, 1065
hysteresis value 776, 1063
information about 1026
last-chance 131, 776, 930, 1063
maximum number 776, 1064
optimization for reducing I/O 842
removing 930
row lock promotion 1125
space between 777
systhresholds table 1330
transaction log dumps and 506

ties, regulations for sort order 589–590
time interval

See also timing
automatic checkpoint 298
elapsed execution (statistics time) 666
estimating index creation 942
limiting 766
reorg 611
for running a trigger 412
since sp_monitor last run 1066
waitfor 710

time option
reorg 611
waitfor 710

time ranges
adding 779
“at all times” 780, 931
changing active time ranges 781

creating 779
dropping 931
entire day 779
IDs for 780
modifying 1057
overlapping 780
systimeranges system table 1331

time values
datatypes 18–22

timeouts option, sp_serveroption 1115
timestamp datatype 17–18

automatic update of 17
browse mode and 17, 199
comparison using tsequal function 199

timestamps, order of transaction log dumps 567
@@timeticks global variable 216
timing

See also time interval
automatic checkpoint 298

tinyint datatype 11
to option

dump database 485
dump transaction 499
revoke 620

@@total_errors global variable 216
sp_monitor and 1067

@@total_read global variable 216
sp_monitor and 1067

@@total_write global variable 216
sp_monitor and 1067

totals
compute command 588

trailing blanks. See blanks
@@tranchained global variable 216, 679
@@trancount global variable 217
transaction isolation level option, set 667
transaction isolation levels

readpast option and 652
transaction logs

See also dump transaction command; syslogs table
backing up 484
data caches and 1088
of deleted rows 447
dump database and 484
dumping 497
inactive space 499

Index

1419

loading 570–578
log I/O size and 1088
master database 491, 504
placing on separate segment 504
purging 491
on a separate device 456, 459, 467, 503, 1042–

1043
space extension 261
space, monitoring 506
syslogs table trunc log on chkpt 503
system tables entries for 1309–1310
thresholds and 930
writetext with log and 721

@@transactional_rpc global variable 217
transactional_rpc option, set 668
transactions 1332

See also batch processing; rollback command;
user-defined transactions

begin 293
canceling. See rollback command
chained 304
dump transaction command 497–510
ending with commit 303
fetch and 518
isolation levels 668
modes 1095–1096
parameters not part of 516
preparing 592
save transaction and 628–629
update iteration within given 696

Transact-SQL
aggregate functions in 49
reserved words 243–244, 829

Transact-SQL commands
executing 511
extensions for 539
summary table 253–256

translation
of arguments 593
of integer arguments into binary numbers 222
of user-defined messages 758

@@transtate global variable 217
trigger tables 413
triggers

See also database objects; stored procedures
changing names of 833

checking name with sp_checkreswords 829
creating 408–417, 530, 621
delete and 448
displaying source text of 1024
dropping 482
enabling self-recursion 416
insert and 553
nested 415–416
nested, and rollback trigger 627
@@nestlevel and 415
object dependencies and 884–889, 1288
on image columns 412
on text columns 412
parseonly not used with 662
recursion 416
remapping 1098
renamed database and 1106
renaming 413, 1103–1104
rollback in 413, 626
rolling back 627
@@rowcount and 414
self-recursion 416
set commands in 654
sp_recompile and 1097
stored procedures and 415
system tables and 412, 1253
system tables entries for 1278, 1309–1310, 1312
time interval 412
truncate table command and 684
update and 694

trigonometric functions 62, 62–195
true | false clauses

sp_dboption 870
sp_remoteoption 1099

true option, sp_changedbowner 822
true/false data, bit columns for 30
trunc log on chkpt database option 876
truncate auditing option 792
truncate table command 684–685

delete triggers and 413
faster than delete command 447

truncate_only option, dump transaction 499, 504
truncation

arithabort numeric_truncation 9
binary datatypes 27
character string 23

Index

1420

datatypes with no length specified 352
datediff results 104
default values 324
insert and 553
log, prohibited on mixed device 317
set string_rtruncation and 667
spaces to a single space 697
str conversion and 184
temporary table names 230
transaction log 497

trusted mode
remote logins and 765

trusted option, sp_remoteoption 1099
truth tables for logical expressions 227
tsequal system function 199
twenty-first century numbers 19
two-phase commit

probe process 1110, 1303

U
UDP messaging 194, 1113
unbind auditing option 792
unbinding

data caches 1157–1158
defaults 324, 473, 1160–1161
objects from caches 1157–1158
rules 479

unconditional branching to a user-defined label 521
underscore (_)

character string wildcard 237, 238
object identifier prefix 210, 230
in temporary table names 230

undoing changes. See rollback command
unencrypting source text 1028
@@unicharsize global variable 217
unicode multilingual, default 88, 179
union operator 686–689

maximum number of tables 687
restrictions on use 689

unique auto_identity index database option 877
unique constraints 397
unique keyword

alter table 270
create index 335

create table 380
unique names as identifiers 231
unload option

dump database 487
dump transaction 501
load database 563
load transaction 571

unloading compressed backups 561, 570
unlocking login accounts 1040
unmapping a segment from a database 927–928
unmirroring devices. See disk mirroring
unpartition clause, alter table 274
unpartitioning

tables 267
unused space

sp_spaceused reporting of 1139
updatable cursors 441
update all statistics command 702, 705
update auditing option 792
update command 690–701

ignore_dup_key and 339
ignore_dup_row and 344
insert and 551
readpast option 691
triggers and 412
triggers and if update 414
views and 422, 700

update index statistics command 705
update partition statistics command 703–704
update row locks 1039
update statistics command 705–708

create index and 341
locking during 706
scan type 706
sort requirements 706

updating
See also changing 17
in browse mode 199
data in views 422
direct to system tables 1253
“dirty” pages 298–299
ignore_dup_key and 339
prevention during browse mode 199
primary keys 410
system procedures and 1253
system tables 1253

Index

1421

trigger firing by 416
unlocked rows 690
writetext 721

upper string function 203, 204
uppercase letter preference 589

See also case sensitivity; order by clause
us_english language 752, 1298

weekdays setting 109, 673
usage statistics 1109
use command 709
use message confidentiality server option 1115
use message integrity server option 1115
used_pgs system function 205
user context for operating system commands

(xp_cmdshell) 1205
User Datagram Protocol messaging 194, 1113
user errors. See errors; severity levels
user groups. See groups; “public” group
user IDs

changing with sp_import_qpgroup 1030
displaying 900
dropping with sp_droplogin and 916
user_id function for 208
valid_user function 211

user keyword
alter table 269
create table 379
system function 207

user names 209
See also database object owners; logins
changing 834
checking with sp_checkreswords 830
finding 192

user objects. See database objects
user permissions. See database owners; permissions
user system function 207
user_id system function 208
user_name system function 209
user-created objects. See database objects
user-defined audit records 791
user-defined datatypes

See also datatypes
binding defaults to 802–803
binding rules to 808
changing names of 833
checking name with sp_checkreswords 829

creating 40, 782–785
dropping 41, 932
hierarchy 784
naming 784
sysname as 31
unbinding defaults from 1160–1161
unbinding rules with sp_unbindrule 1165–1166

user-defined event logging (xp_logevent) 1210
user-defined messages 757–758

unbinding with sp_unbindmsg 1164
user-defined procedures

creating 351–362
creating ESPs with sp_addextendedproc 746
executing 511

user-defined roles
adding passwords to 263
conflicting 265
creating 368
displaying with sp_activeroles 738
mutual exclusivity and 142
revoking 618
syssrvroles table 1326
system procedures and 532
turning on and off 665

user-defined transactions
See also transactions
begin transaction 293
ending with commit 303

users
accounting statistics 846, 1109
adding 754–756, 788–789
change group for 823–824
changing names of 836, 1051–1053
dropping aliased 904
dropping from databases 933
dropping from servers 916
dropping remote 929
guest permissions 532
impersonating (setuser) 526
information on 899, 1027
password change for accounts 1079–1080
permissions of 1014
remote 1010
sp_who report on 1171–1173
syslogins table 1303–1304
system procedure permissions and 529, 726

Index

1422

system tables entries for 1303–1304, 1339
sysusers table 739, 1339

using bytes option, patindex string function 145, 147,
148

using option, readtext 605, 606
using...values option, update statistics command 705
utility commands

See also Utility Programs manual
display syntax 1143–1144

V
valid_name system function 210

using after changing character sets 234
valid_user system function 211
values

displaying with sp_server_info 1188
IDENTITY columns 554
procedure parameter or argument 512

values option, insert 550
varbinary datatype 27–29, 177
varchar datatype 24

datetime values conversion to 22
in expressions 228
spaces in 24
spaces in and insert 553

variable-length character. See varchar datatype
variable-length columns

empty strings in 552
stored order of 589

variables
assigning as part of a select list 632
in update statements 694
local 436–437
in print messages 593
return values and 515

vdevno option
disk init 453
disk reinit 462

vector aggregates 48
group by and 537
nesting inside scalar aggregates 48

@@version global variable 217, 593
@@version_as_integer global variable 217
view name in qualified object name 232

view_access auditing option 792
views

See also database objects; multitable views
allowed in a from clause 634
changes to underlying tables of 422
check option and 698–700
checking name with sp_checkreswords 829
columns 1181
common key between 853–854
creating 418–425
creating with create schema 375–376
displaying source text of 1024
dropping 483
dropping keys between 913
inserting data through 556
object dependencies and 884–889, 1288
permissions on 522, 527
permissions revoked 617
primary keys on 1090
readtext and 606
remapping 1098
renamed database and 1106
renaming 421, 832, 1103–1104
system tables entries for 1276, 1278, 1309–1310,

1312
update and 422, 698–700
updating restrictions 699
with check option 422, 556–557

violation of domain or integrity rules 552
virtual device number 453, 456, 462
virtual page numbers 992
virtual tables 1254
volume handling 1167
volume names, database dumps 494

W
wait option, lock table command 579
wait option, shutdown 682
waitfor command 710–711
waiting for shutdown 682
wash area

configuring 1088
defaults 1088

wash keyword, sp_poolconfig 1085

Index

1423

week date part 61, 107
weekday date part 62, 107
weekday date value

first 751
names and numbers 109, 660, 751

when keyword. See when...then conditions
when...then conditions 295
where clause 712–718

aggregate functions not permitted in 717
delete 444
group by clause and 539
having and 717
null values in a 226
repeating a 542

where current of clause
delete 446
update 692

while keyword 719–720
continue and 315
exiting loop with break 294
loops 719

wildcard characters 235–241
See also patindex string function
in a like match string 237
literal characters and 239
SQL standards pattern matching ($ and _) 1177
used as literal characters 239

with check option option
create view 419
views and 424

with consumers clause, create index 340
with consumers option, update statistics command

705
with default_location keyword

create database command 317
with grant option option, grant 524
with keyword

rollback trigger 627
set role command 665

with log option, writetext 721
with no_error option, set char_convert 658
with no_log option, dump transaction 499
with no_truncate option, dump transaction 502
with nowait option, shutdown 682
with override keyword

alter database 258

create database command 317
with override option 478
with recompile option

create procedure 353
execute 512

with resume option, reorg 611
with standby_access option

dump transaction 502
with statistics clause, create index command 339
with time option, reorg 611
with truncate_only option, dump transaction 499,

504
with wait option, shutdown 682
wk. See week date part
words, finding similar-sounding 180
work session, set options for 654–680
workspaces

dropping 1227, 1344
worktables, number of 48
write operations

logging text or image 721
writes option, disk mirror 458
writetext command 721–723

text data initialization requirement 37
triggers and 413

X
X/Open XA 429
XP Server 1204

freeing memory from 964
xp_cmdshell context configuration parameter 1205
xp_cmdshell system extended stored procedure 1205
xp_deletemail system extended stored procedure

1207
sp_processmail and 1092

xp_enumgroups system extended stored procedure
1208

xp_findnextmsg system extended stored procedure
1209

sp_processmail and 1092
xp_logevent system extended stored procedure 1210
xp_readmail system extended stored procedure 1211

sp_processmail and 1092
xp_sendmail system extended stored procedure 1214

Index

1424

sp_processmail and 1092
xp_startmail system extended stored procedure 1218
xp_stopmail system extended stored procedure 1219

Y
year date part 61, 107
year values, date style 90
yen sign (¥)

in identifiers 230
in money datatypes 17

yes/no data, bit columns for 30
yy. See year date part

Z
zero x (0x) 27, 28, 59
zero-length string output 595
zeros, trailing, in binary datatypes 28–29

	Reference Manual
	About This Book
	CHAPTER 1 System and User-Defined Datatypes
	Datatype categories
	Range and storage size
	Declaring the datatype of a column, variable, or parameter
	Declaring the datatype for a column in a table
	Declaring the datatype for a local variable in a batch or procedure
	Declaring the datatype for a parameter in a stored procedure
	Determining the datatype of a literal

	Datatype of mixed-mode expressions
	Determining the datatype hierarchy
	Determining precision and scale

	Converting one datatype to another
	Automatic conversion of fixed-length NULL columns
	Handling overflow and truncation errors

	Standards and compliance
	Exact numeric datatypes
	Function
	Integer types
	Decimal datatypes
	Standards and compliance

	Approximate numeric datatypes
	Function
	Understanding approximate numeric datatypes
	Range, precision, and storage size
	Entering approximate numeric data
	Values that may be entered by Open Client clients
	Standards

	Money datatypes
	Function
	Accuracy
	Range and storage size
	Entering monetary values
	Standards

	Timestamp datatype
	Function
	Creating a timestamp column

	Date and time datatypes
	Function
	Range and storage requirements
	Entering datetime and smalldatetime data
	Standards and compliance

	Character datatypes
	Function
	Length and storage size
	Entering character data
	Treatment of blanks
	Manipulating character data
	Standards

	Binary datatypes
	Function
	Valid binary and varbinary entries
	Entries of more than the max column size
	Treatment of trailing zeroes
	Platform dependence
	Standards

	bit datatype
	Function
	Entering data into bit columns
	Storage size
	Restrictions
	Standards

	sysname datatype
	Function
	Using the sysname datatype
	Standards

	text and image datatypes
	Function
	Data structures used for storing text and image data
	Format of text data pages
	Text nodes

	Initializing text and image columns
	Saving space by allowing NULL
	Getting information from sysindexes
	Using readtext and writetext
	Determining how much space a column uses
	Restrictions on text and image columns
	Selecting text and image data
	Converting text and image datatypes
	Pattern matching in text data
	Duplicate rows
	Standards

	User-defined datatypes
	Function
	Creating frequently used datatypes in the model database
	Creating a user-defined datatypes
	Renaming a user-defined datatype
	Dropping a user-defined datatype
	Getting help on datatypes
	Standards and compliance

	CHAPTER 2 Transact-SQL Functions
	Types of functions
	Aggregate functions
	Aggregates used with group by
	Aggregate functions and NULL values
	Vector and scalar aggregates
	Aggregate functions as row aggregates

	Datatype conversion functions
	Converting character data to a non-character type
	Converting from one character type to another
	Converting numbers to a character type
	Rounding during conversion to and from money types
	Converting date/time information
	Converting between numeric types
	Arithmetic overflow and divide-by-zero errors
	Scale errors
	Domain errors

	Conversions between binary and integer types
	Converting between binary and numeric or decimal types
	Converting image columns to binary types
	Converting other types to bit
	Converting NULL value

	Date functions
	Date parts

	Mathematical functions
	Security functions
	String functions
	Limits on string functions

	System functions
	Text and image functions
	abs
	acos
	ascii
	asin
	atan
	atn2
	avg
	ceiling
	char
	charindex
	char_length
	col_length
	col_name
	compare
	convert
	cos
	cot
	count
	curunreservedpgs
	data_pgs
	datalength
	dateadd
	datediff
	datename
	datepart
	db_id
	db_name
	degrees
	difference
	exp
	floor
	get_appcontext
	getdate
	hextoint
	host_id
	host_name
	index_col
	index_colorder
	inttohex
	isnull
	is_sec_service_on
	lct_admin
	license_enabled
	list_appcontext
	lockscheme
	log
	log10
	lower
	ltrim
	max
	min
	mut_excl_roles
	object_id
	object_name
	pagesize
	patindex
	pi
	power
	proc_role
	ptn_data_pgs
	radians
	rand
	replicate
	reserved_pgs
	reverse
	right
	rm_appcontext
	role_contain
	role_id
	role_name
	round
	rowcnt
	rtrim
	set_appcontext
	show_role
	show_sec_services
	sign
	sin
	sortkey
	soundex
	space
	sqrt
	str
	stuff
	substring
	sum
	suser_id
	suser_name
	syb_quit()
	syb_sendmsg
	tan
	textptr
	textvalid
	to_unichar
	tsequal
	uhighsurr
	ulowsurr
	upper
	uscalar
	used_pgs
	user
	user_id
	user_name
	valid_name
	valid_user

	CHAPTER 3 Global Variables
	Adaptive Server’s global variables

	CHAPTER 4 Expressions, Identifiers, and Wildcard Characters
	Expressions
	Size of expressions
	Arithmetic and character expressions
	Relational and logical expressions
	Operator precedence
	Arithmetic operators
	Bitwise operators
	String concatenation operator
	Comparison operators
	Nonstandard operators
	Using any, all and in
	Negating and testing
	Ranges
	Using nulls in expressions
	Comparisons that return TRUE
	Difference between FALSE and UNKNOWN
	Using “NULL” as a character string
	NULL compared to the empty string

	Connecting expressions
	Using parentheses in expressions
	Comparing character expressions
	Using the empty string
	Including quotation marks in character expressions
	Using the continuation character

	Identifiers
	Tables beginning with # (temporary tables)
	Case sensitivity and identifiers
	Uniqueness of object names
	Using delimited identifiers
	Identifying tables or columns by their qualified object name
	Using delimited identifiers within an object name
	Omitting the owner name
	Referencing your own objects in the current database
	Referencing objects owned by the database owner
	Using qualified identifiers consistently

	Determining whether an identifier is valid
	Renaming database objects
	Using multibyte character sets

	Pattern matching with wildcard characters
	Using not like
	Case and accent insensitivity
	Using wildcard characters
	The percent sign (%) wildcard character
	The underscore (_) wildcard character
	Bracketed ([]) characters
	The caret (^) wildcard character

	Using multibyte wildcard characters
	Using wildcard characters as literal characters
	Using square brackets ([]) as escape characters
	Using the escape clause

	Using wildcard characters with datetime data

	CHAPTER 5 Reserved Words
	Transact-SQL reserved words
	SQL92 reserved words
	Potential SQL92 reserved words

	CHAPTER 6 SQLSTATE Codes and Messages
	Warnings
	Exceptions
	Cardinality violations
	Data exceptions
	Integrity constraint violations
	Invalid cursor states
	Syntax errors and access rule violations
	Transaction rollbacks
	with check option violation

	CHAPTER 7 Commands
	Overview
	alter database
	alter role
	alter table
	begin...end
	begin transaction
	break
	case
	checkpoint
	close
	coalesce
	commit
	compute clause
	connect to...disconnect
	continue
	create database
	create default
	create existing table
	create function (SQLJ)
	create index
	create plan
	create procedure
	create procedure (SQLJ)
	create proxy_table
	create role
	create rule
	create schema
	create table
	create trigger
	create view
	dbcc
	deallocate cursor
	declare
	declare cursor
	delete
	delete statistics
	disk init
	disk mirror
	disk refit
	disk reinit
	disk remirror
	disk unmirror
	drop database
	drop default
	drop function (SQLJ)
	drop index
	drop procedure
	drop role
	drop rule
	drop table
	drop trigger
	drop view
	dump database
	dump transaction
	execute
	fetch
	goto label
	grant
	group by and having clauses
	if...else
	insert
	kill
	load database
	load transaction
	lock table
	nullif
	online database
	open
	order by clause
	prepare transaction
	print
	quiesce database
	raiserror
	readtext
	reconfigure
	remove java
	reorg
	return
	revoke
	rollback
	rollback trigger
	save transaction
	select
	set
	setuser
	shutdown
	truncate table
	union operator
	update
	update all statistics
	update partition statistics
	update statistics
	use
	waitfor
	where clause
	while
	writetext

	CHAPTER 8 System Procedures
	Introduction to system procedures
	Permissions on system procedures
	Executing system procedures
	Entering parameter values
	Messages
	System procedure tables
	List of system procedures
	sp_activeroles
	sp_addalias
	sp_addauditrecord
	sp_addaudittable
	sp_addengine
	sp_addexeclass
	sp_addextendedproc
	sp_addexternlogin
	sp_addgroup
	sp_addlanguage
	sp_addlogin
	sp_addmessage
	sp_addobjectdef
	sp_add_qpgroup
	sp_addremotelogin
	sp_add_resource_limit
	sp_addsegment
	sp_addserver
	sp_addthreshold
	sp_add_time_range
	sp_addtype
	sp_addumpdevice
	sp_adduser
	sp_altermessage
	sp_audit
	sp_autoconnect
	sp_bindcache
	sp_bindefault
	sp_bindexeclass
	sp_bindmsg
	sp_bindrule
	sp_cacheconfig
	sp_cachestrategy
	sp_changedbowner
	sp_changegroup
	sp_checknames
	sp_checkreswords
	sp_checksource
	sp_chgattribute
	sp_clearpsexe
	sp_clearstats
	sp_client_addr
	sp_cmp_all_qplans
	sp_cmp_qplans
	sp_commonkey
	sp_companion
	sp_configure
	sp_copy_all_qplans
	sp_copy_qplan
	sp_countmetadata
	sp_cursorinfo
	sp_dboption
	sp_dbrecovery_order
	sp_dbremap
	sp_defaultloc
	sp_depends
	sp_deviceattr
	sp_diskdefault
	sp_displayaudit
	sp_displaylevel
	sp_displaylogin
	sp_displayroles
	sp_dropalias
	sp_drop_all_qplans
	sp_dropdevice
	sp_dropengine
	sp_dropexeclass
	sp_dropextendedproc
	sp_dropexternlogin
	sp_dropglockpromote
	sp_dropgroup
	sp_dropkey
	sp_droplanguage
	sp_droplogin
	sp_dropmessage
	sp_dropobjectdef
	sp_drop_qpgroup
	sp_drop_qplan
	sp_dropremotelogin
	sp_drop_resource_limit
	sp_droprowlockpromote
	sp_dropsegment
	sp_dropserver
	sp_dropthreshold
	sp_drop_time_range
	sp_droptype
	sp_dropuser
	sp_dumpoptimize
	sp_engine
	sp_estspace
	sp_export_qpgroup
	sp_extendsegment
	sp_extengine
	sp_familylock
	sp_find_qplan
	sp_fixindex
	sp_flushstats
	sp_forceonline_db
	sp_forceonline_object
	sp_forceonline_page
	sp_foreignkey
	sp_freedll
	sp_getmessage
	sp_grantlogin
	sp_ha_admin
	sp_help
	sp_helpartition
	sp_helpcache
	sp_helpconfig
	sp_helpconstraint
	sp_helpdb
	sp_helpdevice
	sp_helpextendedproc
	sp_helpexternlogin
	sp_helpgroup
	sp_helpindex
	sp_helpjava
	sp_helpjoins
	sp_helpkey
	sp_helplanguage
	sp_helplog
	sp_helpobjectdef
	sp_help_qpgroup
	sp_help_qplan
	sp_helpremotelogin
	sp_help_resource_limit
	sp_helprotect
	sp_helpsegment
	sp_helpserver
	sp_helpsort
	sp_helptext
	sp_helpthreshold
	sp_helpuser
	sp_hidetext
	sp_import_qpgroup
	sp_indsuspect
	sp_listsuspect_db
	sp_listsuspect_object
	sp_listsuspect_page
	sp_lock
	sp_locklogin
	sp_logdevice
	sp_loginconfig
	sp_logininfo
	sp_logiosize
	sp_modifylogin
	sp_modify_resource_limit
	sp_modify_time_range
	sp_modifystats
	sp_modifythreshold
	sp_monitor
	sp_monitorconfig
	sp_object_stats
	sp_passthru
	sp_password
	sp_placeobject
	sp_plan_dbccdb
	sp_poolconfig
	sp_primarykey
	sp_processmail
	sp_procqmode
	sp_procxmode
	sp_recompile
	sp_remap
	sp_remoteoption
	sp_remotesql
	sp_rename
	sp_renamedb
	sp_rename_qpgroup
	sp_reportstats
	sp_revokelogin
	sp_role
	sp_sendmsg
	sp_serveroption
	sp_setlangalias
	sp_setpglockpromote
	sp_setpsexe
	sp_set_qplan
	sp_setrowlockpromote
	sp_setsuspect_granularity
	sp_setsuspect_threshold
	sp_showcontrolinfo
	sp_showexeclass
	sp_showplan
	sp_showpsexe
	sp_spaceused
	sp_ssladmin
	sp_syntax
	sp_sysmon
	sp_thresholdaction
	sp_transactions
	sp_unbindcache
	sp_unbindcache_all
	sp_unbindefault
	sp_unbindexeclass
	sp_unbindmsg
	sp_unbindrule
	sp_volchanged
	sp_who

	CHAPTER 9 Catalog Stored Procedures
	Overview
	Specifying optional parameters
	Pattern matching
	System procedure tables
	ODBC datatypes
	sp_column_privileges
	sp_columns
	sp_databases
	sp_datatype_info
	sp_fkeys
	sp_pkeys
	sp_server_info
	sp_special_columns
	sp_sproc_columns
	sp_statistics
	sp_stored_procedures
	sp_table_privileges
	sp_tables

	CHAPTER 10 System Extended Stored Procedures
	Overview
	Permissions on system ESPs
	DLLs associated with system ESPs
	Using system ESPs
	xp_cmdshell
	xp_deletemail
	xp_enumgroups
	xp_findnextmsg
	xp_logevent
	xp_readmail
	xp_sendmail
	xp_startmail
	xp_stopmail

	CHAPTER 11 dbcc Stored Procedures
	Overview
	Specifying the object name and date
	Specifying the object name
	Specifying the date

	sp_dbcc_alterws
	sp_dbcc_configreport
	sp_dbcc_createws
	sp_dbcc_deletedb
	sp_dbcc_deletehistory
	sp_dbcc_differentialreport
	sp_dbcc_evaluatedb
	sp_dbcc_faultreport
	sp_dbcc_fullreport
	sp_dbcc_runcheck
	sp_dbcc_statisticsreport
	sp_dbcc_summaryreport
	sp_dbcc_updateconfig

	CHAPTER 12 System Tables
	Locations of system tables
	System tables in master
	System tables in sybsecurity
	System table in sybsystemdb
	System tables in all databases
	About the sybdiagdb database
	About the syblicenseslog table

	Rules for using system tables
	Permissions on system tables
	Locking schemes used for system tables
	Reserved columns
	Updating system tables
	Triggers on system tables
	Aggregate functions and virtual tables

	sysalternates
	sysattributes
	sysauditoptions
	sysaudits_01 - sysaudits_08
	syscharsets
	syscolumns
	syscomments
	sysconfigures
	sysconstraints
	syscoordinations
	syscurconfigs
	sysdatabases
	sysdepends
	sysdevices
	sysengines
	sysgams
	sysindexes
	sysjars
	syskeys
	syslanguages
	syslisteners
	syslocks
	sysloginroles
	syslogins
	syslogs
	syslogshold
	sysmessages
	sysmonitors
	sysobjects
	syspartitions
	sysprocedures
	sysprocesses
	sysprotects
	sysqueryplans
	sysreferences
	sysremotelogins
	sysresourcelimits
	sysroles
	syssecmechs
	syssegments
	sysservers
	syssessions
	syssrvroles
	sysstatistics
	systabstats
	systhresholds
	systimeranges
	systransactions
	systypes
	sysusages
	sysusermessages
	sysusers
	sysxtypes
	syblicenseslog

	CHAPTER 13 dbccdb Tables
	dbccdb workspaces
	dbccdb log
	dbcc_config
	dbcc_counters
	dbcc_fault_params
	dbcc_faults
	dbcc_operation_log
	dbcc_operation_results
	dbcc_types

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

