SYBASE

Reference Manual: Building Blocks

Adaptive Server® Enterprise

1251

DOCUMENT ID: DC36271-01-1251-01
LAST REVISED: September 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in thisdocument is subject to change without notice. The software described herein isfurnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile I nspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, DataPipeline, DataWorkbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
Datawindow, DB-Library, dbQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFI X, ImpactNow, | ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, i Script, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo MediaChannel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, Power Script, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trandation Toolkit, UltraLite NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

.. xi
System and User-Defined Datatypesccccceeeeeeeeiieiiiiivieeecieiiiii, 1
Datatype CateQONIEScvviie i 2
Range and StOrage SiZ€occuvveiiieeeiiiiiiiiieee e 2
Declaring the datatype of a column, variable, or parameter............. 4
Declaring the datatype for a columnin atable...........ccccccce...... 4
Declaring the datatype for a local variable in a batch or procedure
5
Declaring the datatype for a parameter in a stored procedure.. 5
Determining the datatype of a literal.............cccoocevveeiiiiciiinnnnenn, 5
Datatype of mixed-mode expressSions..........ccocevvveerernneeeneieees e 6
Determining the datatype hierarchycccccoocoviiiiiieiiiinens 7
Determining precision and SCalec.ocoovevviieeiieee e 8
Converting one datatype to another...........cccccovceve e, 9
Automatic conversion of fixed-length NULL columns................ 9
Handling overflow and truncation errors...........ccccccceeeevviiinnnen. 10
Standards and complianCe...........cvuvveeeeiiiiiiiiie e 11
EXact nUMErC datatyPes.......cccvvviiiieeeiiiiiiiiiece e 11
FUNCHION ..o 11
INEEGET TYPES ... ueteieieiieteteeeeeteeteeeeeeeeeeeeeneeeesesesesssnssnssesssssnssnsnnnes 12
Decimal datatyPesS......ccoovcuvrrriiiieeiiiiiiieer e 13
Standards and complianCeccoovviiiiiiieee e 14
Approximate numeric datatypes.........cccvvvveeeeeeeiiiiiiiiiee e 15
FUNCLIONeiiiii e 15
Understanding approximate numeric datatypes...................... 15
Range, precision, and Storage Size...........ccccevvverericneeennnnen 16
Entering approximate numeric datacccccoveverericneeeninneen. 16
Values that may be entered by Open Client clients 17
SEANAANAS ... 17
MONEY dAtatYPESccviieeiiee ettt 17
FUNCHION ..o 17
ACCUIACY ...ttt e et e e e e ee b s 17
Range and Storage SiZ€ccceeevviiiiiiiieee e 17

Reference Manual: Building Blocks iii

Contents

Entering monetary Values...........cccuvvvveeeeiiiiiiiiiiiee e 18
SEANAANAS ... 18
Timestamp datatyPe.......ccuvrerieeiiiiiiieie e e e eanes 18
FUNCHION. ..ot 18
Creating a timestamp COIUMN..........ooiiiiiiiiie e 19
Date and time datatyPescccoeeieieieiiiieee e 19
FUNCLION. ..ot 20
Range and storage requIiremMentS...........ccoevevrimeeeinneeenneneeenns 20
Entering date and time datacccccceeeiviiiiiiiiiee e 21
Standards and complianCe............cocvviiiiieeeeeiiiiiiiiee e 25
Character datatyPes........uuvveeiiiiiiiiiiiee e e e 25
FUNCHON. ... 25
Length and Storage SiZecoeevviiiviiiieie e 26
Entering character data............occvvvveeieeiiiiciiiee e 28
Treatment of Blanks..........cccooiii 29
Manipulating character data..............ccccoecieiiiiiie e 30
StANAANAS ..coooiiiee 30
Binary datatyPescoocveieiiiireeiieee e 31
FUNCHION. ..ot 31
Valid binary and varbinary entries...........cccccoecveiiiiieniienenns 31
Entries of more than the max column Sizeccoocvvvieeneenn. 31
Treatment of trailing Zeroes..........ccccceveeev i 32
Platform dependencecccccoevveciiieiiiee e 33
SEANAANAS ... 33
DIt AtAtYPE . eeeeeeee e ———— 33
FUNCHON. ... 33
Entering data into bit columns..........ccccceeeviiiiiiiiie e, 34
STOTAQE SIZE ..o 34
RESIICHONS. ... 34
StANAANAS ..coooiiiiee 34
SYSNAME AALALYPEcveveeeeeiiee e 34
FUNCHION. ..ot 34
Using the sysname datatypecccccveeeeiiniiiiiiieeee e 35
SEANAANAS ... 35
text and image datatyPescuveviiceiiieeiiee e ee e e e e 35
FUNCHON. ... 35
Data structures used for storing text and image data.............. 36
Initializing text and image COlUMNS...........cccviveeieee e, 40
Saving space by allowing NULL.........cccccccoevviiiiiiiiieee e, 40
Getting information from SySindeXes...........ccocvevvcrveeeininneennnnn 41
Using readtext and WIteteXt..........coocveeirireee e 41
Determining how much space a column uses............cc.ccceeens 42
Restrictions on text and image Columns...........cccoceverncnienenns 42
Selecting text and image data..........cccccceeeeeniiiiiiieeeee e, 42

Adaptive Server Enterprise

Contents

Converting text and image datatypes..........cccceevvveveerenenennnen 43
Pattern matching in text data............cccceeeeeenniiiiiieneee e, 43
DUPHICALE TOWSeveeiieriiie it 43
SEANAAIAS ..ot 44
User-defined datatypesoccvvveiiiieeiiiiiiiiicce e 44
FUNCHION ..o 44
Creating frequently used datatypes in the model database 44
Creating a user-defined datatypescccccccevvvvviivniieeesisciinnn, 44
Renaming a user-defined datatypecccccoeevvvverieeesiiiivnnnnn, 45
Dropping a user-defined datatypecocoeveeiiveeenicneee e, 45
Getting help on datatypescccevviiiiiiiiiieeeeiieee e 45
Standards and complianCe..........ccccovviiiiiiiiie s 45
CHAPTER 2 Transact-SQL FUNCLIONS ...ccoooiiiiiii e 47
Types Of FUNCHONScooiiiiiiiiii e 47
Aggregate fUNCHONScooiiiiieiiee e 52
Aggregates used With group Byccccoeveiiiii s 53
Aggregate functions and NULL values..........cccccccevvviivinennnenn. 53
Vector and scalar aggregatescccccvvvevvveerieesiiniiiieereee e 53
Aggregate functions as row aggregates........cccccceevvvrcvvvreeeeennn 55
Datatype conversion fUNCLONScoevviiiiiiieee e 58
Converting character data to a non-character type.................. 60
Converting from one character type to another....................... 61
Converting numbers to a character typeccoceeeveerennnn. 61
Rounding during conversion to and from money types........... 61
Converting date/time informationccocooeeivciiieinineeee 62
Converting between NUMENC typesccoovvvvveiicieee e 62
Arithmetic overflow and divide-by-zero errors...........cccocceeeee 63
Conversions between binary and integer typescc.c........ 64
Converting between binary and numeric or decimal types...... 65
Converting image columns to binary typesccccccevvvvvvvenn. 65
Converting other types to bit ..o 65
Converting NULL valueuvvvveee e 66
Date fUNCLIONScooiiiiieiiiei e 66
DAl PANTSuueeieeiiiitieeteteeteeeteeeeeeeeeeeeeeeeeeeeeeeeeeseeseseesesnenseneseenees 66
Mathematical fUNCLIONSccoiiiiiiii e 67
SEeCUTitY TUNCLIONS ... 69
SNG FUNCHONS ...eoiiiiiie e 70
Limits on String fuNCHiONScooviiiiiiiiiiiieeeeee e 71
SYSEM FUNCHIONS ... e 71
Text and image fUNCLONScoooiiiiiiiiiie e 73
A0S 74
BCOS . iiiiiiiiii ettt e e e 75
2 Yo | PO P PRI 76

Reference Manual: Building Blocks Y

Contents

Vi

2 D PP UUP PRI 77
ALAN ..o 78
AINZ Lo 79
L2V PP PP PPPPPPPPPP 80
CRINING ettt 82
CRIAK e 84
CRAINAEX ..o 86
Char_IeNGLN ..o 87
COLIBNGLN .. 89
(oo I 1 1= 10 L= PR 90
(030] 1 0] 0 F= 1 (= SRR PPPPPPPPPPI 91
(010] 017/ SO OO PP PP PP P PP PP PPPP 95
(0] 1 OO PP PP PP TP PPPPPPRPPPN 100
(o]0 | TP PP PP PPPPPPPRPPPN 101
(010 18] | APPSR T PP PPPPPPRPPPN 102
CUITENT_AALE ... e 104
CUITENT_TIME ..t e e e e e 105
CUTUNTESEIVEUADDS «eooevrereeririeesireee st e et e s sree e e s e s e e e nereeens 106
(0 =1 £ T o [0 LR PP PP PPTPPPPRPPRN 108
datalength ... 110
(0 F=1 =T To [o IR OO POTTPPPRPPPN 111
atediff ..o 114
AtENAME ... 117
(0 P> (=] o F= L PP PPRRPP 119
(0 PRSP ERRPP 124
D0 e 125
OB _NAME . 126
EOIEES ..t 127
ENVEA_STAL......eeiiiiiie e 128
IffEIENCE .o 130
Lo PP PP PPPPPPPPPP 131
FlOOT e 132
0L APPCONTEXL...ciiiiiiiiiiiieeeeie ettt 134
[0 <] (0 I L (= 2SRRI 136
NEXEOINT ... 137
NOSE_ i 138
NOSE_NAIME .. 139
Identity _DUIM_MAX.......uuiiiieiiiiiiiiniee e 140
1 Te 1= G oo TR P PRRPP 141
INAEX_COIOTAET ... 142
INEEONEX. ..o 143
ISNUIL . 144
[ISSY o1 =] Vi o =T o) o T 145
ICt_admin ... 146

Adaptive Server Enterprise

Contents

Reference Manual: Building Blocks

= SRS 149
= o PP PP PPRPPP PP 151
license_enabled ... 152
[IST_@PPCONTEXL ..eeeeiiiiiiiiie ettt e e e e e enreeee s 153
[OCKSCNEME ... 154
oo TP RRPPR 155
o T 1 0 P ERRPR 156
JOWVET ...ttt e 157
TEFIMY e 158
1T TP 159
1011 TP 161
MONEN Lo 162
MUE_EXCL_TOIES ... 163
NEWIA ..ttt e e s e e e e s 164
NEXE_IAENTITY ..o 166
(o] o] =X A [o PP PRRRRR 167
(o] o] [=Tod a1 =T o [T PP PPERPP 168
T 10 =15 4= SRR 169
T LT L0 [P ERRRR 171
o PP SRPPP 174
POWET ..ttt e e e et ettt e e e et e e et e e e e e e e enna s 175
PIOC_TOIE ...ttt e e s 176
PIN_dALA_ PUS weveieeeiiiiiiiiie et 177
L= 10 1= 1 0 £SO PRPPR TP 178
7= 1 o [PP P PP PRPPP PP 179
TEPICALE ... e 180
FESEIVEU_PUS wevieeeiiiiiiiiiiee et rttteee e e st r e e e s sb e e e e e e s sanbreeeas 181
TEVEISE ...ttt e e et ettt e e e s et et e e e e s e e et e e e s s e bbb r et e e e s s e b e 182
70 | 0 S TP ERPRR 183
FM_APPCONIEXTE .o 185
o] (=T oo] o ¢- 1 o RSP RRRRR 186
0] (=T T TP ERRRR 187
0] (ST 0 F= 10 L= SRR P PRPPP 188
(o T0 o[o PP USROS 189
FOWCE. . 191
L (0 0 PP 193
SEL_APPCONTEXE. .. eueeeeiiiiiieeessneennnes 194
SNOW_TOIE .. 196
SNOW_SEC_SEIVICES ...oiiiiiiiiiiiiiie ettt 197
LS| D TP PP PPPT T TPPTPPPRP 198
][D OO PP TP PPPPPPPRP 199
SOPEKEY ..ttt et e e ettt e e e s s et a e e s e a e e e s e aa e 200
Lo 100 [o [TSP 205
L] o= Tot = PP PPPPPPPPPPPRIR 206

Vii

Contents

CHAPTER 3

CHAPTER 4

viii

LST0 U= PP PPPPPPPPPPPPPRIR 207
LS | PP PPPPPPPPPPPPPRIRE 208
] | PP PPPPPPPPPP 209
SI_TEPIACE ... 211
STURT e 213
SUDSTIING ettt 215
L5103 TSP PP PP PP PP PP PPPPPPPPPPPPPPPPPR 217
LT U 7= o PSPPI 219
SUSEI_NAMIE «.iiiiitiieeeeeeeetieta s e e e e e e eeataa s s e e eeeeeataaaaaeeeeeessennaaeaaaaees 220
SYD QUIT e 221
SYD _SENAMSY ... 222
T8N e e 223
temMPAD_id .o 224
L(S 41 0] 1 PP PPPPPPPPPPPPPRIR 225
EEXEVAIT ..o 226
L0 TR0 1T = T PSPPI 227
ESEQUAL ...t 228
UNIGNSUIT . e 230
UIOWSUIT ..ttt e e s e e e e e s nnbeeee s 231
(U o] o1 O TR 232
USCAIAT ...ttt 233
BESY=T o I oo 1= RO R P PRRPPRP 234
BT PP TP PP PPRPP P PPPPP 236
B 1Y =T T RO P PRSPPI 237
(7= g o 0 1 TR 238
VAl _NAME ...iiiiiiice e 239
A2 11 To [T 1= PSRRI 240
[VZ=T= L 241
Global Variables..........ocuvi 243
Adaptive Server’s global variablescccccooninii, 243
Expressions, Identifiers, and Wildcard Characters.................. 249
EXPreSSIONS......oiiiiiiiie et 249
Size Of EXPreSSIONSevviiiiiiieiee e 250
Arithmetic and character eXpressionscccccoveveverrceeeennns 250
Relational and logical eXpressions..........cccccovvvevenineeeinnneen 250
Operator PreCEUENCEoovuviiiiiiee e sttt e e e e s e e e e annes 251
ArithmetiC OPEratorscvveei i 251
BitWiSE OPEratOrS......ccciivvviiiiee e ittt e e e e aa e 252
String concatenation OPEratorcccvvvveeeeeeeiiiiiieeee e e 253
ComPAariSON OPETALOrS.......uuuuiiieeeiiiiiirrreeeeesasitrrrreaaeesaneeeeeees 254
Nonstandard OPEerators.occvvvveiieeesiiiiireree e e ceireneeaeeens 254

Adaptive Server Enterprise

Contents

Using any, all and in........coocoveeiiiiieiiee e 255
Negating and teStingccvvvviieiiiiiiiiiee e 255
RANGES ...ttt nnnnnrnee 255
Using NUIIS iN @XPreSSIONSuvvviieeeeeiiiiiiiee e e esiireee e 255
CoNNECtiNG EXPrESSIONS ...ccccviiiiiiieeeeeeeiitriee e e e e siareee e e e e 257
Using parentheses in eXPresSionsceoviireereeessinseennnns 258
Comparing character eXpressions.........cccccveeevieiiinneeeeesiinnns 258
Using the empty String.......cccvvvvieeeeiiiiiiiiieee e 259
Including quotation marks in character expressions 259
Using the continuation character..........cccccooovvviieiieeniiniiinnn, 259
[AENTIFIEIS .. 259
Tables beginning with # (temporary tables)c..ccocoe. 260
Case sensitivity and identifiers..........cccoeeevieennie e 260
Uniqueness of object names ... 261
Using delimited identifiersccccooeiiiiieiiiniiiee e, 261
Identifying tables or columns by their qualified object name. 262
Determining whether an identifier is valid..................cccvvvee. 264
Renaming database objects............cccccvvveeiiiiciiiiie 264
Using multibyte character sets........cccccceeeviviciiiieiee i, 265
Pattern matching with wildcard characters...........ccccccevveeiiiivvnnnn. 265
USING NOt K@ ... 266
Case and accent iINSENSILIVILYccceevriiiiiiieeeeeeriiiieeeeeee 267
Using wildcard charactersccccovvviiiieeieiniiiiiiicee e 267
Using multibyte wildcard characters............coccvvvvviieiiiniinnnen. 269
Using wildcard characters as literal characters..................... 269
Using wildcard characters with datetime data....................... 271
CHAPTER 5 RESEIVEd WOTAS ..ottt e e 273
Transact-SQL reserved WOrdSc..veeeveeeniiiiiiieeeee e 273
ANSI SQL reserved WOrdSccoeee, 274
Potential ANSI SQL reserved words..........ccooeeeeieiiieiiiiiiiceeeeeenn, 275
CHAPTER 6 SQLSTATE Codes and MESSAQESccovvvviveeiiiiiiieereiieee e 277
ATAY = U4 g 11 o PSPPI 277
(o= o) 0] 0 1T PP RSRRR 278
Cardinality VIOIatioNSccoiiiiiiiiieiee e 278
Data eXCEPLIONS......uuieii ittt 279
Integrity constraint violationsccccceee e, 280
INValid CUISOr STALESuvviiiieeiiiiiiieeiiee e 280
Syntax errors and access rule violations.............ccccceceeriis 281
Transaction rollDackscccvuiviieiiiiniiiee e 282
with check option violation.............ccceeeveieiiniiii e, 282
Reference Manual: Building Blocks iX

Contents

X Adaptive Server Enterprise

About This Book

The Adaptive Server Reference Manual includes four guides to Sybase®
Adaptive Server® Enterprise and the Transact-SQL® language:

Building Blocks describes the “ parts” of Transact-SQL : datatypes,
built-in functions, global variables, expressions and identifiers,
reserved words, and SQL STATE errors. Before you can use
Transact-SQL sucessfully, you need to understand what these
building blocks do and how they affect the results of Transact-SQL
Statements.

Commands provides reference information about the Transact-SQL
commands, which you use to create statements.

Procedures provides reference information about system procedures,
catal og stored procedures, extended stored procedures, and dbcc
stored procedures. All procedures are created using Transact-SQL
Statements.

Tables provides reference information about the system tables, which
store information about your server, databases, users, and other
details of your server. It also provides information about the tablesin
the dbcedb and dbccalt databases.

Audience The Adaptive Server Reference Manual isintended as areferencetool for
Transact-SQL users of all levels.

How to use this book .

Reference Manual: Building Blocks

Chapter 1, “ System and User-Defined Datatypes,” which describes
the system and user-defined datatypesthat are supplied with Adaptive
Server and indicates how to use them to create user-defined
datatypes.

Chapter 2, “ Transact-SQL Functions,” lists the Adaptive Server
functions in atable that provides the name and a brief description.

Chapter 3, “Global Variables,” lists the system-defined variablesfor
Adaptive Server in atable that provides the name and a brief
description of the returned status.

Chapter 4, “Expressions, Identifiers, and Wildcard Characters,”
which provides information about using the Transact-SQL language.

Xi

Related documents

Xii

Chapter 5, “Reserved Words,” which provides information about the
Transact-SQL and ANSI SQL keywords.

Chapter 6, “ SQLSTATE Codes and Messages,” which contains
information about Adaptive Server's SQLSTATE status codes and the
associated messages.

The Sybase Adaptive Server Enterprise documentation set consists of the
following:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

Thelnstallation Guidefor your platform — describesinstallation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5.1, the system changes added to support
those features, and the changes that may affect your existing applications.

ASE Replicator User’s Guide — describes how to use the A SE Replicator
feature of Adaptive Server to implement basic replication from a primary
server to one or more remote Adaptive Servers.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

Error Messages and Troubl eshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

Full-Text Search Specialty Data Store User’s Guide— describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Adaptive Server Enterprise

About This Book

e Glossary — defines technical terms used in the Adaptive Server
documentation.

e Historical Server User’s Guide— describeshow to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

« Javain Adaptive Server Enterprise— describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

¢ Job Scheduler User’s Guide — provides instructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or agraphical user interface (GUI).

¢ Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

¢ Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

¢ Performance and Tuning Guide —is a series of four books that explains
how to tune Adaptive Server for maximum performance:

e Basics—the basics for understanding and investigating performance
questionsin Adaptive Server.

e Locking —describes how the variouslocking schemas can be used for
improving performance in Adaptive Server.

e Optimizer and Abstract Plans — describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

¢ Monitoring and Analyzing —explains how statistics are obtained and
used for monitoring and optimizing performance.

¢ Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

¢ Reference Manual —is a series of four books that contains the following
detailed Transact-SQL® information:

¢ Building Blocks — Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

¢ Commands — Transact-SQL commands.

Reference Manual: Building Blocks Xiii

Other sources of
information

Xiv

* Procedures — Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

» Tables— Transact-SQL system tables and dbcc tables.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

System Tables Diagram — illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as atextbook for beginning users of the database management system.
This manual aso contains descriptions of the pubs2 and pubs3 sample
databases.

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
featuresin distributed transaction processing environments.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in ahigh availability system.

Utility Guide — documents the Adaptive Server utility programs, such as
isgl and bcp, which are executed at the operating system level.

Web Services User’s Guide — explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

XML Servicesin Adaptive Server Enterprise — describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
Technical Library Product Manuals Web site to learn more about your product:

Adaptive Server Enterprise

About This Book

The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It isincluded with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using alink provided on the CD).

The Technical Library CD contains product manuals and isincluded with
your software. The DynaText reader (included on the Technical Library
CD) alows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web siteisan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFsUpdates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybasecertifications Technical documentation at the Sybase Web site is updated frequently.

on the Web

< Finding the latest information on product certifications

1

ga A W N

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the | eft.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

« Creating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

Reference Manual: Building Blocks XV

Sybase EBFs and
software
maintenance

< Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.
4 Specify atime frame and click Go.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

SQL isafree-form language. Thereare no rules about the number of wordsyou
can put on aline or where you must break aline. However, for readability, al
exampl es and most syntax statementsin this manual are formatted so that each
clause of astatement beginsonanew line. Clausesthat have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names, command options, utility select

names, utility options, and other keywordsare g, configure

in “command” font (Arial, 8 point). a

Database hames, datatypes, file names and master database

path names are in “database object” font

(Arial, 8 paint).

Book names, file names, variables, and path System Administration Guide

names arein italics. sgll.ini file
column_name
$SYBASE/ASE directory
Variables, or words that stand for values that select column_name
youfill in, arein “variable’ font (Italics). from table_name
where search_conditions
Type parentheses as part of the command. compute row_aggregate (column_name)

XVi Adaptive Server Enterprise

About This Book

Element

Example

Double colon, equals sign indicates that the
syntax iswrittenin BNF notation. Do not type
this symbol. Indicates “is defined as”.

Curly braces mean that you must choose at
least one of the enclosed options. Do not type
the braces.

{cash, check, credit}

Brackets mean that to choose one or more of
the enclosed optionsis optional. Do not type
the brackets.

[cash | check | credit]

The comma means you may choose as many
of the options shown as you want. Separate
your choices with commas as part of the
command.

cash, check, credit

The pipe or vertical bar (|) means you may
select only one of the options shown.

cash | check | credit

An éllipsis (...) means that you can repeat the
last unit as many times asyou like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | credit]]...
You must buy at least onething and giveits price. You may choose
amethod of payment: one of theitems enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

e Syntax statements (displaying the syntax and all options for a command)
appear asfollows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase. Italic font shows user-supplied words.

e Examples showing the use of Transact-SQL commands are printed like

this:

select * from publishers

« Examples of output from the computer appear as follows:

0736 New Age Books

Reference Manual: Building Blocks

XVii

0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley (@)

(3 rows affected)

In this manual, most of the examples arein lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such astable
names, depends on the sort order installed on Adaptive Server. You can change
case sengitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

Xviii Adaptive Server Enterprise

CHAPTER 1 System and User-Defined
Datatypes

This chapter describesthe Transact-SQL datatypes. Datatypes specify the
type, size, and storage format of columns, stored procedure parameters,
and local variables.

Topics covered are:

Topics Page
Datatype categories 2
Range and storage size 2
Declaring the datatype of a column, variable, or parameter 4
Datatype of mixed-mode expressions 6
Converting one datatype to another 9
Standards and compliance 11
Exact numeric datatypes 1
Approximate numeric datatypes 15
Money datatypes 17
Timestamp datatype 18
Date and time datatypes 19
Character datatypes 25
Binary datatypes 31
bit datatype 33
sysname datatype 34
text and image datatypes 35
User-defined datatypes 44

Reference Manual: Building Blocks 1

Datatype categories

Datatype categories

Adaptive Server provides several system datatypes and the user-defined
datatypes timestamp and sysname. Table 1-1 lists the categories of Adaptive
Server datatypes. Each category is described in a section of this chapter.

Table 1-1: Datatype categories

Category

Used for

Exact numeric datatypes

Numeric values (both integers and numberswith adecimal portion) that must be
represented exactly

Approximate numeric datatypes

Numeric data that can tolerate rounding during arithmetic operations

Money datatypes

Monetary data

Timestamp datatype

Tables that are browsed in Client-Library™ applications

Date and time datatypes

Date and time information

Character datatypes Strings consisting of |etters, numbers, and symbols

Binary datatypes Raw binary data, such as pictures, in a hexadecimal-like notation
bit datatype True/false and yes/no type data

sysname datatype System tables

text and image datatypes

Printable characters or hexadecimal-like data that requires more than the
maximum column size provided by you server’'slogica page size.

User-defined datatypes

Defining objects that inherit the rules, default, null type, IDENTITY property,
and base datatype

Range and storage size

Table 1-2 lists the system-supplied datatypes and their synonyms and provides
information about the range of valid values and storage size for each. For
simplicity, thedatatypesare printed in lowercase characters, although Adaptive
Server allows you to use either uppercase or lowercase characters for system
datatypes. User-defined datatypes, such as timestamp, are case sensitive. Most
Adaptive Server-supplied datatypes are not reserved words and can be used to
name other objects.

Table 1-2: Range and storage size for system datatypes

Datatypes Synonyms Range Bytes of storage
Exact numeric datatypes
tinyint 0to 255 1
smallint -215(-32,768) to 21° -1 (32,767) 2
2 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Datatypes Synonyms Range Bytes of storage

int integer -231 (-2,147,483,648) to 4
231 .1 (2,147,483,647)

numeric (p, s) -10%8 10 10%8-1 2to17

decimal (p,s) dec -10%81t0 10%8-1 2to 17

Approximate numeric datatypes

float M achine dependent 40r8

(precision)

double M achine dependent 8

precision

real M achine dependent 4

Money datatypes

smallmoney -214,748.3648 to 214,748.3647 4

money -922,337,203,685,477.5808 to 8
922,337,203,685,477.5807

Date/time datatypes

smalldatetime January 1, 1900 to June 6, 2079 4

datetime January 1, 1753 to 8
December 31, 9999

date January 1 0001 to December 31,9999 4

time 00:00:00:000 to 23:59:59:999 4

Character datatypes

char(n) character Determined by your server'slogical n
page size

varchar(n) char[acter] varying Determined by your server'slogical actua entry length
page size

unichar Unicode character Determined by your server’slogical n* @@unicharsize
page size (@@unicharsize equals 2)

univarchar Unicode character Determined by your server'slogica actua number of characters

varying page size * @@unicharsize

nchar(n) national char[acter] Determined by your server'slogical n* @@ncharsize
page size

nvarchar(n) nchar varying, national Determined by your server'slogical n

char[acter] varying page size
Binary datatypes
binary(n) Determined by your server'slogical n

varbinary(n)

page size

Determined by your server'slogical
page size

actua entry length

Bit datatype

Reference Manual: Building Blocks

Declaring the datatype of a column, variable, or parameter

Datatypes Synonyms Range Bytes of storage

bit Oorl 1 (1 byte holds up to 8 bit
columns)

Text and image datatypes

text 231 .1 (2,147,483,647) bytes or fewer O until initialized, then a
multiple of the logical page size

image 231 .1 (2,147,483,647) bytes or fewer O until initialized, then a

multiple of the logical page size

Declaring the datatype of a column, variable, or
parameter

You must declare the datatype for a column, local variable, or parameter. The
datatype can be any of the system-supplied datatypes or any user-defined
datatype in the database.

Declaring the datatype for a column in a table

Use the following syntax to declare the datatype of a new columnin acreate
table or an alter table statement:

create table [[database.]Jowner.]table_name
(column_name datatype [identity | not null | null]
[, column_name datatype [identity | not null |
null]]...)

alter table [[database.]Jowner.Jtable_name
add column_name datatype [identity | null
[, column_name datatype [identity | null]...

For example:

create table sales_daily
(stor_id char(4)not null,
ord num numeric(10,0)identity,
ord_amt money null)

4 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Declaring the datatype for a local variable in a batch or procedure

Use the following syntax to declare the datatype for alocal variablein abatch
or stored procedure:

declare @variable_name datatype
[, @variable_name datatype]...

For example:

declare @hope money

Declaring the datatype for a parameter in a stored procedure

Use the following syntax to declare the datatype for a parameter in a stored
procedure:
create procedure [owner.]Jprocedure_name [;number]

[[((@parameter_name datatype [= default] [output]
[,@parameter_name datatype [= default]

_ _ loutput])..]]
[with recompile]
as SQL_statements

For example:

create procedure auname_sp @auname varchar (40)
as

select au_lname, title, au_ ord

from authors, titles, titleauthor

where @auname = au_ lname

and authors.au id = titleauthor.au_ id

and titles.title id = titleauthor.title id

Determining the datatype of a literal

Numeric literals

Numeric literals entered with E notation are treated as float; al others are
treated as exact numerics:

 Literals between 231 - 1 and -231 with no decimal point are treated as
integer.

Reference Manual: Building Blocks 5

Datatype of mixed-mode expressions

Character literals

e Literalsthat include adecimal point, or that fall outside the range for
integers, are treated as numeric.

Note To preserve backward compatibility, use E notation for numeric
literals that should be treated asfloat.

Prior to Adaptive Server version 12.5.1, when the client’s character set was
different from the server's character set, conversions were generally enabled to
alow the text of SQL queries to be converted to the server’s character set
before being processed. If any character could not be converted because it
could not be represented in the server’s character set, the entire query was
rejected. This character set “ bottleneck” has been removed in Adaptive Server
version 12.5.1.

You cannot declare the datatype of acharacter literal. Adaptive Server treats
character literals asvarchar, except those that contain charactersthat cannot be
converted to the server’s default character set. Such literals are treated as
univarchar. This makesit possible to perform such queries as selecting unichar
datain aserver configured for “iso_1" using a“gjis’ (Japanese) client. For
example:

select * from mytable where unichar column = ’ jﬁ: !

Since the character literal cannot be represented using the char datatype (in
“iso_1"), it will be promoted to the unichar datatype, and the query will
succeed.

Datatype of mixed-mode expressions

When you perform concatenation or mixed-mode arithmetic on values with
different datatypes, Adaptive Server must determine the datatype, length, and
precision of the result.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Determining the datatype hierarchy

Each system datatype has a datatype hierarchy, which is stored in the
systypes system table. User-defined datatypes inherit the hierarchy of the
system datatype on which they are based.

Thefollowing query ranksthe datatypesin adatabase by hierarchy. In addition
to the information shown below, your query results will include information
about any user-defined datatypes in the database:

select name, hierarchy
from systypes
order by hierarchy

name hierarchy
floatn 1
float 2
datetimn 3
datetime 4
real 5
numericn 6
numeric 7
decimaln 8
decimal 9
moneyn 10
money 11
smallmoney 12
smalldatetime 13
intn 14
int 15
smallint 16
tinyint 17
bit 18
univarchar 19
unichar 20
sysname 22
varchar 22
nvarchar 22
char 23
nchar 23
timestamp 24
varbinary 24
binary 25
text 26
image 27
date 28

Reference Manual: Building Blocks 7

Datatype of mixed-mode expressions

time 29
daten 30
timen 31
extended type 99

(35 rows affected)

The datatype hierarchy determines the results of computations using val ues of
different datatypes. The result value is assigned the datatype that is closest to
the top of thelist.

In the following example, gty from the sales tableis multiplied by royalty from
theroysched table. gty isasmallint, which hasahierarchy of 16; royalty isanint,
which has a hierarchy of 15. Therefore, the datatype of the result isan int:

smallint (gty) * int(royalty) = int

Determining precision and scale

For numeric and decimal datatypes, each combination of precision and scaleis
adistinct Adaptive Server datatype. If you perform arithmetic on two numeric
or decimal values:

* nlwith precision pl and scalesl, and
* N2 with precision p2 and scale n2

Adaptive Server determines the precision and scale of the results as shownin
Table 1-3.

8 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Table 1-3: Precision and scale after arithmetic operations

Operation | Precision Scale

nl+n2 max(sl, s2) + max(pl-sl, p2-s2) + 1 | max(sl, s2)

nl- n2 max(sl, s2) + max(pl-sl, p2-s2) + 1 | max(sl, s2)

nl* n2 sl+s2+ (pl-sl)+(p2-s2)+1 sl+s2

nl/n2 max(sl +p2 + 1, 6) + pl- sl + p2 max(sl + p2-s2 + 1, 6)

Converting one datatype to another

Many conversions from one datatype to another are handled automatically by
Adaptive Server. These are called implicit conversions. Other conversions
must be performed explicitly with the convert, hextoint, and inttohex functions.
See “Datatype conversion functions’ on page 58 for details about datatype
conversions supported by Adaptive Server.

Automatic conversion of fixed-length NULL columns

Only columns with variable-length datatypes can store null values. When you
create aNULL column with afixed-length datatype, Adaptive Server
automatically convertsit to the corresponding variable-length datatype.
Adaptive Server does not inform the user of the datatype change.

Table 1-4 lists the fixed- and variable-length datatypes to which they are
converted. Certain variable-length datatypes, such as moneyn, are reserved
datatypes; you cannot use them to create columns, variables, or parameters:

Reference Manual: Building Blocks 9

Converting one datatype to another

Table 1-4: Automatic conversion of fixed-length datatypes

Original fixed-length datatype

Converted to

char varchar
unichar univarchar
nchar nvarchar
binary varbinary
datetime datetimn
date daten
time timen
float floatn

int, smallint, and tinyint intn
decimal decimaln
numeric numericn
money and smallmoney moneyn

Handling overflow and truncation errors

The arithabort option determines how Adaptive Server behaves when an
arithmetic error occurs. Thetwo arithabort options, arithabort arith_overflow and
arithabort numeric_truncation, handle different types of arithmetic errors. You
can set each option independently, or set both options with asingle set
arithabort on Or set arithabort off statement.

10

arithabort arith_overflow specifies behavior following a divide-by-zero
error or aloss of precision during either an explicit or animplicit datatype
conversion. This type of error is considered serious. The default setting,
arithabort arith_overflow on, rolls back the entire transaction in which the
error occurs. If the error occurs in a batch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier
commands in the batch, but Adaptive Server does not execute any
statements that follow the error-generating statement in the batch.

If you set arithabort arith_overflow off, Adaptive Server abortsthe statement
that causes the error, but continues to process other statementsin the
transaction or batch.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

e arithabort numeric_truncation specifies behavior following aloss of scale
by an exact numeric datatype during an implicit datatype conversion.
(When an explicit conversion resultsin aloss of scale, the results are
truncated without warning.) The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error but
continues to process other statementsin the transaction or batch. If you set
arithabort numeric_truncation off, Adaptive Server truncates the query
results and continues processing.

The arithignore option determines whether Adaptive Server prints awarning

message after an overflow error. By default, the arithignore option isturned off.
This causes Adaptive Server to display awarning message after any query that
results in numeric overflow. To ignore overflow errors, use set arithignore on.

Note The arithabort and arithignore options were redefined for release 10.0. If
you use these optionsin your applications, examine them to be sure they still
produce the desired effects.

Standards and compliance

ANSI SQL — Compliance level: Transact-SQL provides the smallint, int,
numeric, decimal, float, double precision, real, char, varchar, date and time ANSI
SQL datatypes. Thetinyint, binary, varbinary, image, bit, datetime, smalldatetime,
money, smallmoney, nchar, nvarchar,unichar, univarchar, sysname, text,
timestamp, and user-defined datatypes are Transact-SQL extensions.

Exact numeric datatypes

Function

Use the exact numeric datatypes when it isimportant to represent avalue
exactly. Adaptive Server provides exact numeric typesfor both integers (whole
numbers) and numbers with a decimal portion.

Reference Manual: Building Blocks 11

Exact numeric datatypes

Integer types

12

Adaptive Server provides three exact numeric datatypes to store integers: int
(or integer), smallint, and tinyint. Choose the integer type based on the expected
size of the numbersto be stored. Internal storage size varies by type, as shown
in Table 1-5:

Table 1-5: Integer datatypes

Datatype Stores Bytes of storage
intleger] Whole numbers between-23T and 231 - 1 4
(-2,147,483,648 and 2,147,483,647), inclusive.
smallint Whole numbers between -21° and 212 -1 2
(-32,768 and 32,767), inclusive.
tinyint Whole numbers between 0 and 255, inclusive. 1

(Negative numbers are not permitted.)

Entering integer data

Enter integer dataas astring of digitswithout commas. Integer datacaninclude
adecimal point aslong as al digitsto the right of the decimal point are zeros.
Thesmallint and integer datatypes can be preceded by an optional plusor minus
sign. The tinyint datatype can be preceded by an optional plus sign.

Table 1-6 shows somevalid entries for a column with a datatype of integer and
indicates how isqgl displays these values:

Table 1-6: Valid integer values

Value entered Value displayed
2 2

+2 2

-2 -2

2. 2

2.000 2

Table 1-7 lists some invalid entries for an integer column:

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Table 1-7: Invalid integer values

Value entered Type of error

2,000 Commas not allowed.
2- Minus sign should precede digits.
345 Digitsto the right of the decimal point are nonzero digits.

Decimal datatypes

Adaptive Server provides two other exact numeric datatypes, numeric and
dec[imal], for numbers that include decimal points. The numeric and decimal
datatypes are identical in all respects but one: only numeric datatypes with a
scale of 0 can be used for the IDENTITY column.

Specifying precision The numeric and decimal datatypes accept two optional parameters, precision
and scale and scale, enclosed in parentheses and separated by a comma:
datatype [(precision [, scale])]
Adaptive Server treats each combination of precision and scale as a distinct
datatype. For example, numeric(10,0) and numeric(5,0) are two separate
datatypes. The precision and scale determine the range of values that can be
stored in adecimal or numeric column:
e Theprecision specifiesthe maximum number of decimal digitsthat can be
stored in the column. It includes all digits, both to the right and to the left
of the decimal point. You can specify precisionsranging from 1 digit to 38
digits or use the default precision of 18 digits.
¢ Thescale specifiesthe maximum number of digitsthat can be stored to the
right of the decimal point. The scale must be less than or equal to the
precision. You can specify ascaleranging from O digitsto 38 digits or use
the default scale of O digits.
Storage size The storage size for anumeric or decimal column depends on its precision. The

minimum storage requirement is 2 bytesfor a 1- or 2-digit column. Storage size
increases by approximately 1 byte for each additional 2 digits of precision, up
to amaximum of 17 bytes.

Use the following formulato calculate the exact storage size for anumeric or
decimal column:

ceiling (precision / log 256) + 1

For example, the storage size for anumeric(18,4) column is 9 bytes.

Reference Manual: Building Blocks 13

Exact numeric datatypes

Entering decimal data Enter decimal and numeric dataasastring of digits preceded by an optional plus
or minus sign and including an optional decimal point. If the value exceeds
either the precision or scale specified for the column, Adaptive Server returns
an error message. Exact numeric types with ascale of 0 are displayed without
adecimal point.

Table 1-8 shows some valid entries for a column with a datatype of
numeric(5,3) and indicates how these values are displayed by isql:

Table 1-8: Valid decimal values

Value entered Value displayed
12.345 12.345

+12.345 12.345

-12.345 -12.345
12.345000 12.345

12.1 12.100

12 12.000

Table 1-9 shows some invalid entries for a column with a datatype of
numeric(5,3):

Table 1-9: Invalid decimal values

Value entered Type of error

1,200 Commas not allowed.
12- Minus sign should precede digits.
12.345678 Too many nonzero digits to the right of the decimal point.

Standards and compliance

Transact-SQL provides the smallint, int, numeric, and decimal ANSI SQL exact
numeric datatypes. The tinyint type is a Transact-SQL extension.

14 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Approximate numeric datatypes

Function

Use the approximate numeric types, float, double precision, and real, for
numeric data that can tolerate rounding during arithmetic operations. The
approximate numeric types are especially suited to data that covers awide
range of values. They support all aggregate functions and al arithmetic
operations except modulo.

Understanding approximate numeric datatypes

Approximate numeric datatypes, used to store floating-point numbers, are
inherently slightly inaccurate in their representation of real numbers—hence
the name “ approximate numeric”. To use these datatypes, you must understand
their limitations.

When a floating-point number is printed or displayed, the printed
representation is not quite the same as the stored number, and the stored
number is not quite the same as the number that the user entered. Most of the
time, the stored representation is close enough, and software makesthe printed
output look just like the original input, but you must understand the inaccuracy
if you plan to use floating-point numbers for calculations, particularly if you
are doing repeated cal culations using approximate numeric datatypes—the
results can be surprisingly and unexpectedly inaccurate.

The inaccuracy occurs because floating-point numbers are stored in the
computer as binary fractions (that is, as arepresentative number divided by a
power of 2), but the numbers we use are decimal (powers of 10). This means
that only avery small set of numbers can be stored accurately: 0.75 (3/4) can
be stored accurately becauseit isabinary fraction (4isapower of 2); 0.2 (2/10)
can not (10 is not a power of 2).

Some numbers contain too many digits to store accurately. double precision is
stored as 8 binary bytes and can represent about 17 digits with reasonable
accuracy. real is stored as 4 binary bytes and can represent only about 6 digits
with reasonable accuracy.

Reference Manual: Building Blocks 15

Approximate numeric datatypes

If you begin with numbers that are almost correct, and do computations with
them using other numbersthat are almost correct, you can easily end up with a
result that is not even close to being correct. If these considerations are
important to your application, use an exact numeric datatype.

Range, precision, and storage size

Thereal and double precision types are built on types supplied by the operating
system. Thefloat type accepts an optional binary precision in parentheses. float
columnswith aprecision of 1-15 are stored asreal; those with higher precision
are stored as double precision.

The range and storage precision for al three types is machine dependent.

Table 1-10 shows the range and storage size for each approximate numeric
type. Notethat isql displaysonly 6 significant digits after the decimal point and
rounds the remainder:

Table 1-10: Approximate numeric datatypes

Datatype Bytes of storage

float[(default precision)] 4 for default precision < 16
8 for default precision >= 16

double precision 8

real 4

Entering approximate numeric data

16

Enter approximate numeric data as a mantissa followed by an optional
exponent:

* Themantissaisasigned or unsigned number, with or without a decimal
point. The column’s binary precision determines the maximum number of
binary digits allowed in the mantissa.

* Theexponent, which beginswith the character “€” or “E,” must beawhole
number.

The value represented by the entry is the following product:
mantissa * 10EXPONENT

For example, 2.4E3 represents the value 2.4 times 102, or 2400.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Values that may be entered by Open Client clients

“NaN” and“Inf” are specia valuesthat the floating point number standard uses
to represent values that are “not a number” and “infinity,” respectively.
Adaptive Server does not usually permit, and does not check for, these val ues,
but Open Client clients can sometimes force these values into tables.

Standards

ANSI SQL — Compliance level: Thefloat, double precision, and real datatypes
are entry-level compliant.

Money datatypes

Function
Use the money and smallmoney datatypes to store monetary data. You can use
these types for U.S. dollars and other decimal currencies, but Adaptive Server
provides no means to convert from one currency to another. You can use all
arithmetic operations except modulo, and all aggregate functions, with money
and smallmoney data.

Accuracy

Both money and smallmoney are accurate to one ten-thousandth of amonetary
unit, but they round values up to two decimal placesfor display purposes. The
default print format places a comma after every three digits.

Range and storage size

Table 1-11 summarizes the range and storage requirements for money
datatypes:

Reference Manual: Building Blocks 17

Timestamp datatype

Table 1-11: Money datatypes

Datatype

Range Bytes of storage

money

Monetary values between +922,337,203,685,477.5807 and 8
-922,337,203,685,477.5808

smallmoney

Monetary values between +214,748.3647 and -214,748.3648 4

Entering monetary values

Standards

Monetary values entered with E notation are interpreted as float. This may
cause an entry to be rejected or to lose some of its precision wheniit is stored
as amoney or smallmoney value.

money and smallmoney values can be entered with or without a preceding
currency symbol, such asthedollar sign ($), yen sign (¥), or pound sterling sign
(E). To enter a negative value, place the minus sign after the currency symbol.
Do not include commas in your entry.

ANSI SQL — The money and smallmoney datatypes are Transact-SQL
extensions.

Timestamp datatype

Function

18

Use the user-defined timestamp datatype in tables that are to be browsed in
Client-Library™ applications (see “Browse Mode” for more information).
Adaptive Server updates the timestamp column each timeits row is modified.
A table can have only one column of timestamp datatype.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Creating a timestamp column

If you create a column named timestamp without specifying a datatype,
Adaptive Server defines the column as atimestamp datatype:

create table testing
(cl int, timestamp, c2 int)

You can also explicitly assign the timestamp datatype to a column named
timestamp:

create table testing
(cl int, timestamp timestamp, c2 int)

or to a column with another name:

create table testing
(cl int, t stamp timestamp,c2 int)

You can create a column named timestamp and assign it another datatype
(although this could be confusing to other users and would not allow the use of
the browse functions in Open Client™ or with the tsequal function):

create table testing
(cl int, timestamp datetime)

Date and time datatypes

Adaptive Server has various ways to identify date and time. Prior to version
12.5.1, only datetime and smalldatetime were available. As of version 12.5.1,
date and time have been added as separate datatypes.

Datatype Date range Storage size
date January 1, 0001 to December 31, 9999 4
time 12:00:00:000 AM to 11:59:59.999 PM 4
smalldatetime January 1, 1900 to June 6, 2079 4
datetime January 1, 1753 to December 31, 9999 8

Enclose date and time information in single or double quotes. You can enter it
in either uppercase or lowercase letters and include spaces between data parts.
Adaptive Server recognizes awide variety of data entry formats; however,
Adaptive Server rejects values such as 0 or 00/00/00, which are not recognized
as dates.

Reference Manual: Building Blocks 19

Date and time datatypes

Function

The default display format for datesis“Apr 15 1987 10:23PM”. You can use
the convert function for other styles of date display. You can a'so do some
arithmetic cal culations on date and time values with the built-in date functions,
though Adaptive Server may round or truncate millisecond values.

datetime columns hold dates between January 1, 1753 and December 31,
9999. datetime values are accurate to 1/300 second on platforms that
support thislevel of granularity. Storage size is 8 bytes: 4 bytes for the
number of days since the base date of January 1, 1900 and 4 bytes for the
time of day.

smalldatetime columns hold dates from January 1, 1900 to June 6, 2079,
with accuracy to the minute. Its storage size is 4 bytes: 2 bytes for the
number of days after January 1, 1900, and 2 bytes for the number of
minutes after midnight.

date columns hold dates from January 1, 0001 to December 31, 9999.
Storage sizeis 4 bytes.

time is between 00:00:00:000 and 23:59:59:999. You can use either
military time or 12AM for noon and 12PM for midnight. A time value
must contain either a colon or the AM or PM signifier. AM or PM may be
in either upper or lower case.

When entering date and time information always enclose the time or date in
single or double quotes.

Use datetime, smalldatetime, date, and time to store absolute date and time
information. Use timestamp to store binary-type information.

Range and storage requirements

Table 1-12 summarizes the range and storage requirements for the datetime,
smalldatetime, date and time datatypes:

20

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Table 1-12: Transact-SQL datatypes for storing dates and times

Datatype Range Bytes of storage
datetime January 1, 1753 through December 31,9999 8
smalldatetime January 1, 1900 through June 6, 2079 4
date January 1, 0001 to December 31, 9999 4
time 12:00:00 AM to 11:59:59:999 PM 4

Entering date and time data

The datetime and smalldatetime datatypes consist of a date portion either
followed by or preceded by atime portion. (You can omit either the date or the
time, or both.) The date datatype has only adate and the time datatype has only
the time. The values must be enclosed in single or double quotes.

datetime columns hold dates between January 1, 1753 and December 31,
9999. datetime values are accurate to 1/300 of a second on platforms that
support thislevel of granularity. Storage size is 8 bytes: 4 bytes for the
number of days since the base date of January 1, 1900 and 4 bytes for the
time of day.

smalldatetime columns hold dates from January 1, 1900 to June 6, 2079,
with accuracy to the minute. Storage sizeis4 bytes: 2 bytesfor the number
of dayssince January 1, 1900 and 2 bytesfor the number of minutes since
midnight.

date columns hold dates from January 1, 0001 to December 31, 9999.
Storage sizeis 4 bytes.

time columns hold time in hours, minutes, seconds and milliseconds. The
range is between 00:00:00:000 and 23:59:59:999. You can use either
military time or 12AM for noon and 12PM for midnight. A time value
must contain either a colon or the AM or PM signifier. AM or PM may be
in either upper or lower case..

Entering the date Dates consist of a month, day, and year and can be entered in a variety of
formats for date, datetime and smalldatetime:

You can enter the entire date as an unseparated string of 4, 6, or 8 digits,
or use slash (/), hyphen (-), or period (.) separators between the date parts.

e When entering dates as unseparated strings, use the appropriate
format for that string length. Use leading zeros for single-digit years,
months, and days. Dates entered in the wrong format may be
misinterpreted or result in errors.

Reference Manual: Building Blocks 21

Date and time datatypes

* When entering dates with separators, use the set dateformat option to
determine the expected order of date parts. If the first date partina
separated string isfour digits, Adaptive Server interpretsthe string as

yyyy-mm-dd format.

Some date formats accept 2-digit years (yy):

* Numbersless than 50 are interpreted as 20yy. For example, o1 is
2001, 32152032, and 49 is 2049.

* Numbers equal to or greater than 50 are interpreted as 19yy. For

example, 50 151950, 74 is1974, and 99 is 1999.

You can specify the month as either anumber or aname. Month namesand
their abbreviations are |anguage-specific and can be entered in uppercase,

lowercase, or mixed case.

If you omit the date portion of adatetime or smalldatetime value, Adaptive
Server uses the default date of January 1, 1900.

Table 1-13 describes the acceptabl e formats for entering the date portion of a
datetime or smalldatetime value:

Table 1-13: Date formats for date and time datatypes

Date format Interpretation Sample entries Meaning
4-digit string with no separators Interpreted asyyyy. Date defaultsto “1947” Jan 11947

Jan 1 of the specified year.
6-digit string with no separators Interpreted as yymmdd. “450128" Jan 28 2045

For yy < 50, year is 20yy. “520128" Jan 28 1952

For yy >= 50, year is 19yy.
8-digit string with no separators Interpreted as yyyymmdd. “19940415" Apr 15 1994
String consisting of 2-digit The dateformat and language set “4/15/94” All of these entries
month, day, and year separated options determine the expected order “4.15.94” areinterpreted as
by slashes, hyphens, or periods, of date parts. For us_english, the “4-15-94" Apr 15 1994 when
or acombination of the above. default order is mdy. “04.15/94" the dateformat

For yy < 50, year is interpreted as option Is set to

20yy. For yy >= 50, year isinterpreted mdy.

as 19yy.
String consisting of 2-digit The dateformat and language set “04/15.1994" Interpreted as Apr
month, 2-digit day, and 4-digit options determine the expected order 15 1994 when the
year separated by slashes, of date parts. For us_english, the dateformat option
hyphens, or periods, or a default order is mdy. IS set to mdy.

combination of the above.

22

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Date format

Interpretation Sample entries Meaning

Month is entered in character If 4-digit year is entered, date parts “April 15,1994 All of these entries

form (either full monthnameor can be entered in any order. “1994 15 apr” areinterpreted as
its standard abbreviation), “1994 April 15 Apr 15 1994.
followed by an optional “15 APR 1994"
comma.
If day isomitted, all 4 digitsof year ~ “apr 1994” Apr 11994
must be specified. Day defaultsto the
first day of the month.
If year isonly 2 digits (yy), it is “mar 16 17” Mar 16 2017
expected to appear after the day. “apr 15 94" Apr 15 1994
For yy < 50, year isinterpreted as
20yy. For yy >=50, year isinterpreted
as 19yy.
The empty string, “” Date defaults to Jan 1 1900. Jan 1 1900

Entering the time

Displaying formats for
datetime,
smalldatetime, date
values

The time component of a datetime, smalldatetime or time value must be
specified asfollows:

hours|[:minutes|:seconds[:milliseconds]] [AM | PM]

e Use12AM for midnight and 12PM for noon.

e A timevaue must contain either acolon or an AM or PM signifier. The

AM or PM can be entered in uppercase, lowercase, or mixed case.

e The seconds specification can include either a decimal portion preceded
by adecimal point or a number of milliseconds preceded by a colon. For
example, “15:30:20:1" means twenty seconds and one millisecond past
3:30 PM; “15:30:20.1" means twenty and one-tenth of a second past 3:30

PM.

* If you omit thetime portion of adatetime or smalldatetime value, Adaptive

Server uses the default time of 12:00:00:000AM.

The display format for datetime and smalldatetime valuesis“Mon dd yyyy
hh:mmAM” (or “PM”); for example, “Apr 15 1988 10:23PM". To display
seconds and milliseconds, and to obtain additional date styles and date-part
orders, use the convert function to convert the data to a character string.
Adaptive Server may round or truncate millisecond values.

Table 1-14 lists some examples of datetime entries and their display values:

Reference Manual: Building Blocks

23

Date and time datatypes

Displaying formats for
time value

Finding values that
match a pattern

24

Table 1-14: Examples of datetime and date entries

Entry Value Displayed
“1947" Jan 1 1947 12:00AM
“450128 12:30:1PM” Jan 28 2045 12:30PM
“12:30.1PM 450128" Jan 28 2045 12:30PM
“14:30.22" Jan 1 1900 2:30PM
“dam” Jan 1 1900 4:00AM
Examples of date

“1947" Jan 11947

“450128" Jan 28 2045
“520317" Mar 17 1952

The display format for time valuesis “hh:mm:sssmmmAM” (or “PM”); for

example, “10:23:40:022PM.

Table 1-15: Examples of time entries

Entry Value displayed
"12:12:00" 12:12PM
“01:23PM” or “01:23:1PM" 1:23PM
“02:24:00:001” 2:24AM

Usethelike keyword to ook for datesthat match aparticular pattern. If you use
the equality operator (=) to search date or time values for a particular month,
day, and year, Adaptive Server returns only those values for which thetimeis
precisely 12:00:00:000AM.

For example, if you insert the value “9:20” into a column named arrival_time,
Adaptive Server converts the entry into “Jan 1 1900 9:20AM”. If you look for
this entry using the equality operator, it is not found:

where arrival time = "9:20" /* does not match */
You can find the entry using the like operator:
where arrival time like "%9:20%"

When using like, Adaptive Server first converts the dates to datetime or date
format and then to varchar. The display format consists of the 3-character
month in the current language, 2 characters for the day, 4 charactersfor the
year, the time in hours and minutes, and “AM” or “PM.”

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Manipulating dates

When searching with like, you cannot use the wide variety of input formatsthat
are available for entering the date portion of datetime, smalldatetime, date and
time values. Since the standard display formats do not include seconds or
milliseconds, you cannot search for seconds or milliseconds with like and a
match pattern, unless you are also using style 9 or 109 and the convert function.

If you are using like, and the day of the month is a number between 1 and 9,
insert 2 spaces between the month and the day to match the varchar conversion
of the datetime value. Similarly, if the hour isless than 10, the conversion
places 2 spaces between the year and the hour. The following clause with 1
space between “May” and “2") finds al dates from May 20 through May 29,
but not May 2:

like "May 2%"

You do not need to insert the extra space with other date comparisons, only
with like, since the datetime values are converted to varchar only for the like
comparison.

You can do some arithmetic cal cul ations on date and time datatypesvalueswith
the built-in date functions. See “ Date functions’ on page 66.

Standards and compliance

ANSI SQL — Compliance level: The datetime and smalldatetime datatypes are
Transact-SQL extensions. date and time datatypes are entry-level compliant.

Character datatypes

Function

Which datatype you use for a situation depends on the type of datayou are
storing:

¢ Usethe character datatypesto store strings consisting of letters, numbers,
and symbols.

e Usevarchar(n) and char(n) for both single-byte character sets such as
us_english and for multibyte character sets such as Japanese.

Reference Manual: Building Blocks 25

Character datatypes

unichar, univarchar

* Usetheunichar(n) and univarchar(n) datatypesto store unicode characters.
They are useful for single-byte or multibyte characters when you need a
fixed number of bytes per character.

» Usethefixed-length datatype, nchar(n) , and the variable-length datatype,
nvarchar(n), for both singlebyte and multibyte character sets, such as
Japanese. The difference between nchar(n) and char(n) and nvarchar(n) and
varchar(n) isthat both nchar(n) and nvarchar(n) allocate storage based on n
times the number of bytes per character (based on the default character
set). char(n) and varchar(n) allocate just n bytes of storage.

» Character datatypes can store a maximum of a pagesize worth of data

» Usethetext datatype (described in text and image dataty pes)—or multiple
rowsin a subtable—for strings longer than the char or varchar dataype
alow.

You can use the unichar and univarchar datatypes anywhere that you can use
char and varchar character datatypes, without having to make syntax changes.

In Adaptive Server version 12.5.1, queries containing character literals that
cannot be represented in the server’s character set are automatically promoted
to the unichar datatype so you do not have to make syntax changes for data
manipul ation language (DML) statements. Additional syntax is available for
specifying arbitrary charactersin character literals, but the decision to
“promote”’ aliteral to unichar is based solely on representability.

With data definition language (DDL) statements, the syntax changes required
are minimal. For example, in the create table command, the size of a Unicode
column is specified in units of 16-bit Unicode values, not bytes, thereby

mai ntaining the similarity between char(200) and unichar(200). sp_help, which
reports on the lengths of columns, uses the same units. The multiplication
factor (2) is stored in the new global variable @@unicharsize.

See Chapter 7, “Configuring Character Sets, Sort Orders, and Languages,” in
the System Administration Guide for more information about Unicode.

Length and storage size

26

Character variables strip the trailing spaces from strings when the variableis
populated in avarchar column of a cursor.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Use n to specify the number of bytes of storage for char and varchar datatypes.
For unichar, use n to specify the number of unicode characters (the amount of
storage allocated is 2 bytes per character). For nchar and nvarchar, nisthe
number of characters (the amount of storage allocated is n times the number of
bytes per characer for the server’s current default character set).

If you do not use n to specify the length:

e Thedefault length is 1 byte for columns created with create table, alter
table, and variables created with declare.

e Thedefault lengthis 30 bytes for values created with the convert function.

Entries shorter than the assigned length are blank-padded; entries longer than
the assigned length are truncated without warning, unlessthe string_rtruncation
option to the set command is set to on. Fixed-length columns that allow nulls
are internally converted to variable-length columns.

Use n to specify the maximum length in characters for the variable-length
datatypes, varchar(n), univarchar(n), and nvarchar(n) . Datain variable-length
columnsis stripped of trailing blanks; storage size is the actual length of the
data entered. Data in variable-length variables and parameters retains all
trailing blanks, but is not padded to the defined length. Character literals are
treated as variable-length datatypes.

Fixed-length columns tend to take more storage space than variable-length
columns, but are accessed somewhat faster. Table 1-16 summarizesthe storage
requirements of the different character datatypes:

Table 1-16: Character datatypes

Datatype Stores Bytes of storage

char(n) Character n

unichar(n) Unicode character n* @@unicharsize (@@unicharsize equals 2)
nchar(n) Nationa character n* @@ncharsize

varchar(n) Character varying Actua number of characters entered

univarchar(n) Unicode character varying Actua number of characters* @@unicharsize
nvarchar(n) National character varying Actua number of characters* @@ncharsize

Determining column Use the char_length string function and datalength system function to
Lﬁﬂ%{%‘r’]"s'th system determine column length:

* char_length returns the number of charactersin the column, stripping
trailing blanks for variable-length datatypes.

e datalength returns the number of bytes, stripping trailing blanks for data
stored in variable-length columns.

Reference Manual: Building Blocks 27

Character datatypes

When achar value is declared to allow NULLS, Adaptive Server stores it
internally as avarchar.

If the min or max aggregate functions are used on a char column, the result
returned isvarchar, and is therefore stripped of all trailing spaces.

Entering character data

Character strings must be enclosed in single or double quotes. If you use set
quoted_identifier on, use single quotes for character strings; otherwise,
Adaptive Server treats them asidentifiers.

Stringsthat include the double-quote character should be surrounded by single
quotes. Strings that include the single-quote character should be surrounded by
double quotes. For example:

'George said, "There must be a better way."’
"Isn’t there a better way?"

An aternative is to enter two quotation marks for each quotation mark you
want to include in the string. For example:

"George said, ""There must be a better way.""
"Isn’’t there a better way?’

To continue a character string onto the next line of your screen, enter a
backdash (\) before going to the next line.

For more information about quoted identifiers, see the section “Delimited
identifiers’ of the Transact SQL User’s Guide.

Entering Unicode characters

Optional new syntax added in Adaptive Server 12.5.1 allows you to specify
arbitrary Unicode characters. If acharacter literal isimmediately preceded by
U& or u& (with no intervening whitespace), the parser recognizes escape
sequences within the literal. An escape sequence of the form \xxxx (where
XXXX represents 4 hexadecimal digits) is replaced with the Unicode character
whose scalar value is xxxx. Similarly, an escape sequence of the form
\+yyyyyy isreplaced with the Unicode character whose scalar valueisyyyyyy.
The escape sequence \\ is replaced by asingle\. For example:

select * from mytable where unichar column = U&’\4e94’

28 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

is equivalent to:

select * from mytable where unichar column = jﬁ: '

The U& or u& prefix simply enables the recognition of escapes. The datatype
of theliteral ischosen solely on the basis of representability. Thus, for example,
the following two queries are entirely equivalent:

select * from mytable where char column = 'A’
select * from mytable where char column = U&’\0041’

In both cases, the datatype of the character literal ischar, since‘ A’ isan ASCII
character, and ASCII isasubset of all Sybase-supported server character sets.

The U& and u& prefixes also work with the double quoted character literals
and for quoted identifiers. However, quoted identifiers must be representable
in the server’s character set, insofar as all database objects are identified by
namesin system tables, and all such names are of datatype char.

Treatment of blanks

The following example creates a table named spaces that has both fixed- and
variable-length character columns:

create table spaces (cnot char(5) not null,
cnull char(5) null,
vnot varchar(5) not null,
vnull varchar(5) null,
explanation varchar (25) not null)

insert spaces values ("a", "b", "c¢", "d",
"pads char-not-null only")

insert spaces values ("1 LI n,on3 ",
"4 ", "truncates trailing blanks")

insert spaces values (" e", " £, " g",
" h", "leading blanks, no change")

insert spaces values (" w ", x ", " y ",
" z ", "truncates trailing blanks")

insert spaces values (ll Il’ n Il’ n "1 n "1

"empty string equals space")

cnot + "],
cnull + "]",
vnot + "]",
vnull + "]",

select " ["
n [ll
n [ll
n [ll

+ o+ + +

Reference Manual: Building Blocks 29

Character datatypes

(5 rows affected)

explanation from spaces

explanation
[c] [dl pads char-not-null only
[3] [4] truncates trailing blanks
[gl [h] leading blanks, no change
[v] [z] truncates trailing blanks

[1] [] empty string equals space

This example illustrates how the column’s datatype and null type interact to
determine how blank spaces are treated:

e Only char not null and nchar not null columns are padded to the full width
of the column; char null columns are treated like varchar and nchar null
columns are treated like nvarchar.

e Only unichar not null columns are padded to the full width of the column;
unichar null columns are treated like univarchar.

» Preceding blanks are not affected.

e Trailing blanks are truncated except for char, unichar and nchar not null
columns.

* Theempty string (“) istreated as a single space. In char, nchar and
unichar not null columns, the result is a column-length field of spaces.

Manipulating character data

Standards

30

You can use the like keyword to search character strings for particular
characters and the built-in string functions to manipul ate their contents. Strings
consisting of numbers can be used for arithmetic after being converted to exact
and approximate numeric datatypes with the convert function.

ANSI SQL — Compliance level: Transact-SQL provides the char and varchar
ANSI SQL datatypes. The nchar, nvarchar, unichar, and univarchar datatypes
are Transact-SQL extensions.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Binary datatypes

Function

Use the binary datatypes, binary(n) and varbinary(n), to store raw binary data,
such as pictures, in a hexadecimal-like notation, up to the maximum column
size for your server’slogica page size.

Valid binary and varbinary entries

Binary data begins with the characters “0x” and can include any combination
of digits and the uppercase and lowercase |etters A through F.

Use n to specify the column length in bytes, or use the default length of 1 byte.
Each byte stores 2 binary digits. If you enter a value longer than n, Adaptive
Server truncates the entry to the specified length without warning or error.

Use the fixed-length binary type, binary(n), for datain which all entries are
expected to be approximately equal in length.

Use the variable-length binary type, varbinary(n), for datathat is expected to
vary greatly in length.

Because entries in binary columns are zero-padded to the column length (n),
they may reguire more storage space than those in varbinary columns, but they
are accessed somewhat faster.

If you do not use n to specify the length:

e Thedefault length is 1 byte for columns created with create table, alter
table, and variables created with declare.

¢ Thedefault lengthis 30 bytes for values created with the convert function.

Entries of more than the max column size

Use the image datatype to store larger blocks of binary data (up to
2,147,483,647 bytes) on external data pages. You cannot use the image
datatype for variables or for parameters in stored procedures. For more
information, see the section “text and image datatypes.”

Reference Manual: Building Blocks 31

Binary datatypes

Treatment of trailing zeroes

All binary not null columns are padded with zeros to the full width of the
column. Trailing zeros are truncated in al varbinary data and in binary null
columns, since columns that accept null values must be treated as
variable-length columns.

The following example creates a table with all four variations of binary and
varbinary datatypes, NULL and NOT NULL. The same dataisinserted in all
four columns and is padded or truncated according to the datatype of the
column.

create table zeros (bnot binary(5) not null,
bnull binary(5) null,
vnot varbinary(5) not null,
vnull varbinary(5) null)

insert zeros values (0x12345000, 0x12345000, 0x12345000, 0x12345000)
insert zeros values (0x123, 0x123, 0x123, 0x123)

select * from zeros

bnot bnull vnot vnull
0x1234500000 0x123450 0x123450 0x123450
0x0123000000 0x0123 0x0123 0x0123

Because each byte of storage holds 2 binary digits, Adaptive Server expects
binary entriesto consist of the characters“0x” followed by an even number of
digits. When the“0x” isfollowed by an odd number of digits, Adaptive Server
assumes that you omitted the leading 0 and adds it for you.

Input values “0x00” and “0x0” are stored as“0x00" in variable-length binary
columns (binary null, image and varbinary columns). In fixed-length binary
(binary not null) columns, the valueis padded with zerosto the full length of the

field:
insert zeros values (0x0, 0x0,0x0, 0x0)
select * from zeros where bnot = 0x00
bnot bnull vnot vnull
0x0000000000 0x00 0x00 0x00

If the input value does not include the “0x”, Adaptive Server assumesthat the
valueisan ASCII value and convertsit. For example:

32 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

create table sample (col a binary(8))
insert sample values (’002710000000aelb’)

select * from sample
col a

0x3030323731303030

Platform dependence

Theexact forminwhich you enter aparticul ar value depends upon the platform
you are using. Therefore, calculationsinvolving binary data can produce
different results on different machines.

You cannot use the aggregate functions sum or avg with the binary datatypes.

For platform-independent conversions between hexadecimal strings and
integers, use the inttohex and hextoint functions rather than the
platform-specific convert function. For details, see “ Datatype conversion
functions’.

Standards

ANSI SQL — Compliance level: The binary and varbinary datatypes are
Transact-SQL extensions.

bit datatype

Function

Usethebit datatype for columnsthat contain true/fal se and yes/no types of data.
The status column in the syscolumns system table indicates the unique offset
position for bit datatype columns.

Reference Manual: Building Blocks 33

sysname datatype

Entering data into bit columns

bit columns hold either O or 1. Integer values other than O or 1 are accepted, but
are always interpreted as 1.

Storage size

Storage sizeis 1 byte. Multiple bit datatypes in atable are collected into bytes.
For example, 7 bit columns fit into 1 byte; 9 bit columns take 2 bytes.

Restrictions

Columns with a datatype of bit cannot be NULL and cannot have indexes on
them.

Standards
ANSI SQL — Compliance level: Transact-SQL extension.

sysname datatype

Function

sysname is a user-defined datatype that is distributed on the Adaptive Server
installation tape and used in the system tables. Its definition is:

varchar (30) "not null"

34 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Using the sysname datatype

Standards

You can declare a column, parameter, or variable to be of type sysname.
Alternately, you can also create a user-defined datatype with a base type of
sysname and then define columns, parameters, and variables with the
user-defined datatype.

ANSI SQL — Compliance level: All user-defined datatypes, including
sysname, are Transact-SQL extensions.

text and image datatypes

Function

Defining a text or
image column

text columns are variable-length columns that can hold up to 2,147,483,647
(231 - 1) bytes of printable characters.

image columns are variable-length columns that can hold up to 2,147,483,647
(231 - 1) bytes of hexadecimal-like data.

You define atext or image column as you would any other column, with a
create table or alter table statement. text and image datatype definitions do not
include lengths. They do permit null values. The column definition takes the
form:

column_name {text | image} [null]

For example, the create table statement for the author’s blurbs table in the
pubs2 database with atext column, blurb, that permits null values, is:

create table blurbs
(au_id id not null,
copy text null)

To create the au_pix table in the pubs2 database with an image column:

create table au pix
(au_id char(11l) not null,
pic image null,

Reference Manual: Building Blocks 35

text and image datatypes

format_ type char(11) null,
bytesize int null,
pixwidth hor char(14) null,

pixwidth vert char(14) null)

How Adaptive Server Adaptive Server storestext and image datain alinked list of data pagesthat are

gg’t;es text and image separate from the rest of the table. Each text or image page stores one logical
page size worth of data (2, 4, 8, or 16K). All text and image datafor atableis
stored in asingle page chain, regardless of the number of text and image
columns the table contains.

Putting additional You can place subseguent text and image data pages on a different logical

pages on another device with sp_placeobject.

device

Zero padding image valuesthat have an odd number of hexadecimal digits are padded with a
leading zero (an insert of “Oxaaabb” becomes “ 0x0aaabb”).

Effect of partitioning You can use the partition option of the alter table command to partition atable

on data storage that contains text and image columns. Partitioning the table creates additional

page chains for the other columnsin thetable, but has no effect on the way the
text and image columns are stored.

Data structures used for storing text and image data

When you allocate text or image data, a 16-byte text pointer isinserted into the
row you allocated. Part of thistext pointer refersto atext page number at the
head of the text or image data. Thistext pointer is known as the first text page
(FTP).

The FTP contains two parts:

* Thetext datapage chain, which contains the your text and image dataand
isadouble-linked list of text pages.

* Theoptional text-node structure, which is used to access the user text data

Once an FTP is allocated for text or image data, it is never deallocated. If an
update to an existing text or image datarow resultsin fewer text pagesthan are
currently allocated for this text or image data, Adaptive Server deallocates the
extratext pages. If an update to text or image data setsthe valueto NULL, all
pages except the FTP are deallocated.

Figure 1-1 shows the relationship between the datarow and the text pages

36 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Figure 1-1: Relationship between the textpointer and datarows

Datarow
C_char -&—includes
5 columns

C_int §| C_float

: i

FTP \E 3/ FTP
\ \
v v

Text and image pages

In Figure 1-1, columns c_text and c_image are text and image columns
containing the pages at the bottom of the picture.

Format of text data pages
Each text data page contains user text and image data, and a section known as
the text and image pages stats area (TIPSA).
The TIPSA contains information about the text and image datathat is

contained on the current text page. For instance, in aserver configured for
multibyte character sets, the TIPSA contains the number of whole characters

that are on the current page.

On the FTP, thereis an additional areawith contains the head of the text node
datastructure. Thisareais known asthe L0 cache. Thetext node data structure

is descibed bel ow.
Figure 1-2 descibes the format of a FTP:

Reference Manual: Building Blocks 37

text and image datatypes

Text nodes

38

Figure 1-2: Description of the text or image page layout

Page header

Text or image data
Text or image page layout

Head of text node

Text or image page
stats area

A text node is ahierachical tree data structure that maps byte offsets (and
character offsets for multibyte servers) to text pages for text data. Text nodes
are used for:

» Text-page prefetch

» Indexing to text or image data when starting offsets are specified for
readtext

Each entry in the text node points to the text or image data page where a byte
offset (or character for multibyte servers) begins. Using this data structure,
when given an offset into text/image data, the starting page can be determined,
and thetext or image dataisread starting at that offset. Thiseliminatesthe need
of having to start at the beginning of the text or image data and discarding all
of the data the comes before the offset.

Text nodestake advantage of the fact that text or image data pagesaretypicaly
allocated with multiple runs of consecutive page numbers. This means there
does not need to be a one to one correspondence between the pages allocated
to the text or image data, and the number of entries in the text node, which
results in reducing the number of pages that are allocated to the text or image
data.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Figure 1-3 describes this compression:

Figure 1-3: How text or image page numbers are allocated

Pages 300 to 310 Pages 330 to 345 Pages 392 to 411
FTP| - - -

Inthisexample, thetext or image datais made up of 87 text or image pages, but
because there are three separate runs of consecutive page numbers, (300 to
310), (330 to 345), and (392 to 411), only three text node entries are needed,
not 87.

Thetext nodeissaved with the text or image data. Depending on the size of the
text node, extratext or image pages may be required to store the text node. The
size of the text node depends on the size of the text or image data, and the
amount of ‘compression’ achieved. Although smaller text nodes do not require
extratext or image pages, larger text nodes will require them.

The head of the text node, the LO-cache, is stored on the FTP.

Figure 1-4 describes the structure of atext node. L0 cache isthe text node, and
L1 and L2 areindirect nodes that point to text or image data pages.

Figure 1-4: Structure of the text node

Direct pointersto

LO-cache) >| |‘ *| | text ec;rimage data
saved as _>| |_ ’| | pag
|

FTP
_______ —> [>
o —> >
LO-main | |_>|

v
!
v
H

L2 | L

L2 indirect node

Reference Manual: Building Blocks 39

text and image datatypes

Initializing text and image columns

text and image columns are not initialized until you update them or insert a
non-null value. Initialization allocates at least one data page for each non-null
text or image datavalue. It also creates a pointer in the table to the location of
the text or image data.

For example, thefollowing statements create the table testtext and initialize the
blurb column by inserting a non-null value. The column now has avalid text
pointer, and the first text page has been alocated.

create table texttest

(title_id varchar(6), blurb text null, pub_id char(4))
insert texttest values

("BU7832", "Straight Talk About Computers is an
annotated analysis of what computers can do for you: a
no-hype guide for the critical user.", "1389")

The following statements create atable for image values and initialize the
image column:

create table imagetest

(image_id varchar(6), imagecol image null, graphic id
char (4))

insert imagetest values

("94732", 0x0000008300000000000100000000013¢c, "1389")

Note Remember to surround text values with quotation marks and precede
image values with the characters “0x”.

For information on inserting and updating text and image data with
Client-Library programs, see the Client-Library/C Reference Manual.

Saving space by allowing NULL

40

To save storage space for empty text or image columns, define them to permit
null valuesand insert nullsuntil you usethe column. Inserting anull value does
not initialize atext or image column and, therefore, does not create a text
pointer or allocate storage. For example, thefollowing statement inserts values
into thetitle_id and pub_id columns of the testtext table created above, but does
not initialize the blurb text column:

insert texttest
(title_id, pub_id) wvalues ("BU7832", "1389")

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

After atext or image row is given anon-null value, it always contains at least
one data page. Resetting the value to null does not deallocate its data page.

Getting information from sysindexes

Each table with text or image columns has an additional row in sysindexes that
provides information about these columns. The name column in sysindexes
uses the form “tablename”. Theindid is aways 255. These columns provide
information about text storage:

Table 1-17: Storage of text and image data

Column Description

ioampg Pointer to the allocation page for the text page chain
first Pointer to the first page of text data

root Pointer to the last page

segment Number of the segment where the object resides

You can query the sysindexes table for information about these columns. For
example, the following query reports the number of data pages used by the
blurbs table in the pubs2 database:

select name, data pgs(object id("blurbs"), ioampg)
from sysindexes

where name = "tblurbs"

name

tblurbs 7

Note The system tables poster shows a one-to-one (1-1) relationship between
sysindexes and systabstats. Thisis correct, except for text and image columns,
for which information is not kept in systabstats.

Using readtext and writetext

Before you can use writetext to enter text data or readtext to read it, you must
initialize the text column. For details, see readtext and writetext.

Reference Manual: Building Blocks 41

text and image datatypes

Using update to replace existing text and image datawith NULL reclaims all
allocated data pages except the first page, which remains available for future
use of writetext. To deallocate all storage for the row, use delete to remove the
entire row.

Determining how much space a column uses

sp_spaceused provides information about the space used for text data as

index_size:
sp_spaceused blurbs
name rowtotal reserved data index size unused
blurbs 6 32 KB 2 KB 14 KB 16 KB

Restrictions on text and image columns
text and image columns cannot be used:
» Asparametersto stored procedures or as val ues passed to these parameters
* Asloca variables
e Inorder by clause, compute clause, group by, and union clauses
* Inanindex
* Insubqueriesor joins
* Inawhere clause, except with the keyword like
» With the + concatenation operator

* Intheif update clause of atrigger

Selecting text and image data
The following global variables return information on text and image data:

Table 1-18: text and image global variables
Variable Explanation

@@textptr Thetext pointer of the last text or image column inserted or updated by a process. Do not confuse
this global variable with the textptr function.

42 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Variable Explanation

@@textcolid ID of the column referenced by @@textptr.

@@textdbid ID of adatabase containing the object with the column referenced by @@textptr.

@@textobjid ID of the object containing the column referenced by @@textptr.

@@textsize Current value of the set textsize option, which specifies the maximum length, in bytes, of text or
image data to be returned with a select statement. It defaults to 32K. The maximum size for
@@textsizeis 231 - 1 (that is, 2,147,483,647).

@@textts Text timestamp of the column referenced by @@textptr.

Converting text and image datatypes

Pattern matching

Duplicate rows

You can explicitly convert text valuesto char, unichar, varchar, and univarchar,
and image values to binary or varbinary with the convert function, but you are
limited to the maximum length of the character and binary datatypes, whichis
determined by the maximum column sizefor your server’slogical page size. If
you do not specify the length, the converted value has a default length of 30
bytes. Implicit conversion is not supported.

in text data

Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in atext, varchar, univarchar, unichar or char
column. The % wildcard character must precede and follow the pattern (except
when you are searching for the first or last character).

You can a'so use the like keyword to search for aparticular pattern. The
following example selects each text data value from the copy column of the
blurbs table that contains the pattern “ Net Etiquette”.

select copy from blurbs
where copy like "%Net Etiquette%"

The pointer to the text or image data uniquely identifies each row. Therefore, a
table that contains text or image data cannot contain duplicate rows unless all
text and image datais NULL. If thisisthe case, the pointer has not been
initialized.

Reference Manual: Building Blocks 43

User-defined datatypes

Standards

ANSI SQL — Compliance level: The text and image datatypes are
Transact-SQL extensions.

User-defined datatypes

Function

User-defined datatypes are built from the system datatypes and from the
sysname user-defined datatype. After you create a user-defined datatype, you
can useit to define columns, parameters, and variables. Objectsthat are created
from user-defined datatypes inherit the rules, defaults, null type, and
IDENTITY property of the user-defined datatype, as well asinheriting the
defaults and null type of the system datatypes on which the user-defined
datatype is based.

Creating frequently used datatypes in the model database

A user-defined datatype must be created in each database in which it will be
used. Itisagood practiceto create frequently used typesin the model database.
These types are automatically added to each new database (including tempdb,
which is used for temporary tables) asit is created.

Creating a user-defined datatypes

44

Adaptive Server allows you to create user-defined datatypes, based on any
system datatype, with the sp_addtype system procedure. You cannot create a
user-defined datatype based on another user-defined datatype, such as
timestamp or thetid datatype in the pubs2 database.

The sysname datatype is an exception to this rule. Though sysname isa
user-defined datatype, you can use it to build user-defined datatypes.

User-defined datatypes are database objects. Their names are case-sensitive
and must conform to the rules for identifiers.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

You can bind rulesto user-defined datatypeswith sp_bindrule and bind defaults
with sp_bindefault.

By default, objects built on a user-defined datatype inherit the user-defined
datatype’s null type or IDENTITY property. You can override the null type or
IDENTITY property in a column definition.

Renaming a user-defined datatype
Use sp_rename to rename a user-defined datatype.

Dropping a user-defined datatype
Use sp_droptype to remove a user-defined datatype from a database.

Note You cannot drop adatatypethat is already in usein atable.

Getting help on datatypes

Use the sp_help system procedure to display information about the properties
of a system datatype or a user-defined datatype. You can also use sp_help to
display the datatype, length, precision, and scale for each columnin atable.

Standards and compliance

ANSI SQL — Compliance level: User-defined datatypes are a Transact-SQL
extension.

Reference Manual: Building Blocks 45

User-defined datatypes

46

Adaptive Server Enterprise

CHAPTER 2

Transact-SQL Functions

This chapter describes the Transact-SQL functions. Functions are used to
return information from the database. They are allowed in the select list,
in the where clause, and anywhere an expression is allowed. They are
often used as part of a stored procedure or program.

Topics covered are:

Topics Page
Types of functions 47
Aggregate functions 52
Datatype conversion functions 58
Date functions 66
Mathematical functions 67
Security functions 69
String functions 70
System functions 71
Text and image functions 73

Types of functions

Table 2-1 liststhedifferent types of Transact-SQL functionsand describes
the type of information each returns.

Table 2-1: Types of Transact-SQL functions

Type of function

Description

Aggregate functions

Generate summary valuesthat appear as new columns or as additional rowsinthe
query results.

Datatype conversion functions

Change expressions from one datatype to another and specify new display formats
for date/time information.

Date functions

Do computations on datetime, smalldatetime, date and time values and their
components, date parts.

Mathematical functions

Return values commonly needed for operations on mathematical data.

Security functions

Return security-related information.

Reference Manual: Building Blocks 47

Types of functions

Type of function

Description

String functions

Operate on binary data, character strings, and expressions.

System functions

Return special information from the database.

Text and image functions

Supply values commonly needed for operations on text and image data.

Table 2-2 lists the functions in alphabetical order.

Table 2-2: List of Transact-SQL functions

Function Type Return value

abs Mathematical The absolute value of an expression.

acos Mathematical The angle (in radians) whose cosine is specified.

ascii String The ASCII code for the first character in an expression.

asin Mathematical The angle (in radians) whose sine is specified.

atan Mathematica The angle (in radians) whose tangent is specified.

atn2 Mathematical The angle (in radians) whose sine and cosine are specified.

avg Aggregate The numeric average of all (distinct) values.

ceiling Mathematica The smallest integer greater than or equal to the specified vaue.

char String The character equivalent of an integer.

charindex String Returns an integer representing the starting position of an expression.

char_length String The number of charactersin an expression.

col_length System The defined length of a column.

col_name System The name of the column whose table and column |Ds are specified.

compare System Returnsthe following values, based on the collation rules that you chose:
e 1-—indicatesthat char_expressionl is greater than char_expression2
¢ O-indicatesthat char_expressionl is equal to char_expression2
e -1-—indicatesthat char_expressionl islessthan char_expression2

convert Datatype The specified value, converted to another datatype or adifferent datetime

Conversion display format.

cos Mathematical The cosine of the specified angle (in radians).

cot Mathematical The cotangent of the specified angle (in radians).

count Aggregate The number of (distinct) non-null values.

current_date Date Returns the current date.

current_time Date Returns the current time.

curunreservedpgs System The number of free pagesin the specified disk piece.

data_pgs System The number of pages used by the specified table or index.

datalength System The actual length, in bytes, of the specified column or string.

dateadd Date The date produced by adding agiven number of years, quarters, hours, or
other date parts to the specified date.

datediff Date The difference between two date expressions.

48 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Function Type Return value

datename Date The name of the specified part of a date expression.

datepart Date The integer value of the specified part of a date expression.

day Date Returns an integer that represents the day in the datepart of a specified
date.

db_id System The ID number of the specified database.

db_name System The name of the database whose ID number is specified.

degrees Mathematical The size, in degrees, of an angle with a specified number of radians.

derived_stat System Returns derived statistics for the specified object and index.

difference String The difference between two soundex values.

exp Mathematical The value that results from raising the constant e to the specified power.

floor Mathematical The largest integer that is less than or equal to the specified value.

get_appcontext Security Returns the value of the attribute in a specified context.

getdate Date The current system date and time.

hextoint Datatype The platform-independent integer equivalent of the specified

Conversion hexadecimal string.

host_id System Returnsthe client computer’s operating system process | D for the current
Adaptive Server client.

host_name System The current host computer name of the client process.

index_col System The name of the indexed column in the specified table or view.

index_colorder System Returns the column order

inttohex Datatype The platform-independent, hexadecimal equivalent of the specified

Conversion integer.

isnull System Substitutes the value specified in expression2 when expressionl
evaluatesto NULL.

is_sec_service_on Security “1” if the security serviceis active; “0” if it is not.

isnull String The specified expression, trimmed of leading blanks.

Ict_admin System Manages the last-chance threshol d.

left String Returns a specified number of characters on the left end of a
character string.

len String Returns the number of characters, not the number of bytes, of a
specified string expression, excluding trailing blanks.

license_enabled System “1" if the feature'slicense is enabled; “0” if it is not.

list_appcontext Security Lists al the attributes of al the contexts in the current session.

lockscheme Mathematical Returns the locking scheme of the specified object as a string.

log Mathematical The natural logarithm of the specified number.

log10 Mathematical The base 10 logarithm of the specified number.

lower String The uppercase equivalent of the specified expression.

max Aggregate The highest value in a column.

Reference Manual: Building Blocks

49

Types of functions

Function Type Return value

min Aggregate The lowest valuein a column.

mut_excl_roles System The mutual exclusivity between two roles.

newid System Generates human-readable, globally unique IDs (GUIDs) in two
different formats, based on arguments you provide.

next_identity System Retrieves the next identity value that is available for the next insert.

object_id System The object ID of the specified object.

object_name System The name of the object whose object ID is specified.

pagesize Mathematical Returns the page size, in bytes, for the specified object.

patindex String, Text The starting position of the first occurrence of a specified pattern.

and Image

pi Mathematical The constant value 3.1415926535897936.

power Mathematical Thevaluethat resultsfrom raising the specified number to agiven power.

proc_role System 1if the user has the correct role to execute the procedure; O if the user
does not have thisrole.

ptn_data_pgs System The number of data pages used by a partition.

radians Mathematical The size, in radians, of an angle with a specified number of degrees.

rand Mathematica A random value between 0 and 1, generated using the specified seed
value.

replicate String A string consisting of the specified expression repeated a given number
of times.

reserved_pgs System The number of pages allocated to the specified table or index.

reverse String The specified string, with characters listed in reverse order.

right String The part of the character expression, starting the specified number of
characters from the right.

rm_appcontext Security Removes a specific application context, or all application contexts.

role_contain System 1if role2 containsrolel.

role_id System The system role ID of the role whose name you specify.

role_name System The name of arole whose system role ID you specify.

round Mathematica The value of the specified number, rounded to agiven number of decimal
places.

rowcnt System An estimate of the number of rows in the specified table.

rtrim String The specified expression, trimmed of trailing blanks.

set_appcontext Security Sets an application context name, attribute name, and attribute value for
auser session, defined by the attributes of a specified application.

show_role System Thelogin's currently active roles.

show_sec_services Security A list of the user’s currently active security services.

sign Mathematica Thesign (+1 for positive, 0, or -1 for negative) of the specified value.

sin Mathematical The sine of the specified angle (in radians).

50 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Function Type Return value

sortkey System Values that can be used to order results based on collation behavior,
which alows you to work with character collation behaviors beyond the
default set of Latin-character-based dictionary sort orders and case or
accent sensitivity.

soundex String A 4-character code representing the way an expression sounds.

space String A string consisting of the specified number of single-byte spaces.

square Mathematical Returns the square of a specified value expressed as afloat.

sqrt Mathematical The square root of the specified number.

str String The character equivalent of the specified number.

str_replace String Replaces any instances of the second string expression that occur within
the first string expression with athird expression.

stuff String The string formed by del eting a specified number of charactersfrom one
string and replacing them with another string.

substring String The string formed by extracting a specified number of characters from
another string.

sum Aggregate The total of the values.

suser_id System The server user’s ID number from the syslogins system table.

suser_name System The name of the current server user, or the user whose server user ID is
specified.

syb_quit

syb_sendmsg Sends a message to a User Datagram Protocol (UDP) port.

tan Mathematical The tangent of the specified angle (in radians).

tempdb_id

textptr Text and The pointer to the first page of the specified text column.

Image
textvalid Text and 1if the pointer to the specified text column isvalid; O if it is not.
Image

to_unichar String A unichar expression having the value of the integer expression.

tsequal System Compares timestamp values to prevent update on arow that has been
modified since it was selected for browsing.

uhighsurr String 1if the Unicode value at position start isthe high half of asurrogate pair
(which should appear first in the pair); otherwise 0.

ulowsurr String 1if the Unicode value at position start is the low half of asurrogate pair
(which should appear second in the pair); otherwise 0.

upper String The uppercase equivalent of the specified string.

uscalar String The Unicode scalar value for thefirst Unicode character in an expression.

used_pgs System The number of pages used by the specified table and its clustered index.

user System The name of the current server user.

user_id System The ID number of the specified user or the current user.

Reference Manual: Building Blocks

51

Aggregate functions

Function Type Return value

user_name System The name within the database of the specified user or the current user.

valid_name System 0if the specified string is not avalid identifier; a number other than O if
the string isvalid.

valid_user System 1if the specified ID isavalid user or aliasin at |east one database on this
Adaptive Server.

year

Thefollowing sections describe the types of functionsin detail. The remainder
of the chapter contains descriptions of the individual functionsin alphabetical
order.

Aggregate functions

52

The aggregate functions generate summary valuesthat appear as new columns
in the query results. The aggregate functions are:

* avg
* count
* max

* min

* sum

Aggregate functions can be used in the select list or the having clause of aselect
statement or subquery. They cannot be used in awhere clause.

Each aggregatein aquery requiresits own worktable. Therefore, aquery using
aggregates cannot exceed the maximum number of worktables allowed in a
query (12).

When an aggregate function is applied to a char datatype value, it implicitly
converts the value to varchar, stripping al trailing blanks. Likewise, aunichar
datatype value is implicitly converted to univarchar.

The max, min, and count aggregate functions now have semantics that include
the unichar data type.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Aggregates used with group by

Aggregates are often used with group by. With group by, the table is divided
into groups. Aggregates produce a single value for each group. Without group
by, an aggregate function in the select list produces a single value as aresult,
whether it is operating on all the rowsin atable or on a subset of rows defined
by awhere clause.

Aggregate functions and NULL values

Aggregate functions calcul ate the summary values of the non-null valuesin a
particular column. If the ansinull option is set off (the default), there is no
warning when an aggregate function encounters a null. If ansinull is set on, a
query returns the following SQLSTATE warning when an aggregate function
encounters anull:

Warning- null value eliminated in set function

Vector and scalar aggregates

Aggregate functions can be applied to all therowsin atable, in which casethey
produce a single value, a scalar aggregate. They can also be applied to all the
rows that have the same value in a specified column or expression (using the

group by and, optionally, the having clause), in which case, they produceavalue
for each group, a vector aggregate. The results of the aggregate functions are

shown as new columns.

You can nest avector aggregate inside a scalar aggregate. For example:

select type, avg(price), avg(avg(price))
from titles
group by type

type

UNDECIDED NULL 15.23
business 13.73 15.23
mod_cook 11.49 15.23
popular comp 21.48 15.23
psychology 13.50 15.23
trad cook 15.96 15.23

(6 rows affected)

Reference Manual: Building Blocks 53

Aggregate functions

Example 1

Example 2

54

The group by clause applies to the vector aggregate—in this case, avg(price).
The scalar aggregate, avg(avg(price)), is the average of the average prices by
type in thetitles table.

In standard SQL, when a select_list includes an aggregate, al the select_list
columns must either have aggregate functions applied to them or be in the
group by list. Transact-SQL has no such restrictions.

Example 1 shows a select statement with the standard restrictions. Example 2
shows the same statement with another item (title_id) added to the select list.
order by is also added to illustrate the difference in displays. These “extra’
columns can also be referenced in a having clause.

select type, avg(price), avg(advance)
from titles

group by type

type

UNDECIDED NULL NULL
business 13.73 6,281.25
mod_cook 11.49 7,500.00
popular comp 21.48 7,500.00
psychology 13.50 4,255.00
trad cook 15.96 6,333.33

(6 rows affected)

You can use either a column name or any other expression (except a column
heading or alias) after group by.

Null values in the group by column are put into a single group.
select type, title id, avg(price), avg(advance)

from titles

group by type
order by type

type title id

UNDECIDED MC3026 NULL NULL
business BU1032 13.73 6,281.25
business BU1111 13.73 6,281.25
business BU2075 13.73 6,281.25
business BU7832 13.73 6,281.25
mod_cook MC2222 11.49 7,500.00
mod_ cook MC3021 11.49 7,500.00
popular comp PC1035 21.48 7,500.00
popular comp pPC8888 21.48 7,500.00

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

popular comp PC9999 21.48 7,500.00
psychology PS1372 13.50 4,255.00
psychology PS2091 13.50 4,255.00
psychology PS2106 13.50 4,255.00
psychology PS3333 13.50 4,255.00
psychology PS7777 13.50 4,255.00
trad cook TC3218 15.96 6,333.33
trad cook TC4203 15.96 6,333.33
trad_cook TC7777 15.96 6,333.33
Example 3 The compute clause in aselect statement uses row aggregates to produce

summary values. The row aggregates make it possible to retrieve detail and

summary rows with one command. Example 3 illustrates this feature:

select type, title id, price, advance

from titles
where type =
order by typ

compute sum(price),

psychology
psychology
psychology
psychology
psychology

"psychology"
e
sum (advance)

title id price

PS1372 21.59

PS2091 10.95

PS2106 7.00

PS3333 19.99

PS7777 7.99
sum
67.52

by type

advance

21,275.00

Note the difference in display between Example 3 and the examples without
compute (Example 1 and Example 2).

Aggregate functions cannot be used on virtual tables such as sysprocesses and

syslocks.

If you include an aggregate function in the select clause of acursor, that cursor

cannot be updated.

Aggregate functions as row aggregates

Row aggregate functions generate summary values that appear as additional
rows in the query results.

To use the aggregate functions as row aggregates, use the following syntax:

Reference Manual: Building Blocks

55

Aggregate functions

56

Start of select statement

compute row_aggregate(column_name)
[, row_aggregate(column_name)]...
[by column_name [, column_name]...]

where:

* column_nameisthe name of acolumn. It must be enclosed in parentheses.
Only exact numeric, approximate numeric, and money columns can be
used with sum and avg.

One compute clause can apply the same function to several columns.
When using more than one function, use more than one compute clause.

» Dby indicatesthat row aggregate values are to be calculated for subgroups.
Whenever the value of the by item changes, row aggregate values are
generated. If you use by, you must use order by.

Listing more than one item after by breaks a group into subgroups and
applies afunction at each level of grouping.

The row aggregates make it possible to retrieve detail and summary rows with
one command. The aggregate functions, on the other hand, ordinarily produce
asinglevauefor al the selected rowsin the table or for each group, and these
summary values are shown as new columns.

The following examplesillustrate the differences:

select type, sum(price), sum(advance)
from titles

where type like "%cook"

group by type

type
mod_cook 22.98 15,000.00
trad cook 47.89 19,000.00

(2 rows affected)

select type, price, advance
from titles

where type like "%cook"
order by type

compute sum(price), sum(advance) by type
type price advance

mod_ cook 2.99 15,000.00
mod_cook 19.99 0.00

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

sum sum

22.98 15,000.00
type price advance
trad cook 11.95 4,000.00
trad cook 14.99 8,000.00
trad cook 20.95 7,000.00

sum sum

47.89 19,000.00
(7 rows affected)
type price advance
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00
Compute Result:

22.98 15,000.00
type price advance
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad cook 20.95 7,000.00
Compute Result:

47.89 19,000.00

(7 rows affected)
The columns in the compute clause must appear in the select list.

The order of columnsin the select list overrides the order of the aggregatesin
the compute clause. For example:

create
insert
insert

(1 row

table tl

(a int,

tl values(1,5,8)
tl values(2,6,9)

affected)

b int,

¢ int null)

compute sum(c), max(b), min(a)
select a, b, ¢ from t1l

Reference Manual: Building Blocks 57

Datatype conversion functions

Compute Result:

If the ansinull option is set off (the default), there is no warning when arow
aggregate encounters anull. If ansinull is set on, a query returns the following
SQL STATE warning when arow aggregate encounters a null:

Warning- null value eliminated in set function

You cannot use select into in the same statement as a compute clause because
statements that include compute generate tables that include the summary
results, which are not stored in the database.

Datatype conversion functions

58

Datatype conversion functions change expressions from one datatype to
another and specify new display formats for date/time information. The
datatype conversion functions are;

e convert()
* inttohex()
* hextoint()

The datatype conversion functions can be used in the select list, in the where
clause, and anywhere else an expression is allowed.

Adaptive Server performs certain datatype conversions automatically. These
are called implicit conver sions. For example, if you compare a char
expression and a datetime expression, or a smallint expression and an int
expression, or char expressions of different lengths, Adaptive Server
automatically converts one datatype to another.

You must request other datatype conversions explicitly, using one of the
built-in datatype conversion functions. For example, before concatenating
numeric expressions, you must convert them to character expressions.

Adaptive Server does not allow you to convert certain datatypes to certain
other datatypes, either implicitly or explicitly. For example, you cannot convert
the following:

e smallint data to datetime

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

datetime data to smallint

Unsupported conversions result in error messages.

Table 2-3 indicates whether individual datatype conversions are performed

implicitly, explicitly, or are not supported.

binary or varbinary data to smalldatetime or datetime data

Table 2-3: Explicit, implicit, and unsupported datatype conversions

Q
sl | E
c e s 2 2
z| £ EHE: 55 8|S E 3 §-§a.§g
| @ S| E|B|g|lol =282 %85S s/ 2 T2
From = g gl 8| 2/&8|l¢o|=l=El5 5|¢ g £| 3 g S| 5| S| E
tinyint -l | I |1 |EJE|JE|E|U|Il [T [I JUJU|I |I |U
smallint =11 |1 I I |1 |EJE|JE|E|U|Il [I [I JUJU|[I |I |U
int [I | I |1 |EJE|JE|E|U|Il [I [I JUJU|[I |I |U
decimal I |1 |1 (VEJUE|I |1 |[EJE|E|E Ul [T |1 JUIU[I |I |U
numeric 1|1 (VEJIUE|T |1 |EJE|E|JE Ul [I |1 JUJU[I |I |U
real [I I I - |1 |E|JE|JEJE|{U]|Il |1 [l JUJU]|I |I |U
float [I I | I |- |E|JE|JE|E|U|Il [I [I JUJU|I |I |U
[n]char E|E|E|E |E |E|E|[l [IL |1 |1 |1 [EJEJE]|I |1 |1 |1l |I
[n]varchar E|E|E|E |E |E|E [l [I |1 |1 |1 [EJEJE]|I |1 |1 |1 |I
unichar E|E|E|E |E |E|E [l [I |= |1 |1 [EJEJE]|I |1 |1 |1 |I
univarchar E|IE|E|E |E |E|E|I | I {= 1 E|E|E|I | | | |
text vujujuju |U |U|JU|E|E|E|E|JU|JU|JU|U|lUJU|U|U| U
smallmoney | | | | | | | | | E|E|U/|-|I | uluil | U
money [I I I Iy (1 JEJE|U|l |= |1 JUlU|[I |I |U
bit [I I | Iyt JE|JE|U|l |[I [—]JU|lU|[I |I |U
smalldatetme |U |U |U|U (U |U|U | E|E|I |I J[UJUJUJU|= 1|1 |I |1 |U
datetime uljujuju |Uu |UJUJE|E|Il |I J[UJUJU|U|U|=1|I |1 |U
binary [I I I Py JEJE|JU|L [T |1 {U|JU|=1|I |I
Key:
* E—explicit datatype conversion is required.
* | —conversion can be done either implicitly, or with an explicit datatype conversion function.
* |/E—Explicit datatype conversion function required when thereisloss of precision or scale, and
arithabortnumeric_truncation is on; implicit conversion alowed otherwise.
¢ U —unsupported conversion.
* —Conversion of adatatype to itself. These conversions are allowed, but are meaningless.
59

Reference Manual: Building Blocks

Datatype conversion functions

o
> E

E © c 6 >

— T o . - o g o E () E
=| = 5 8| S| 8| = El > S| E|l > 2| o
c| = E|l © cl Bl<| @ =| @ =|s| 2 =] 5

= | ® Sl gl "8l =518 G| >| | ®| c S| 0| ©| ©
2le|l=| 8] 5|3|S| = =|c|E| 5| el¢|=|e|& £|&|E
From =l ol E| o] c|l=| 2| & & 5|58 0| E|la|la|lo|al > &
varbinary | | | | | | | | | E|E|[U/I | | UuluUil - |1
image vuj/ujuj/u (U |U|lU|JU|UJ|E|E|U]|U Uujuiju]l | U

Key:

* E—explicit datatype conversion is required.
* | —conversion can be done either implicitly, or with an explicit datatype conversion function.

* |/E—Explicit datatype conversion function required when thereisloss of precision or scale, and
arithabortnumeric_truncation is on; implicit conversion allowed otherwise.

e U —unsupported conversion.
« —Conversion of adatatype to itself. These conversions are allowed, but are meaningless.

Converting character data to a non-character type

60

Character data can be converted to a non-character type—such as a money,
date/time, exact numeric, or approximate numeric type—if it consists entirely
of charactersthat are valid for the new type. Leading blanks are ignored.
However, if achar expression that consists of ablank or blanksis converted to
adatetime expression, SQL Server convertsthe blanksinto the default datetime
value of “Jan 1, 1900".

Syntax errors are generated when the data includes unacceptabl e characters.
Following are some examples of characters that cause syntax errors:

e Commas or decimal pointsin integer data

e Commasin monetary data

* Lettersin exact or approximate numeric data or bit stream data
* Misspelled month namesin date/time data

Implicit conversions between unichar/univarchar and datetime/smalldatetime
are supported.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Converting from one character type to another

When converting from amultibyte character set to a single-byte character set,
characters with no single-byte equivalent are converted to question marks.

text columns can be explicitly converted to char, nchar, varchar, unichar,
univarchar, or nvarchar. You are limited to the maximum length of the character
datatypes, which is determined by the maximum column size for your server’s
logical page size. If you do not specify the length, the converted value has a
default length of 30 bytes.

Converting numbers to a character type

Rounding during

Exact and approximate numeric data can be converted to a character type. If
the new typeistoo short to accommodate the entire string, an insufficient space
error is generated. For example, the following conversion triesto store a
5-character string in a 1-character type:

select convert (char(1l), 12.34)
Insufficient result space for explicit conversion
of NUMERIC value ’12.34' to a CHAR field.

Note When converting float datato a character type, the new type should be at
least 25 characters|ong.

conversion to and from money types

Themoney and smallmoney types store 4 digitsto theright of thedecimal point,
but round up to the nearest hundredth (.01) for display purposes. When datais
converted to amoney type, it isrounded up to four places.

Data converted from a money type follows the same rounding behavior if
possible. If the new type is an exact numeric with less than three decimal
places, the datais rounded to the scale of the new type. For example, when
$4.50 is converted to an integer, it yields 5:

select convert (int, $4.50)

Reference Manual: Building Blocks 61

Datatype conversion functions

Data converted to money or smallmoney is assumed to bein full currency units
such as dollars rather than in fractional units such as cents. For example, the
integer value of 5isconverted to the money equivalent of 5dollars, not 5 cents,
in the us_english language.

Converting date/time information

Datathat is recognizable as a date can be converted to datetime, smalldatetime,
date or time. Incorrect month names|ead to syntax errors. Datesthat fall outside
the acceptable range for the datatype lead to arithmetic overflow errors.

When datetime values are converted to smalldatetime, they are rounded to the
nearest minute.

When converting date data to a character type, use style numbers 1 through 7

(101 through 107) or 10 through 12 (110 through 112) in Table 2-6 on page 96
to specify the display format. Thedefault valueis 100 (mon dd yyyy hh:miAM
(or PM)). If date datais converted to a style that contains a time portion, that
time portion reflects the default value of zero.

When converting time data to a character type, use style number 8 or 9 (108 or
109) to specify thedisplay format. The default is 100 (mon dd yyyy hh:miAM
(or PM)). If time data is converted to a style that contains a date portion, the
default date of Jan 1, 1900 is displayed.

Converting between numeric types

62

Data can be converted from one numeric type to another. If the new typeisan
exact numeric whose precision or scale is not sufficient to hold the data, errors
can occur.

For example, if you provide afloat or numeric value as an argument to a
built-in function that expects an integer, the value of the float or numericis
truncated. However, Adaptive Server doesnot implicitly convert numericsthat
have afractional part but returns a scale error message. For example, Adaptive
Server returns error 241 for numerics that have afractional part and error 257
if other datatypes are passed.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Use the arithabort and arithignore options to determine how Adaptive Server
handles errors resulting from numeric conversions.

Note The arithabort and arithignore options have been redefined for release
10.0 or later. If you use these options in your applications, examine them to be
sure they are till producing the desired behavior.

Arithmetic overflow and divide-by-zero errors

Divide-by-zero errors occur when Adaptive Server triesto divide a numeric
value by zero. Arithmetic overflow errors occur when the new type hastoo few
decimal places to accommodate the results. This happens during:

< Explicit or implicit conversions to exact types with alower precision or
scale

» Explicit or implicit conversions of datathat falls outside the acceptable
range for amoney or date/time type

» Conversionsof hexadecimal stringsrequiring more than 4 bytesof storage
using hextoint

Both arithmetic overflow and divide-by-zero errors are considered serious,
whether they occur during animplicit or explicit conversion. Usethe arithabort
arith_overflow option to determine how Adaptive Server handles these errors.
Thedefault setting, arithabort arith_overflow on, rollsback the entire transaction
in which the error occurs. If the error occurs in abatch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier commandsin
the batch, and Adaptive Server does not execute statements that follow the
error-generating statement in the batch. If you set arithabort arith_overflow off,
Adaptive Server aborts the statement that causes the error, but continues to
process other statements in the transaction or batch.You can use the @@error
global variable to check statement results.

Usethe arithignore arith_overflow option to determine whether Adaptive Server
displays a message after these errors. The default setting, off, displays a
warning message when a divide-by-zero error or aloss of precision occurs.
Setting arithignore arith_overflow on suppresses warning messages after these
errors. The optional arith_overflow keyword can be omitted without any effect.

Reference Manual: Building Blocks 63

Datatype conversion functions

Scale errors

Domain errors

When an explicit conversion resultsin aloss of scale, the results are truncated
without warning. For example, when you explicitly convert afloat, numeric, or
decimal typeto an integer, Adaptive Server assumes you want the result to be
an integer and truncates all numbers to the right of the decimal point.

Duringimplicit conversionsto numeric or decimal types, |oss of scale generates
ascale error. Use the arithabort numeric_truncation option to determine how
serious such an error is considered. The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error, but continues
to process other statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results and
continues processing.

Note For entry level ANSI SQL compliance, set:
e arithabort arith_overflow off
e arithabort numeric_truncation on

e arithignore off

The convert function generates a domain error when the function’s argument
falls outside the range over which the function is defined. This happensrarely.

Conversions between binary and integer types

64

Thebinary and varbinary types store hexadecimal-like data consisting of a*“ 0x”
prefix followed by a string of digits and letters.

These strings are interpreted differently by different platforms. For example,
the string “0x0000100” represents 65536 on machines that consider byte O
most significant and 256 on machines that consider byte O least significant.

Binary types can be converted to integer types either explicitly, using the
convert function, or implicitly. If the datais too short for the new type, itis
stripped of its“0x” prefix and zero-padded. If it istoo long, it is truncated.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Both convert and the implicit datatype conversions evaluate binary data
differently on different platforms. Because of this, results may vary from one
platform to another. Use the hextoint function for platform-independent
conversion of hexadecimal strings to integers, and the inttohex function for
platform-independent conversion of integers to hexadecimal values.

Converting between binary and numeric or decimal types

In binary and varbinary data strings, the first two digits after “0x” represent the
binary type: “00” represents a positive number and “01” represents a negative
number. When you convert abinary or varbinary type to numeric or decimal, be
sure to specify the“00” or “01” values after the “0x” digit; otherwise, the
conversion will fail.

For example, hereis how to convert the following binary data to numeric:

select convert (numeric
(38, 18),0x000000000000000006b14bd1e6eea0000000000000000000000000000000)

123.456000
This example converts the same numeric data back to binary:

select convert (binary, convert (numeric (38, 18), 123.456))

0x000000000000000006b14bd1le6eca0000000000000000000000000000000

Converting image columns to binary types

You can use the convert function to convert an image column to binary or
varbinary. You are limited to the maximum length of the binary datatypes,
which is determined by the maximum column size for your server’slogical
page size. If you do not specify the length, the converted value has a default
length of 30 characters.

Converting other types to bit

Exact and approximate numeric types can be converted to the bit type
implicitly. Character types require an explicit convert function.

Reference Manual: Building Blocks 65

Date functions

The expression being converted must consist only of digits, adecimal point, a
currency symbol, and a plus or minus sign. The presence of other characters
generates syntax errors.

The bit equivalent of 0is 0. The bit equivalent of any other number is 1.

Converting NULL value

You can use the convert function to changethe NULL to NOT NULL and NOT
NULL to NULL.

Date functions

Date parts

66

The date functions manipul ate values of the datatypes datetime, smalldatetime,
date or time.

Date functions can be used in the select list or where clause of a query.

Use the datetime datatype only for dates after January 1, 1753. datetime values
must be enclosed in single or double quotes. Use date for dates from January,
1 0001 to January 1, 9999. date values must be enclosed in single or double
quotes. Use char, nchar, varchar or nvarchar for earlier dates. Adaptive Server
recognizes awide variety of date formats. See Datatype conversion functions
and “Date and time datatypes’ for more information.

Adaptive Server automatically converts between character and datetime values
when necessary (for example, when you compare a character valueto a
datetime value).

The date datatype can cover dates from January 1, 0001 to January 1, 9999.

The date parts, the abbreviations recognized by Adaptive Server, and the
acceptable values are;

Date part Abbreviation Values
year vy 1753 — 9999 (2079 for smalldatetime)
quarter qq 1-4

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Date part Abbreviation Values

month mm 1-12

week wk 1-54

day dd 1-31
dayofyear dy 1-366
weekday dw 1-7(Sun.-Sat.)
hour hh 0-23

minute mi 0-59

second ss 0-59
millisecond ms 0-999

When you enter ayear astwo digits (yy):

¢ Numberslessthan 50 areinterpreted as 20yy. For example, 01 is2001, 32
52032, and 49 is2049.

* Numbersequal to or greater than 50 are interpreted as 19yy. For example,
50151950, 74 is1974, and 99 is 1999.

Milliseconds can be preceded either with a colon or a period. If preceded by a
colon, the number means thousandths of a second. If preceded by a period, a
single digit means tenths of a second, two digits mean hundredths of a second,
and three digits mean thousandths of a second. For example, “12:30:20:1"
means twenty and one-thousandth of a second past 12:30; “12:30:20.1" means
twenty and one-tenth of a second past 12:30. Adaptive Server may round or
truncate millisecond values when adding datetime data. You can use the time
datatype for time information.

Mathematical functions

Mathematical functions return values commonly needed for operations on
mathematical data. Mathematical function names are not keywords.

Each function also accepts arguments that can be implicitly converted to the
specified type. For example, functions that accept approximate numeric types
also accept integer types. Adaptive Server automatically convertsthe argument
to the desired type.

The mathematical functions are:

o abs

Reference Manual: Building Blocks 67

Mathematical functions

68

acos
asin

atan
atn2
ceiling
cos

cot
degrees
exp

floor
lockscheme
log

log10
pagesize
pi

power
radians
rand
round
sign

sin

sqrt

tan

Error traps are provided to handle domain or range errors of these functions.
Users can set the arithabort and arithignore options to determine how domain

errors are handled:

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e arithabort arith_overflow specifies behavior following a divide-by-zero
error or aloss of precision. The default setting, arithabort arith_overflow on,
rolls back the entire transaction or aborts the batch in which the error
occurs. If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error, but continues to process other statements
in the transaction or batch.

e arithabort numeric_truncation specifies behavior following aloss of scale
by an exact numeric type during an implicit datatype conversion. (When
an explicit conversion resultsin aloss of scale, the results are truncated
without warning.) The default setting, arithabort numeric_truncation on,
aborts the statement that causes the error, but continues to process other
statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results and
continues processing.

e By default, the arithignore arith_overflow option is turned off, causing
Adaptive Server to display awarning message after any query that results
in numeric overflow. Set the arithignore option on to ignore overflow
errors.

Note Thearithabort and arithignore options have been redefined for release
10.0 or later. If you use these options in your applications, examine them
to be sure they still produce the desired effects.

Security functions
Security functions return security-related information.
The security functions are:
* is_sec_service_on

e show_sec_services

Reference Manual: Building Blocks 69

String functions

String functions

70

String function operate on binary data, character strings, and expressions. The
string functions are:

* ascii

e char

¢ charindex

e char_length
e difference

* lower

e trim

* patindex

* replicate
* reverse
* right

e rtrim

e soundex

* space
. str
. stuff

* substring

* to_unichar
e uhighsurr
e ulowsurr

* upper

e uscalar

String functions can be nested, and they can be used in aselect list, in awhere
clause, or anywhere an expression is allowed. When you use constants with a
string function, enclose them in single or double quotes. String function names
are not keywords.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Each string function al so accepts arguments that can beimplicitly converted to
the specified type. For example, functions that accept approximate numeric
expressions also accept integer expressions. Adaptive Server automatically
converts the argument to the desired type.

When a string function accepts two character expressions but only one
expression is unichar, the other expression is“promoted” and internally
converted to unichar. Thisfollows existing rules for mixed-mode expressions.
However, this conversion may cause truncation, since unichar data sometimes
takes twice the space.

Limits on string functions

Results of string functions are limited to 16K. Thislimit isindependent of the
server’'s page size. In Transact-SQL string functions and string variables,
literals can be as large as 16K even on a 2K page size.

If set string_rtruncation iS on, a user receives an error if aninsert or update
truncates a character string. However, SQL Server does not report an error if a
displayed string is truncated. For example:

select replicate("a", 16383) + replicate("B", 4000)

This shows that the total length would be 20383, but the result string is
restricted to 16K.

System functions

System functions return special information from the database. The system
functions are:

e col_length

e col_name

e curunreservedpgs
e data_pgs

e datalength

e db_id

e db_name

Reference Manual: Building Blocks 71

System functions

* host_id

* host_name

* index_col

e isnull

* Jct_admin

* mut_excl_roles
* object_id

* object_name
* proc_role

* ptn_data_pgs
* reserved_pgs
* role_contain

* role_id

* role_name

* rowcnt

* show_role

e suser_id

* suser_name
* tsequal

* used_pgs

* user

e user_id

* user_name

* valid_name

* valid_user

The system functions can be used in aselect list, in awhere clause, and
anywhere an expression is allowed.

When the argument to a system function is optional, the current database, host
computer, server user, or database user is assumed.

72 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Text and image functions

Text and image functions operate on text and image data. The text and image
functions are:

* textptr
. textvalid

Text and image built-in function names are not keywords. Use the set textsize
option to limit the amount of text or image datathat is retrieved by aselect
Statement.

The patindex text function can be used on text and image columns and can aso
be considered a text and image function.

Use the datalength function to get the length of datain text and image columns.
text and image columns cannot be used:

e Asparametersto stored procedures

e Asvalues passed to stored procedures

e Aslocal variables

* Inorder by, compute, and group by clauses

¢ Inanindex

* Inawhere clause clause, except with the keyword like

e Injoins

e Intriggers

Reference Manual: Building Blocks 73

abs

abs

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

74

Returns the absolute value of an expression.

abs(numeric_expression)

numeric_expression
isacolumn, variable, or expression whose datatype is an exact numeric,
approximate numeric, money, or any type that can be implicitly converted
to one of these types.

Returns the absolute value of -1:

select abs(-1)

* abs, amathematical function, returns the absolute value of agiven
expression. Results are of the same type and have the same precision and
scale as the numeric expression.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute abs.

“Mathematical functions’ on page 67 for general information about
mathematical functions.

Functions ceiling, floor, round, sign

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

acos

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the angle (in radians) whose cosine is specified.

acos(cosine)

cosine
isthe cosine of the angle, expressed as acolumn name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Returns the angle whose cosineis 0.52;

select acos(0.52)

1.023945

e acos, amathematical function, returnsthe angle (in radians) whose cosine
is the specified value.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute acos.

“Mathematical functions’” on page 67 for general information about
mathematical functions.

Functions cos, degrees, radians

Reference Manual: Building Blocks 75

ascii

ascii
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

76

Returns the ASCII code for the first character in an expression.
ascii(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

select au_ lname, ascii(au lname) from authors
where ascii(au lname) < 70

au_lname

Bennet 66
Blotchet-Halls 66
Carson 67
DeFrance 68
Dull 68

Returns the authors last names and the ACSI| codesfor thefirst lettersin their
last names, if the ASCII codeislessthan 70.

e ascii, astring function, returnsthe ASCII codefor thefirst character inthe
expression.

» When astring function accepts two character expressions but only one
expression is unichar, the other expression is* promoted” and internally
converted to unichar. This follows existing rules for mixed-mode
expressions. However, this conversion may causetruncation, sinceunichar
data sometimes takes twice the space.

o If char_expr or uchar_expr isNULL, returns NULL.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute ascii.

For general information about string functions, see“ String functions’ on page
70.

Functions char, to_unichar

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

asin
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the angle (in radians) whose sine is specified.

asin(sine)

sine
isthe sine of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

select asin(0.52)

0.546851

» asin, amathematical function, returnsthe angle (in radians) whose sineis
the specified value.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute asin.

“Mathematical functions’ on page 67 for general information about
mathematical functions.

Functions degrees, radians, sin

Reference Manual: Building Blocks 77

atan

atan

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

78

Returns the angle (in radians) whose tangent is specified.

atan(tangent)

tangent
isthetangent of the angle, expressed as acolumn name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

select atan(0.50)

0.463648

e atan, amathematical function, returnsthe angle (in radians) whose tangent
is the specified value.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute atan.

“Mathematical functions’ on page 67 for general information about
mathematical functions.

Functions atn2, degrees, radians, tan

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

atn2

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the angle (in radians) whose sine and cosine are specified.
atn2(sine, cosine)

sine
isthe sine of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

cosine
isthe cosine of the angle, expressed as acolumn name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

select atn2(.50, .48)

0.805803

e atn2, amathematical function, returns the angle (in radians) whose sine
and cosine are specified.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute atn2.

“Mathematical functions’ on page 67 for general information about
mathematical functions.

Functions atan, degrees, radians, tan

Reference Manual: Building Blocks 79

avg

avg
Description

Syntax

Parameters

Examples

80

Returns the numeric average of all (distinct) values.
avg([all | distinct] expression)

all
applies avg to al values. all is the default.

distinct
eliminates duplicate values before avg is applied. distinct is optional .

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions’ on page 249.

Example 1 Calculates the average advance and the sum of total salesfor all
business books. Each of these aggregate functions produces a single summary
value for al of the retrieved rows:

select avg(advance), sum(total sales)
from titles
where type = "business"

6,281.25 30788

Example 2 Used with agroup by clause, the aggregate functions produce
single values for each group, rather than for the whole table. This statement
produces summary values for each type of book:

select type, avg(advance), sum(total sales)
from titles

group by type

type

UNDECIDED NULL NULL
business 6,281.25 30788
mod_cook 7,500.00 24278
popular comp 7,500.00 12875
psychology 4,255.00 9939
trad cook 6,333.33 19566

Example 3 Groupsthetitles table by publishersand includes only those groups
of publishers who have paid more than $25,000 in total advances and whose
books average more than $15 in price:

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

Standards
Permissions

See also

select pub id, sum(advance), avg(price)

from titles

group by pub_ id

having sum(advance) > $25000 and avg(price) > $15

pub_id
0877 41,000.00 15.41
1389 30,000.00 18.98

avg, an aggregate function, finds the average of thevaluesin acolumn. avg
can only be used on numeric (integer, floating point, or money) datatypes.
Null values are ignored in calculating averages.

When you average integer data, Adaptive Server treats the result as an int
value, even if the datatype of the column is smallint or tinyint. To avoid
overflow errorsin DB-Library programs, declare al variables for results
of averages or sums astypeint.

You cannot use avg() with the binary datatypes.

Since the average value is only defined on numeric datatypes, use with
Unicode expressions generates an error.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute avg.

For general information about aggregate functions, see“ Aggregate functions’
on page 52.

Functions max, min

Reference Manual: Building Blocks 81

ceiling

ceiling
Description

Syntax

Parameters

Examples

Usage

82

Returns the smallest integer greater than or equal to the specified value.

ceiling(value)

value
isacolumn, variable, or expression whose datatype is exact numeric,
approximate numeric, money, or any type that can be implicitly converted
to one of these types.

Example 1

select ceiling(123.45)
124

Example 2

select ceiling(-123.45)
-123

Example 3

select ceiling(1.2345E2)
24.000000

Example 4

select ceiling(-1.2345E2)
-123.000000

Example 5

select ceiling($123.45)

124.00
Example 6

select discount, ceiling(discount) from salesdetail

where title id = "PS3333"

discount
45.000000 45.000000
46.700000 47.000000
46.700000 47.000000
50.000000 50.000000

» ceiling, amathematical function, returnsthe smallest integer that is greater
than or equal to the specified value. Thereturn val ue hasthe same datatype
asthe value supplied.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

For numeric and decimal values, results have the same precision as the
value supplied and a scale of zero.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute ceiling.
See also For general information about mathematical functions, see “Mathematical

functions” on page 67.
Command set

Functions abs, floor, round, sign

Reference Manual: Building Blocks 83

char

char
Description Returns the character equivalent of an integer.
Syntax char(integer_expr)
Parameters integer_expr
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression between 0 and 255.
Examples Example 1
select char(42)
\
Example 2
select xxx = char(65)
XXX
A
Usage e char, astring function, converts a single-byte integer value to a character

value (char is usualy used as the inverse of ascii.).

e char returns achar datatype. If the resulting valueisthefirst byte of a
multibyte character, the character may be undefined.

e If char_expr isNULL, returns NULL.

Reformatting output with char

* You can use concatenation and char values to add tabs or carriage returns
to reformat output. char(10) convertsto areturn; char(9) convertsto atab.

For example:
/* just a space */
select title_id + " " + title from titles where title_id = "T67061"
/* a return */
select title_id + char(10) + title from titles where title_id = "T67061"
/* a tab */
select title id + char(9) + title from titles where title id = "T67061"

T67061

Programming with Curses

84 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

T67061 Programming with Curses
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute char.
See also For general information about string functions, see“ String functions” on page
70.

Functions ascii, str

Reference Manual: Building Blocks 85

charindex

charindex

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

86

Returns an integer representing the starting position of an expression.
charindex(expressionl, expression2)

expression
isabinary or character column name, variable or constant expression. Can
be char, varchar, nchar, nvarchar, unichar or univarchar data, binary or
varbinary.

Returns the position at which the character expression “wonderful” beginsin
the notes column of thetitles table:

select charindex ("wonderful", notes)
from titles
where title id = "TC3218"

» charindex, a string function, searches expression2 for the first occurrence
of expressionl and returns an integer representing its starting position. If
expressionl is not found, charindex returns 0.

» If expressionl contains wildcard characters, charindex treats them as
literals.

o If char_expr or uchar_expr isNULL, returns NULL.

» If avarchar expression is given as one parameter and a unichar expression
asthe other, thevarchar expression isimplicitly converted to unichar (with
possible truncation).

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute charindex.

For general information about string functions, see“ String functions’ on page
70.

Function patindex

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

char_length

Description
Syntax

Parameters

Examples

Usage

Returns the number of charactersin an expression.
char_length(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

Example 1

select char length(notes) from titles

where title id = "PC9999"
39
Example 2
declare @varl varchar (20), @var2 varchar(20), @char
char (20)
select @varl = "abcd", @var2 = "abcd ",
@char = "abcd"

select char length(e@varl), char length(evar2),
char length (@char)

e char_length, astring function, returns an integer representing the number
of charactersin a character expression or text value.

e Forvariable-length columns and variables, char_length returnsthe number
of characters (not the defined length of the column or variable). If explicit
trailing blanks are included in variable-length variables, they are not
stripped. For literals and fixed-length character columns and variables,
char_length does not strip the expression of trailing blanks (see Example
2).

» For multi-byte character sets, the number of charactersin the expressionis
usually less than the number of bytes; use datalength to determine the
number of bytes.

» For Unicode expressions, returns the number of Unicode values (not
bytes) in an expression. Surrogate pairs count as two Unicode val ues.

Reference Manual: Building Blocks 87

char_length

» If char_expr or uchar_expr isNULL, char_length returns NULL.

* For genera information about string functions, see “ String functions’ on

page 70.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute char_length.
See also Function datalength

88 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

col_length

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the defined length of a column.
col_length(object_name, column_name)

object_name
is name of a database object, such as atable, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the
database and owner name). It must be enclosed in quotes.

column_name
is the name of the column.

Finds the length of the title column in thetitles table. The “x” givesacolumn
heading to the result:

select x = col_length("titles", "title")

X

80

e col_length, asystem function, returns the defined length of column.

e For genera information about system functions, see “ System functions”
on page 71.

e Tofind the actua length of the data stored in each row, use datalength.

e For text and image columns, col_length returns 16, the length of the
binary(16) pointer to the actual text page.

e For unichar columns, the defined length is the number of Unicode values
declared when the column was defined (not the number of bytes
represented).

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute col_length.

Function datalength

Reference Manual: Building Blocks 89

col_name

col_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

90

Returns the name of the column whose table and column IDs are specified.
col_name(object_id, column_id[, database_id])

object_id
isanumeric expression that is an object ID for atable, view, or other
database object. These are stored in the id column of sysobjects.

column_id
isanumeric expression that isa column ID of acolumn. These are storedin
the colid column of syscolumns.

database_id
isanumeric expression that isthe ID for a database. These are stored in the
db_id column of sysdatabases.

select col name (208003772, 2)

» col_name, asystem function, returns the column’s name.

» For general information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute col_name.

Functions db_id, object_id

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

compare

Description Allows you to directly compare two character strings based on alternate
collation rules.

Syntax compare ({char_expressionl|uchar_expressionl},

{char_expression2|uchar_expression2}),
[{collation_name | collation_ID}]

Parameters char_expressionl Or uchar_expressionl
are the character expressions you want to compare to char_expression2 or
uchar_expression 2.

char_expression2 Or uchar_expression2
are the character expressions against which you want to compare
char_expressionl or uchar_expressionl.

char_expression1 and char_expression2 can be one of the following:
e Character type (char, varchar, nchar, or nvarchar)
e Character variable, or

e Constant character expression, enclosed in single or double quotation
marks

uchar_expressionl and uchar_expression2 can be one of the following:
e Character type (unichar or univarchar)
e Character variable, or

e Constant character expression, enclosed in single or double quotation
marks

collation_name
can be a quoted string or a character variable that specifies the collation to
use. Table 2-5 shows the valid values.

collation_ID
is an integer constant or a variable that specifies the collation to use. Table
2-5 shows the valid values.
Examples Example 1 Compares aaa and bbb:

1> select compare ("aaa", "bbb")
2> go

-1
(1 row affected)

Reference Manual: Building Blocks 91

compare

Usage

92

Alternatively, you can also compare aaa and bbb using the following format:

1> select compare (("aaa"), ("bbb"))
2> go

-1
(1 row affected)

Example 2 Compares aaa and bbb and specifies binary sort order:

1> select compare ("aaa", "bbb","binary")
2> go

-1
(1 row affected)

Alternatively, you can also compare aaa and bbb using the following format,
and the collation ID instead of the collation name:

1> select compare (("aaa"), ("bbb"), (50))
2> go

-1
(1 row affected)

» Thecompare function returnsthe following values, based on the collation
rules that you chose:

 1-indicatesthat char_expressionl or uchar_expressionl is greater
than char_expression2 or uchar_expression2.

» O-indicatesthat char_expressionl or uchar_expressionl isequal to
char_expression2 or uchar_expression2.

* -l-indicatesthat char_expressionl or uchar_expressionlislessthan
char_expression2 or uchar expression2.

* compare can generate up to 6 bytes of collation information for each input
character. Therefore, the result from using compare may exceed thelength
limit of the varbinary datatype. If this happens, the result istruncated to fit.
Since this limit is dependent on the logical page size of your server,
truncation removes result bytes for each input character until the result
string is less than the following for DOL and APL tables:

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Table 2-4: Maximum row and column length—APL and DOL

Locking scheme Page size Maximum row length Maximum column length
APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes
DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes

if table does not include any
variable length columns
16K (16384 bytes) 16300 8191-6-2 = 8183 bytes
(subject to amax start if table includes at least on
offset of varlen=8191) variable length column.*

* Thissize includes six bytes for the row overhead and two bytes for the row length field

If this occurs, Adaptive Server issues awarning message, but the query or
transaction that contained the compare function continues to run.

¢ Bothchar_expressionl, uchar_expressionl, and char_expression2 and
uchar_expression2 must be characters that are encoded in the server’s
default character set.

e Either char_expressionl, uchar_expression 1, or char_expression2,
uchar_expression2, or both, can be empty strings:

e If char_expression2 or uchar_expression2 is empty, the function
returns 1.

< If both strings are empty, then they are equal, and the function returns
aOvalue.

e If char_expressionl or uchar_expression 1 is empty, the function
returnsa-1.

Thecompare function doesnot equate empty stringsand strings containing
only spaces, as does. compare uses the sortkey function to generate
collation keys for comparison. Therefore, atruly empty string, a string
with one space, or a string with two spaces will not compare equally.

e If either char_expressionl, uchar_expressionl; or char_expression2,
uchar_expression2 is NULL, then the result will be NULL.

Reference Manual: Building Blocks 93

compare

» If avarchar expression is given as one parameter and a unichar expression
is given as the other, the varchar expression isimplicitly converted to
unichar (with possible truncation).

« If you do not specify avaluefor collation_nameor collation_ID, compare
assumes binary collation.

» Table2-5liststhe valid values for collation_name and collation_ID.

Table 2-5: Collation names and IDs

Description Collation name Collation ID
Binary sort binary 50
Default Unicode multilingual default 0
CP 850 Alternative no accent altnoacc 39
CP 850 Alternative lower casefirst altdict 45
CP 850 Alternative no case preference altnocsp 46
CP 850 Scandinavian dictionary scandict 47
CP 850 Scandinavian no case preference scannocp 48
GB Pinyin gbpinyin n/a
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52
Latin-1 English, French, German no case preference nocasep 53
Latin-1 English, French, German no accent noaccent 54
Latin-1 Spanish dictionary espdict 55
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
1SO 8859-5 Cyrillic dictionary cyrdict 63
1SO 8859-5 Russian dictionary rusdict 58
1SO 8859-9 Turkish dictionary turdict 72
Shift-JIS binary order gishin 259
Thai dictionary thaidict 1

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute compare.

See also Function sortkey

94 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

convert

Description

Syntax

Parameters

Returns the specified value, converted to another datatype or a different
datetime display format.

convert (datatype [(length) | (precision], scale])]
[null | not null], expression [, style])

datatype
is the system-supplied datatype (for example, char(10), unichar (10),
varbinary (50), or int) into which to convert the expression. You cannot use
user-defined datatypes.

When Javaisenabled in the database, datatype can also be aJava-SQL class
in the current database.

length
isan optional parameter used with char, nchar, unichar, univarchar, varchar,
nvarchar, binary and varbinary datatypes. If you do not supply alength,
Adaptive Server truncates the data to 30 characters for the character types
and 30 bytes for the binary types. The maximum allowable length for
character and binary expression is 64K.

precision
isthe number of significant digitsin anumeric or decimal datatype. For float
datatypes, precision is the number of significant binary digitsin the
mantissa. If you do not supply aprecision, Adaptive Server uses the default
precision of 18 for numeric and decimal datatypes.

scale
is the number of digits to the right of the decimal point in anumeric, or
decimal datatype. If you do not supply a scale, Adaptive Server uses the
default scale of 0.

null | not null
specifies the nullabilty of the result expression. If you do not supply either
null or not null, the converted result has the same nullability asthe
expression.

expression
isthe value to be converted from one datatype or date format to another.

When Javais enabled in the database, expression can be avalue to be
converted to a Java-SQL class.

When Unichar is used as the destination data type, the default length of 30
Unicode valuesis used if no length is specified.

Reference Manual: Building Blocks 95

convert

style

isthe display format to use for the converted data. When converting money
or smallmoney data to a character type, use a style of 1 to display acomma
after every 3 digits.

When converting datetime or smalldatetime datato a character type, use the
style numbersin Table 2-6 to specify the display format. Valuesin the
left-most column display 2-digit years (yy). For 4-digit years (yyyy), add
100, or use the value in the middle column.

When converting date datato a character type, use style numbers 1 through
7 (101 through 107) or 10 through 12 (110 through 112) in Table 4-4 to
specify thedisplay format. The default valueis100 (mon ddyyyy hh:miAM
(or PM)). If date datais converted to a stylethat contains atime portion, that
time portion will reflect the default value of zero.

When converting time datato a character type, use style number 8 or 9 (108
or 109) to specify the display format. The default is 100 (mon dd yyyy
hh:miAM (or PM)). If time datais converted to a style that contains a date
portion, the default date of Jan 1, 1900 will be displayed.

Table 2-6: Display formats for date/time information

Symbolic

value Datatype | Datetime Date Time

N/A Oor 100 mm/dd/lyyyy mm/ddlyy 00:00:00:000PM (AM)
00:00:PM

1 101 mm/dd/yyy mm/dd/yy

2 102 yy/mm/dd yy/mm/dd

3 103 dd/mm/yy dd/mmlyy

4 104 dd.mm.yy dd.mm.yy

5 105 dd-mm-yy dd-mm-yy

6 106 dd mmyy dd mmyy

7 107 mon dd, yy mon dd, yy

8 108 hh:mm:ss hh:mm:ss

9 109 mm dd yy mm dd yyyy hh:mm:ss:zzzAM(PM)
hh:mm:ssizzzAM

10 110 mm-dd-yy mm-dd-yy

11 1m yy/mm/dd yy/mm/dd

12 112 yymmdd yymmdd

13 113 yy/dd/mm yy/dd/mm

14 114 mm/yy/dd mm/yy/dd

15 115 dd/yy/mm dd/yy/mm

96

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Symbolic

value Datatype | Datetime Date Time

16 116 mon dd yy hh:mm:ss | mon dd yy hh:mm:ss

17 117 hh:mmPM (AM) hh:mm:AM (PM)

18 118 hh:mm hh:mm

19 119 hh:mm:ssizzzAM hh:mm:ss:zzzAM (PM

(PM)

20 200 hh:mm:ss.zzz hh:mm:ss:zzz
The default values (style 0 or 100), and style 9 or 109 return the century
(yyyy). When converting to char or varchar from smalldatetime, styles that
include seconds or milliseconds show zeros in those positions.

Examples Example 1
select title, convert(char(12), total sales)

from titles
Example 2

select title, total sales
from titles
where convert (char(20), total sales) like "1%"

Example 3 Convertsthe current date to style “3”, dd/mmvyy:
select convert (char(12), getdate(), 3)

Example 4 If the value pubdate can be null, you must use varchar rather than
char, or errors may result:

select convert (varchar (12), pubdate, 3) from titles

Example 5 Returnstheinteger equivalent of the string “0x00000100” . Results
can vary from one platform to another:

gselect convert (integer, 0x00000100)

Example 6 Returnsthe platform-specific bit pattern as a Sybase binary type:
select convert (binary, 10)

Example 7 Returns 1, the bit string equivalent of $1.11:
select convert (bit, $1.11)

Example 8 Creates#tempsales with total_sales of datatype char(100), and does
not allow null values. Even if titles.total_sales was defined as allowing nulls,
#tempsales is created with #tempsales.total_sales not allowing null values:

select title, convert (char(100) not null, total sales)

Reference Manual: Building Blocks 97

convert

Usage .

into #tempsales
from titles

convert, a datatype conversion function, converts between awide variety
of datatypes and reformats date/time and money datafor display purposes.

For more information about datatype conversion, see “ Datatype
conversion functions’ on page 58.

convert() generates a domain error when the argument falls outside the
range over which the function is defined. This should happen rarely.

Use null or not null to specify the nullability of atarget column.
Specifically, this can be used with select into to create anew table and
change the datatype and nullability of existing columnsin the source table
(See Example 8, above).

You can use convert to convert animage column to binary or varbinary. You
are limited to the maximum length of the binary datatypes, which is
determined by the maximum column size for your server’slogical page
size. If you do not specify the length, the converted value has a default
length of 30 characters.

Unichar expressions can be used as a destination data type or they can be
converted to another data type. Unichar expressions can be converted
either explicitly between any other data type supported by the server, or
implicitly.

If length is not specified when unichar is used as a destination type, the

default length of 30 Unicode valuesis used. If the length of the destination
type is not large enough to accommodate the given expression, as error

Message appears.

Implicit conversion

Implicit conversion between types when the primary fields do not match may
cause either data truncation, the insertion of a default value, or an error
messageto beraised. For example, when adatetime valueis converted to adate
value, the time portion will be truncated leaving only the date portion. If atime
valueisconverted to adatetime value, adefault date portion of Jan 1, 1900 will
be added to the new datetime value. If adate value is converted to a datetime
value, adefault time portion of 00:00:00:000 will be added to the datetime
value.

DATE -> VARCHAR, CHAR,
TIME -> VARCHAR, CHAR,
VARCHAR, CHAR, BINARY,
VARCHAR, CHAR, BINARY,

98

BINARY, VARBINARY, DATETIME, SMALLDATETIME
BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARBINARY, DATETIME, SMALLDATETIME -> TIME

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Standards
Permissions

See also

Explicit conversion

If the you attempt to explicitly convert adate to adatetime and the valueis
outside the datetime range such as "Jan 1, 1000" the conversion is hot allowed
and an informative error message is raised.

DATE -> UNICHAR, UNIVARCHAR
TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

Conversions involving Java classes

* When Javais enabled in the database, you can use convert to change
datatypes in these ways:

¢ Convert Java object typesto SQL datatypes.
e Convert SQL datatypesto Javatypes.

e Convert any Java-SQL classinstalled in Adaptive Server to any other
Java-SQL classinstalled in Adaptive Server if the compile-time
datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute convert.

Documents Javain Adaptive Server Enterprisefor alist of allowed datatype
mappings and more information about datatype conversionsinvolving Java
classes.

Datatypes User-defined datatypes

Functions hextoint, inttohex

Reference Manual: Building Blocks 99

cos

COS
Description Returns the cosine of the specified angle.
Syntax cos(angle)
Parameters angle
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.
Examples select cos (44)
0.999843
Usage * cos, amathematical function, returns the cosine of the specified angle, in
radians.
» For genera information about mathematical functions, see“Mathematical
functions’ on page 67.
Standards ANSI SQL — Compliance level: Transact-SQL extension
Permissions Any user can execute cos.
See also Functions acos, degrees, radians, sin

100 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

cot

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the cotangent of the specified angle.
cot(angle)

angle
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

select cot (90)

-0.501203

* cot, amathematical function, returns the cotangent of the specified angle,
in radians.

e For genera information about mathematical functions, see“Mathematical
functions” on page 67.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute cot.

Functions degrees, radians, sin

Reference Manual: Building Blocks 101

count

count

Description

Syntax

Parameters

Examples

Usage

102

Returns the number of (distinct) non-null values or the number of selected
rows.

count([all | distinct] expression)

all
applies count to all values. all is the default.

distinct
eliminates duplicate values before count is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions’ on page 249.

Example 1 Finds the number of different citiesin which authorslive:

select count (distinct city)
from authors

Example 2 Liststhe typesin thetitles table, but eliminates the types that
include only one book or none:

select type
from titles

group by type
having count (*) > 1

* count, an aggregate function, finds the number of non-null valuesin a
column. For general information about aggregate functions, see
“Aggregate functions’ on page 52.

* When distinct is specified, count finds the number of unique non-null
values. count can be used with al datatypes, including unichar, but cannot
be used with text and image. Null values are ignored when counting.

* count(column_name) returnsavalue of 0 on empty tables, on columnsthat
contain only null values, and on groups that contain only null values.

» count(*) finds the number of rows. count(*) does not take any arguments,
and cannot be used with distinct. All rows are counted, regardless of the
presence of null values.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

« Whentables are being joined, include count(*) in the select list to produce
the count of the number of rowsin the joined results. If the objectiveisto
count the number of rows from one table that match criteria, use
count(column_name).

« count() can be used as an existence check in a subquery. For example:

select * from tab where 0 <
(select count (*) from tab2 where ...)

However, because count() counts all matching values, exists or in may
return results faster. For example:

select * from tab where exists
(select * from tab2 where ...)

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute count.

See also Commands compute clause, group by and having clauses, select, where
clause

Reference Manual: Building Blocks 103

current_date

current_date

Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

104

Returns the current date.

current_date()

None.

Example 1 Identifies the current date with datename:

1> select datename(month, current date())
2> go

Example 2 Identifiesthe current date with datepart:

1> select datepart (month, current date())
2> go

(1 row affected)
Used to find the current date as it exists on the server.
ANSI SQL —Entry level Compliance.
Any user can execute current_date.
Datatypes Date and time datatypes
Commands select, where clause

Functions dateadd, datename, datepart, getdate

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

current_time

Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

Returns the the current time.

current_time()

None.

Example 1 Finds the current time:

1> select current date()
2> go

Aug 29 2003

(1 row affected)
Example 2 Use with datename:

1> select datename (minute, current time())
2> go

(1 row affected)
Used to find the current time as it exists on the server
ANSI SQL — Entry level Compliance.
Any user can execute current_time.
Datatypes Date and time datatypes
Commands select, where clause

Functions dateadd, datename, datepart, getdate

Reference Manual: Building Blocks

105

curunreservedpgs

curunreservedpgs
Description Returns the number of free pages in the specified disk piece.
Syntax curunreservedpgs(dbid, Istart, unreservedpgs)
Parameters dbid
isthe ID for adatabase. These are stored in the db_id column of
sysdatabases.

Istart
is apage within the disk piece for which pages are to be returned.

unreservedpgs
isthe default value to return if the dbtable is presently unavailable for the
requested database.

Examples Example 1 Returns the database name, device name, and the number of
unreserved pages for each device fragment:

select db_name (dbid), d.name,
curunreservedpgs (dbid, lstart, unreservedpgs)
from sysusages u, sysdevices d
where d.low <= u.size + vstart
and d.high >= u.size + vstart -1
and d.status &2 = 2

master master 184
master master 832
tempdb master 464
tempdb master 1016
tempdb master 768
model master 632
sybsystemprocs master 1024
pubs2 master 248

Example 2 Displaysthe number of free pages on the segment for dbid starting
on sysusages.Istart:

select curunreservedpgs (dbid, sysusages.lstart, 0)

Usage e curunreservedpgs, asystem function, returnsthe number of free pagesina
disk piece. For genera information about system functions, see “System
functions’ on page 71.

« If the database is open, the value istaken from memory; if the database is
not in use, the value istaken from the unreservedpgs column in sysusages.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute curunreservedpgs.

106 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

See also Functions db_id, Ict_admin

Reference Manual: Building Blocks 107

data_pgs

data_pgs

Description

Syntax

Parameters

Examples

Usage

108

Returns the number of pages used by the specified table or index.
data_pgs([dbid], object_id, {data_oam_pg_id | index_oam_pg_id}

dbid
isthe dbid of the database that contains the data pages.

object_id
isan object ID for atable, view, or other database object. These are stored
in theid column of sysobjects.

data_oam_pg_id
isthe page ID for adata OAM page, stored in the doampg column of
sysindexes.

index_oam_pg_id
isthe page ID for an index OAM page, stored in theioampg column of
sysindexes.

Example 1 Estimatesthe number of data pagesused by user tables (which have
object IDsthat are greater than 100). An indid of O indicates atable without a
clustered index; an indid of 1 indicates atable with a clustered index. This
example does not include nonclustered indexes or text chains:

select sysobjects.name,
Pages = data pgs (sysindexes.id, doampg)
from sysindexes, sysobjects
where sysindexes.id = sysobjects.id
and sysindexes.id > 100
and (indid = 1 or indid = 0)

Example 2 Estimates the number of data pages used by user tables (which
have object IDsthat are greater than 100), nonclustered indexes, and page
chains:

select sysobjects.name,
Pages = data pgs (sysindexes.id, ioampg)
from sysindexes, sysobjects
where sysindexes.id = sysobjects.id
and sysindexes.id > 100
and (indid > 1)

* data_pgs, asystem function, returns the number of pages used by atable
(doampg) or index (ioampg). You must use this function in a query run
against the sysindexes table. For more information on system functions,
see “ System functions’ on page 71.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Standards
Permissions

See also

e data_pgs works only on objects in the current database.

¢ Theresult does not include pages used for internal structures. To seea
report of the number of pages for the table, clustered index, and internal
structures, use used_pgs.

Accuracy of results

e If used onthetransaction log (syslogs), the result may not be accurate and
can be off by up to 16 pages.

Errors

« Instead of returning an error, data_pgs returns Qif any of thefollowing are
true:

¢ Theobject_id does not exist in sysobjects

« Thecontrol_page id does not belong to the table specified by
object_id

e Theobject idis-1

e Thepage idis-1
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute data_pgs.
Functions object_id, rowcnt

System procedure sp_spaceused

Reference Manual: Building Blocks 109

datalength

datalength

Description
Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

110

Returns the actual length, in bytes, of the specified column or string.

datalength(expression)

expression
isacolumn name, variable, constant expression, or acombination of any of
these that evaluates to asingle value. It can be of any datatype. expression
isusually a column name. If expression is a character constant, it must be
enclosed in quotes.

Finds the length of the pub_name column in the publishers table:

select Length = datalength (pub_ name)
from publishers

» datalength, a system function, returns the length of expression in bytes.

» datalength findsthe actual length of the data stored in each row. datalength
isuseful on varchar univarhcar, varbinary, text and image datatypes, since
these datatypes can store variable lengths (and do not store trailing
blanks). When achar or unichar value is declared to alow nulls, Adaptive
Server storesit internally asvarchar or univarchar. For all other datatypes,
datalength reports their defined length.

e datalength of any NULL datareturns NULL.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute datalength.

Functions char_length, col_length

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

dateadd

Description

Syntax

Parameters

Examples

Returns the date produced by adding a given number of years, quarters, hours,
or other date parts to the specified date.

dateadd(date_part, integer, date expression)

date_part
is adate part or abbreviation. For alist of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts’ on page 66.

numeric
is an integer expression.

date expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Example 1 Displays the new publication dates when the publication dates of
al the booksin thetitles table dip by 21 days:

select newpubdate = dateadd(day, 21, pubdate)
from titles

Example 2 Add one day to adate:

declare @a date
select @a = "apr 12, 9999"
select dateadd(dd, 1, @a)

Apr 13 9999
Example 3 Add five minutesto atime:

select dateadd(mi, 5, convert(time, "14:20:00"))

Example 4 Add one day to atime and the time remains the same:

declare @a time
select @a = "14:20:00"
select dateadd(dd, 1, @a)

Example 5 Although there are limits for each date_part, as with datetime
values, higher values can be added resulting in the values rolling over to the
next significant field:

--Add 24 hours to a datetime

Reference Manual: Building Blocks 111

dateadd

Usage

Date part

select dateadd (hh, 24, "4/1/1979")

Apr 2 1979 12:00AM

--Add 24 hours to a date
select dateadd (hh, 24, "4/1/1979")

dateadd, a date function, adds an interval to a specified date. For more
information about date functions, see “Date functions’ on page 66.

dateadd takes three arguments:. the date part, a number, and a date. The
result is adatetime value equal to the date plus the number of date parts.

If the date argument is a smalldatetime value, theresult isalso a
smalldatetime. You can use dateadd to add seconds or milliseconds to a
smalldatetime, but it is meaningful only if the result date returned by
dateadd changes by at least one minute.

Use the datetime datatype only for dates after January 1, 1753. datetime
values must be enclosed in single or double quotes. Use the date datatype
for dates from January 1, 0001 to 9999. date must be enclosed in single or
double quotes.Use char, nchar, varchar or nvarchar for earlier dates.
Adaptive Server recognizes awide variety of date formats. For more
information, see “User-defined datatypes’ on page 44 and “ Datatype
conversion functions’ on page 58.

Adaptive Server automatically converts between character and datetime
valueswhen necessary (for example, when you compare a character value
to adatetime value).

Using the date part weekday or dw with dateadd is not logical, and
produces spurious results. Use day or dd instead.

Table 2-7: date_part recognized abbreviations

Abbreviation Values

Year

yy 1753-9999 (datetime)
1900-2079 (smalldatetime)
0001-9999 (date)

Quarter

o 1-4

Month

mm 1-12

Week

wk 1054

Day

dd 1-7

dayofyear

112

dy 1-366

Adaptive Server Enterprise

CHAPTER 2

Transact-SQL Functions

Date part Abbreviation Values

Weekday dw 1-7

Hour hh 0-23

Minute mi 0-59

Second ss 0-59

millisecond ms 0-999
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute dateadd.
See also Datatypes Date and time datatypes

Commands select, where clause

Functions datediff, datename, datepart, getdate

Reference Manual: Building Blocks

113

datediff

datediff

Description

Syntax

Parameters

Examples

114

Returns the difference between two dates.

datediff(datepart, date expressionl, date expression2)

datepart
isadate part or abbreviation. For alist of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts’ on page 66.

date expressionl
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

date expression2
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Example 1 Finds the number of days that have elapsed between pubdate and
the current date (obtained with the getdate function):

select newdate = datediff (day, pubdate, getdate())
from titles

Example 2 Find the number of hours between two times:

declare @a time

declare @b time

select @a = "20:43:22"
select @b = "10:43:22"
select datediff (hh, @a, @b)

Example 3 Find the number of hours between two dates:

declare @a date

declare @b date

select @a = "apr 1, 1999"
select @b = "apr 2, 1999"
select datediff (hh, @a, @b)

Example 4 Find the number of days between two times:

declare @a time

declare @b time

select @a = "20:43:22"
select @b = "10:43:22"
select datediff (dd, @a, @b)

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Example 5 Overflow size of milliseconds return value:

select datediff (ms, convert (date, "4/1/1753"), convert (date, "4/1/9999"))
Msg 535, Level 16, State 0:
Line 2:

Difference of two datetime fields caused overflow at runtime.
Command has been aborted

Usage e datediff, a date function, calculates the number of date parts between two
specified dates. For more information about date functions, see “Date
functions’ on page 66.

« datediff takesthree arguments. Thefirst isadate part. The second and third
aredates. Theresultisasignedinteger value equal to date2 - datel, in date
parts.

e datediff produces results of datatype int, and causes errorsif theresult is
greater than 2,147,483,647. For milliseconds, this is approximately 24
days, 20:31.846 hours. For seconds, thisis 68 years, 19 days, 3:14:07
hours.

e datediff results are alwaystruncated, not rounded, when the result isnot an
even multiple of the date part. For example, using hour asthe date part, the
difference between “4:00AM” and “5:50AM" is 1.

When you use day as the date part, datediff counts the number of midnights
between the two times specified. For example, the difference between
January 1, 1992, 23:00 and January 2, 1992, 01:00 is 1; the difference
between January 1, 1992 00:00 and January 1, 1992, 23:59 is 0.

¢ Themonth datepart countsthe number of first-of-the-months between two
dates. For example, the difference between January 25 and February 2 is
1; the difference between January 1 and January 31is0.

¢ When you use the date part week with datediff, you get the number of
Sundays between the two dates, including the second date but not the first.
For example, the number of weeks between Sunday, January 4 and
Sunday, January 11is1.

¢ If smalldatetime values are used, they are converted to datetime values
internally for the calculation. Seconds and milliseconds in smalldatetime
values are automatically set to O for the purpose of the difference
calculation.

e If the second or third argument is adate, and the datepart ishour, minute,
second, or millisecond, the dates are treated as midnight.

Reference Manual: Building Blocks 115

datediff

Standards
Permissions

See also

116

» If the second or third argument is atime, and the datepart isyear, month,
or day, then zero is returned.

* datediff results are truncated, not rounded, when the result is not an even
multiple of the date part.

* For the smaller time units there are overflow values and the function
returns an overflow error if you exceed these limits.

milliseconds:. approx 24 days
seconds:. approx 68 years
minutes: approx 4083 years

others: No overflow limit

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute datediff.

Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

datename

Description

Syntax

Parameters

Examples

Usage

Returns the specified datepart (the first argument) of the specified date or time
(the second argument) as a character string. Takeseither adate, time, datetime,
or smalldatetime value as its second argument.

datename (datepart, date expression)

datepart
is adate part or abbreviation. For alist of the date parts and abbreviations
recognized by Adaptive Server, see “ Date parts’ on page 66.

date expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Example 1 Assumes a current date of November 20, 2000:
select datename (month, getdate())
November

Example 2 Find the month name of adate:

declare @a date
select @a = "apr 12, 0001"
select datename (mm, @a)

Example 3 Find the seconds of atime:

declare @a time
select @a = "20:43:22"
select datename(ss, @a)

e datename, adate function, returns the name of the specified part (such as
the month “June”) of adatetime or smalldatetime value, as a character
string. If the result is numeric, such as“23” for the day, it is still returned
as a character string.

« For more information about date functions, see “ Date functions’ on page
66.

e Thedate part weekday or dw returnsthe day of theweek (Sunday, Monday,
and so on) when used with datename.

e Since smalldatetime is accurate only to the minute, when a smalldatetime
value is used with datename, seconds and milliseconds are always 0.

Reference Manual: Building Blocks 117

datename

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute datename.
See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

118 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

datepart

Description Returns the specified datepart in the first argument of the specified date (the
second argument) as an integer. Takes either a date, time,datetime, or
smalldatetime value as its second argument. If the datepart is hour, minute,
second, or millisecond, the result is zero.

Syntax datepart(date_part, date expression)

Parameters date_part

isadate part. Table 2-8 lists the date parts, the abbreviations recognized by
datepart, and the acceptable values.

Reference Manual: Building Blocks 119

datepart

Table 2-8: Date parts and their values

Date part Abbreviation Values

year yy 1753 — 9999 (2079 for smalldatetime)
0001 to 9999 for date

quarter qq 1-4

month mm 1-12

week wk 1-54

day dd 1-31

dayofyear dy 1-366

weekday dw 1-7(Sun.—Sat.)

hour hh 0-23

minute mi 0-59

second ss 0-59

millisecond ms 0-999

calweekofyear cwk 1-53

calyearofweek cyr 1753 — 9999

caldayofweek cdw 1-7

When you enter ayear as two digits (yy):

* Numberslessthan 50 are interpreted as 20yy. For example, o1 is 2001,
32152032, and 49 is 2049.

* Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 151950, 74 is1974, and 99 is 1999.

Milliseconds can be preceded by either acolon or aperiod. If preceded
by a colon, the number means thousandths of a second. If preceded by
aperiod, asingle digit means tenths of a second, two digits mean
hundredths of a second, and three digits mean thousandths of a second.
For example, “12:30:20:1" means twenty and one-thousandth of a
second past 12:30; “12:30:20.1" means twenty and one-tenth of a
second past 12:30.

date expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Examples Example 1 This example assumes a current date of November 25, 1995:

select datepart (month, getdate())

120 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Example 2

select datepart (year, pubdate) from titles where type =
"trad cook"

Example 3

select datepart (cwk,’1993/01/01")

Example 4

select datepart (cyr,’1993/01/01")

Example 5

select datepart (cdw,’1993/01/01")

Example 6 Findthe hoursinatime:

declare @a time
select @a = "20:43:22"
select datepart (hh, @a)

Example 7 If ahour, minute, or second portion is requested from adate using
datename() or datepart() the result is the default time, zero. If amonth, day, or
year is requested from atime using datename() or datepart() the result is the
default date, Jan 1 1900:

--Find the hours in a date
declare @a date

select @a = "apr 12, 0001"
select datepart (hh, @a)

--Find the month of a time

Reference Manual: Building Blocks 121

datepart

declare @a time
select @a = "20:43:22"
select datename (mm, @a)

January

When anull valueis given to adatetime function as a parameter, null will be
returned.

Usage .

122

datepart, a date function, returns an integer value for the specified part of
adatetime value. For more information about date functions, see “ Date
functions’ on page 66.

datepart returns a number that follows 1SO standard 8601, which defines
the first day of the week and the first week of the year. Depending on
whether the datepart function includes a value for calweekofyear,
calyearofweek, Or caldayorweek, the date returned may be different for the
same unit of time. For example, if Adaptive Serverisconfiguredtouse US
English as the default language, the following returns 1988:

datepart (cyr, "1/1/1989")
However, the following returns 1989:
datepart (yy, "1/1/1989)

This disparity occurs because the 1SO standard defines the first week of
the year as the first week that includes a Thursday and begins with
Monday.

For serversusing US English astheir default language, the first day of the
week as Sunday, and the first week of the year is the week that contains
January 4th.

The date part weekday or dw returns the corresponding number when used
with datepart. The numbers that correspond to the names of weekdays
depend on the datefirst setting. Some language defaults (including
us_english) produce Sunday=1, Monday=2, and so on; others produce
Monday=1, Tuesday=2, and so on.The default behavior can be changed on
a per-session basis with set datefirst. See the datefirst option of the set
command for more information.

calweekofyear, which can be abbreviated as cwk, returns the ordinal
position of the week within the year. calyearofweek, which can be
abbreviated as cyr, returns the year in which the week begins.
caldayofweek, which can abbreviated as cdw, returns the ordinal position
of the day within the week. You cannot use calweekofyear, calyearofweek,
and caldayofweek as date parts for dateadd, datediff and datename.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e Since smalldatetime is accurate only to the minute, when a smalldatetime
value is used with datepart, seconds and milliseconds are always 0.

« Thevalues of the weekday date part are affected by the language setting.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute datepart.
See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datediff, datename, getdate

Reference Manual: Building Blocks 123

day

day
Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

124

Returns an integer that represents the day in the datepart of a specified date.
day(date_expression)

date_expression
isan expression of type datetime, smalldatetime, date or acharacter stringin
adatetime format.

Returns the integer 02:

day("11/02/03")

day(date_expression) is equivalent to datepart(dd,date_expression).
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute day.

Datatypes datetime, smalldatetime, date, time

Functions datepart, month, year

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

db_id

Description Returns the ID number of the specified database.
Syntax db_id(database_name)
Parameters database_name

isthe name of adatabase. database name must be acharacter expression. If
it isaconstant expression, it must be enclosed in quotes.

Examples select db_id("sybsystemprocs")
4
Usage e db_id, asystem function, returns the database ID number.

» If youdo not specify adatabase_name, db_id returnsthe |D number of the
current database.

e For genera information about system functions, see “ System functions”

on page 71.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute db_id.
See also Functions db_name, object_id

Reference Manual: Building Blocks 125

db_name

db_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

126

Returns the name of the database whose ID number is specified.
db_name([database_id])

database_id
isanumeric expression for the database ID (stored in sysdatabases.dbid).

Example 1 Returns the name of the current database:
select db_name ()
Example 2

select db_name (4)

sybsystemprocs
» db_name, a system function, returns the database name.

* If nodatabase idis supplied, db_name returns the name of the current
database.

» For general information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute db_name.

Functions col_name, db_id, object_name

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

degrees

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the size, in degrees, of an angle with the specified number of radians.

degrees(numeric)

numeric
isanumber, in radians, to convert to degrees.

select degrees (45)

* degrees, amathematical function, convertsradiansto degrees. Resultsare
of the same type as the numeric expression.

For numeric and decimal expressions, the results have an internal
precision of 77 and a scale equal to that of the expression.

When money datatypes are used, internal conversion to float may cause
loss of precision.

e For genera information about mathematical functions, see“Mathematical
functions” on page 67.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute degrees.

Functions radians

Reference Manual: Building Blocks 127

derived_stat

derived_stat

Description

Syntax

Parameters

Examples

Returns derived statistics for the specified object and index.
derived_stat({object_name | object_id}, {index_name | index_id}, “statistic”)

object_name
isthe name of the object you are interested in. If you do not specify afully
qualified object name, derived_stat searches the current database.

object_id
is an aternative to object_name, and is the object id of the object you are
interested in. This must be in the current database

index_name
isthe name of the index, belonging to the specified object that you are
interested in.

index_id
isan aternative to index_name, and isthe index id of the specified object
that you are interested in

“statistic”
the derived statistic to be returned. Available statistics are:

Value Returns

data page cluster ratio or dpcr | The data page cluster ratio for the object/index pair

index page cluster ratio or ipcr | Theindex page cluster ratio for the object/index pair

data row cluster ratio or drcr | The datarow cluster ratio for the object/index pair

large io efficiency or Igio Thelargeio efficiency for the object/index pair

space utilization or sput The space utilization for the object/index pair

Example 1 Selectsthe space utilization for thetitleidind index of thetitles table:

select derived stat("titles", "titleidind", "space utilization")

Usage

128

Example 2 Selectsthe data page cluster ratio for index id 2 of thetitles table.
Note that you can use either "dpcr" Or "data page cluster ratio":

select derived stat("titles", 2, "dpcr")
» derived_stat returns a double precision value.

e Thevaluesreturned by derived_stat match the values presented by the
optdiag utility.

» If the specified object or index does not exist, derived_stat returns NULL.

» Specifying an invalid statistic type resultsin an error message.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Only the table owner can execute derived_stat.
See also Documents Performance and Tuning Guide for:

e “Access Methods and Query Costing for Single Tables’
o “Statistics Tables and Displaying Statistics with optdiag”
Utilities optdiag

Reference Manual: Building Blocks 129

difference

difference

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

130

Returns the difference between two soundex values.
difference(exprl,expr2)

exprl
is a character-type column name, variable, or constant expression of char,
varchar, nchar, nvarchar, or unichar type.

expr2
is another character-type column name, variable, or constant expression of
char, varchar, nchar, nvarchar, or unichar type.

Example 1
select difference("smithers", "smothers")
4

Example 2
select difference ("smothers", "brothers")

» difference, astring function, returns an integer representing the difference
between two soundex values.

» Thedifference function compares two strings and eva uates the similarity
between them, returning a value from 0 to 4. The best match is 4.

The string values must be composed of a contiguous sequence of valid
single- or double-byte roman letters.

* If char_exprl, uchar_exprl, or char_expr2, uchar_expr2isNULL,
returns NULL.

» If avarchar expression is given as one parameter and a unichar expression
is given as the other, the varchar expression isimplicitly converted to
unichar (with possible truncation).

» For general information about string functions, see “ String functions’ on
page 70.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute difference.

Functions soundex

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

exp
Description Returns the val ue that results from raising the constant to the specified power.
Syntax exp(approx_numeric)
Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.
Examples select exp(3)
20.085537
Usage e exp, amathematical function, returns the exponential value of the
specified value.
« For genera information about mathematical functions, see“Mathematical
functions” on page 67.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute exp.
See also Functions log, log10, power

Reference Manual: Building Blocks 131

floor

floor

Description

Syntax

Parameters

Examples

132

Returns the largest integer that is less than or equal to the specified value.

floor(numeric)

numeric
isany exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Example 1

select floor (123)

Example 2

select floor (123.45)

Example 3

select floor(1.2345E2)

123.000000
Example 4

select floor(-123.45)

Example 5

select floor(-1.2345E2)

-124.000000
Example 6

select floor($123.45)

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage * floor, amathematical function, returns the largest integer that is less than
or equal to the specified value. Results are of the sametype asthe numeric
expression.

For numeric and decimal expressions, the results have aprecision equal to
that of the expression and a scale of 0.

¢ For general information about mathematical functions, see“ Mathematical
functions’ on page 67.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute floor.
See also Functions abs, ceiling, round, sign

Reference Manual: Building Blocks 133

get_appcontext

get_appcontext

Description Returns the value of the attribute in a specified context. get_appcontext isa
built-in function provided by the Application Context Facility (ACF).

Syntax get_appcontext (“context_name”, “attribute_name”)

Parameters context_name
isarow specifying an application context name. It is saved as datatype
char(30).

attribute_name
isarow specifying an application context attribute name. It is saved as

datatype char(30).
Examples Example 1 Shows VALUEL returned for ATTRL.
select get appcontext ("CONTEXT1", "ATTRI1")
VALUE1

ATTR1 does not exist in CONTEXT2:
select get appcontext ("CONTEXT2", "ATTR1")

Example 2 Shows the result when a user without appropriate permissions
attempts to get the application context.

select get appcontext ("CONTEXT1", "ATTR2", "VALUE1l")

Select permission denied on built-in get appcontext, database dbid

-1
Usage e Thisfunction returns O for success and -1 for failure.

« If the attribute you require does not exist in the application context,
get_appcontext returns “null.”

e get_appcontext saves attributes as char datatypes. If you are creating an
access rule that compares the attribute value to other datatypes, the rule
should convert the char data to the appropriate datatype.

» All arguments for this function are required.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Permissions depend on the user profile and the application profile, and are

stored by ACF.

134 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

For more information on the Application Context Facility see “Row-level
access control” in Chapter 11, “Managing User Permissions” of the System

Administration Guide.

Functions get_appcontext, list_appcontext, rm_appcontext, set_appcontext

See also

Reference Manual: Building Blocks 135

getdate

getdate

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

136

Returns the current system date and time.

getdate()
None.

Example 1 Assumes a current date of November 25, 1995, 10:32 am.:
select getdate()
Nov 25 1995 10:32AM
Example 2 Assumes acurrent date of November:
select datepart (month, getdate())
1
Example 3 Assumes acurrent date of November:
select datename (month, getdate())
November
e getdate, adate function, returns the current system date and time.

» For moreinformation about date functions, see “ Date functions’ on page
66.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute getdate.
Datatypes Date and time datatypes.

Functions dateadd, datediff, datename, datepart

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

hextoint

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the platform-independent integer equivalent of a hexadecimal string.
hextoint (hexadecimal_string)

hexadecimal_string
isthe hexadecimal valueto be converted to an integer. Thismust be either a
character type column or variable name or avalid hexadecimal string, with
or without a“0x” prefix, enclosed in quotes.

Returns the integer equivalent of the hexadecimal string “0x00000100”. The
result is always 256, regardless of the platform on which it is executed:

select hextoint ("0x00000100")

¢ hextoint, adatatype conversion function, returnsthe platform-independent
integer equivalent of a hexadecimal string.

¢ Usethe hextoint function for platform-independent conversions of
hexadecimal datato integers. hextoint accepts avalid hexadecimal string,
with or without a“0x” prefix, enclosed in quotes, or the name of a
character type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The
function always returns the same integer equivalent for agiven
hexadecimal string, regardless of the platform on which it is executed.

¢ For more information about datatype conversion, see “ Datatype
conversion functions’ on page 58.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute hextoint.

Functions convert, inttohex

Reference Manual: Building Blocks 137

host_id

host_id

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

138

Returns the client computer’s operating system process ID for the current
Adaptive Server client.

host_id()
None.

Inthisexample, the name of the client computer is” ephemeris’ and the process
ID on the computer “ ephemeris’ for the Adaptive Server client processis 23009:

ephemeris 2309

The following is the process information, gathered using the UNIX ps
command, from the computer “ephemeris’ showing that the client in this
exampleis“isgl” and its process ID is 2309:

2309 pts/2 S 0:00 /work/asl1l25/0CS-12 5/bin/isqgl

* host_id, asystem function, returnsthe host process 1D of the client process
(not the Server process).

» For general information about system functions, see“ String functions” on
page 70.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute host_id.

Function host_name

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

host _name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the current host computer name of the client process.

host_name()

None.

select host name ()

violet

e host_name, a system function, returns the current host computer name of
the client process (not the Server process).

e For genera information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute host_name.

Function host_id

Reference Manual: Building Blocks 139

identity _burn_max

identity _burn_max

Description

Syntax

Parameters

Examples

Usage

Permissions

140

Trackstheidentity burn max valuefor agiventable. Thisfunction only returns
the value and does not do an update.

identity _burn_max(table_name)

table_name
is the name of the table selected.

select identity burn max("tl")

identity_burn_max tracks the identity burn max value for agiven table. This
function only returns the value and does not do an update.

Only thetable owner, system administrator, or database administrator can issue
this command.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

index_col

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the name of the indexed column in the specified table or view.
index_col (object_name, index_id, key_# [, user_id])

object_name
isthe name of atable or view. The name can befully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

index_id
isthe number of object_name’'sindex. This number isthe same asthevalue
of sysindexes.indid.

key #
isakey in theindex. Thisvalue is between 1 and sysindexes.keycnt for a
clustered index and between 1 and sysindexes.keycnt+1 for a nonclustered
index.

user_id
isthe owner of object_name. If you do not specify user_id, it defaultsto the
caller’suser ID.

Finds the names of the keysin the clustered index on table t4:

declare @keycnt integer

select @keycnt = keycnt from sysindexes
where id = object id("t4")
and indid = 1

while @keycnt > 0

begin
select index col("t4", 1, @keycnt)
select @keycnt = @keycnt - 1

end

e index_col, asystem function, returns the name of the indexed column.
e index_col returns NULL if object_nameis not atable or view name.

* For general information about system functions, see“ String functions’ on
page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute index_col.
Functions object_id

System procedures sp_helpindex

Reference Manual: Building Blocks 141

index_colorder

index_colorder

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

142

Returns the column order.

index_colorder (object_name, index_id, key_#
[, user_id])
object_name
isthe name of atableor view. The name can be fully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

index_id
isthe number of object_name'sindex. This number isthe same asthe value
of sysindexes.indid.

key #
isakey intheindex. Valid values are 1 and the number of keysin the index.
The number of keysis stored in sysindexes.keycnt.

user_id
isthe owner of object_name. If you do not specify user_id, it defaultsto the
caller’'suser ID.

Returns“DESC” because the salesind index on the sales tableisin descending
order:

select name, index colorder("sales", indid, 2)
from sysindexes

where id = object id ("sales")

and indid > 0

salesind DESC

* index_colorder, a system function, returns“ASC” for columnsin
ascending order or “DESC” for columnsin descending order.

» index_colorder returns NULL if object_nameis not atable name or if
key #isnot avalid key number.

» For general information about system functions, see” String functions” on
page 70.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute index_colorder.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

inttohex

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the platform-independent hexadecimal equivalent of the specified
integer.

inttohex (integer_expression)

integer_expression
is the integer value to be converted to a hexadecimal string.

select inttohex (10)

0000000A

* inttohex, adatatype conversion function, returnsthe platform-independent
hexadecimal equivalent of an integer, without a“0x” prefix.

e Usetheinttohex function for platform-independent conversionsof integers
to hexadecimal strings. inttohex acceptsany expression that evaluatesto an
integer. It aways returns the same hexadecimal equivalent for agiven
expression, regardless of the platform on which it is executed.

e For more information about datatype conversion, see “Datatype
conversion functions’ on page 58.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute inttohex.

Functions convert, hextoint

Reference Manual: Building Blocks 143

isnull

isnull
Description Substitutes the value specified in expression2 when expressionl evaluates to
NULL.
Syntax isnull(expressionl, expression2)
Parameters expression
isacolumn name, variable, constant expression, or acombination of any of
these that evaluates to asingle value. It can be of any datatype, including
unichar. expression is usually a column name. If expression is a character
constant, it must be enclosed in quotes.
Examples Returns all rows from the titles table, replacing null valuesin price with O:
select isnull (price, 0)
from titles
Usage * isnull, asystem function, substitutes the val ue specified in expression2
when expressionl evaluates to NULL. For general information about
system functions, see “ String functions’ on page 70.
» Thedatatypes of the expressions must convert implicitly, or you must use
the convert function.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute isnull.
See also Function convert

144 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

IS_sec_service _on

Returns 1 if the security serviceis active and O if it is not.

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

iS_sec_service_on(security_service_nm)

security_service_nm

is the name of the security service.

select is sec service on("unifiedlogin")

e Useis_sec_service_on to determine whether a given security serviceis
active during the session.

« Tofind valid names of security services, run this query:

select * from syssecmechs

The result might look something like:

sec_mech name available service

dce
dce
dce
dce
dce
dce
dce

unifiedlogin
mutualauth
delegation
integrity
confidentiality
detectreplay
detectseq

The available_service column displays the security services that are
supported by Adaptive Server.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute is_sec_service_on.

Function show_sec_services

Reference Manual: Building Blocks

145

Ict_admin

lct_admin

Description

Syntax

Parameters

146

Manages the last-chance threshold.
Returns the current value of the last-chance threshold.

Aborts transactionsin atransaction log that has reached its | ast-chance
threshold.

Ict_admin({{"lastchance" | "logfull" | "reserved_for_rollbacks"},
database_id
|"reserve”, {log_pages |0}
| "abort", process-id [, database-id]})
lastchance
creates a last-chance threshold in the specified database.

logfull
returns 1 if the last-chance threshold has been crossed in the specified
database and O if it has not.

reserved_for_rollbacks
determines the number of pages a database currently reserved for rollbacks.

database_id
specifies the database.

reserve
obtainseither the current value of the last-chance threshold or the number of
log pages required for dumping atransaction log of a specified size.

log_pages
isthe number of pages for which to determine a last-chance threshold.

returns the current value of the last-chance threshold. The size of the
|ast-chance threshol d in a database with separate | og and data segments does
not vary dynamically. It has afixed value, based on the size of the
transaction log. The last-chance threshold varies dynamically in a database
with mixed log and data segments.

abort
aborts transactions in a database where the transaction log has reached its
last-chance threshold. Only transactionsin LOG SUSPEND mode can be
aborted.

logsegment_freepages
describes the free space avail able for the log segment. Thisisthetota value
of free space, not per-disk.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Examples

process-id
The ID (spid) of aprocessin log-suspend mode. A processisplacedin
log-suspend mode when it has open transactionsin atransaction log that has
reached its last-chance threshold (LCT).

database-id
the ID of adatabase whose transaction log hasreached itsLCT. If process-id
is 0, al open transactions in the specified database are terminated.

Example 1 Createsthelog segment | ast-chance threshold for the database with
dbid 1. It returns the number of pages at which the new threshold resides. If
there was a previous last-chance threshold, it is replaced:

select lct admin("lastchance", 1)

Example 2 Returns 1 if the last-chance threshold for the database with db_id
of 6 has been crossed, and 0 if it has not:

select lct admin("logfull", 6)

Example 3 Calculates and returns the number of log pages that would be
required to successfully dump the transaction log in alog containing 64 pages.

select lct admin("reserve", 64)

Example 4 Returnsthe current last-chance threshold of the transaction log in
the database from which the command was i ssued:

select lct admin("reserve", 0)

Example 5 Aborts transactions belonging to process 83. The process must be
inlog-suspend mode. Only transactionsin atransaction log that hasreached its
LCT are terminated:

select lct_admin("abort", 83)

Example 6 Aborts all open transactionsin the database with database ID 5.
Thisform awakens any processes that may be suspended at the log segment
|ast-chance threshold:

select lct_admin("abort", 0, 5)

Example 7 Determines the number of pages reserved for rollbacksin the
pubs2 database, which has a pubid of 5:

select lct admin("reserved for rollbacks", 5, 0)

Example 8 Describesthe free space available for a database with database 1D
of 4

Reference Manual: Building Blocks 147

Ict_admin

Usage

Standards

Permissions

See also

148

select lct admin("logsegment freepages", 4)

Ict_admin, a system function, manages the log segment’s last-chance
threshold. For general information about system functions, see “ String
functions’ on page 70.

If Ict_admin(“lastchance”, dbid) returns zero, the log is not on a separate
segment in this database, so no last-chance threshold exists.

Whenever you create a database with a separate log segment, the server
creates a default last chance threshold that defaults to calling
sp_thresholdaction. This happens even if a procedure called
sp_thresholdaction does not exist on the server at all.

If your log crosses the last-chance threshold, Adaptive Server suspends
activity, triesto call sp_thresholdaction, finds it does not exist, generates
an error, then leaves processes suspended until the log can be truncated.

To terminate the oldest open transaction in a transaction log that has
reached its LCT, enter the ID of the process that initiated the transaction.

To terminate all open transactionsin atransaction log that has reached its
LCT, enter 0 asthe process id, and specify a database ID in the
database-id parameter.

ANSI SQL — Compliance level: Transact-SQL extension.

Only a System Administrator can execute Ict_admin abort. Any user can
execute the other Ict_admin options.

Documents System Administration Guide.
Command dump transaction
Function curunreservedpgs

System procedures sp_thresholdaction

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

left

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns a specified number of characters on the left end of a character string.
left(character_expression, integer_expression)

character_expression
is the character string from which the characters on the left are selected.

integer_expression
is the positive integer that specifies the number of characters returned. An
error isreturned if integer_expression is negative.

Example 1 Returns the five leftmost characters of each book title.

use pubs

select left(title, 5)
from titles

order by title id

(18 row(sg) affected)

Example 2 Returnsthe two leftmost characters of the character string
"abcdef".

select left ("abcdef", 2)

ab
(1 row(s) affected)

e character_expression can be of any datatype (except text or image) that can
beimplicitly convertedto varchar or nvarchar. character_expression can be
a constant, variable, or a column name. You can explicitly convert
character_expression using convert.

e leftisequivalent to substring(character_expression, 1, integer_expression).
For more information on this function, see the substring on page 215.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute left.

Datatypes varchar, nvarchar

Reference Manual: Building Blocks 149

left

Functions len, str_replace, substring

150 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

len

Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

Returns the number of characters, not the number of bytes, of aspecified string
expression, excluding trailing blanks.

len(string_expression)

string_expression
is the string expression to be evaluated.

Returns the characters
select len(notes) from titles
where title id = "PC9999"
39

This function is the equivalent of char_length(string_expression).
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute len.

Datatypes char, nchar, varchar, or nvarchar

Functions char_length, left, str_replace

Reference Manual: Building Blocks 151

license_enabled

license_enabled

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

152

Returns 1if afeature’slicenseisenabled, O if thelicenseisnot enabled, or null
if you specify an invalid license name.

license_enabled("ase_server" | "ase_ha" | "ase_dtm" | "ase_java" |
"ase_asm")

ase_server
specifies the license for Adaptive Server.

ase_ha
specifies the license for the Adaptive Server high availability feature.

ase_dtm
specifies the license for Adaptive Server distributed transaction
management features.

ase_java
specifies the license for the Adaptive Server Javafeature.

ase_asm
specifies the license for Adaptive Server advanced security mechanism.

Indicates that the license for the Adaptive Server distributed transaction
management feature is enabled:

select license enabled("ase dtm")

» Forinformation about installing license keysfor Adaptive Server features,
see your Installation Guide.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute license_enabled.
Documents Installation Guide

System procedure sp_configure

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

list_appcontext

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

Lists all the attributes of all the contexts in the current session. list_appcontext
is abuilt-in function provided by the Application Context Facility (ACF).

list_appcontext (["context_name"])

context_name
is an optional argument that names all the application context attributesin
the session.

Shows the results when a user without appropriate permissions attemptsto list
the application contexts.

select list appcontext ([context name])

Context Name: (CONTEXT1)
Attribute Name: (ATTR1) Value: (VALUE2)
Context Name: (CONTEXT2)
Attribute Name: (ATTR1) Value: (VALUE1l)

select list appcontext ()

Select permission denied on built-in list appcontext,
database DBID

e Thisfunction returns O for success.

e Since built-in functions do not return multiple result sets, the client
application receives list_appcontext returns as messages.

ANSI SQL — Compliance level: Transact-SQL extension

Permissions depend on the user profile and the application profile, and are
stored by ACF.

For more information on the Application Context Facility see “Row-level
access control” in Chapter 11, “Managing User Permissions” of the System
Administration Guide.

Functions get_appcontext, list_appcontext, rm_appcontext, set_appcontext

Reference Manual: Building Blocks 153

lockscheme

lockscheme

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

154

Returns the locking scheme of the specified object as a string.
lockscheme(object_name)
Or

lockscheme(object_id [, db_id])

object_name
is the name of the object whose locking scheme this function returns.
object_name can also be afully qualified name.

db_id
the ID of the database specified by object_id.

object_id
the ID of the object whose locking scheme this function returns.

Example 1 Selectsthe locking scheme for the titles table in the current
database:

select lockscheme ("titles")

Example 2 Selectsthelocking scheme for object_id 224000798 (in this case,
the titles table) from database ID 4 (the pubs2 database):

select lockscheme (224000798, 4)

Example 3 Returns the locking scheme for the titles table (note that the
object_name in thisexampleisfully qualified):

select lockscheme (tempdb.ownerjoe.titles)
* lockscheme returnsvarchar(11) and allows NULLs.
* lockscheme defaults to the current database if:
* You do not provide afully-qualified object_name.
* Youdo not provideadb_id
* You provideanull for db_id.

» If the specified object is not atable, lockscheme returns the string “not a
table”.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute lockscheme.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

log

Description Returns the natural logarithm of the specified number.
Syntax log(approx_numeric)
Parameters approx_numeric

is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select log(20)
2.995732
Usage e log, amathematical function, returnsthe natural logarithm of the specified
value.

e For genera information about mathematical functions, see“Mathematical
functions” on page 67.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute log.
See also Functions logl0, power

Reference Manual: Building Blocks 155

log10

log10
Description Returns the base 10 logarithm of the specified number.
Syntax log10(approx_numeric)
Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.
Examples select logl0(20)
1.301030
Usage * log10, amathematical function, returnsthe base 10 logarithm of the
specified value.
» For genera information about mathematical functions, see“Mathematical
functions’ on page 67.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute log10.
See also Functions log, power

156 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

lower
Description Returns the lowercase equivalent of the specified expression.
Syntax lower(char_expr | uchar_expr)
Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.
uchar_expr
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.
Examples select lower(city) from publishers
boston
washington
berkeley
Usage ¢ lower, astring function, converts uppercase to lowercase, returning a
character value.
e lower istheinverse of upper.
e If char_expr or uchar_expr isNULL, returns NULL.
¢ For general information about string functions, see “ String functions’ on
page 70.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute lower.
See also Functions upper

Reference Manual: Building Blocks 157

[trim

[trim

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

158

Returns the specified expression, trimmed of leading blanks.
Itrim(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar,
or univarchar type.

select ltrim(" 123")

* ltrim, astring function, removes leading blanks from the character
expression. Only values equivalent to the space character in the current
character set are removed.

o If char_expr or uchar_expr isNULL, returns NULL.

» For Unicode expressions, returnsthe lower-case Unicode equivalent of the
specified expression. Charactersin the expression that have no lower-case
equivalent are left unmodified.

» For general information about string functions, see “ String functions’ on
page 70.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute ltrim.

Functions rtrim

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

max

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

Returns the highest valuein an expression.

max(expression)

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery.

Example 1 Returns the maximum value in the discount column of the
salesdetail table as a new column:

select max(discount) from salesdetail

62.200000

Example 2 Returns the maximum value in the discount column of the
salesdetail table as a new row:

select discount from salesdetail
compute max (discount)

* max, an aggregate function, finds the maximum value in a column or
expression. For general information about aggregate functions, see
“Aggregate functions’ on page 52.

* max can be used with exact and approximate numeric, character, and
datetime columns. It cannot be used with bit columns. With character
columns, max finds the highest value in the collating sequence. max
ignores null values. max implicitly converts char datatypes to varchar,
unichar datatypes to univarchar, stripping all trailing blanks.

e unichar datais collated according to the default Unicode sort order.

e Adaptive Server goes directly to the end of theindex to find the last row
for max when there is an index on the aggregated column, unless:

e Theexpression not acolumn
e Thecolumnisnot the first column of an index
e Thereisanother aggregate in the query
e Thereisagroup by or where clause
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute max.

Reference Manual: Building Blocks 159

max

See also Commands compute clause, group by and having clauses, select, where
clause

Functions avg, min

160 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

min
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the lowest value in a column.
min(expression)

expression

is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “ Expressions’ on page 249.

select min(price) from titles
where type = "psychology"

min, an aggregate function, finds the minimum value in a column.

For general information about aggregate functions, see “ Aggregate
functions” on page 52.

min can be used with numeric, character, time and datetime columns. It
cannot be used with bit columns. With character columns, min finds the
lowest valuein the sort sequence. min implicitly convertschar datatypesto
varchar, unichar datatypes to univarchar, stripping all trailing blanks. min
ignores null values. distinct isnot available, sinceit is not meaningful with
min.

unichar datais collated according to the default Unicode sort order.

Adaptive Server goes directly to the first qualifying row for min when
thereis an index on the aggregated column, unless:

e Theexpression isnot acolumn
e Thecolumnisnot the first column of an index
e Thereisanother aggregate in the query

e Thereisagroup by clause

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute min.

Commands compute clause, group by and having clauses, select, where
clause

Functions avg, max

Reference Manual: Building Blocks 161

month

month

Description
Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

162

Returns an integer that represents the month in the datepart of a specified date.

month(date_expression)

date_expression
isan expression of type datetime, smalldatetime, date or acharacter stringin
adatetime format.

Returns the integer 11:

day("11/02/03")

month(date_expression) is equivalent to datepart(mm, date_expression).
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute month.

Datatypes datetime, smalldatetime, date

Functions datepart, day, year

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

mut_excl_roles

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns information about the mutual exclusivity between two roles.
mut_excl_roles (rolel, role2 [membership | activation])

rolel
is one user-defined role in a mutually exclusive relationship.

role2
is the other user-defined role in amutually exclusive relationship.

level
isthe level (membership or activation) at which the specified roles are
exclusive.

Shows that the admin and supervisor roles are mutually exclusive:

alter role admin add exclusive membership supervisor
select
mut excl roles("admin", "supervisor", "membership")

e mut_excl_roles, a system function, returns information about the mutual
exclusivity between two roles. If the System Security Officer definesrolel
as mutually exclusive with role2 or arole directly contained by role2,
mut_excl_roles returns 1. If the roles are not mutually exclusive,
mut_excl_roles returns 0.

e For genera information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension

Any user can execute mut_excl_roles.

Commands alter role, create role, drop role, grant, set, revoke
Functions proc_role, role_contain, role_id, role_name

System procedures sp_activeroles, sp_displayroles, sp_role

Reference Manual: Building Blocks 163

newid

newid

Description

Syntax

Parameters

Examples

164

Generates human-readable, globally unique IDs (GUIDs) in two different
formats, based on arguments you provide. The length of the human-readable
format of the GUID valueis either 32 bytes (with no dashes) or 36 bytes (with
dashes).

newid([optionflag])

option flag

0, or no value — the GUID generated is human-readable, but does not
include dashes. This argument, which is the default, is useful for
converting values into varbinary.

-1 —the GUID generated is human-readable and includes dashes.
-0x0 — returns the GUID as a varbinary.

Example 1 Creates atable with varchar columns 32 bytes long and then uses
newid with no arguments with the insert statement.

create table t (UUID varchar(32))
go

insert into t values (newid())
insert into t values (newid())

go

select * from t

f81d4fae7decl1d0a76500a0c91le6bf6
7cd5b7769df75cefe040800208254639

Example 2 Produces a GUID that includes dashes.

select newid (1)
go

b59462af-a55b-469d-a79f-1d6c3clel9el

Example 3 Createsadefault that convertsthe GUID format without dashesto
avarbinary(16) column;

create table t (UUID VC varchar(32), UUID
varbinary (16))

go

create default default_guid

as

strtobin (newid())

go

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

Standards

Permissions

sp_bindefault default guid, "t.UUID"

go

insert t (UUID VC) values (newid())

go

newid generates two values for the globally unique ID (GUID) based on
arguments you pass to newid. The default argument generates GUIDs
without dashes. Any other value passed to newid generates GUIDs with
dashes and is more easily readable.

newid can be used in defaults, rules, and triggers, similar to other
functions.

Make sure the length of the varchar column is at least 32 bytes for the
GUID format without dashes, and at least 36 bytes for the GUID format
with dashes. The column length istruncated if it is not declared with these
minimum reguired lengths. Truncation increases the probability of
duplicate values.

An argument of zero is equivalent to the default.

You can use the GUID format without dashes with the strtobin function to
convert the GUID value to 16-byte binary data. However, using strtobin
with the GUID format with dashes resultsin NULL values.

Because GUIDs are globally unique, they can be transported across
domains without generating duplicates.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute newid.

Reference Manual: Building Blocks 165

next_identity

next_identity

Description Retrieves the next identity value that is available for the next insert.
Syntax next_identity(table_name)
Parameters table_name
identifies the table being used.

Examples Updates the value of c2 to 10. The next available valueis 11.

select next identity (“tl1”)

tl

11
Usage * next_identity returns the next value to be inserted by thistask. In some

cases, if multiple users are inserting values into the same table, the actual
value reported as the next value to be inserted is different from the actual
value inserted if another user performs an intermediate insert.

* next_identity returns avarchar chararcter to support any precision of the
identity column. If thetable is aproxy table, anon-user table, or thetable
does not have identity property, NULL is returned.

Permissions Only thetable owner, system administrator, or database administrator can issue
this command.

166 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

object_id
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the object ID of the specified object.
object_id(object_name)

object_name
is the name of a database object, such as atable, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the
database and owner name). Enclose the object_name in quotes.

Example 1

select object id("titles")

208003772
Example 2

select object id("master..sysobjects")

e object_id, asystem function, returnsthe object’sID. Object IDs are stored
in theid column of sysobjects.

e For genera information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute object_id.
Functions col_name, db_id, object_name

System procedure sp_help

Reference Manual: Building Blocks 167

object_name

object_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

168

Returns the name of the object whose object ID is specified.
object_name(object_id[, database_id])

object_id
isthe object ID of adatabase object, such asatable, view, procedure, trigger,
default, or rule. Object IDs are stored in the id column of sysobjects.

database_id
isthe D for adatabaseif the object is not in the current database. Database
IDs are stored in the db_id column of sysdatabases.

Example 1

select object name(208003772)

titles
Example 2

select object name(1l, 1)

sysobjects
* object_name, a system function, returns the object’s name.

» For general information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute object_name.
Functions col_name, db_id, object_id

System procedures sp_help

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

pagesize
Description

Syntax

Parameters

Examples

Returns the page size, in bytes, for the specified object.
pagesize(object_name [, index_name])
Or:

pagesize(object_id [,db_id [, index_id]])

object_name
the name of the object whose page size this function returns.

index_name
indicates the name of the index whose pagesize you want returned.

object_id
the ID of the object whose page size this function returns.

db_id
the ID of the database in which the object with object_name resides.

index_id
the ID of the index whose page size you want returned.

Example 1 Selects the pagesize for the title_id index in the current database.
select pagesize("title", "title id")

Example 2 Thefollowing returns the page size of the datalayer for the object
with object_id 1234 and the database with adb_id of 2 (the last example
defaults to the current database):

select pagesize(1234,2, null)
select pagesize(1234,2)
select pagesize (1234)

Example 3 Thefollowing all default to the current database:

select pagesize (1234, null, 2)
select pagesize(1234)

Example 4 Selectsthe pagesize for thetitles table (object_id 224000798) from
the pubs2 database (db_id 4):

select pagesize (224000798, 4)

Example 5 Returns the pagesize for the non-clustered index’s pages table
mytable, residing in the current database:

pagesize (object id(‘mytable’), NULL, 2)

Reference Manual: Building Blocks 169

pagesize

Example 6 Returnsthe page size for object titles_clustindex from the current

database:
select pagesize("titles", "titles clustindex")
Usage » pagesize defaultsto the datalayer if you do not provide an index name or

index_id (for example, select pagesize ("t1~)) of if you usetheword
“null” as aparameter (for example, select pagesize ("tl", null).

» If the specified object is not an object requiring physical data storage for
pages (for example, if you provide the name of aview), pagesize returns
zero.

» If the specified object does not exist, pagesize returns NULL.
Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute pagesize.

170 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

patindex

Description

Syntax

Parameters

Examples

Returns the starting position of the first occurrence of a specified pattern.

patindex("%pattern%?", char_expr|uchar_expr [, using
{bytes | characters | chars}])

pattern
isacharacter expression of thechar or varchar datatype that may include any
of the pattern-match wildcard characters supported by Adaptive Server. The
% wildcard character must precede and follow pattern (except when
searching for first or last characters). For a description of the wildcard
characters that can be used in pattern, see “ Pattern matching with wildcard
characters’ on page 265.

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar,
or univarchar type.

using
specifies aformat for the starting position.

bytes
returns the offset in bytes.

chars or characters
returns the offset in characters (the default).

Example 1 Selectstheauthor ID and the starting character position of theword
“circus’ in the copy column:

)

select au_id, patindex("%circus%", copy)
from blurbs

au_id
486-29-1786 0
648-92-1872 0
998-72-3567 38
899-46-2035 31
672-71-3249 0
409-56-7008 0
Example 2
select au_id, patindex("%circus%", copy,

Reference Manual: Building Blocks 171

patindex

using chars)
from blurbs

Example 3 The same as Example 1:

select au_id, patindex("%circus%", copy,
using chars)

from blurbs

Example 4 Findsall the rowsin sysobjects that start with “sys’ and whose
fourth characteris“a’, “b”, “c”, or “d":

select name
from sysobjects
where patindex("sys[a-d]%", name) > 0

sysalternates
sysattributes
syscharsets
syscolumns
syscomments
sysconfigures
sysconstraints
syscurconfigs
sysdatabases
sysdepends
sysdevices

Usage * patindex, a string function, returns an integer representing the starting
position of the first occurrence of pattern in the specified character
expression, or azero if pattern is not found.

» patindex can be used on all character data, including text and image data.

» By default, patindex returns the offset in characters; to return the offset in
bytes (multibyte character strings), specify using bytes.

* Include percent signs before and after pattern. To look for pattern as the
first charactersin a column, omit the preceding %. To look for pattern as
the last charactersin a column, omit the trailing %.

e If char_expr or uchar_expr isNULL, returns 0.

» If avarchar expression isgiven as one parameter and a unichar expression
is given as the other, the varchar expression isimplicitly converted to
unichar (with possible truncation).

172 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

¢ For general information about string functions, see “ String functions’ on

page 70.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute patindex.
See also Functions charindex, substring

Reference Manual: Building Blocks 173

pi

Description Returns the constant value 3.1415926535897936.
Syntax pi()
Parameters None
Examples select pi()
3.141593
Usage e pi, amathematical function, returns the constant value of
3.1415926535897931.

» For genera information about mathematical functions, see“Mathematical
functions’ on page 67.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute pi.
See also Functions degrees, radians

174 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

power

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the value that results from raising the specified number to a given
power.

power(value, power)

value
isanumeric value.

power
IS an exact numeric, approximate numeric, or money value.

select power (2, 3)

* power, amathematical function, returns the value of value raised to the
power power. Results are of the same type as value.

For expressions of type numeric or decimal, the results have an internal
precision of 77 and a scale equal to that of the expression.

e For genera information about mathematical functions, see“Mathematical
functions” on page 67.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute power.

Functions exp, log, logl0

Reference Manual: Building Blocks 175

proc_role

proc_role

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

176

Returnsinformation about whether the user has been granted the specified role.

proc_role ("role_name")

role_name
isthe name of a system or user-defined role.

Example 1 Creates a procedure to check if the user isa System Administrator:

create procedure sa_ check as

if (proc_role("sa role") > 0)

begin
print "You are a System Administrator."
return (1)

end

Example 2 Checksthat the user has been granted the System Security Officer
role:

select proc_role("sso role")
Example 3 Checks that the user has been granted the Operator role:
select proc_role("oper role")

* proc_role, asystem function, checks whether an invoking user has been
granted, and has activated, the specified role.

* proc_role returns O if any of the following are true:
» theuser has not been granted the specified role
» theuser has not been granted arole which contains the specified role
» theuser has been granted, but has not activated, the specified role

» proc_role returns 1if theinvoking user hasbeen granted, and hasactivated,
the specified role.

» proc_role returns 2 if the invoking user has a currently active role, which
contains the specified role.

* For genera information about system functions, see “ System functions’
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute proc_role.
Commands alter role, create role, drop role, grant, set, revoke

Functions mut_excl_roles, role_contain, role_id, role_name, show_role

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

ptn_data_pgs

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the number of data pages used by a partition.
ptn_data_pgs(object_id, partition_id)

object_id
istheobject ID for atable, stored in theid column of sysobjects, sysindexes,
and syspartitions.

partition_id
is the partition number of atable.

select ptn data pgs (object id("salesdetail"), 1)

e ptn_data_pgs, a system function, returns the number of data pagesin a
partitioned table.

e Usetheobject_id function to get an object’s ID, and use sp_helpartition to
list the partitionsin atable.

e The data pages returned by ptn_data_pgs may be inaccurate. Use the
update partition statistics, dbcc checktable, dbcc checkdb, or dbcc
checkalloc commands before using ptn_data_pgs to get the most accurate
value.

e For genera information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Only the table owner can execute ptn_data_pgs.
Commands dbcc, update partition statistics

Functions data_pgs, object_id

System procedures sp_helpartition

Reference Manual: Building Blocks 177

radians

radians
Description Returns the size, in radians, of an angle with the specified number of degrees.
Syntax radians(numeric)
Parameters numeric
isany exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.
Examples select radians (2578)
44
Usage » radians, amathematical function, converts degreesto radians. Resultsare
of the same type as numeric.
For expressions of type numeric or decimal, the results have an internal
precision of 77 and a scale equal to that of the numeric expression.
When money datatypes are used, internal conversion to float may cause
loss of precision.
» For genera information about mathematical functions, see“Mathematical
functions’ on page 67.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute radians.
See also Function degrees

178 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

rand

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns a random value between 0 and 1, which is generated using the
specified seed value.

rand([integer])
integer

is any integer (tinyint, smallint or int) column name, variable, constant
expression, or a combination of these.

Example 1

select rand()

0.395740
Example 2

declare @seed int
select @seed=100
select rand(@seed)

0.000783

* rand, amathematical function, returns arandom float value between 0 and
1, using the optional integer as a seed value.

« Therand function uses the output of a 32-bit pseudo-random integer
generator. Theinteger is divided by the maximum 32-bit integer to give a
double value between 0.0 and 1.0. The rand function is seeded randomly
at server start-up, so getting the same sequence of random numbersis
unlikely, unless the user first initializes this function with a constant seed
value. Therand function is aglobal resource. Multiple users calling the
rand function progress along a single stream of pseudo-random values. If
arepeatabl e series of random numbersis needed, the user must assure that
the function is seeded with the same value initially and that no other user
calls rand while the repeatable sequence is desired.

¢ For general information about mathematical functions, see“ Mathematical
functions’ on page 67.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute rand.

Datatypes Approximate numeric datatypes

Reference Manual: Building Blocks 179

replicate

replicate

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

180

Returnsastring consisting of the specified expression repeated a given number
of times.

replicate (char_expr | uchar_expr, integer_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

integer_expr
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression.

select replicate("abcd", 3)

abcdabcdabed

» replicate, astring function, returns a string with the same datatype as
char_expr, or uchar_expr containing the same expression repeated the
specified number of times or as many times as will fit into a 16K-space,
whichever isless.

» If char_expr or uchar_expr isNULL, returnsasingle NULL.

» For general information about string functions, see “ String functions’ on
page 70.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute replicate.

Functions stuff

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

reserved _pgs

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the number of pages allocated to the specified table or index, and
reports pages used for internal structures.

reserved_pgs(object_id, {doampg | ioampg})

object_id
isanumeric expression that is an object ID for atable, view, or other
database object. These are stored in the id column of sysobjects.

doampg | ioampg
specifies table (doampg) or index (ioampg).

Returns the page count for the syslogs table:

select reserved pgs(id, doampg)
from sysindexes where id =
object id("syslogs")

e reserved_pgs, asystem function:
* Returnsthe number of pages allocated to atable or an index
* Reports pages used for interna structures
« Works only on objects in the current database

e For genera information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute reserved_pgs.
Commands update statistics

Functions data_pgs

Reference Manual: Building Blocks 181

reverse

reverse

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

182

Returns the specified string with characters listed in reverse order.
reverse(expression | uchar_expr)

expression
isacharacter or binary-type column name, variable, or constant expression
of char, varchar, nchar, nvarchar, binary, or varbinary type.

uchar_expr
isacharacter or binary-type column name, variable, or constant expression
of unichar or univarchar type.

Example 1

select reverse ("abcd")

dcba
Example 2

select reverse (0x12345000)

0x00503412
* reverse, astring function, returns the reverse of expression.
» If expressionisNULL, returns NULL.
e Surrogate pairs are treated as indivisible and are not reversed.

» For general information about string functions, see “ String functions’ on
page 70.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute reverse.

Functions lower, upper

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

right
Description

Syntax

Parameters

Examples

The rightmost part of the expression with the specified number of characters.
right(expression, integer_expr)

expression
isacharacter or binary-type column name, variable, or constant expression
of char, varchar, nchar, unichar, nvarchar, univarchar, binary, or varbinary type.

integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Example 1

select right ("abcde", 3)

cde
Example 2

select right ("abcde", 2)

de
Example 3

select right ("abcde", 6)

Example 4

select right (0x12345000, 3)

0x345000
Example 5

select right (0x12345000, 2)

0x5000
Example 6

select right (0x12345000, 6)

0x12345000

Reference Manual: Building Blocks 183

right

Usage * right, astring function, returnsthe specified number of charactersfrom the
rightmost part of the character or binary expression.

« If the specified rightmost part begins with the second surrogate of a pair
(the low surrogate), the return value starts with the next full character.
Therefore, one less character is returned.

* Thereturn value has the same datatype as the character or binary
expression.

» If expressionisNULL, returns NULL.

» For genera information about string functions, see “ String functions’ on

page 70.
Standards ANSI SQL — Compliance level: Transact-SQL extension
Permissions Any user can execute right.
See also Functions rtrim, substring

184 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

rm_appcontext

Description Removes a specific application context, or all application contexts.
rm_appcontext is afunction provided by the Application Context Facility
(ACF).
Syntax rm_appcontext (“context_name”, “attribute_name”)
Parameters context_name
isarow specifying an application context name. It is saved as datatype
char(30).

attribute_name
isarow specifying an application context attribute name. It is saved as

datatype char(30).
Examples Example 1 Removes an application context by specifying some or al
attributes:
select rm_appcontext ("CONTEXT1", "*")
0
select rm_appcontext ("*", ")
0

Example 2 Shows the result when a user without appropriate permissions
attempts to remove an application context:

select rm_appcontext ("CONTEXT1", "ATTR2")

Usage e Thisfunction always returns O for success.

* All the arguments for this function are required.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, which are
stored by ACF.

See also For more information on the Application Context Facility see “Row-level

access control” in Chapter 11, “Managing User Permissions” of the System
Administration Guide.

Functions get_appcontext, list_appcontext, set_appcontext

Reference Manual: Building Blocks 185

role_contain

role_contain

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

186

Returns 1 if role2 containsrolel.
role_contain("rolel", "role2")

rolel
isthe name of a system or user-defined role.

role2
isthe name of another system or user-defined role.

Example 1

select role contain("intern role", "doctor role")

Example 2

select role contain("specialist role", "intern role")

* role_contain, a system function, returns 1 if rolel is contained by role2.

» For moreinformation about system functions, see “ System functions’ on
page 71.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute role_contain.

Documents For moreinformation about contained rolesand role hierarchies,
see the System Administration Guide.

Functions mut_excl_roles,proc_role,role_id, role_name
Commands alter role

System procedures sp_activeroles, sp_displayroles, sp_role

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

role id
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the system role ID of the role whose name you specify.
role_id("role_name")

role_name
is the name of a system or user-defined role. Role names and role IDs are
stored in the syssrvroles system table.

Example 1 Returnsthe system role ID of sa_role:

select role id("sa role")

Example 2 Returnsthe system role ID of the “intern_role”:

select role id("intern role")

* role_id, asystem function, returns the system role ID (srid). System role
IDs are stored in the srid column of the syssrvroles system table.

e Iftherole nameisnot avalid rolein the system, Adaptive Server returns
NULL.

» For moreinformation about system functions, see“ System functions’ on
page 71.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute role_id.

Documents For moreinformation about roles, seethe System Administration
Guide.

Functions mut_excl_roles,proc_role,role_contain, role_name

Reference Manual: Building Blocks 187

role_name

role_name
Description Returns the name of arole whose system role ID you specify.
Syntax role_name(role_id)
Parameters role_id
isthe systemrole ID (srid) of the role. Role names are stored in syssrvroles.
Examples select role name (01)
sso_role
Usage » role_name, asystem function, returns the role name.
» For moreinformation about system functions, see “ System functions’ on
page 71.
Standards ANSI SQL — Compliance level: Transact-SQL extension
Permissions Any user can execute role_name.
See also Functions mut_excl_roles,proc_role,role_contain, role_id

188 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

round

Description

Syntax

Parameters

Examples

Usage

Returns the val ue of the specified number, rounded to a given number of
decimal places.

round(number, decimal_places)

number
is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

decimal_places
is the number of decimal placesto round to.

Example 1

select round(123.4545, 2)

123.4500
Example 2

select round(123.45, -2)

Example 3

select round(1.2345E2, 2)

123.450000
Example 4

select round(1.2345E2, -2)

100.000000

* round, amathematical function, rounds the number so that it has
decimal_places significant digits.

* A positive decimal_places determines the number of significant digitsto
the right of the decimal point; a negative decimal_places, the number of
significant digits to the Ieft of the decimal point.

e Results are of the same type as number and, for numeric and decimal
expressions, have an internal precision equal to the precision of the first
argument plus 1 and a scale equal to that of number.

Reference Manual: Building Blocks 189

round

* round awaysreturns avalue. If decimal_placesis negative and exceeds
the number of significant digitsin number, Adaptive Server returns a
result of 0. (Thisisexpressed in the form 0.00, where the number of zeros
to the right of the decimal point is equal to the scale of numeric.) For
example, the following returns a value of 0.00:

select round(55.55, -3)

» For genera information about mathematical functions, see“Mathematical
functions’ on page 67.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute round.
See also Functions abs, ceiling, floor, sign, str

190 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

rowcnt

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns an estimate of the number of rowsin the specified table.
rowcnt(sysindexes.doampg)

sysindexes.doampg
is the row count maintained in sysindexes.

select name, rowcnt (sysindexes.doampg)
from sysindexes
where name in

(select name from sysobjects where type = "U")

name

roysched 87
salesdetail 116
stores 7
discounts 4
au_pix 0
blurbs 6

* rowent, asystem function, returns the estimated number of rowsin atable.

e Thevaluereturned by rowcnt can vary unexpectedly when Adaptive
Server reboots and recoverstransactions. The value is most accurate after
running one of the following commands:

¢ dbcc checkalloc

¢ dbcc checkdb

¢ dbcc checktable

* update all statistics
* update statistics

e For general information about system functions, see “ System functions’
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension
Any user can execute rowcent.

Catalog stored procedures sp_statistics

Commands dbcc, update all statistics, update statistics

Function data_pgs

Reference Manual: Building Blocks 191

rowcnt

System procedures sp_helpartition, sp_spaceused

192 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

rtrim

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the specified expression, trimmed of trailing blanks.
rtrim(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar,
or univarchar type.

select rtrim("abcd ")

e rtrim, astring function, removes trailing blanks.
* For Unicode, ablank is defined as the Unicode value U+0020.
e If char_expr or uchar_expr isNULL, returns NULL.

* Only values equivalent to the space character in the current character set
are removed.

e For general information about string functions, see “ String functions’ on
page 70.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute rtrim.

Functions Itrim

Reference Manual: Building Blocks 193

set_appcontext

set_appcontext

Description Sets an application context name, attribute name, and attribute value for a user
session, defined by the attributes of a specified application. set_appcontextisa
built-in function that the Application Context Facility (ACF) provides.

Syntax set_appcontext (“context_name, “attribute_name”, “attribute_value”)
Parameters context_name
isarow that specifiesan application context name. It is saved asthe datatype
char(30).

attribute_name
isarow that specifies an application context attribute name. It is saved as
the datatype char(30).

attribute_value
isarow that specifies and application attribute value. It is saved as the
datatype char(2048).

Examples Example 1 Creates an application context called CONTEXT1, with an
attribute ATTRL that has the value VALUEL

select set appcontext ("CONTEXT1", "ATTR1", "VALUE1")

Attempting to override the existing application context created causes the

following:
select set appcontext ("CONTEXT1", "ATTR1", "VALUE1")
-1
Example 2 Shows set_appcontext including a datatype conversion in the
value.
declare@numericvarchar varchar (25)
select @numericvar = "20"
select set appcontext ("CONTEXT1", "ATTR2",
convert (char (20), @numericvar))
0
Example 3 Shows the result when a user without appropriate permissions
attempts to set the application context.
select set appcontext ("CONTEXT1", "ATTR2", "VALUEL1")

194 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage .

This function returns O for success and -1 for failure.

If you set values that already exist in the current session, set_appcontext
returns-1.

Thisfunction cannot overridethe values of an existing application context.
If you want to assign new values to a context, remove the context and re-
create it with new values.

set_appcontext saves attributes as char datatypes. If you are creating an
access rule that must compare the attribute value to another datatype, the
rule should convert the char data to the appropriate datatype.

All the arguments for this function are required.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, stored by
ACF.

See also For more information on the Application Context Facility see “ Row-level
access control” in Chapter 11, “Managing User Permissions” of the System
Administration Guide.

Functions get_appcontext, list_appcontext, rm_appcontext

Reference Manual: Building Blocks 195

show_role

show_role

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

196

Shows the login’s currently active system-defined roles.
show_role()

None.

Example 1

select show_role()

sa_role sso_role oper role replication role
Example 2

if charindex("sa role", show role()) >0
begin

print "You have sa role"
end

» show_role, asystem function, returns the login’s current active
system-defined roles, if any (sa_role, sso_role, oper_role, or
replication_role). If thelogin has no roles, show_role returns NULL.

* When aDatabase Owner invokesshow_role after using setuser, show_role
displaysthe activeroles of the Database Owner, not the user impersonated
with setuser.

» For general information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute show_role.

Commands alter role, create role, drop role, grant, set, revoke
Functions proc_role, role_contain

System procedures sp_activeroles, sp_displayroles, sp_role

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

show_sec_services

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Lists the security servicesthat are active for the session.

show_sec_services()

None.

Shows that the user’s current session is encrypting data and performing replay
detection checks:

select show_sec_ services()
encryption, replay detection

e Useshow_sec_services to list the security servicesthat are active during
the session.

e If no security services are active, show_sec_services returns NULL.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute show_sec_services.

Functions is_sec_service_on

Reference Manual: Building Blocks 197

sign

sign
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

198

Returns the sign (+1 for positive, O, or -1 for negative) of the specified value.
sign(numeric)

numeric
isany exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Example 1

select sign(-123)

Example 2

select sign(0)

Example 3

select sign(123)

» sign, amathematical function, returns the positive (+1), zero (0), or
negative (-1).

* Resultsare of the sametype, and have the same precision and scale, asthe
numeric expression.

* For genera information about mathematical functions, see“Mathematical
functions’ on page 67.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute sign.

Functions abs, ceiling, floor, round

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

sin
Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

Returns the sine of the specified angle (in radians).
sin(approx_numeric)

approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

select sin(45)

0.850904

e sin, amathematical function, returns the sine of the specified angle
(measured in radians).

e For genera information about mathematical functions, see“Mathematical
functions” on page 67.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute sin.

Functions cos, degrees, radians

Reference Manual: Building Blocks 199

sortkey

sortkey
Description Generates values that can be used to order results based on collation behavior,
which allows you to work with character collation behaviors beyond the
default set of Latin character-based dictionary sort orders and case or accent
sengitivity.
Syntax sortkey (char_expression | uchar_expression) [, {collation_name |
collation_ID}])
Parameters char_expression
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.
uchar_expression
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.
collation_name
isaquoted string or a character variable that specifies the collation to use.
Table 2-10 shows the valid values.
collation_ID
isan integer constant or a variable that specifies the collation to use. Table
2-10 showsthe valid values.
Examples Example 1 Shows sorting by European language dicitionary order:

select * from cust table where cust name like "TI%$" order by
(sortkey (cust name, "dict")

Example 2 Shows sorting by simplified Chinese phonetic order:

select *from cust table where cust name like "TI%" order by
(sortkey (cust-name, "gbpinyin")

Example 3 Shows sorting by European language dictionary order using the
in-line option:

select *from cust_table where cust_name like "TI%" order by cust_french sort

Example 4 Shows sorting by Simplified Chinese phonetic order using
pre-existing keys:

select * from cust table where cust name like "TI%$" order by
cust_chinese sort.

200 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

sortkey, a system function, generates values that can be used to order
results based on collation behavior. Thisallowsyou to work with character
collation behaviors beyond the default set of Latin-character-based
dictionary sort orders and case or accent sensitivity. The return valueisa
varbinary datatype value that contains coded collation information for the
input string that is returned from the sortkey function.

For example, you can store the valuesreturned by sortkey in acolumn with
the source character string. When you want to retrieve the character data
in the desired order, the select statement only needs to include an order by
clause on the columns that contain the results of running sortkey.

sortkey guarantees that the values it returns for a given set of collation
criteriawork for the binary comparisons that are performed on varbinary
datatypes.

sortkey can generate up to 6 bytes of collation information for each input
character. Therefore, the result from using sortkey may exceed the length
limit of the varbinary datatype. If this happens, the result istruncated tofit.
Since thislimit is dependent on the logical page size of your server,
truncation removes result bytes for each input character until the result
string is less than the following for DOL and APL tables:

Table 2-9: Maximum row and column length—APL and DOL

Locking scheme Page size Maximum row length Maximum column length
APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes
DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes

if table does not include any
variable length columns

16K (16384 bytes) 16300 8191-6-2 = 8183 bytes
(subject to amax start if table includes at least on
offset of varlen =8191) variable length column.*

* Thissize includes six bytes for the row overhead and two bytes for the row length field

If this occurs, Adaptive Server issues awarning message, but the query or
transaction that contained the sortkey function continuesto run.

Reference Manual: Building Blocks 201

sortkey

202

char_expression or uchar_expression must be composed of charactersthat
are encoded in the server’s default character set.

char_expression or uchar_expression can be an empty string. If itisan
empty string:

» sortkey returns a zero-length varbinary value, and
» storesablank for the empty string.

An empty string has a different collation value than an NULL string from
a database column.

If char_expression or uchar_expressionisNULL, sortkey returnsaNUL L
value.

If aunicode expression has no specified sort order, the unicode default sort
order is used.

If you do not specify avalue for collation_name or collation_ID, sortkey
assumes binary collation.

The binary values generated from the sortkey function can change from
one major version to another major version of Adaptive Server, such as
version 12.0t0 12.5, version 12.9.2t0 12.0, and so on. If you are upgrading
to the current version of Adaptive Server, you must regenerate the keys
and repopulate the shadow columns before any binary comparison takes
place.

Note Upgradesfrom version 12.5t0 12.5.0.1 do not require this step, and
Adaptive Server does not generate any errors or warning messagesif you
do not regenerate the keys. Although a query involving the shadow
columns should work fine, the comparison result may differ from
pre-upgrade server.

Collation Tables

There are two types of collation tables you can use to perform multilingual
sorting:

1

A “built-in" collation table created by the sortkey function. Thisfunction
existsin versions of higher than Adaptive Server version 11.5.1. You can
use either the collation name or the collation ID to specify abuilt-in table.

An external collation table that uses the Unilib library sorting functions.
You must use the collation name to specify an external table. These files
are located at $SYBASE/collate/unicode.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Both of these methodswork equally well, but a“built-in” tableistied to a
Sybase Adaptive Server database, an external table is not. If you use an
Adaptive Server database, a built-in table provides the best performance.
both of these methods can handleany mix of English, European, and Asian
languages.

There are two ways of using sortkey:

1 In-line: Thisuses sortkey as part of the order by clause and is useful for
retrofitting an existing application and minimizing the changes. Note
however, that this method generates sort keys on-the-fly, and therefore
does not provide optimum performance on large datasets of over 1000
records.

2 Pre-existing keys:. this method calls sortkey whenever a new record
requiring multilingual sorting isadded to thetable, such asanew customer
name. Shadow columns (binary or varbinary type) must be set up in the
database, preferably in the sametable, one for each desired sort order such
as French, Chinese, and so on. When a query requires output to be sorted,
theorder by clause uses one of the shadow columns. This method produces
the best performance since keys are already generated and stored, and are
quickly compared only on the basis of their binary values.

You can view alist of available collation rules. Print out the list by executing
either the stored procedure sp_helpsort, or by querying and sel ecting the name,
id, and description from syscharsets (type is between 2003 and 2999).

« Table2-10 liststhe valid values for collation_name and collation_ID.

Table 2-10: Collation names and IDs

Description Collation name Collation ID
Binary sort binary 50
Default Unicode multilingual default 0
CP 850 Alternative no accent altnoacc 39
CP 850 Alternative lower case first altdict 45
CP 850 Alternative no case preference atnocsp 46
CP 850 Scandinavian dictionary scandict 47
CP 850 Scandinavian no case preference scannocp 48
GB Pinyin gbpinyin n/a
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52
Latin-1 English, French, German no case preference nocasep 53
Latin-1 English, French, German no accent noaccent 54
Latin-1 Spanish dictionary espdict 55

Reference Manual: Building Blocks 203

sortkey

Description Collation name Collation ID
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
SO 8859-5 Cyrillic dictionary cyrdict 63
SO 8859-5 Russian dictionary rusdict 58
1SO 8859-9 Turkish dictionary turdict 72
Shift-JIS binary order gishin 259
Thai dictionary thaidict 1

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute sortkey.

See also Functions compare

204 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

soundex

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns a 4-character code representing the way an expression sounds.
soundex(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

select soundex ("smith"), soundex ("smythe")

S530 S530

e soundex, astring function, returns a 4-character soundex code for
character strings that are composed of a contiguous sequence of valid
single- or double-byte roman letters.

« Thesoundex function converts an alphastring to afour-digit code for use
in locating similar-sounding words or names. All vowels areignored
unless they constitute the first letter of the string.

e If char_expr or uchar_expr isNULL, returns NULL.

e For general information about string functions, see “ String functions’ on
page 70.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute soundex.

Functions difference

Reference Manual: Building Blocks 205

space

space
Description Returns a string consisting of the specified number of single-byte spaces.
Syntax space(integer_expr)
Parameters integer_expr
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression.
Examples select "aaa", space(4), "bbb"
aaa bbb
Usage » space, astring function, returns a string with the indicated number of
single-byte spaces.
» For general information about string functions, see “ String functions’ on
page 70.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute space.
See also Functions isnull, rtrim

206 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

square

Description
Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the square of a specified value expressed as afloat.
square(numeric_expression)

numeric_expression
is anumeric expression of type float.

Example 1 Returns the square from an integer column;

select square(total sales)from titles

16769025.00000
15023376.00000
350513284.00000

16769025.00000
(18 row(s) affected)
Example 2 Returns the square from a money column:

select square(price) from titles

399.600100
142.802500

8.940100

NULL

224 .700100

(18 row(sg) affected)

This function is the equivalent of power(numeric_expression,2), but it returns
type float rather than int.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute square.
Functions power

Datatypes exact_numeric, approximate_numeric, money, float

Reference Manual: Building Blocks 207

sqrt

sqrt
Description Returns the square root of the specified number.
Syntax sqrt(approx_numeric)
Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression that eval uates to a positive number.
Examples select sqrt(4)
2.000000
Usage » sgrt, amathematical function, returns the square root of the specified
value.
» If you attempt to select the square root of a negative number, Adaptive
Server returns the following error message:
Domain error occurred.
» For genera information about mathematical functions, see“Mathematical
functions’ on page 67.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute sqrt.
See also Functions power

208 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

str

Description

Syntax

Parameters

Examples

Usage

Returns the character equivalent of the specified number.
str(approx_numeric [, length [, decimal]])

approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

length
setsthe number of charactersto bereturned (including the decimal point, all
digitsto theright and left of the decimal point, and blanks). The default is
10.

decimal
sets the number of decimal digits to be returned. The default is 0.

Example 1

select str(1234.7, 4)

1235
Example 2

select str(-12345, 6)

Example 3

select str(123.45, 5, 2)

e str,astring function, returns acharacter representation of the floating point
number. For general information about string functions, see “ String
functions’ on page 70.

¢ length and decimal are optional. If given, they must be non-negative. str
rounds the decimal portion of the number so that the results fit within the
specified length. The length should be long enough to accommodate the
decimal point and, if negative, the number’s sign. The decimal portion of
theresultisrounded to fit within the specified length. If theinteger portion
of the number does not fit within the length, however, str returns arow of
asterisks of the specified length. For example:

select str(123.456, 2, 4)

Reference Manual: Building Blocks 209

Str

* %

A short approx_numeric isright justified in the specified length, and a
long approx_numeric is truncated to the specified number of decimal
places.

* If approx_numericis NULL, returns NULL.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute str.
See also Functions abs, ceiling, floor, round, sign

210 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

str_replace

Description

Syntax

Parameters

Examples

Usage

Replaces any instances of the second string expression (string_expression2)
that occur within the first string expression (string_expressionl) with athird
expression (string_expression3).

replace("string_expressionl”, "string_expression2", "string_expression3")

string_expressionl
is the source string, or the string expression to be searched, expressed as
char, varchar, unichar, univarchar, varbinary, or binary datatype.

string_expression2
is the pattern string, or the string expression to find within the first
expression (string_expressionl). string_expression2 is expressed as char,
varchar, unichar, univarchar, varbinary, or binary datatype.

string_expression3
is the replacement string expression, expressed as char, varchar, unichar,
univarchar, binary, or varbinary datatype.

Example 1 Replaces the string def within the string cdefghi with yyy.

replace ("cdefghi", "def", "yyy")

cyyyghi
(1 row(s) affected)

Example 2 Replacesall spaceswith "toyota".

select str replace("chevy, ford, mercedes",
nn S "toyota")

chevy, toyotaford, toyotamercedes
(1 row(s) affected)

Note Adaptive Server converts an empty string constant to a string of 1 space
automatically, to distinguish the string from NULL values.

e Returnsvarchar dataif string_expression (1,2, or 3) iSchar or varchar.

e Returnsunivar dataif string_expression (1,2, or 3) is unichar or univarchar.
* Returnsvarbinary dataif string_expression (1,2, or 3) isbinary or varbinary.
e All arguments must share the same datatype.

e If any of thethree argumentsis NULL, the function returns NULL.

Reference Manual: Building Blocks 211

str_replace

The result length may vary, depending upon what is known about the
argument values when the expression is compiled. If al the argumentsare
variables with known constant values, Adaptive Server calculates the
result length as:

result length = ((s/p)*(r-p)+s)

where
s = length of source string
p = length of pattern string

r length of replacement string

if (r-p) <= 0, result length = s

If the source string (string_expression1) isacolumn, and
string_expression2 and string_expression3 are constant val ues known at
compile time, Adaptive Server calculates the result length using the
formula above.

If Adaptive Server cannot cal culate the result |ength because the argument
values are unknown when the expression is compiled, the result length
used is 255, unless traceflag 244 is on. In that case, the result length is
16384.

result_len never exceeds 16384.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute str_replace.
See also Datatypes char, varchar, binary, varbinary, unichar, univarchar
Functions length
212 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

stuff

Description

Syntax

Parameters

Examples

Returns the string formed by deleting a specified number of characters from
one string and replacing them with another string.

stuff(char_exprl | uchar_exprl, start, length, char_expr2 | uchar_expr2)

char_exprl
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type.

uchar_exprl
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

start
specifies the character position at which to begin deleting characters.

length
specifies the number of charactersto delete.

char_expr2
is another character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr2
is another character-type column name, variable, or constant expression of
unichar or univarchar type.

Example 1

select stuff ("abc", 2, 3, "xyz")

axyz
Example 2
select stuff ("abcdef", 2, 3, null)

go

aef
Example 3

select stuff ("abcdef", 2, 3, "")

a ef

Reference Manual: Building Blocks 213

stuff

Usage

Standards
Permissions

See also

214

stuff, a string function, deletes length characters from char_exprl or
uchar_exprl at start, then inserts char_expr2 or uchar_expr2 into
char_exprl or uchar_expr2 at start. For general information about string
functions, see “ String functions’ on page 70.

If the start position or the length is negative, aNULL string isreturned. If
the start position islonger than exprl, aNULL string is returned. If the
length to be deleted is longer than exprl, exprl is deleted through its last
character (see Example 1).

If the start position fallsin the middle of a surrogate pair, start is adjusted
to beoneless. If the start length position fallsin the middle of a surrogate
pair, length is adjusted to be one less.

To use stuff to delete a character, replace expr2 with “NULL” rather than
with empty quotation marks. Using ** ‘" to specify anull character
replaces it with a space (see Eexamples 2 and 3).

If char_exprlor uchar_exprl isNULL, returns NULL. If char_exprl or
or uchar_exprlisastring valueand char_expr2 or uchar_expr2isNULL,
replaces the deleted characters with nothing.

If avarchar expression is given as one parameter and a unichar expression
astheother, thevarchar expressionisimplicitly converted to unichar (with
possible truncation).

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute stuff.

Functions replicate, substring

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

substring

Description

Syntax

Parameters

Examples

Usage

Returns the string formed by extracting the specified number of characters
from another string.

substring(expression, start, length)

expression
isabinary or character column name, variable or constant expression. Can
be char, nchar, unichar, varchar, univarchar, or nvarchar data, binary or
varbinary.

start
specifies the character position at which the substring begins.

length
specifies the number of charactersin the substring.

Example 1 Displaysthelast name and first initial of each author, for example,
“Bennet A.":

select au_lname, substring(au fname, 1, 1)
from authors

Example 2 Convertstheauthor’slast nameto uppercase, then displaysthefirst
three characters:

select substring(upper(au_lname), 1, 3)
from authors

Example 3 Concatenates pub_id and title_id, then displays the first six
characters of the resulting string:

select substring((pub_id + title id), 1, 6)
from titles

Example 4 Extractsthe lower four digits from abinary field, where each
position represents two binary digits:

select substring(xactid,5,2)
from syslogs

e substring, astring function, returns part of a character or binary string. For
general information about string functions, see“ String functions’ on page
70.

e If any of the arguments to substring are NULL, substring returns NULL.

Reference Manual: Building Blocks 215

substring

« If thestart position from the beginning of uchar_exprl fallsin the middle
of asurrogate pair, start is adjusted to one less. If the start length position
from the beginning of uchar_expr1 fallsin the middle of a surrogate pair,
length is adjusted to one less.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute substring.
See also Functions charindex, patindex, stuff

216 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

sum

Description
Syntax

Parameters

Examples

Usage

Returns the total of the values.
sum([all | distinct] expression)

all
appliessum to al values. all is the defaullt.

distinct
eliminates duplicate values before sum is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “ Expressions’ on page 249.

Example 1 Calculates the average advance and the sum of total salesfor all
business books. Each of these aggregate functions produces a single summary
valuefor all of the retrieved rows:

select avg(advance), sum(total sales)
from titles
where type = "business"

Example 2 Used with agroup by clause, the aggregate functions produce
single values for each group, rather than for the whole table. This statement
produces summary values for each type of book:

select type, avg(advance), sum(total sales)
from titles

group by type

Example 3 Groups thetitles table by publishers, and includes only those
groups of publishers who have paid more than $25,000 in total advances and
whose books average more than $15 in price:

select pub id, sum(advance), avg(price)

from titles

group by pub_ id

having sum(advance) > $25000 and avg(price) > $15

e sum, an aggregate function, finds the sum of all the valuesin a column.
sum can only be used on numeric (integer, floating point, or money)
datatypes. Null values are ignored in calculating sums.

e For genera information about aggregate functions, see “ Aggregate
functions” on page 52.

Reference Manual: Building Blocks 217

sum

* When you sum integer data, Adaptive Server treats the result as an int
value, even if the datatype of the column is smallint or tinyint. To avoid
overflow errorsin DB-Library programs, declare all variables for results
of averages or sums as typeint.

* You cannot use sum with the binary datatypes.

» Sincethisfunction only defines numeric types, use with Unicode
EXPressions generates an error.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute sum.

See also Commands compute clause, group by and having clauses, select, where
clause

Functions count, max, min

218 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

suser _id
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the server user’s ID number from the syslogins table.

suser_id([server_user_name])

server_user_name
is an Adaptive Server login name.

Example 1

select suser id()

Example 2

select suser id("margaret")

e suser_id, asystem function, returns the server user’'s |D number from
syslogins. For general information about system functions, see “ System
functions” on page 71.

« Tofindtheuser’'s|D in aspecific database from the sysusers table, usethe
user_id system function.

e If no server_user_nameissupplied, suser_id returns the server 1D of the
current user.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute suser_id.

Functions suser_name, user_id

Reference Manual: Building Blocks 219

suser_name

suser_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

220

Returns the name of the current server user or the user whose server ID is
specified.
suser_name([server_user_id])

server_user_id
isan Adaptive Server user ID.

Example 1

select suser name ()

Example 2

select suser name (4)

margaret

* suser_name, asystemfunction, returnsthe server user’s name. Server user

IDs are stored in syslogins. If no server_user_id is supplied, suser_name
returns the name of the current user.

For general information about system functions, see “ System functions’
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute suser_name.

Functions suser_id, user_name

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

syb_quit

Description Terminates the connection.

Syntax syb_quit()

Examples Terminates the connection in which the function is executed and returns an
error message.

select syb quit ()

CT-LIBRARY error:

ct_results(): network packet layer:
internal net library error: Net-Library operation
terminated due to disconnect

Usage syb_quit can be used to terminate a script if theisqgl preprocessor command exit
CalSses an error.

Permissions Any user can execute syb_quit.

Reference Manual: Building Blocks 221

syb_sendmsg

syb_sendmsg
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

222

UNIX only Sends a message to a User Datagram Protocol (UDP) port.
syb_sendmsg ip_address, port_number, message

ip_address
isthe IP address of the machine where the UDP application is running.

port_number
isthe port number of the UDP port.

message
is the message to send. It can be up to 255 charactersin length.

Example 1 Sends the message “Hello” to port 3456 at | P address 120.10.20.5:
select syb sendmsg("120.10.20.5", 3456, "Hello")

Example 2 Readsthe IP address and port number from a user table, and uses
avariable for the message to be sent:

declare @msg varchar (255)
select @msg = "Message to send"
select syb sendmsg (ip address, portnum, @msg)
from sendports
where username = user_name ()

* Toenable the use of UDP messaging, a System Security Officer must set
the configuration parameter allow sendmsg to 1.

» No security checks are performed with syb_sendmsg. Sybase strongly
recommends caution when using syb_sendmsg to send sensitive
information across the network. By enabling this functionality, the user
accepts any security problems which result from its use.

» For asample C program that creates a UDP port, see sp_sendmsg.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute syb_sendmsg.

System procedure sp_sendmsg

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

tan

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the tangent of the specified angle (in radians).
tan(angle)

angle
isthe size of the angle in radians, expressed as a column name, variable, or
expression of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

select tan(60)

0.320040

* tan, amathematical function, returns the tangent of the specified angle
(measured in radians).

e For genera information about mathematical functions, see“Mathematical
functions” on page 67.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute tan.

Functions atan, atn2, degrees, radians

Reference Manual: Building Blocks 223

tempdb_id

tempdb_id

Description

Syntax

Examples

Usage
Standards
Permissions

See also

224

Thetempdb_id() reportsthe temporary database that agiven sessionisassigned
to. Theinput of the tempdb_id() function is a server process ID, and its output
isthe temporary database to which the processis assigned. If you do not
provide a server process, then tempdb_id() reports the dbid of the temporary
database assigned to the current process.

tempdb_id()

Finds all the server processes that are assigned to a given temporary database,
execute:

select spid from master..sysprocesses
where tempdb id(spid) = db_id("tempdatabase")

select tempdb_id() gives the same result as select @ @tempdbid.

Commands select

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

textptr

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns a pointer to the first page of atext or image column.

textptr(column_name)

column_name
is the name of atext column.

Example 1 Usesthetextptr function to locate the text column, copy, associated
with au_id 486-29-1786 in the author’s blurbs table. Thetext pointer is put into
alocal variable @val and supplied as a parameter to the readtext command,
which returns 5 bytes, starting at the second byte (offset of 1):

declare @val binary(16)
select @val = textptr(copy) from blurbs
where au id = "486-29-1786"
readtext blurbs.copy @val 1 5

Example 2 Selectsthetitle_id column and the 16-byte text pointer of the copy
column from the blurbs table:

select au_id, textptr(copy) from blurbs

e textptr, atext and image function, returns the text pointer value, a 16-byte
varbinary value.

e If atext or animage column has not beeninitialized by anon-null insert or
by any update statement, textptr returnsa NULL pointer. Use textvalid to
check whether atext pointer exists. You cannot use writetext or readtext
without avalid text pointer.

e For general information about text and image functions, see “Text and
image functions’ on page 73.

Note Trailing £ invarbinary values are truncated when the values are
stored intables. If you are storing text pointer valuesin atable, use binary
as the datatype for the column.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute textptr.

Datatypes text and image datatypes

Functions textvalid

Commands insert, update, readtext, writetext

Reference Manual: Building Blocks 225

textvalid

textvalid

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

226

Returns 1 if the pointer to the specified text columnisvalid; O if it is not.
textvalid("table_name.column_name", textpointer)

table_name.column_name
isthe name of atable and its text column.

textpointer
isatext pointer vaue.

Reports whether avalid text pointer exists for each value in the blurb column
of the texttest table:

select textvalid ("texttest.blurb", textptr (blurb))
from texttest

* textvalid, atext and image function, checks that a given text pointer is
valid. Returns 1 if the pointer isvalid or O if it is not.

e Theidentifier for atext or animage column must include the table name.

» For genera information about text and image functions, see “ Text and
image functions’ on page 73.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute textvalid.
Datatypes text and image datatypes

Functions textptr

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

to_unichar
Description Returns a unichar expression having the value of the integer expression.
Syntax to_unichar (integer_expr)
Parameters integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.
Usage e to_unichar, astring function, converts a Unicode integer value to a
Unicode character value.
e If aunichar expression refersto only half of a surrogate pair, an error
message appears and the operation is aborted.
e Ifainteger_expr isNULL, returns NULL.
e For general information about string functions, see “ String functions’ on
page 70.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute to_unichar.
See also Datatypes text and image datatypes

Functions char

Reference Manual: Building Blocks 227

tsequal

tsequal

Description

Syntax

Parameters

Examples

Usage

Comparestimestamp valuesto prevent update on arow that has been modified
since it was selected for browsing.

tsequal(browsed_row_timestamp, stored_row_timestamp)

browsed_row_timestamp
is the timestamp column of the browsed row.

stored_row_timestamp
is the timestamp column of the stored row.

Retrievesthetimestamp column from the current version of the publishers table
and comparesit to the valuein thetimestamp column that has been saved. If the
valuesin the two timestamp columns are equal, updates the row. If the values
are not equal, returns an error message:

update publishers

set city = "Springfield"

where pub id = "0736"

and tsequal (timestamp, 0x0001000000002ea8)

* tsequal, a system function, compares the timestamp column values to
prevent an update on arow that has been modified since it was sel ected for
browsing. For general information about system functions, see “ System
functions’ on page 71.

» tsequal allowsyou to use browse mode without calling the dbqual function
in DB-Library. Browse mode supportsthe ability to perform updateswhile
viewing data. It isused in front-end applications using Open Client and a
host programming language. A table can be browsed if itsrows have been
timestamped.

* Tobrowseatable in afront-end application, append the for browse
keywords to the end of the select statement sent to Adaptive Server. For
example:

Start of select statement in an Open Client application

for browse

Completion of the Open Client application routine

228

* Thetsequal function should not be used in the where clause of aselect
statement, only in the where clause of insert and update statements where
the rest of the where clause matches a single unique row.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

If atimestamp column is used as a search clause, it should be compared
like aregular varbinary column; that is, timestamp1 = timestamp2.
Timestamping a new table for browsing

* When creating a new table for browsing, include a column named
timestamp in the table definition. The column is automatically assigned a
datatype of timestamp; you do not have to specify its datatype. For
example:
create table newtable(coll int, timestamp, col3 char (7))

Whenever you insert or update a row, Adaptive Server timestamps it by
automatically assigning a unique varbinary value to the timestamp column.
Timestamping an existing table

e Toprepare an existing table for browsing, add a column named timestamp
with alter table. For example, the following adds atimestamp column with
aNULL value to each existing row:

alter table oldtable add timestamp

To generate atimestamp, update each existing row without specifying new
column values. For example:

update oldtable
set coll = coll

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute tsequal.
See also Datatypes Timestamp datatype

Reference Manual: Building Blocks 229

uhighsurr

uhighsurr

Description Returns 1 if the Unicode value at position start isthe high half of a surrogate

pair (which should appear first in the pair). Returns O otherwise.

Syntax uhighsurr(uchar_expr, start)

Parameters uchar_expr

isacharacter-type column name, variable, or constant expression of unichar,
or univarchar type.

start
specifies the character position to investigate.

Usage » uhighsurr, astring function, allowsyou to write explicit code for surrogate
handling. Specifically, if asubstring starts on a Unicode character where
uhighsurr() istrue, you need to extract a substring of at least 2 Unicode
values. (substr will not extract half of a surrogate pair.)

e If uchar_expr isNULL, returns NULL.
» For general information about string functions, see “ String functions” on
page 70.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute uhighsurr.

See also Functions ulowsurr

230 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

ulowsurr

Description

Syntax

Parameters

Usage

Standards
Permissions

See also

Returns 1 if the Unicode value at position start isthe low half of asurrogate
pair (which should appear second in the pair). Returns O otherwise.

ulowsurr(uchar_expr, start)

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar,
or univarchar type.

start
specifies the character position to investigate.

e ulowsurr, astring function, allows you to write explicit code around
adjustments performed by substr(), stuff(), and right(). Specifically, if a
substring ends on a Unicode value where ulowsurr() istrue, the user knows
to extract a substring of 1 less characters (or 1 more). substr() does not
extract astring that contains an unmatched surrogate pair.

e If uchar_expr isNULL, returns NULL.

e For general information about string functions, see “ String functions’ on
page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute ulowsurr.

Functions uhighsurr

Reference Manual: Building Blocks 231

upper

upper

Description Returns the uppercase equivalent of the specified string.
Syntax upper(char_expr)
Parameters char_expr

is a character-type column name, variable, or constant expression of char,
unichar, varchar, nchar, nvarchar or univarchar type.

Examples select upper ("abcd")
ABCD
Usage » upper, astring function, converts lowercase to uppercase, returning a

character value.
o If char_expr or uchar_expr isNULL, returns NULL.
e Charactersthat have no upper-case equivaent are left unmodified.

» If aunichar expression is created containing only half of a surrogate pair,
an error message appears and the operation is aborted.

» For general information about string functions, see “ String functions’ on

page 70.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute upper.
See also Functions lower

232 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

uscalar

Description

Syntax

Parameters

Usage

Standards
Permissions

See also

Returns the Unicode scalar value for the first Unicode character in an
expression.

uscalar(uchar_expr)

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar,
or univarchar type.

e uscalar, astring function, returns the Unicode value for the first Unicode
character in an expression.

e If uchar_expr isNULL, returns NULL.

e If uscalar iscalled on auchar_expr containing an unmatched surrogate
half, and error occurs and the operation is aborted.

* For general information about string functions, see “ String functions’ on
page 70.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute uscalar.

Functions ascii

Reference Manual: Building Blocks 233

used_pgs

used pgs

Description

Syntax

Parameters

Examples

Usage

234

Returns the number of pages used by atable or index. For an all-pages-locked
table with a clustered index, it returns the sum of the table and index pages.

used_pgs(object_id, doampg, ioampg)
object_id
isthe object ID of the table for which you want to see the used pages. To see

the pages used by an index, specify the object ID of the table to which the
index belongs.

doampg
isthe page number for the object allocation map of atableor clustered index,
stored in the doampg column of sysindexes.

ioampg
isthe page number for the all ocation map of anonclustered index, storedin
the ioampg column of sysindexes.

Example 1 Returns the number of pages used by the data and clustered index
of thetitles table:

select name, id, indid, doampg, ioampg
from sysindexes where id = object id("titles")

name id indid doampg iocampg
titleidind 208003772 1 560 552
titleind 208003772 2 0 456

select used pgs (208003772, 560, 552)

Example 2 Returns the number of pages used by the stores table, which has
no index:
select name, id, indid, doampg, ioampg

from sysindexes where id = object id("stores")
name id indid doampg ioampg

stores 240003886 0 464 0

select used pgs (240003886, 464, 0)

* used_pgs, asystem function, returns:

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Standards
Permissions

See also

e For al-pages-locked tables with a clustered index — the sum of the
table and index pages

¢ For data-only-locked tables and tables with no clustered index — the
number of used pagesin the table

¢ For clustered and nonclustered indexes on data-only-locked tables —
the number of pagesin the index

In the examples, indid O indicates atable; indid 1 indicates a clustered
index; an indid of 2250 isanonclustered index; and an indid of 255 istext
or image data.

used_pgs only works on objects in the current database.

Each table and each index on atable has an object allocation map (OAM),
which contains information about the number of pages allocated to and
used by an object. Thisinformation is updated by most Adaptive Server
processes when pages are allocated or deallocated. The sp_spaceused
system procedure reads these values to provide quick space estimates.
Some dbce commands update these val ues whilethey perform consistency
checks.

For general information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute used_pgs.

Functions data_pgs, object_id

Reference Manual: Building Blocks 235

user

user
Description Returns the name of the current user.
Syntax user
Parameters None.
Examples select user
dbo
Usage e user, asystem function, returns the user’'s name.
» If thesa_role isactive, you are automatically the Database Owner in any
database you are using. Inside a database, the user name of the Database
Owner isaways “dbo”.
» For general information about system functions, see “ System functions”
on page 71.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute user.
See also Functions user_name

236 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

user_id

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

Returns the ID number of the specified user or of the current user in the
database.

user_id([user_name])

user_name
is the name of the user.

Example 1

select user_id()

Example 2

select user_ id("margaret")

e user_id, asystem function, returns the user’s ID number. For general
information about system functions, see “ System functions’ on page 71.

e user_id reports the number from sysusers in the current database. If no
user_nameissupplied, user_id returnsthe ID of the current user. To find
the server user ID, which is the same number in every database on
Adaptive Server, use suser_id.

e Inside adatabase, the “guest” user ID is aways 2.

* Inside adatabase, the user_id of the Database Owner isaways 1. If you
have the sa_role active, you are automatically the Database Owner in any
database you are using. To return to your actual user ID, use set sa_role off
before executing user_id. If you are not avalid user in the database,
Adaptive Server returns an error when you use set sa_role off.

ANSI SQL — Compliance level: Transact-SQL extension.

You must System Administrator or System Security Officer to usethisfunction
on auser_name other than your own.

Commands setuser

Functions suser_id, user_name

Reference Manual: Building Blocks 237

user_name

user_name

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

238

Returns the name within the database of the specified user or of the current
user.

user_name([user_id])

user_id
isthe ID of auser.

Example 1

select user_ name ()

Example 2

select user name (4)

margaret

* user_name, asystem function, returnsthe user’s name, based onthe user’s
ID in the current database. For general information about system
functions, see “ System functions” on page 71.

» If nouser_idissupplied, user_name returns the name of the current user.

» |If thesa_role isactive, you are automatically the Database Owner in any
database you are using. Inside a database, the user_name of the Database
Owner isaways “dbo”.

ANSI SQL — Compliance level: Transact-SQL extension.

You must be a System Administrator or System Security Officer to use this
function on auser_id other than your own.

Functions suser_name, user_id

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

valid_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns 0 if the specified string is not avalid identifier or anumber other than
Oif the string isavalid identifier.

valid_name(character_expression)

character_expression
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type. Constant expressions must be enclosed in
quotation marks.

Creates a procedure to verify that identifiers are valid:

create procedure chkname
@name varchar (30)
as
if valid name (@name) = 0
print "name not valid"

e valid_name, asystem function, returnsQif the character_expressionisnot
avaididentifier (illegal characters, more than 30 byteslong, or areserved
word), or anumber other than O if it isavalid identifier.

e Adaptive Server identifiers can be a maximum of 30 bytesin length,
whether single-byte or multibyte charactersare used. Thefirst character of
an identifier must be either an aphabetic character, as defined in the
current character set, or the underscore (_) character. Temporary table
names, which begin with the pound sign (#), and local variable names,
which begin with the at sign (@), are exceptionsto thisrule. valid_name
returns O for identifiers that begin with the pound sign (#) and the at sign
(@)

e For genera information about system functions, see “ System functions”
on page 71.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute valid_name.

System procedure sp_checkreswords

Reference Manual: Building Blocks 239

valid_user

valid_user
Description Returns 1 if the specified ID isavalid user or aliasin at least one database on
this Adaptive Server.
Syntax valid_user(server_user_id)
Parameters server_user_id
isaserver user ID. Server user IDs are stored in the suid column of syslogins.
Examples select valid user (4)
1
Usage » valid_user, asystem function, returns 1 if the specified ID isavalid user or
aliasin at least one database on this Adaptive Server.
» For general information about system functions, see “ System functions”
on page 71.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions You must be a System Administrator or a System Security Officer to use this
function on aserver_user_id other than your own.
See also System procedures sp_addlogin, sp_adduser

240 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

year

Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

Returns an integer that represents the year in the datepart of a specified date.
year(date_expression)

date_expression
is an expression of type datetime, smalldatetime, date, time or a character
string in a datetime format.

Returns the integer 03:

year ("11/02/03")

03
(1 row(s) affected)

year(date_expression) is equivalent to datepart(yy, date_expression).
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute year.

Datatypes datetime, smalldatetime, date

Functions datepart, day, month

Reference Manual: Building Blocks 241

year

242 Adaptive Server Enterprise

CHAPTER 3 Global Vvariables

Global variablesare system-defined variabl esupdated by Adaptive Server
on an ongoing basis. For example, @@error contains the last error
number generated by the system.

To view the value for any global variable, enter:
select variable_name

For example:
select @@char convert

Topics covered are;

Topics Page
Adaptive Server’s global variables 243

Adaptive Server’s global variables
The following are the global variables available for Adaptive Server:

Global variable Definition

@@bootcount Returns the number of times an Adaptive Server installation has been booted.
@@boottime Returns the date and time Adaptive Server was last booted.

@@bulkarraysize Returnsthe number of rowsto be bufferedinlocal server memory before

being transferred using the bulk copy interface Used only with Component
Integration Services for transferring rows to a remote server using select into.
For more information, see the Component Integration Services User’s Guide.

@@Dbulkbatchsize Returns the number of rows transferred to aremote server viaselect into
proxy_table using the bulk interface. Used only with Component Integration
Services for transferring rows to aremote server using select into. For more
information, see the Component Integration Services User’s Guide.

@@char_convert Returns O if character set conversion is not in effect. Returns 1 if character set
conversion isin effect.
@@xcis_rpc_handling Returns 0 if cis rpc handling is off. Returns 1 if cis rpc handling is on. For more

information, see the Component Integration Services User’s Guide.

Reference Manual: Building Blocks 243

Adaptive Server’s global variables

Global variable

Definition

@@cis _version

Returns the date and version of Component Integration Services.

@@client_csexpansion

Returnsthe expansion factor used when converting from the server character set
to the client character set. For example, if it containsavalue of 2, acharacter in
the server character set could take up to twice the number of bytes after
tranglation to the client character set.

@@dlient_csid

Returns-1if theclient character set has never beeninitialized. Returnstheclient
character set ID from syscharsets for the connection if the client character set
has been initialized.

@@client_csname

Returns NULL if client character set has never been initiaized; Returns the
name of the character set for the connection if the client character set has been
initialized.

@@cmpstate Returns the current mode of Adaptive Server in ahigh availability environment.

@@connections Returns the number of user logins attempted.

@@cpu_busy Returns the number of seconds, in CPU time, that Adaptive Server's CPU was
performing Adaptive Server work.

@@curloid Returns the current session’s lock owner 1D.

@@datefirst Set using set datefirst n where n isavalue between 1 and 7. Returns the current
value of @@datefirst, indicating the specified first day of each week, expressed
astinyint.

The default value in Adaptive Server is Sunday (based on the us_language
default), which you set by specifying set datefirst 7. See the datefirst option of
the set command for more information on settings and values.

@@dbts Returns the timestamp of the current database.

@@error Returns the error number most recently generated by the system.

@@errorlog Returns the full path to the directory in which the Adaptive Server errorlog is

kept, relative to $SYBASE directory (%6SYBASE% on NT).

@@failedoverconn

Returns a value greater than O if the connection to the primary companion has
failed over and is executing on the secondary companion server. Used only in a
high availability environment, and is session-specific.

@@qguestuserid

Returnsthe ID of the guest user.

@@hacmpservername

Returns the name of the companion server in a high availability setup.

@@haconnection

Returns a value greater than 0 if the connection has the failover property
enabled. Thisis a session-specific property.

@@heapmemsize Returns the size of the heap memory pool, in bytes. See the System
Administration Guide for more information on heap memory.

@@identity Returns the most recently generated IDENTITY column value.

@@idle Returnsthe number of seconds, in CPU time, that Adaptive Server hasbeenidle.

@@invaliduserid Returns avalue of -1 for an invalid user ID.

@@io_busy Returns the number of secondsin CPU time that Adaptive Server has spent
doing input and output operations.

244 Adaptive Server Enterprise

CHAPTER 3 Global Variables

Global variable

Definition

@@isolation

Returnsthe value of the session-specificisolation level (O, 1, or 3) of the current
Transact-SQL program.

@@kernel_addr

Returns the starting address of the first shared memory region that contains the
kernel region. Theresult isin the form of Oxaddress pointer value.

@@kernel_size Returns the size of the kernel region that is part of the first shared memory
region.

@@langid Returns the server-wide language ID of the language in use, as specified in
syslanguages.langid.

@@language Returns the name of the language in use, as specified in syslanguages.name.

@@lock_timeout

Set using set lock wait n. Returns the current lock_timeout setting, in
milliseconds. @@l ock_timeout returns the value of n. The default value is no
timeout. If no set lock wait n is executed at the beginning of the session,
@@lock_timeout returns - 1.

@@maxcharlen

Returns the maximum length, in bytes, of a character in Adaptive Server's
default character set.

@@max_connections

Returns the maximum number of simultaneous connections that can be made
with Adaptive Server in the current computer environment. You can configure
Adaptive Server for any number of connections lessthan or equal to the value of
@@max_connections with the number of user connections configuration
parameter.

@@maxgroupid Returns the highest group user ID. The highest value is 1048576.

@@maxpagesize Returnsthe server's logical page size.

@@max_precision Returns the precision level used by decimal and numeric datatypes set by the
server. Thisvalueisafixed constant of 38.

@@maxspid Returns maximum valid value for the spid.

@@maxsuid Returns the highest server user ID. The default value is 2147483647.

@@maxuserid Returns the highest user ID. The highest value is 2147483647.

@@mempool_addr

Returns the global memory pool table address. The result isin the form
Oxaddress pointer value. Thisvariableisfor internal use.

@@mingroupid Returns the lowest group user ID. The lowest valueis 16384.

@@min_poolsize Returns the minimum size of a named cache poal, in kilobytes. It is calculated
based on the DEFAULT_POOL_SIZE, which is 256, and the current value of
max database page size.

@@minspid Returns 1, which is the lowest value for spid.

@@minsuid Returns the minimum server user ID. The lowest value is -32768.

@@minuserid Returns the lowest user ID. The lowest value is -32768.

@@ncharsize Returns the maximum length, in bytes, of a character set in the current server
default character set.

@@nestlevel Returns the current nesting level.

Reference Manual: Building Blocks 245

Adaptive Server’s global variables

Global variable

Definition

@@nodeid Returns the current installation’s 48-bit node identifier. Adaptive Server
generates anodeid the first time the master deviceisfirst used, and uniquely
identifies an Adaptive Server installation.

@@options Returns a hexadecimal representation of the session’s set options.

@@packet_errors

Returns the number of errors detected by Adaptive Server while reading and
writing packets.

@@pack_received

Retruns the number of input packets read by Adaptive Server.

@@pack_sent Returns the nmber of output packets written by Adaptive Server.
@@pagesize Returns the server’s virtual page size.

@@parallel_degree Returns the current maximum parallel degree setting.

@@probesuid Returns avalue of 2 for the probe user 1D.

@@procid Returns the stored procedure 1D of the currently executing procedure.

@@recovery_state

Indicates whether Adaptive Server isin recovery based on these returns:

* NOT_IN_RECOVERY — Adaptive Server is not in startup recovery or in
failover recovery. Recovery has been completed and all databasesthat can be
online are brought online.

« RECOVERY_TUNING — Adaptive Server isin recovery (either startup or
failover) and is tuning the optimal number of recovery tasks.

« BOOTIME_RECOVERY — Adaptive Server isin startup recovery and has
completed tuning the optimal number of tasks. Not all databases have been
recovered.

* FAILOVER_RECOVER — Adaptive Server isin recovery during an HA
failover and has completed tuning the optimal number of recovery tasks. All
databases are not brought online yet.

@@rowcount

Returns the number of rows affected by the last query. @@rowcount is set to 0
by any command that does not return rows, such as an if, update, or delete
statement. With cursors, @@rowcount represents the cumulative number of
rows returned from the cursor result set to the client, up to the last fetch request.

@@scan_parallel_degree

Returns the current maximum parallel degree setting for nonclustered index
scans.

@@servername Returns the name of Adaptive Server.

@@shmem flags Returns the shared memory region properties. This variableisfor internal use.
Thereare atotal of 13 different properties values corresponding to 13 bitsin the
integer. The valid values represented from low to high bit are: MR_SHARED,
MR_SPECIAL, MR_PRIVATE, MR_READABLE, MR_WRITABLE,
MR_EXECUTABLE, MR_HWCOHERENCY, MR_SWCOHERENC,
MR_EXACT, MR_BEST, MR_NAIL, MR_PSUEDO, MR_ZERO.

@@spid Returns the server process ID of the current process.

@@sglstatus Returns statusinformation (warning exceptions) resulting from the execution of
afetch statement.

246 Adaptive Server Enterprise

CHAPTER 3 Global Variables

Global variable

Definition

@@stringsize Returns the amount of character data returned from a toString() method. The
defaultis50. Max valuesmay be up to 2GB. A value of zero specifiesthe default
value. See the Component Integration Services User’s Guide for more
information.

@@tempdbid Returnsavalid temporary database D (dbid) of the session’sassigned temporary
database.

@@textcolid Returns the column ID of the column referenced by @@textptr.

@@textdbid Returns the database ID of a database containing an object with the column
referenced by @@textptr.

@@textobjid Returns the object |D of an object containing the column referenced by
@@textptr.

@@textptr Returns the text pointer of the last text or image column inserted or updated by
aprocess (Not the same as the textptr function).

@@textptr_parameters Returns 0 if the current status of the textptr_parameters configuration parameter
is off. Returns 1 if the current status of the textptr_parameters if on. See the
Component Integration Services User’s Guide for more information.

@@textsize Returns the limit on the number of bytes of text or image data a select returns.
Default limit is 32K bytes for isql; the default depends on the client software.
Can be changed for a session with set textsize.

@@textts Returns the text timestamp of the column referenced by @@textptr.

@@thresh_hysteresis

Returnsthe decreasein free space required to activate athreshold. This amount,
also known as the hysteresis value, is measured in 2K database pages. It
determines how closely thresholds can be placed on a database segment.

@@timeticks

Returns the number of microseconds per tick. The amount of time per tick is
machine-dependent.

@@total_errors

Returns the number of errors detected by Adaptive Server while reading and
writing.

@@total_read Returns the number of disk reads by Adaptive Server.

@@total_write Returns the number of disk writes by Adaptive Server.

@@tranchained Returns O if the current transaction mode of the Transact-SQL program is
unchained. Returns 1 if the current transaction mode of the Transact-SQL
program is chained.

@@trancount Returns the nesting level of transactions in the current user session.

@@transactional_rpc

Returns 0 if RPCsto remote servers are transactional. Returns 1 if RPCsto
remote servers are not transactional. For more information, see enable xact
coordination and set option transactional_rpc in the Reference Manual. Also, see
the Component Integration Services User’s Guide.

@@transtate

Returnsthe current state of atransaction after astatement executesin the current
user session.

@@unicharsize

Returns 2, the size of a character in unichar.

Reference Manual: Building Blocks 247

Adaptive Server’s global variables

Global variable Definition

@@version Returns the date, version string, and so on of the current release of Adaptive
Server.

@@version_as_integer Returns the version of the current release of Adaptive Server as an integer.

248 Adaptive Server Enterprise

CHAPTER 4

Expressions

Expressions, ldentifiers, and
Wildcard Characters

This chapter describes Transact-SQL expressions, valid identifiers, and
wildcard characters.

Topics covered are;

Topics Page
Expressions 249
I dentifiers 259
Pattern matching with wildcard characters 265

An expression is a combination of one or more constants, literals,
functions, columnidentifiersand/or variables, separated by operators, that
returns a single value. Expressions can be of several types, including
arithmetic, relational, logical (or Boolean), and character string. In
some Transact-SQL clauses, a subquery can be used in an expression. A
case expression can be used in an expression.

Table 4-1 lists the types of expressions that are used in Adaptive Server
syntax statements.

Table 4-1: Types of expressions used in syntax statements

Usage Definition
expression Can include constants, literals, functions, column identifiers, variables, or parameters

logical expression

An expression that returns TRUE, FALSE, or UNKNOWN

constant expression

An expression that always returns the same value, such as“5+3" or “ABCDE"

float_expr Any floating-point expression or an expression that implicitly convertsto afloating value
integer_expr Any integer expression or an expression that implicitly converts to an integer value
numeric_expr Any numeric expression that returns asingle value

char_expr Any expression that returns a single character-type value

binary_expression

An expression that returns asingle binary or varbinary value

Reference Manual: Building Blocks 249

Expressions

Size of expressions

Expressions returning binary or character datum can be up to 16384 bytesin
length. However, earlier versions of Adaptive Server only allowed expressions
to be up to 255 bytesin length. If you have upgraded from an earlier release of
Adaptive Server, and your stored procedures or scripts store a result string of
up to 255 bytes, the remainder will be truncated. You may have to re-write
these stored procedures and scripts for to account for the additional length of
the expressions.

Arithmetic and character expressions
The general pattern for arithmetic and character expressionsis:

{constant | column_name | function | (subquery)
| (case_expression)}
[{arithmetic_operator | bitwise_operator |
string_operator | comparison_operator }
{constant | column_name | function | (subquery)
| case_expression}]...

Relational and logical expressions

A logical expression or relational expression returns TRUE, FALSE, or
UNKNOWN. The general patterns are:

250

expression comparison_operator [any | all] expression
expression [not] in expression

[not]exists expression

expression [not] between expression and expression

expression [not] like "match_string"
[escape "escape_character "]

not expression like "match_string"
[escape "escape_character "]

expression is [not] null
not logical_expression
logical_expression {and | or} logical_expression

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Operator precedence

Operators have the following precedence levels, where 1 is the highest level
and 6 is the lowest:

1 unary (single argument) — + ~
2 "%

3 binary (two argument) + — & |~
4 not

5 and

6

or

When all operatorsin an expression are at the same level, the order of
execution isleft to right. You can change the order of execution with
parentheses—the most deeply nested expression is processed first.

Arithmetic operators
Adaptive Server uses the following arithmetic operators:

Table 4-2: Arithmetic operators

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo (Transact-SQL extension)

Addition, subtraction, division, and multiplication can be used on exact
numeric, approximate numeric, and money type columns.

The modulo operator cannot be used on smallmoney, money, float or real
columns. Modulo finds the integer remainder after a division involving two
whole numbers. For example, 21 % 11 = 10 because 21 divided by 11 equals 1
with aremainder of 10.

When you perform arithmetic operations on mixed datatypes, for examplefloat
and int, Adaptive Server follows specific rules for determining the type of the
result. For more information, see Chapter 1, “ System and User-Defined
Datatypes,”

Reference Manual: Building Blocks 251

Expressions

Bitwise operators

The bitwise operators are a Transact-SQL extension for use with integer type
data. These operators convert each integer operand into its binary
representation, then evaluate the operands column by column. A value of 1
corresponds to true; a value of 0 corresponds to false.

Table 4-3 summarizes the results for operands of 0 and 1. If either operand is
NULL, the bitwise operator returns NULL:

Table 4-3: Truth tables for bitwise operations

& (and) 1 0
1 1 0
0 0 0
| (or) 1 0
1 1 1
0 1

A (exclusive or) 1 0
1 0 1
0 1

~ (not)

1 FALSE

0 0

The examplesin Table 4-4 use two tinyint arguments, A = 170
(10101010 in binary form) and B = 75 (01001011 in binary form).

252 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Table 4-4: Examples of bitwise operations

Operation Binary form Result Explanation

(A & B) 10101010 10 Result column equals1if both A and
01001011 B are 1. Otherwise, result column
____________ equals 0.
00001010

(A|B) 10101010 235 Result column equals 1 if either A or
01001011 B, or both, is 1. Otherwise, result
____________ column equals 0
11101011

(A"B) 10101010 225 Result column equals 1 if either A or
01001011 B, but not both, is1
11100001

(=A) 10101010 85 All 1sare changed to Osand all Osto
............ 1s
01010101

String concatenation operator

The string operator + can be used to concatenate two or more character or
binary expressions. For example, the following displays author names under
the column heading Name in last-name first-name order, with a comma after
the last name; for example, “Bennett, Abraham.”:

select Name = (au_lname + ", " + au_ fname)
from authors

Thefollowing returnsthe string “abc def”. The empty string isinterpreted asa
single space in all char, varchar, unichar, nchar, nvarchar, and text
concatenation, and invarchar and univarchar insert and assignment statements:

select "abc" + "" 4+ "def"

When concatenating non-character, non-binary expressions, always use
convert:

select "The date is " +
convert (varchar (12), getdate())

Reference Manual: Building Blocks 253

Expressions

A string concatenated with NULL evaluates to the value of the string. Thisis
an exception to the SQL standard, which statesthat a string concatenated with
aNULL should evaluateto NULL.

Comparison operators
Adaptive Server uses the comparison operators listed in Table 4-5:

Table 4-5: Comparison operators

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Lessthan or equal to

< Not equal to

1= Transact-SQL extension Not equal to

> Transact-SQL extension Not greater than
I< Transact-SQL extension Not lessthan

In comparing character data, < means closer to the beginning of the server’s
sort order and > means closer to the end of the sort order. Uppercase and
lowercase | etters are equal in a case-insensitive sort order. Use sp_helpsort to
see the sort order for your Adaptive Server. Trailing blanks are ignored for
comparison purposes. So, for example, “Dirk” isthe same as“Dirk ”.

In comparing dates, < means earlier and > means later.

Put single or double quotes around all character and datetime data used with a
comparison operator:

= "Bennet"
> "May 22 1947"

Nonstandard operators
The following operators are Transact-SQL extensions:

e Modulo operator: %

» Negative comparison operators: 1>, I<, 1=

254 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

e Bitwiseoperators. -, », |, &

e Join operators: *= and =*

Using any, all and in

any isused with <, >, or = and a subquery. It returns results when any value
retrieved in the subquery matchesthe value in the where or having clause of the
outer statement. For more information, see the Transact-SQL User’s Guide.

allisused with < or > and asubquery. It returnsresultswhen all valuesretrieved
in the subquery are less than (<) or greater than (>) the value in the where or
having clause of the outer statement. For more information, see the
Transact-SQL User’s Guide.

in returns results when any value returned by the second expression matches
thevaluein thefirst expression. The second expression must be a subquery or
alist of values enclosed in parentheses. in is equivalent to = any. For more
information, see where clause in Reference Manual: Commands.

Negating and testing
not negates the meaning of a keyword or logical expression.

Use exists, followed by a subquery, to test for the existence of a particular
result.

Ranges

between isthe range-start keyword; and is the range-end keyword. The
following rangeisinclusive:

where columnl between x and y
The following range is not inclusive:

where columnl > x and columnl < y

Using nulls in expressions

Useis null or is not null in queries on columns defined to allow null values.

Reference Manual: Building Blocks 255

Expressions

An expression with abitwise or arithmetic operator evaluatesto NULL if any
of the operands are null. For example, the following evaluatesto NULL if
columnlisNULL:

1 + columnl

Comparisons that return TRUE

In general, the result of comparing null valuesis UNKNOWN, since it is not
possibleto determine whether NULL isequal (or not equal) to agiven value or
toanother NULL. However, thefollowing casesreturn TRUE when expression
isany column, variable or literal, or combination of these, which evaluates as
NULL:

e expressionis null
e expression = null

e expression = @x, where @x is avariable or parameter containing NULL.
This exception facilitates writing stored procedures with null default
parameters.

* expression !=n, wherenisaliteral that does not contain NULL, and
expression evaluatesto NULL.

The negative versions of these expressions return TRUE when the expression
does not evaluate to NULL:

e expression is not null
e expression !=null

* expression != @x

Note Thefar right side of these exceptionsisaliteral null, or avariable or
parameter containing NULL. If the far right side of the comparison is an
expression (such as @nullvar + 1), the entire expression evaluatesto NULL.

Following these rules, null column values do not join with other null column
values. Comparing null column values to other null column valuesin awhere
clause always returns UNKNOWN for null values, regardless of the
comparison operator, and the rowsare not included in the results. For example,
thisquery returns no result rowswhere columnl contains NULL in both tables
(although it may return other rows):

select columnl
from tablel, table2

256 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

where tablel.columnl = table2.columnl

Difference between FALSE and UNKNOWN

Although neither FAL SE nor UNKNOWN returnsval ues, thereisanimportant
logical difference between FALSE and UNKNOWN, because the opposite of
false (“not false”) istrue. For example, “1 = 2" evaluatesto false and its
opposite, “1 1= 2", evaluates to true. But “not unknown” is still unknown. If
null values are included in a comparison, you cannot negate the expression to
get the opposite set of rows or the opposite truth value.

Using “NULL” as a character string

Only columnsfor which NULL was specified in the create table statement and
into which you have explicitly entered NULL (no quotes), or into which no
data has been entered, contain null values. Avoid entering the character string
“NULL" (with quotes) as data for a character column. It can only lead to
confusion. Use “N/A”, “none”, or asimilar value instead. When you want to
enter the value NULL explicitly, do not use single or double quotes.

NULL compared to the empty string

The empty string (“ "or * ') is always stored as a single space in variables and
column data. This concatenation statement is equivalent to “abc def”, not to
“abcdef”:

"abc" + "" 4 ndefrn

The empty string is never evaluated as NULL.

Connecting expressions

and connhects two expressions and returns results when both are true. or
connects two or more conditions and returns results when either of the
conditionsistrue.

When more than one logical operator is used in a statement, and is evaluated
before or. You can change the order of execution with parentheses.

Table 4-6 shows the results of logical operations, including those that involve
null values:

Reference Manual: Building Blocks 257

Expressions

Table 4-6: Truth tables for logical expressions

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
NULL UNKNOWN FALSE UNKNOWN
or TRUE FALSE NULL

TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
NULL TRUE UNKNOWN UNKNOWN
not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN

Theresult UNKNOWN indicatesthat one or more of the expressions eval uates
toNULL, and that the result of the operation cannot be determined to be either
TRUE or FALSE. See “Using nullsin expressions’ on page 255 for more
information.

Using parentheses in expressions

Parentheses can be used to group the elementsin an expression. When
“expression” isgiven asavariable in asyntax statement, asimple expression
isassumed. “Logical expression” is specified when only alogical expression
is acceptable.

Comparing character expressions

258

Character constant expressions are treated as varchar. If they are compared
with non-varchar variables or column data, the datatype precedence rules are
used in the comparison (that is, the datatype with lower precedenceis
converted to the datatype with higher precedence). If implicit datatype
conversion is not supported, you must use the convert function.

Comparison of achar expression to avarchar expression follows the datatype
precedencerule; the*lower” datatypeisconverted tothe“higher” datatype. All
varchar expressionsare converted to char (that is, trailing blanks are appended)
for the comparison. If aunichar expression is compared to a char (varchar,
nchar, nvarchar) expression, the latter isimplicitly converted to unichar.

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Using the empty string

The empty string () or (+) isinterpreted as asingle blank ininsert or
assignment statements on varchar or univarchar data. In concatenation of
varchar, char, nchar, nvarchar data, the empty string isinterpreted as asingle
space; for following example is stored as “abc def”:

"gbc" 4+ "M 4 ndefn

The empty string is never evaluated as NULL.

Including quotation marks in character expressions

There aretwo waysto specify literal quoteswithin achar, or varchar entry. The
first method isto double the quotes. For example, if you begin acharacter entry
with asingle quote and you want to include a single quote as part of the entry,
use two single quotes:

'I don’’t understand.’
With double quotes:
"He said, ""It’s not really confusing."""

The second method isto enclose aquote in the opposite kind of quote mark. In
other words, surround an entry containing adoubl e quote with single quotes (or
vice versa). Here are some examples:

'George said, "There must be a better way."’
"Isn’t there a better way?"
'George asked, "Isn"t there a better way?"’

Using the continuation character

To continue a character string to the next line on your screen, enter abackslash
(\) before going to the next line.

Identifiers

Identifiers are names for database objects such as databases, tables, views,
columns, indexes, triggers, procedures, defaults, rules, and cursors.

Reference Manual: Building Blocks 259

Identifiers

Tables beginning

Adaptive Server identifiers can be a maximum of 30 bytesin length, whether
single-byte or multibyte characters are used. Thefirst character of anidentifier
must be either an alphabetic character, as defined in the current character set,
or the underscore (_) character.

Note Temporary table names, which begin with the pound sign (#), and local
variable names, which begin with the at sign (@), are exceptionsto thisrule.

Subsequent characters can include letters, numbers, the symbols#, @, _, and
currency symbols such as $ (dollars), ¥ (yen), and £ (pound sterling).
Identifiers cannot include special characterssuch as!, %, *, &, *, and . or
embedded spaces.

You cannot use areserved word, such as a Transact-SQL command, as an
identifier. For acomplete list of reserved words, see Chapter 5, “ Reserved
Words.”

with # (temporary tables)

Tableswith namesthat begin with the pound sign (#) aretemporary tables. You
cannot create other types of objectswith namesthat begin with the pound sign.

Adaptive Server performs special operations on temporary table namesto
maintain unigue naming on a per-session basis. Long temporary table names
are truncated to 13 characters (including the pound sign); short names are
padded to 13 characters with underscores (). A 17-digit numeric suffix that is
unique for an Adaptive Server session is appended.

Case sensitivity and identifiers

260

Sensitivity to the case (upper or lower) of identifiers and data depends on the
sort order installed on your Adaptive Server. Case sensitivity can be changed
for single-byte character sets by reconfiguring Adaptive Server’s sort order;
see the System Administration Guide for more information. Caseis significant
in utility program options.

If Adaptive Server isinstalled with a case-insensitive sort order, you cannot
create atable named MYTABLE if atable named MyTable or mytable aready
exists. Similarly, the following command will return rows from MYTABLE,
MyTable, or mytable, or any combination of uppercase and lowercaselettersin
the name:

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

select * from MYTABLE

Uniqueness of object names

Object names need not be unique in a database. However, column names and
index names must be unique within atable, and other object names must be
unique for each owner within a database. Database names must be unique on
Adaptive Server.

Using delimited identifiers

Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers allows you to avoid certain restrictions on object names.
Table, view, and column names can be delimited by quotes; other object names
cannot.

Delimited identifiers can be reserved words, can begin with non-al phabetic
characters, and can include characters that would not otherwise be allowed.
They cannot exceed 28 bytes.

Warning! Delimited identifiers may not be recognized by all front-end
applications and should not be used as parameters to system procedures.

Before creating or referencing a delimited identifier, you must execute:
set quoted identifier on

Each time you use the delimited identifier in a statement, you must enclose it
in double quotes. For example:

create table "lone" (coll char(3))

create table "include spaces" (coll int)
create table "grant" ("add" int)
insert "grant" ("add") values (3)

Whilethe quoted_identifier option isturned on, do not use doubl e quotes around
character or date strings; use single quotes instead. Delimiting these strings
with double quotes causes Adaptive Server to treat them as identifiers. For
example, to insert acharacter string into coll of 1table, use:

insert "lone" (coll) values (’'abc’)

Do not not use:

Reference Manual: Building Blocks 261

Identifiers

Syntax that includes
quotes

insert "lone" (coll) wvalues ("abc")

To insert asingle quote into a column, use two consecutive single quotation
marks. For example, to insert the characters “a'b” into col1 use:

insert "lone" (coll) values(’a’’'b’)

When the quoted_identifier option is set to on, you do not need to use double
quotes around an identifier if the syntax of the statement requiresthat a quoted
string contain an identifier. For example:

set quoted identifier on
create table ’‘lone’ (cl int)

However, object_id() requires a string, so you must include the table namein
guotes to select the information:

select object id(’lone’)

896003192

You can include an embedded double quote in a quoted identifier by doubling
the quote:

create table "embedded""quote" (cl int)

However, there is no need to double the quote when the statement syntax
requires the object name to be expressed as a string:

select object id(’embedded"quote’)

Identifying tables or columns by their qualified object name

262

You can uniquely identify atable or column by adding other namesthat qualify
it—the database name, owner’s name, and (for a column) the table or view
name. Each qualifier is separated from the next one by aperiod. For example:

database.owner.table name.column name
database.owner.view name.column name

The naming conventions are:

[[database.] owner.] table name
[[database.] owner.] view name

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Using delimited identifiers within an object name

If you use set quoted_identifier on, you can use doubl e quotes around individual
partsof aqualified object name. Use aseparate pair of quotesfor each qualifier
that requires quotes. For example, use:

database.owner."table name"."column name"
Do not use:

database.owner."table name.column name"

Omitting the owner name

You can omit the intermediate elementsin aname and use dotsto indicate their
positions, as long as the system is given enough information to identify the
object:

database..table name

database..view name

Referencing your own objects in the current database

You need not use the database name or owner name to reference your own
objectsin the current database. The default value for owner isthe current user,
and the default value for database is the current database.

If you reference an object without qualifying it with the database name and
owner name, Adaptive Server tries to find the object in the current database
among the objects you own.

Referencing objects owned by the database owner

If you omit the owner name and you do not own an object by that name,
Adaptive Server looksfor objects of that name owned by the Database Owner.
You must qualify objects owned by the Database Owner only if you own an
object of the same name, but you want to use the object owned by the Database
Owner. However, you must qualify objects owned by other users with the
user’'s name, whether or not you own objects of the same name.

Reference Manual: Building Blocks 263

Identifiers

Using qualified identifiers consistently

When qualifying acolumn name and table namein the same statement, be sure
to use the same qualifying expressions for each; they are evaluated as strings

and must match; otherwise, an error isreturned. Example 2 isincorrect because
the syntax style for the column name does not match the syntax style used for
the table name.

Example 1 select demo.mary.publishers.city
from demo.mary.publishers

Boston
Washington
Berkeley

Example 2 select demo.mary.publishers.city
from demo. .publishers

The column prefix "demo.mary.publishers" does not match a
table name or alias name used in the query.

Determining whether an identifier is valid

Use the system function valid_name, after changing character sets or before
creating atable or view, to determine whether the object nameis acceptable to
Adaptive Server. Here is the syntax:

select valid name ("Object name")

If object_nameisnot avalid identifier (for example, if it containsillegal
characters or is more than 30 bytes long), Adaptive Server returns 0. If
object_nameisavalid identifier, Adaptive Server returns a nonzero number.

Renaming database objects

Rename user objects (including user-defined datatypes) with sp_rename.

Warning! After you rename atable or column, you must redefine all
procedures, triggers, and views that depend on the renamed object.

264 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Using multibyte character sets

In multibyte character sets, awider range of charactersis available for usein
identifiers. For example, on a server with the Japanese language installed, the
following types of characters may be used asthefirst character of anidentifier:
Zenkaku or Hankaku Katakana, Hiragana, Kanji, Romaji, Greek, Cyrillic, or
ASCII.

Although Hankaku K atakana characters are legal in identifiers on Japanese
systems, they are not recommended for use in heterogeneous systems. These
characters cannot be converted between the EUC-JIS and Shift-JIS character
sets.

The same is true for some 8-bit European characters. For example, the OE
ligature, is part of the Macintosh character set (codepoint OXCE). This
character does not exist in the SO 8859-1 (iso_1) character set. If the OE
ligature exists in data being converted from the Macintosh to the | SO 8859-1
character set, it causes a conversion error.

If an object identifier contains a character that cannot be converted, the client
loses direct access to that object.

Pattern matching with wildcard characters

Wildcard characters represent one or more characters, or arange of characters,
inamatch_string. A match_stringisacharacter string containing the pattern to
find in the expression. It can be any combination of constants, variables, and
column names or a concatenated expression, such as:

like @variable + "%".

If the match string is aconstant, it must always be enclosed in single or double
quotes.

Usewildcard characterswith the keyword like to find character and date strings
that match a particular pattern. You cannot use like to search for seconds or
milliseconds. For more information, see “Using wildcard characters with
datetime data” on page 271.

Use wildcard characters in where and having clauses to find character or
date/time information that is like—or not like—the match string:

{where | having} [not]
expression [not] like match_string
[escape "escape_character "]

Reference Manual: Building Blocks 265

Pattern matching with wildcard characters

Using not like

266

expression can be any combination of column names, constants, or functions
with a character value.

Wildcard characters used without like have no special meaning. For example,
this query finds any phone numbersthat start with the four characters “415%”:

select phone
from authors
where phone = "415%"

Use not like to find strings that do not match a particular pattern. These two
gueries are equivaent: they find all the phone numbersin the authors table that
do not begin with the 415 area code.

select phone
from authors
where phone not like "415%"

select phone
from authors
where not phone like "415%"

For example, this query finds the system tables in a database whose names
begin with “sys’:
select name

from sysobjects
where name like "sys$%"

To see all the objects that are not system tables, use:
not like "sys%"

If you have atotal of 32 objects and like finds 13 names that match the pattern,
not like will find the 19 objects that do not match the pattern.

not like and the negative wildcard character [*] may give different results (see
“The caret (") wildcard character” on page 269). You cannot always duplicate
not like patterns with like and ~. Thisis because not like finds the items that do
not match the entire like pattern, but like with negative wildcard charactersis
evaluated one character at atime.

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

A pattern such as like “[*s][*y][*s]%" may not produce the same results. Instead
of 19, you might get only 14, with all the names that begin with “s’, or have
“y” asthe second letter, or have“s’ asthe third letter eliminated from the
results, as well as the system table names. Thisis because match strings with
negative wildcard characters are evaluated in steps, one character at atime. If
the match fails at any point in the evaluation, it is eliminated.

Case and accent insensitivity

If your Adaptive Server usesacase-insensitive sort order, caseisignored when
comparing expression and match_string. For example, this clausewould return
“Smith,” “smith,” and “SMITH" on a case-insensitive Adaptive Server:

where col name like "Sm%"

If your Adaptive Server is also accent-insensitive, it treats all accented
characters as equal to each other and to their unaccented counterparts, both
uppercase and lowercase. The sp_helpsort system procedure displays the
characters that are treated as equivalent, displaying an “=" between them.

Using wildcard characters

You can use the match string with a number of wildcard characters, which are
discussed in detail in the following sections. Table 4-7 summarizes the
wildcard characters:

Table 4-7: Wildcard characters used with like
Symbol Meaning

% Any string of O or more characters

_ Any single character

[1 Any single character within the specified range ([a-f]) or set ([abcdef])

"] Any single character not within the specified range (["af]) or set ([*abcdef])

Enclose the wildcard character and the match string in single or double quotes
(like “[dD]eFr_nce”).

The percent sign (%) wildcard character

Usethe % wildcard character to represent any string of zero or more characters.
For example, to find all the phone numbersin the authors table that begin with
the 415 area code:

Reference Manual: Building Blocks 267

Pattern matching with wildcard characters

select phone
from authors
where phone like "415%"

To find names that have the characters “en” in them (Bennet, Green,
McBadden):

select au_ lname
from authors
where au_lname like "%en%"

Trailing blanks following “%" in alike clause are truncated to asingletrailing
blank. For example, “%” followed by two spaces matches “ X ” (one space);
“X " (two spaces); “X " (three spaces), or any number of trailing spaces.

The underscore () wildcard character

Use the underscore (_) wildcard character to represent any single character.
For example, to find al six-letter names that end with “heryl” (for example,
Cheryl):

select au fname
from authors
where au_fname like " heryl"

Bracketed ([]) characters

Use brackets to enclose arange of characters, such as[af], or aset of
characters such as [a2Br]. When ranges are used, dl valuesin the sort order
between (and including) rangespecl and rangespec?2 are returned. For
example, “[0-2" matches 0-9, A-Z and a-z (and several punctuation characters)
in 7-bit ASCII.

To find names ending with “inger” and beginning with any single character
between M and Z:
select au lname

from authors
where au_lname like " [M-Z]inger"

To find both “DeFrance” and “deFrance’:

select au lname
from authors
where au_ lname like " [dD]eFrance"

268 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

The caret (*) wildcard character

The caret is the negative wildcard character. Useit to find strings that do not
match aparticular pattern. For example, “[*a-f]” finds stringsthat are not in the
range a-f and “[*a2bR]” finds strings that are not “a,” “2,” “b,” or “R.”

To find names beginning with “M” where the second letter isnot “c”:

select au lname
from authors
where au_lname like "M["c]%"

When ranges are used, all values in the sort order between (and including)
rangespecl and rangespec?2 are returned. For example,

“[0-z]” matches 0-9, A-Z , a-z, and severa punctuation charactersin 7-bit
ASCII.

Using multibyte wildcard characters

If the multibyte character set configured on your Adaptive Server defines
equivalent double-byte characters for the wildcard characters _, %, - [,], and
\, you can substitute the equivalent character in the match string. The
underscore equivalent represents either asingle- or double-byte character in
the match string.

Using wildcard characters as literal characters

To search for the occurrence of %, _, [,], or * within astring, you must use an
escape character. When awildcard character is used in conjunction with an
escape character, Adaptive Server interprets the wildcard character literally,
rather than using it to represent other characters.

Adaptive Server provides two types of escape characters:
e Square brackets, a Transact-SQL extension

* Any single character that immediately follows an escape clause,
compliant with the SQL standards

Reference Manual: Building Blocks 269

Pattern matching with wildcard characters

Using square brackets ([]) as escape characters

Use sguare brackets as escape characters for the percent sign, the underscore,
and the left bracket. The right bracket does not need an escape character; useit
by itself. If you use the hyphen as aliteral character, it must be the first
character inside a set of square brackets.

Table 4-8 shows examples of square brackets used as escape characters with
like.

Table 4-8: Using square brackets to search for wildcard characters

like predicate Meaning

like "5%" 5 followed by any string of 0 or more characters
like "5[%]" 5%

like " n" an, in, on (and so on)

like "[_]n" _n

like "[a-cdf]" a,b,cdorf

like "[-acdf]" -,a¢dorf

like "[[]" [

like "]"]

like “[[Jab]” [Jab

Using the escape clause

270

Use the escape clause to specify an escape character. Any single character in
the server’s default character set can be used as an escape character. If you try
to use more than one character as an escape character, Adaptive Server
generates an exception.

Do not use existing wildcard characters as escape characters because:

» If you specify the underscore (_) or percent sign (%) as an escape
character, it loses its special meaning within that like predicate and acts
only as an escape character.

» If you specify the left or right bracket ([or]) as an escape character, the
Transact-SQL meaning of the bracket is disabled within that like predicate.

» If you specify the hyphen (-) or caret () asan escape character, it losesits
special meaning and acts only as an escape character.

An escape character retains its specia meaning within square brackets, unlike
wildcard characters such as the underscore, the percent sign, and the open
bracket.

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

The escape character isvalid only within itslike predicate and has no effect on
other like predicates contained in the same statement. The only characters that
are valid following an escape character are the wildcard characters (_, %, [,],
or []), and the escape character itself. The escape character affects only the
character following it, and subsequent characters are not affected by it.

If the pattern contains two literal occurrences of the character that happensto
be the escape character, the string must contain four consecutive escape
characters. If the escape character does not divide the pattern into pieces of one
or two characters, Adaptive Server returns an error message. Table 4-9 shows
examples of escape clauses used with like.

Table 4-9: Using the escape clause

like predicate Meaning

like "5@%" escape "@" 5%

like "*_n" escape "*" n

like "%80@%%" escape "@" String containing 80%

like "*_sql**%" escape "*" String containing _sql*
like "Yot##HHE_#%%" escape "#" String containing ##_ %

Using wildcard characters with datetime data

When you use like with datetime values, Adaptive Server converts the datesto
the standard datetime format, then to varchar. Since the standard storage format
does not include seconds or milliseconds, you cannot search for seconds or
milliseconds with like and a pattern.

It isagood ideato use like when you search for datetime values, since datetime
entriesmay contain avariety of date parts. For example, if you insert the value
“9:20” and the current date into a column named arrival_time, the clause:

where arrival time = '9:20'

would not find the value, because Adaptive Server convertsthe entry into “ Jan
1 1900 9:20AM.” However, the following clause would find this value:

where arrival time like '%9:20%’

Reference Manual: Building Blocks 271

Pattern matching with wildcard characters

272 Adaptive Server Enterprise

CHAPTER 5 Reserved Words

Keywords, also known as reserved words, are words that have specia
meanings. This chapter lists Transact-SQL and ANSI SQL keywords.

Topics covered are:

Topics Page
Transact-SQL reserved words 273
ANSI SQL reserved words 274
Potential ANSI SQL reserved words 275

Transact-SQL reserved words

Thewordsin Table5-1 arereserved by Adaptive Server askeywords (part
of SQL command syntax). They cannot be used as names of database
objects such as databases, tables, rules, or defaults. They can be used as
names of local variables and as stored procedure parameter names.

To find the names of existing objects that are reserved words, use
sp_checkreswords in Reference Manual: Procedures.

Table 5-1: List of Transact-SQL reserved words

Words

A add, al, alter, and, any, arith_overflow, as, asc, at, authorization, avg

B begin, between, break, browse, bulk, by

C cascade, case, char_convert, check, checkpoint, close, clustered, coalesce, commit, compute, confirm,
connect, constraint, continue, controlrow, convert, count, create, current, cursor

D database, dbcc, deallocate, declare, default, delete, desc, deterministic, disk distinct, double, drop,
dummy, dump

E else, end, endtran, errlvl, errordata, errorexit, escape, except, exclusive, exec, execute, exists, exit,
exp_row_size, external

F fetch, fillfactor, for, foreign, from, func

G goto, grant, group

H having, holdlock

Reference Manual: Building Blocks 273

ANSI SQL reserved words

Words

identity, identity_gap, identity_insert, identity_start, if, in, index, inout, insert, install, intersect, into, is,
isolation

J jar,join

K key, kill

L level, like, lineno, load, lock

M max, max_rows_per_page, min, mirror, mirrorexit, modify

N national, new, noholdlock, nonclustered, not, null, nullif, numeric_truncation
Note “New” isapotential Transact-SQL reserved word, not a current Transact-SQL reserved word, so
you can use it to name a database object. However, since “New” may become areserved word in the
future, Sybase recommends that you avoid using it.
“New” isaspecial case (see”Potential ANSI SQL reserved words’ on page 275 for information on other
reserved words) because it appears in the spt_values table, and because sp_checkreswords displays
“New” as areserved word.

(@] of, off, offsets, on, once, online, only, open, option, or, order, out, output, over

P partition, perm, permanent, plan, precision, prepare, primary, print, privileges, proc, procedure,
processexit, proxy_table, public

Q quiesce

R raiserror, read, readpast, readtext, reconfigure, references remove, reorg, replace, replication,
reservepagegap, return, returns, revoke, role, rollback, rowcount, rows, rule

S save, schema, select, set, setuser, shared, shutdown, some, statistics, stringsize, stripe, sum, syb_identity,
syb_restree, syb_terminate

T table, temp, temporary, textsize, to, tran, transaction, trigger, truncate, tsequal

U union, unique, unpartition, update, use, user, user_option, using

V values, varying, view

w waitfor, when, where, while, with, work, writetext

ANSI SQL reserved words

274

Adaptive Server includes entry-level ANSI SQL features. Full ANSI SQL
implementation includes the words listed in the following tables as command
syntax. Upgrading identifiers can be a complex process; therefore, we are
providing this list for your convenience. The publication of thisinformation
does not commit Sybase to providing all of these ANSI SQL featuresin
subsequent releases. In addition, subsequent rel eases may include keywords
not included in thislist.

Adaptive Server Enterprise

CHAPTER 5 Reserved Words

Thewordsin Table 5-2 are ANSI SQL keywords that are not reserved words
in Transact-SQL.
Table 5-2: List of ANSI SQL reserved words
Words
A absolute, action, allocate, are, assertion

B bit, bit_length, both

@)

cascaded, case, cast, catalog, char, char_length, character, character_length, coalesce, collate, collation,
column, connection, constraints, corresponding, cross, current_date, current_time, current_timestamp,
current_user

date, day, dec, decimal, deferrable, deferred, describe, descriptor, diagnostics, disconnect, domain
end-exec, exception, extract
fase, first, float, found, full

get, global, go

hour
immediate, indicator, initially, inner, input, insensitive, int, integer, interval
join

language, last, leading, left, local, lower

match, minute, module, month
names, natural, nchar, next, no, nullif, numeric
octet_length, outer, output, overlaps

pad, partial, position, preserve, prior

real, relative, restrict, right

scroll, second, section, session_user , size, smallint, space, sql, sglcode, sqlerror, sglstate, substring,
system_user

then, time, timestamp, timezone_hour, timezone_minute, trailing, translate, trandation, trim, true
unknown, upper, usage

MWDV O|ZIZM |« || mM MmO

value, varchar

when, whenever, write, year
zone

Nls|<|c|-

Potential ANSI SQL reserved words

If you are using the ISO/IEC 9075:1989 standard, also avoid using the words
shown in the following list because these words may become ANSI SQL
reserved words in the future.

Reference Manual: Building Blocks 275

Potential ANSI SQL reserved words

Table 5-3: List of potential ANSI SQL reserved words

Words
A after, dias, async
B before, boolean, breadth
C call, completion, cycle
D data, depth, dictionary
E each, elseif, equals
G general
| ignore
L leave, less, limit, loop
M modify
N new, none
(@] object, oid, old, operation, operators, others
P parameters, pendant, preorder, private, protected
R recursive, ref, referencing, resignal, return, returns, routine, row
S savepoint, search, sensitive, sequence, signal, similar, sglexception, structure
T test, there, type
U under
\% variable, virtual, visible
W wait, without

276 Adaptive Server Enterprise

CHAPTER 6

Warnings

SQLSTATE Codes and Messages

This chapter describes Adaptive Server’s SQLSTATE status codes and
their associated messages.

Topics covered are:

Topics Page
Warnings 277
Exceptions 278

SQLSTATE codes are required for entry level ANSI SQL compliance.
They provide diagnostic information about two types of conditions:

* Warnings— conditions that require user notification but are not
serious enough to prevent a SQL statement from executing
successfully

¢ Exceptions— conditions that prevent a SQL statement from having
any effect on the database

Each SQLSTATE code consists of a 2-character class followed by a
3-character subclass. The class specifies general information about error
type. The subclass specifies more specific information.

SQL STATE codes are stored in the sysmessages system table, along with
the messages that display when these conditions are detected. Not all
Adaptive Server error conditions are associated with a SQLSTATE
code—only those mandated by ANSI SQL. In some cases, multiple
Adaptive Server error conditions are associated with asingle SQLSTATE
value.

Adaptive Server currently detects only one SQLSTATE warning
condition, which is described in Table 6-1:

Reference Manual: Building Blocks 277

Exceptions

Table 6-1: SQLSTATE warnings

Message Value Description

Warning—null valueeliminatedinset 01003 Occurs when you use an aggregate function (avg, max, min,

function. sum, or count) on an expression with anull value.

Warning-string data, right truncation 01004 Occurs when character, unichar, or binary datais truncated to
255 bytes. The data may be:

¢ Theresult of aselect statement in which the client does not
support the WIDE TABLES property.

» Parametersto an RPC on remote Adaptive Servers or Open
Servers that do not support the WIDE TABLES property.

Exceptions
Adaptive Server detects the following types of exceptions:
* Cardinality violations
» Dataexceptions
* Integrity constraint violations
* Invalid cursor states
* Syntax errors and access rule violations
e Transaction rollbacks
» with check option violations

Exception conditions are described in Table 6-2 through Table 6-8. Each class
of exceptions appearsin its own table. Within each table, conditions are sorted
alphabetically by message text.

Cardinality violations

Cardinality violations occur when a query that should return only asingle row
returns more than one row to an Embedded SQL ™ application.

278 Adaptive Server Enterprise

CHAPTER 6 SQLSTATE Codes and Messages

Table 6-2: Cardinality violations

Message

Value Description

Subquery returned more than 1 value. This 21000 Occurs when:
isillegal when the subquery follows =, !=,
<, <=, >, >=. or when the subquery is used

as an expression.

» A scalar subquery or arow subquery returns more than
one row.

* A select into parameter_list query in Embedded SQL
returns more than one row.

Data exceptions

Data exceptions occur when an entry:

e Istoolong for its datatype,

e Contains an illegal escape sequence, or

¢ Contains other format errors.

Table 6-3: Data exceptions

Message Value Description
Arithmetic overflow occurred. 22003 Occurs when:
» Anexact numeric typewould lose precision or scale asaresult
of an arithmetic operation or sum function.
« An approximate numeric type would lose precision or scale as
aresult of truncation, rounding, or asum function.
Data exception - string data right 22001 Occurswhen achar, unichar, univarchar, or varchar column istoo
truncated. short for the data being inserted or updated and non-blank
characters must be truncated.
Divide by zero occurred. 22012 Occurs when a numeric expression is being evaluated and the
value of the divisor is zero.
Illegal escape character found. 22019 Occurs when you are searching for strings that match agiven
There are fewer bytesthan pattern if the escape sequence does not consist of asingle
necessary to form avalid character. character.
Invalid pattern string. The character 22025 Occurs when you are searching for strings that match a particular

following the escape character must
be percent sign, underscore, left
sguare bracket, right square bracket,
or the escape character.

pattern when:

» Theescape character is not immediately followed by apercent
sign, an underscore, or the escape character itself, or

» The escape character partitions the pattern into substrings
whose lengths are other than 1 or 2 characters.

Reference Manual: Building Blocks

279

Exceptions

Integrity constraint violations

Integrity constraint violations occur when aninsert, update, Or delete statement
violates aprimary key, foreign key, check, Or unique constraint or aunique index.

Table 6-4: Integrity constraint violations

Message Value Description

Attempt to insert duplicate key row in 23000 Occurswhen aduplicaterow isinserted
object Object hame with unique index into atable that has a unique constraint
index_name. or index.

Check constraint violation occurred, dbname 23000 Occurs when an update or delete

= database name, table name = table name, would violate acheck constraint on a
constraint name = constraint_name. column.

Dependent foreign key constraint violation 23000 Occurs when an update or delete on a
in a referential integrity constraint. primary key table would violate a
dbname = database name, foreign key constraint.

table name = table_name, constraint name =

constraint_name.

Foreign key constraint violation occurred, 23000 Occurswhen an insert or update on a

dbname = database name, table name =

table name, constraint name = constraint_name.

foreign key tableisperformed without a
matching valueinthe primary key table.

Invalid cursor states

Invalid cursor states occur when:

» A fetch uses acursor that is not currently open, or

* Anupdate where current of or delete where current of affects a cursor row
that has been modified or deleted, or

e Anupdate where current of or delete where current of affects a cursor row

that not been fetched.

Table 6-5: Invalid cursor states

Message Value

Description

Attempt to use cursor CUrSOr_name which is 24000

not open. Use the system stored procedure
sp_cursorinfo for more information.

280

Occurs when an attempt is made to fetch
from acursor that has never been opened or
that was closed by acommit statement or an
implicit or explicit rollback. Reopen the
cursor and repeat the fetch.

Adaptive Server Enterprise

CHAPTER 6 SQLSTATE Codes and Messages

Message Value Description

Cursor CUrsor_name was closed implicitly 24000 Occurswhen thejoin column of amultitable
because the current cursor position was cursor has been deleted or changed. Issue
deleted due to an update or a delete. The another fetch to reposition the cursor.
cursor scan position could not be

recovered. This happens for cursors which

reference more than one table.

The cursor CUrSOr_name had its current 24000 Occurs when a user issues an update/delete
scan position deleted because of a where current of whose current cursor
DELETE/UPDATE WHERE CURRENT OF or a position has been deleted or changed. Issue
regular searched DELETE/UPDATE. You must another fetch before retrying the

do a new FETCH before doing an UPDATE or update/delete where current of.

DELETE WHERE CURRENT OF.

The UPDATE/DELETE WHERE CURRENT OF failed 24000 Occurs when a user issues an update/delete

for the cursor CUrsOr_name because it is
not positioned on a row.

where current of on a cursor that:
* Hasnot yet fetched arow

* Hasfetched one or more rows after
reaching the end of the result set

Syntax errors and access rule violations

Syntax errors are generated by SQL statements that contain unterminated
comments, implicit datatype conversions not supported by Adaptive Server or

other incorrect syntax.

Access rule violations are generated when a user tries to access an object that
does not exist or one for which he or she does not have the correct permissions.

Table 6-6: Syntax errors and access rule violations

Message Value Description

command permission denied on 42000 Occurs when a user tries to access an object for which he
object oObject_name, database or she does not have the proper permissions.

database name, owner

owner_name.

Implicit conversion from 42000 Occurs when the user attempts to convert one datatype to
datatype ‘datatype’ to ‘datatype’ another but Adaptive Server cannot do the conversion
is not allowed. Use the CONVERT implicitly.

function to run this query.

Incorrect syntax near 42000 Occurs when incorrect SQL syntax is found near the

object_name.

Reference Manual: Building Blocks

object specified.

281

Exceptions

Message Value Description

Insert error: column name or 42000 Occurs during inserts when an invalid column nameis

number of supplied values does used or when an incorrect number of valuesisinserted.

not match table definition.

Missing end comment mark ‘*/’. 42000 Occurswhen acomment that beginswith the /* opening
delimiter does not also have the */ closing delimiter.

object_ name not found. Specify 42000 Occurs when a user tries to reference an object that he or

owner.objectname or use sp_help she does not own. When referencing an object owned by

to check whether the object another user, be sure to qualify the object name with the

exists (sp_help may produce name of its owner.

lots of output) .

The size (SiZz8) given to the 42000 Occurs when:

object_name exceeds the maximum.
The largest size allowed is
size.

* Thetotal size of al the columnsin atable definition
exceeds the maximum allowed row size.

* Thesizeof asingle column or parameter exceeds the
maximum allowed for its datatype.

Transaction rollbacks

Transaction rollbacks occur when the transaction isolation level is set to 3, but
Adaptive Server cannot guarantee that concurrent transactions can be
serialized. Thistype of exception generally resultsfrom system problems such
as disk crashes and offline disks.

Table 6-7: Transaction rollbacks

Message

Value Description

Your server command (process id
#process id) was deadlocked with
another process and has been chosen as

deadlock victim. Re-run your command.

40001 Occurs when Adaptive Server detects that it
cannot guarantee that two or more concurrent
transactions can be serialized.

with check option violation

This class of exception occurs when data being inserted or updated through a
view would not be visible through the view.

282

Adaptive Server Enterprise

CHAPTER 6 SQLSTATE Codes and Messages

Table 6-8: with check option violation

Message Value

Description

The attempted insert or update failed because the 44000
target view was either created WITH CHECK OPTION

or spans another view created WITH CHECK OPTION.

At least one resultant row from the command would

not qualify under the CHECK OPTION constraint.

Occurswhen aview, or any view
onwhichit depends, was created
with awith check option clause.

Reference Manual: Building Blocks

283

Exceptions

284 Adaptive Server Enterprise

Index

Symbols

& (ampersand) “and” bitwise operator 252
* (asterisk)
for overlength numbers 209
multiplication operator 251
\ (backslash) character string continuation with 259
::= (BNF notation)
in SQL statements xvii
" (caret)
“exclusive or” bitwise operator 252
wildcard character 267, 269
: (colon) preceding milliseconds
, (comma)
in default print format for money values 17
not alowed in money values 18
in SQL statements xvii
{} (curly braces)
in SQL statements xvii
$ (dollar sign)
inidentifiers 260
in money datatypes 18
.. (dots) in database object names 263
= (equals sign) comparison operator 254
> (greater than) comparison operator 254
>= (greater than or equal to) comparison operator
254
< (less than) comparison operator 254
<= (lessthan or equal to) comparison operator 254
- (minus sign)
arithmetic operator 251
for negative monetary values 18
ininteger data 12
1= (not equal to) comparison operator 254
<> (not equal to) comparison operator 254
I> (not greater than) comparison operator 254
I< (not less than) comparison operator 254
() (parentheses)
inexpressions 258
in SQL statements xvi

67, 120

Reference Manual: Building Blocks

% (percent sign)
arithmetic operator (modulo) 251
wildcard character 267
. (period)
preceding milliseconds 67, 120
separator for qualifier names 262
| (pipe) “or” bitwise operator 252
+ (plus)
arithmetic operator 251
ininteger data 12
null valuesand 254
string concatenation operator 253
£ (pound sterling sign)
inidentifiers 260
in money datatypes 18
" (quotation marks)
comparison operatorsand 254
enclosing constant values 70
enclosing datetimevalues 21
enclosing empty strings 257, 259
inexpressions 259
literal specification of 259
/ (dlash) arithmetic operator (division) 251
[1 (square brackets)
character set wildcard 267, 268
in SQL statements xvii
["] (square brackets and caret) character set wildcard
267
~ (tilde) “not” bitwise operator 252
_ (underscore)
object identifier prefix 239, 260
in temporary table names 260
character stringwildcard 267, 268
¥ (ven sign)
inidentifiers 260
in money datatypes 18

285

Index

Numerics

“Ox" prefix 31, 32
21st century numbers 21

A

abbreviations
chars for characters, patindex 169, 171
date parts 66, 120
abort option, Ict_admin function 146
abs mathematical function 74
accent sensitivity, wildcard charactersand 267
ACF. See Application Context Facility
acos mathematical function 75
adding
interval toadate 112
timestamp column 229
user-defined datatypes 44
addition operator (+) 251
aggregate functions 52-58
See also row aggregates; individual function names
avg 80
count 102
difference from row aggregates 56
group by clauseand 53, 54
having clauseand 52

max 159
min 161
scalar aggregates 53
sum 217

vector aggregates 53
aggregate functionsand cursors 55
all keyword including subqueries 255
alter table command, adding timestamp column 229
ampersand (&) “and” bitwise operator 252
and (&) bitwise operator 252
and keyword

inexpressions 257

range-end 255
angles, mathematical functionsfor 75
any keyword in expressions 255
application attributes 194
Application Context Facility (ACF) 194
application contexts

getting 134

286

listing 153
removing 185
setting 194

approximate numeric datatypes 15
arithabort option, set
arith_overflow and 10, 63
mathematical functions and arith_overflow 69
mathematical functions and numeric_truncation
64, 69
arithignore option, set
arith_overflow and 63
mathematical functions and arith_overflow 69
arithmetic
errors 68
expressions 250
operations, approximate numeric datatypesand 15
operations, exact numeric datatypesand 12
operations, money datatypesand 17
operators, in expressions 251
ASCII characters 76
ascii string function 76
asin mathematical function 77
asterisk (*)
multiplication operator 251
overlength numbers 209
atan mathematical function 78
@@bootcount global variable 243
@@boottime global variable 243
@@bulkarraysize global variable 243
@@bulkbatchsize global variable 243
@@char_convert global variable 243
@@cis_rpc_handling global variable 243
@Q@xcis_version global variable 244
@Q@xclient_csexpansion global variable 244
@Q@client_csid global variable 244
@@client_csname global variable 244
@@cmpstate global variable 244
@@connections global variable 244
@@cpu_busy global variable 244
@@curloid global variable 244
@@datefirst global variable 244
@@dbts global variable 244
@@error global variable 244
@@errorlog global variable 244
@@failedoverconn global variable 244
@@guestuserid global variable 244

Adaptive Server Enterprise

@@hacmpservername global variable 244
@@haconnection global variable 244
@@heapmemsize global variable 244
@@identity global variable 244
@@idlegloba varigble 244
@@invaliduserid global variable 244
@@io_busy global variable 244
@@isolation global variable 245
@@kernel_addr global variable 245
@@kernel_size global variable 245
@@langid globa variable 245
@@language global variable 245
@@lock_timeout global variable 245
@@max_connections global variable 245
@@max_precision global variable 245
@@maxcharlen global variable 245
@@maxgroupid global variable 245
@@maxpagesize global variable 245
@@maxspid global variable 245
@@maxsuid global variable 245
@@maxuserid global variable 245
@@mempool_addr global variable 245
@@min_poolsize global variable 245
@@mingroupid global variable 245
@@minspid global variable 245
@@minsuid global variable 245
@@minuserid global variable 245
@@ncharsize global variable 245
@@nestlevel global variable 245
@@nodeid global variable 246
@@options global variable 246
@@pack_received global variable 246
@@pack_sent global variable 246
@@packet_errorsgloba variable 246
@@pagesize global variable 246
@@parallel_degree global variable 246
@@probesuid global variable 246
@@procid global variable 246
@Q@recovery_state global variable 246
@@rowcount global variable 246
@@scan_parallel_degree global variable 246
@@servername global variable 246
@@shmem flags global variable 246
@@spid global variable 246
@@sglstatus global variable 246
@@stringsize global variable 247

Reference Manual: Building Blocks

Index

@@tempdbid global variable 247
@@textcolid global variable 43, 247
@@textdbid global variable 43, 247
@@textobjid globa variable 43, 247
@@textptr global variable 42, 247
@@textptr_parametersglobal variable 247
@@textsize global variable 43, 247
@@texits global variable 43, 247
@@thresh_hysteresisglobal variable 247
@@timeticks global variable 247
@@total_errorsglobal variable 247
@@total_read global variable 247
@@total_write global variable 247
@@tranchained global variable 247
@@trancount global variable 247
@@transactional_rpc global variable 247
@Q@transtate globa variable 247
@@unicharsize global variable 247
@@version global variable 248
@@version_as integer global variable 248
atn2 mathematical function 79
attributes, setting in an application 194
automatic operations, updating columns with timestamp
18
avg aggregate function 80

B

backdlash (\) for character string continuation 259
Backus Naur Form (BNF) notation xvi, xvii
base 10 logarithm function 156

basedate 21
between keyword 255
binary

datatypes 31-33
datatypes, “0x” prefix 31, 32
datatypes, trailing zerosin 32
expressions 249
expressions, concatenating 253
representation of data for bitwise operations 252
sort 94,203

binary datatype 31-33

bit datatype 33

bitwise operators 252-253

blanks

287

Index

See also spaces, character

character datatypesand 27-30

comparisons 254

empty string evaluated as 259

likeand 268

removing leading, with Itrim function 158

removing trailing, with rtrim function 193
BNF notation in SQL statements xvi, xvii
boolean (logical) expressions 249
@@bootcount global variable 243
@@boottime global variable 243
brackets. See square brackets| |
browse mode and timestamp datatype 18, 228
built-in function, ACF 194
built-in functions 47-240

See also individual function names

aggregate 52

converson 58

date 66

image 73

mathematical 67

security 69

string 70

system 71

text 73

typeconversion 95-99
@@bulkarraysize global variable 243
@@bulkbatchsize global variable 243
by row aggregate subgroup 56

C

caculating dates 115
caldayofweek datepart 120
calweekofyear date part 120
calyearofweek date part 120
case sensitivity

comparison expressionsand 254, 267

identifiersand 260

inSQL xviii
cdw. See caldayofweek date part
ceiling mathematical function 82
chains of pages, text or imagedata 36
char datatype 25-27

inexpressions 258

288

char string function 84
@@char_convert global variable 243
char_length string function 87
character data, avoiding “NULL” in 257
character datatypes 25-30
character expressions

blanks or spacesin 27-30

defined 249

syntax 250
character sets

conversion errors 265

iso 1 265

multibyte 265

object identifiersand 265
character strings

continuation with backdash (\) 259

empty 259

specifying quotes within 259

wildcardsin 265
characters

See also spaces, character

“0x” 31,32

Ox 64

deleting, using stuff function 214

number of 87

wildcard 265-271
charindex string function 86
@@cis_rpc_handling global variable 243
@@cis_version global variable 244
client, host computer nameand 139
@Q@client_csexpansion global variable 244
@Q@xclient_csid global variable 244
@@xclient_csname global variable 244
@@cmpstate globd variable 244
codes, soundex 205
col_length system function 89
col_name system function 90
colon (:), preceding milliseconds 120
column identifiers. Seeidentifiers.
column name

asquaifier 262

in parentheses 56

returning 90
columns

identifying 262

length definition 89

Adaptive Server Enterprise

lengthof 89
numeric, and row aggregates 56
sizesof (list)y 24
commad (,)
default print format for money values 17
not allowed in money values 18
in SQL statements xvii
compare system function 91
comparing values
difference string function 130
inexpressions 254
timestamp 228
comparison operators
See also relational expressions
inexpressions 254
symbolsfor 254
compute clause and row aggregates 55
computing dates 115
concatenation
null values 254
using + operator 253
@@connections global variable 244
constants
and string functions 70
comparing in expressions 258
expression for 249
string functionsand 70
continuation lines, character string 259
conventions
See also syntax
identifier name 262
Transact-SQL syntax xvi
used in the Reference Manual xvi
conversion
automatic values 9
between character sets 265
character valueto ASCII code 76
dates used with like keyword 24
degreestoradians 178
implicit 9, 258
integer value to character value 84, 227
lower to higher datatypes 258
lowercase to uppercase 230, 231, 232, 233
null values and automatic 9
radiansto degrees 127
string concatenation 253

Reference Manual: Building Blocks

stylesfor dates 96
uppercaseto lowercase 157
convert datatype conversion function 95
concatenationand 253
date styles 96
converting hexadecimal numbers 64
cos mathematical function 100
cot mathematical function 101
count aggregate function 102
CP 850 Alternative
lower casefirst 94, 203
no accent 94, 203
no case preference 94, 203
CP 850 Scandinavian
dictionary 94, 203
no case preference 94, 203
@@cpu_busy global variable 244
create table command and null values 257
@@curloid global variable 244
curly braces ({}) in SQL statements xvii
currency symbols 18, 260
current user
rolesof 196
suser_id system function 219
suser_name system function 220
user_id system function 237
user_name system function 238
current_date date function 104
current_timedate function 105
cursors and aggregate functions 55
curunreservedpgs system function 106
cwk. See calweekofyear date part
cyr. See calyearofweek date part
cyrillic characters 265

D

data_pgs system function 108
database object owners and identifiers 263
database objects
See also individual object names
ID number 167
identifier names 259
user-defined datatypesas 44
database owners

Index

289

Index

nameas qualifier 262, 263

objectsand identifiers 263
databases

See also database objects

getting name of 126

ID number, db_id function 125
datalength system function 110

compared to col_length 89
datatype conversions

binary and numeric data 65

bit information 65

character information 60, 61

convert function 95, 98

date and timeinformation 62

domain errors 64, 98

functionsfor 58-66

hexadecimal-like information 64

hextoint 137

hextoint function 137

image 65, 98
implicit 58
inttohex 143

money information 61
numeric information 61, 62
overflow errors 63
rounding during 61
scaleerrors 64
datatype precedence. See precedence
datatypes 1-45
See also user-defined datatypes; individual datatype
names
approximate numeric 15
binary 31-33
bit 33
dateandtime 19-25
datetime values comparison 254
decimal 13-14
dropping user-defined 45
exact numeric 11-14
hierarchy 7
integer 12-13
listof 2
mixed, arithmetic operationson 251
synonymsfor 2
trailing zerosin binary 32
varbinary 201

290

date and time datatype 21-25
date datatype 20, 21
date functions 66-67

See also individual function names
current_date 104
current_time 105
dateadd 111

datediff 114

datename 117

datepart 119

day 124

getdate 136

month 162

year 241

date parts

abbreviation names and values 66, 120
caldayofweek 120
calweekofyear 120
calyearofweek 120
entering 21

order of 22
dateadd date function 111
datediff date function 114
datediff function 115
datefirst option, set 117, 122
dateformat option, set 22
datename date function 117
datepart date function 119
dates

comparing 254

datatypes 19-25

default display settings 23
display formats 20
earliest dllowed 21, 66, 112
entry formats 19, 22
pre-1753 datatypesfor 66, 112
datetime datatype 21-25
comparison of 254
conversion 24

date functionsand 120
values and comparisons 24
day datefunction 124

day date part 67, 120
dayofyear date part abbreviation and values 67, 120
db_id system function 125, 126
db_name system function 126

Adaptive Server Enterprise

DB-Library programs, overflow errorsin
@@dbts global variable 244
dd. See day date part.
decimal datatype 13-14
decimal numbers
round functionand 189
str function, representation of
decimal points
datatypes, adlowingin 13
ininteger data 12
default settings
date display format 20, 23
weekday order 122
default Unicode multilingual 94, 203
default values
datatype length 95
datatype precision 95
datatypescale 95
degrees mathematical function 127
degrees, conversiontoradians 178
delete command and text row 42

81,218

209

derived_stat system function 128
devices. See sysdevicestable.
difference string function 130

division operator (/) 251
dollar sign ($)
inidentifiers 260

in money datatypes 18
domain rules, mathematical functionserrorsin 68
dots (..) for omitted name elements 263
double precision datatype 16

double-byte characters. See Multibyte character sets.

double-precision floating-point values 16
doubling quotes

inexpressions 259

in character strings 28
dropping

character with stuff function 214

leading or trailing blanks 158
duplicate rows, text orimage 43
duplication of text. Seereplicate string function
dw. See weekday date part.
dy. See dayofyear date part.

Reference Manual: Building Blocks

E

e or E exponent notation
approximate numeric datatypes 16
float datatype 5
money datatypes 18
embedded spaces. See spaces, character.
empty string (“ ") or (" ")
not evaluated asnull 257
asasinglespace 30, 259
enclosing quotesin expressions 259
equal to. See comparison operators
@@error globa variable 244
error handling, domain or range 68
@@errorlog global variable 244
errors
arithmetic overflow 63
convert function 60-64, 98
divide-by-zero 63
domain 64, 98
scale 64
trapping mathematical 68
escape characters 270
escape keyword 270-271
european charactersin object identifiers
exact numeric datatypes 11-14
arithmetic operationsand 12

exists keyword in expressions 255
exp mathematical function 131

explicit null value 257

exponent, datatype (e or E)
approximate numeric types 16
float datatype 5
money types 18

exponential value 131

expressions
defined 249
enclosing quotesin 259
including null values 255
name and table name qualifying 264
typesof 249

F

@@failedoverconn global variable 244
finding

265

Index

201

Index

databaseID 125 datalength system function 110
database name 126 date 66
serveruser ID 219 dateadd date function 111
server user name 220, 221, 228, 234 datediff date function 114
starting position of an expression 86 datename date function 117
user dliases 240 datepart date function 119
user IDs 237 day date function 124
user names 236, 238 db_id system function 125, 126
valididentifiers 239 degrees mathematical function 127
first-of-the-months, number of 115 derived_stat system function 128
fixed-length columns difference string function 130
binary datatypesfor 31 exp mathematica function 131
character datatypesfor 27 floor mathematical function 132
null valuesin 9 get_appcontext security function 134
float datatype 16 getdate date function 136
floating-point data 249 hextoint datatype conversion function 137
str character representation of 209 host_id system function 138
floor mathematical function 132, 133 host_name system function 139
formats, date. See dates. image 73
free pages, curunreservedpgs system function 106 index_col system function 141
front-end applications, browse modeand 228 index_colorder system function 142
functions 47 inttohex datatype conversion function 143
abs mathematical function 74 is_sec_service_on security function 145
acos mathematical function 75 isnull system function 144
aggregate 52 Ict_admin system function 146
ascii string function 76 left system function 149
asin mathematical function 77 len string function 151
atan mathematical function 78 license_enabled system function 152
atn2 mathematical function 79 list_appcontexsecurity function 153
avg aggregate function 80 lockscheme system function 154
ceiling mathematical function 82 log mathematical function 155
char string function 84 log10 mathematica function 156
char_length string function 87 lower string function 157
charindex string function 86 Itrim string function 158
col_length system function 89 mathematical 67
col_name system function 90 max aggregate function 159
compare system function 91 min aggregate function 161
conversion 58 month date function 162
convert datatype conversion function 95 mut_excl_roles system function 163
cos mathematical function 100 newidsystem function 164
cot mathematical function 101 next_identity system function 166
count aggregate function 102 object_id system function 167
current_date date function 104 object_name system function 168
current_time date function 105 pagesize system function 169
curunreservedpgs System function 106 patindex string function 171
data_pgs system function 108 pi mathematical function 174

292 Adaptive Server Enterprise

power mathematical function 175
proc_role system function 176
ptn_data_pgs system function 177
radians mathematical function 178
rand mathematica function 179
replicate string function 180
reserved_pgs system function 181
reverse string function 182

right string function 183
rm_appcontext security function 185
role_contain system function 186
role_id system function 187
role_name system function 188
round mathematical function 189
rowcnt system function 191

rtrim string function 193

security 69

set_appcontexsecurity function 194
show_role system function 196
show_sec_services security function
sign mathematical function 198
sin mathematical function 199
sortkey 201

sortkey system function 200
soundex string function 205
space string function 206

sqrt mathematical function 208
square mathematical function 207
str string function 209

str_replace string function 211
string 70

stuff string function 213

substring string function 215
sum aggregate function 217
suser_id system function 219
suser_name system function 220
syb_quit system function 221
syb_sendmsg 222

system 71

tan mathematical function 223
tempdb_id system function 224
text 73

textptr text and image function 225
textvalid text and image function 226
to_unichar string function 227
tsequal system function 228

Reference Manual: Building Blocks

uhighsurr string function 230
ulowsurr string function 231
upper string function 232
uscalar string function 233
used_pgs system function 234
user system function 236
user_id system function 237
user_name system function 238
valid_name system function 239
valid_user system function 240
year date function 241
functions, built-in, type conversion 95-99

G

GB Pinyin 94, 203
get_appcontext security function 134
getdate date function 136
global variables
@@bootcount 243
@@boottime 243
@@bulkarraysize 243
@@bulkbatchsize 243
@@char_convert 243
@Q@ucis rpc_handling 243
@@cis version 244
@@client_csexpansion 244
@@client_csid 244
@@xclient_csname 244
@@cmpstate 244
@@connections 244
@@cpu_busy 244
@@curloid 244
@@dbts 244
@@error 244
@@errorlog 244
@@failedoverconn 244
@@qguestuserid 244
@@hacmpservername 244
@@haconnection 244
@@heapmemsize 244
@@identity 244
@@idle 244
@@invaliduserid 244
@@io_busy 244

Index

293

Index

@@isolation 245
@@kernel_addr 245
@@kernel_size 245
@@langid 245
@@language 245
@@lock timeout 245
@@max_connections 245
@@max_precision 245
@@maxcharlen 245
@@maxgroupid 245
@@maxpagesize 245
@@maxspid 245
@@maxsuid 245
@@maxuserid 245
@@mempool_addr 245
@@min_poolsize 245
@@mingroupid 245
@@minspid 245
@@minsuid 245
@@minuserid 245
@@ncharsize 245
@@nestlevel 245
@@nodeid 246
@@options 246
@@pack_received 246
@@pack_sent 246
@@packet_errors 246
@@pagesize 246
@@parallel_degree 246
@@probesuid 246
@@procid 246
@@recovery_state 246
@@rowcount 246
@@scan_parallel_degree 246
@@servername 246
@@shmem flags 246
@@spid 246
@@sqlstatus 246
@@stringsize 247
@@tempdbid 247
@@textcolid 247
@Otextdbid 247
@@textobjid 247
@@textptr 247
@@textptr_parameters 247
@Otextsize 247

294

@O@textts 247
@@thresh_hysteresis 247
@@timeticks 247
@@total_errors 247
@@total read 247
@@total_write 247
@@tranchained 247
@@trancount 247
@Q@transactional_rpc 247
@@transtate 247
@@unicharsize 247
@@version 248
@@version_as integer 248
@@datefirst 244

greater than. See comparison operators.

Greek characters 265

group by clause and aggregate functions 53, 54

guest users 237

@@qguestuserid global variable 244

H

@@hacmpservername global variable 244
@@haconnection global variable 244
having clause and aggregate functions 52
@@heapmemsize global variable 244
hexadecimal numbers, converting 64
hextoint datatype conversion function 137
hextoint function 137
hh. See hour date part.
hierarchy

See also precedence

operators 251
historic dates, pre-1753 66, 112
host computer name 139
host process ID, client process 138
host_id system function 138
host_name system function 139
hour datepart 67,120

identifiers 259-265
case sensitivity and 260

Adaptive Server Enterprise

renaming 264
system functionsand 239
identities
sa_role and Database Owner 237
server user (suser_id) 220
user (user_id) 237
@@identity global variable 244
identity_burn_max function 140
@@idlegloba variable 244
IDs, server roleandrole_id 187
IDs, user
database (db_id) 125
server user 220
user_id functionfor 219
image datatype 3544
initializing 40
null valuesin 40
prohibited actionson 42
image functions 73
implicit conversion of datatypes 9, 258
in keyword in expressions 255
index pages
alocation of 181
system functions 108, 181
total of tableand 181
index_col system function 141
index_colorder system function 142
indexes
See also clustered indexes; database objects;
nonclustered indexes
sysindexestable 41
initializing text or image columns 41
inserting
automatic leading zero 32
spacesintext strings 206
int datatype 12
aggregate functionsand 81, 218
integer datain SQL 249
integer datatypes, convertingto 64
integer remainder. See Modul o operator (%)
internal datatypes of null columns 9
See also datatypes
internal structures, pagesused for 109, 181
inttohex datatype conversion function 143
@@invaliduserid global variable 244
@@io_busy global variable 244

Reference Manual: Building Blocks

is not null keyword in expressions 255
is_sec_service_on security function 145
isnull system function 144
1SO 8859-5 Cyrillic dictionary 94, 204
1SO 8859-5 Russian dictionary 94, 204
1SO 8859-9 Turkish dictionary 94, 204
iso_1 character set 265
@@isolation global variable 245
isql utility command
See also Utility Guide manual
approximate numeric datatypesand 16

J
Japanese character sets and object identifiers
joins
count or count(*) with 103
null valuesand 256
K

@@kernel_addr global variable 245
@@kernel_size global variable 245
keywords 273-276

Transact-SQL 260, 273-274

L

@@langid global variable 245
@@language global variable 245
languages, aternate

effect on date parts 123

weekday order and 122
|ast-chance threshold and Ict_admin function
last-chance thresholds 148
latin-1 English, French, German

dictionary 94, 203

noaccent 94, 203

nocase 94, 203

no case preference 94, 203
latin-1 Spanish

dictionary 94, 203

no accent 94, 204

Index

265

147

295

Index

nocase 94,204
Ict_admin system function 146, 148
leading blanks, removal with Itrim function
leading zeros, automatic insertion of 32
left system function 149
len string function 151
length

Seealso size

of expressionsin bytes 110

of columns 89
less than. See comparison operators
license_enabled system function 152
like keyword

searching for dateswith 24

wildcard characters used with 267
linkage, page. See pages, data
list_appcontex security function 153
listing datatypes with types 7
lists

datatypes 2

functions 48-52
literal character specification

like match string 269

quotes (*”) 259
literal values

datatypesof 6

null 257
@@lock_timeout global variable 245
lockscheme system function 154
log mathematical function 154, 155
log10 mathematical function 156
logarithm, base 10 156
logical expressions 249

syntax 250

truth tablesfor 257
log10 mathematical function 156

lower and higher datatypes. See precedence.

lower string function 157

lowercase letters, sort order and 260
See also case sensitivity

Itrim string function 158

M

macintosh character set 265

296

matching

See also Pattern matching

name and table name 264
mathematical functions 67—69

abs 74

acos 75

asin 77

atan 78

atn2 79

ceiling 82

cos 100

cot 101

degrees 127

exp 131

floor 132

log 155

logl0 156

pi 174

power 175

radians 178

rand 179

round 189

sign 198

sin 199

sqrt 208

square 207

tan 223
max aggregate function 159
@@max_connections global variable 245
@@max_precision global variable 245
@@maxcharlen global variable 245
@@maxgroupid global variable 245
@@maxpagesize global variable 245
@@maxspid global variable 245
@@maxsuid global variable 245
@@maxuserid global variable 245
@@mempool_addr global variable 245
messages and mathematical functions 69
mi. See minute date part
mi. See minute date part.
midnights, number of 115
millisecond date part 67, 120
millisecond values, datediff resultsin 115
min aggregate function 161
@@min_poolsize global variable 245
@@mingroupid global variable 245

Adaptive Server Enterprise

@@minspid global variable 245
@@minsuid global variable 245
minussign (-)

ininteger data 12

subtraction operator 251
@@minuserid global variable 245
minute date part 67, 120
mixed datatypes, arithmetic operations on
mm. See month date part
mm. See month date part.
model database, user-defined datatypesin

modulo operator (%) 251
money

default commaplacement 17
symbols 260

money datatype 18

arithmetic operationsand 17
month date function 162
month date part 67, 120
month values and date part abbreviation
ms. Seemillisecond date part
multibyte character sets

converting 61

identifier names 265

nchar datatypefor 25

wildcard charactersand 269
multilingual, Unicode 94, 203
multiplication operator (*) 251

mut_excl_roles system function 163

251

44

67, 120

mutual exclusivity of roles and mut_excl_roles

N

“N/A”, using “NULL" or
names
See also identifiers
checking with valid_name
date parts 66, 120
db_name function 126
finding similar-sounding 205

257

264

host computer 139
index_col andindex 141
object_name function 168
omitted elementsof (..) 263

qualifying database objects 262, 265

Reference Manual: Building Blocks

163

suser_name function 220
user_name function 238
weekday numbersand 122
naming
conventions 259-265
database objects 259-265
identifiers 259-265
user-defined datatypes 44
national character. See nchar datatype
natural logarithm 154, 155
nchar datatype 27
@@ncharsize global variable 245
negative sign (-) in money values 18
nesting
aggregate functions 53
string functions 70
@@nestlevel global variable 245
newidsystem function 164
next_identity system function 166
@@nodeid global variable 246
“none’, using “NULL"” or 257
not keyword in expressions 255
not like keyword 266
not null values
spacesin 30
not null valuesin spaces 30
null keyword in expressions
null string in character columns
null values
column datatype conversion for 30
default parametersas 256
inexpressions 256
text and image columns 40
null valuesin awhere clause 256
number (quantity of)

255
214, 257

first-of-the-months 115
midnights 115
rowsincount(*) 102

rows reported by rowent 191
Sundays 115
number of charactersand date interpretation
number of pages
alocated to table or index 181
reserved_pgs function 181
used by table and clustered index (total)

used by tableor index 108

Index

24

234

297

Index

used_pgs function 234
numbers

asterisks (**) for overlength 209

converting stringsof 30

database ID 125

objectID 167

odd or even binary 32

random float 179

weekday namesand 122
numeric data and row aggregates 56
numeric datatype 13

range and storagesize 3
numeric expressions 249

round functionfor 189
nvarchar datatype 27

spacesin 27

O

object Allocation Map (OAM) pages 235
object names, database
See also identifiers
user-defined datatype namesas 44
object_id system function 167
object_name system function 168
obj ects. See database objects; databases
operators
arithmetic 251
bitwise 252-253
comparison 254
precedence 251
@@options global variable 246
or keyword in expressions 257
order
See also indexes; precedence; sort order
of execution of operatorsin expressions 251
of date parts 22
reversing character expression 182
weekday numeric 122
order by clause 201
other users, qualifying objectsowned by 265
overflow errorsin DB-Library 81, 218
ownership of objectsbeing referenced 265

298

P

@@pack_received global variable 246
@@pack_sent global variable 246
@@packet_errorsglobal variable 246
padding, data

blanksand 27

underscoresin temporary table names 260

with zeros 32

pages, data
dlocationof 181
chanof 36

data_pgs system function 108
reserved_pgs system function 181
used for internal structures 109, 181
used in atableor index 108, 234
used_pgs system function 234
pages, index
number used in nonclustered 234
pages, OAM (Object Allocation Map), number of
@@pagesize global variable 246
pagesize system function 169
@@parallel_degree global variable 246
parentheses ()
See also Symbols section of thisindex
inan expression 258
in SQL statements xvi
partitioned tables, sizeof 177
patindex string function 171
text/image function 43
pattern matching 265
See also String functions; wildcard characters
charindex string function 86
difference string function 130
patindex string function 172
percent sign (%)
modulo operator 251
wildcard character 267
period (.)
preceding milliseconds 120
separator for qualifier names 262
pi mathematical function 174
platform-independent conversion
hexadecimal stringsto integer values 137
integer valuesto hexadecimal strings 143
plus (+)
arithmetic operator 251

235

Adaptive Server Enterprise

ininteger data 12

null valuesand 254

string concatenation operator 253
pointers

null for uninitialized text or image column 225

text and imagepage 225

text or image column 40, 43
pound sterling sign (£)

inidentifiers 260

in money datatypes 18
power mathematical function 175
precedence

of lower and higher datatypes 258

of operatorsin expressions 251
preceding blanks. See blanks; spaces, character
precision, datatype

approximate numeric types 16

exact numerictypes 13

money types 17
@@probesuid global variable 246
proc_role system function 176
@@procid global variable 246
ptn_data_pgs system function 177
punctuation, characters allowed in identifiers 260

Q

qq. See quarter date part

qualifier names 262, 265

quarter date part 66, 120

quotation marks (* ")
comparison operatorsand 254
for empty strings 257, 259
enclosing constant values 70
inexpressions 259
literal specification of 259

R

radians mathematical function 178
radians, conversion to degrees 127
rand mathematical function 179
range

See also numbers; size

Reference Manual: Building Blocks

Index

of date part values 66, 120

datediff results 115

errorsin mathematical functions 68

money valuesallowed 17

of recognized dates 21

wildcard character specification of 268, 269
range queries

and end keyword 255

between start keyword 255
readtext command and text data initialization

requirement 41

real datatype 16
@@recovery_state global variable 246
reference information

datatypes 1

reserved words 273

Transact-SQL functions 47
relational expressions 250

See also comparison operators
removing application contexts 185
replicate string function 180
reserve option, Ict_admin function 146
reserved words 273-276

See also keywords

database object identifiersand 259, 260

SQL92 274

Transact-SQL ~ 273-274
reserved_pgs system function 181
results of row aggregate operations 55
retrieving similar-sounding words or names 205
reverse string function 182
right string function 183, 184
right-justification of str function 210
rm_appcontext security function 185
role hierarchiesand role_contain 186
role_contain system function 186
role_id system function 187
role_name system function 188
roles

checking with proc_role 176

showing system with show_role 196
roles, user-defined and mutual exclusivity 163
round mathematical function 189
rounding 189

approximate numeric datatypes 16

datetimevalues 20, 62

299

Index

money values 17, 61

str string functionand 209
row aggregates 55

computeand 55

difference from aggregate functions 56
rowcnt system function 191
@@rowcount global variable 246
rows, table

detail and summary results 55

number of 191

row aggregatesand 55
rtrim string function 193
rules. See database objects.

S

scalar aggregates and nesting vector aggregates within -~ 53
scale, datatype 13

decimal 8

IDENTITY columns 13

loss during datatype conversion 11

numeric 8
@@scan_parallel_degree global variable 246
search conditions and datetime data 24
second datepart 67, 120
seconds, datediff resultsin = 115
security functions 69

get_appcontext 134

is_sec_service_on 145

list_appcontex 153

rm_appcontext 185

set_appcontex 194

show_sec_services 197
seed values and rand function 179
select command 201

aggregatesand 52

for browse 228

restrictionsin standard SQL 54

in Transact-SQL compared to standard SQL 54
select into command not allowed with compute 58
server user name and ID

suser_id function 219

suser_name functionfor 220
@@servername global variable 246
set_appcontex security function 194

300

setting application context 194
shift-J'Shinary order 94, 204
@@shmem flagsglobal variable 246
show_role system function 196
show_sec_services security function 197
sign mathematical function 198
similar-sounding words. See soundex string function
sin mathematical function 199
single quotes. See quotation marks
single-byte character sets, char datatypefor 25
size

See also length; number (quantity of); range; size

limit; space alocation

column 89

floor mathematical function 133

identifiers (length) 260

image datatype 35

of pi 174

text datatype 35
size limit

approximate numeric datatypes 16

binary datatype 31

char columns 27

datatypes 24

datetime datatype 21

double precision datatype 16

exact numeric datatypes 12

fixed-length columns 27

float datatype 16

image datatype 31

integer value smallest or largest 133

money datatypes 18

nchar columns 27

nvarchar columns 27

real datatype 16

smalldatetime datatype 21

varbinary datatype 31

varchar columns 27
dlash (/) division operator 251
smalldatetime datatype 21

date functionsand 120
smallint datatype 12
smallmoney datatype 18
sort order

character collation behavior 200, 201

comparison operatorsand 254

Adaptive Server Enterprise

sortkey function 201

sortkey system function 200

soundex string function 205

sp_bindefault system procedure and user-defined

datatypes 45
sp_bindrule system procedure and user-defined
datatypes 45

sp_help system procedure 45
space string function 206
spaces, character
See also blanks
in character datatypes 27-30
empty strings (“ ") or " ")as 257, 259
inserted in text strings 206
like datetimevaluesand 25
not allowed in identifiers 260
speed (Server)
binary and varbinary datatype access 31
@@spid global variable 246
SQL (used with Sybase databases). See Transact-SQL
SQL standards
aggregate functionsand 54
concatenationand 254
SQLSTATE codes 277-283
exceptions 278-283
@@sglstatus global variable 246
sqrt mathematical function 208
square brackets| |
caret wildcard character ["] and 267, 269
in SQL statements xvii
wildcard specifier 267
square mathematical function 207
sguare root mathematical function 208
ss. Seesecond date part
storage management for text and image data 41
str string function 209
str_replace string function 211
string functions 70-71

See also text datatype
ascii 76
char 84

char_length 87
charindex 86
difference 130
len 151

lower 157

Reference Manual: Building Blocks

Index

Itrim 158
patindex 171
replicate 180
reverse 182

right 183

rtrim 193
soundex 205
space 206

str 209
str_replace 211
stuff 213

substring 215
to_unichar 227
uhighsurr 230
ulowsurr 231
upper 232
uscalar 233
strings, concatenating 253
@@stringsize global variable 247
stuff string function 213, 214
style values, date representation 96
subqueries
any keyword and 255
inexpressions 255
substring string function 215
subtraction operator (-) 251
sum aggregate function 217
sundays, number value 115
suser_id system function 219
suser_name system function 220
syb_quit system function 221
syb_sendmsg function 222
symbols
See also wildcard characters; Symbols section of this
index
arithmetic operator 251
comparison operator 254
inidentifier names 260
matching character strings 267
money 260
in SQL statements xvi
wildcards 267
synonyms and chars and characters, patindex 171
synonyms for datatypes 2
synonyms, chars and characters, patindex 169
syntax conventions, Transact-SQL ~ xvi

301

Index

syscolumnstable 33
sysindexes table and name columnin 41
syssrvroles table and role_id system function 187
system datatypes. See datatypes
system functions 71-72
col_length 89
col_name 90

compare 91
curunreservedpgs 106
data_pgs 108
datalength 110

db_id 125,126
derived_stat 128
host_id 138
host_name 139
index_col 141
index_colorder 142
isnull 144

Ict_admin 146

left 149
license_enabled 152
lockscheme 154
mut_excl_roles 163
newidsystem function 164
next_identity 166
object_id 167
object_name 168
pagesize 169
proc_role system function 176
ptn_data_pgs 177
reserved_pgs 181
role_contain 186

role_id 187
role_name 188
rowcnt 191

show_role 196
sortkey 200
suser_id 219
suser_name 220
syb_quit 221
tempdb_id 224
tsequal 228
used_pgs 234
user 236
user_id 237
user_name 238

302

valid_name 239

valid_user 240
system rolesand show_role and 196
system tables and sysname datatype 34

T

table pages

See also pages, data

system functions 108
tables

identifying 262

names as qualifiers 262

worktables 52
tan mathematical function 223
tangents, mathematical functionsfor 223
tempdb database, user-defined datatypesin 44
@@tempdbid global variable 247
tempdb_id system function 224
tempdbs and tempdb_id system function 224
temporary tables, naming 260
text and image functions

textptr 225

textvalid 226
text datatype 3544

convert command 43

converting 61

initializing with null values 40

null values 40

prohibited actionson 42
text datatype and ascii string function 76
text functions 73
text page pointer 89
text pointer values 225
@@textcolid global variable 43, 247
@@textdbid global variable 43, 247
@@textobjid global variable 43, 247
textptr function 225
@@textptr global variable 42, 247
textptr text and image function 225
@@textptr_parametersglobal variable 247
@@textsize global variable 43, 247
@@textts global variable 43, 247
textvalid text and image function 226
Thai dictionary 94, 204

Adaptive Server Enterprise

@@thresh_hysteresis global variable 247
thresholds, last-chance 148
time datatype 21
time values

datatypes 19-25
timestamp datatype 18-19

automatic update of 18

browsemodeand 18, 228

comparison using tsequal function 228
@@timeticks global variable 247
tinyint datatype 12
to_unichar string function 227
@@total_errorsglobal variable 247
@@total_read global variable 247
@@total_write global variable 247
trailing blanks. See blanks
@@tranchained global variable 247
@@trancount global variable 247
@@transactional_rpc global variable 247
Transact-SQL

aggregate functionsin 54

reserved words 273-274
trandation of integer arguments into binary numbers

252

@Q@transtate global variable 247
triggers See database objects; stored procedures.
trigonometric functions 67, 67-223
true/false data, bit columnsfor 33
truncation

arithabort numeric_truncation 10

binary datatypes 31

character string 27

datediff results 115

str conversionand 210

temporary tablenames 260
truth tables for logical expressions 257
tsequal system function 228
twenty-first century numbers 21

U

UDP messaging 222
uhighsurr string function 230
ulowsurr string function 231
underscore ()

Reference Manual: Building Blocks

Index

character string wildcard 267, 268

object identifier prefix 239, 260

in temporary table names 260
@@unicharsize global variable 247
unicode multilingual, default 94, 203
unique names asidentifiers 261
updating

Seealso changing 18

inbrowsemode 228

prevention during browse mode 228
upper string function 232, 233
uppercase letter preference 260

See also case sensitivity; order by clause
us_english language, weekdays setting 122
uscalar string function 233
used_pgs system function 234
User Datagram Protocol messaging 222
user IDs

user_id functionfor 237

valid_user function 240
user names 238
user names, finding 220, 238
user objects. See database objects
user system function 236
user_id system function 237
user_name system function 238
user-created objects. See database objects
user-defined datatypes

See also datatypes

cresting 44

dropping 45

syshameas 34
user-defined roles and mutual exclusivity 163
using bytes option, patindex string function 169,

171,172

Vv

valid_name system function 239
using after changing character sets 264
valid_user system function 240
varbinary datatype 31-33, 201
varchar datatype 27
datetime values conversionto 24
inexpressons 258

303

Index

spacesin 27
variable-length character. See varchar datatype
vector aggregates 53

nesting inside scalar aggregates 53
@@version global variable 248
@@version_as integer global variable 248
view namein qualified object name 262

W

week date part 67, 120
weekday datepart 67, 120
weekday date value, names and numbers 122
where clause, null valuesina 256
wildcard characters 265-271
See also patindex string function
inalike match string 267
literal charactersand 269
used asliteral characters 269
wk. See week date part
words, finding similar-sounding 205
worktables, number of 52
writetext command and text data initialization requirement
41

Y

year date function 241
year datepart 66, 120
yensign (¥)

inidentifiers 260

in money datatypes 18
yes/no data, bit columnsfor 33
yy. Seeyear date part
yy. Seeyear date part.

Z

zerox (0x) 31,32, 64
zeros, trailing, in binary datatypes 3233

304 Adaptive Server Enterprise

	Reference Manual: Building Blocks
	About This Book
	CHAPTER 1 System and UserDefined Datatypes
	Datatype categories
	Range and storage size
	Declaring the datatype of a column, variable, or parameter
	Declaring the datatype for a column in a table
	Declaring the datatype for a local variable in a batch or procedure
	Declaring the datatype for a parameter in a stored procedure
	Determining the datatype of a literal
	Numeric literals
	Character literals

	Datatype of mixedmode expressions
	Determining the datatype hierarchy
	Determining precision and scale

	Converting one datatype to another
	Automatic conversion of fixedlength NULL columns
	Handling overflow and truncation errors

	Standards and compliance
	Exact numeric datatypes
	Function
	Integer types
	Decimal datatypes
	Standards and compliance

	Approximate numeric datatypes
	Function
	Understanding approximate numeric datatypes
	Range, precision, and storage size
	Entering approximate numeric data
	Values that may be entered by Open Client clients
	Standards

	Money datatypes
	Function
	Accuracy
	Range and storage size
	Entering monetary values
	Standards

	Timestamp datatype
	Function
	Creating a timestamp column

	Date and time datatypes
	Function
	Range and storage requirements
	Entering date and time data
	Standards and compliance

	Character datatypes
	Function
	unichar, univarchar

	Length and storage size
	Entering character data
	Entering Unicode characters

	Treatment of blanks
	Manipulating character data
	Standards

	Binary datatypes
	Function
	Valid binary and varbinary entries
	Entries of more than the max column size
	Treatment of trailing zeroes
	Platform dependence
	Standards

	bit datatype
	Function
	Entering data into bit columns
	Storage size
	Restrictions
	Standards

	sysname datatype
	Function
	Using the sysname datatype
	Standards

	text and image datatypes
	Function
	Data structures used for storing text and image data
	Format of text data pages
	Text nodes

	Initializing text and image columns
	Saving space by allowing NULL
	Getting information from sysindexes
	Using readtext and writetext
	Determining how much space a column uses
	Restrictions on text and image columns
	Selecting text and image data
	Converting text and image datatypes
	Pattern matching in text data
	Duplicate rows
	Standards

	Userdefined datatypes
	Function
	Creating frequently used datatypes in the model database
	Creating a userdefined datatypes
	Renaming a userdefined datatype
	Dropping a userdefined datatype
	Getting help on datatypes
	Standards and compliance

	CHAPTER 2 TransactSQL Functions
	Types of functions
	Aggregate functions
	Aggregates used with group by
	Aggregate functions and NULL values
	Vector and scalar aggregates
	Aggregate functions as row aggregates

	Datatype conversion functions
	Converting character data to a noncharacter type
	Converting from one character type to another
	Converting numbers to a character type
	Rounding during conversion to and from money types
	Converting date/time information
	Converting between numeric types
	Arithmetic overflow and dividebyzero errors
	Scale errors
	Domain errors

	Conversions between binary and integer types
	Converting between binary and numeric or decimal types
	Converting image columns to binary types
	Converting other types to bit
	Converting NULL value

	Date functions
	Date parts

	Mathematical functions
	Security functions
	String functions
	Limits on string functions

	System functions
	Text and image functions
	abs
	acos
	ascii
	asin
	atan
	atn2
	avg
	ceiling
	char
	charindex
	char_length
	col_length
	col_name
	compare
	convert
	cos
	cot
	count
	current_date
	current_time
	curunreservedpgs
	data_pgs
	datalength
	dateadd
	datediff
	datename
	datepart
	day
	db_id
	db_name
	degrees
	derived_stat
	difference
	exp
	floor
	get_appcontext
	getdate
	hextoint
	host_id
	host_name
	identity_burn_max
	index_col
	index_colorder
	inttohex
	isnull
	is_sec_service_on
	lct_admin
	left
	len
	license_enabled
	list_appcontext
	lockscheme
	log
	log10
	lower
	ltrim
	max
	min
	month
	mut_excl_roles
	newid
	next_identity
	object_id
	object_name
	pagesize
	patindex
	pi
	power
	proc_role
	ptn_data_pgs
	radians
	rand
	replicate
	reserved_pgs
	reverse
	right
	rm_appcontext
	role_contain
	role_id
	role_name
	round
	rowcnt
	rtrim
	set_appcontext
	show_role
	show_sec_services
	sign
	sin
	sortkey
	soundex
	space
	square
	sqrt
	str
	str_replace
	stuff
	substring
	sum
	suser_id
	suser_name
	syb_quit
	syb_sendmsg
	tan
	tempdb_id
	textptr
	textvalid
	to_unichar
	tsequal
	uhighsurr
	ulowsurr
	upper
	uscalar
	used_pgs
	user
	user_id
	user_name
	valid_name
	valid_user
	year

	CHAPTER 3 Global Variables
	Adaptive Server’s global variables

	CHAPTER 4 Expressions, Identifiers, and Wildcard Characters
	Expressions
	Size of expressions
	Arithmetic and character expressions
	Relational and logical expressions
	Operator precedence
	Arithmetic operators
	Bitwise operators
	String concatenation operator
	Comparison operators
	Nonstandard operators
	Using any, all and in
	Negating and testing
	Ranges
	Using nulls in expressions
	Comparisons that return TRUE
	Difference between FALSE and UNKNOWN
	Using “NULL” as a character string
	NULL compared to the empty string

	Connecting expressions
	Using parentheses in expressions
	Comparing character expressions
	Using the empty string
	Including quotation marks in character expressions
	Using the continuation character

	Identifiers
	Tables beginning with # (temporary tables)
	Case sensitivity and identifiers
	Uniqueness of object names
	Using delimited identifiers
	Identifying tables or columns by their qualified object name
	Using delimited identifiers within an object name
	Omitting the owner name
	Referencing your own objects in the current database
	Referencing objects owned by the database owner
	Using qualified identifiers consistently

	Determining whether an identifier is valid
	Renaming database objects
	Using multibyte character sets

	Pattern matching with wildcard characters
	Using not like
	Case and accent insensitivity
	Using wildcard characters
	The percent sign (%) wildcard character
	The underscore (_) wildcard character
	Bracketed ([]) characters
	The caret (^) wildcard character

	Using multibyte wildcard characters
	Using wildcard characters as literal characters
	Using square brackets ([]) as escape characters
	Using the escape clause

	Using wildcard characters with datetime data

	CHAPTER 5 Reserved Words
	TransactSQL reserved words
	ANSI SQL reserved words
	Potential ANSI SQL reserved words

	CHAPTER 6 SQLSTATE Codes and Messages
	Warnings
	Exceptions
	Cardinality violations
	Data exceptions
	Integrity constraint violations
	Invalid cursor states
	Syntax errors and access rule violations
	Transaction rollbacks
	with check option violation

	Index

