
Developer’s Guide

e-Adapter Development Kit
Version 3.9

DOCUMENT ID: DC33126-01-0390-02

LAST REVISED: November 2004

Copyright © 1999-2004 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Application Alerts, iAnywhere Mobile Delivery, iAnywhere Mobile Document Viewer, iAnywhere
Mobile Inspection, iAnywhere Mobile Marketing Channel, iAnywhere Mobile Pharma, iAnywhere Mobile Sales, iAnywhere Pylon,
iAnywhere Pylon Application Server, iAnywhere Pylon Conduit, iAnywhere Pylon PIM Server, iAnywhere Pylon Pro, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage
Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway,
media.splash, MetaWorks, My iAnywhere, My iAnywhere Media Channel, My iAnywhere Mobile Marketing, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit,
Report-Execute, Report Workbench, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure
SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere
Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL
Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ,
STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server,
Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
TotalFix, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK
Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 05/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Developer’s Guide iii

About This Book .. vii

CHAPTER 1 Architectural Overview ... 1
Purpose.. 2
Integration .. 3

Integration Server .. 4
Adapter.. 5
Transport ... 5

Terminology ... 6
e-ADK Architecture .. 6

Adapter Shell ... 7
Adapter Plug-In ... 8

Modes .. 8
Data Representation .. 9

CHAPTER 2 Modes... 11
Schema .. 12

Schema Mode Internationalization .. 13
Schema Mode Diagram... 14
Schema Mode Example Configuration File 14

Catalog... 15
Catalog Mode Internationalization... 16
Catalog Mode Example Configuration File.............................. 16

Schema Remove.. 17
Schema Remove Model .. 18
Schema Remove Example Configuration File......................... 18

Acquire ... 19
Acquire Mode Internationalization ... 20
Acquire Mode Model ... 21
Acquire Tree Mode.. 21
Acquire Buffer Mode.. 23

Deliver .. 24
Deliver Mode Internationalization .. 26

Contents

iv e-Adapter Development Kit

Deliver Mode Model .. 27
Deliver Tree Mode... 27
Deliver Buffer Mode... 29

Process .. 30
Process Mode Internationalization .. 31
Process Mode Model... 32
Process Tree Mode ... 32
Process Buffer Mode... 34

CHAPTER 3 Adapter Development Process... 37
Prerequisites .. 38
Example Files... 38
Developing an Adapter... 40

Adapter Development Process.. 40
Defining Your Adapter Plug-In... 40
Creating Shared Libraries ... 41

Creating Configuration Files for Your Adapter Plug-In................... 44

CHAPTER 4 Adapter Runtime Environment... 45
Adapter Shell Settings for Servers ... 46
Configuring the Environment.. 46

Common File Format... 47
Configuration Keys .. 48

Encrypting the Configuration File ... 68
Testing ... 69

Using Test Drive in Schema Mode.. 69
Using OT File Driver for Testing.. 69

Executing NNSYAdapter39.. 70
Executing the Adapter Shell from the Command Line 70
Registering the Adapter as an NT Service 70

Deploying the Adapter.. 74
Redistributing the Adapter Runtime Environment 74

Message Acknowledgement .. 75
Exception Handling and Logging ... 75

Handling Exceptions.. 76
Methods of Handling Errors... 77
Logging.. 79

Using Tools for Debugging... 80
-trace Option.. 80
Using File Driver for Debugging .. 81

Reviewing the Schema Tree .. 81

Contents

Developer’s Guide v

CHAPTER 5 Troubleshooting.. 83
Using Error Messages.. 84
Verifying the Environment .. 84
Searching for Versions... 85
Order and Format of Fields .. 85
Schema Does Not Exist Error .. 85
Using -trace Option .. 86
Reviewing the Schema Tree .. 86
Using File Driver for Debugging ... 87

Glossary ... 89

Index ... 113

Contents

vi e-Adapter Development Kit

Developer’s Guide vii

About This Book

The e-Adapter Development Kit (e-ADK®) provides components for
creating interface adapters with minimum duplication and maintenance.
The e-ADK is a set of tools and libraries designed to simplify the
development of adapters that interface with web-based, packaged, and
legacy applications. This provides a standard approach and framework for
developing custom adapters. The e-ADK provides consistent
functionality and a common user interface across platforms.

Audience Adapter developers are targeted as the primary users of this book. The
adapter developer who uses this book to develop an adapter must also be
familiar with the contents of the e-ADK Programmer’s Reference
and the e-ADK Installation Guide.

How to use this book The e-ADK Developer’s Guide provides an overview of the e-ADK. This
guide also defines the e-ADK files and functions that the developer can
modify.

The guide is organized into the following chapters:

• “About This Book” provides a brief introduction to e-ADK 3.9, a list
of available documentation, and technical support information.

• Chapter 1, “Architectural Overview,” provides an overview of the e-
ADK adapter architecture, tools, transport layer, and the development
process.

• Chapter 2, “Modes,” provides an in-depth presentation of the modes
used for adapters.

• Chapter 3, “Adapter Development Process,” provides the steps for
developing an adapter using e-ADK 3.9.

• Chapter 4, “Adapter Runtime Environment,” provides information
about configuring the environment; registering an NT service;
testing, deploying, and executing the adapter; and exception
handling.

• Chapter 5, “Troubleshooting,” provides additional information to
help with the development of adapters.

viii e-Adapter Development Kit

Related documents This section describes the documentation available for the e-Adapter
Development Kit, release 3.9.

Cross-Platform Documentation The e-ADK documentation set for
developers consists of the following documents:

• Installation Guide

• Developer’s Guide

• Programmer’s Reference

• Feature Guide

Related Documentation The following Open Transport Version 2.6
documents are referenced in this document set to supply you with specific
information that supports this product:

• EMQ Driver Configuration Guide

• File Driver Configuration Guide

• MQ Series Driver Configuration Guide

• MSMQ Driver Configuration Guide

Other related documentation is available from New Era of Networks, Sybase,
and IBM. Refer to other documentation from each of these companies for more
detail about use of applications relevant to this product.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks Bookshelf CD, and the
Sybase Product Manuals web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks Bookshelf CD. It is included
with your software. To read or print documents on the Getting Started CD,
you need Adobe Acrobat Reader, which you can download at no charge
from the Adobe Web site using a link provided on the CD.

• The SyBooks Bookshelf CD is included with your software. It contains
product manuals in a platform-independent bookshelf that contains fully
searchable, HTML-based documentation.

Some documentation is provided in PDF format, which you can access
through the PDF directory on the SyBooks Bookshelf CD. To view the
PDF files, you need Adobe Acrobat Reader.

 About This Book

Developer’s Guide ix

Refer to the README.txt file on the SyBooks Bookshelf CD for
instructions on installing and starting SyBooks.

• The Sybase Product Manuals Web site is the online version of the
SyBooks Bookshelf CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to EBFs/Maintenance,
Technical Documents, Case Management, Solved Cases, newsgroups, and
the Sybase Developer Network.

To access the Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following formatting conventions are used in this manual:

Formatting example To indicate

command names and
method names

When used in descriptive text, this font indicates
keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in
descriptive text

• Java package names used in descriptive text

x e-Adapter Development Kit

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

myCounter variable

Server.log

myfile.txt

User Guide

Italic font indicates:

• Program variables.

• Parts of input text that must be substituted.

• File names.

• Book titles.

 sybase/bin

Directory names appearing in text display in
lowercase unless the system is case sensitive.

A forward slash (“/”) indicates generic directory
information. A backslash (“\”) applies to Windows
users only.

“About This Book” Chapter titles have initial caps and are enclosed
within quotation marks.

File > Save Menu names and menu items are displayed in plain
text. The angle bracket indicates how to navigate
menu selections, such as from the File menu to the
Save option.

 parse|put|get The vertical bar indicates you may select only one
of the options shown in the code.

create table

table created

Monospace font indicates:

• Information that you enter on a command line
or as program text.

• Example output fragments.

Formatting example To indicate

Developer’s Guide 1

C H A P T E R 1 Architectural Overview

This chapter provides an overview of e-ADK and the architectural
structure of the product.

Topic Page
Purpose 2

Integration 3

Terminology 6

e-ADK Architecture 4

Modes 8

Data Representation 9

Purpose

2 e-Adapter Development Kit

Purpose
New Era of Networks adapters are a non-invasive way to integrate systems. An
adapter serves as the entry and exit points that connect a source or target
application data with any one of the integration servers using New Era of
Networks technologies: New Era of Networks Rules, New Era of Networks
Formatter, e-Biz Integrator, IBM MQ Series Integrator, and IBM WebSphere
Integrator. New Era of Networks adapters also work with the following
application servers: Sybase EAServer, IBM WebSphere Application Server,
and BEA WebLogic Application Server.

The e-ADK, which provides you a way to minimize development and
maintenance efforts, is a specialized C++ software development kit (SDK)
used to build adapters. The e-ADK contains the SDK and the adapter runtime
environment (ARE). You send only the ARE component with your completed
adapter.

Additionally, e-ADK, release 3.9, uses open transport, which provides a
transport and transaction manager independent interface for the application
layer. Because the interface is the same regardless of the underlying transport,
applications do not require a rewrite or recompile to accommodate a new
transport.

The e-ADK provides the following benefits:

• Consistent functionality.

• A common user interface across platforms.

• Simplified development of adapters that interface with web-based,
packaged, and legacy applications.

• Accommodation of a new transport without a rewrite or recompile.

• Developer-customized adapter-specific error handling and exception
handling.

CHAPTER 1 Architectural Overview

Developer’s Guide 3

Integration
Integrating applications requires many pieces working together to create a
synergistic whole. New Era of Networks provides much of the infrastructure
necessary to achieve that whole of which adapters are a piece. The following
sections give you an overall perspective of the various pieces and their division
of responsibilities. Additionally, they describe the skills and knowledge base
that are required for various levels of integration and automation. The
following graphic illustrates the integration of the e-ADK parts.

Integration

4 e-Adapter Development Kit

Figure 1-1: e-ADK Integration

Integration Server
To integrate systems that were never intended to work together in a scalable
and manageable way, the formats (or the language of the specific application)
must be understood by the other systems or another source must translate that
format from the source application to the destination application. This is the
function of the integration server. The integration server provides a loosely
coupled interaction between applications. The message parsing, enrichment,
transformation, and routing capabilities are encapsulated within the integration
server. Note that the integration server does not keep any context for messages
that are processed. Thus, it has high throughput capabilities. This is typically
called a fire-and-forget model.

Broker

Application Access (adapters)

Transport

Order Fulfillment. Send order
line items to fulfillment
system.

Retrieve data from enterprise
information system (for
example, SAP)

EMQ, MQSeries, and MSMQ

Integration
Server

Adapter

Transport

Example OutputFunction Product
Component

Integration Hierarchy

CHAPTER 1 Architectural Overview

Developer’s Guide 5

Adapter
An adapter provides entry and exit points for an integration server. Adapters
are responsible for knowing the application metadata, its data models,
extracting and delivering data from the application at run-time, exception
handling, and handling any error conditions while interacting with the
application. Modifying the adapters by modifying the code is more
burdensome and costly than declaring the requirements in the integration
server.

Adapters perform the following functions:

• Obtain metadata from external data sources to a message broker format
repository or document type definition (DTD).

• Read data from sources such as applications, files, databases, and data
streams, and place the data on a message transport.

• Write data to targets such as applications, files, databases, and data
streams, after getting the data from a message transport. See the following
section for additional information about message transport.

Transport
Transports convey messages between the adapter and a source or target. The
following are examples of transports used with New Era of Networks adapters:

• IBM MQ Series

• IBM WMQI

• Microsoft MSMQ

• New Era of Networks Enhanced Message Queueing (EMQ)

A reliable means of transmitting information has become a necessity for
conducting electronic business. This is accomplished by message-oriented
middleware such as those listed above. Transports provide guaranteed delivery,
platform portability, asynchronous messaging, and transactionality. To ensure
that messages are not lost when errors occur, e-ADK 3.9 allows transactions to
be rolled back when errors in transport are encountered.

To accommodate internationalization, when you are using a multi-byte
character encoding set, use RFH2 headers.

Terminology

6 e-Adapter Development Kit

Rather than requiring in-depth knowledge of the transport method used to
transport messages, e-ADK 3.9 provides classes that allow you to identify
transport through a simple configuration key.

Terminology
The following terms are applicable to adapters:

Application A packaged application, database, protocol, file, or other data
source.

Snap-In A software component that provides easy access and configuration
of information from the framework of the Microsoft Management Console for
Windows NT. You can develop a snap-in as a stand-alone, extension, or dual-
snap-in.

Plug-In An external software or SQL program that is accessed by a larger
application to provide added and customer-specific functionality.

Mode The means e-ADK and adapters built on e-ADK use to invoke a
specific method of operation.

e-ADK Architecture
The e-ADK has two components: the Adapter Shell and an adapter plug-in.
The Adapter Shell provided by the e-ADK dynamically loads and makes calls
to an adapter plug-in. The adapter plug-in, which interacts with a target and an
application or data source, is built by the developer using the APIs provided
with the e-ADK. Detailed API infomraiton is available in the e-ADK
Programmer’s Reference. The plug-in contains the adapter library. The
following graphic shows high-level interaction between the Adapter Shell and
the adapter plug-in:

CHAPTER 1 Architectural Overview

Developer’s Guide 7

Figure 1-2: e-ADK Architecture

Adapter Shell
The e-ADK provides an executable that contains libraries and classes that run
the adapters. The executable functionality is sometimes called Adapter Shell.
The Adapter Shell provides a consistent processing flow for all adapters, for
example, similar command line, configuration, and processing. The Adapter
Shell performs general initialization and setup before calling a function and
then cleans up before shutdown. The following numbers correspond with the
numbers on the graphic in the previous section.

1 The Adapter Shell loads the adapter plug-in.

2 The Adapter Shell initializes itself.

Adapter Shell

Adapter_plugin.dll/so/sl

2 3 4 51

Application

API or
communication interaction

Modes

8 e-Adapter Development Kit

• Determine the mode and data representation. The modes are Acquire,
Deliver, Process, Schema, Schema Remove and Catalog. Data
representation is either tree (NDO) or buffer.

• Initialize input and/or output transports and open the transports for
Acquire, Deliver, and Process modes.

3 The e-ADK calls initAdapter() in the adatper plug-in. You must provide
the configuration information as a parameter in the adapter plug-in. Based
on the invocation, the mode is executed in a loop with the appropriate
plug-in function called and the transport or schema functionality
performed.

4 The e-ADK calls functions in the adapter plug-in.

5 The e-ADK calls shutdownAdapter() in the adapter plug-in. You must
provide the configuration information as a parameter in the adapter plug-
in. Processing finishes and shutdown is called.

6 Adapter Shell throws and handles exceptions as they occur.

Adapter Plug-In
The adapter plug-in performs the interaction with an application and data
sources/targets. The Adapter Shell loads the adapter plug-in at initialization.
The adapter plug-in is responsible for processing and providing the necessary
data.

Modes
Modes are used to direct the actions of the Adapter Shell. The e-ADK supports
Schema, Catalog, Schema Remove, Acquire, Deliver, and Process modes.

• Schema is used to create formats for storing data structure definitions in
a repository. Run the acquireSchema function to define all formats that are
used to parse and reformat messages. Schemas can be created in NCF,
DTD, or XML formats.

• Catalog is used to get listings of supported schemas from the adapter.

• Schema Remove is used to remove formats from a repository. Mapping
information is retained in the repository when the formats are removed.

CHAPTER 1 Architectural Overview

Developer’s Guide 9

• Acquire is used to get data from an application and put that data to a
transport.

• Deliver is used to get information from a transport and deliver it to the
application.

• Process is used to get data from a transport, call the user-written
processing function, and then deliver data to an output transport. This
effectively provides a shell for processing data.

For additional information about modes, see Chapter 2, “Modes.”

Data Representation
Adapters use two methods of transferring data: buffer and tree. The buffer
method moves raw data to and from the transport with no additional
processing. The tree method moves the data in an hierarchical (tree) structure.
The term New Era of Networks Data Object (NDO) is the New Era of
Networks-specific name given to the tree method of exchanging data.

Acquire, Deliver, and Process modes each handle both types of transferred
data: buffer and tree. Schema handles only tree data. When using the tree
methods, the Adapter Shell serializes and deserializes data to and from the
transport. The basic difference between using a buffer or a data tree is that if
your adapter plug-in returns or requires a data tree, the e-ADK will serialize or
deserialize the tree for transportation purposes.

You must create the following functions, depending on whether you are using
the buffer or tree representation. The Adapter Shell calls this function during
processing.

Data Representation

10 e-Adapter Development Kit

Table 1-1:

NNADKStubPlugIn.cpp contains templates for buffer and tree functions. For
additional inforamtin about using buffer and tree represnetaiton, see the
Programmer’s Reference.

For Tree (NDO) For Buffer

Schema acquireSchema() none

Catalog acquireCatalog() none

Schema Remove none none

Acquire acquireData() acquireBuffer()

Deliver deliverData() deliverBuffer()

Process processData() processBuffer()

Developer’s Guide 11

C H A P T E R 2 Modes

Mode is the invocation of a specific method of operation. The e-ADK
supports six modes: Schema, Catalog, Schema Remove, Acquire, Deliver,
and Process. Each launch of NNSYAdapter39.exe can handle only one
mode at a time so a separate instance of NNSYAdapter39.exe is required
to handle running more than one mode at a time. The mode in which
NNSYAdapter39.exe is run is dependent on the configuration, which is
explained in this chapter.

When building an adapter, you must address modes and data
representation both during design and during runtime. See “Defining Your
Adapter Plug-In” on page 40 for working with modes and data
representation during design time and “Creating Configuration Files for
Your Adapter Plug-In” on page 44 for runtime information. “Methods of
Handling Errors” on page 77 provides information to help you understand
how modes work with specific errors.

Sample configuration files are provided in the examples directory. You
can use those files as a temple.

This chapter provides detailed information about the following modes:

Topic Page
Schema 12

Catalog 15

Schema Remove 17

Acquire 19

Deliver 24

Process 30

Schema

12 e-Adapter Development Kit

Schema
Schema mode is used during design time to create formats for storing data
structure definitions in a repository. Users must supply an acquireSchema()
function in their plug-in library to define all schemas for the integration servers
to use to parse and reformat messages. Each schema is equal to one NDO.

 Warning! Follow the rules that govern the creation of XML names. See
Chapter 8: “Understanding NDO Node Names” of the e-ADK Programmer’s
Reference for information about naming NDO nodes and colon restrictions.

Unlike Acquire, Deliver, and Process, the Schema mode works only with trees,
not buffers. Schema builds a tree and stores the specified schema structure in a
repository or an XML or DTD file depending on the values set for the
Adapter.SchemaLoader.Factory and Adapter.SchemaLoader.Library keys. The
acquireSchema() function is called after initialization takes place inside the
adapter plug-in. The return value from this function defines whether the loop
for acquireSchema() should continue or stop. The function is called in a loop
until FALSE is returned so that multiple schemas can be defined in one run of
the executable.

Note Consider supplying a Schema function only if you are using NDO data
representation during run time.

Schema mode builds a schema tree and stores it in a repository. Data is
retrieved in one of two ways. To get the schema:

• Retrieve the schema from a plug-in. In this case, the user writes the code
that gets the schema.

• Write an acquireSchema function in the plug-in library.

This function receives an empty NDO and a schema name from the e–
ADK. The function should populate the NDO with the adapter’s schema
based on the schema name.

CHAPTER 2 Modes

Developer’s Guide 13

Schema Mode Internationalization
NDO Schema trees can be created in any system encoding. For NCF Schema
loading, it is advisable to create NDO schema trees in the native system
encoding. The database drivers and the database server software perform a
character set negotiation when the schemas are loaded to the database. The
database drivers use the native system encoding to establish their end of the
negotiation. Attempting to load data of another character encoding set can
result in improper translation. For NCF schema loading, the e-ADK examines
the NDO schema tree and, if not in the native system encoding, converts it.
Characters that are not convertible do not result in an exception being thrown.
Instead, the non-convertible character is replaced with a fill character which
will result in improperly loaded schema information.

NCF format prefixes must be ASCII-compatible single-byte characters. NCF
format names, however, can be crated using multi-byte characters. The
formatter database enforces a 120-byte maximum length for format names. If
your format name is longer than 120 bytes and contains multi-byte characters,
you must set the configuration key I18N_Condense equal to true. The
condense routine truncates characters from the string. Setting I18N_Condense
equal to false uses the old condensing algorithm which only works with single-
byte data.

Schema

14 e-Adapter Development Kit

Schema Mode Diagram
The following diagram illustrates the Schema mode.

Figure 2-1: e-ADK Schema Mode

Schema Mode Example Configuration File
 The following is an example configuration file with values set for Schema
mode using NNTSchemaLoader:

File Name: schema.dat

Adapter
test.drive=false
adapter=nnadkstub

 mode=SCHEMA
prefix=aaa

 repository.dir=c:\nnsy\NNSYContentRepository
SchemaLoader.Factory=NNTSchemaLoader_Factory
#for all database types
session=ADKSession

 SchemaLoader.Library=adk39nnt56sl
 session=ADKSession
 clash.avoid=true
 continue.format.exists=true

I18N_Condense=false

Source
Application

New Era of
Networks

Adapter for
Flat Files

Adapter
Shell

Integration
Server

Adapter Plug-In ARE

1. Adapter Shell
calls Adapter

Plug-In

3. Plug-In returns
metadata schema
to Adapter Shell

2. Plug-In gets
metadata from

source
Format

Repository

4. Adapter Shell
stores formats in

Repository

CHAPTER 2 Modes

Developer’s Guide 15

Session.ADKSession
 #for MSSQL
 NNOT_SHARED_LIBRARY =dbt26sql65
 NNOT_FACTORY_FUNCTION =NNSesMS6Factory
 #for Oracle 8
 #NNOT_SHARED_LIBRARY =dbt26or806
 #NNOT_FACTORY_FUNCTION =NNSesOra8Factory
 #for DB2
 #NNOT_SHARED_LIBRARY =dbt26db250
 #NNOT_FACTORY_FUNCTION =NNSesDB2Factory
 #for Sybase
 #NNOT_SHARED_LIBRARY =dbt26syb11
 #NNOT_FACTORY_FUNCTION =NNSesSybCTFactory

 #as required by the database type
 NN_SES_SERVER =test
 NN_SES_USER_ID =testuser
 NN_SES_PASSWORD =userpswd
 NN_SES_DB_NAME =dbms56

Catalog
Catalog mode is used to retrieve a list of all formats available for a specific
adapter. This functionality is primarily used by New Era of Networks Adapter
GUIs that provide configuration services and functionality for various New Era
of Networks adapters. Catalog mode, however, can be used without the GUI to
generate a listing of the available schemas that are written as a file to storage
in XML format. This file can then be viewed or consumed by another
application. You would use Catalog mode with a GUI to show a list of formats.
the list can be limited to specific criteria by using a filter. You can then select
from the formats that are displayed. This is especially useful if you do not know
which formats are available or the exact names of the formats.

Catalog

16 e-Adapter Development Kit

Catalog Mode Internationalization
Catalog mode supports NDOs created containing catalog and catalog status
information in any character encoding set. The default encoding for the XML
documents created by the e-ADK is UTF-8 (Unicode). The user can select the
encoding of the created XML documents by setting the configuration key
Adapter.Serializer.Output.Encoding to the desired target encoding set. The
user should be warned of two things. First, XML parsers tend to support a
limited number of character encoding sets but almost universally support UTF-
8. Make sure the target encoding set for the created XML documents is
supported by the consuming XML parser. Second, the e-ADK does not throw
an error when problems occur in transcoding data. If a character in the source
NDO cannot be converted to the target encoding set, it will be replaced with a
fill character.

Catalog Mode Example Configuration File
 The following is an example configuration file with values set for Catalog
mode:

File Name: catalog.dat

Adapter
adapter=NNADKStubPlugIn

 mode=CATALOG
catalog.out=TestCatalog.xml
catalog.out.status=CatalogStatus.xml
#Optional key to control the encoding of the created
#XML files
Output.Serializer.Encording=Latin

CHAPTER 2 Modes

Developer’s Guide 17

Schema Remove
Schema Remove mode is used to remove format definitions that are stored in
a repository. For the New Era of Networks Formatter schemas, this also
removes any .ncm files. (An .ncm file is created each time you load a format to
the formatter database. The .ncm file contains an abstraction of the format that
was loaded to the formatter database.) Before calling deliverData() and
processData(), the e-ADK verifies the incoming NDO against the format
described by the XML in the .ncm file. If the NDO is not in the correct format,
the e-ADK throws an exception, the message goes to the failure transport, and
the next message is processed. If the structure of your data has changed, for
example, if you change your SAP BAPI configuration, you should remove the
old schema before installing the new schema.

The Adapter Shell requires Schema Remove mode in the configuration file to
remove formats from the format repository. You must specify the appropriate
SchemaLoader Factory and Library names. The names and valid entries are
listed in “Configuration Keys” on page 48. The names of the top-level formats
to be removed are specified in the schema.names configuration key. The
remove.by.prefix must be set to false when you use the remove.schema.keys
configuration key. Note that you must list all formats that you want removed
using a comma-delimited list of format or schema names enclosed in
parentheses. If you use the remove.by.prefix configuration key, you can
remove all formats with the specified prefix by setting the key to true.
Remember to comment out the actual values that are not used for the selected
keys.

Schema Remove

18 e-Adapter Development Kit

Schema Remove Model
The following diagram illustrates Schema Remove mode.

Figure 2-2: e-ADK Schema Remove Mode

Schema Remove Example Configuration File
The following is an example of a Schema Remove configuration file with
values set to allow you to remove specific formats using the
NNTSchemaLoader:

Adapter

mode=SCHEMA_REMOVE
repository.dir=c:\nnsy\NNSYContentRepository
prefix=aaa
test.drive=false
session=ADKSession
#To remove schemas by prefix
#remove.by.prefix=true

Adapter
Shell

ARE

Schema
Repository

Configuration
Files

1. Adapter Shell gets
the schema names to
be removed from the
configuration file.

2. Adapter Shell
removes the schema
from the format
repository.

3. Adapter Shell removes
the New Era of Networks
files that correspond to
the schema being
removed.

New Era
of

Networks
File

CHAPTER 2 Modes

Developer’s Guide 19

#remove.schema.keys=(N1,N2)
#To remove specific schemas
remove.by.prefix=false
remove.schema.keys=(cc.IC.N1,cc.IC.N2,cc.OC.N1,

cc.OC.N2)
SchemaLoader.Factory=NNTSchemaLoader_Factory
#For all database types
SchemaLoader.Library=adk39nnt56sl

Session.ADKSession

#for MSSQL
NNOT_SHARED_LIBRARY =dbt26sql65
NNOT_FACTORY_FUNCTION =NNSesMS6Factory
#for Oracle 8
#NNOT_SHARED_LIBRARY =dbt26or806
#NNOT_FACTORY_FUNCTION =NNSesOra8Factory
#for DB2
#NNOT_SHARED_LIBRARY =dbt26db250
#NNOT_FACTORY_FUNCTION =NNSesDB2Factory
#for Sybase
#NNOT_SHARED_LIBRARY =dbt26syb11
#NNOT_FACTORY_FUNCTION =NNSesSybCTFactory

#as required by the database type
NN_SES_SERVER =test
NN_SES_USER_ID =testuser
NN_SES_PASSWORD =userpswd
NN_SES_DB_NAME =dbms56

Acquire
Acquire mode is used to get data from the application and put that data to a
transport. The Adapter Shell running in Acquire mode calls an adapter plug-in.
Acquire mode can be run with two different types of data: tree or buffer, each
of which is described in more detail in the following sections.

When the user code processes the request, the return option is either TRUE or
FALSE. TRUE tells the Adapter Shell to keep calling acquireData() or
acquireBuffer(), and FALSE tells the Adapter Shell to stop calling
acquireData() or acquireBuffer() to shutdown. After processing all of its
requests, the Adapter Shell calls the shutdownAdapter() function, cleans up,
and then exits.

Acquire

20 e-Adapter Development Kit

Acquire Mode Internationalization
For Acquire NDO mode, the NDO data tree created by the adapter can be
encoded in any valid character encoding set supported by core infrastructure
version 2.1. The user can also select the encoding of the serialized message by
setting the Adapter.Output.Serializer.Encoding key to the desired encoding in
the configuration file. Default encoding of the serialized message is slightly
different for the e-ADK supported serializers. For NCF messages, the default
encoding of the serialized message is the native system encoding. For XML
messages, the default encoding of the serialized message is UTF-8.

 Warning!

Transcoding errors do not throw or log exceptions. If a character in the source
encoding does not exist in the target encoding, then it is replaced with a fill
character.

XML parsers generally support a limited number of supported character
encoding sets. Creation of an XML document in an encoding set that is
unsupported by the target system will result in an illegible message although
the XML is well formed.

CHAPTER 2 Modes

Developer’s Guide 21

Acquire Mode Model
The following diagram illustrates Acquire mode.

Figure 2-3: e-ADK Acquire Mode

Acquire Tree Mode
The acquireData() function is called to get data in an NDO tree from the
application. An NDO object is constructed and is passed into the adapter plug-
in. This plug-in should populate the NDO data tree and return an indication on
whether the loop should continue or not. After the NDO has been populated,
the data tree is extracted from the NDO and is put to the transport if the data
tree is not empty.

If you are using an NDO with the NCF Serializer, the message type is used to
look up the metadata in the schema repository. You can set the message type
using the msg.type configuration key as detailed in “Configuration Keys” on
page 48. OPT_MESSAGE_TYPE is more likely to be set dynamically in the
adapter or by the NDO name. To keep the schemas cleaner when using the NCF
wire format, not all schema information is kept in the wire format. If a message
is being retrieved (Deliver mode) from a transport using NCF Serializer, the
message must have the OPT_MSG_TYPE option set to the format name
matching the schema repository file. When running MQSI or to place the
message on the transport accessed by the deliver, the MQS_PROPAGATE
option must be set to PROPAGATE in the rules GUI for the putqueue action
placing the message on the transport. Otherwise, the message will not have the
OPT_MSG_TYPE set.

New Era of
Networks

Adapter for
Flat Files

Adapter
Shell Transport

Integration
Server

Adapter Plug-In ARE

1. Adapter Shell
calls Adapter

Plug-In

3. Plug-In returns
data to Adapter

Shell

2. Plug-In
gets data

from source

4. Adapter Shell
puts data to

transport

Source
Application

5. Plug-In
acknowledges
put to source

(optional)

Acquire

22 e-Adapter Development Kit

Acquire NDO Mode Example Configuration File

The following is an example configuration file with values set for Acquire
mode using NDO data representation:

File Name: acquirendo.dat

Adapter
adapter=nnadkstub
mode=ACQUIRE
data=NDO
msg.type=NDO
set.msg.options=true
app.group=test
transport.context.name=ADKContext

 transport.out.name=OUTQ
transport.failure_store_name=FAIL
maximum.transport.retries=2
prefix=aaa
set.oob.options=true
acknowledge.put=true
#NCF Serializer

 Output.Serializer.Factory=NCFSerializer_Factory
 Output.Serializer.Library=adk39ncfsd

Output.Serializer.Encoding=Latin2
#XML Serializer

 #Output.Serializer.Factory=XMLSerializer_Factory
 #Output.Serializer.Library=adk39xmlsd

#Output.Serializer.Encoding=UTE8
I18N_Condense=false

OTContext.ADKContext
NNOT_CTX_DEFAULT_TIL_ID = FAIL
NNOT_CTX_TMID = MQSeriesTM
NNOT_CTX_ENFORCE_TX = TRUE

TransactionManager.MQSeriesTM
NNOT_SHARED_LIBRARY = oti26mqstm
NNOT_FACTORY_FUNCTION = NOTMQSeriesTXManagerFactory
NN_TM_MQS_QMGR = TEST_QMGR

Session.ADKSession
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSSessionFactory
NNMQS_SES_OPEN_QMGR = TEST_QMGR

Transport.OUTQ
NNOT_SHARED_LIBRARY = dbt26mqs

CHAPTER 2 Modes

Developer’s Guide 23

NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_OUT

Transport.FAIL
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_FAIL

Acquire Buffer Mode
The acquireBuffer() function is used to get a buffer message from the
application. The data buffer is constructed and passed into the adapter plug-in.
This plug-in populates the buffer and returns an indication of whether the loop
should continue. After the data buffer is populated, the buffer message is put to
the transport.

Acquire Buffer Mode Example Configuration File

The following is an example configuration file with values set for Acquire
mode using Buffer data representation:

File Name: acquire.dat
Adapter

adapter=nnadkstub
 mode=ACQUIRE

data=BUFFER
 msg.type=Buffer

set.msg.options=true
app.group=test
transport.context.name=ADKContext
transport.out.name=OUTQ
transport.failure_store_name=FAIL
maximum.transport.retries=2
set.oob.options=true

 acknowledge.put=true

OTContext.ADKContext
NNOT_CTX_DEFAULT_TIL_ID = FAIL

 NNOT_CTX_TMID = MQSeriesTM
 NNOT_CTX_ENFORCE_TX = TRUE

Deliver

24 e-Adapter Development Kit

TransactionManager.MQSeriesTM
NNOT_SHARED_LIBRARY = oti26mqstm

 NNOT_FACTORY_FUNCTION=NNOTMQSeriesTXManagerFactory
 NN_TM_MQS_QMGR = TEST_QMGR

Session.ADKSession
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSSessionFactory
NNMQS_SES_OPEN_QMGR = TEST_QMGR

Transport.OUTQ
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_OUT

Transport.FAIL
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_FAIL

Deliver
Deliver mode is used to get information from the transport and deliver it to the
application. The deliverData() function assumes that the data in the transport is
a serialized data tree: either a serialized NCF format or a serialized XML
format. The deliverBuffer() function receives raw data from the Adapter Shell
as it existed on the transport. Deliver mode requires .ncm files to deserialize
between the transport and the Adapter Shell.

When the user code processes the request, the return option is either TRUE or
FALSE. TRUE tells the adapter plug-in to keep calling deliverData() or
deliverBuffer() if data exists to process, and FALSE tells the adapter plug-in to
stop calling deliverData() or deliverBuffer() and to shutdown. After processing
all of its requests, the Adapter Shell calls the shutdownAdapter() function,
cleans up, and then exits.

CHAPTER 2 Modes

Developer’s Guide 25

If the exit_if_empty key is set to TRUE and no message is found when the
transport is read, the loop for Deliver mode terminates. If Deliver is retrieving
a message from a transport using NCF Serializer, the message must have the
OPT_MSG_TYPE option set to the format name matching the schema
repository file.

If the adapter plug-in has an error, the Adapter Shell puts the message received
to the failure transport. It then determines the severity of the error. For a critical
error, the adapter shuts down. For a retry error, the adapter retries the specified
number of times entered in the configuration file and then shuts down.
Otherwise, processing continues with the next message. For additional
information about critical and non-critical errors, see “Handling Exceptions”
on page 76.

Batch Deliver is new functionality provided by the e-ADK 3.9. Batch Deliver
allows the adapter to receive multiple messages before committing the
messages as a single transaction. Batch Deliver functionality is selected by
setting the configuration key Adapter.batch.size to an integer greater than 1.
The e-ADK delivers the specified number of messages to the adapter before it
calls the commitDeliverMessages() function in the adapter. The adapter returns
one of three states to the e-ADK:

• Commit the messages and continue

• Rollback the messages and continue

• Rollback the messages and shut down

Based on the return parameter, the e-ADK responds accordingly.

The Adapter Shell running in Deliver mode calls an adapter plug-in. It can then
deliver data to the application from the transport. Deliver mode can be run with
two different types of data: tree (NDO) or buffer. If using an NDO, the message
type is used to look up the metadata in the NDORepository. Not all schema
information is kept in the wire format to keep the formats cleaner.

Batch Deliver mode has an additional configuration key:
Adapter.batch.timeout. This key is the maximum number of times in seconds
that a batch can process before initiating the commit function in the adapter.
Setting the key to 0 results in no timeout for batches. The default setting is 0.

Deliver

26 e-Adapter Development Kit

Deliver Mode Internationalization
For Deliver NDO mode, the e-ADK deserializes the message into an NDO.
The default encoding of the created NDO is the native system encoding for all
supported deserializers. The user can select the encoding of the created NDO
by setting the Adapter.Input.Serializer.Encoding key to the desired character
encoding set.

 Warning!

Transcoding errors do not throw or log exceptions. If a character in the source
encoding does not exist in the target encoding, then it is replaced with a fill
character.

The e-ADK XML deserializer supports XML documents of a limited number
of character encoding sets. Receipt of a message in an unsupported character
encoding set will result in an illegible message although the created XML is
well formed. The e-ADK XML deserializer uses the IBM XML4C version
4.0.0 parser. Supported character encoding sets include the following:

• ASCII

• UTF-8

• ISO-8859-1 (Latin 1)

• ISO-8859-2

• ISO-8859-3

• ISO-8859-4

• ISO-8859-5

• ISO-8859-6

• ISO-8859-7

• ISO-8859-8

• ISO-8859-9

• gb2312

• Big5

• koi8-r

• Shift_JIS

CHAPTER 2 Modes

Developer’s Guide 27

• euc-kr

 Warning! EDCDIC and UTF-16 are not supported by the e-ADK XML
deserializer. Using these character encoding sets will result in undetermined
results.

Deliver Mode Model
The following diagram illustrates Deliver mode:

Figure 2-4: e-ADK Deliver Mode

Deliver Tree Mode
The deliverData() function gets data in the form of an NDO from a transport
and delivers it to an application. The data tree is extracted from the NDO and
delivered to the adapter plug-in call.

Target
Application Plug-In Adapter

Shell
Transport

Integration
Server

Adapter Plug-In ARE

2. Adapter Shell
sends data to

Plug-In

4. Plug-In returns
status to Adapter

Shell

1. Get message
from Transport

3. Plug-In sends
data to target

Deliver

28 e-Adapter Development Kit

If you are using an NDO with the NCF Serializer, the message type is used to
look up the metadata in the schema repository. To keep the formats cleaner
when using the NCF wire format, not all schema information is kept in the wire
format. If Deliver is retrieving a message from a transport using NCF
Serializer, the message must have the OPT_MSG_TYPE option set to the
format name matching the schema repository file.

Deliver NDO Mode Example Configuration File

The following is an example configuration file for Deliver mode using NDO
data representation:

File Name: deliverndo.dat

Adapter
 adapter=nnadkstub

mode=DELIVER
data=NDO
repository.dir=c:\nnsy\NNSYContentRepository
prefix=aaa
transport.context.name=ADKContext
transport.in.name=INQ
transport.failure_store_name=FAIL
maximum.transport.retries=2
transport.exit_if_empty=true
#NCF Serializer
Input.Serializer.Factory=NCFSerializer_Factory
Input.Serializer.Library=adk39ncfsd
#XML Serializer
#Input.Serializer.Factory=XMLSerializer_Factory
#Input.Serializer.Library=adk39xmlsd
batch.size=0

OTContext.ADKContext
NNOT_CTX_DEFAULT_TIL_ID = FAIL
NNOT_CTX_TMID = MQSeriesTM
NNOT_CTX_ENFORCE_TX = TRUE

TransactionManager.MQSeriesTM
NNOT_SHARED_LIBRARY = oti26mqstm
NNOT_FACTORY_FUNCTION=NNOTMQSeriesTXManagerFactory
NN_TM_MQS_QMGR = TEST_QMGR

Session.ADKSession
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSSessionFactory

CHAPTER 2 Modes

Developer’s Guide 29

NNMQS_SES_OPEN_QMGR = TEST_QMGR

Transport.INQ
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_IN

Transport.FAIL
 NNOT_SHARED_LIBRARY = dbt26mqs
 NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
 NNOT_TIL_OPEN_SESSION_ID = ADKSession
 NNOT_TIL_OPEN_TSI = TEST_FAIL

Deliver Buffer Mode
The deliverBuffer() function gets data in the form of a buffer from a transport
and delivers it to an application. The buffer is delivered to the adapter using a
user-written plug-in call. The result of the user-written delivery should provide
an indication of whether looping should continue.

Deliver Buffer Mode Example Configuration File

The following is an example configuration file with values set for Deliver
mode using Buffer data representation:

File Name: deliver.dat

Adapter
adapter=nnadkstub
mode=DELIVER
data=BUFFER
transport.context.name=ADKContext
transport.in.name=INQ
transport.failure_store_name=FAIL
maximum.transport.retries=2
transport.exit_if_empty=true

OTContext.ADKContext
NNOT_CTX_DEFAULT_TIL_ID = FAIL
NNOT_CTX_TMID = MQSeriesTM
NNOT_CTX_ENFORCE_TX = TRUE

TransactionManager.MQSeriesTM

Process

30 e-Adapter Development Kit

NNOT_SHARED_LIBRARY = oti26mqstm
NNOT_FACTORY_FUNCTION=NNOTMQSeriesTXManagerFactory
NN_TM_MQS_QMGR = TEST_QMGR

Session.ADKSession
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSSessionFactory
NNMQS_SES_OPEN_QMGR = TEST_QMGR

Transport.INQ
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_IN

Transport.FAIL
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_FAIL

Process
Process mode is used to get data from a transport, enrich the data or submit a
request and get a response, and put the data to another transport. Process mode
is most appropriate when interfacing with applications that operate in a
synchronous manner such as a CORBA call, an RFC request reply, or a
database SELECT. The user must create a processBuffer() or a processData()
function for the Process mode to perform enrichment on the incoming data or
a request-reply mechanism.

In Process mode, the Adapter Shell takes information from a transport, calls
your adapter plug-in library for processing, and delivers the resulting data to an
output transport. Process mode runs with two types of data: tree (NDO) or
buffer. The processData() function assumes that the data on the transport is a
serialized data tree. The Adapter Shell deserializes the data, passes a tree to
processData(), and then expects a modified or new data tree to be passed back.
The Adapter Shell then serializes the modified data tree and places the data on
the output transport. The processBuffer() function receives raw data from the
e-ADK and returns raw data.

CHAPTER 2 Modes

Developer’s Guide 31

If the adapter plug-in throws an error, Process determines the severity of the
error to determine whether the message should be retried. If the error allows
retires, the adapter retries the specified number of times and then puts the
message received to the failure transport. If the adapter receives a critical error,
the transaction is rolled back and the adapter shuts down.

Process mode retrieves data from a transport, calls the user-written processing
function, and puts data to a transport. This effectively provides a shell for
processing data without having to understand transports. Process mode can be
used with two different types of data: tree or buffer.

Process Mode Internationalization
Process NDO is effectively a Deliver NDO transaction and an Acquire NDO
transaction linked together as a single transaction. Internationalization changes
for the Deliver NDO transaction and the Acquire NDO transaction also apply
to the Process NDO transaction.

Process

32 e-Adapter Development Kit

Process Mode Model
The following diagram illustrates Process mode:

Figure 2-5: e-ADK Process Mode

Process Tree Mode
The Adapter Shell constructs two NDOs, one used during input and one used
during output, and passes them to the processData() function. The data is
retrieved from the transport into an NDO data tree, the adapter plug-in is called
for processing, and the processing output is put to the transport. The result of
the processing should provide an indication of whether looping should
continue.

Process Tree Mode Example Configuration File

The following is an example configuration file with values set for Process
mode using NDO data representation:

File Name: processndo.dat

Adapter
adapter=nnadkstub
mode=PROCESS
data=NDO

Target
Application

Adapter
Plug-In

Adapter
Shell

Input
Transport

Integration
Server

Output
Transport

NNSYadapter for R/3 ARE

2. Adapter Shell
sends data to

Plug-In

5. Plug-In sends
data to Adapter

Shell

1. Get message
from Input
Transport

6. Put message
to Output
Transport

3.
Plug-In sends
data to target

4. Plug-In gets
enriched data

from target

7. Plug-In
acknowledges
put to target

(optional)

CHAPTER 2 Modes

Developer’s Guide 33

repository.dir=c:\nnsy\NNSYContentRepository
prefix=aaa
set.msg.options=true
app.group=test
transport.context.name=ADKContext
transport.in.name=INQ
transport.out.name=OUTQ
transport.failure_store_name=FAIL
maximum.transport.retries=2
transport.exit_if_empty=true
acknowledge.put=true
#NCF Serializer
Input.Serializer.Factory=NCFSerializer_Factory
Input.Serializer.Library=adk39ncfsd
Output.Serializer.Factory=NCFSerializer_Factory
Output.Serializer.Library=adk39ncfsd
#XML Serializer
#Input.Serializer.Factory=XMLSerializer_Factory
#Input.Serializer.Library=adk39xmlsd
#Output.Serializer.Factory=XMLSerializer_Factory
#Output.Serializer.Library=adk39xmlsd
I18N_Condense=false

OTContext.ADKContext
NNOT_CTX_DEFAULT_TIL_ID = FAIL
NNOT_CTX_TMID = MQSeriesTM
NNOT_CTX_ENFORCE_TX = TRUE

TransactionManager.MQSeriesTM
NNOT_SHARED_LIBRARY = oti26mqstm
NNOT_FACTORY_FUNCTION=NNOTMQSeriesTXManagerFactory
NN_TM_MQS_QMGR = TEST_QMGR

Session.ADKSession
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSSessionFactory
NNMQS_SES_OPEN_QMGR = TEST_QMGR

Transport.INQ
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_OUT

Transport.OUTQ
NNOT_SHARED_LIBRARY = dbt26mqs

Process

34 e-Adapter Development Kit

NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_IN

Transport.FAIL
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_FAIL

Process Buffer Mode
The Adapter Shell constructs two buffers, one used during input and one used
during output, and passes them to the processBuffer() function. The data is
retrieved from the transport into a buffer, the adapter plug-in is called for
processing, and the processing output is put to the transport. The result of the
processing should provide an indication of whether looping should continue.

Process Buffer Mode Example Configuration File

The following is an example configuration file with values set for Process
mode using Buffer data representation:

File Name: process.dat

Adapter
adapter=nnadkstub
mode=PROCESS
data=BUFFER
msg.type=Buffer
set.msg.options=true
app.group=test
transport.context.name=ADKContext
transport.in.name=INQ
transport.out.name=OUTQ
transport.failure_store_name=FAIL
maximum.transport.retries=2
transport.exit_if_empty=true
acknowledge.put=true

OTContext.ADKContext
NNOT_CTX_DEFAULT_TIL_ID = FAIL
NNOT_CTX_TMID = MQSeriesTM

CHAPTER 2 Modes

Developer’s Guide 35

NNOT_CTX_ENFORCE_TX = TRUE

TransactionManager.MQSeriesTM
NNOT_SHARED_LIBRARY = oti26mqstm
NNOT_FACTORY_FUNCTION=NNOTMQSeriesTXManagerFactory
NN_TM_MQS_QMGR = TEST_QMGR

Session.ADKSession
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSSessionFactory
NNMQS_SES_OPEN_QMGR = TEST_QMGR

Transport.INQ
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_OUT

Transport.OUTQ
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_IN

Transport.FAIL
NNOT_SHARED_LIBRARY = dbt26mqs
NNOT_FACTORY_FUNCTION = NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID = ADKSession
NNOT_TIL_OPEN_TSI = TEST_FAIL

Process

36 e-Adapter Development Kit

Developer’s Guide 37

C H A P T E R 3 Adapter Development Process

This chapter provides a checklist of prerequisites for developing an
adapter. It also provides a broad outline of the steps for creating an adapter
plug-in.

As you develop your adapter, consider this division of responsibilities and
keep your adapter as focused as possible without including functionality
that can be handled more effectively by other specialized servers.

Topic Page
Prerequisites 38

Developing an Adapter 40

Example Files 38

Prerequisites

38 e-Adapter Development Kit

Prerequisites
Before you begin the process of developing an adapter, be sure you have done
the following:

• Install a supported integration server. See the Installation and
Configuration Guide for the specific product.

• Install transport software. See the Installation Guide for a list of supported
transports.

• Understand how to get your data from your application.

• What is the data structure?

• How do you want to present the data?

• Understand how data is sent to your specific application.

• Create the appropriate transports. If you are using transports to transport
data to and from your adapter, you must create a transport manager and
transports or a database instance (EMQ).

Example Files
The following files are available in the example directory:

• Examples of configuration files for each of the modes:

• acquire.dat

• acquirendo.dat

• deliver.dat

• deliverndo.dat

• process.dat

• processndo.dat

• schema.dat

• schema_remove.dat

CHAPTER 3 Adapter Development Process

Developer’s Guide 39

• catalog.dat

Note You can rename the example configuration files with your own
unique names. For consistency, the example configuration files in this
guide use the .dat extension.

• The example makefile, which contains the standard options for both
compilation and linking

Example makefiles are provided to assist you with the development of an
adapter. See the e-ADK Programmer’s Reference for additional examples
of these makefiles.

• NNADKStubPlugIn.cpp

• NNADKStubPlugIn.h

Example NNADKStubPlugIn.cpp and NNADKStubPlugIn.h files are
provided to add code for the functions. See “Modifying Adapter
Functions” in the e-ADK Programmer’s Reference.

The following methods are explained more fully in “Configuring the
Environment” on page 46:

1 For NDO Mode:

• acknowledgePutData - Do any processing necessary as the result of
the e-ADK notifying the adapter plug-in of the success or failure in
putting a message to a transport. Applies to both Acquire and Process
modes.

• handleQuietState - Do any processing necessary during a prolonged
retry loop when the e-ADK is trying to get a message from a transport
but the transport is empty. Applies to both Process and Deliver modes.

2 For Buffer Mode:

• acknowledgePutBuffer - Do any processing necessary as the result of
the e-ADK notifying the adapter plug-in of the success or failure in
putting a message to a transport. Applies to both Acquire and Process
modes.

• handleQuietState - Do any processing necessary during a prolonged
retry loop when the e-ADK is trying to get a message from a transport
but the transport is empty. Applies to both Process and Deliver modes.

Developing an Adapter

40 e-Adapter Development Kit

Developing an Adapter
When creating your adapter plug-in, your work will be divided between design
time and runtime activities. “Defining Your Adapter Plug-In” on page 40
addresses the work during design time, and “Creating Configuration Files for
Your Adapter Plug-In” on page 44 addresses the work during runtime.

Adapter Development Process
Assuming that you have a basic understanding of the Integration Server
architecture and the ADK architectural model, begin the adapter development
process following these steps:

1 Making design decisions:

• Identifying process and data models for a specific adapter

• Deciding which e-ADK modes to implement

• Deciding which data representation to use

2 Creating the Adapter plug-in.

3 Testing and implementing your adapter.

4 Deploying your adapter.

5 Maintaining and enhancing your adapter.

Defining Your Adapter Plug-In
During the design phase of your adapter, you need to decide which modes your
adapter needs to handle. You also need to decide which type of data
representation is best suited for your application if your adapter handles any or
all of the following modes: Acquire, Process, and Deliver. See Chapter 2,
“Modes” for descriptions of e-ADK modes.

Use the following criteria to decide how to handle the data from your
application:

• Tree (NDO) method of data representation:

• Data is already parsed.

• You can use Schema mode to easily load a format into the formatter.

CHAPTER 3 Adapter Development Process

Developer’s Guide 41

• If the metadata changes in the end system, any format is easily
recreated using Schema mode.

• Buffer method of data representation:

• The adapter must contain the logic to parse the data buffer.

• You must manually create formats to be used by the broker
functionality of the integration server.

• If the metadata changes in the end system, you must manually change
the format.

• If the data is contiguous, for example, the segment size within an IDoc
format is established by SAP. Segments do not have delimiters; segment
size is the controlling factor. For that example, consider using a buffer to
manage your data.

• If the data is noncontiguous, that is, the delimiters are used to separate
segments, you should use an NNDOObject to manage your data in a tree-
like structure.

You will need to implement the appropriate functions in your adapter to handle
the modes and data representation that you have selected. For example, if you
decide that your adapter should handle the acquire mode using buffered data,
then you will need to implement acquireBuffer() inside your adapter. In
addition, you need to implement the initAdapter() utility to remember
configuration settings and allocate memory or data structure. The
shutdownAdapter() functionality is used to clean up any allocated memory.

Finally, you may want to implement some special-purpose callback functions:

• acknowledgePutData()

• acknowledgePutBuffer()

• handleQuietState()

• commitDeliveredMessages()

Additional information about special-purpose callback functions is provided in
e-ADK Programmer’s Reference.

Creating Shared Libraries
The adapter developer must create a shared library or Dynamic Link Library
(DLL) that contains functions to send or retrieve data from an application.

Developing an Adapter

42 e-Adapter Development Kit

The e-ADK provides an example makefile to build the
NNADKStubPlugIn.cpp into a library named:

• On NT, nnadkstub.dll

• On Solaris, libnnadkstub.so

• On HP-UX, libnnadkstub.sl

• On AIX, libnnadkstub.so

 The functions must be named to conform to the e-ADK 3.9 requirements.

1 To set up your adapter, connect to your application, and create user data
context:

• initAdapter()

2 To shut down, disconnect from your application, and destroy user data:

• shutdownAdapter()

3 For NDO Mode:

• acquireSchema() - Create the structure to contain your data.

• acquireData() - Retrieve data in an NDO from your application.

• acquireCatalog() - Find formats available for your adapter.

• deliverData() - Write data to your application.

• acknowledgePutData() - Do processing necessary as the result of the
e-ADK notifying the adapter plug-in of the success in putting a
message (ack) or failing to put a message (nack) to a transport.
Applicable for acquire and process modes.

• processData() - Modify given data by interacting with your
application.

• handleQuietState() - Do processing necessary during a prolonged
retry loop when the e-ADK is trying to get a message from a transport
but the transport is empty. Applicable during Process and Deliver
mode. For example, while waiting for messages from the transport,
you could shut down your database or do some other processing to
prevent your database from timing out. handleQuietState is supported
in both tree and buffer data representation.

CHAPTER 3 Adapter Development Process

Developer’s Guide 43

• commitDeliveredMessages() - Optional callback function that is
required only if batch Deliver mode is implemented. The e-ADK calls
this function to notify the adapter plug-in that it is ready to commit the
delivered batch. Based on the return value, the e-ADK commits the
batch and continues, rolls back the batch and continues, or rolls back
the batch and initiates a shutdown.

4 For Buffer Mode:

• acquireBuffer() - Retrieve data in a buffer from your application

• deliverBuffer() - Write buffer data to your application

• acknowledgePutBuffer() - Do any processing necessary as the result
of the e-ADK notifying the adapter plug-in of the success or failure in
putting a message to a transport. Applicable for acquire and process
modes.

• process buffer() - Modify given buffer data by interacting with your
application

• commitDeliveredMessages() - Optional callback function that is
required only if batch Deliver mode is implemented. The e-ADK calls
this function to notify the adapter plug-in that it is ready to commit the
delivered batch. Based on the return value, the e-ADK commits the
batch and continues, rolls back the batch and continues, or rolls back
the batch and initiates a shutdown.

The following classes are used by the adapter plug-in functions:

• NDO classes with header file references

• include/NDO/NNDOObject.h

• include/NDO/NNDODataTree.h

• include/NDO/NNDOSchemaTree.h

• include/NDO/NNDODataNode.h

• include/NDO/NNDOSchemaNode.h

• include/ADK/NNDataBuffer.h

• include/ADK/NNADKOutOfBand.h

• include/CFG/NNConfig.h

Creating Configuration Files for Your Adapter Plug-In

44 e-Adapter Development Kit

Creating Configuration Files for Your Adapter Plug-In
After your adapter has been written, compiled, and linked, you need to create
the configuration files that will be used in conjunction with
NNSYAdapter39.exe. You create a unique configuration file for each mode and
data representation that your adapter supports. For example, if your adapter
implements the acquire mode for both NDO and buffer, you need two different
configuration files, each one configured for the mode and data representation
appropriate for that mode. When you run the adapter, you will need to set up
one instance of the adapter for each configuration file.

At runtime, the functions inside your adapter are called at the appropriate time,
depending on the mode that is running and, when the mode is Acquire, Process,
or Deliver, the data representation that is active.

Developer’s Guide 45

C H A P T E R 4 Adapter Runtime Environment

The Adapter Runtime Environment (ARE) is required for testing and
running the adapters. A runtime environment installation is provided so
that only files needed by the runtime environment are provided.
Therefore, when the ARE is delivered with the adapter you have created,
it does not contain the executables and header files that are used to create
the adapter.

Instructions for installation of the ARE are available in “Redistributing
the Adapter Runtime Environment” on page 74.

This chapter provides the following information:

Topic Page
Adapter Shell Settings for Servers 46

Configuring the Environment 46

Encrypting the Configuration File 68

Testing 69

Executing NNSYAdapter39 70

Deploying the Adapter 74

Message Acknowledgement 75

Exception Handling and Logging 75

Using Tools for Debugging 80

Reviewing the Schema Tree 81

Adapter Shell Settings for Servers

46 e-Adapter Development Kit

Adapter Shell Settings for Servers
Specific combinations of a server, OT driver, schema loader, and serializer are
required for the runtime environment of e-ADK.

Table 4-1: Settings for Integration Servers

Note If you are using multi-byte data, you must use RFH2 headers.

Configuring the Environment
The New Era of Networks configuration architecture comprises configuration
items that are stored as read-only after initialization. The available
configuration items are searched in the following order:

• Command-line arguments

• Configuration file (using grouping)

• Registry file (Windows NT only)

• Environment variables

• Defaults holder

Server
Open Transport
Driver Schema Loader Serializer

MQSI 2.0.2

WMQI 2.1

MQSeries (use RFH2) NNT56
SchemaLoader

NCFSerializer

e-Biz Integrator 3.6 EMQ MQSeries
MSMQ File

NNT56
SchemaLoader

NCFSerializer

Application Servers:
EAServer

WebSphere
Application Server

WebLogic
Application Server

JMS OT Driver

MQSeries

JMS OT Driver

DTD

DTD

DTD

NDOXML

NDOXML

NDOXML

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 47

Common File Format
Example configuration files are included in the examples>ADK directory. The
examples illustrate the various modes and data representations. In the sample
configuration files, the configuration file names have a .dat extension.

New Era of Networks adapters require the following common configuration
files, which are structured using the following format. This format is an
example of the structure you would use:

<group name or stanza name>
<key 1>=<value1>

 <key 2>=<value2>
 <key n>=<valuen>

For example:

#sample configuration file
Adapter

adapter=pluginname
 mode=ACQUIRE
 data=NDO
 queue.in.name=INQ

The keys are case sensitive.

The following keys must be considered as pairs:

• schema loader factory and schema loader library

The schema loader library key contains the name of the schema loader
library with the factory function. The library name must match the factory
name used in Schema mode.

• input serializer factory and input serializer library

• output serializer factory and output serializer library

• input serializer encoding and output serializer encoding

Additional information about the use of these keys is available in
“Configuration Keys” on page 48.

Key and value pairs are defined in the configuration file used during the startup
of the e-ADK AdapterShell. Available keys are described in “Configuration
Keys” on page 48.

Note The following warning message appears when the program starts up:

Default config file ’/Dir/Path/nnsyreg.dat’ is not

Configuring the Environment

48 e-Adapter Development Kit

being used.

This warning message appears because the e-ARE does not use the
nnsyreg.dat. This message can be ignored.

Configuration Keys
Configuration keys comprise a section and a key that points to a value.

Many of the configuration keys are optional. Whether you use them depends
on the mode, data representation, or other specific functionality such as
implementation of retries. The available keys and values are described in the
following tables:

Standard Keys
Table 4-2: e-ADK Standard Keys and Values

Name Values Description

adapter User-defined The plug-in shared library name that
the Adapter Shell should load and
execute. Do not include the extension
(.so, .sl, or .dll) or the lib prefix
(Unix).

The value for this key is user-defined
and applies to all modes.

app.group User-defined Sets OPT_APP_GRP option.

The value for this key is user-defined
and applies to Acquire and Process
modes.

batch.size Integer

Default is 1

Key used for batch Deliver mode.

A value of greater than 1 signifies that
batch mode has been selected. e-ADK
will process the number of messages
specified before calling commit.
commitDeliveredMessages()
function must be defined in the
adapter if greater than one.

This key can be used in combination
with batch.size to be sure messages
are not uncommitted for long periods.

This key applies to Deliver mode.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 49

batch.timeout Integer

Default is 0

Key used for batch Deliver mode.
Key is effective only when using
Deliver mode and key batch.size is set
to greater than 1. The value signifies
the maximum time in seconds for a
batch to process. If the elapsed time in
seconds required to process a batch
exceeds this key value, then the e-
ADK initiates the process to commit
that portion of the batch that has been
completed. A value set to zero
signifies no batch timeout period.

This key can be used in combination
with batch.timeout to be sure
messages are not uncommitted for
long periods.

This key applies to Deliver mode.

catalog.out User-defined Defines the name of the target files in
which to store the catalog XML
document.

catalog.outstatus User-defined Defines the name of the target files in
which to store the catalog status XML
document.

data Buffer

NDO

Sets the data processing type: NDO
(for tree) or Buffer. Schema mode
handles only NDO data and Schema
Remove ignores data.

Both NDO and buffer data can be
used in all other modes.

mode ACQUIRE
PROCESS
DELIVER
SCHEMA
SCHEMA_REMOVE
CATALOG

Sets the mode of use. Valid entries are
Acquire, Catalog, Deliver, Process,
Schema, or Schema_Remove.

msg.type User-defined When set.msg.options is set as true:

sets OPT_MSG_TYPE option for
buffer in Acquire and Process modes.

Name Values Description

Configuring the Environment

50 e-Adapter Development Kit

Transport Keys

A transport session is a configuration section containing data common to all of
the configured transports. The configuration information is common to the
transport connection, which is also known as session.

Table 4-3: e-ADK Transport Keys and Values

set.msg.options true

false (default)

Attaches message options to the
header when turned on. Sets message
options OPT_APP_GRP and
OPT_MSG_TYPE. Depends on
APP.GROUP and MSG.TYPE set for
BUFFER.

Values are true or false. Default is
false.

test.drive true

false (default)

Designed for testing an adapter plug-
in only in Schema mode. Test Drive
does not actually write to the format
repository. The data is placed in the
log as if trace were turned on.

Used in Schema mode.

Name Values Description

Name Values Description

transport.context.name User-defined Identifies context entry in the Open
Transport Directory. The Open
Transport Server configures the
context object based on this entry. See
Open Transport documentation for
more information on this adapter key.

Used in Acquire, Deliver, and Process
modes.

transport.in.name User-defined Sets the logical transport input tag.

Used in Deliver and Process modes.

transport.out.name User-defined Sets the logical transport output tag.

Used in Acquire and Process modes.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 51

transport.failure_store_name User-defined Specifies the transport used for
messages that were read from the
input transport but failed the adapter
plug-in.

If no value is specified, the Adapter
Shell will not run; it must be set for a
transport.

Used in Deliver, Process, and Acquire
modes.

transport.exit_if_empty true (default)

false

When looping through the read of the
transport, the deliver loop terminates
if the read does not return with a
message.

Valid values are true or false. Default
is true.

Used in Process and Deliver modes
for both Buffer and NDO data
representation.

Name Values Description

Configuring the Environment

52 e-Adapter Development Kit

target.wait_time Integer Empty transport wait time - in
milliseconds.

Value is used as a polling interval that
starts at the end of message
processing.

Values used:

• If there is no
NNOT_TIL_GET_BLOCKING_
TIMEOUT value, this value is
used as a polling timeout.

• If there is an
NNOT_TIL_GET_BLOCKING_
TIMEOUT value, this value is
used in conjunction with the
blocking timeout. For example, the
blocking get applies first, then a
sleep before another blocking get
is tried.

• If this value is not set, then only the
NNOT_TIL_GET_BLOCKING_
TIMEOUT value is used for
blocking.

Valid values are numeric. It is
suggested that the user not set this to
zero (0) milliseconds. Default is 1.

Used in Deliver and Process modes.

adapter_wait_time Integer Length of time in milliseconds that
the AdapterShell waits to retry a call
to the Adapter after a retry exception
is thrown.

Valid values are numeric. Default is
zero (0).

Used in Deliver and Process modes.

Name Values Description

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 53

maximum.transport.retries Integer Maximum number of times the e-
ARE attempts to put to or get a
message from a transport after an
exception occurs. For Deliver and
Process, setting this value to zero (0)
results in an infinite retry loop.

Valid values are numeric. Default is
zero (0).

Used in Acquire, Deliver, and Process
modes.

maximum.adapter.retries Integer Maximum number of times a call to
an adapter is retried when a retry
exception occurs.

Valid values are numeric. Default is
zero (0).

Used in Acquire, Deliver, and Process
modes.

enter.quiet.state Integer Indicates the retry iteration when the
Adapter’s handleQuietState() is
called. This value must be less than
adapter.maximum.transport.retries or
the Adapter’s handleQuietState() is
never called. The key
maximum.transport.retries sets up the
number of times the transport call is
retried when an exception occurs. The
handle quiet functionality is designed
to do adapter-specific processing
inside the retry loop. If no retry loop
exists, then the handle quiet function
will not be called.

For example, if
maximum.transport.retries = 5 and
enter.quiet.state = 2, then the
handleQuietState() function is called
every other time through the transport
retry loop. If enter.quiet.state = 0, the
handleQuietState() function is not
called.

Valid values are numeric.

Used in Deliver and Process modes.

Name Values Description

Configuring the Environment

54 e-Adapter Development Kit

Open Transport Keys

You must set the open transport keys and values. The available keys, values,
and a description are provided in the open transport configuration guide for
each specific OT driver.

Schema Loader Plug-Ins
Table 4-4: Schema Loader Required Keys

acknowledge.put true

false (default)

Determines whether the adapter has a
callback function that enables it to
receive an ack or nack regarding a put
to an output transport. If set to true,
the adapter receives an ack or nack.

Valid values are true or false. Default
is false.

Used in Acquire and Process modes.

Name Values Description

 Name Values Description

SchemaLoader. Factory NCMSchemaLoader_ Factory

DTDSchemaLoader_ Factory

XMLSchemaLoader_Factory

NNTSchemaLoader_Factory

Indicates name of the factory function
to use to create the SchemaLoader
class.

Must be paired with Schema
Loader.Library. Used in Schema
mode.

SchemaLoader. Library adk39ncmsl

adk39dtdsl

adk39xmlsl

adk39nnt56sl

Indicates the name of the Schema
Loader library that contains the
factory function. The library name
must match the factory name and
cannot contain a file extension or
standard library naming.

Must be paired with
SchemaLoader.Factory. Used in
Schema mode.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 55

NNTSchemaLoader

The NNTSchemaLoader should be used for testing the adapter or generating
NCM files for the following Integration Servers:

• MQSI 2.0.2

• WMQI 2.1

• e-Biz Integrator 3.6

• New Era of Networks Rules and Formatter 5.6

NCF Serialization should be used for the runtime when this schema loader is
used in design time.

prefix User defined - ASCII values
only

Adds prefix to the format name in
Schema, Acquire, and Process in
NDO mode. The message type name
becomes <prefix> + “IC.” + <NDO
name>. (The IC [inbound compound
shown here] or OC [outbound
compound] is inbound to or outbound
from the Formatter.)

Prefix has a 5-character limit of
ASCII characters.

Used in Schema Remove, Schema,
Acquire, and Process modes with
NDO.

remove.by.prefix true

false (default)

Used to remove formats based on the
prefix. Prefix has a 5-character limit.

Used in Schema Remove mode.

remove.schema.keys User-defined List used to identify the formats to be
removed. When remove by prefix is
turned on, the list contains the format
without prefix. When remove by
prefix is not turned on, the list
contains the full name of the formats
to be removed. Specify formats as
comma delimited with parenthesis.

Used in Schema Remove mode.

 Name Values Description

Configuring the Environment

56 e-Adapter Development Kit

Table 4-5: Keys for NNT56SchemaLoader

 Name Values Description

clash.avoid true

false (default)

This switch allows a unique format
name to be generated when a format
is loaded into the Formatter database
and that format name currently exists.

Does not apply to a top-level format.

continue.format.exists true

false (default)

Allows user to specify whether the
program sends out an error and exits
(if set to false) when a format exists in
the database.

If set to true, it sends a warning
message and continues loading
remaining formats.

Used in Schema mode.

I18N_Condense true

false (default)

The key designates use of specific
methodology of condensing format
names.

False = Signals the e-ADK to use the
old methodology of condensing the
format name if necessary. The old
methodology does not support multi-
byte characters.

True = Signals the e-ADK to use the
new methodology of condensing the
format name if necessary. The new
methodology is a simple character
truncation routine and supports multi-
byte data.

Used in Schema mode. It is also used
in Acquire and Process modes for
NDO data representation when the
NCF serializer is used.

 Warning!

Setting the key to false and using
multi-byte format names will
generate undetermined results.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 57

NCF.version 101 (default)

102

Indicates the New Era of Networks
Canonical Format version to use
when loading Schema.

prefix User-defined - ASCII values
only

Adds prefix to the format name. The
message type name becomes
<prefix>.IC.<NDO name>.

Prefix has a 5-character limit of
ASCII characters.

Used in Schema, Acquire, and
Process modes with NDO data
representation.

repository.dir User-defined. If no value
specified, defaults to

NNSYContentRepository

Indicates the directory in which
NNSY content model files are written
(.ncm files).

Used in Schema, Deliver, and Process
modes for NDO data representations.

schema.input true (default)

false

Set to true to generate input formats.

(Input designates into broker.)

Used in Schema mode.

schema.output true (default)

false

Set to true to generate output formats.

(Output designates out of broker.)

Used in Schema mode.

session User-defined User-defined key used to describe the
OT session name. Used in Schema
and Schema Remove mode.

remove.by.prefix true

false (default)

Used to remove formats based on the
prefix. Prefix has a 5-character limit.

Used in Schema Remove mode.

remove.schema.keys User-defined List used to identify the formats to be
removed. When remove by prefix is
turned on, the list contains the format
without prefix. When remove by
prefix is not turned on, the list
contains the full name of the formats
to be removed. Specify formats as
comma delimited with parenthesis.

Used in Schema Remove mode.

 Name Values Description

Configuring the Environment

58 e-Adapter Development Kit

NCMSchemaLoader

The NCMSchemaLoader should be used for testing the adapter or generating
NCM files for the following Integration Servers:

• MQSI 2.02

• WMQI 2.1

• e-Biz Integrator 3.6

• New Era of Networks Rules and Formatter 5.6

NCF Serialization should be used for the runtime when this schema loader is
used in design time.

Table 4-6: Keys for NCMSchemaLoader

 Name Values Description

clash.avoid true

false (default)

This switch allows a unique format
name to be generated when the
Formatter loads a format into the
database and that format name
currently exists. Does not apply to
top-level formats.

continue.format.exists false (default)

true

Allows user to specify whether the
program sends out an error and exits
if an ncm already exists for the
format. If set to true and the ncm
exists, the program sends a warning
message and continues creating ncms.
If set to false and the format exists,
the program logs an error and shuts
down.

Used in Schema mode.

prefix User-defined - ASCII values
only

Adds prefix to the format name. The
message type name becomes
<prefix>IC.<NDO name>.

Prefix has a 5-character limit.

Used in Schema, Acquire, and
Process modes for NDO data
representations.

repository.dir User-defined. If no value
specified, defaults to

NNSY_ROOT/NNSYContentR
epository

Indicates the directory in which
NNSY content model files are written
(.ncm files).

Used in Schema, Deliver, and Process
modes for NDO data representations.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 59

DTDSchemaLoader

The DTDSchemaLoader should be used for testing the adapter or generating a
DTD for the following Integration Servers:

• MQSI 2.0.2

• WMQI 2.1

• e-Biz Integrator 3.6

• New Era of Networks Rules and Formatter 5.6

It can also be used with the following Application Servers:

• EAServer

• WebSphere Application Server

• WebLogic Application Server

XML Serialization should be used for the runtime when this schema loader is
used in design time. This schema loader can be used best if the New Era of
Networks Formatter will not be used during runtime.

schema.input true (default)

false

Set to true to generate input formats.

Used in Schema mode.

schema.key User-defined Used to retrieve schema from adapter
plug-in and to retrieve schema from
NCM repository.

schema.output true (default)

false

Set to true to generate output formats.

Used in Schema mode.

session User-defined Used to describe the OT session
name. Used in Schema and Schema
Remove mode.

 Name Values Description

Configuring the Environment

60 e-Adapter Development Kit

Table 4-7: Keys for DTDSchemaLoader

 Name Values Description

continue.format.exists false (default)

true

Allows user to specify whether the
program sends out an error and exits
if a DTD already exists for the format.
If set to true and the DTD exists, the
program sends a warning message
and continues creating DTDs. If set to
false and the DTD exists, the program
logs an error and shuts down

Used in Schema mode.

repository.dir User-defined. If no value
specified, defaults to

NNSY_ROOT/NNSYContentR
epository

Indicates the directory in which
NNSY content model files are written
(.ncm files).

Used in Schema, Deliver, and Process
modes for NDO data representations.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 61

XMLSchemaLoader

The XMLSchemaLoader should be used for testing the adapter or generating
an XML Schema file.

• MQSI 2.0.2

• WMQI 2.1

• e-Biz Integrator 3.6

• New Era of Networks Rules and Formatter 5.6

XML Serialization should be used for the runtime when this schema loader is
used in design time. This schema loader can be used best if the New Era of
Networks Formatter will not be used during runtime.

Table 4-8: Keys for XMLSchemaLoader

 Name Values Description

continue.format.exists false (default)

true

Allows user to specify whether the
program sends out an error and exits
if an XML already exists for the
format. If set to true and the XML
exists, the program sends a warning
message and continues creating
XMLs. If set to false and the XML
exists, the program logs an error and
shuts down

Used in Schema mode.

repository.dir User-defined. If no value
specified, defaults to

NNSY_ROOT/NNSYContentR
epository

Indicates the directory in which
NNSY content model files are written
(.ncm files).

Used in Schema, Deliver, and Process
modes for NDO data representations.

Configuring the Environment

62 e-Adapter Development Kit

Serialization/Deserialization Plug-Ins

Serialization is the process of walking a tree and writing the data for each node
to wireform. This generates a wireform containing the format representation of
the data in the tree. It then converts the wireform or contiguous messages so
they can be used for transport or persistence.

Deserialization is the process of converting messages from wireform or
contiguous formats and creating the corresponding tree representation.

Serialization and deserialization plug-ins are used to convert message data so
that it can be used for transport, persistence, or by another program. The
serializer plug-ins are used during runtime paired with schema loaders used
during design time.

The e-ARE allows you to determine which format to use when putting data
from an NNDOObject DataTree to a transport. The format is chosen based on
four configuration keys when running the adapter.

The Input.Serializer keys are used in Deliver and Process modes (NDO data
only) to deserialize from the wireform received from the input transport into a
NNDOObject to be accepted by the adapter plug-in.

• Input.Serializer

Factory: NCFSerializer_Factory

Library: adk39ncfsd

Modes: Deliver and Process

Action: Deserialize

From: data in wireform received from input transport

To: NNDOObject to be sent to adapter plug-in

Handles Formats: NCF 101 (New Era of Networks Canonical Format,
version 101) and NCF 102

Integration Server: MQSI 2.0.2, WMQI 2.1, e-Biz Integrator 3.6

• Input.Serializer

Factory: XMLSerializer_Factory

Library: adk39xmlsd

Modes: Deliver and Process

Action: Deserialize

From: Data in wireform received from input transport

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 63

To: NNDOObject to be sent to adapter plug-in

Handles Formats: XML

Integration Servers: MQSI 2.0.2, WMQI 2.1, e-Biz 3.6,

Application Servers: EAServer, WebSphere Application Server, and
WebLogic Application Server

The Output.Serializer keys are used in Acquire and Process modes (NDO data
only) to serialize the NNDOObject received from the adapter plug-in to be
placed on the output transport.

• Output.Serializer

Factory: NCFSerializer_Factory

Library: adk39ncfsd

Modes: Acquire and Process

Action: Serialize

From: NNDOObject received from adapter plug-in

To: Data in wireform to be placed on outside transport

Handles Formats: NCF 101 (New Era of Networks Canonical Format,
version 101) and NCF 102

Integration Servers: MQSI 2.0.2, WMQI 2.1, and e-Biz Integrator 3.6

Application Servers: EAServer, WebSphere Application Server, and
WebLogic Application Server

• Output.Serializer

Factory: XMLSerializer_Factory

Library: adk39xmlsd

Modes: Acquire and Process

Action: Serialize

From: NNDOObject received from adapter plug-in

To: data in wireform to be placed on outside transport

Handles Formats: XML

Integration Server: MQSI 2.0.2 and WMQI 2.1

Configuring the Environment

64 e-Adapter Development Kit

Table 4-9: Serializer Required Keys

 Name Values Description

Input.Serializer.Factory NCFSerializer_Factory

XMLSerializer_Factory

Indicates the factory function used to
create the Serializer/Deserialzer
class. This Serializer deserializes the
message data into an NDO for the
adapter to use.

Used in Deliver and Process mode for
NDO data representation.

Input.Serializer.Library adk39ncfsd

adk39xmlsd

Indicates the name of the Serializer
library that contains the factory
function. The library name and
factory name must be associated; for
example, both contain XMLSerializer
or both contain NCFSerializer. The
names cannot contain a file extension
or standard library naming.

Used in Deliver and Process modes
for NDO data representation.

Input.Serializer.Encoding User-defined Used to specify the encoding section
of the NDO created by the
deserialization process. If no
encoding is set, the system defaults to
the native system encoding.

Used in Acquire and Process modes
for NDO data representation.

Output.Serializer.Factory NCFSerializer_Factory

XMLSerializer_Factory

Indicates the name of the factory
function to use to create the
Serializer/Deserializer class. This
Serializer is used to serialize the NDO
returned from the adapter into
message data.

Used in Acquire and Process modes
for NDO data representation.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 65

Output.Serializer.Library adk39ncfsd

adk39xmlsd

Indicates the name of the Serializer
library containing the factory
function. The library name and
factory name must be associated; for
example, both contain XMLSerializer
or both contain NCFSerializer. the
name cannot contain a file extension
or standard library naming.

Used in Acquire and Process modes
for NDO data representation.

prefix User defined - ASCII values
only

Adds prefix to the format name in
Schema, Acquire, and Process in
NDO mode. The message type name
becomes <prefix> + “IC.” + <NDO
name>.

Prefix has a 5-character limit.

Used in Schema Remove, Schema,
Acquire, and Process modes with
NDO.

Output.Serializer.Encoding User-defined Used to specify the encoding set of
the serialized message. If no encoding
set is specified, the system defaults to
the native system encoding for NCM
or UTF-8 for XML.

Used for Deliver and Process modes
for NDO data representation.

 Name Values Description

Configuring the Environment

66 e-Adapter Development Kit

NCF Serializer

The NCF Serializer puts the data out in an ncm stream of data. The
NCFSerializer should be used for the following Integration Servers:

• MQSI 2.0.2

• WMQI 2.1

• e-Biz Integrator 3.6

• New Era of Networks Rules and Formatter 5.6

The NNTSchemaLoader should have been used for the schema loading when
this format is used.

Table 4-10: Keys for NCFSerializer

 Name Values Description

I18N_Condense true

false (default)

This key designates use of specific
methodology of condensing format
names.

False = Signals the e-ADK to use the
old methodology of condensing the
format name if necessary. The old
methodology does not support multi-
byte characters.

True = Signals the e-ADK to use the
new methodology of condensing the
format name if necessary. The new
methodology is a simple character
truncation routine and supports multi-
byte data.

Used in Schema mode. It is also used
in Acquire and Process modes for
NDO data representation when the
NCF serializer is used.

 Warning!

Setting the key to false and using
multi-byte format names will
generate undetermined results.

NCF.version 101 (default)

102

Indicates the New Era of Networks
Canonical Format version to use
when loading schema.

Used in Acquire and Process modes.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 67

XMLSerializer

This serializer puts the data out in a XML Stream of data.

The XMLSerializer should be used for the following Integration Servers:

• MQSI 2.0.2

• WMQI 2.1

The XMLSerializer should be used for the following Application Servers:

• EAServer

• WebSphere Application Server

• WebLogic Application Server

The XMLSchemaLoader or DTDSchemaLoader should have been used for the
schema loading when this format is used.

prefix User-defined - ASCII values
only

Adds prefix to the format name. The
message type name becomes
<prefix>IC.<NDO name>.

Prefix has a 5-character limit.

Used in Schema, Acquire, and
Process modes for NDO data
representations.

Used in Acquire and Process mode
for NCFSerializer.

repository.dir User-defined. If no value
specified, defaults to

NNSY_ROOT/NNSYContentR
epository

Indicates the directory in which
NNSY content model files are written
(.ncm files).

Used in Schema, Deliver, and Process
modes for NDO data representations.

set.msg.options true

false (default)

Sets the following message options,
depending on APP_GROUP and
MSG_TYPE set for BUFFER:

OPT_APP_GROUP

OPT_MSG_TYPE

Used in Acquire and Process modes.

 Name Values Description

Encrypting the Configuration File

68 e-Adapter Development Kit

Table 4-11: Keys for XMLSerializer

Encrypting the Configuration File
The NNCrypt utility allows you to encrypt and decrypt the configuration file
to protect sensitive information, such as usernames and passwords. Run the
NNCrypt utility against your configuration file to encrypt or decrypt it.

Syntax NNCrypt (-encrypt | -decrypt) -file

Table 4-12: Parameters for Encryption

Encrypted files do not use a .crypt extension or take priority over decrypted
files as the program searches for configuration information.

 Name Values Description

prefix User-defined - ASCII values
only

Used in Schema, Acquire, and
Process modes for NDO data
representations.

Prefix has a 5-character limit.

Adds prefix to the format name. The
message type name becomes
<prefix>IC.<NDO name>.

repository.dir User-defined. If no value
specified, defaults to

NNSY_ROOT/NNSYContentR
epository

Indicates the directory in which
NNSY content model files are written
(.ncm files).

Used in Schema, Deliver, and Process
modes for NDO data representations.

set.msg.options true

false (default)

Used in Acquire and Process modes.

Sets the following message options,
depending on APP_GROUP and
MSG_TYPE set for BUFFER:

OPT_APP_GROUP

OPT_MSG_TYPE

Parameter Values Description

-encrypt Encrypts the specified file. Returns an
error if the file is already encrypted.

-decrypt Decrypts the specified file. Returns an
error if the file is already decrypted.

-file Specifies the name of the file to
encrypt or decrypt.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 69

Testing
e-ADK 3.9 provides several testing methods for use during runtime. These
methods allow the developer to view the intended results of the adapter without
actually updating databases or adding messages to transports. You set up
testing differently, depending on the mode you are using:

• For Schema and Schema Remove, set up test drive in the configuration
files

• For Acquire, Process, and Deliver modes, set up and use the OT file driver
in the configuration file

Using Test Drive in Schema Mode
You can use test drive to test a schema before it is actually created. You do not
have to be connected to the database to view the schema. No *.ncm files are
created during test drive.

❖ To set up test drive for Schema mode

1 Open the schema configuration file.

2 Add the following to the schema configuration file
Adapter.test.drive=true.

The schema tree displays. You can review this schema before it is entered
into the repository.

Using OT File Driver for Testing
The OT driver is used for testing during Acquire, Process, and Deliver modes.
Use the OT driver to place messages in files rather than to a transport. Set up
the OT file driver to enable this function for each of Acquire, Process and
Deliver modes. Sample configuration files that illustrate how to set up a file
driver are provided in the examples directory as acquirefile.dat, processfile.dat,
and deliverfile.dat.

 Warning! If test.drive=true in Acquire, Process, or Deliver mode
configuration files, you will receive the critical error message:

Test Drive unavailable. Set test.drive=false. Use the file driver instead.

Executing NNSYAdapter39

70 e-Adapter Development Kit

Executing NNSYAdapter39
You can execute the adapter from the command line or, if you are using
Windows, from the control panel. To control the launch from the control panel,
you must register your adapter as an NT Service.

Executing the Adapter Shell from the Command Line
To execute the Adapter Shell from the command line, follow the format of the
examples below. If no command line options are used, the code assumes the
executable will read the configuration from NNSYAdapter.cfg in the local
directory or, if that is not found, nnsyreg.dat in the [NNSY_ROOT] directory.
The following is the typical command line. Other parameters may be listed if
they are not in the configuration file or if the value in the configuration file
needs to be overwritten.

Example: NNSYAdapter39 -file = <filename> [-trace]

Note Invoking your Adapter for each mode involves the same command line
procedure. Only the configuration files change for each mode.

Registering the Adapter as an NT Service
You can control the launch and other functions of your adapter from the control
panel if you register your adapter as an NT Service.

Prerequisites

• Verify that all dependent DLLs are loaded into a directory that is in the
Windows NT system path.

• If the NT service needs access to network resources such as DLLs on a
mapped network drive or MSMQ transports on the network, you must
connect to the network drives after you install NT service but before
starting the service.

Connecting to the Network

1 Go to Start→Settings→Control Panel.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 71

2 Click on Services.

3 Double click on the service that was installed.

4 From the Logon As group box, select This Account.

5 Type in your information in the following fields:

• Domain Name\User Name

• User Password

• Confirm User Password

Using the Services Panel

Services can be set up using different methods. The following details one of the
methods for installing a service.

1 To install a service, at the command line, type:

NNSYAdapter39 -install [-n|-name] serviceName [-d|-display]
serviceDisplayName -p paramFile

2 To remove a service, at the command line, type:

NNSYAdapter39 -remove [-n|-name] serviceName

3 To start a service, at the command line, type:

NNSYAdapter39 -start [-n|-name] serviceName

4 To stop a service, at the command line, type:

NNSYAdapter39 -stop [-n|-name] serviceName

5 To see the current status of a service, at the command line, type:

NNSYAdapter39 -status [-n|-name] serviceName

You can check your NT service information using the Services Panel. The
Services Panel is invoked from Start→Control Panel→Services where you can
review the list.

Examples

Each service entry has one name for the service and one for the displayed
name. These two names do not have to be the same but you can have only one
service for each name. If you install a named service, you need to use that same
name when removing it.

Executing NNSYAdapter39

72 e-Adapter Development Kit

The default name for NNSYAdapter39 is NNSYADK. If you want more than
one NNSYAdapter39 service, you name them using the -install -n[ame]
<name> convention. The display name is the name that appears in the list of
services that you can review from Control Panel Services.

• The following installs a service with the name adk39Svc and uses the
configuration file NNadk39.dat.

 NNSYAdapter39 -install -n adk39Svc -p NNadk39.dat

• The following installs a service with the name adk39Svc with no
parameters:

 NNSYAdapter39 -install -n NNadk39Svc

• The following removes a service named NNadk39:

 NNSYAdapter39 -remove -n NNadk39

• The following starts a service named NNadk39:

 NNSYAdapter39 -start -n NNadk39

Table 4-13: Details for installing, starting, stopping, and testing service

Case Description Example Expected Behavior

1 Install a service with no
description

NNSYAdapter39 -install Should install a service with no
parameters

service name = NNSYADK

serviceDisplayName = NNSY-ADK-
Service

2 Install a service with config
file parameter

NNSYAdapter39 -install -p test.dat Should install a service with test.dat
parameter

service name = NNSYADK

serviceDisplayName = NNSY-ADK-
Service

3 Install a service with config
file parameter and
serviceName

NNSYAdapter39 -install -n testSvc -p
test.dat

Should install a service with test.dat
parameter

service name = testSvc

serviceDisplayName = NNSY-ADK-
Service

4 Install a service with config
file parameter and
serviceDisplayName

NNSYAdapter39 -install -d
testSvcDisplay -p test.dat

Should install a service with test.dat
parameter

service name = NNSYADK

serviceDisplayName =
testSvcDisplay

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 73

5 Install a service with config
file parameter,
serviceName, and
serviceDisplayName

NNSYAdapter39 -install -n testSvc -d
testSvcDisplay -p test.dat

Should install a service with test.dat
parameter

service name = testSvc

serviceDisplayName =
testSvcDisplay

6 Start a service without
installing

NNSYAdapter39 -start -n testSvc Error message noting that the service
is already installed.

7 Start an installed service NNSYAdapter39 -start -n testSvc Service should start successfully.

8 Start a service that is
running

NNSYAdapter39 -start -n testSvc Error message noting that the service
is already running.

9 Start a service without the
service name

NNSYAdapter39 -start If a service named NNSYADK is
installed, it will start successfully. If
that service is not installed, an error
message that the service is not
installed is generated.

10 Start a service that is
installed without
parameters

Service start should be successful.
The .nml error log should provide the
information that the config file is not
specified.

11 Start a service with the
transport manager not
running

Service start should be unsuccessful.
The .nml error log should provide the
information.

12 Start a service with some
parameters missing from
the config file

Service start should be unsuccessful.
The .nml error log should provide the
information.

13 Stop the running service NNSYAdapter39 -stop -n testSvc Service should stop successfully.

14 Stop an already stopped
service

NNSYAdapter39 -stop -n testSvc Error message that the service is not
running.

15 Find the status of a service NNSYAdapter39 -status -n testSvc Service status should be written to
stdout.

16 Remove a stopped service NNSYAdapter39 -remove -n testSvc Service should be removed.

17 Remove a running service NNSYAdapter39 -remove -n testSvc Service should be stopped and
removed.

18 Remove a service that is not
installed

NNSYAdapter39 -remove -n testSvc Error message that the service is not
installed.

19 Perform tests for multi-
threaded NNSYAdapter39

Use a .dat file with the following
parameters set:: MultiThreaded =
TRUE InboundTransportID =
transport1,transport2,transport3

Should get the respective desired
behaviors.

Case Description Example Expected Behavior

Deploying the Adapter

74 e-Adapter Development Kit

Deploying the Adapter
The steps for deploying your adapter will be determined by the requirements
of your specific adapter. All adapters developed using the e-ADK require that
the adapter runtime environment (ARE) be installed on the same machine as
the adapter.

Redistributing the Adapter Runtime Environment
After you have developed your adapter, you must package both your adapter
and the ARE. To separate the ARE from the e-ADK package you received on
the e-ADK Current Release CD, run the script to copy the ARE to a separate
directory. The new directory will contain the ARE that you will package with
your adapter.

Before you begin, create a directory for the ARE.

❖ To copy the image from the e-ADK Current Release CD sent with the e-
ADK:

1 Insert the CD into your CD-ROM drive.

2 Run the script in the CD-ROM directory. Use these scripts for the
following platforms:

• For Windows:

are_redist.cmd

• For Solaris, HP, and AIX:

are_redist.sh

20 Install multiple services NNSYAdapter39 -install -name
broker1 -d broker1 -p broker1.cfg

NNSYAdapter39 -install -name
broker2 -d broker2 -p broker2.cfg

The services broker1 and broker2
should be installed.

21 Remove the services Services are not in Control
Panel/Services list.

Case Description Example Expected Behavior

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 75

3 Verify that NNSY_are39 is created in the directory that you have set up to
run your adapter.

After you have created NNSY_are39 in a directory, you can use this install
image to install the ARE to other machines. This image can be burned to CD
to be delivered with your adapter.

When you ship your adapter and the ARE, you either include the ARE in your
installation package or provide instructions for installation of both the adapter
and the ARE. See the e-ADK Installation Guide for additional information.

Message Acknowledgement
e-ADK 3.9 provides the ability to set acknowledgement of messages. This
feature provides verification of the status of messages that are sent to transports
using Acquire and Process modes. The acknowledgement is sent both when the
message is successful (ack) and unsuccessful (nack).

In some cases, an adapter might need to take a specific action only if the
message was successfully received by the transport. If the message fails,
another action is required. For example, when an order is placed online,
information needs to be sent to a purchase order transport. If the message is
successfully sent to the transport, then an inventory action takes place. If the
message fails on the purchase order transport, an alert action is produced. In
this case, if the e-ARE sends an acknowledgement (ack), then the inventory
action takes place. If the e-ARE sends a negative acknowledgement (nack), the
alert action takes place.

Exception Handling and Logging
Informational messages, warnings, and errors are logged at strategic points
during processing. Because the e-ADK functions have a boolean return value,
errors must be reported by throwing an exception. Exceptions are thrown at
critical points during processing, such as failure to get from a transport and
failure to put to a transport, and are caught in the Adapter Shell.

e-ADK supports the following error handling:

• Transport retries

Exception Handling and Logging

76 e-Adapter Development Kit

• Adapter retries

• User configurable

It also handles the following common OT errors:

• Full transport

• Transport disable for put and/or get

• Transport manager shutdown

Handling Exceptions
The e-ADK is designed to handle exceptions using the throw/catch paradigm.
Errors must be reported by throwing an exception. The preferred way to handle
errors inside the e-ADK code is to use one of the throw macros:

• NNADK_THROW_CRITICAL ("text")

• NNADK_THROW_WARNING ("text")

• NNADK_THROW_RETRY ("text")

A critical error usually relates to the target system; for example, the SAP or
Siebel server is down, the database is down, or some other problem that would
cause all subsequent messages to also fail.

Non-critical errors usually relate to data in the specific message containing an
error such as a required field missing. With non-critical errors, the next
message is likely to succeed.

The throw macros take a C-string, or character array, write the string to the log
file, and either shut down the adapter or continue processing. To use these
macros, NNADKMacro.h and NNADKLogging.h must be included. In any
mode, the user can ignore the current message and continue processing by
returning TRUE to the Adapter Shell. This runs the risk of lost data: the throw
macros guarantee that the message gets placed on the failure transport. If the
message cannot be delivered, the result of ignoring the message is that the data
is neither sent to the target system nor sent to a transport. In that case, the data
is lost.

Under certain conditions, an adapter may throw a critical exception that
contains a value in the InformationCode1 field. This indicates a non-fatal error
and, because of the value, the e-ADK keeps processing. The number of retries
you have set is used.

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 77

NNADK_THROW_CR
ITICAL

Critical problems are handled using the NNADK_THROW_CRITICAL
macro. NNADK_THROW_CRITICAL takes a character string, logs the string
to the standard logfile, and then shuts down the shell. If a failure transport is
defined for Deliver or Process mode, the message retrieved from the transport
is placed on the failure transport before shutting down.

NNADK_THROW_WA
RNING

NNADK_THROW_WARNING takes a character string, logs the string to the
standard logfile, and then continues processing. If a failure transport is defined
for Deliver or Process mode, the message retrieved from the transport is placed
on the failure transport before continuing.

NNADK_THROW_RE
TRY

NNADK_THROW_RETRY takes a character string, logs the string to the
standard logfile, and then returns to the Adapter Shell. If adapter_wait_time
and maximum.adapter.retries are set in the cfg file, the Adapter Shell retries
calling the adapter function for a maximum number of times specified by
maximum.adapter.retries waiting the number of seconds specified by
adapter_wait_time before each retry. If those keys are not set, the Adapter Shell
terminates.

Methods of Handling Errors
The preferred way to handle errors inside the e-ADK code is to use one of the
throw macros in NNADKMacro.h. The e-ADK provides throw macros that
take various arguments, write a string to the log file, and either shut down the
adapter or continue, depending on the macro used. NNADKLogging.h must
also be included if these macros are used. In any mode, the user can ignore the
current message and continue processing by returning TRUE to the Adapter
Shell.

Exception Handling and Logging

78 e-Adapter Development Kit

This table provides more detailed information about the macros that can be
used:

Table 4-14: e-ADK 3.9 Macros

Macro Argument Logged Info
Effect on Current
Message

Effect on
Processing

NNADK_THROW_C
RITICAL

String String Sent to the failure
transport if one is
defined

e-ADK shuts down

NNADK_THROW_C
RITICAL_USERME
SSAGE

MsgSet

MsgIndex

Using the MsgIndex,
a string is retrieved
from the indicated
catalog file and
logged

Sent to the failure
transport if one is
defined

e-ADK shuts down

NNADK_THROW_C
RITICAL_USERME
SSAGE_PARAMS

MsgSet

MsgIndex

Params

Using the MsgIndex,
a string is retrieved
from the indicated
catalog file, merged
with the Params, and
logged.

Sent to the failure
transport if one is
defined

e-ADK shuts down

NNADK_THROW_
WARNING

String String Sent to the failure
transport if one is
defined

Processing in the e-
ADK continues

NNADK_THROW_
WARNING_USER
MESSAGE

MsgSet

MsgIndex

Using the MsgIndex,
a string is retrieved
from the indicated
catalog file and
logged

Sent to the failure
transport if one is
defined

Processing in the e-
ADK continues

NNADK_THROW_
WARNING_USERM
ESSAGE_PARAM

MsgSet

MsgIndex

Using the MsgIndex,
a string is retrieved
from the indicated
catalog file, merged
with the Params, and
logged

Sent to the failure
transport if one is
defined

Processing in the e-
ADK continues

NNADK_THROW_R
ETRY

String String Message is retried Processing in the e-
ADK continues

NNADK_THROW_R
ETRY_USERMESSA
GE

MsgSet

MsgIndex

Using the MsgIndex,
a string is retrieved
from the indicated
catalog file and
logged

Message is retried Processing in the e-
ADK continues

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 79

Logging
Runtime log messages are stored in a catalogue file. NNSYMessageLog.nml is
the New Era of Networks standard log file. This file appears in the local
directory when an adapter is run. The file resides in a directory specified by the
following:

<"NNSY_ROOT">/NNSYCatalogues/<language code>, where

<"NNSY_ROOT">/NNSYCatalogues/en_US is an example.

If the NNSY_ROOT environment variable is not set, the e-ADK attempts to
find the catalogue files in the runtime directory ./NNSYCatalogues/xxxx,
where xxxx is the code set (for example: en_US). If the files are not found, the
following message is put to the output log file, NNSYMessageLog.nml:

"Could not find a valid message catalogue containing messages for component
’ADK Message Set’."

If NNSYMessageLog.nml file cannot be created or cannot be written to, log
information is written to standard error. Developers can create a
NNSYMessageLog. nml file that is write-protected, and the output will be
channeled to the screen.

New Era of Networks has a standard format for logged messages. The format
is:

CCYYMMDDhhmmsslllZ|<process name>|<process ID>|<thread ID>|

<correlation ID>|<class>|<code>|<severity>|<file>|<line>|

<text>

Each logged message is contained on a single line that can wrap. Each message
is delimited by a newline character.

NNADK_THROW_R
ETRY_USERMESSA
GE_PARAMS

MsgSet

MsgIndex

Params

Using the MsgIndex,
a string is retrieved
from the indicated
catalog file, merged
with the params, and
logged

Message is retried Processing in the e-
ADK continues

Macro Argument Logged Info
Effect on Current
Message

Effect on
Processing

Using Tools for Debugging

80 e-Adapter Development Kit

Using Tools for Debugging
Before using the debug functionality, which can be used only on Windows NT,
verify that the debug libraries (nnsy\adk39\debug) are set up to run instead of
the release libraries (nnsy\adk39\bin). The default location is
c:\nnsy\adk39\debug. You must have both the bin and debug directories set up
to run debug.

Mixing debug-version libraries with release-version libraries causes an
assertion exception in the file dbgheap.c. If running in release mode, use all
release libraries and executables. If running in debug mode, use all debug
libraries and executables.

The following tools are available for debugging:

• -trace Option

• Using File Driver for Debugging

-trace Option
Use the -trace option on the command line to get extra information in the
NNSYMessageLog.nml file.

 The following sample command line shows the use of the -trace option:

NNSYAdapter39 -file=schema.dat -trace

NNADK_TRACE Macro

The NNADK_TRACE macro enables you to insert statements into the nml file.
NNSYAdapter39 must be run with the -trace option for these statements to
appear.

NNADK_TRACE is based on the vprintf() function. It takes a format string
and a variable list of arguments and outputs a formatted string to the nml file.
The following is an example:

STL_STRING InFileName=config.getStringValue("Adapter.in_file_name");

NNADK_TRACE("Infile--%s\n", InFileName.c_str());

Assuming that the value of the Adapter.in_file_name key is "s.txt", the e-ADK
would place the following string in the nml file:

CHAPTER 4 Adapter Runtime Environment

Developer’s Guide 81

"Infile--x.txt"

See a C or C++ reference for more information about vprintf().

Using File Driver for Debugging
File drivers can be used for testing during Acquire, Process, and Deliver
modes. Use the File Driver for your Transport to output your data to a file
instead of to a transport.

You set up the file driver to allow this function. Sample configuration files that
illustrate how to set up a file driver are provided in the examples directory as
acquirefile.dat, processfile.dat, and deliverfile.dat.

 Warning! If test.drive=true in Acquire, Process, or Deliver mode
configuration files, you will receive the critical error:

Test Drive unavailable. Set test.drive=false. Use the file driver instead.

Reviewing the Schema Tree
This option is available only in Schema mode. You can review a schema tree
before it is loaded into the repository using one of the following methods:

• To display your schema information on the screen but not load the schema
tree into the repository, add the following under Adapter in the
configuration file:

test.drive=true

• Use the DTD Schema Loader to write out a DTD file that represents the
schema tree created by a schema. Change the following information in the
configuration file:

SchemaLoader.Library=adk39dtdsl

SchemaLoader.Factory=DTDSchemaLoader_Factory

Reviewing the Schema Tree

82 e-Adapter Development Kit

• Use the XML Schema Loader to write out an xml file that represents the
schema tree that would be loaded into the repository. Change the following
information in the configuration file:

SchemaLoader.Library=adk39xmlsl

SchemaLoader.Factory=XMLSchemaLoader_Factory

• Use the NCM Schema Loader to write out an xml-like file that represents
the schema tree that would be loaded into the repository. Change the
following information in the configuration file:

SchemaLoader.Library=adk39ncmsl

SchemaLoader.Factory=NCMSchemaLoader_Factory

Developer’s Guide 83

C H A P T E R 5 Troubleshooting

Use the information in this chapter to attempt to resolve problems before
calling Technical Support. The following troubleshooting information is
available in this chapter:

Topic Page
Using Error Messages 84

Verifying the Environment 84

Searching for Versions 85

Order and Format of Fields 85

Schema Does Not Exist Error 85

Using -trace Option 85

Reviewing the Schema Tree 86

Using File Driver for Debugging 87

Using Error Messages

84 e-Adapter Development Kit

Using Error Messages
If you have difficulty with e-ADK, begin by reviewing error messages.

1 Check the NNSYMessageLog.nml file for error messages.

2 Use Trace so that more detailed messages are written to the log for easier
troubleshooting.

To use Trace, at the command line, add -trace.

Verifying the Environment
Verify the following:

1 Verify that the adapter is correctly installed and configured for your
environment.

2 Check the environment variables.

The environment variables and their paths are listed at the end of the
installation instructions for each platform.

3 Verify paths.

Be sure you have used the same directories as those suggested in the
installation guide.

4 Verify the configuration file information.

• The adapter points to your plug-in.

• Mode and data representation are correct.

• Session information is accurate.

5 Verify that the error catalogue files exist.

• The error catalogue files must be in the following location:

NNSY_ROOT/NNSYCatalogues/en_US

Note The Adapter Shell does not display errors on the screen.

6 Verify your data source files and data target file.

CHAPTER 5 Troubleshooting

Developer’s Guide 85

Searching for Versions

You can use nnversion to find out which version of a specific file you are using.
This is especially helpful if you have a number of versions on your machine
and need to provide technical support with the version you are using. The
nnversion.pl replaces NNIdent and NNWhich.

To run nnversion.pl, type the following:

perl nnversion.pl libndo 10.so

Order and Format of Fields
When you input a message for Deliver or Process mode, the order of the fields
is important and must be exactly the same order as was loaded into the
formatter.

Use *ncm to verify that the formats match. If you are using e-Biz Integrator,
you can set the "Random Field Order" in the formatter.

Schema Does Not Exist Error

The following error may appear when you are using the NCF Input Serializer
in Deliver or Process mode:

Schema Does Not Exist in Repository(ADK)

The following information message appears a few lines above the message:

message type = ADK

Using -trace Option

86 e-Adapter Development Kit

Possible Issues The NCF Input Serializer must have Schema information defined in a schema
repository. The message type is a concatenation of <prefix> + <’.IC’> +
<schema name> used when loading the schema. This schema is found based
on the message type defined for the message. The schema search is based on
the prefix name as well as the message type name. The following search order
is used:

• If the message coming from the transports has the OPT_MSG_TYPE
property (option) defined in the RFH for MQSeries message, that message
type will be used as the schema name.

• If the message does not contain the OPT_MSG_TYPE property, the
msg.type key in the configuration file is used.

• If the key is not preset, "ADK" is the default message type.

Possible Resolutions Correct the problem with one of the following:

• Add the OPT_MSG_TYPE on the incoming message (make sure
MQS_PROPAGATE = PROPAGATE in the putqueue action if running
MQSI). Set the prefix key in the configuration file.

• If no OPT_MSG_TYPE is set, set the msg.type key and the prefix key in
the configuration file.

• Verify that the .nmc file has the correct name and is located in the correct
directory (<NNSY_ROOT>\NNSYContentRepository\<AppGrp>) on the
correct machine.

Using -trace Option
Use the -trace option on the command line to get extra information in the
NNSYMessageLog.nml file on the console. The following sample command
line shows the use of the -trace option:

NNSYAdapter39 -file=schema.dat -trace

Reviewing the Schema Tree
This option is available only in Schema mode. You can review a schema tree
before it is loaded into the repository using one of the following methods:

CHAPTER 5 Troubleshooting

Developer’s Guide 87

1 To display your schema information on the screen but not load the schema
tree into the repository, add the following under Adapter in the
configuration file:

 test.drive=true

2 Use the DTD Schema Loader to write out a DTD file that represents the
schema tree created by a schema. Change the following information in the
configuration file:

 SchemaLoader.Library=adk39dtdsl
 SchemaLoader.Factory=DTDSchemaLoader_Factory

3 Use the XML Schema Loader to write out an xml file that represents the
schema tree that would be loaded into the repository. Change the following
information in the configuration file:

 SchemaLoader.Library=adk39xmlsl
 SchemaLoader.Factory=XMLSchemaLoader_Factory

4 Use the NCM Schema Loader to write out an xml-like file that represents
the schema tree that would be loaded into the repository. Change the
following information in the configuration file:

 SchemaLoader.Library=adk39ncmsl
 SchemaLoader.Factory=NCMSchemaLoader_Factory

Using File Driver for Debugging
File drivers can be used for testing during Acquire, Process, and Deliver
modes. Use the File Driver for your Transport to output your data to a file
instead of to a transport.

Set up the file driver to allow this function. Sample configuration files that
illustrate how to set up a file driver are provided in the examples directory as
acquirefile.dat, processfile.dat, and deliverfile.dat.

 Warning! If test.drive=true in Acquire, Process, or Deliver mode
configuration files, you will receive the critical error:

Test Drive unavailable

Set test.drive=false and use the file driver instead.

Using File Driver for Debugging

88 e-Adapter Development Kit

 Glossary

Developer’s Guide 89

Glossary

accelerator keys A combination of keystrokes that bypasses the menu system to carry out an
action.

action (New Era of
Networks Adapter
for Databases)

An action is a SQL statement defined as part of a format within a format
specification file.

action (New Era of
Networks Rules)

An action defines a function to perform in a subscription. An action must
contain at least one option name-value pair.

adapter A component that provides an interface between an internal application and
external applications or messaging systems. An adapter detects events and
validates event contents. In Sybase Enterprise Event Broker, adapters pass
events to an inflow processor. Adapters also receive events at outflow
processors and export the events to external applications.

adapter runtime
environment (ARE)

The adapter runtime environment includes the Adapter Shell,
e-ADK Shared Libraries, shared data dictionary, and error catalogue files. The
ARE is required for testing and running the adapters that are run on the
customer’s server.

alternative format A special form of compound format where one format in a set of alternatives
applies to a message. For example, if the alternative format is named A, it may
contain component formats B, C, and D. A message of format A may actually
be of variation of only B, C, or D.

American Standard
Code for Information
Interchange (ASCII)

The standard code used for information interchange among data processing
systems, data communication systems, and associated equipment. The code
uses a coded character set consisting of 7-bit coded characters (8 bits including
a parity check). The ASCII set consists of control characters and graphic
characters.

 Glossary

90 e-Adapter Development Kit

ANSI ASC X12 “997” Functional Acknowledgement. An EDI functional acknowledgement that
indicates successful transmission of a file and whether or not the file passed
syntactical edits within the receiver’s translator. Similar in function to the
green return receipt one receives from the U.S. Postal Service when sending
certified mail. Getting the card back indicates the letter was delivered – it does
not validate that the contents of the letter were read, understood, or any action
was taken as a result of receiving the letter. There are three types of functional
acknowledgements. The first type is Group Accepted. The second type is
Group Accepted, but Errors Were Noted. The third type is Group Rejected.

applet A Java program that runs within the web browser. When using Java on the
Web, an applet is an HTML-based program built with Java that a browser
temporarily downloads to and runs fro a user’s hard disk. Java applets can be
used to add background music, real-time video displays, animation, and
interactivity such as calculators and games to Web pages without having to
send a user request back to the server.

application A packaged application, database, protocol, file, or other data source.

application endpoint Also called endpoint. These are applications such as General Ledger, Patient
Admitting, or Materials Planning that run on computers attached to a network.
Endpoints can be connected to other endpoints using adapters and an
integration engine.

application group A logical grouping of applications used to organize rules.

application link
enabling (ALE)

The communication layer for inbound and outbound data to and from an SAP
system.

application program
interface (API)

The interface (calling conventions) by which an application program accesses
services. An API is defined at source-code level and provides a level of
abstraction between the application and the kernel or other privileged utilities
to ensure portability of the code.

argument In New Era of Networks Rules, an argument is evaluation criteria made up of
fields from a message and associated operators. It is a standard encoding for
alphanumeric data.

asynchronous In electronic messaging, a method of operation in which receiving applications
are loosely coupled and independent. The receiver need not respond
immediately to a message, and the sender does not have to wait for a response
before proceeding with the next operation. Compare to synchronous.

batch processing A method of handling computer operations in which requests for operations are
grouped for periodic processing. Compare to transaction processing.

 Glossary

Developer’s Guide 91

bean A reusable software component. Beans can be combined to create an
application.

binary large object
block (BLOB)

A collection of bytes containing data. It is generally stored as a flat file
containing multiple, delimited records and is terminated by a number that
specifies the length of the file.

binding The association of a client and a server.

bridge A physical link between network servers that are not tightly connected via
TCP/IP.

A network description parameter that describes the physical link.
A logical representation of a connection between two network servers that
reside on separate network LANs.

A software component that allows one integration engine to communicate with
another.

broker See integration server.

A type of middleware that connects clients and servers.

A program that executes in the background. Also known as agents, services, or
daemons, brokers only activate when defined system conditions become true.
For example, a broker may activate when the system clock reaches 2:00 a.m.
every other Saturday. Another broker may activate when the system senses the
arrival of e-mail

business application
programming
interface (BAPI)

An open, business-object interface used to access SAP R/3 business processes
and data from external systems.

business object An application-level component you can use in unpredictable combinations. A
business object is independent of any single application. Business objects
provide a natural way for describing application-independent concepts such as
customer, order, competition, money, payment, and patient. They encourage a
view of software that transcends tools, applications, databases, and other
system concepts.

business to
business (B2B)

Companies using the Web to deliver products, services, support, and
information over the internet to other companies.

business to
business integration
(B2Bi)

The integration of applications, including data and process integration,
between enterprises.

character set A set of specific (usually standardized) characters with an encoding scheme
that uniquely defines each character. ASCII is a common character set.

 Glossary

92 e-Adapter Development Kit

class In object-oriented programming, a category of objects. For example, there
might be a class called shape that contains objects which are circles, rectangles,
and triangles. The class defines all the common properties of the different
objects that belong to it.

client A system or process that requests a service from another system or process.

client application Software that is responsible for the user interface, including menus, data entry
screens, and report formats. It also is an application that sends requests to
another application that acts as a server. See also

client-server A paradigm for distributed computing under which the system is split between
one or more server tasks, which accept requests according to some protocol,
and client tasks, which request information or actions. Clients and servers can
be placed independently on network nodes.

A network architecture in which one or more computers (servers) accept
requests for services from one or more workstations (clients). This may also
refer to a back-end application (server) that accepts requests for information
from a front-end application (client).

commit An instruction to a database to make permanent all changes made to one or
more database files since the last commit or rollback operation and to make the
changed records available to other users. compare with rollback.

common gateway
interface (CGI)

A standard for running external programs from a World Wide Web HTTP
server. CGI specifies how to pass arguments to the executing program as part
of an HTTP request. It also defines a set of environment variables. Commonly,
a program will generate some HTML which will be passed back to the browser
but it can also request URL redirection.

CGI allows the returned HTML (or other document type) to depend in any
arbitrary way on the request. The CGI program can, for example, access
information in a database and format the results as HTML. A CGI program can
be any program which can accept command line arguments.

common object
request broker
architecture
(CORBA)

CORBA is a distributed-objects standard developed and defined by the Object
Management Group (OMG). CORBA provides the mechanism by which
objects transparently make request and receive responses, as defined by
OMG’s Object Request Broker (ORB). The CORBA ORB is an application
framework in which objects can communicate with each other, even if they are
written in different programming languages, are running on different
platforms, reside at different locations. or were developed by different vendors.

 Glossary

Developer’s Guide 93

common
programming
interface for
communictions (CPI-
C)

An SNAplus API which allows peer-to-peer communication between TPs in a
network. CPI-C uses the same underlying communications elements (modes,
LUs and security information) as APPC, and the information transferred
between CPI-C applications is in the same format as information transferred
between APPC TPs. This means that a CPI-C application may communicate
with an APPC application, and neither application needs to know which API
the other is using.

component In programming and engineering disciplines, a component is an identifiable
part of a larger program or construction. Usually, a component provides a
particular function or group of related functions.

In object-oriented programming and distributed object technology, a
component is a reusable program building block that can be combined with
other components in the same or other computers in a distributed network to
form an application. Examples of a component include a single button in a
graphical user interface, a small interest calculator, an interface to a database
manager.

Components can be deployed on different servers in a network and
communicate with each other for needed services. A component runs in a
context called a container. Examples of containers include pages on a Web site,
Web browsers, and word processors.

component object
model (COM)

An architecture for defining interfaces and interaction among objects
implemented by widely varying software applications. A COM object
instantiates one or more interfaces, each of which exposes zero or more
properties and zero or more methods. All COM interfaces are derived from the
base class IUnknown. MMC is built on the COM foundation.

configure To define to a system the devices, optional features, and programs installed on
the system.

configuration file A file that specifies the characteristics of a system or subsystem.

configuration set A section into which service library configuration files are divided.

connection string A connection string is a string version of the initialization properties needed to
connect to a data source and enables you to easily store connection information
within your application or pass it between applications. Without a connection
string, you would be required to store or pass a complex array of structures to
access data. The basic format of a connection string is based on the ODBC
connection string. The string contains a series of keyword/value pairs separated
by semicolons. The equals sign (=) separates each keyword and its value.

connectivity The capability to attach a variety of functional units without modifying them.

 Glossary

94 e-Adapter Development Kit

console A computer terminal used to monitor and control a computer or network.

cross-platform Used to describe programs that can execute in dissimilar computing
environments.

daemon A daemon is a program that is always running in the background on the system,
initialized, and waiting for something to do.

database The file or physical allocation of space on a disk intended to hold schema.

database
management system
(DBMS)

A computer-based system for defining, creating, manipulating, controlling,
managing, and using databases. It is a program that lets one or more computer
users create and access data in a database. The DBMS manages users requests
(and requests from other programs) so that users and other programs are free
from having to understand where the data is physically located on storage
media and, in a multi-user system, who else may also be accessing the data. In
handling user requests, the DBMS ensures the integrity of the data (that is,
making sure it continues to be accessible and is consistently organized as
intended) and security (making sure only those with access privileges can
access the data). The software for using a database can be part of the database
management system or it can be a stand-alone database system. Contrast with
relational database management system.

data dictionary A collection of descriptions of the data object or items in a data model for the
benefit of programmers and others who might need to refer to them. A data
dictionary can be consulted to understand where a data item fits in the structure
and what values it may contain.

data replication The process of copying data to remote locations. The copied (replicated) data
is then kept synchronized with the primary data. Data replication is distinct
from data distribution. Replicated data is stored copies of data in particular
sites throughout a system and is not necessarily distributed data. See also data
distribution and transaction replication.

data server A database management system program that responds to client requests. See
also local area network.

 Glossary

Developer’s Guide 95

data source name
(DSN)

A textual string that is used to reference the data source by application
programs. A unique identifier must be provided for each data source. A data
source consists of the data a user wants to access, its associated database
management system (DBMS), the platform on which the DBMS resides, and
the network (if any) used to access that platform. Each data source requires that
a driver provide certain information in order to connect to it. At the core level,
this is defined to be the name of the data source, a user ID, and a password.
ODBC extensions allow drivers to specify additional information, such as a
network address or additional passwords.

data type A keyword that identifies the characteristics of stored information on a
computer. Some common data types are char, int, smallint, date, time, numeric,
and float. Different databases support different datatypes.

decrypt Decryption is the process of converting encrypted data back into its original
form, so it can be understood

delimiter One or more characters marking either the end or beginning of a piece of data.

deserialize Process of walking a tree (for example, the DataTree of the NNDOObject) and
writing the data for each node to a string buffer. This generates a buffer
containing the wire format representation of the data in the tree.

distributed COM
(DCOM)

A protocol that enables software components to communicate directly over a
network in a reliable, secure, and efficient manner. Based on the Open
Software Foundation's DCE-RPC specification, DCOM deploys across
heterogeneous platforms and works with both Java applets and ActiveX
components.

distributed function
call (DFC)

A distributed function call has three major components: the DFC command
definition in a client module that identifies the DFC command's name and its
arguments; the DFC service in a server module that receives the command and
its arguments and processes them in some way; and the Impact Manager
Configurator entries that identify where the DFC command is serviced.

document type
definition (DTD)

A document type definition is a specific definition that follows the rules of the
Standard Generalized Markup Language (SGML). A DTD accompanies a
document and identifies what the codes (or markup) are that separate
paragraphs and identify topic headings and how each is to be processed.
A generated document that specifies the grammatical structure of other SML
documents. A hypertext markup language entity to describe the document type.

domain A group of computers and other devices that are networked and managed as a
unit, with policies and rules specific to the unit.

 Glossary

96 e-Adapter Development Kit

domain name
system or service
(DNS)

An internet service that translates domain names into IP addresses.

driver A program that interacts with a particular device or specially (frequently
optional) kind of software. The driver contains the special knowledge of the
device or special software interface that programs using the driver do not. In a
personal computer, a driver is often packaged as a dynamic link library (DLL)
file.

dynamic-link library
(DLL)

A module containing functions and data that can be loaded at run time by a
calling module (an executable file or another dll).
A file containing executable code and data bound to a program at load time or
run time, rather than during linking. The code and data in a dynamic link library
can be shared by several applications simultaneously.

EAS message
service

A messaging system native to the EAServer.

EAServer This is the Sybase web application server. An integrated set of application
servers used to deploy web applications.

EDI document An ANSI ASC X12 transaction.

EDIFACT The United Nations’ counterpart to ANSI’s X12. Another format for
businesses exchanging data electronically.

e-FTP Component of the EC Gateway for UNIX which facilitates FTP client
operations.

electronic data
interchange (EDI)

A standard for exchanging business data. EDI is the process of sending and
receiving electronic messages in standardized formats between business
partners. Electronic messages are exchanged between companies’ computer
systems and are used to replace traditional paper based transactions and
sometimes telephone call confirmations of transactions. EDI solutions have
allowed businesses to exchange information more accurately and in a matter of
minutes or hours rather than days

element Basic building block of an X12 transaction. Each segment is comprised of one
or more elements. Its segment and then its position within that segment
describe each element. A transaction-specified delimiter separates these
elements.

element separator The character that will appear at the end of each element within an X12
transaction. For inbound X12 documents, this character definition is read
directly from the envelope. For outbound documents, customer-specific
element separators are retrieved from the trading partner database.

 Glossary

Developer’s Guide 97

encrypt Encryption is the conversion of data into a form that cannot be easily
intercepted by unauthorized people.

endpoint An application that can be directly accessed or updated by an acquisition or
delivery adapter (via an integration server).

enterprise
application
integration (EAI)

EAI involves the integration of applications (including data and process
integration) within an enterprise.

enterprise
information system

The systems that provide the information infrastructure for an enterprise.
Enterprise resource planning systems, relational database management
systems, and legacy information systems are examples of enterprise
information systems.

Enterprise Java
Beans

Specification for creating server-side scalable, transactional, multi-user, secure
enterprise-level applications. Provides consistent component architecture
framework for creating distributed n-tier middleware. Low-level details are
separated from business logic.

envelope The header and trailer information contained within an ANSI ASC X12
transaction. The envelope is critical for routing, trade agreement
determination, and message management.

event An entity that is sent into the system and drives the business processing. It
consists of a name, scope, and attributes.

event definition
language (EDL)

The format used by New Era of Networks Process Server to describe a business
process.

event set A grouping of events that can be shared by more than one business process.

environment
variable

A variable that describes how an operating system runs and the devices it
recognizes.

extended binary-
coded decimal
interchange code
(EBCDIC)

An IBM code for representing characters with numerical values. This code is
used mainly on IBM computers.

eXtensible markup
language

A simplified subset of Standard Generalized Markup Language (SGML) that
provides a file format for representing data, a method for describing data
structure, and as a mechanism for extending and annotating HTML with
semantic information.

 Glossary

98 e-Adapter Development Kit

As a universal data format, XML provides a standard for the server-to-server
transfer of different types of structured data so that the information can be
decoded, manipulated, and displayed consistently and correctly. In addition, it
enables the development of three-tier Web applications, acting as the data
transfer format between the middle-tier Web server and the client.abend.

field The smallest possible container for information. You can use a field in more
than one table. If the first_name field exists in one table, for example, you can
use the same field in other tables.

file transfer protocol
(FTP)

A TCP/IP utility that moves files efficiently between machines.

flat file The file produced by basic EDI translation software to serve as input to the
interface. Usually has the same fields as the standard but has each field
expanded to its maximum length. A computer file where all the information is
run together in a single character string.

flat format A format containing only fields and associated controls. Flat input formats are
composed of fields with associated control input controls. Flat output formats
are composed of fields with associated output controls.

format Formats describe how messages are constructed. Input formats describe how to
separate input messages into their component parts. Output formats describe
how to build output messages from the parsed components of the input
message..

functional
acknowledgement

See ANSI ASC X12 “997”.

function module An ABAP function accessible using RFC. The interface to a specific function
module is defined in the R/3 data dictionary.

function module
group

A collection of related business functions.

function wrapper An option available with DFC command definition. It automatically builds a
callback function that, upon receiving an altered data condition (CBE_ALT),
issues the DFC command and checks for an error condition return. The
function name is the same as the DFC command, but with a preceding
underscore character (_dfc_cmd_name). The user can attach the function
directly to a callback function property for any control in a user interface's form
object.

get A request for the next message in a queue. Compare to put.

 Glossary

Developer’s Guide 99

globalization The combination of internationalization and localization. See also
internationalization and localization.

graphical user
interface

A type of computer interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons, representing actual
objects, that the user can access and manipulate with a pointing device.

heterogeneous Composed of different parts of different kinds. Having dissimilar constituents.

Health Level 7 The standard message format used by many healthcare applications.

host A host computer is directly connected to the Internet that provides services to
other computers on the network, such as e-mail connections or access to
program and data files. Each host computer has a unique Internet address, or
IP, and a unique domain name, which identifies the computer to other
computers and users on the Internet. Host means any computer that has full
two-way access to other computers on the Internet.

Hypertext Markup
Language (HTML)

The language used to mark a document so it can be published on the World
Wide Web (WWW) and viewed with a browser.

HyperText Transport
(or Transfer)
Protocol

HyperText Transport (or Transfer) Protocol is the set of rules that governs the
exchange of text, graphic, sound, and video files on the World Wide Web.

interactive
development
environment (IDE)

A User Interface that allows users to build complex projects or programs by
filling out forms in a Windows program. Examples are the MSG-IDE tool (for
creating custom adapters) and the TRAN-IDE tool (for creating production
objects).

idempotent This term means unchanged when multiplied by itself. In the context of New
Era of Networks products, the term idempotent refers to the idempotent
attribute, which specifies that an operation can be safely executed any number
of times. If an operation is idempotent, the server does not need to save results
and the client does not need to issue acknowledgements (improving
performance). An example of an idempotent operation is one that simply reads
a value. An operation that increments a value, for example, is not idempotent.

identifier An identifier data element always contains a value from a predefined list of
values (codes) that are maintained by the ASC X12 or some other body
recognized by the X12 Committee.

ido The extension given to IDoc metadata files.

instance An Oracle-specific term for a set of memory structures and background
processes that access a set of database files. Compare to database sever.

 Glossary

100 e-Adapter Development Kit

integrated
development
environment system
(IDES)

A programming environment integrated into an application. For example,
Microsoft Office applications support various versions of the BASIC
programming language. You can develop a WordBasic application while
running Microsoft Word. .

integration point An integration point is an entry point into a computer system. It typically
consists of the login information required to establish a connection with a
software system so that information can be transferred into and out of the
system.

interactive
development
environment (IDE)

A User Interface that allows users to build complex projects or programs by
filling out forms in a Windows program. Examples are the MSG-IDE tool (for
creating custom adapters) and the TRAN-IDE tool (for creating production
objects).

Intermediate
Document (IDoc)

A data container used by R/3 applications used by ALE to send and receive
information. MQSeries Link for R/3 works with IDocs only.

International
Organization for
Standardization
(ISO)

An organization of national standards bodies from various countries
established to facilitate international exchange of goods and services and
develop cooperation in intellectual, scientific, technological, and economic
activity.

internationalization The process of extracting locale-specific components from the source code and
moving them into one or more separate modules, making the code culturally
neutral so it can be localized for a specific culture. See also globalization.
Compare with localization.

IP address A 32-bit number that identifies each sender or receiver of information that is
sent in packets across the Internet. An IP address has two parts: the identifier
of a particular network on the Internet and an identifier of the particular device,
which can be a server or a workstation, within that network.

Internet server
application
programming
interface (ISAPI)

Microsoft's programming interface between applications and their Internet
Server. Active Servers created with ISAPI extensions can be complete in-
process applications themselves, or can "connect" to other services. ISAPI is
used for the same sort of functions as CGI but uses Microsoft Windows
dynamic link libraries (DLL) for greater efficiency. The server loads the DLL
the first time a request is received and the DLL then stays in memory, ready to
service other requests until the server decides it is no longer needed. This
minimizes the overhead associated with executing such applications many
times.

 Glossary

Developer’s Guide 101

item For users: Use this term when referring to specific content in the console tree.
Do not use the terms node or namespace. If possible, refer to the actual name
of the item in the tree unless you must use an explicit term. To direct users to
an item, you should write out the entire path to the item.

Java Developed by Sun Microsystems, Java is an object-oriented programming
language, similar to C++. Java-based applications, or applets, can be quickly
downloaded from a Web site and run using a Java-compatible Web browser
such as Microsoft Internet Explorer or Netscape Navigator. Java applets are the
most widespread use of Java on the Web. Java programs or source code files
(.java) are compiled into a format known as bytecode files (.class). These files,
once complied, can be executed by a Java interpreter. Most operating systems,
including Windows, Macintosh OS, and UNIX, have Java interpreters and run-
time environments known as Java Virtual Machines.

Java2 Enterprise
Edition

Sun Microsystems, Inc. Java™ 2 Platform, Enterprise Edition (J2EE) defines
the standard for developing multi-tier enterprise applications. J2EE simplifies
enterprise applications by basing them on standardized, modular components,
by providing a complete set of services to those components, and by handling
many details of application behavior automatically, without complex
programming.

Java ARchive (JAR) A file containing a collection of Java class library files.

Java Connector
Architecture

Sun Microsystems, Inc. architecture that defines a uniform way to integrate
J2EE application servers with enterprise information systems. A compliant EIS
can plug into any application server that supports the connector architecture.
An application server that conforms to this standard can connect to any EIS that
provides a standard resource adapter.

Java Development
Kit

Sun Microsystems, Inc.’s foundation for building and deploying client-side
enterprise applications with cross-platform compatibility.

Java Dynamic
Management™ Kit

The Java Dynamic Management™ Kit is the foundation for building and
distributing network management intelligence into applications, networks, and
devices.

Java Naming and
Directory Interface

One of Sun Microsystems, Inc.’s application program interfaces (APIs): Java
Database Connectivity (JDBC™) Java Remote Method Invocation (RMI) Java
Interface Definition Language (JavaIDL) Java Naming and Directory Interface
(JNDI).

JavaServer Pages™ Sun Microsystems, Inc. technology used to embed bits of Java™ code (or
scriptlets) in HTML documents.

 Glossary

102 e-Adapter Development Kit

key A field that contains unique information.

library A named disk area that can contain programs and related information. A library
consists of different sections, called library members.

literal One or more symbols or letters in data that represents itself.

local area network
(LAN)

A logical grouping of network servers. In the network, every network server
must be on a LAN. Servers on the same LAN must be connected with TCP/IP.

local queue When using MQSeries Remote Queueing, a local queue is defined on the
receiver side that can be referred to from the sending queue. The receiving
application talks to the local queue.

localization The process of preparing an extracted module for a target environment, in
which messages are displayed and logged in the user’s language; numbers,
money, dates, and time are represented using the user’s cultural convention;
and documents are displayed in the user’s language. See also globalization.
Compare with internationalization.

logical system A system in which applications run integrated on a common database. A client
corresponds to a logical system.

logical unit A type of unit that enables end-users or programs to gain access to network
resources and communicate with each other.

lookup A search done by the computer within a predefined table of values or within a
data file.

LU 6.2 A protocol used for APPC and CPI-C communications between transaction
programs. LU 6.2 uses the generalized data stream (GDS) format.
SNAplusAPI APPC and CPI-C support LU type 6.2

mapping Specification that indicates the value for an element or attribute in a target
document that is produced by a Mapper transformation. A mapping can be an
XPath to a source schema item, a string literal, or a function that operates on
XPaths, string literals, or functions.

mapping (EDI) The translation process from a standard format to another format. The software
component that governs the conversion of application data to and from EDI
interchanges is called an EDI translator. Most EDI translators provide two
services: data mapping and standards formatting.

 Glossary

Developer’s Guide 103

To access the data, most translators support a file interface. For outbound
transactions an application writes the transaction data to a sequential text file
(also called a flat-file). The translator formats the data according to the
appropriate EDI syntax rules and produces an EDI file, which is ready to be
communicated to a trading partner. For inbound transactions the translator
verifies that the standard version and release are supported, and that the syntax
of the interchange is in compliance with the standards. The translator produces
a flat-file for the application as output.

To convert flat-file data to and from EDI data, a translator must understand the
format of the flat-file data. This understanding is achieved in one of two ways.
First, the translator might require the user to generate the flat-file according to
a format defined by the translator. This means that the user must modify the
application data so the translator can process it. Second, the translator might
provide a tool that allows the user to specify the format of the flat-file. This tool
is called a data mapper. Data mapping reduces or eliminates the programming
required to integrate the translator with a business application.

message type A message type defines the layout of a string of data. The message type name
in the Rules GUI is the same as the input format name in Formatter.

message A string of bytes that has meaning to the applications that use it. Messages are
used for transferring information from one application to another between
components in a single application. The applications can be running on the
same platform or on different platforms.

message-driven
bean

An enterprise bean that enables asynchronous consumption of messages.

message-driven
components

Components that enable asynchronous, event-based processing in the
application server.

message queueing A form of communication between programs. Application data is combined
with a header (information about the data) to form a message. Messages are
stored in queues, which can be buffered or persistent (see buffered queue and
persistent queue). It is an asynchronous communications style and provides a
loosely coupled exchange across multiple operating systems.

message type A message type defines the layout of a string of data. The message type name
in the Rules GUI is the same as the input format name in Formatter.

messaging Software that can enable the capture and delivery of information between
applications.

metadata Data that describes other data. Any file or database that holds information
about another database's structure, attributes, processing, or changes.

 Glossary

104 e-Adapter Development Kit

middleware Software that facilitates the communication between two applications. It
provides an API through which applications invoke services and it controls the
transmission of the data exchange over the network. There are three basic
types: communications middleware, database middleware, and systems
middleware.

mode A method used by adapters to invoke specific methods of operation. New Era
of Networks version 3.9 adapters use Acquire, Deliver, Schema, Schema
Remove, and Process modes. The user guide for each adapter contains detailed
information about modes and data representation.

mutex Mutex stands for mutually exclusive. This means that a computer resource can
be made available to one user at a time. It can best be explained by this simple
example. Person A wants to run a process script and does not want the file to
be accessed by anyone else during the run time of the script. The use, therefore,
locks the file. Once the process script has completed running, the computer
resource can be unlocked and then becomes available for other to access.

NAK The mnemonic for ASCII character 21.

Sometimes used as the response to receipt of a corrupted packet of information.

Any message transmitted to indicate that some data has been received
incorrectly, for example it may have a checksum or message length error. A
NAK message allows the sender to distinguish a message which has been
received in a corrupted state from one which is not received at all

An alternative is to use only ACK messages, in which case the non-receipt of
an ACK after a certain time is counted as a NAK but gives no information
about the integrity of the communications channel.

nesting level Level within the hierarchy of a specific component. A repeating child format
and the fields within it may have a nesting level one greater than that of the
parent format and any nonrepeating components of the parent format. The
nesting level of the root format is one.

Network Interface
Definition Language
(NIDL)

A binary file (NIDL.exe) used to compile ".idl type" files. IDL files are created
to allow C-based programs to contain DFC functions.

New Era of Networks
canonical form

New Era of Networks canonical form (NCF) is a layout specification that states
how data is transported to the wire.

New Era of Networks
data object

New Era of Networks data object (NDO) is the in-memory form of New Era of
Networks canonical form.

 Glossary

Developer’s Guide 105

Object Definition
Language (ODL)

The New Era of Networks-provided language that users can use to build
Initialization, De-initialization, Validation, Callback, and Custom functions in
programs.

Object Request
Broker

Software that allows objects to dynamically discover each other and interact
across machines, operating systems, and networks.

Open Database
Connectivity (ODBC)

ODBC is a Windows standard API that is used for SQL communication to
connect applications to a variety of data sources. By using ODBC statements
in a program, you can access files in a number of different databases, including
Access, dBase, Excel, and Text. ODBC is based on and closely aligned with
the Open Group standard Structured Query Language (SQL) Call-Level
Interface. ODBC handles the SQL request and converts it into a request the
individual database system understands. An open system (as opposed to a
proprietary system) is one that adheres to a publicly known and sometimes
standard set of interfaces so that anyone using it can also use any other system
that adheres to the standard. Access is generally provided through the Control
Panel, where data source names (DSNs) can be assigned to use specific ODBC
drivers.

open transport Open Transport configuration provides a means to adapt New Era of Networks
applications to supported transport and transaction manager environments.
This configuration capability increases the stability of the entire application by
providing a single code base that maintains flexibility required by clients in a
heterogeneous enterprise setting

option An option consists of a name-value pair of data related to an action. An option
name can be predefined (for Reformat and Put Message) or user-defined.

parameter A variable that is given a constant value for a specified application and that can
denote the application. Compare with property.

parent/child Compound formats contain other flat and compound formats. If you have a
compound format (X) that contains a repeating format (Y), X is the parent ot
child Y.

parse To analyze a message by breaking it down into its component fields.

permission The level of access to an object, resource, or function.

persistence The ability of a computerized system to remember the state of data or objects
between runs.

plug-In An external software or SQL program that is accessed by a larger application
to provide added and customer-specific functionality.

 Glossary

106 e-Adapter Development Kit

port In programming, a port is a “logical connection place” and specifically, using
the Internet’s protocol, TCP/IP, the way a client program specifies a particular
server program on a computer in a network. When a service (server program)
initially is started, it is said to bind to its designed port number. As any client
program wants to use that server, it also must request to bind to the designated
port number.

portal A Web site that offers users access to a broad array of resources and services,
such as email, forums, search engines, and online shopping malls.

point-to-point
protocol (PPP)

A protocol for communication between two computers using a serial interface,
typically a personal computer connected by a telephone line to a server.

process A process is an instance of a program running in a computer. It is close in
meaning to task, a term used in some operating systems. In UNIX and some
other operating systems, a process is started when a program is initiated (either
by a user entering a shell command or by another program). Like a task, a
process is a running program with which a particular set of data is associated
so that the process can be kept track of. A process can initiate a sub-process,
which is a child process (and the initiating process is sometimes referred to as
its parent). A child process is a replica of the parent process and shares some
of its resources, but cannot exist if the parent is terminated.

process
management

The EC Gateway module which allows definition of how the EDI solution will
function in its native lights-out unattended mode of operation.

property A set of rules that govern the behavior of the computers communicating on a
network.

protocol A set of rules that govern the transmission and reception of data.

put A request to store a message in a queue. Compare to get.

qualifier Answers the question “What is…?” It acts as a modifier.

queue A list constructed and maintained so that the next data element to be retrieved
is the one stored first.

For example, one application can put a message on a queue, and another
application can retrieve the message from the same queue.

record Basic building block of a database. Each record is the lowest-level complete
entity within a table in the database. Also known as a “row.” A group of one or
more records make up a table.

registry The part of the Window NT operating system that holds configuration
information for a particular machine.

 Glossary

Developer’s Guide 107

regular expression Strings that express rules for string pattern matching.

relational database A collection of data in which relationships between data items are explicitly
specified as equally accessible attributes. The data is viewed as being stored in
tables consisting of columns (data items) and rows (units of information).
Relational databases can be accessed by SQL requests. See also Structured
Query Language.

release character A character in data which indicates that a delimiter is following, and that the
delimiter should be processed as data vice as a delimiter.

remote function call
(RFC)

An RFC is used to provide a “handshake” between two systems that are not
connected. ALE and RFC are often used together.

remote systems
management

A feature that allows a System Administrator to manage multiple
DirectConnect Servers and multiple services from a client.

repeating
component

A component, a field or format, that may appear multiple times in an input or
output message.

request One or more database operations an application sends as a unit to the database.
During a request, the application gives up control to the DBMS and waits for a
response. See also commit, rollback, and unit of work.

RFC client A program that calls a remote function in an R/3 system using the RFC API.

RFC server A program that implements an ABAP function that can be called by an RFC
client.

rollback An instruction to a database not to implement the changes requested in a unit
of work and to return to the pre-transaction state. See also transaction and unit
of work. Compare with commit.

rule A rule is uniquely defined by its application group, message type, and rule
name. It contains evaluation criteria (a rules expression) and is associated with
subscriptions to perform if the rule evaluates to true. Rules also have
permissions that determine user access.

scalability The ability of an information system to provide high performance as greater
demands are placed upon it, through the addition of extra computing power.

segment (EDI) Basic building block of an X12 transaction. Each segment is identified by a
three-character code. Segments are comprised of elements and sub-elements
and a group of segments are called a transaction or document.

segment (EMQ) An indexing device within a queue section. A series of contiguous slots that
store information.

 Glossary

108 e-Adapter Development Kit

segment delimiter The character that appears at the end of each segment within an X12
transaction. For inbound X12 documents, this character definition is read
directly from the envelope. For outbound documents, customer-specific
segment delimiters are retrieved from the trading partner database.

serialize Process of taking items from a buffer and creating the corresponding tree
representation from the wire format.

server A functional unit that provides shared services to workstations over a network.
See also client/server. Compare with client.

servlet A servlet is a small, persistent, low-level program that runs on a server. The
term was coined in the context of the Java applet, a small program that is sent
as a separate file along with a Web (HTML) page.

Some programs that access databases based on user input need to be on the
server. These programs were most often implemented using a Common
Gateway Interface (CGI) application. However, if a Java virtual machine is
running in the server, servlets can be implemented in Java. A Java servlet can
execute more quickly than a CGI application. Instead of creating a separate
program process, each user request is invoked as a thread in a single daemon
process, so that the system overhead for each request is slight.

session A connection between two programs or processes. In APPC communications,
sessions allow transaction programs to have conversations between the partner
logical units. Sessions are established through SNA bind requests. There are
several types of sessions: single, multiple, and parallel. See also advanced
program-to-program communications and parallel sessions.

shared subscription A subscription that is associated with more than one rule. This subscription will
only be retrieved once by the Rules APIs even if multiple associated rules
evaluate true.

shortcut menu A floating list of actions. to open a shortcut menu, click an object and hold
down the right mouse button; the available actions depend on the object.

Siebel VB A programming language that is used to write event procedures (scripts),
which are attached to object definitions.

Simple Mail Transfer
Protocol (SMTP)

Simple Mail Transfer Protocol is a TCP/IP protocol used in sending and
receiving e-mail. However, since it is limited in its ability to queue messages
at the receiving end, it is usually used with one or two other protocols, POP3
or IMAP, that let the user save messages in a server mailbox and download
them periodically from the server. SMTP is the Internet’s standard host-to-host
mail transport protocol and traditionally operates over TCP port 25.

 Glossary

Developer’s Guide 109

Simple Object
Access Protocol
(SOAP)

Simple Object Access Protocol provides a way for applications to
communicate with each other over the Internet, independent of platform.
Remote objects can give a program almost unlimited power over the Internet,
but most firewalls block non-HTTP requests. SOAP, an XML-based protocol,
gets around this limitation to provide intraprocess communication across
machines.

In Enterprise Portal, the implementation of SOAP is intended to provide
businesses with a way to expose corporate software functionality to their
customers with minimal firewall constraints, platform dependencies or
complex development implementations involving DCOM or CORBA.

SOAP was developed by Microsoft, DevelopMentor, and Userland Software
and has been proposed to the Internet Engineering Task Force (IETF) as a
standard.

snap-In A software component that provides easy access and configuration of
information from the framework of the Microsoft Management Console for
Windows NT.

socket server The socket is the method for accomplishing inter-process communication.
What this means is a socket is used to allow one process to speak to another,
very much like the telephone is used to allow one person to speak to another.
A socket must be created to listen for connections. Sockets have the ability to
queue incoming connection requests. The communication that occurs between
the client and the server must be reliable. That is, no data can be dropped and
it must arrive on the client side in the same order in which the server sent it.

standard markup
language

Standard ML is a general-purpose programming language designed for large
projects.

Structured Query
Language (SQL)

A language developed by IBM to process data in a relational database. SQL is
an industry standard.

sub-element Basic building block of an X12 transaction. Some X12 elements are comprised
of multiple entities. The sub-element separator separates these sub-elements.

sub-element
separator

The character that appears at the end of each sub-element within an X12
transaction. For inbound X12 documents, this character definition is read
directly from the envelope. For outbound documents, customer-specific sub-
element separators are retrieved from the trading partner database.

subscription A subscription is uniquely identified by its application group, message type,
and subscription name. It contains actions with options and can be associated
with one or more rules. Subscriptions also have permissions that determine
user access to change the subscription definition.

 Glossary

110 e-Adapter Development Kit

synchronous In electronic messaging, a method of operation in which sender and receiver
applications are tightly coupled and dependent. The receiver must answer the
sender’s message immediately with a well-defined response; the sender must
wait for the receiver’s response before proceeding to the next operation.
Compare to asynchronous.

syntax The rules for using transactions and documents.

system
administrator

The person at a computer installation who designs, controls, and manages the
use of the computer system.

systems
management

The process of initiating, configuring, monitoring, and adjusting applications
on a system.

TA1
acknowledgement

The TA1 is an Interchange Acknowledgement. A network provider uses it to
report the status of processing a received interchange header and trailer or the
non-delivery.

table A database remembers relationships between pieces of information by storing
the information in tables. The columns and rows in each table define the
relationships in a highly structured way. We can classify tables by function into
two types: support tables and data tables. Most tables fit into only one category,
but some can serve as both support and data tables.

A support table stores information that changes infrequently and functions as a
list from which you make selections.

tag A set of bits or characters that identify various conditions about data in a file.
In Formatter, a standard value indicating the field’s name.

target A system, program, or device that interprets and replies to requests received
from a source.

template A form, mold, or pattern used as a guide to making something. In
programming, a template is a generic class or other unit of source code that can
be used as the basis for unique units of code.

thin client Thin client refers to the Net PC or the network computer (NC), personal
computers for businesses that are centrally-managed, configured with only
essential equipment, and don't have CD-ROM players, diskette drives, or
expansion. Since the idea is to limit such computers to essential applications,
they tend to remain "thin" in terms of the client applications they include.

 Glossary

Developer’s Guide 111

thread safe A component or service is termed thread safe if multiple instances can be run
at the same time. For example, a service may be used by multiple components
that are running concurrently in multiple enclaves. Each component must be
able to invoke that service without sharing violations.

trace The process of recording the sequence in which the statements in a program are
executed and, optionally, the values of the program variables used in the
statements.

trading partner Vendor or other party with whom business is conducted.

TRAN-IDE The IDE tool used to develop Production Objects used by e-Biz Impact.
Production Objects process incoming messages by filtering, mapping, and/or
exploding messages for the required endpoint destination applications.

transaction An activity or request. Additions, changes, and deletions are typical
transactions stored in a computer. An exchange between a program on a local
system and a program on a remote system that accomplishes a particular action
or results.

transaction (EDI) A group of ANSI ASC X12 segments within an ANSI ASC X12 envelope.

transaction
management

 A method of handling electronic messaging in which only committed
messages are sent, and only messages received and committed are considered
delivered.

transaction
processing

A method of handling computer operations in which the operations take place
immediately upon receipt of the processing request. Also called realtime or
online processing. Compare to batch processing.

transaction set A complete business document such as an invoice, a purchase order, or a
remittance.

translator A piece of software that converts data from one format to another, often with
intermediate lookups, validations, and edits.

transport The entity that stores individual message; for example, a queue.

Uniform Resource
Indentifier

A compact string of characters for identifying an abstract or physical resource
and provides a simple and extensible means for identifying resources. An
example of an URI is a URL.

 Glossary

112 e-Adapter Development Kit

Uniform Resource
Locator

A subset of a URI, a URL is like a networked extension of the standard
filename concept: you can point to a file in a directory, but that file and
directory can exist on any machine on the network. They can also be served by
any of several different methods. URLs can also point to queries, documents
stored deep within databases, and so on.

unit of work One of more database operations grouped under a commit or rollback. A unit
of work ends when an application commits or rolls back a series of request or
when the application terminates. See also commit, rollback, and transaction.

user exit A user-written program that processes data that is being transferred through an
SAP link.

view An alternative representation of data from one or more tables. A view can
include all or some of the columns contained in the table or tables on which it
is defined.

workflow Software used to automatically route events or work-items from one user or
program to another. Workflow is synonymous with process flow, although
traditionally has been used in the context of person-to-person information
flows.

X12 1) The committee within ANSI which defines EDI standards for business-to-
business communications. 2) The set of transactions and their specifications, as
defined by ANSI ASC X12.

x-log Error messages that contain a history of process actions and errors. X-logs are
50,000 bytes each; when xlogs reach the 50,000 bytes limit, alternative xlogs
are automatically created named xlog2, xlog3, etc.

Developer’s Guide 113

A
acknowledge.put 54
Acquire 19
Acquire Buffer configuration file 23
Acquire Buffer Mode 23
Acquire NDO configuration file 22
Acquire Tree Mode 21
adapter 48
adapter_wait_time 52
app.group 48
application servers 59, 67

EAServer 2, 46, 63
WebLogic Application Server 2, 46, 63
WebSphere Application Server 2, 46, 63

architecture 4, 6

B
batch.size 48
batch.timeout 49

C
Catalog configuration file 16
Catalog mode 15
catalog.out 49
catalog.outstatus 49
clash.avoid 56, 58
configuration file format 47

Acquire 22, 23
Catalog 16
Deliver 28, 29
Process 32, 34
Schema 14
Schema Remove 18

configuration keys
DTD Schema Loader 59

NCM Schema Loader 58
Schema Loader required 54
standard 48
transport 50
XML Serializer 67

Configuring the Environment 46
continue.format.exists 56, 58, 60, 61

D
data 49
data representation

buffer 9
tree 9

Deliver 24, 29
Deliver Buffer configuration file 29
Deliver Buffer Mode 29
Deliver NDO configuration file 28
Deliver Tree Mode 27
DTD Schema Loader 59

E
e-ADK architecture 6
EMQ MQSeries 46
Encrypting the Configuration File 68
enter.quiet.state 53
Example Files 38
exception 53

handling 75
logging 75

exception handling and logging 75
exceptions

handling 76

Index

Index

114 e-Adapter Development Kit

F
file format 47

I
I18N_Condense 56, 66
Input.Serializer.Encoding 64
Input.Serializer.Factory 64
Input.Serializer.Library 64
integration 4

J
JMS OT Driver 46

M
makefile 39
maximum.adapter.retries 53
maximum.transport.retries 53
mode 49
modes 8

Acquire 8
Catalog 8
Deliver 8
Process 8
Schema 8
Schema Remove 8

MQSeries 46
msg.type 49
MSMQ File 46

N
NCF.version 57, 66
NCFSerializer 46
NCM Schema Loader 58
NNT56 SchemaLoader 46
NT services 70

O
Open Transport keys 54
Order and Format of Fields 85
Output.Serializer.Encoding 65
Output.Serializer.Factory 64
Output.Serializer.Library 65

P
prefix 55, 57, 58, 65, 67, 68
Prerequisites 38
Process 30
Process Buffer configuration file 34
Process Buffer Mode 34
Process Tree configuration file 32
Process Tree Mode 32

R
Related Documentation viii
remove.by.prefix 55, 57
remove.schema.keys 55, 57
repository.dir 57, 58, 60, 61, 67, 68
retry exception 52

S
Schema configuration file 14
Schema Does Not Exist Error 85
schema loader

factory 47
library 47

Schema Loader Plug-Ins 54
Schema Remove 17
Schema Remove configuration file 18
schema.input 57, 59
schema.key 59
schema.output 57, 59
SchemaLoader. Factory 54
SchemaLoader. Library 54
Searching for Versions 85
session 57, 59
set.msg.options 50, 67, 68

Developer’s Guide 115

standard keys 48

T
target.wait_time 52
test.drive 50
transport 5
transport keys 50
transport.context.name 50
transport.exit_if_empty 51
transport.failure_store_name 51
transport.in.name 50
transport.out.name 50

V
Verifying the Environment 84

X
XMLSerializer 67

Index

116 e-Adapter Development Kit

	Developer’s Guide
	About This Book
	CHAPTER 1 Architectural Overview
	Purpose
	Integration
	Integration Server
	Adapter
	Transport

	Terminology
	e-ADK Architecture
	Adapter Shell
	Adapter Plug-In

	Modes
	Data Representation

	CHAPTER 2 Modes
	Schema
	Schema Mode Internationalization
	Schema Mode Diagram
	Schema Mode Example Configuration File

	Catalog
	Catalog Mode Internationalization
	Catalog Mode Example Configuration File

	Schema Remove
	Schema Remove Model
	Schema Remove Example Configuration File

	Acquire
	Acquire Mode Internationalization
	Acquire Mode Model
	Acquire Tree Mode
	Acquire Buffer Mode

	Deliver
	Deliver Mode Internationalization
	Deliver Mode Model
	Deliver Tree Mode
	Deliver Buffer Mode

	Process
	Process Mode Internationalization
	Process Mode Model
	Process Tree Mode
	Process Buffer Mode

	CHAPTER 3 Adapter Development Process
	Prerequisites
	Example Files
	Developing an Adapter
	Adapter Development Process
	Defining Your Adapter Plug-In
	Creating Shared Libraries

	Creating Configuration Files for Your Adapter Plug-In

	CHAPTER 4 Adapter Runtime Environment
	Adapter Shell Settings for Servers
	Configuring the Environment
	Common File Format
	Configuration Keys

	Encrypting the Configuration File
	Testing
	Using Test Drive in Schema Mode
	Using OT File Driver for Testing

	Executing NNSYAdapter39
	Executing the Adapter Shell from the Command Line
	Registering the Adapter as an NT Service

	Deploying the Adapter
	Redistributing the Adapter Runtime Environment

	Message Acknowledgement
	Exception Handling and Logging
	Handling Exceptions
	Methods of Handling Errors
	Logging

	Using Tools for Debugging
	-trace Option
	Using File Driver for Debugging

	Reviewing the Schema Tree

	CHAPTER 5 Troubleshooting
	Using Error Messages
	Verifying the Environment
	Searching for Versions
	Order and Format of Fields
	Schema Does Not Exist Error
	Using -trace Option
	Reviewing the Schema Tree
	Using File Driver for Debugging

	Glossary
	Index

