
Programmer’s Guide

Monitor Client Library

 12.5

DOCUMENT ID: 32865-01-1250-01

LAST REVISED: May 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, Transact-SQL, Translation Toolkit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

 iii

About This Book ... xi

CHAPTER 1 Getting started with Monitor Client Library 1
Overview .. 1
What is Adaptive Server Enterprise Monitor 1

Adaptive Server Enterprise Monitor components...................... 2
Adaptive Server Enterprise Monitor architecture....................... 2

Writing a Basic Monitor Client Library program................................ 4
Application logic flow ... 5
Step 1: define error handling ... 5
Step 2: connect to a server ... 6
Step 3: create a view... 7
Step 4: create filters .. 10
Step 5: set alarms ... 11
Step 6: request performance data and process results........... 12
Step 7: close and deallocate connections 13
Playing back recorded data ... 13

A sample Monitor Client Library program....................................... 14
Example program .. 14

CHAPTER 2 Data Items and Statistical Types ... 43
Overview .. 43
Result and key data items.. 43
Data items and views ... 44

Rows with no data versus no rows in views 45
Server-level status... 45
Combining data items.. 46
Result and key combinations .. 46
Connection summaries.. 46
Current statement and application name data items............... 46

Data item definitions... 47
Deciphering the names of data items...................................... 48
SMC_NAME_ACT_STP_DB_ID ... 49

Contents

iv

SMC_NAME_ACT_STP_DB_NAME 50
SMC_NAME_ACT_STP_ID .. 50
SMC_NAME_ACT_STP_NAME ... 51
SMC_NAME_ACT_STP_OWNER_NAME.............................. 51
SMC_NAME_APPLICATION_NAME...................................... 52
SMC_NAME_APP_EXECUTION_CLASS.............................. 53
SMC_NAME_BLOCKING_SPID ... 53
SMC_NAME_CONNECT_TIME.. 54
SMC_NAME_CPU_BUSY_PCT ... 54
SMC_NAME_CPU_PCT ... 55
SMC_NAME_CPU_TIME.. 55
SMC_NAME_CPU_YIELD .. 56
SMC_NAME_CUR_APP_NAME... 56
SMC_NAME_CUR_ENGINE .. 57
SMC_NAME_CUR_EXECUTION_CLASS 57
SMC_NAME_CUR_PROC_STATE .. 57
SMC_NAME_CUR_STMT_ACT_STP_DB_ID........................ 58
SMC_NAME_CUR_STMT_ACT_STP_DB_NAME................. 59
SMC_NAME_CUR_STMT_ACT_STP_ID............................... 59
SMC_NAME_CUR_STMT_ACT_STP_NAME........................ 60
SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME 60
SMC_NAME_CUR_STMT_ACT_STP_TEXT......................... 61
SMC_NAME_CUR_STMT_BATCH_ID................................... 61
SMC_NAME_CUR_STMT_BATCH_TEXT............................. 62
SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED 62
SMC_NAME_CUR_STMT_CONTEXT_ID.............................. 63
SMC_NAME_CUR_STMT_CPU_TIME 63
SMC_NAME_CUR_STMT_ELAPSED_TIME 64
SMC_NAME_CUR_STMT_LINE_NUM 64
SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED....... 65
SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED..... 65
SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED........... 65
SMC_NAME_CUR_STMT_NUM .. 66
SMC_NAME_CUR_STMT_PAGE_IO..................................... 66
SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ............. 67
SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ........... 67
SMC_NAME_CUR_STMT_PAGE_WRITE............................. 68
SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT................. 68
SMC_NAME_CUR_STMT_START_TIME.............................. 69
SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET................ 69
SMC_NAME_DATA_CACHE_CONTENTION........................ 70
SMC_NAME_DATA_CACHE_EFFICIENCY 70
SMC_NAME_DATA_CACHE_HIT .. 70
SMC_NAME_DATA_CACHE_HIT_PCT................................. 71

Contents

 v

SMC_NAME_DATA_CACHE_ID .. 71
SMC_NAME_DATA_CACHE_LARGE_IO_DENIED 72
SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED..... 73
SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED 73
SMC_NAME_DATA_CACHE_MISS 74
SMC_NAME_DATA_CACHE_NAME 74
SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY 75
SMC_NAME_DATA_CACHE_REUSE 75
SMC_NAME_DATA_CACHE_REUSE_DIRTY....................... 76
SMC_NAME_DATA_CACHE_REF_AND_REUSE................. 76
SMC_NAME_DATA_CACHE_SIZE.. 77
SMC_NAME_DB_ID ... 77
SMC_NAME_DB_NAME... 78
SMC_NAME_DEADLOCK_CNT... 78
SMC_NAME_DEMAND_LOCK... 79
SMC_NAME_DEV_HIT... 79
SMC_NAME_DEV_HIT_PCT.. 79
SMC_NAME_DEV_IO... 80
SMC_NAME_DEV_MISS.. 80
SMC_NAME_DEV_NAME .. 81
SMC_NAME_DEV_READ... 81
SMC_NAME_DEV_WRITE ... 82
SMC_NAME_ELAPSED_TIME... 82
SMC_NAME_ENGINE_NUM .. 83
SMC_NAME_HOST_NAME.. 83
SMC_NAME_KPID.. 84
SMC_NAME_LOCK_CNT... 84
SMC_NAME_LOCK_HIT_PCT ... 85
SMC_NAME_LOCK_RESULT .. 85
SMC_NAME_LOCK_RESULT_SUMMARY............................ 86
SMC_NAME_LOCK_STATUS .. 86
SMC_NAME_LOCK_STATUS_CNT....................................... 87
SMC_NAME_LOCK_TYPE... 88
SMC_NAME_LOCKS_BEING_BLOCKED_CNT 88
SMC_NAME_LOCKS_GRANTED_IMMED 89
SMC_NAME_LOCKS_GRANTED_WAITED 90
SMC_NAME_LOCKS_NOT_GRANTED................................. 90
SMC_NAME_LOG_CONTENTION_PCT 91
SMC_NAME_LOGIN_NAME .. 91
SMC_NAME_MEM_CODE_SIZE ... 92
SMC_NAME_MEM_KERNEL_STRUCT_SIZE....................... 92
SMC_NAME_MEM_PAGE_CACHE_SIZE 93
SMC_NAME_MEM_PROC_BUFFER..................................... 93
SMC_NAME_MEM_PROC_HEADER 93

Contents

vi

SMC_NAME_MEM_SERVER_STRUCT_SIZE 94
SMC_NAME_MOST_ACT_DEV_IO 94
SMC_NAME_MOST_ACT_DEV_NAME................................. 95
SMC_NAME_NET_BYTE_IO.. 95
SMC_NAME_NET_BYTES_RCVD... 96
SMC_NAME_NET_BYTES_SENT ... 96
SMC_NAME_NET_DEFAULT_PKT_SIZE 96
SMC_NAME_NET_MAX_PKT_SIZE...................................... 97
SMC_NAME_NET_PKT_SIZE_RCVD.................................... 97
SMC_NAME_NET_PKT_SIZE_SENT 97
SMC_NAME_NET_PKTS_RCVD ... 98
SMC_NAME_NET_PKTS_SENT.. 98
SMC_NAME_NUM_ENGINES.. 99
SMC_NAME_NUM_PROCESSES ... 99
SMC_NAME_OBJ_ID ... 100
SMC_NAME_OBJ_NAME... 101
SMC_NAME_OBJ_TYPE.. 101
SMC_NAME_OWNER_NAME.. 102
SMC_NAME_PAGE_HIT_PCT... 102
SMC_NAME_PAGE_INDEX_LOGICAL_READ 102
SMC_NAME_PAGE_INDEX_PHYSICAL_READ 103
SMC_NAME_PAGE_IO .. 104
SMC_NAME_PAGE_LOGICAL_READ 104
SMC_NAME_PAGE_NUM.. 105
SMC_NAME_PAGE_PHYSICAL_READ 105
SMC_NAME_PAGE_WRITE .. 106
SMC_NAME_PROC_STATE .. 106
SMC_NAME_PROC_STATE_CNT....................................... 108
SMC_NAME_SPID.. 108
SMC_NAME_SQL_SERVER_NAME.................................... 110
SMC_NAME_SQL_SERVER_VERSION.............................. 110
SMC_NAME_STP_CPU_TIME... 110
SMC_NAME_STP_ELAPSED_TIME.................................... 111
SMC_NAME_STP_EXECUTION_CLASS 111
SMC_NAME_STP_HIT_PCT.. 112
SMC_NAME_STP_LINE_NUM... 112
SMC_NAME_STP_LINE_TEXT.. 113
SMC_NAME_STP_LOGICAL_READ 113
SMC_NAME_STP_NUM_TIMES_EXECUTED 113
SMC_NAME_STP_PHYSICAL_READ 114
SMC_NAME_STP_STMT_NUM ... 114
SMC_NAME_THREAD_EXCEEDED_MAX.......................... 115
SMC_NAME_THREAD_EXCEEDED_MAX_PCT 115
SMC_NAME_THREAD_MAX_USED 116

Contents

 vii

SMC_NAME_TIME_WAITED_ON_LOCK 116
SMC_NAME_TIMESTAMP ... 116
SMC_NAME_TIMESTAMP_DATIM...................................... 117
SMC_NAME_XACT .. 117
SMC_NAME_XACT_DELETE .. 118
SMC_NAME_XACT_DELETE_DEFERRED......................... 118
SMC_NAME_XACT_DELETE_DIRECT 119
SMC_NAME_XACT_INSERT ... 119
SMC_NAME_XACT_INSERT_CLUSTERED 119
SMC_NAME_XACT_INSERT_HEAP 120
SMC_NAME_XACT_SELECT .. 120
SMC_NAME_XACT_UPDATE.. 121
SMC_NAME_XACT_UPDATE_DEFERRED 121
SMC_NAME_XACT_UPDATE_DIRECT 121
SMC_NAME_XACT_UPDATE_EXPENSIVE 122
SMC_NAME_XACT_UPDATE_IN_PLACE 122
SMC_NAME_XACT_UPDATE_NOT_IN_PLACE................. 123

CHAPTER 3 Monitor Client Library Functions... 125
Threads .. 126
Error handling... 127
Error handler .. 127
Callback function.. 128
smc_close .. 130
smc_connect_alloc... 131
smc_connect_drop... 132
smc_connect_ex .. 134
smc_connect_props ... 135
smc_create_alarm_ex.. 140
smc_create_filter.. 144
smc_create_playback_session .. 148
smc_create_recording_session ... 154
smc_create_view ... 156
smc_drop_alarm .. 159
smc_drop_filter... 160
smc_drop_view .. 161
smc_get_command_info .. 162
smc_get_dataitem_type ... 165
smc_get_dataitem_value ... 167
smc_get_row_count ... 168
smc_get_version_string ... 170
smc_initiate_playback .. 170
smc_initiate_recording ... 172
smc_refresh_ex.. 173

Contents

viii

smc_terminate_playback ... 174
smc_terminate_recording... 175

CHAPTER 4 Building a Monitor Client Library Application 179
Building on UNIX platforms .. 180

Compiling the application .. 180
Linking the application... 180
Running the application... 181
Building the sample applications ... 181

Building on Windows platforms .. 182
Compiling the application .. 182
Linking the application... 183
Running the application... 183
Building the sample applications ... 184

CHAPTER 5 Monitor Client Library Configuration Instructions 187
Loading Monitor Client Library ... 187

Using Studio Installer .. 187
Results of the load ... 188
Confirming your login account and permissions 188
Modifying the interfaces file.. 188
Setting up the user environment .. 190

Setting the SYBASE environment variable 190
Overriding the default location of the interfaces file 190

Using Monitor Client Library... 191

APPENDIX A Examples of Views .. 193
Cache performance summary.. 194
Current statement summary... 195
Database object lock status ... 195
Database object page I/O .. 196
Data cache activity for individual caches 197
Data cache statistics for session.. 197
Data cache statistics for sample interval...................................... 198
Device I/O for session .. 198
Device I/O for sample interval .. 199
Device I/O performance summary ... 199
Engine activity .. 200
Lock performance summary... 200
Network activity for session.. 201
Network activity for sample interval.. 202
Network performance summary ... 202

Contents

 ix

Procedure cache statistics for session... 203
Procedure cache statistics for sample interval............................. 203
Procedure page I/O.. 204
Process activity .. 205
Process database object page I/O ... 205
Process detail for locks .. 206
Process detail page I/O.. 207
Process locks ... 208
Process page I/O ... 208
Process state summary.. 209
Process stored procedure page I/O ... 209
Server performance summary.. 210
Stored procedure activity ... 211
Transaction activity .. 211

APPENDIX B Datatypes and Structures .. 227
Summary of datatypes ... 227
Enum: SMC_ALARM_ACTION_TYPE .. 230
Enum: SMC_CLOSE_TYPE .. 230
Enum: SMC_DATAITEM_NAME ... 230
Enum: SMC_DATAITEM_STATTYPE ... 230
Structure: SMC_DATAITEM_STRUCT.. 231
Enum: SMC_DATAITEM_TYPE .. 231
Enum: SMC_ERR_SEVERITY .. 231
Enum: SMC_FILTER_TYPE .. 232
Enum: SMC_HS_ESTIM_OPT .. 232
Enum: SMC_HS_MISSDATA_OPT ... 232
Enum: SMC_HS_PLAYBACK_OPT .. 232
Enum: SMC_HS_SESS_DELETE_OPT...................................... 233
Enum: SMC_HS_SESS_ERR_OPT .. 233
Enum: SMC_HS_SESS_PROT_LEVEL 233
Enum: SMC_HS_SESS_SCRIPT_OPT....................................... 234
Enum: SMC_HS_TARGET_OPT... 234
Enum: SMC_HS_TARGET_OPT... 234
Enum: SMC_INFO_TYPE.. 234
Enum: SMC_LOCK_RESULT.. 235
Enum: SMC_LOCK_RESULT_SUMMARY 235
Enum: SMC_LOCK_STATUS.. 236
Enum: SMC_LOCK_TYPE... 236
Enum: SMC_OBJ_TYPE ... 236
Enum: SMC_PROC_STATE.. 236
Enum: SMC_PROP_ACTION .. 237
Enum: SMC_PROP_TYPE .. 237
Enum: SMC_RETURN_CODE .. 238

Contents

x

Enum: SMC_SERVER_MODE .. 239
Enum: SMC_SOURCE .. 239
Union: SMC_VALUE_UNION .. 240

APPENDIX C Backward Compatibility.. 241
Obsolete and replacement functions.. 241
New functions... 242
Rules for functions and callbacks compatibility............................ 242

APPENDIX D Troubleshooting Information and Error Messages 243
Troubleshooting ... 243
Error messages.. 244

Communication failure: check if server is running................. 244
Configuration failure: possibly missing interfaces file or bad login

parameters. .. 244
Don’t know how to build example.h....................................... 245
error L2029: ‘SMC_CONNECT’ : unresolved external 245
error L2029: ‘SMC_CREATE_VIEW’ : unresolved external .. 245
fatal error C1083: Cannot open include file: ‘cstypes.h’: No such

file or directory .. 245
fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such

file or directory .. 246
LINK: fatal error L4051: smcapi32.lib : cannot find library..... 246

Index ... 247

xi

About This Book

Sybase® Adaptive Server™ Enterprise Monitor™ Client Library
Programmer’s Guide describes how to write Sybase Adaptive Server
Enterprise Monitor Client Library (Monitor Client Library) applications
that access Sybase Adaptive Server Enterprise performance data.

Audience This guide is for programmers who use Adaptive Server Enterprise
Monitor Server or Adaptive Server Enterprise Monitor Historical Server.

How to use this book When writing a Monitor Client Library application, use this book as a
source of general information on how to construct Monitor Client Library
programs.

• Chapter 1, “Getting started with Monitor Client Library” explains
how to structure a basic Monitor Client Library program and includes
a simple, complete Monitor Client Library application.

• Chapter 2, “Data Items and Statistical Types” describes data items,
statistical types, and valid data item combinations of data items used
in Monitor Client Library applications to gather performance data.

• Chapter 3, “Monitor Client Library Functions” describes each
function including syntax, parameter values, examples, permissions,
and related functions.

• Chapter 4, “Building a Monitor Client Library Application”
describes how to compile and link a Monitor Client Library program.

• Chapter 5, “Monitor Client Library Configuration Instructions”
explains how to configure Monitor Client Library on UNIX or
Windows NT.

• Appendix A, “Examples of Views” provides examples of valid
views.

• Appendix B, “Datatypes and Structures” summarizes datatypes used
by Monitor Client Library and describes the datatypes that have no
equivalent in C or Open-Client Client Library.

• Appendix C, “Backward Compatibility” lists obsolete functions and
their replacement functions.

xii

• Appendix D, “Troubleshooting Information and Error Messages”
explains how to respond to problems that you might have with Monitor
Client Library and lists error messages that may be reported.

Related documents The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Reference Manual – contains detailed information about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains a list of the Transact-SQL reserved words and definitions of
system tables.

 About This Book

xiii

• Performance and Tuning Guide – explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issues that affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

• The Utility Guide – documents the Adaptive Server utility programs, such
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with X/Open
XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

xiv

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data stored
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the following books for more information about Adaptive Server
Enterprise configuration and tuning:

• Managing and Monitoring Sybase Adaptive Server Enterprise describes
how to manage Adaptive Server Enterprise and monitor its activities using
Sybase Central™.

• Adaptive Server Enterprise Performance and Tuning Guide describes how
to analyze Adaptive Server Enterprise performance and tune it to improve
performance.

• Adaptive Server Enterprise Reference Manual describes SQL commands,
functions, and stored procedures used with Sybase Adaptive Server
Enterprise.

• Adaptive Server Enterprise System Administration Guide contains
information about administering Adaptive Server Enterprise.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• Technical Library CD contains product manuals and is included with your
software. The DynaText browser (downloadable from Product Manuals at
http://www.sybase.com/detail/1,3693,1010661,00.html) allows you to access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

 About This Book

xv

• Technical Library Product Manuals Web site is an HTML version of the
Technical Library CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Specify a time frame and click Go.

4 Select a product.

5 Click an EBF/Update title to display the report.

❖ To create a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

xvi

Text conventions Italics indicates emphasis or indicates that a definition accompanies the
highlighted term.

Variable names, document titles, file names, directory names, and Adaptive
Server Enterprise table names are in italic typeface:

-Umyname
Adaptive Server Enterprise Monitor Server User’s Guide
SQLMon.mrg file
$SYBASE directory
 systables

Command syntax Command syntax statements use the following notational conventions:

Table 1: Command syntax conventions

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Example Description

monserver Command keywords appear in lowercase.

option Variables (words that stand for values that you supply in the
command) appear in italic.

[option] Brackets mean that including the enclosed items in the command is
optional. Do not include the brackets in your command.

option... Ellipses indicate that you may repeat the preceding item as many
times as you like in the command. Do not include ellipses in your
command.

1

C H A P T E R 1 Getting started with Monitor
Client Library

This chapter describes the following topics:

Overview
Monitor Client Library is part of Adaptive Server Enterprise Monitor™. It
is an application programming interface (API) that enables you to write
client applications that connect to Adaptive Server, Adaptive Server
Enterprise Monitor Server (Monitor Server), and Adaptive Server
Enterprise Historical Server (Historical Server) to gather performance
data. This chapter describes Adaptive Server Enterprise Monitor, explains
the components of a Monitor Client Library application, and lists a sample
Monitor Client Library application.

What is Adaptive Server Enterprise Monitor
Adaptive Server Enterprise Monitor provides a way to monitor Adaptive
Server performance in real time or in a historical data-gathering mode.
System administrators can use this information to identify potential
resource bottlenecks, to research current problems, and to tune for better
performance. Adaptive Server Enterprise Monitor provides feedback for
tuning at several levels:

• Adaptive Server configuration

Topic Page
Overview 1

What is Adaptive Server Enterprise Monitor 1

Writing a Basic Monitor Client Library program 4

A sample Monitor Client Library program 14

What is Adaptive Server Enterprise Monitor

2

• Table and index design

• SQL statements in applications and stored procedures

Adaptive Server Enterprise Monitor components
Adaptive Server Enterprise Monitor consists of four components that gather or
display Adaptive Server performance data:

• Monitor Server – a server that collects Adaptive Server performance data
in real time and makes the data available to the other Adaptive Server
Enterprise Monitor components. Monitor Server is a Sybase Open
Server™ application.

• Historical Server – a server that obtains Adaptive Server performance data
from Monitor Server and saves the data in files for deferred analysis.
Historical Server is a Sybase Open Server application.

• Monitors in the Adaptive Server plug-in for Sybase Central (Monitor
Viewer) – the monitors provide a graphical user interface to Monitor
Server. They obtain Adaptive Server performance data from Monitor
Server and display the data in real time in tables and graphs.

• Monitor Client Library – an application programming interface to Monitor
Server available to users for developing monitoring applications. Monitor
Viewer and Historical Server are Monitor Client Library applications.

Adaptive Server Enterprise Monitor architecture
Figure 1-1shows the relationships between Adaptive Server and the various
components of Adaptive Server Enterprise Monitor.

CHAPTER 1 Getting started with Monitor Client Library

3

Figure 1-1: Adaptive Server Enterprise Monitor architecture

Adaptive Server saves performance data in a shared memory area that Monitor
Server reads. Because of this shared memory technique, Monitor Server must
be installed and running on the same machine as the Adaptive Server
installation being monitored. A one-to-one relationship exists between
Adaptive Server and Monitor Server. For more information about Monitor
Server, see the Sybase Adaptive Server Enterprise Monitor Server User’s
Guide.

Monitor Client Library applications obtain Adaptive Server performance
statistics from Monitor Server. These applications are clients of Monitor
Server. For performance reasons, Sybase recommends running Monitor Client
Library applications on machines other than the ones where Adaptive
Server/Monitor Server pairs are running.

Monitor Viewer in Sybase Central includes a set of monitors showing different
aspects of Adaptive Server resource usage at various levels of detail. Each open
monitor is a separate application, with a unique client connection to Monitor
Server. In Sybase Central, each Adaptive Server installation has its own
Monitors folder containing the set of monitor objects.

Open
Client

Library

Adaptive Server

Shared Memory

Monitor
Server

Adaptive Server client
applications, including isql

Historical
Server

Monitor Viewer
in

Sybase Central

Other Monitor
Client Library
applications

These servers must reside on
the same computer.

Open
Client

Library

Open
Client

Library

Monitor
Client

Library

Monitor
Client

Library

Monitor
Client

Library

Writing a Basic Monitor Client Library program

4

Historical Server collects performance information from Monitor Server and
saves the information in files for deferred analysis. Historical Server interfaces
let users specify the data to collect and the time period desired. They also
include a historical data playback feature. The interfaces are:

• A command interface in isql. For more information, see the Sybase
Adaptive Server Enterprise Monitor Historical Server User’s Guide.

• A programming interface using Monitor Client Library. For more
information, see Chapter 3, “Monitor Client Library Functions” and the
Sybase Adaptive Server Enterprise Monitor Historical Server User’s
Guide.

Writing a Basic Monitor Client Library program
A basic Monitor Client Library application:

1 Defines error handling.

2 Connects to a server using the following steps:

• Allocates a connection.

• Sets properties on a connection.

• Connects to a server.

3 Creates one or more views that define the performance data to be
monitored.

4 Optionally, targets specific performance data values with filters.

5 Optionally, sets alarms on performance data values.

6 Requests performance data values.

7 Processes the results.

8 Closes the connection to the server.

9 Deallocates the connection or reuse it by reconnecting.

Note You must have the System Administrator role on Adaptive Server or
execute permission on the stored procedure mon_rpc_connect to perform
monitoring.

CHAPTER 1 Getting started with Monitor Client Library

5

Application logic flow
Most Monitor Client Library applications exhibit a logic flow similar to the
following:

allocate a connection
 set properties on the connection
 connect
 loop to create views on the connection
 loop to create filters (optional)
 loop to create alarms (optional)
 loop to refresh connection
 for each view
 get the row count
 for each row
 for each column
 get the data
 display the data
 loop to drop alarms (optional)
 loop to drop filters (optional)
 loop to drop views (optional)
 close monitor connection
 deallocate or reuse connection

where:

• An application can have any number of connections.

• A connection can have one or more views.

• A view must have one or more data items.

• A view can have one filter per data item.

• A view can have any number of alarms and can have multiple alarms per
data item in the view.

The following sections describe the steps for a basic Monitor Client Library
program.The steps are cross referenced to the sample program that follows
them.

Step 1: define error handling
An application uses one or more callback routines to handle Monitor Client
Library and Server error and informational messages.

See the code sample on page 34.

Writing a Basic Monitor Client Library program

6

Step 2: connect to a server
The Monitor Client Library functions require establishing an Adaptive Server
Enterprise Monitor connection. The Adaptive Server Enterprise Monitor
connection uses one or more Open Client connections depending upon the
connection type.

The two types of Monitor connections are Live mode and Historical mode:

• Live mode connects to Monitor Server and Adaptive Server. It provides
access to performance data.

• Historical mode connects to Historical Server and either records
performance data for later access or plays back recorded data.

Connecting to a server is a three-step process. An application:

• Allocates a connection structure

• Sets properties for the connection, if necessary

• Logs in to a server

Allocating a connection structure

An application calls smc_connect_alloc to allocate a connection structure.

See the code sample on page 16.

Setting connection structure properties

An application calls smc_connect_props to set, retrieve, or clear connection
structure properties.

Connection properties define various aspects of a connection’s behavior. For
example:

• SMC_PROP_USERNAME defines the username that a connection will
use when logging into a server.

• SMC_PROP_PASSWORD specifies the password for the username.

• SMC_PROP_SERVERNAME defines the server for this connection.

• SMC_PROP_IFILE defines the interfaces file name for this connection. If
you do not specify this property on a UNIX system, the default interfaces
file in the SYBASE environment variable directory is used. On Windows
NT, the default interfaces file is sql.ini.

CHAPTER 1 Getting started with Monitor Client Library

7

• SMC_PROP_SERVERMODE defines the type of connection: live or
historical.

Required connection properties

At a minimum, an application must set the connection properties that specify
the connection’s username (SMC_PROP_USERNAME) and allow the server
to authenticate the user’s identity by requiring a valid password. If the server
requires a password, then the application must set the
SMC_PROP_PASSWORD property to the value of the user’s server password.

See the code sample on page 17.

Connecting to a server

An application calls smc_connect_ex to connect to a server. When establishing
a connection, smc_connect_ex sets up communication with the network, logs
in to the server, and communicates any connection-specific property
information to the server. A connection to Adaptive Server writes dbcc traceon
messages to the Adaptive Server error log. You can ignore these messages.

For example, if the server supports network-based user authentication and the
client application requests it, then Client Library and the server query the
network’s security system to see if the user (whose name is specified by
SMC_PROP_USERNAME) is logged in to the network.

See the code sample on page 22.

Step 3: create a view
Views are defined groups of data items. The data items specified determine how
the data is summarized. Since you can specify multiple views, the application
has full flexibility in the gathering of data. For example, a view consisting of
two data items (device name, value for sample and device I/O, rate for sample)
returns the device I/O rate for each database device.

For details on valid combinations of data items and information about how data
items are summarized, see Chapter 2, “Data Items and Statistical Types”

For examples of views, see Appendix A, “Examples of Views”.

Writing a Basic Monitor Client Library program

8

Data items

A data item is a particular piece of data that can be obtained from the Monitor
Client Library, for example, page I/O, login name, device reads, and so on. For
each data item in a view, you must specify a statistical type.

Statistical types

The statistic type defines the duration of the data item (sample or session) and
whether the server performs calculations on the data item.

The six statistic types are:

• SMC_STAT_VALUE_SAMPLE – this statistic type returns a count of
activity or some type of information that applies to the most recent sample
interval. No calculations are performed.

• Activity counts – for data items that represent activity counts,
SMC_STAT_VALUE_SAMPLE returns the number of occurrences
of an activity during the most recent sample interval. For example,
SMC_STAT_VALUE_SAMPLE for SMC_NAME_PAGE_IO is the
number of page I/Os that occurred during the most recent sample
interval.

• Other information – this is the only statistic type valid for data items
that represent character strings. For example,
SMC_STAT_VALUE_SAMPLE for
SMC_NAME_OBJECT_NAME returns the name of a database
object. This statistic type is also the only one valid for data items that
represent values such as IDs and values for configured parameters, on
which calculations are never performed.

• SMC_STAT_VALUE_SESSION – this statistic type returns a cumulative
count of activity since the start of gathering the data (since the connection
was opened). No calculations are performed. For example,
SMC_STAT_VALUE_SESSION for SMC_NAME_PAGE_IO is the
number of page I/Os that occurred since the session started.

• SMC_STAT_RATE_SAMPLE – this statistic type calculates a rate per
second. It returns the average number of occurrences per second of an
activity during the most recent sample interval. For example,
SMC_STAT_RATE_SAMPLE for SMC_NAME_PAGE_IO is the
average number of page I/Os that occurred each second during the most
recent sample interval.

CHAPTER 1 Getting started with Monitor Client Library

9

The calculation is count for the most recent sample interval divided by
number of seconds in the sample interval.

• SMC_STAT_RATE_SESSION – this statistic type calculates a rate per
second. It returns the average number of occurrences per second of an
activity during the current session. For example,
SMC_STAT_RATE_SESSION for SMC_NAME_PAGE_IO is the
average number of page I/Os that occurred per second since the session
started.

The calculation is count for the session divided by number of seconds in
the session.

• SMC_STAT_AVG_SAMPLE – this statistic type calculates an average
value per occurrence of an activity over the most recent sample interval.
Only a few data items can use this statistic type. The meaning of the
returned value depends on the data item name. For example,
SMC_STAT_AVG_SAMPLE for SMC_NAME_STP_ELAPSED_TIME
is the average execution time per execution of a stored procedure during
the most recent sample interval.

• SMC_STAT_AVG_SESSION – this statistic type calculates an average
value per occurrence of an activity over the session. Only a few data items
can use this statistic type. The meaning of the returned value depends on
the data item name. For example, SMC_STAT_AVG_SESSION for
SMC_NAME_STP_ELAPSED_TIME is the average execution time per
execution of a stored procedure during the recording session.

Note Not all statistical types are valid for all data items. See Chapter 2, “Data
Items and Statistical Types” for more information about data items and the
rules for using them.

Creating views for a connection

smc_create_view creates a view on a particular Monitor connection. A
connection must have at least one view.

For details on valid combinations of data items and information about how data
items are summarized, see Chapter 2, “Data Items and Statistical Types”.

Writing a Basic Monitor Client Library program

10

You can think of a view as a table. The data items in a view are represented by
the columns in that table. The number of rows returned for a particular view
depend upon the particular data items in the view. For example, a view with
server-wide data returns a single row, whereas a view with per-device data
returns one row for each device.

For example:

A view consisting of two data items:

SMC_NAME_LOCK_TYPE, SMC_STAT_VALUE_SAMPLE
SMC_NAME_LOCK_COUNT, SMC_STAT_RATE_SAMPLE

returns the rate of requested locks for each lock type during the sample interval.

A view consisting of one data item:

SMC_NAME_LOCK_COUNT, SMC_STAT_RATE_SAMPLE

returns the rate of requested locks summarized for all lock types during the
sample interval.

For complete details on valid combinations of data items and understanding of
how data items are summarized, refer to Chapter 2, “Data Items and Statistical
Types”

See the code sample on page 22.

Step 4: create filters
smc_create_filter creates a filter on a data item. Filters limit the number of rows
of performance data returned by a view. A filter can be applied to any data item
specified in a view. A view can contain one filter per data item. If you include
more than one filter in a view, Monitor Client Library uses ANDs to include
those filters.

The types of filters available are:

• Equal to

• returns only values equal to one of the specified values (logical OR of
each Equal comparison)

• Not Equal to

• returns only values equal to none of the specified value (logical AND
of each Not-Equal comparison)

• Greater than or equal to

CHAPTER 1 Getting started with Monitor Client Library

11

• returns values greater than or equal to the specified value

• Less than or equal to

• returns values less than or equal to the specified value

• Range: bottom is less than or equal to value which is less than or equal to
top

• returns values between the top and bottom values, inclusive

• Top N

• returns the N highest values

A view may contain more than one filter, but any particular data item may only
have one filter bound to it. When a view contains more than one filter, the
filters are combined with an AND.

You can add or drop filters at any time. The change in filtering takes effect as
of the next refresh.

See the code sample on page 24.

Step 5: set alarms
smc_create_alarm_ex sets an alarm on any numeric data item (except for IDs)
in a view. When specifying an alarm for a particular data item in a live
connection, an application supplies a callback function that is invoked when
the alarm is triggered.

The Historical Server cannot call a callback function, but it can write to a log
file or execute a procedure each time an alarm is triggered.

An example of the type of actions an application can execute upon the
triggering of an alarm is to log a message, which is one of the features provided
by Historical Server.

You can add or drop an alarm at any time. The change in alarm specification
takes effect as of the next refresh.

Note Monitor Client Library applies alarms after it applies filters.

See the code sample on page 25.

Writing a Basic Monitor Client Library program

12

Step 6: request performance data and process results
After all of the connections, views, alarms, and filters are created, an
application requests values for performance data. Retrieving performance data
is a three-step process:

• Refresh the data.

• Check the row count.

• Look at each data item in the view.

When a Monitor Client Library application needs to retrieve data, it initiates a
refresh. The refresh causes Monitor Client Library to obtain fresh data. After
each refresh, the application retrieves the data in each view on an item-by-item
basis (that is, for each column of a table).

After calling smc_refresh_ex on a given connection, the application retrieves
the data. The user retrieves data on an item-by-item basis.

Depending on the number of events being collected, frequent refreshes might
be necessary. A view that contains many keys needs more frequent refreshes
than views with one or a few keys. The following symptoms might indicate an
application that is not refreshing frequently enough:

• Very large numbers of lost events reported in the Monitor Server error log.
The Sybase Adaptive Server Enterprise Monitor Server User’s Guide
discusses configuration changes that can also help to reduce event loss.

• The application appears to hang in a call to smc_refresh_ex. A large
number of keys in a view can cause a condition in which Monitor Server
can not keep up with the number of events being collected and does not
return control. Because of this, Monitor Server begins to consume large
amounts of CPU time.

smc_get_row_count determines how many rows of results are available for a
view. A view returns results in what is essentially a table with potentially many
“rows” of result data, but in some cases, possibly zero rows.

smc_get_dataitem_value retrieves performance data values for a single column
of a single row of a view.

Filters and alarms are applied during the refresh of the data.

Polling for new performance data is client-driven and is limited only by the
speed of the data-providing system and the data-gathering system.

See the code sample on page 26.

CHAPTER 1 Getting started with Monitor Client Library

13

Step 7: close and deallocate connections
Before exiting, a Monitor Client Library application must:

• Close all open connections.

• Deallocate each connection.

Closing and deallocating connections

An application calls smc_close to close a connection and smc_connect_drop to
deallocate a connection structure. It is an error to deallocate a connection that
has not been closed. A call to smc_close results in the following implicit
Monitor Client Library calls:

• One or more calls to smc_drop_alarm to remove alarms, if necessary.

• One or more calls to smc_drop_filter to remove filters, if necessary.

• One or more calls to smc_drop_view to remove views.

See the code sample on page 33.

Reopening connections

After an application closes a connection, but before it deallocates the
connection structure, it can call smc_connect_ex to reopen the connection.

Playing back recorded data
To retrieve recorded data from Historical Server, the steps are similar to the
above, except:

• The application must connect to Historical Server. Set
smc_prop_servermode to SMC_SERVER_M_HISTORICAL before
making the connection.

• The application must call smc_create_playback_session after connecting,
but before creating views.

• The application must call smc_initiate_playback after creating all views.

• Alarms are not allowed on playback of recorded historical data.

• Views and filters cannot be dropped.

• After the last refresh, the application must call smc_terminate_playback.

A sample Monitor Client Library program

14

A sample Monitor Client Library program
This section contains a listing for a sample Monitor Client Library program
that connects to a server, sends a query, processes the results, then exits.

Example program
The following example program, monitor.c, demonstrates the steps outlined in
the previous section. Commentary for each step follows the example.

/*monitor.c
 ** Example program showing logic flow of Monitor Client Library
 ** application. This example assumes the use of an ANSI C
 ** compliant compiler. This program creates two connections
 ** to the Monitor Server. Data is extracted from one connection
 ** at the beginning and end of the monitoring session.
 ** Data is extracted from the other connection every
 ** SAMPLE_INTERVAL seconds NUM_OF_SAMPLES times.
 */
#include <stdio.h>
 #include <stdlib.h>
 #include <ctype.h>
/* The mcpublic.h header file contains function prototypes, etc.
 ** for monitor client library functions. It also includes a
 ** header file called mctypes.h, which defines the datatypes
 ** used for monitor client library applications.
 */
#include "mcpublic.h"
#define NUM_OF_SAMPLES 10
 #define SAMPLE_INTERVAL 5
 #define NUM_SERVER_DATA_ITEMS 3
 #define NUM_DB_INFO_ITEMS 14
 #define NUM_NW_INFO_ITEMS 6
 #define OPTIONAL_CALLS -1

/*Error signals*/
 #define VIEW_NONEXISTENT -1
 #define CONNECT_NONEXISTENT -1

SMC_RETURN_CODE main (SMC_INT argc, SMC_CHARP argv[])
 {
 SMC_VALUE_UNION serverNameUnion;
 SMC_VALUE_UNION userNameUnion;
 SMC_VALUE_UNION passwordUnion;
 SMC_VALUE_UNION interfacesFileUnion;

CHAPTER 1 Getting started with Monitor Client Library

15

 SMC_VALUE_UNION workUnion;
 SMC_VALUE_UNION returnedDataUnion;
 SMC_CONNECT_ID connect1_id;
 SMC_CONNECT_ID connect2_id;
 SMC_VIEW_ID server_view_id;
 SMC_VIEW_ID db_info_view_id;
 SMC_VIEW_ID nw_info_view_id;

 SMC_RETURN_CODE ret;
 SMC_DATAITEM_TYPE dataitem_type; /*Holds data item type
 returned by get_dataitem_type
 function call*/
/*Needed if alarms and filters are used */
 #ifdef OPTIONAL_CALLS
 SMC_ALARM_ID alarm_id;
 SMC_FILTER_ID filter_id;
 SMC_CHARP filter_strings[2]; /*datatype is pointer to
 string. This is an array
 of pointers.*/
 #endif
 SMC_SIZET row,num_of_rows,item; /*This is an integer data
 type*/
 SMC_SIZET outputLength; /*Length of output returned
 by smc_connect_props
 function call*/
/*
 ** Definition of SMC_DATAITEM_STRUCT datatype
 */
 SMC_DATAITEM_STRUCT server_info_view[NUM_SERVER_DATA_ITEMS];
 SMC_DATAITEM_STRUCT db_info_view[NUM_DB_INFO_ITEMS];
 SMC_DATAITEM_STRUCT nw_bytes_view[NUM_NW_INFO_ITEMS];

 SMC_VALUE_UNION server_data[NUM_SERVER_DATA_ITEMS];
 SMC_VALUE_UNION db_data[NUM_DB_INFO_ITEMS];
 SMC_VALUE_UNION nw_data[NUM_NW_INFO_ITEMS];

/*Callback function prototypes. Actual functions are defined
 ** below.
 */
 SMC_VOID errorCallback(SMC_CONNECT_ID,SMC_COMMAND_ID,SMC_VOIDP);
 SMC_VOID alarmCallback(SMC_CONNECT_ID,SMC_COMMAND_ID,SMC_VOIDP);

 SMC_BOOL explicitInterfacesFile = FALSE;

 int index,iterations;

A sample Monitor Client Library program

16

/*
 ** These are labels used when printing out data returned by the
 ** database info view.
 */
 SMC_CHARP db_info_labels[NUM_DB_INFO_ITEMS] = {
 "Database ID: ",
 "Object ID: ",
 "Database name: ",
 "Object name: ",
 "Page hit percent: ",
 "Page I/O: ",
 "Page logical reads this sample: ",
 "Page logical reads this session: ",
 "Page logical read rate this sample: ",
 "Page logical read rate this session: ",
 "Page physical reads this sample: ",
 "Page physical reads this session: ",
 "Page physical read rate this sample: ",
 "Page physical read rate this session: "
 };

/*
 ** These are labels used when printing out data returned by
 ** network info view.
 */
 SMC_CHARP nw_info_labels[NUM_NW_INFO_ITEMS] = {
 "Network bytes received this sample: ",
 "Network bytes received this session: ",
 "Network bytes sent this sample: ",
 "Network bytes sent this session: ",
 "Network byte I/O rate this sample: ",
 "Network byte I/O rate this session: "
 };
 if (argc <5){
 printf("Usage <%s> -U <user_name> [-P <password>]\
 -S <monserver name> [-I <interfaces_file>]\n",argv[0]);
 exit(1);
 }
/*

** Connect to a server.
*/

For commentary, see “Step 2: connect to a server” on page 6

/*

CHAPTER 1 Getting started with Monitor Client Library

17

** Allocate first connection
*/
 ret=smc_connect_alloc(errorCallback,
 &connect1_id /*Pointer to connect_id!*/
);
 if (ret != SMC_RET_SUCCESS) {
 printf("Attempt to allocate first connection failed \
 with error %d.\n",ret);
 exit(1);
 }
/*
 ** Allocate second connection
 */
 ret=smc_connect_alloc(errorCallback,
 &connect2_id /*Pointer to connect_id!*/
);
 if (ret != SMC_RET_SUCCESS) {
 printf("Attempt to allocate second connection failed \
 with error %d.\n",ret);
 exit(1);
 }
/*

** Set mandatory and some optional connection properties.

** Mandatory connection properties are user name, server name,
 ** and password if user password is not NULL. If interfaces
 ** file name is not set, default is "interfaces" in directory
 ** pointed to by $SYBASE environment variable.

For commentary, see “Required connection properties” on page 7.

*/

 for (index=1;index<argc;index++) {
/*User name*/
 if (strncmp(argv[index],"-U",2) == 0) {
 userNameUnion.stringValue = argv[index+1];
 ret=smc_connect_props(connect1_id,
 SMC_PROP_ACT_SET, /*Property action*/
 SMC_PROP_USERNAME,/*Property*/
 &userNameUnion, /*Note that union,
 not member of union,
 is used for
 property value*/
 SMC_NULLTERM, /*Indicates null-
 terminated string
 for buffer length*/

A sample Monitor Client Library program

18

 NULL /*Use NULL when
 setting a property*/
);
 } /*End if argument is user name*/
 if (ret != SMC_RET_SUCCESS) {
 printf("Could not set user name.\n");
 exit(SMC_RET_FAILURE);
 }
 /*Password. Default password is a null string*/
 if (strncmp(argv[index],"-P",2) == 0) {
 passwordUnion.stringValue = argv[index+1];
 ret=smc_connect_props(connect1_id,
 SMC_PROP_ACT_SET, /*Property action*/
 SMC_PROP_PASSWORD,/*Property*/
 &passwordUnion, /*Note that union,
 not member of union,
 is used for
 property value*/
 SMC_NULLTERM, /*Indicates null-
 terminated string
 for buffer length*/
 NULL /*Use NULL when
 setting a property*/
);
 } /*End if argument is password*/
 if (ret != SMC_RET_SUCCESS) {
 printf("Could not set password.\n");
 exit(SMC_RET_FAILURE);
 }
/*Server name*/
 if (strncmp(argv[index],"-S",2) == 0) {
 serverNameUnion.stringValue = argv[index+1];
 ret=smc_connect_props(connect1_id,
 SMC_PROP_ACT_SET, /*Property action*/
 SMC_PROP_SERVERNAME,/*Property*/
 &serverNameUnion, /*Note that union,
 not member of union,
 is used for
 property value*/
 SMC_NULLTERM, /*Indicates null-
 terminated string
 for buffer length*/
 NULL /*Use NULL when
 setting a property*/
);
 } /*End if argument is server name*/

CHAPTER 1 Getting started with Monitor Client Library

19

 if (ret != SMC_RET_SUCCESS) {
 printf("Could not set server name.\n");
 exit(SMC_RET_FAILURE);
 }
 /*Interfaces file. If unspecified, $SYBASE/interfaces is used*/
 if (strncmp(argv[index],"-I",2) == 0) {
 interfacesFileUnion.stringValue = argv[index+1];
 ret=smc_connect_props(connect1_id,
 SMC_PROP_ACT_SET, /*Property action*/
 SMC_PROP_IFILE, /*Property*/
 &interfacesFileUnion, /*Note that
 pointer to union,
 not member of
 union,is used for
 property value*/
 SMC_NULLTERM, /*Indicates null-
 terminated string
 for buffer length*/
 NULL /*Use NULL when
 setting a property*/
);
 explicitInterfacesFile = TRUE;
 } /*End if argument is interfaces file pathname*/
 if (ret != SMC_RET_SUCCESS) {
 printf("Could not set interfaces file name.\n");
 printf("Using default interfaces file.\n");
 }
 } /*End for loop getting connection properties
 from command-line arguments*/
/*
 ** Optional smc_get_connect_props call that sets a pointer to be
 ** passed to error callback. In this case, the pointer is to a
 ** string that tells which connection encountered the error.
 */
 workUnion.voidpValue = "first connection"; /*Call to set user
 data handle looks
 for value to set in
 void pointer member
 of union.*/
 ret=smc_connect_props(connect1_id,SMC_PROP_ACT_SET,\
 SMC_PROP_USERDATA,&workUnion,SMC_NULLTERM,NULL);
 if (ret != SMC_RET_SUCCESS){
 printf("smc_connect_props call failed to \
 set userDataHandle.\n");
 }
/*

A sample Monitor Client Library program

20

 ** Demonstration of "get" mode for smc_get_connect_props
 */
 /*Check if user name has been set*/
 ret=smc_connect_props(connect1_id,
 SMC_PROP_ACT_GET,/*Property action is "get"*/
 SMC_PROP_USERNAME,
 &workUnion,
 SMC_UNUSED, /*Length parameter ignored
 on "get" operations*/
 &outputLength /*Note this is a pointer!*/
);
 if (ret != SMC_RET_SUCCESS) {
 printf ("Could not get user name. Execution continuing.\n");
 }
 else {
 if (outputLength == 0) {
 printf("User name not set. Quitting execution.\n");
 exit(SMC_RET_FAILURE);
 }
 else {
/*
 ** Application is responsible for freeing
 ** memory allocated to string member of SMC_VALUE_UNION by
 ** library.
 */
 free(workUnion.stringValue);
 }
 }
 /*Check if server name has been set*/
 ret=smc_connect_props(connect1_id,
 SMC_PROP_ACT_GET,/*Property action is "get"*/
 SMC_PROP_SERVERNAME,
 &workUnion,
 SMC_UNUSED, /*Length parameter ignored
 on "get" operations*/
 &outputLength /*Note this is a pointer!*/
);
 if (ret != SMC_RET_SUCCESS) {
 printf ("Could not get server name. Execution continuing.\n");
 }
 else {
 if (outputLength == 0) {
 printf("Server name not set. Quitting execution.\n");
 exit(SMC_RET_FAILURE);
 }
 else {

CHAPTER 1 Getting started with Monitor Client Library

21

 free(workUnion.stringValue);
 }
 }
/*
 ** Allocate properties for second connection. No need to
 ** repeat error checking.
 */
 ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \
 SMC_PROP_USERNAME,&userNameUnion,SMC_NULLTERM, NULL);
 if (ret != SMC_RET_SUCCESS) {
 printf("Could not set user name for second connection.\n");
 exit(SMC_RET_FAILURE);
 }
 ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \
 SMC_PROP_PASSWORD,&passwordUnion,SMC_NULLTERM,NULL);
 if (ret != SMC_RET_SUCCESS) {
 printf("Could not set password for second connection.\n");
 exit(SMC_RET_FAILURE);
 }
 ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \
 SMC_PROP_SERVERNAME,&serverNameUnion,SMC_NULLTERM,NULL);
 if (ret != SMC_RET_SUCCESS) {
 printf("Could not set server name for second connection.\n");
 exit(SMC_RET_FAILURE);
 }
 if (explicitInterfacesFile) {
 ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \
 SMC_PROP_IFILE,&interfacesFileUnion,SMC_NULLTERM,NULL);
 if (ret != SMC_RET_SUCCESS) {
 printf("Could not set server name for second connection.\n");
 exit(SMC_RET_FAILURE);
 }
 }
/*
 ** Optional smc_connect_props call to set user-defined pointer to
 ** be passed to error callback. This pointer points to a
 ** string that tells where the error callback was triggered.
 */
 workUnion.voidpValue = "second connection"; /*Call to set user
 data handle looks for
 value to set in void
 pointer member
 of union.*/
 ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \
 SMC_PROP_USERDATA,&workUnion,SMC_NULLTERM,NULL);
 if (ret != SMC_RET_SUCCESS){

A sample Monitor Client Library program

22

 printf("smc_connect_props call failed to set userDataHandle.\n");
 }
/*

** Connect to monitor server

For commentary, see “Connecting to a server” on page 7

*/
 /*
 ** First connection
 */
 ret=smc_connect_ex(connect1_id);
 if (ret != SMC_RET_SUCCESS) {
 printf("First connection failed to connect to \
 monitor server.\n");
 exit(SMC_RET_FAILURE);
 }
/*
 ** Second connection
 */
 ret=smc_connect_ex(connect2_id);
 if (ret != SMC_RET_SUCCESS) {
 printf("Second connection failed to connect to \
 monitor server.\n");
 exit(SMC_RET_FAILURE);
 }

/*
 ** Create views on connections.
 */

For commentary, see “Step 3: create a view” on page 7

** Define views.

/*
** Each data item must be paired with a
 ** statistic type . View definitions are used in create_view
 ** calls after connecting to monitor server.
 */
 /*This is a server-wide view that returns one row of data*/
 server_info_view[0].dataItemName =SMC_NAME_SQL_SERVER_NAME;
 server_info_view[0].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 server_info_view[1].dataItemName = SMC_NAME_SQL_SERVER_VERSION;
 server_info_view[1].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 server_info_view[2].dataItemName = SMC_NAME_TIMESTAMP;
 server_info_view[2].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
/*

CHAPTER 1 Getting started with Monitor Client Library

23

 ** This is a view with key and result data items that returns
 ** multiple rows of data.
 */
db_info_view[0].dataItemName = SMC_NAME_DB_ID; /*Key data items*/
 db_info_view[0].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 db_info_view[1].dataItemName = SMC_NAME_OBJ_ID;
 db_info_view[1].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 db_info_view[2].dataItemName = SMC_NAME_DB_NAME; /*Result data
 items*/
 db_info_view[2].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 db_info_view[3].dataItemName = SMC_NAME_OBJ_NAME;
 db_info_view[3].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 db_info_view[4].dataItemName = SMC_NAME_PAGE_HIT_PCT;
 db_info_view[4].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 db_info_view[5].dataItemName =SMC_NAME_PAGE_IO;
 db_info_view[5].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 db_info_view[6].dataItemName = SMC_NAME_PAGE_LOGICAL_READ;
 db_info_view[6].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 db_info_view[7].dataItemName = SMC_NAME_PAGE_LOGICAL_READ;
 db_info_view[7].dataItemStatType = SMC_STAT_VALUE_SESSION;
 db_info_view[8].dataItemName = SMC_NAME_PAGE_LOGICAL_READ;
 db_info_view[8].dataItemStatType = SMC_STAT_RATE_SAMPLE;
 db_info_view[9].dataItemName = SMC_NAME_PAGE_LOGICAL_READ;
 db_info_view[9].dataItemStatType = SMC_STAT_RATE_SESSION;
 db_info_view[10].dataItemName = SMC_NAME_PAGE_PHYSICAL_READ;
 db_info_view[10].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 db_info_view[11].dataItemName = SMC_NAME_PAGE_PHYSICAL_READ;
 db_info_view[11].dataItemStatType = SMC_STAT_VALUE_SESSION;
 db_info_view[12].dataItemName = SMC_NAME_PAGE_PHYSICAL_READ;
 db_info_view[12].dataItemStatType = SMC_STAT_RATE_SAMPLE;
 db_info_view[13].dataItemName = SMC_NAME_PAGE_PHYSICAL_READ;
 db_info_view[13].dataItemStatType = SMC_STAT_RATE_SESSION;
/*
 ** Another server-wide view
 */
 nw_bytes_view[0].dataItemName = SMC_NAME_NET_BYTES_RCVD;
 nw_bytes_view[0].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 nw_bytes_view[1].dataItemName = SMC_NAME_NET_BYTES_RCVD;
 nw_bytes_view[1].dataItemStatType = SMC_STAT_VALUE_SESSION;
 nw_bytes_view[2].dataItemName = SMC_NAME_NET_BYTES_SENT;
 nw_bytes_view[2].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
 nw_bytes_view[3].dataItemName = SMC_NAME_NET_BYTES_SENT;
 nw_bytes_view[3].dataItemStatType = SMC_STAT_VALUE_SESSION;
 nw_bytes_view[4].dataItemName = SMC_NAME_NET_BYTE_IO;
 nw_bytes_view[4].dataItemStatType = SMC_STAT_RATE_SAMPLE;
 nw_bytes_view[5].dataItemName = SMC_NAME_NET_BYTE_IO;

A sample Monitor Client Library program

24

 nw_bytes_view[5].dataItemStatType = SMC_STAT_RATE_SESSION;

ret=smc_create_view (connect1_id, /*Connect ID assigned when
 connect allocated*/
 server_info_view, /*This is a pointer to
 array of SMC_DATAITEM_STRUCTS
 which defines the view*/
 NUM_SERVER_DATA_ITEMS, /*No. of items in
 the view*/
 "server info view", /*Ignored on a live
 connection*/
 &server_view_id /*Value is assigned
 by this call*/
);
 if (ret != SMC_RET_SUCCESS) { /*Cleanup from failed
 create_view call*/
 ret=smc_connect_drop(connect1_id); /*Create view failed
 so no further use for
 this connection*/
 connect1_id = CONNECT_NONEXISTENT;
 }
 /*
 ** The second connection will have two views
 */
 ret=smc_create_view(connect2_id,db_info_view,NUM_DB_INFO_ITEMS,
 "db info view",&db_info_view_id);
 if (ret != SMC_RET_SUCCESS) {
 db_info_view_id = VIEW_NONEXISTENT;
 }
 ret=smc_create_view(connect2_id,nw_bytes_view,NUM_NW_INFO_ITEMS,
 "nw bytes view",&nw_info_view_id);
 if (ret != SMC_RET_SUCCESS) {
 nw_info_view_id = VIEW_NONEXISTENT;
 }
/*

** Create a filter.

*/

For commentary, see “Step 4: create filters” on page 10

/*
 ** Filters and alarms may be applied to data items within a view.
 ** This is optional.
 ** In this case, we only want to see I/O activity for a
 ** particular database and tempdb. If any physical reads occur,
 ** an alarm is triggered that posts a message to the screen.

CHAPTER 1 Getting started with Monitor Client Library

25

 */
#ifdef OPTIONAL_CALLS
 filter_strings[0] = "my_db"; /*Change to db of interest*/
 filter_strings[1] = "tempdb";
 workUnion.voidpValue = filter_strings;
 ret=smc_create_filter(connect2_id, /*Connection id*/
 db_info_view_id, /*View id*/
 &db_info_view[2], /*Pointer to a data
 item within the view
 to be filtered*/
 SMC_FILT_T_EQ, /*Type of filter*/
 &workUnion, /*Filter value*/
 2, /*Number of elements
 in array of filter
 values*/
 SMC_DI_TYPE_CHARP, /*datatype of filter
 values*/
 &filter_id /*Value is assigned by
 this function call*/
);
 if (ret != SMC_RET_SUCCESS) {
 printf("Filters were not applied. Continuing execution.\n");
 }
/*

** Set alarms.

*/

For commentary, see “Step 5: set alarms” on page 11

workUnion.longValue = 1; /*Value above which
 alarm is triggered*/
 ret=smc_create_alarm_ex(connect2_id, /*Connection id*/
 db_info_view_id, /*View id*/
 &db_info_view[11], /*Pointer to a data
 item within the view
 to which the alarm
 is applied*/
 &workUnion, /*Where value that
 triggers the alarm
 is located*/
 SMC_DI_TYPE_LONG, /*datatype of item
 to which alarm is
 applied*/
 SMC_ALARM_A_NOTIFY,/*Trigger alarm
 callback function.
 This is the only

A sample Monitor Client Library program

26

 action possible when
 the server mode is
 LIVE.*/
 NULL, /*For server mode HISTORICAL,
 this is where log file to be
 written to or program to be
 run is specified. For server
 mode LIVE, this field is
 ignored.*/

/*The following is a string that is passed to the alarm callback function.*/
 "Physical read occurred in database.",
 alarmCallback, /*Alarm callback
 function*/
 &alarm_id /*Variable into which
 alarm id is placed.*/
);
 if (ret != SMC_RET_SUCCESS) {
 printf("Alarm was not applied. Execution continuing.\n");
 }
 #endif
/*

** Request data and process results.

*/

For commentary, see “Step 6: request performance data and process results”
on page 12

/*
 ** Get data from first connection. As server name and version
 ** do not change during the connection, we only get it once.
 ** Post the time when the refresh was done.
 */
 if (connect1_id != CONNECT_NONEXISTENT) { /*If the connect is
 not successful,the
 error callback is
 triggered. For a
 friendlier display,
 we check first.*/
 ret=smc_refresh_ex(connect1_id, /*ID of connect*/
 0 /*STEP not used in
 live connection*/
);
 if (ret != SMC_RET_SUCCESS) {
 printf("refresh call failed on first connect ID.\n");
 }

CHAPTER 1 Getting started with Monitor Client Library

27

 else { /*Check row count even though only one
 row is expected in this case. If no
 rows are returned, get_dataitem_value
 calls will return errors.*/
 ret=smc_get_row_count(connect1_id,
 server_view_id,
 #_of_rows);
 if (ret != SMC_RET_SUCCESS){
 printf("Get row count call failed.\n");
 }
 else {
 if (num_of_rows > 0){
/*
 ** A get_dataitem_value call is made for each item in the view.
 ** The retrieved data is stored in an array of SMC_VALUE_UNIONs.
 */
 for (index=0;index <NUM_SERVER_DATA_ITEMS;index++){
 ret=smc_get_dataitem_value(connect1_id,
 server_view_id,
 &server_info_view[index],/*Look at
 each data
 item in
 the view*/
 0, /*Only one row of
 data is returned for
 this particular view,
 so the value for row
 is hard-coded in this
 case.*/
 &server_data[index] /*Retrieved
 data stored
 here*/
);
 } /*End for loop*/
/*
 ** Display the returned data.
 */
 printf("Adaptive Server Enterprise name is: \
 %s.\n",server_data[0].stringValue);
 printf("Adaptive Server Enterprise version is: \
 %s.\n",server_data[1].stringValue);
 printf("Date and time is: \
 %s.\n",server_data[2].stringValue);
/*
 ** The application is responsible for freeing memory allocated
 ** by the Monitor Client Library for string members of

A sample Monitor Client Library program

28

 ** SMC_VALUE_UNIONs. This also illustrates the use of the
 ** smc_get_dataitem_type function call.
 */
 for (index=0;index <NUM_SERVER_DATA_ITEMS;index++){
 ret=smc_get_dataitem_type(&server_info_view[index], \
 &dataitem_type);
 if (ret != SMC_RET_SUCCESS) {
 printf("Get dataitem type failed for item %d \
 in server_info_view.\n");
 }
 else {
 if (dataitem_type == SMC_DI_TYPE_CHARP) {
 free(server_data[index].stringValue);
 }
 }
 } /*End for loop*/
 } /*End if number of rows > 0*/
 } /*End case get_row_count was successful*/
 } /*End case smc_refresh_ex call was successful*/
 } /*End case connect still valid*/
 /*
 ** Get the data from the views in the second connection to see
 ** how the data changes over time. To do this, we sample
 ** NUM_OF_SAMPLES times, pausing SAMPLE_INTERVAL times between
 ** each sample. The process of retrieving data is within a loop.
 */
 for (iterations=0;iterations<NUM_OF_SAMPLES;iterations++){
 sleep(SAMPLE_INTERVAL);
 ret=smc_refresh_ex(connect2_id, /*Note second connection
 specified for refresh*/
 0 /*Step not used in live
 connection*/
);
 if (ret == SMC_RET_SUCCESS) {
 if (db_info_view_id != VIEW_NONEXISTENT){ /*Attempting
 get_row_count for
 nonexistent view
 will cause errors
 so check if view
 was actually
 created*/
 ret=smc_get_row_count(connect2_id,
 db_info_view_id,
 #_of_rows /*Multiple rows will
 be returned. For
 each row of data

CHAPTER 1 Getting started with Monitor Client Library

29

 returned, use
 get_dataitem_value
 loop. Function call
 puts number of rows
 returned into
 variable.*/
);
 for(row=0;row<num_of_rows;row++){
 for (index=0;index <NUM_DB_INFO_ITEMS;index++){
 ret=smc_get_dataitem_value(connect2_id,
 db_info_view_id, /*View specified for
 get_dataitem_value.*/
 &db_info_view[index],
 row, /*Multiple rows in
 this case */
 &db_data[index]
);
 if (ret != SMC_RET_SUCCESS) {
 printf("Get dataitem value failed for data item \
 %s.\n",db_info_labels[index]);
 }
 else {
 printf("%s",db_info_labels[index]);
 ret=smc_get_dataitem_type(&db_info_view[index],\
 &dataitem_type);
 if (ret != SMC_RET_SUCCESS){
 printf("Get data item type failed for data item \
 %s.\n",db_info_view[index]);
 }
 else {
 switch (dataitem_type) {
 case SMC_DI_TYPE_CHARP:
 printf("%s.\n",db_data[index].stringValue);
 free(db_data[index].stringValue);
 /*Application is responsible for freeing
 memory allocated for strings by library*/
 break;
 case SMC_DI_TYPE_LONG:
 printf("%d.\n",db_data[index].longValue);
 break;
 case SMC_DI_TYPE_DOUBLE: /*Rates are generally
 floating point variables*/
 printf("%f.\n",db_data[index].doubleValue);
 break;
 default:
 printf("Unknown datatype encountered.\n");

A sample Monitor Client Library program

30

 break;
 } /*End switch*/
 } /*End case get_dataitem_type successful*/
 } /*End case get_dataitem_value successful*/
 } /*End for loop to get each data item value*/
 } /*End for loop to get each row of data*/
 } /*End case view exists*/
/*
 ** Retrieve data from second view in refresh.
 ** Processing is much the same.
 */
 if (nw_info_view_id != VIEW_NONEXISTENT){ /*Attempting
 get_row_count for
 nonexistent view
 causes errors, so
 check to see if
 view was actually
 created*/
 ret=smc_get_row_count(connect2_id,
 nw_info_view_id,
 #_of_rows /*This is a server-
 wide view so only
 one row should be
 returned*/
);
 if (num_of_rows > 0){
 for (index=0;index <NUM_NW_INFO_ITEMS;index++){
 ret=smc_get_dataitem_value(connect2_id,
 nw_info_view_id, /*Note view
 specified for
 get_dataitem_value*/
 &nw_bytes_view[index],
 0, /*One row in this case*/
 &nw_data[index]
);
 if (ret != SMC_RET_SUCCESS) {
 printf("Get dataitem value failed for data item \
 %s.\n",nw_info_labels[index]);
 }
 else {
 printf("%s",nw_info_labels[index]);
 ret=smc_get_dataitem_type(&nw_bytes_view[index],\
 &dataitem_type);
 if (ret != SMC_RET_SUCCESS){
 printf("Get data item type failed for data item \
 %s.\n",nw_bytes_view[index]);

CHAPTER 1 Getting started with Monitor Client Library

31

 }
 else {
 switch (dataitem_type) {
 case SMC_DI_TYPE_CHARP:
 printf("%s.\n",nw_data[index].stringValue);
 free(nw_data[index].stringValue);
 /*Application is responsible for freeing
 memory allocated for strings by library*/
 break;
 case SMC_DI_TYPE_LONG:
 printf("%d.\n",nw_data[index].longValue);
 break;
 case SMC_DI_TYPE_DOUBLE: /*Rates are generally
 floating point
 variables*/
 printf("%f.\n",nw_data[index].doubleValue);
 break;
 default:
 printf("Unknown datatype encountered.\n");
 break;
 } /*End switch*/
 } /*End case get_dataitem_type successful*/
 } /*End case get_dataitem_value successful*/
 } /*End for loop to get each data item value*/
 } /*End if any rows of data returned*/
 else {
 printf("No data returned for network info view.\n");
 }
 } /*End case view exists*/
 } /*End case refresh successful*/
 else {
 printf("Refresh of second connect failed. \
 Return code is %d.\n",ret);
 }
 } /*End for loop for number of iterations*/
/*
 ** This shows how to drop filters and alarms. It is not necessary
 ** to do this prior to closing a connection, as it is done
 ** automatically when the connection is closed. Filters may be
 ** dropped, for example, to see the filtered results of a query
 ** followed by the unfiltered results.
 */
 #ifdef OPTIONAL_CALLS
 ret=smc_drop_filter(connect2_id,db_info_view_id,filter_id);
 if (ret != SMC_RET_SUCCESS) {
 printf("Attempt to drop filter failed.\n");

A sample Monitor Client Library program

32

 }
 ret=smc_drop_alarm(connect2_id,db_info_view_id,alarm_id);
 if (ret != SMC_RET_SUCCESS) {
 printf("Attempt to drop alarm failed.\n");
 }
 #endif
/*
 ** Get another time stamp before disconnecting. To do this,
 ** do a refresh on the first connection again and only display
 ** the time stamp data returned.
 */
 if (connect1_id != CONNECT_NONEXISTENT) {
 ret=smc_refresh_ex(connect1_id,0);
 if (ret != SMC_RET_SUCCESS) {
 printf("refresh call failed on first connect ID.\n");
 }
 else { /*Check row count even though
 only one row is expected. If
 no rows are returned,
 get_dataitem_value calls
 will return errors.*/
 ret=smc_get_row_count(connect1_id,
 server_view_id,
 #_of_rows);
 if (ret != SMC_RET_SUCCESS){
 printf("Get row count call on first connection \
 failed.\n");
 }
 else {
 if (num_of_rows > 0){
 ret=smc_get_dataitem_value(connect1_id,
 server_view_id,
 &server_info_view[2], /*In this case
 we are only
 interested in
 the third data
 item*/
 0, /*Only one row of data
 is returned for this
 particular view, so the
 value for row is hard-
 coded in this case.*/
 &server_data[2]
);
 printf("Date and time on conclusion of monitoring:\
 %s\n",server_data[2].stringValue);

CHAPTER 1 Getting started with Monitor Client Library

33

 free(server_data[2].stringValue);
 /*Application must free string memory returned
 by library*/
 } /*End if row of data returned*/
 } /*End case get_row_count successful*/
 } /*End case refresh successful*/
 } /*End case connection exists*/

/*

** Close and deallocate the connection.

*/

For commentary, see “Step 7: close and deallocate connections” on page 13

/*
 ** Cleanup. This consists of closing all connections, then
 ** de-allocating them. Alternatively, connections can be re-used.
 */
 ret=smc_close(connect1_id,
 SMC_CLOSE_REQUEST /*Close only if no
 outstanding commands
 (only close request type
 currently supported)*/
);
 if (ret != SMC_RET_SUCCESS) {
 printf("Attempt to close first connection failed. \
 Return code is %d.\n",ret);
 }
 ret=smc_close(connect2_id,SMC_CLOSE_REQUEST);
 if (ret != SMC_RET_SUCCESS) {
 printf("Attempt to close second connection failed. \
 Return code is %d.\n",ret);
 }
/*
 ** Connections can be re-used at this point, for example, to
 ** connect to different servers. However, we de-allocate them.
 */
 ret=smc_connect_drop(connect1_id);
 if (ret != SMC_RET_SUCCESS){
 printf("Attempt to drop first connection failed. \
 Return code is %d.\n",ret);
 }
 ret=smc_connect_drop(connect2_id);
 if (ret != SMC_RET_SUCCESS){
 printf("Attempt to drop second connection failed. \
 Return code is %d.\n",ret);

A sample Monitor Client Library program

34

 }
 return(SMC_RET_SUCCESS);
 } /*End main*/
/*

** Callback functions

For commentary, see “Step 1: define error handling” on page 5.

*/
 SMC_VOID errorCallback(
 SMC_CONNECT_ID connectID,
 SMC_COMMAND_ID commandID, /*Value internal to Monitor
 Client Library*/
 SMC_VOIDP userDataHandle /*User-defined pointer. Set by
 smc_connect_propscall*/
)
 {
 SMC_SIZET ret;
 SMC_VALUE_UNION errorInfo; /*Used for getting information
 from smc_get_command_info
 function call*/
 SMC_SIZET returned_msg_length;
 printf ("Inside new error callback.\n");
/*
 ** Use smc_get_command_info function call to get information
 ** from error and alarm callbacks.
 */
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ERR_MAPSEVERITY, /*Information
 requested about
 command*/
 &errorInfo, /*Where information
 returned about
 command is placed*/
 NULL /*Value is numeric
 so length of returned
 data not needed*/
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call requesting error map \
 severity failed. Error returned is: %d\n",ret);
 }
 else{
 printf("Monitor Client Library error severity level is: \
 %d\n",errorInfo.sizetValue);
 }

CHAPTER 1 Getting started with Monitor Client Library

35

 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ERR_MSG,
 &errorInfo,
 &returned_msg_length /*Find string
 length */
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call requesting error message \
 failed. Error returned is: %d\n",ret);
 }
 else{
 printf("Error message text is: %s\n",errorInfo.stringValue);
 free(errorInfo.stringValue);
 /*Application is responsible for freeing string buffer
 memory allocated by library*/
 }
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ERR_NUM,
 &errorInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call requesting error number \
 failed. Error returned is: %d\n",ret);
 }
 else{
 printf("Error number is: %d\n",errorInfo.sizetValue);
 }
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ERR_SEVERITY,
 &errorInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call requesting error severity \
 failed. Error returned is: %d\n",ret);
 }
 else{
 printf("Error severity level is: %d\n",errorInfo.sizetValue);
 }
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ERR_SOURCE,

A sample Monitor Client Library program

36

 &errorInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call requesting error source \
 failed. Error returned is: %d\n",ret);
 }
 else{
 printf(" Error source is: %d\n",errorInfo.sizetValue);
 }
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ERR_STATE,
 &errorInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call requesting state failed. \
 Error returned is: %d\n",ret);
 }
 else{
 printf(" Error state is: %d\n",errorInfo.sizetValue);
 }
/*
 ** Demonstrate use of userDataHandle. This value was set as a
 ** connection property for the connection in the main program and
 ** is passed to this function.
 */
 if (userDataHandle != NULL){
 printf("Connection on which error occurred is \
 %s.\n",userDataHandle);
 }
 } /*End errorCallback */
 /*Alarm callback*/
 SMC_VOID alarmCallback(
 SMC_CONNECT_ID connectID,
 SMC_COMMAND_ID commandID, /*Value internal to Monitor
 Client Library*/
 SMC_VOIDP userDataHandle
)
 {
 #define MSG_BUFFER_LENGTH 80
 SMC_SIZET ret;
 SMC_VALUE_UNION alarmInfo; /*Union into which requested
 data is placed*/
 SMC_SIZET returned_msg_length;

CHAPTER 1 Getting started with Monitor Client Library

37

 printf ("Alarm callback triggered.\n");
/*
 ** Use smc_get_command_info function call to get information
 ** from error and alarm callbacks.
 */
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_ALARMID,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else{
 printf("Alarm ID is: %d\n",alarmInfo.sizetValue);
 }
/*
 ** This demonstrates the use of the SMC_INFO_ALARM_VALUE_DATATYPE
 ** information that might be useful in a generic alarm callback
 ** function.
 */
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_VALUE_DATATYPE,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else{
 switch(alarmInfo.intValue){
 case SMC_DI_TYPE_INT:
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_CURRENT_VALUE,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }

A sample Monitor Client Library program

38

 else {
 printf("Current value of alarmed data item is:\
 %d.\n",alarmInfo.intValue);
 }
 break;
 case SMC_DI_TYPE_LONG:
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_CURRENT_VALUE,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else {
 printf("Current value of alarmed data item is: \
 %d.\n",alarmInfo.longValue);
 }
 break;
 case SMC_DI_TYPE_DOUBLE:
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_CURRENT_VALUE,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. Error returned is: %d",ret);
 }
 else {
 printf("Current value of alarmed data item is: \
 %f.\n",alarmInfo.doubleValue);
 }
 break;
 default:
 printf("Invalid value returned for datatype of \
 current alarm value.\n");
 break;
 } /*End switch*/
 }
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_ROW,
 &alarmInfo,

CHAPTER 1 Getting started with Monitor Client Library

39

 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else{
 printf("Row of data which triggered alarm is: \
 %d\n",alarmInfo.sizetValue);
 }
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_VALUE_DATATYPE,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else{
 switch(alarmInfo.intValue){
 case SMC_DI_TYPE_INT:
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_THRESHOLD_VALUE,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else {
 printf("Value of data item exceeded alarm-triggering \
 value of: %d.\n",alarmInfo.intValue);
 }
 break;
 case SMC_DI_TYPE_LONG:
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_THRESHOLD_VALUE,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){

A sample Monitor Client Library program

40

 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else {
 printf("Value of data item exceeded alarm-triggering \
 value of: %d.\n",alarmInfo.longValue);
 }
 break;
 case SMC_DI_TYPE_DOUBLE:
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_THRESHOLD_VALUE,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else {
 printf("Value of data item exceeded alarm-triggering\
 value of: %f.\n",alarmInfo.doubleValue);
 }
 break;
 default:
 printf("Invalid value returned for datatype of \
 THRESHOLD alarm value.\n");
 break;
 } /*End switch*/
 }
 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_TIMESTAMP,
 &alarmInfo,
 &returned_msg_length
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else{
 printf("Time when alarm was triggered is: \
 %s\n",alarmInfo.stringValue);
 free(alarmInfo.stringValue); /*Application is responsible
 for freeing string buffer memory
 allocated by library.*/

CHAPTER 1 Getting started with Monitor Client Library

41

 }

 ret=smc_get_command_info(connectID,
 commandID,
 SMC_INFO_ALARM_VIEWID,
 &alarmInfo,
 NULL
);
 if (ret != SMC_RET_SUCCESS){
 printf("get_command_info call failed. \
 Error returned is: %d",ret);
 }
 else{
 printf("ID of view which triggered alarm is: \
 %d.\n",alarmInfo.sizetValue);
 }
 } /*End newAlarmCallback*/

A sample Monitor Client Library program

42

43

C H A P T E R 2 Data Items and Statistical Types

This chapter contains the following topics:

Overview
A data item is a particular piece of performance data that can be obtained
by using Monitor Client Library. A statistical type specifies the
calculations to be performed and the duration for which to report the data
collected by the data item.

This chapter describes the types of data items and statistical types. It also
describes each data item and its characteristics.

Monitor Client Library terminology is defined in “Overview” on page 1.

Result and key data items
Data items are classified as keys or results:

• A key data item refines the amount of detail in a view and usually
results in additional rows returned when a view is refreshed. With the
inclusion of each successive key, envision adding the word “per” to a
view definition. For example, start with the Page I/O result data item.
Refine the granularity by adding the Database key data item, Page
I/Os “per” Database. Further refine the granularity by adding the
Object key data item, Page I/Os “per” Database “per” Object.

Topics Page
Overview 43

Result and key data items 43

Data items and views 44

Data item definitions 47

Data items and views

44

• A result data item returns performance data at the level of detail
determined by the key data items in a view. If no key data items are
specified, only one row of data is returned.

Note A data item’s designation as a result or key is a characteristic of the data
item and is independent of the statistical type associated with the data item in
a view.

Data items and views
A view usually contains a mix of key and result data items. This mixture of
keys and results provides flexibility in determining the amount of detail of the
data to be returned. The exception is server-wide data, such as transaction or
network activity data. For server-wide data, no key data items are specified and
only one row of data is returned.

Table 2-1 shows examples of data returned by views.

Table 2-1: Examples of data returned by views

View defined with Returns

SMC_NAME_PAGE_IO page I/Os for the whole server

Row results:

 Page I/O

 145

SMC_NAME_SPID,
SMC_NAME_LOGIN_NA
ME,
SMC_NAME_PAGE_IO

(where SPID is a key data
item)

page I/O per process

Row results:

SPID Login Name Page I/O

3 sa 45

5 joe 100

CHAPTER 2 Data Items and Statistical Types

45

Rows with no data versus no rows in views
When there is no activity to report, some data items cause an empty row (that
is, a row with zero values for result data items) to appear in a view, and other
data items cause the row to be omitted. The rules controlling whether empty
rows appear in a view are:

• Server level data items always return a row, even when there is no activity
to report.

• Views that contain the key data item SMC_NAME_SPID or
SMC_NAME_APPLICATION_NAME only report on processes that are
active as of the end of the sample period.

• Views that contain the key data items SMC_NAME_OBJ_ID or
SMC_NAME_ACT_STP_ID omit the row when there is no activity to
report during the sample period.

• Views that contain keys other than those listed in the previous bullets
return rows when there is no activity.

Server-level status
Some data items are available only at the server level. Views with server-level
data items contain only result data items and provide performance data
summarized over Adaptive Server.

SMC_NAME_SPID,
SMC_NAME_DB_ID,
SMC_NAME_OBJ_ID,
SMC_NAME_DB_NAME,
SMC_NAME_OBJ_NAME,
and
SMC_NAME_PAGE_IO
(where SMC_NAME_SPID,
SMC_NAME_DB_ID, and
SMC_NAME_OBJID are
key data items)

page I/O per database table per process

Row results:
SPID DBID ObjID DBName ObjName PageIO
--

1 5 208003772 pubs2 titles 10
1 5 336004228 pubs2 blurbs 5
5 5 22003430 pubs2 sales 100

View defined with Returns

Data items and views

46

Combining data items
Data items cannot be combined indiscriminately. The absence or presence of a
key data item in a view determines which other data items are allowed in the
view.

If a view contains a key data item, all result data items in the view must be valid
for the key data item. Also, for each result data item in a view, all required keys
for that result data item must be in the view.

If a view does not contain a key data item, it can include any data item that does
not require a key.

Result and key combinations
In some cases, if you use an optional key data item, you must also use one or
more others. In the data item descriptions in this chapter, data items that have
this requirement are grouped with the other required data items in brackets and
separated by a plus sign (+).

Not all result data items require a key data item. If a view contains only result
data items, by default the summary is at the server level. The result data items
that have only optional keys can be used with server-level data items when no
key data item is included in the view.

To combine various result data items within a view, match common key data
items.

Connection summaries
Some views consume Monitor Server connection summaries. For information
about Monitor Server connection summaries, refer to the Adaptive Server
Enterprise Monitor Server User’s Guide.

Current statement and application name data items
If you want to get data for a current statement data item
(SMC_NAME_CUR_STMT_x) or SMC_NAME APPLICATION NAME, the
monitor client application must connect to the monitor server and create the
view before you start the application you are monitoring.

CHAPTER 2 Data Items and Statistical Types

47

Data item definitions
This section lists data items in alphabetical order with the following
information:

• Description

• Server level status

• Result or key designation

• For result data items, required keys and optional keys

• For key data items, result data items that require the key data item and
result data items that can use the key data item, but do not require it

• Version compatibility: either SQL Server 11.0 or Adaptive Server 11.5 and
later

• Valid statistical types

The valid statistical types are as follows:

• SMC_STAT_VALUE_SAMPLE

• SMC_STAT_VALUE_SESSION

• SMC_STAT_RATE_SAMPLE

• SMC_STAT_RATE_SESSION

• SMC_STAT_AVG_SAMPLE

• SMC_STAT_AVG_SESSION

The possible datatypes for a data item are:

• LONG – long

• ENUMS – integer

• DOUBLE – double

• CHARP – character

• DATIM – date/time

For more information about enumerated types, see Appendix B, “Datatypes
and Structures”.

Note Not all statistical types are available for each data item.

Data item definitions

48

You cannot use SMC_NAME_SPID and
SMC_NAME_APPLICATION_NAME in the same view.

Deciphering the names of data items
The syntax of a data item’s name is an abbreviation of a description of the
information it reports. All data items start with SMC_NAME. The remaining
components of the name are either English words, abbreviations, or both. The
abbreviations and their meanings are:

• ACT – active

• APP – application

• CNT – count (number of)

• CUR – current

• DATIM – date and time

• DB – database

• DEV – device

• ID – identification number

• IMMED – immediate

• IO – input/output (page reads and writes)

• KPID – a persistent process ID

• MAX – maximum

• MEM – memory

• NET – network

• NUM – number

• OBJ – database object

• PCT – percent

• PKT – packet

• PROC – process

• RCVD – received

• REF – referenced

CHAPTER 2 Data Items and Statistical Types

49

• SPID – server process ID

• STMT – statement

• STP – stored procedure

• XACT – transaction

The data items described in Historical Server User’s Guide are equivalent to
these data items, but use a natural language naming convention.

SMC_NAME_ACT_STP_DB_ID
Description Reports the database identification number of the active stored procedure.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

SMC_NAME_ACT_ STP_DB_NAME

SMC_NAME_ACT_ STP_NAME

SMC_NAME_ACT_ STP_OWNER_NAME

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_EXECUTION_CLASS

SMC_NAME_STP_LINE_TEXT

SMC_NAME_STP_NUM_TIMES_EXECUTED

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

Data item definitions

50

Statistic types and
datatypes

SMC_NAME_ACT_STP_DB_NAME
Description Reports the database name of the active stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_ACT_STP_ID
Description Reports the identification number of the active stored procedure.

Version compatibility 11.0 and later

Data item type Key

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID

Result data items that
require this key

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

SMC_NAME_ACT_ STP_NAME

SMC_NAME_ACT_ STP_OWNER_NAME

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_EXECUTION_CLASS

SMC_NAME_STP_LINE_TEXT

SMC_NAME_STP_NUM_TIMES_EXECUTED

CHAPTER 2 Data Items and Statistical Types

51

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_ACT_STP_NAME
Description Reports the name of the active stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_ACT_STP_OWNER_NAME
Description Reports the name of the owner of the active stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

52

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_APPLICATION_NAME
Description Reports the name of each application for which other statistics are being

accumulated. Views that contain SMC_NAME_APPLICATION_NAME only
report on processes that are active as of the end of the sample period.

SMC_NAME_APPLICATION_NAME is mutually exclusive with
SMC_NAME_SPID in a view.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

SMC_NAME_APP_EXECUTION_CLASS

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_NUM_PROCESSES

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

53

SMC_NAME_APP_EXECUTION_CLASS
Description Reports the configured execution class, if any, for a given application name.

The name is returned in one of the following formats:

• If the application is bound to the execution class only with scope NULL,
the name of the execution class is returned.

• If the application is bound to the execution class with a scope of NULL
and a scope of one or more logins, an asterisk (*) is appended to the name
of the execution class.

• If the application is bound to the execution class only with a scope of one
or more logins, an asterisk is returned.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_APPLICATION_NAME

Optional keys None

Statistic types and
datatypes

SMC_NAME_BLOCKING_SPID
Description Reports the identification number of the process that holds a lock that the

process indicated by the SMC_NAME_SPID data item is waiting for. If a
process is not blocked, the Blocking SPID is zero.

Version Compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_LOCK_STATUS

Optional keys SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

54

Statistic types and
datatypes

SMC_NAME_CONNECT_TIME
Description Reports the time elapsed (in seconds) since the process was started. If the

process was active before you began monitoring it, connect time is the time you
have monitored this process.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CPU_BUSY_PCT
Description Reports the percentage of the time when Adaptive Server is in a Busy state.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_ENGINE_NUM

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

55

SMC_NAME_CPU_PCT
Description Reports the percentage of time that a process or the set of processes running a

given application was in the Running state of the time that all processes were
in the Running state.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID or SMC_NAME_APPLICATION_NAME

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Optional keys SMC_NAME_ENGINE_NUM

Statistic types and
datatypes

SMC_NAME_CPU_TIME
Description At server level (with no keys), reports the total CPU “busy” time on the server.

When used with keys, reports on how much of that busy time was used by each
process, application, or engine.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_ENGINE_NUM, SMC_NAME_SPID or
SMC_NAME_APPLICATION_NAME

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

56

Statistic types and
datatypes

SMC_NAME_CPU_YIELD
Description Reports the number of times that Adaptive Server yielded to the operating

system.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required key None

Optional keys SMC_NAME_ENGINE_NUM

Statistic types and
datatypes

SMC_NAME_CUR_APP_NAME
Description Reports the name of the application that is executing on a particular process.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

57

SMC_NAME_CUR_ENGINE
Description Reports the number of the Adaptive Server engine on which a process was

currently running.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_EXECUTION_CLASS
Description Reports the name of the execution class under which a process is currently

running.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_PROC_STATE
Description Reports the current state of a process. The possible states are:

• None

• Alarm Sleep

• Background

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

58

• Bad Status

• Infected

• Lock Sleep

• Received Sleep

• Remote I/O

• Runnable

• Running

• Send Sleep

• Sleeping

• Stopped

• Sync Sleep

• Terminating

• Yielding

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

Enum SMC_PROC_STATE

SMC_NAME_CUR_STMT_ACT_STP_DB_ID
Description Reports the database ID of the stored procedure (including triggers, a special

kind of stored procedure) that contains the currently executing SQL statement
for a particular process. If the currently executing SQL statement is not
contained in a stored procedure, this ID is zero.

Version compatibility 11.5 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

CHAPTER 2 Data Items and Statistical Types

59

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_DB_NAME
Description Reports the database name of the stored procedure (including triggers, a special

kind of stored procedure) that contains the currently executing SQL statement
for a particular process. If the currently executing SQL statement is not
contained in a stored procedure, this name is “**NoDatabase**”.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_ID
Description Reports the ID of the stored procedure (including triggers, a special kind of

stored procedure) that contains the currently executing SQL statement for a
particular process. If the currently executing SQL statement is not contained in
a stored procedure, this ID is zero.

Version compatibility 11.5 and later

Data item type Result

Server level No

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

60

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_NAME
Description Reports the name of the stored procedure (including triggers, a special kind of

stored procedure) that contains the currently executing SQL statement for a
particular process. If the currently executing SQL statement is not contained in
a stored procedure, this name is “**NoObject**”.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME
Description Reports the owner name of the stored procedure (including triggers, a special

kind of stored procedure) that contains the currently executing SQL statement
for a particular process. If the currently executing SQL statement is not
contained in a stored procedure, this name is “**NoOwner**”.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

61

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_TEXT
Description Reports the text of a particular stored procedure (including triggers, a special

kind of stored procedure) being executed for a particular process. If both
CUR_STMT_ACT_STP_DB_ID is equal to 0 and
CUR_STMT_ACT_STP_ID is equal to 0 then a stored procedure is not
currently executing and this text is a null-terminated empty string ("").

If the text is not available (because this stored procedure was compiled and its
text was discarded, or because the text is stored in an encrypted format), then
this text is a null-terminated empty string ("").

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_BATCH_ID
Description Reports the ID of a particular query batch being executed for a particular

process.

Version compatibility 11.5 and later

Data item type Result

Required keys SMC_NAME_SPID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

62

Statistic types and
datatypes

SMC_NAME_CUR_STMT_BATCH_TEXT
Description Reports the text of a particular query batch being executed for a particular

process. This text can only be an initial substring of the complete text in a query
batch. The maximum amount of text stored in this field is determined by the
Adaptive Server configuration option max SQL text monitored and can be
monitored using SMC_NAME_CUR_STMT_BATCH_TEXXT ENABLED.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED
Description Reports whether Adaptive Server is saving the SQL text of the currently

executing query batches, and if so, how much.

Value of 0 = saving SQL text disabled.

Value of 1 or more = maximum number of bytes of batch text per server process
that can be saved.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

63

Statistic types and
datatypes

SMC_NAME_CUR_STMT_CONTEXT_ID
Description Reports the ID that uniquely identifies a stored procedure invocation within a

particular query batch being executed for a particular process.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_CPU_TIME
Description Reports the amount of time (in seconds) that the currently executing SQL

statement has spent in the running state.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes:

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

64

SMC_NAME_CUR_STMT_ELAPSED_TIME
Description Reports the amount of time (in seconds) that the currently executing SQL

statement has been running.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_LINE_NUM
Description Reports the number of the line (within a query batch or stored procedure) that

contains the beginning of the currently executing SQL statement for a
particular process. The currently executing SQL statement is in the query batch
if CUR_STMT_ACT_STP_DB_ID is equal to 0 and
CUR_STMT_ACT_STP_ID is equal to 0. Otherwise, the currently executing
SQL statement is in the stored procedure uniquely identified by these two IDs.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

65

SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED
Description Reports the number of lock requests by the currently executing SQL statement

that were granted immediately or were not needed (because sufficient locking
was already held by the requestor).

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED
Description Reports the number of lock requests by the currently executing SQL statement

that were granted after waiting.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED
Description Reports the number of lock requests by the currently executing SQL statement

that were denied.

Version compatibility 11.5 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

66

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_NUM
Description Reports the number of the statement (appearing in a query batch or stored

procedure) that is the currently executing SQL statement for a particular
process. The currently executing SQL statement is in the query batch if both
CUR_STMT_ACT_STP_DB_ID is equal to 0 and
CUR_STMT_ACT_STP_ID is equal to 0. Otherwise, the currently executing
SQL statement is in the stored procedure uniquely identified by these two IDs.

A value of zero indicates partial data for the currently executing SQL statement
(that is, this SQL statement began executing before monitoring began.
Performance metrics are available but numbers reflect only the time period
since the start of monitoring).

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_PAGE_IO
Description Reports the number of combined logical page reads and page writes

accumulated by the currently executing SQL statement.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

67

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ
Description Reports the number of data page reads (satisfied from cache or from device

reads) accumulated by the currently executing SQL statement.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ
Description Reports the number of data page reads that could not be satisfied from the data

cache, accumulated by the currently executing SQL statement.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

68

Statistic types and
datatypes

SMC_NAME_CUR_STMT_PAGE_WRITE
Description Reports the number of data pages written to a database device, accumulated by

the currently executing SQL statement.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT
Description Reports the text of the query plan for a particular query being executed for a

particular connection.

If the text is not available (because Adaptive Server has removed this plan from
its catalog of query plans), then this text is a null-terminated empty string ("").

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

69

SMC_NAME_CUR_STMT_START_TIME
Description Reports the date and time, in the time zone of Adaptive Server, when the

currently executing SQL statement began running.

If this SQL statement began running before monitoring began, then this is the
date and time that activity was first encountered for this statement.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET
Description Reports the byte offset to the beginning of a statement within the query batch

or stored procedure being executed for a particular process. If both
CUR_STMT_ACT_STP_DB_ID is equal to 0 and
CUR_STMT_ACT_STP_ID is equal to 0, then the statement is the currently
executing SQL statement in the query batch. Otherwise, the statement is the
currently executing SQL statement is in the stored procedure uniquely
identified by these two IDs (above).

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DATM

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

70

SMC_NAME_DATA_CACHE_CONTENTION
Description Reports the fraction of the requests for a data cache’s spinlock that were forced

to wait (spinlock_waits divided by spinlock_requests).

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_EFFICIENCY
Description Reports the number of cache hits per second per megabyte of a particular data

cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_HIT
Description Reports the number of times a page read was satisfied from a particular data

cache.

Version compatibility 11.0 and later

Data item type Result

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

71

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_HIT_PCT
Description Reports the fraction of the page reads satisfied, which is computed from the

following formula:

cache_hits / (cache_hits + cache_misses) * 100

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

Note When SMC_NAME_DATA_CACHE_MISS overstates the number of
physical page reads, SMC_NAME_DATA_CACHE_HIT_PCT understates
the percentage of cache hits.

SMC_NAME_DATA_CACHE_ID
Description Reports the ID of a data cache. Tables or indexes or both can be bound to a

specific data cache, or all objects in a database can be bound to the same data
cache. No object can be bound to more than one data cache.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

72

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

SMC_NAME_DATA_CACHE_REUSE_DIRTY

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_LARGE_IO_DENIED
Description Reports the number of times the Adaptive Server buffer manager did not satisfy

requests (of the optimizer) to load data into a buffer in this data cache by
fetching more than one contiguous page from disk at a time.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

SMC_NAME_DATA_CACHE_CONTENTION

SMC_NAME_DATA CACHE_EFFICIENCY

SMC_NAME_DATA_CACHE_HIT

SMC_NAME_DATA_CACHE_HIT_PCT

SMC_NAME_DATA_CACHE_LARGE_IO_DENIED

SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED

SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED

SMC_NAME_DATA_CACHE_MISS

SMC_NAME_DATA_CACHE_NAME

SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY

SMC_NAME_DATA_CACHE_REF_AND_REUSE

SMC_NAME_DATA_CACHE_REUSE

SMC_NAME_DATA_CACHE_SIZE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

73

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED
Description Reports the number of times the Adaptive Server buffer manager satisfied

requests (of the optimizer) to load data into a buffer in this data cache by
fetching more than one contiguous page from disk at a time.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED
Description Reports the number of times the optimizer made requests (of the Adaptive

Server buffer manager) to load data into a buffer in this data cache by fetching
more than one contiguous page from disk at a time.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

74

SMC_NAME_DATA_CACHE_MISS
Description Reports the number of times that a page read was satisfied from disk rather than

from a particular data cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

Note SMC_NAME_DATA_CACHE_MISS includes failed attempts to locate
pages in the data caches during page allocation. Therefore, the number of
physical page reads reported may be overstated. If this occurs, the percentage
of data cache misses reported by SMC_NAME_DATA_CACHE_HIT_PCT is
understated.

SMC_NAME_DATA_CACHE_NAME
Description Reports the name of a data cache. Tables or indexes or both can be bound to a

specific data cache, or all objects in a database can be bound to the same data
cache. No object can be bound to more than one cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

75

SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY
Description Reports the ratio of pages in buffers that were both referenced and reused,

relative to all pages in buffers in a given cache that were reused.

If the ratio is large, then prefetching is effective; otherwise, prefetching is not
providing much benefit. This may suggest that a buffer pool should be
eliminated (or it may imply that a clustered index on some table is fragmented,
and that the index should be dropped and recreated).

Note SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY ignores
buffers in the default buffer pool in each cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_REUSE
Description Reports the number of pages in buffers that were reused. A large value

indicates a high rate of turnover of buffers in the cache, and suggests that a pool
may be too small. A zero value suggests that a buffer pool other than the default
buffer pool may be too large.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

76

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_REUSE_DIRTY
Description Reports the number of times that a buffer that was reused had changes that

needed to be written. A non-zero value indicates that the wash size is too small.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_REF_AND_REUSE
Description Reports the number of pages in buffers that were both referenced and reused.

This count is employed when determining the efficiency of prefetching buffers
(see SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY).

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

77

SMC_NAME_DATA_CACHE_SIZE
Description Reports the size of a data cache in megabytes.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DB_ID
Description Reports the identification number of the database.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE

SMC_NAME_BLOCKING_SPID

SMC_NAME_DB_NAME

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_OBJ_NAME

SMC_NAME_OBJ_TYPE

SMC_NAME_OWNER_NAME

SMC_NAME_TIME_WAITED_ON_LOCK

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

Data item definitions

78

Statistic types and
datatypes

SMC_NAME_DB_NAME
Description Reports the name of the database.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DB_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DEADLOCK_CNT
Description Reports the number of deadlocks.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG

CHAPTER 2 Data Items and Statistical Types

79

SMC_NAME_DEMAND_LOCK
Description Reports the character string (Y or N) that indicates whether or not a lock has

been upgraded to demand lock status.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_LOCK_STATUS

Optional keys SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

Statistic types and
datatypes

SMC_NAME_DEV_HIT
Description Reports the number of times access to a device was granted.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

Statistic types and
datatypes

SMC_NAME_DEV_HIT_PCT
Description Reports the fraction of device requests that were granted, which is computed

by dividing SMC_NAME_DEV_HIT into the result of
SMC_NAME_DEV_MISS multiplied by 100.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

80

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

Statistic types and
datatypes

SMC_NAME_DEV_IO
Description Reports the total of device reads and device writes.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

Statistic types and
datatypes

SMC_NAME_DEV_MISS
Description Reports the number of times that access to a device had to wait.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

81

Statistic types and
datatypes

SMC_NAME_DEV_NAME
Description Reports the name of each database device.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_DEV_READ
Description Reports the number of reads made from a database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

SMC_NAME_DEV_HIT

SMC_NAME_DEV_HIT_PCT

SMC_NAME_DEV_IO

SMC_NAME_DEV_MISS

SMC_NAME_DEV_READ

SMC_NAME_DEV_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

82

Statistic types and
datatypes

SMC_NAME_DEV_WRITE
Description Reports the number of writes made to a database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

Statistic types and
datatypes

SMC_NAME_ELAPSED_TIME
Description Reports the time increment, in seconds, either from one data refresh to the next

(sample) or from the creation of the view to the present session.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG

CHAPTER 2 Data Items and Statistical Types

83

SMC_NAME_ENGINE_NUM
Description Reports the number of an Adaptive Server engine.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_HOST_NAME
Description Reports the name of the host computer that established a particular connection

to Adaptive Server.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

SMC_NAME_CPU_BUSY_PCT

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_CPU_YIELD

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

84

Statistic types and
datatypes

SMC_NAME_KPID
Description Reports the Adaptive Server process identification number that remains unique

over long periods of time.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_LOCK_CNT
Description Reports the number of locks. This is an accumulated value.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_LOCK_TYPE,
SMC_NAME_LOCK_RESULT,
SMC_NAME_LOCK_RESULT_SUMMARY

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

85

SMC_NAME_LOCK_HIT_PCT
Description Reports the percentage of successful requests for locks.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_LOCK_RESULT
Description Reports the result of a logical lock request. Lock result values are:

• Granted immediately.

• Not needed; requestor already held a sufficient lock.

• Waited; requestor waited.

• Did not wait; lock was not available immediately and the requestor did not
want the lock request to be queued.

• Deadlock; requestor selected as deadlock victim.

• Interrupted; the lock request was interrupted by attention condition.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

SMC_NAME_LOCK_CNT

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

86

Statistic types and
datatypes

Enum SMC_LOCK_RESULT

SMC_NAME_LOCK_RESULT_SUMMARY
Description Reports the lock results summarized at a granted or not granted level.

• The lock result summary granted includes the granted, not needed, and
waited lock results.

• The lock result summary not granted includes the did not wait, deadlock,
and interrupted lock results.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

SMC_NAME_LOCK_CNT

Statistic types and
datatypes

Enum SMC_LOCK_RESULT_SUMMARY

SMC_NAME_LOCK_STATUS
Description Reports the current status of a lock. The lock status values are:

• Held and blocking

• Held and not blocking

• Requested and blocked

• Requested and not blocked

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

CHAPTER 2 Data Items and Statistical Types

87

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

None

Statistic types and
datatypes

Enum SMC_LOCK_STATUS

SMC_NAME_LOCK_STATUS_CNT
Description Reports the number of locks in each lock status. This is a snapshot value.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys LOCK_STATUS

Optional keys None

Statistic types and
datatypes

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCK_STATUS_CNT

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_TIME_WAITED_ON_LOCK

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

88

SMC_NAME_LOCK_TYPE
Description Reports the type of lock used by Adaptive Server. Adaptive Server protects

tables or data pages being used by active transactions by locking them.
Adaptive Server uses the following lock types:

• Exclusive table

• Shared table

• Exclusive intent

• Shared intent

• Exclusive page

• Shared page

• Update Page

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

Enum SMC_LOCK_TYPE

SMC_NAME_LOCKS_BEING_BLOCKED_CNT
Description Reports the number of locks being blocked by the process that holds this

“hold_and_blocking” lock.

Version compatibility 11.0 and later

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCK_CNT

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_TIME_WAITED_ON_LOCK

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

CHAPTER 2 Data Items and Statistical Types

89

Data item type Result

Server level No

Required keys SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_LOCK_STATUS

Optional keys SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

Statistic types and
datatypes

SMC_NAME_LOCKS_GRANTED_IMMED
Description Reports the number of locks that were granted immediately, without having to

wait for another lock to be released.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
 [SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the
SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use
any other keys.

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

90

SMC_NAME_LOCKS_GRANTED_WAITED
Description Reports the number of locks that were granted after waiting for another lock to

be released.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
 [SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the
SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use
any other keys.

Statistic types and
datatypes

SMC_NAME_LOCKS_NOT_GRANTED
Description Reports the number of locks that were requested but not granted.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

91

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
 [SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the
SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use
any other keys.

Statistic types and
datatypes

SMC_NAME_LOG_CONTENTION_PCT
Description Reports the percentage of times, of the total times when a user log cache was

flushed into the transaction log, that it had to wait for the log semaphore.

A high percentage may indicate that the user log cache size should be
increased.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_LOGIN_NAME
Description Reports the login name associated with Adaptive Server processes.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

92

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_CODE_SIZE
Description Reports the amount of memory in bytes allocated for Adaptive Server.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_KERNEL_STRUCT_SIZE
Description Reports the amount of memory in bytes allocated for the kernel structures.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

93

Statistic types and
datatypes

SMC_NAME_MEM_PAGE_CACHE_SIZE
Description Reports the amount of memory in bytes allocated for the page cache.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_PROC_BUFFER
Description Reports the amount of memory in bytes allocated for procedure buffers.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_PROC_HEADER
Description Reports the amount of memory in bytes allocated for procedure headers.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

94

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_SERVER_STRUCT_SIZE
Description Reports the amount of memory in bytes allocated for the Adaptive Server

structures.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MOST_ACT_DEV_IO
Description Reports the number of combined reads and writes against the device with the

most activity during a given time interval.

Version compatibility 11.0 and later

Server level Yes

Data item type Result

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

95

Statistic types and
datatypes

SMC_NAME_MOST_ACT_DEV_NAME
Description Reports the name of the device with the largest number of combined reads and

writes during a given time interval.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_BYTE_IO
Description Reports the number of combined network bytes sent and received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

96

SMC_NAME_NET_BYTES_RCVD
Description Reports the number of network bytes received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_BYTES_SENT
Description Reports the number of network bytes sent.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_DEFAULT_PKT_SIZE
Description Reports the default size of a network packet.

Type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

97

Statistic types and
datatypes

SMC_NAME_NET_MAX_PKT_SIZE
Description Reports the maximum size configured for a network packet.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_PKT_SIZE_RCVD
Description Reports the average size of network packets received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_PKT_SIZE_SENT
Description Reports the average size of network packets sent.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

98

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_PKTS_RCVD
Description Reports the number of network packets received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_PKTS_SENT
Description Reports the number of network packets sent.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

99

Statistic types and
datatypes

SMC_NAME_NUM_ENGINES
Description Reports the number of engines running on Adaptive Server.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NUM_PROCESSES
Description Reports the number of processes currently running on Adaptive Server, or, if

used with the key SMC_NAME_APPLICATION_NAME, the number of
processes currently running a given application.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_APPLICATION_NAME

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

100

SMC_NAME_OBJ_ID
Description Reports the identification number of a database object where the object

returned is either a table or a stored procedure.

Version compatibility 11.0 and later

Data item type Key

Server level No

Required keys SMC_NAME_DB_ID

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

If you create a view using the SMC_NAME_OBJ_ID data item, you might see
negative numbers as object IDs. Negative object IDs are an accurate reporting
of IDs as assigned by Adaptive Server.

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_OBJ_NAME

SMC_NAME_OBJ_TYPE

SMC_NAME_OWNER_NAME

SMC_NAME_TIME_WAITED_ON_LOCK

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

101

Monitor Server reports on all activity, including activity on temporary tables
that Adaptive Server creates to perform a complex query. The object IDs that
Adaptive Server assigns to temporary tables can be positive or negative. The
object ID that was assigned by Adaptive Server is reported.

SMC_NAME_OBJ_NAME
Description Reports the name of a database object. In views that show

SMC_NAME_OBJ_NAME, the string **TempObject** is reported for
temporary tables.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_DB_ID, SMC_NAME_OBJ_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_OBJ_TYPE
Description Reports the type of database object, table, or stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_DB_ID, SMC_NAME_OBJ_ID

Optional keys None

Statistic types and
datatypes

Enum SMC_OBJ_TYPE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

Data item definitions

102

SMC_NAME_OWNER_NAME
Description Reports the owner name of the database object.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_DB_ID, SMC_NAME_OBJ_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_PAGE_HIT_PCT
Description Reports the percentage of times that a data page read could be satisfied from

cache without requiring a physical page read.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID,
 [SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID],
SMC_NAME_ENGINE_NUM

Statistic types and
datatypes

SMC_NAME_PAGE_INDEX_LOGICAL_READ
Description Reports the number of index page reads satisfied from cache or from device

reads.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

103

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

SMC_NAME_PAGE_INDEX_PHYSICAL_READ
Description Reports the number of index page reads that could not be satisfied from the data

cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

104

SMC_NAME_PAGE_IO
Description Reports the number of combined logical page reads and page writes.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
 [SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID],
SMC_NAME_ENGINE_NUM

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

SMC_NAME_PAGE_LOGICAL_READ
Description Reports the number of data page reads, whether satisfied from cache or from a

database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

105

Statistic types and
datatypes

SMC_NAME_PAGE_NUM
Description Reports the number of the data page for a given lock or lock request.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_PAGE_PHYSICAL_READ
Description Reports the number of data page reads that could not be satisfied from the data

cache.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_TIME_WAITED_ON_LOCK

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

106

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

SMC_NAME_PAGE_WRITE
Description Reports the number of data pages written to a database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

SMC_NAME_PROC_STATE
Description Reports the state of a process. The possible states are:

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

107

• None

• Alarm Sleep

• Background

• Bad Status

• Infected

• Lock Sleep

• Received Sleep

• Remote IO

• Runnable

• Running

• Send Sleep

• Sleeping

• Stopped

• Sync Sleep

• Terminating

• Yielding

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

SMC_NAME_PROC_STATE_CNT

Result data items for
which this key is
optional

None

Statistic types and
datatypes

Enum SMC_PROC_STATE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

Data item definitions

108

SMC_NAME_PROC_STATE_CNT
Description Reports the number of processes in a particular state.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_PROC_STATE

Optional keys None

Statistic types and
datatypes

SMC_NAME_SPID
Description Reports the process identification number. Views that contain

SMC_NAME_SPID only report on processes that are active as of the end of
the sample period. SMC_NAME_SPID is mutually exclusive with
SMC_NAME_APPLICATION_NAME in a view.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

SMC_NAME_BLOCKING_SPID

SMC_NAME_CONNECT_TIME

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_CUR_APP_NAME

SMC_NAME_CUR_ENGINE

SMC_NAME_CUR_EXECUTION_CLASS

SMC_NAME_CUR_PROC_STATE

SMC_NAME_CUR_STMT_ACT_STP_DB_NAME

SMC_NAME_CUR_STMT_ACT_STP_NAME

SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME

SMC_NAME_CUR_STMT_ACT_STP_TEXT

SMC_NAME_CUR_STMT_BATCH_TEXT

CHAPTER 2 Data Items and Statistical Types

109

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_CUR_STMT_CPU_TIME

SMC_NAME_CUR_STMT_ELAPSED_TIME

SMC_NAME_CUR_STMT_LINE_NUM

SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED

SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED

SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED

SMC_NAME_CUR_STMT_PAGE_IO_CNT

SMC_NAME_CUR_STMT_PAGE_CACHE_READ_CNT

SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ_CNT

SMC_NAME_CUR_STMT_PAGE_WRITE_CNT

SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT

SMC_NAME_CUR_STMT_START_TIME

SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET

SMC_NAME_DEMAND_LOCK

SMC_NAME_HOST_NAME

SMC_NAME_KPID

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_LOGIN_NAME

SMC_NAME_TIME_WAITED_ON_LOCK

SMC_NAME_LOCK_CNT

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_NUM_TIMES_EXECUTED

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

110

SMC_NAME_SQL_SERVER_NAME
Description Reports the name of the Adaptive Server that is being monitored as specified

in the -s parameter to the start-up command of the Monitor Server to which the
application is connected.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_SQL_SERVER_VERSION
Description Reports the version of the Adaptive Server that is being monitored. For more

information, refer to the global @@version variable in the Transact-SQL
User’s Guide.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_CPU_TIME
Description Reports the CPU time, in seconds, spent executing a stored procedure.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

111

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys SMC_NAME_SPID, SMC_NAME_STP_STMT_NUM,
SMC_NAME_STP_LINE_NUM

Statistic types and
datatypes

SMC_NAME_STP_ELAPSED_TIME
Description Reports the time, in seconds, spent executing a stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys SMC_NAME_STP_STMT_NUM, SMC_NAME_STP_LINE_NUM

Statistic types and
datatypes

SMC_NAME_STP_EXECUTION_CLASS
Description Reports the configured execution class, if any, for a given stored procedure.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys SMC_NAME_STP_STMT_NUM, SMC_NAME_STP_LINE_NUM

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE DOUBLE DOUBLE

Data item definitions

112

Statistic types and
datatypes

SMC_NAME_STP_HIT_PCT
Description Reports the percentage of times that a stored procedure execution found the

procedure’s query plan in procedure cache and available for use.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_LINE_NUM
Description Reports the stored procedure line number.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_NUM_TIMES_EXECUTED

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

113

SMC_NAME_STP_LINE_TEXT
Description Reports the entire text of the stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_LOGICAL_READ
Description Reports the number of requests to execute a stored procedure, whether satisfied

from procedure cache or with a read from sysprocedures.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_NUM_TIMES_EXECUTED
Description Reports the number of times a stored procedure, or a line in a stored procedure,

was executed.

Version compatibility 11.0 and later

Data item type Result

Server level No

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

114

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys SMC_NAME_SPID, SMC_NAME_STP_STMT_NUM,
SMC_NAME_STP_LINE_NUM

Statistic types and
datatypes

SMC_NAME_STP_PHYSICAL_READ
Description Reports the number of requests to execute a stored procedure for which a read

from sysprocedures was necessary.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_STMT_NUM
Description Reports the number within a stored procedure. A single stored procedure line

may contain one or more statements.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_NUM_TIMES_EXECUTED

CHAPTER 2 Data Items and Statistical Types

115

Statistic types and
datatypes

SMC_NAME_THREAD_EXCEEDED_MAX
Description Reports the number of times a query plan was runtime-adjusted because of

attempting to exceed the configured limit of threads in the server-wide worker
thread pool in Adaptive Server.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_THREAD_EXCEEDED_MAX_PCT
Description Reports the percentage of time a query plan was adjusted at runtime because it

tried to exceed the configured limit of threads in the server-wide worker thread
pool in Adaptive Server.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

116

SMC_NAME_THREAD_MAX_USED
Description Reports the maximum number of threads from the server-wide worker thread

pool that were concurrently in use on the server.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_TIME_WAITED_ON_LOCK
Description Reports the amount of time (in seconds) waited for a lock request to be granted.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_LOCK_STATUS

Optional keys SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

Statistic types and
datatypes

SMC_NAME_TIMESTAMP
Description Reports the date and time on Adaptive Server in its time zone. For more

information, refer to the getdate() function in the Transact-SQL User’s Guide.

Version compatibility 11.0 and later

Data item type Result

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

117

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_TIMESTAMP_DATIM
Description Reports the date and time on Adaptive Server in its time zone, returned in a

CS_DATETIME struct. For more information, refer to the getdate() function in
the Transact-SQL User’s Guide.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT
Description Reports the number of committed Transact-SQL statement blocks

(transactions).

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DATIM

Data item definitions

118

Statistic types and
datatypes

SMC_NAME_XACT_DELETE
Description Reports the number of rows deleted from database tables.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_DELETE_DEFERRED
Description Reports the number of rows deleted from a database table that were done in

deferred mode.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

119

SMC_NAME_XACT_DELETE_DIRECT
Description Reports the number of rows deleted from a database table that were done in

direct mode.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_INSERT
Description Reports the number of insertions into a database table.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_INSERT_CLUSTERED
Description Reports the number of insertions to database tables that have a clustered index.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

120

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_INSERT_HEAP
Description Reports the number of insertions to database tables that do not have a clustered

index.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_SELECT
Description Reports the number of SELECT or OPEN CURSOR statements.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

121

SMC_NAME_XACT_UPDATE
Description Reports the updates to database tables.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_DEFERRED
Description Reports the updates to a database table that are performed in deferred mode

rather than in direct mode.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_DIRECT
Description Reports the sum of expensive, in-place, and not-in-place updates (everything

except updates deferred). Also called updates in place.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

122

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_EXPENSIVE
Description Reports the updates to a database table that are done in expensive mode. In

expensive mode, a row is deleted from its original location, and inserted at a
new location.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_IN_PLACE
Description Reports the updates that do not require a delete and insert.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

123

SMC_NAME_XACT_UPDATE_NOT_IN_PLACE
Description Reports the updates that require a delete and insert.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes VALUE_

 SAMPLE
VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

124

125

C H A P T E R 3 Monitor Client Library Functions

In addition to giving you detailed information about Monitor Client
Library functions, this chapter contains the following topics:

You use Monitor Client Library functions to write applications that collect
Adaptive Server performance data. This chapter describes, in alphabetical
order, each Monitor Client Library function. Table 3-1 lists the functions
and a brief description of each.

Table 3-1: Monitor Client Library functions

Topic Page
Threads 126

Error handling 127

Function Description

smc_close Closes a connection

smc_connect_alloc Creates a connection structure

smc_connect_drop Deallocates a connection structure

smc_connect_ex Establishes a connection

smc_connect_props Sets, retrieves, or clears properties on a
connection

smc_create_alarm_ex Adds an alarm to a data item

smc_create_filter Adds a filter to a data item

smc_create_playback_session Initializes a playback session on a
Historical Server connection

smc_create_recording_session Initializes a recording session on a
Historical Server connection

smc_create_view Defines a view

smc_drop_alarm Removes an alarm from a data item in a
view

smc_drop_filter Removes a filter from a data item in a view

smc_drop_view Drop a views

smc_get_command_info Retrieves detailed information about an
alarm or error

smc_get_dataitem_type Retrieves the type of a data item

Threads

126

Most functions work with Monitor Server and Historical Server. In this
chapter, unless otherwise noted, the term connection means a connection to
Monitor Server or Historical Server. See Appendix C, “Backward
Compatibility” for information about obsolete functions.

Threads
Two threads cannot use Monitor Client Library functions at the same time. Use
a global lock (semaphore) on Monitor Client Library calls to avoid any thread
overwrites or unpredictable actions.

Monitor Client Library functions are not protected from reentrant invocation.
Use the following special programming considerations when using these
functions in a multithreaded environment. Be sure that:

• A call to create a client connection (smc_connect) is serialized with all
other Monitor Client Library function calls across all threads.

• A call to disconnect a client connection (smc_disconnect) is serialized with
all other Monitor Client Library function calls across all threads.

smc_get_dataitem_value Retrieves the data for a particular data item
and row

smc_get_row_count Retrieves the number of rows of data in a
view

smc_get_version_string Retrieves the Monitor Client Library
version number

smc_initiate_playback Concludes the definition of views for a
playback session

smc_initiate_recording Concludes the definition of views for a
recording session

smc_refresh_ex Retrieves data for all views in a given
connection

smc_terminate_playback Ends a playback session on a Historical
Server connection

smc_terminate_recording Cancels a recording session on a Historical
Server connection

Function Description

CHAPTER 3 Monitor Client Library Functions

127

• Any single client connection lives in one, and only one, thread. All
Monitor Client Library function calls to access this client connection occur
in this thread.

• A call to refresh a client connection is serialized with all other Monitor
Client Library function calls on this connection in this thread.

Error handling
A Monitor Client Library application installs an error handler when it creates
a connection (smc_connect_alloc, described on 131). This error handler is
called whenever an error occurs for that connection.

Most Monitor Client Library functions return one of the following values:

Table 3-2: Return values

Other return values are listed with the functions that return them.

Note The error callback function is not triggered under certain error conditions
regarding data item specification in smc_create_view and smc_create_alarm.
To capture these error conditions, check the return code for these functions.

Error handler
Description An error handler is a user-defined function.

Return value Description

SMC_RET_SUCCESS The function completed successfully.

SMC_RET_FAILURE The function failed. More detailed
information is available from the error
handler.

SMC_RET_INVALID_CONNECT The function did not execute because it was
requested against an erroneous connection.
The error handler is not invoked because error
handlers are available only for valid
connections.

Callback function

128

Syntax SMC_VOID ErrorCallback (
 SMC_CONNECT_ID clientId,
 SMC_COMMAND_ID commandId,
 SMC_VOIDP userDataHandle)

Parameters clientId
identifies a Monitor connection.

commandId
identifies an instance of a command.

userDataHandle
user-supplied pointer.

Usage • An error handler can be changed at any time via either
smc_change_error_handler or smc_connect_props functions. (See
Callback function on page 128 for more information)

Note C++ member functions cannot be used as callback functions.

Callback function
Description Callback functions are user-defined functions that notify an application when

an event has occurred. These functions are registered with Monitor Client
Library API calls for:

• Alarms

• Error information

When either of the above events occur, a callback function is executed.

Syntax SMC_VOID CallbackFunction
 (SMC_CONNECT_ID clientId,
 SMC_COMMAND_ID commandId,
 SMC_VOIDP userDataHandle)

Parameters clientId
identifies the connection.

commandId
identifies the instance of a command.

CHAPTER 3 Monitor Client Library Functions

129

userDataHandle
user data pointer for a given connection. An application can set this pointer
by using smc_connect_props.

Usage Accessing callback data When an event triggers a callback function, you
can request information about the event. Data is accessed by calling
smc_get_command_info from within the callback function. This function takes
a connection ID, a command ID, and an enumerator constant that identifies
which piece of data the user is interested in. The data available depends on the
type of callback. Table 3-3 describes the data available for alarm callbacks.
Table 3-4 describes the data available for error callbacks.

Table 3-3: Data available for alarm callbacks

Table 3-4: Data available for error callbacks

Information type Description

SMC_INFO_ALARM_ACTION_DATA String supplied for
alarmActionData upon creation
of the alarm.

SMC_INFO_ALARM_ALARMID Identifies the alarm.

SMC_INFO_ALARM_CURRENT_VALUE Current value that met or
exceeded the alarm threshold.

SMC_INFO_ALARM_DATAITEM Data item on which the alarm
was set. Points to a
SMC_DATAITEM_STRUCT.

SMC_INFO_ALARM_ROW Row containing the data item
value that triggered the alarm.

SMC_INFO_ALARM_THRESHOLD_VALUE Threshold value defined for this
alarm.

SMC_INFO_ALARM_TIMESTAMP Time (in the Adaptive Server
time zone) marking the end of the
sample interval in whose data the
alarm condition was met.

SMC_INFO_ALARM_VIEWID Identifies a view created on the
connection.

Information type Description

SMC_INFO_ERR_MAPSEVERITY Monitor Client Library severity level.

SMC_INFO_ERR_MSG Text of the error message. (See Appendix
D, “Troubleshooting Information and Error
Messages”.)

SMC_INFO_ERR_NUM Number of the error.

SMC_INFO_ERR_SEVERITY Severity of the error message.

smc_close

130

smc_close
Description Closes a connection that was created with smc_connect_ex. This function

terminates the connection but does not deallocate it. Use smc_connect_drop to
deallocate a connection structure.

Syntax SMC_RETURN_CODE smc_close
 (SMC_CONNECT_ID clientId,
 SMC_CLOSE_TYPE closeType)

Parameters clientId
identifies the connection.

closeType
type of close: SMC_CLOSE_REQUEST

Return value

Examples This example assumes that you have created a connection and have a clientId.

if (smc_close(clientId,SMC_CLOSE_REQUEST)
 != SMC_RET_SUCCESS)
 {
 printf("smc_close failed\n");
 /* do some cleanup */

SMC_INFO_ERR_SOURCE Source of the error message. One of the
following:

• SMC_SRC_UNKNOWN – not known

• SMC_SRC_HS – Historical Server

• SMC_SRC_SMC – Monitor Client
Library

• SMC_SRC_CT – Client Library

• SMC_SRC_SS – Adaptive Server

• SMC_SRC_SMS – Monitor Server

SMC_INFO_ERR_STATE State of the error. Useful for technical
support in diagnosing internal errors.

Information type Description

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

131

 }

Usage • All views (as well as alarms and filters associated with the data items in
the view) on the specified connection are also dropped.

• smc_close only disconnects a connection. Call smc_connect_drop to
deallocate a connection structure.

• If smc_close returns a failure, the user is advised to call smc_connect_drop.

Valid server modes

Errors

See also smc_connect_drop, smc_connect_ex

smc_connect_alloc
Description Creates a connection structure with error callback, but does not establish a

connection.

Syntax SMC_RETURN_CODE smc_connect_alloc
 (SMC_GEN_CALLBACK ErrCallback,
 SMC_CONNECT_IDP clientIdHandle)

Parameters ErrCallback
Pointer to error callback function.

clientIdHandle
Pointer to a variable, which should be declared as type
SMC_CONNECT_ID. If the call to smc_connect succeeds, this variable
contains the ID for the Monitor connection.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INTERNAL_ERROR Internal error

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions in the same connection

SMC_RET_INVALID_API_FUNC_
 SEQUENCE

Invalid calling sequence of Monitor
Client Library functions

smc_connect_drop

132

Return value

Examples The following example assumes you have defined an error callback function,
myErrorHandler.

SMC_CONNECT_ID clientId;
 if (smc_connect_alloc(myErrorHandler,&clientId)
 != SMC_RET_SUCCESS)
 {
 printf("smc_connect_alloc failed\n");
 exit(1);
 }

Usage • The error handler parameter cannot be null.

• Use smc_connect_props to set properties on a connection.

• Use smc_connect_ex to establish the connection identified by
clientIdHandle.

• Use smc_connect_drop to deallocate a connection structure created with
smc_connect_alloc.

Valid server modes

Errors

See also smc_connect_drop, smc_connect_ex, smc_connect_props

smc_connect_drop
Description Deallocates a connection structure that was created with smc_connect_alloc.

Syntax SMC_RETURN_CODE smc_connect_drop
 (SMC_CONNECT_ID clientId)

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INTERNAL_ERROR Internal error

CHAPTER 3 Monitor Client Library Functions

133

Parameters clientId
identifies the connection.

Return value

Examples This example assumes that:

• You have created a connection using smc_connect_alloc and have a
clientId.

• You have successfully executed smc_close on the connection.

if (smc_connect_drop(clientId) != SMC_RET_SUCCESS) {
 printf("smc_connect_drop failed\n");
 /* do some cleanup */
 }

Usage • smc_close must be called before smc_connect_drop, if a connection was
successfully made.

Valid server modes

Errors

See also smc_close, smc_connect_alloc

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_CONNECT_NOT_CLOSED Connection has not been
closed

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and
replacement functions on the
same connection

SMC_RET_INVALID_API_FUNC_SEQUENCE Invalid calling sequence of
Monitor Client Library
functions

smc_connect_ex

134

smc_connect_ex
Description Establishes a connection for the connection structure created with

smc_connect_alloc. Properties on the connection, such as Server Name and
Server Mode, must have been set with smc_connect_props.

Syntax SMC_RETURN_CODE smc_connect_ex
 (SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Return value

Examples This example assumes you have created a connection using smc_connect_alloc
and have a clientId.

if (smc_connect_ex(clientId) != SMC_RET_SUCCESS)
 {
 printf("smc_connect_ex failed\n");
 exit(1);
 }

Usage • smc_connect_alloc and smc_connect_props must be called before
smc_connect_ex.

• Each Monitor Client Library connection uses two network connections. If
you are running a Monitor Client Library application on a PC and reach
the limit on network connections, reconfigure your networking software to
raise the limit.

Valid server modes

Errors

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INTERNAL_ERROR Internal error

CHAPTER 3 Monitor Client Library Functions

135

See also smc_close, smc_connect_alloc

smc_connect_props
Description Sets, retrieves, or clears properties on a connection.

Syntax SMC_RETURN_CODE smc_connect_props
 (SMC_CONNECT_ID clientId,
 SMC_PROP_ACTION propertyAction,
 SMC_PROP_TYPE property,
 SMC_VALUE_UNIONP propertyValue,
 SMC_SIZET bufferLength,
 SMC_SIZETP outputLengthHandle)

Parameters clientId
identifies the connection.

propertyAction
Property action type. Valid types are:

• SMC_PROP_ACT_CLEAR – reset the value of the specified property
to its default.

• SMC_PROP_ACT_GET – retrieve the value of the specified property.

• SMC_PROP_ACT_SET – set the value of the specified property.

property
the symbolic name of the property whose value is being set, retrieved, or
cleared. See Table 3-5 on page 138 for a list of this argument’s legal values.

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and
replacement functions on the
same connection

SMC_RET_INVALID_API_FUNC_SEQUENCE Invalid calling sequence of
Monitor Client Library
functions

SMC_RET_INVALID_PROPERTY Property has not been set

SMC_RET_UNABLE_TO_CONNECT_TO_SMS Cannot connect to Monitor
Server

SMC_RET_UNABLE_TO_CONNECT_TO_SS Cannot connect to Adaptive
Server

Error Indicates

smc_connect_props

136

propertyValue
if propertyAction is:

• SMC_PROP_ACT_CLEAR – propertyValue is ignored.

• SMC_PROP_ACT_GET – pointer to the union in which
smc_connect_props will place the requested information.

• SMC_PROP_ACT_SET – pointer to the union that contains the value
to which property is to be set.

bufferLength
the length of data in bytes of
 *(propertyValue->stringValue). Used only if propertyValue is a pointer to a
string. If propertyAction is:

• SMC_PROP_ACT_CLEAR – bufferLength is ignored, and must be
passed SMC_UNUSED.

• SMC_PROP_ACT_GET – bufferLength is ignored, and must be passed
SMC_UNUSED.

• SMC_PROP_ACT_SET – bufferLength must contain the number of
bytes of *(propertyValue-> stringValue) or SMC_NULLTERM to
indicate the string’s length by a terminating null byte.

outputLengthHandle
a pointer to an integer variable. Used only if propertyValue is a pointer to a
string. If propertyAction is:

• SMC_PROP_ACT_CLEAR – outputLengthHandle is ignored, and
must be passed null.

• SMC_PROP_ACT_GET – the length in bytes of the requested
information. Contains the number of bytes that were actually written to
 propertyValue->stringValue (not including the null-terminating byte).
Pass null if this information is not desired.

• SMC_PROP_ACT_SET – outputLengthHandle is ignored, and must be
passed null.

Return value
Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

137

Examples This example assumes that you have previously allocated a connection using
smc_connect_alloc and have a clientId.

SMC_VALUE_UNION value.sizetValue = 512;
 if (smc_connect_props(clientId,
 SMC_PROP_ACT_SET,
 SMC_PROP_PACKETSIZE,
 &value,
 0,
 NULL) != SMC_RET_SUCCESS)
 {
 printf("smc_connect_props failed\n");
 /* do some cleanup */
 }

Usage • A property resets to its default value when cleared.

• smc_connect_props must be called after smc_connect_alloc.

• The following properties must be set on a connection before calling
smc_connect_ex:

• SMC_PROP_PASSWORD

• SMC_PROP_SERVERNAME

• SMC_PROP_USERNAME

• The serverMode determines which other Monitor Client Library functions
are applicable for the connection. For example,
smc_create_recording_session is not applicable for a live connection.

• The serverMode (specified upon creation of a connection) determines the
behavior of the common functions. For example, smc_create_view can be
used to create a live view or a historical view.

• For live connections and historical connections for defining recording
sessions, the property SMC_PROP_USERNAME must be set to either
“sa”, the name of an Adaptive Server account having sa_role, or the name
of an Adaptive Server account with execute permission on the stored
procedure master.dbo.mon_rpc_connect.

• To retrieve only the length of a string, pass null for propertyValue and a
valid pointer for outputLengthHandle.

• For the definition of a SMC_VALUE_UNION structure, see “Union:
SMC_VALUE_UNION” on page 240.

smc_connect_props

138

• For data of type SMC_CHARP, stringValue points to the value. The
Monitor Client Library allocates the memory for this string and the calling
application must deallocate it using free().

• The following properties are only valid before a connection is made:

• SMC_PROP_APPNAME

• SMC_PROP_IFILE

• SMC_PROP_PASSWORD

• SMC_PROP_SERVERMODE

• SMC_PROP_SERVERNAME

• SMC_PROP_USERNAME.

If these properties are changed on a connection after it has been
established, they take effect during the next call to smc_connect_ex.

• Table 3-5 summarizes the Monitor Client Library properties, whether they
can be set, retrieved, or cleared, and the datatype of each property value:

Table 3-5: Monitor Client Library connection properties

Property

Set/
Get/
Clear *propertyValue is Default

SMC_PROP_APPNAME All SMC_CHARP An empty
string

SMC_PROP_ERROR_
CALLBACK

Set/
Get

A function pointer
(use voidpValue
member of
SMC_VALUE_UNI
ON)

SMC_PROP_IFILE All SMC_CHARP Empty string,
signifying the
interfaces file
in directory
where the
SYBASE
environment
variable
points (on
Windows,
sql.ini in the
ini
subdirectory)

CHAPTER 3 Monitor Client Library Functions

139

Properties

SMC_PROP_LOGIN_TIMEOUT All SMC_SIZET 0 (Use the
server
default)

SMC_PROP_PACKETSIZE All SMC_SIZET 0 (Use the
server
default)

SMC_PROP_PASSWORD Set/
Clear

SMC_CHARP An empty
string

SMC_PROP_SERVERMODE All SMC_INT SMC_SERV
ER_M_LIVE

SMC_PROP_SERVERNAME All SMC_CHARP An empty
string

SMC_PROP_TIMEOUT All SMC_SIZET 0 (Use the
server
default)

SMC_PROP_USERDATA All SMC_VOIDP NULL

SMC_PROP_USERNAME All SMC_CHARP An empty
string

Property Description

SMC_PROP_APPNAME The name of the application using Monitor
Client Library. This property can be modified
at any time, but takes effect only when
smc_connect_ex is called.

SMC_PROP_ERROR_
CALLBACK

The error callback function. This property can
be modified at any time during the connection.

SMC_PROP_IFILE The interfaces file. This property can be
modified at any time, but takes effect only
when smc_connect_ex is called.

SMC_PROP_LOGIN_TIMEOUT The timeout value (in seconds) used during
login time. This property can be modified at
any time, but takes effect when only
smc_connect_ex is called.

SMC_PROP_PACKETSIZE The packet size to use for communicating to
the servers. This property can be modified at
any time during the connection.

SMC_PROP_PASSWORD The password. This property can be modified
at any time, but takes effect only when
smc_connect_ex is called.

Property

Set/
Get/
Clear *propertyValue is Default

smc_create_alarm_ex

140

Valid server modes

Errors

See also smc_connect_alloc, smc_connect_ex

smc_create_alarm_ex
Description Creates an alarm on one data item within a view on a connection.

Syntax SMC_RETURN_CODE smc_create_alarm_ex
 (SMC_CONNECT_ID clientId,
 SMC_VIEW_ID viewId,

SMC_PROP_SERVERMODE The server mode. This property can be set only
before a connection is established. It can be
modified at any time, but takes effect when
only smc_connect_ex is called. The value is
an enum: SMC_SERVER_MODE. See
“Enum: SMC_SERVER_MODE” on page
239.

SMC_PROP_SERVERNAME The server name. This property can be
modified at any time, but takes effect only
when smc_connect_ex is called.

SMC_PROP_TIMEOUT The timeout value to use for requests sent to
the servers. This property can be modified at
any time during the connection.

SMC_PROP_USERDATA A user-supplied pointer. This pointer is passed
back to callback functions. It can be changed
at any time on an available connection.

SMC_PROP_USERNAME The username to use for this connection. This
property can be modified at any time, but takes
effect only when smc_connect_ex is called.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions in program.

SMC_RET_INVALID_PARAMETER Invalid parameter value.

Property Description

CHAPTER 3 Monitor Client Library Functions

141

 SMC_DATAITEM_STRUCTP dataItemHandle,
 SMC_VALUE_UNIONP alarmValueDataHandle,
 SMC_DATAITEM_TYPE alarmDatatype,
 SMC_ALARM_ACTION_TYPE alarmActionType,
 SMC_CHARP alarmActionData,
 SMC_VOIDP userDataHandle,
 SMC_GEN_CALLBACK alarmCallback,
 SMC_ALARM_IDP alarmIdHandle)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

dataItemHandle
pointer to data item and statistic type.

alarmValueDataHandle
pointer to threshold at or above which the alarm is triggered.

alarmDatatype
the datatype of the alarm value must be one of the following and must match
the expected datatype for the given data item:

• SMC_DI_TYPE_DOUBLE

• SMC_DI_TYPE_INT

• SMC_DI_TYPE_LONG

alarmActionType
• SMC_ALARM_A_NOTIFY

 (SMC_SERVER_ M_LIVE mode only) – invokes the alarm callback.

• SMC_ALARM_A_EXEC_PROC (SMC_SERVER_
M_HISTORICAL mode only) – invokes the specified external
program.

• SMC_ALARM_A_LOG_TO_FILE (SMC_SERVER_
M_HISTORICAL mode only) – writes a message to the log file.

alarmActionData
pointer to null-terminated string whose contents depend on
alarmActionType. If alarmActionType equals:

• SMC_ALARM_A_NOTIFY – alarmActionData is ignored.

• SMC_ALARM_A_EXEC_PROC – null-terminated string that
contains the filename and optional parameter list of the program to
invoke.

smc_create_alarm_ex

142

• SMC_ALARM_A_LOG_TO_FILE – null-terminated string that
contains the log file name.

These file names are on the system where Historical Server is running
(which need not be where the application is running). The Historical Server
must have access to the files.

userDataHandle
user-supplied pointer.

alarmCallback
identifies the notification function employed by alarmActionType,
SMC_ALARM_A_NOTIFY.

alarmIdHandle
pointer to a variable, which should be declared as type SMC_ALARM_ID.
If the call to smc_create_alarm succeeds, this variable contains the ID for the
alarm.

Return value

Examples This example assumes that:

• You have created a connection using smc_connect_ex and have a clientId.

• You have created a view on the connection and have a viewId.

• The view contains the dataItem
SMC_NAME_PAGE_LOGICAL_READ,
SMC_STAT_VALUE_SAMPLE.

• You have defined an alarm handler function, myAlarmHandler.

SMC_DATAITEM_STRUCT dataItem =
 { SMC_NAME_PAGE_LOGICAL_READ,
 SMC_STAT_VALUE_SAMPLE };
 SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
 SMC_VALUE_UNION alarmValue;
 SMC_VALUE_UNIONP alarmValueHandle = &alarmValue;
 SMC_ALARM_ID alarmId;
 SMC_ALARM_IDP alarmIdHandle = &alarmId;
 alarmValue.longValue = 10L;

 if (smc_create_alarm_ex(clientId,

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

143

 viewId,
 dataItemHandle,
 alarmValueHandle,
 SMC_DI_TYPE_LONG,
 SMC_ALARM_A_NOTIFY,
 NULL, /* ignored */
 NULL,/* no user data */
 myAlarmHandler,
 alarmIdHandle) != SMC_RET_SUCCESS)
 {
 printf("smc_create_alarm_ex failed\n");
 /* do some cleanup */
 }

Usage • Alarms can be created on result data items, but not on key data items.

• alarmIds are unique only within a given view.

• Alarms are triggered for each row of a view where the data item value
meets or exceeds the threshold.

• Alarms are applied after filters, in the context of a refresh call.

• Alarms are triggered at each refresh based upon a data item’s value (state)
rather than the change of a data item’s value (transition).

• Multiple alarms can be created on the same data item.

• When used in a Historical Server connection during the definition of a
recording session, smc_create_alarm_ex defines an alarm that will be
created during the execution of a recording session.

• Alarms cannot be defined in a Historical Server connection during a
playback session.

• When creating a log-to-file alarm, if you specify a UNIX directory for the
location of the log file, be sure that the directory is valid and mounted on
the machine where Historical Server is running. Also be sure that you have
write permissions to the directory. If the directory you specify is invalid,
unmounted, or not writable, Historical Server does not create a log file, nor
does it issue a message advising you that the location is invalid.

The syntax of the alarm callback is:

SMC_VOID AlarmCallback
 (SMC_CONNECT_ID clientId,
 SMC_COMMAND_ID commandId,
 SMC_VOIDP userDataHandle)

smc_create_filter

144

Valid server modes

Errors

Callback parameters

The alarm callback function uses smc_get_command_info to obtain
information about the circumstances that triggered the alarm.

See also smc_connect_ex, smc_drop_alarm, smc_get_command_info

smc_create_filter
Description Creates a filter on a data item in a view. Each data item in a view can have only

one filter.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (for recording)

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INVALID_ALARM_VALUE Invalid alarm value

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and
replacement functions within the same
program

SMC_RET_INVALID_DATAITEM_FOR_
ALARM

Data item statistic type or alarm value
mismatched

SMC_RET_INVALID_DATATYPE Invalid datatype

SMC_RET_INVALID_DINAME Data item does not exist

SMC_RET_INVALID_DISTAT Data item statistic type does not exist

SMC_RET_INVALID_PARAMETER Invalid parameter value

SMC_RET_INVALID_VIEWID View does not exist

SMC_RET_INTERNAL_ERROR Internal error

Parameter Description

clientId Identifies the connection.

commandId Identifies the instance of a command.

userDataHandle Pointer that was set by the call to smc_create_alarm for this
alarm.

CHAPTER 3 Monitor Client Library Functions

145

This function can be used with both Monitor Server and Historical Server.
When used with Historical Server (that is, when the connection mode is
SMC_SERVER_M_HISTORICAL), it creates a filter for the recording session
that is being defined.

Syntax SMC_RETURN_CODE smc_create_filter
 (SMC_CONNECT_ID clientId,
SMC_VIEW_ID viewId,
 SMC_DATAITEM_STRUCTP dataItemHandle,
 SMC_FILTER_TYPE filterType,
 SMC_VALUE_UNIONP filterValueListHandle,
 SMC_SIZET filterValueListLength,
 SMC_DATAITEM_TYPE filterDatatype,
 SMC_FILTER_IDP filterIdHandle)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

dataItemHandle
data item and statistic type. The data item must be numeric if the filter type
is any of the following:

• SMC_FILT_T_GE

• SMC_FILT_T_LE

• SMC_FILT_T_GE_AND_LE

• SMC_FILT_TOP_N

filterType
type of filter to apply. Valid filter types are:

• SMC_FILT_T_EQ – equal to.

• SMC_FILT_T_NEQ – not equal to.

• SMC_FILT_T_GE – greater than or equal to.

• SMC_FILT_T_LE – less than or equal to.

• SMC_FILT_T_GE_AND_LE – a lower bound followed by an upper
bound.

• SMC_FILT_T_TOP_N – top N.

filterValueListHandle
pointer to an array of filter values. The number of filter values depends on
the filter type:

smc_create_filter

146

• SMC_FILT_T_EQ – one or more.

• SMC_FILT_T_NEQ – one or more.

• SMC_FILT_T_GE – one.

• SMC_FILT_T_LE – one.

• SMC_FILT_T_GE_AND_LE – two; low bound must be first element
in list and high bound second.

• SMC_FILT_T_TOP_N – one.

filterValueListLength
number of filter values listed in filterValueListHandle.

filterDataType
datatype of the values for the filter; one of the following:

• SMC_DI_TYPE_CHARP

• SMC_DI_TYPE_DATIM

• SMC_DI_TYPE_DOUBLE

• SMC_DI_TYPE_ENUMS

• SMC_DI_TYPE_INT

• SMC_DI_TYPE_LONG

Must match the datatype for the data item. The filter values must also be of
this type, except:

• If the filter type is SMC_FILT_T_TOP_N, the filter value in the
filterValueListHandle must be type SMC_INT.

• If the datatype is SMC_DI_TYPE_ENUMS, the filter value in the
filterValueListHandle must be passed using the intValue member.

filterIdHandle
pointer to a variable, which should be declared as type SMC_FILTER_ID.
If the call to smc_create_filter succeeds, this variable contains the ID for the
filter.

Return value
Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

147

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• The view contains the dataItem defined in the example.

SMC_DATAITEM_STRUCT dataItem =
 { SMC_NAME_PAGE_LOGICAL_READ,
 SMC_STAT_VALUE_SAMPLE };
 SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
 SMC_VALUE_UNION filterValue;
 SMC_VALUE_UNIONP filterValueHandle = &filterValue;
 SMC_FILTER_ID filterId;
 SMC_FILTER_IDP filterIdHandle = &filterId;
 filterValue.longValue = 10L;

if (smc_create_filter(clientId,
 viewId,
 dataItemHandle,
 SMC_FILT_T_GE,
 filterValueHandle,
 1, /* just one filterValue */
 SMC_DI_TYPE_LONG,
 filterIdHandle) != SMC_RET_SUCCESS)
 {
 printf("smc_create_filter failed\n");
 /* do some cleanup */
 }

Usage • The application can employ wildcard (%) characters on all filters that
apply to string datatypes.

• Filters are applied before alarms, in the context of a refresh call.

• Only one filter can be created on a data item.

• A filter defined for a recording session is not created until execution of the
recording session.

• Not allowed during playback.

• For database objects, you can define SMC_FILT_T_EQ filters on the
name of the object, that is, on a data item of SMC_NAME_OBJ_NAME
or SMC_NAME_ACT_STP_NAME. The string value must include the
fully qualified object name, for example, database.owner.object.
However, you can use wildcards for each component of the name.

smc_create_playback_session

148

Valid server modes

Errors

See also smc_drop_filter

smc_create_playback_session
Description Initializes a playback session on Historical Server.

Syntax SMC_RETURN_CODE smc_create_playback_session
 (SMC_CONNECT_ID clientId,
 SMC_SESSION_IDP sessionIdArray,
 SMC_SIZET numInputSessions,
 SMC_CHARP startTime,
 SMC_CHARP endTime,
 SMC_HS_PLAYBACK_OPT playbackType,
 SMC_SIZET summarizationInterval,
 SMC_HS_ESTIM_OPT estimationOption,
 SMC_HS_MISSDATA_OPT missingDataOption,
 SMC_HS_TARGET_OPT playbackTarget,
 SMC_CHARP directoryName

SMC_HS_SESS_PROT_LEVEL protectionLevel,
SMC_HS_SESS_SCRIPT_OPT scriptOption,
 SMC_HS_SESS_DELETE_OPT deleteOption,
 SMC_SESSION_IDP sessionIdHandle)

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (for recording only)

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INVALID_COMPOSITE_FILTER Invalid composite filter

SMC_RET_MISSING_DATAITEM Missing data item

SMC_RET_INVALID_DATATYPE Invalid datatype

SMC_RET_INVALID_DINAME Invalid data item

SMC_RET_INVALID_DISTAT Invalid data item statistic type

SMC_RET_INVALID_FILTER_VALUE Invalid value for filter

SMC_RET_INVALID_FILTER_RANGE Invalid range values

SMC_RET_INVALID_VALUE_COUNT Invalid value for
filterValueListLength

SMC_RET_INVALID_VIEWID View does not exist

CHAPTER 3 Monitor Client Library Functions

149

Parameters clientId
identifies the connection.

sessionIdArray
array of session numbers identifying the existing recording session(s) on
Historical Server that furnishes data for this playback session. If more than
one input session is specified, then they all must have been defined to record
data from the same Adaptive Server, and they must be ordered
chronologically.

If playbackTarget is SMC_HS_TARGET_FILE, then there must not be any
gaps between the times covered by multiple input sessions. The input
sessions must contain data for all times between the startTime and endTime
parameters.

numInputSessions
the number of input sessions, that is, the length of the sessionIdArray. Must
be at least one.

startTime
null-terminated string containing the time to start playback, using the
format:

yyyy/mm/dd hh:mm[:ss] [time zone]

The default is to start at the beginning of the first input session.

endTime
null-terminated string containing the time at which to stop playback, using
the format:

 yy/mm/dd hh:mm[:ss] [time zone]

The default is to stop at the end of the last input session.

playbackType
specifies the level of detail of the playback. Valid values are:

• SMC_HS_PBTYPE_RAW – plays back data as it was collected, using
whatever (possibly varying) intervals are contained in the input session.
This option can include snapshot data such as current SQL statement
data and status on locks or processes. Valid only with playbackTarget
SMC_HS_TARGET CLIENT.

• SMC_HS_PBTYPE_ACTUAL – plays back data at whatever (possibly
varying) intervals are contained in the input session(s). This option
cannot include snapshot data.

smc_create_playback_session

150

• SMC_HS_PBTYPE_INTERVAL – plays back data summarized into
sample intervals of the length specified in summarizationInterval.

• SMC_HS_PBTYPE_ENTIRE – plays back data for each input
recording session summarized as a single sample. The sample interval
is the time between the requested playback startTime and endTime.

If playbackTarget is SMC_HS_TARGET_FILE, then playbackType must be
SMC_HS_PBTYPE_INTERVAL or SMC_HS_PBTYPE_ENTIRE.

summarizationInterval
if playbackType is SMC_HS_PBTYPE_INTERVAL, then this specifies the
length in seconds of the playback intervals over which the input data is to be
summarized.

For other values of playbackType, applications must specify
SMC_UNUSED for this parameter.

estimationOption
specifies whether playback may estimate the values of data items that cannot
be calculated exactly. Valid values are:

• SMC_HS_ESTIM_ALLOW

• SMC_HS_ESTIM_DISALLOW

If SMC_HS_ESTIM_DISALLOW is specified, then a subsequent call for
this playback session to smc_create_view will return an error if it includes
data items requiring estimation.

This option is ignored if playbackType is SMC_HS_PBTYPE_RAW.

missingDataOption
specifies whether the Monitor Client Library will return playback samples
for periods of time when no data is available in the input session(s). Valid
values are:

• SMC_HS_MISSDATA_SHOW – Monitor Client Library will return a
sample for periods of time lacking data.

• SMC_HS_MISSDATA_SKIP – Monitor Client Library will not return
a sample for periods of time lacking data; instead, the Library will
return data for the next available time interval for which data is
available.

If playbackTarget is SMC_HS_TARGET_FILE, this parameter is ignored.

CHAPTER 3 Monitor Client Library Functions

151

playbackTarget
specifies whether the playback session returns data to the application or
whether playback creates a new session on Historical Server. Valid values
are:

• SMC_HS_TARGET_CLIENT – the playback session returns data to
the application, by means of calls to smc_refresh_ex.

• SMC_HS_TARGET_FILE – playback creates a new session on
Historical Server.

directoryName
if playbackTarget is SMC_HS_TARGET_FILE, this parameter specifies the
directory in which the Historical Server creates the data file(s) and error file
for the new sessions to be created.

protectionLevel
if playbackTarget is SMC_HS_TARGET_FILE, this parameter specifies the
protection level of the new session to be created. Valid values are:

• SMC_HS_SESS_PROT_PUBLIC

• SMC_HS_SESS_PROT_PRIVATE

This parameter is ignored if playbackTarget is
SMC_HS_TARGET_CLIENT.

scriptOption
if playbackTarget is SMC_HS_TARGET_FILE, this parameter specifies
whether Historical Server must create a script that creates tables for loading
results (from the new session) into Adaptive Server. The choices are:

• SMC_HS_SESS_SCRIPT_NONE – no script.

• SMC_HS_SESS_SCRIPT_SYBASE – Sybase script.

This parameter is ignored if playbackTarget is
SMC_HS_TARGET_CLIENT.

deleteOption
if playbackTarget is SMC_HS_TARGET_FILE, this parameter specifies
whether Historical Server must delete the input session(s) after successfully
creating a new session. The choices are:

• SMC_HS_DELETE_FILES

• SMC_HS_RETAIN_FILES

This parameter is ignored if playbackTarget is
SMC_HS_TARGET_CLIENT.

smc_create_playback_session

152

sessionIdHandle
if playbackTarget is SMC_HS_TARGET_FILE, this parameter must be a
pointer to a variable of type SMC_SESSION_ID, into which the Monitor
Client Library writes the identifier for the new session.

This parameter is ignored if playbackTarget is
SMC_HS_TARGET_CLIENT.

Return value

Examples This example assumes that you have created a connection to Historical Server
and have a clientId.

SMC_SESSION_ID inputSessions[2];

if (smc_create_playback_session(clientId,
 inputSessions,
 2,/* number of input sessions */
"",/* default start time */
"",/* default end time */
 SMC_HS_PBTYPE_INTERVAL,/* summarize at */
 60,/* uniform minute intervals */
 SMC_HS_ESTIM_ALLOW,/* allow estimation */
 SMC_HS_MISSDATA_SHOW, /* produce a sample*/
 /* every minute even if no data is */
 /* available for that interval */
 SMC_HS_TARGET_CLIENT, /* do playback */
 "",/* directory name */
 SMC_HS_SESS_PROT_PUBLIC,/* so next 5 */
 SMC_HS_SESS_SCRIPT_SYBASE,/* are */
 SMC_HS_DELETE_FILES,/* unused */
 NULL)/* No output session ID */
 != SMC_RET_SUCCESS)
 {

printf("smc_create_playback_session failed\n");
 /* do some cleanup */
 }

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

153

Usage • In a Historical Server connection, recording sessions and playback
sessions are mutually exclusive. An application that connects to a
Historical Server and defines a recording session, must complete the
definition of the recording session using the function
smc_initiate_recording before creating a playback session.

• If the playbackType is SMC_HS_PBTYPE_RAW, the application can
specify only one input session. Otherwise, the application can specify any
number of input sessions (but at least one), provided that all sessions were
recorded against the same Adaptive Server installation and Monitor
Server.

• If the playbackType is SMC_HS_PBTYPE_RAW, different rules apply to
the definition of playback views. Refer to the Adaptive Server Enterprise
Monitor Historical Server User’s Guide for more information about
views.

• You cannot combine playbackTarget SMC_HS_TARGET_FILE with
playbackType SMC_HS_PBTYPE_RAW or
SMC_HS_PBTYPE_ACTUAL.

• Input sessions can include recording sessions that are still in the process of
recording, unless playbackTarget is SMC_HS_TARGET_FILE.

• If playbackTarget is SMC_HS_TARGET_FILE, then the input session
must contain performance data for the entire time from startTime to
endTime, with no gaps between input sessions.

• Refer to the Monitor Historical Server User’s Guide for more information
about the hs_create_playback_session command.

Valid server modes

Errors

See also smc_initiate_playback

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INTERNAL_ERROR Internal error

SMC_INVALID_SVR_MODE Invalid server mode

smc_create_recording_session

154

smc_create_recording_session
Description Initiates the definition of a recording session on Historical Server.

This function is applicable only if the connection mode is
SMC_SERVER_M_HISTORICAL.

Syntax SMC_RETURN_CODE smc_create_recording_session
 (SMC_CONNECT_ID clientId,
 SMC_CHARP SMSName,
 SMC_INT sampleInterval,
 SMC_CHARP directoryName,
 SMC_CHARP startTime,
 SMC_CHARP endTime,
 SMC_HS_SESS_PROT_LEVEL protectionLevel,
 SMC_HS_SESS_ERR_OPT errOption,
SMC_HS_SESS_SCRIPT_OPT scriptOption,SMC_SESSION_IDP
sessionIdHandle)

Parameters clientId
identifies the connection.

SMSName
null-terminated string containing the name of the Monitor Server.

sampleInterval
the number of seconds to wait between consecutive samplings of data.

directoryName
null-terminated string containing the full path name to the directory
containing the data and error files created by Historical Server during
execution of this recording session.

The directory must be writable on the system on which Historical Server is
running. This might not be the same system that is running the client
application that invoked the function call.

startTime
null-terminated string containing the time to start recording, using the
format:

yyyy/mm/dd hh:mm[:ss] [time zone]

The default is to start immediately.

endTime
null-terminated string containing the time at which to stop the recording,
using the format:

yy/mm/dd hh:mm[:ss] [time zone]

CHAPTER 3 Monitor Client Library Functions

155

The default is to stop 24 hours after startTime.

protectionLevel
protection level of the data recorded. Valid values are:

• SMC_HS_SESS_PROT_PUBLIC

• SMC_HS_SESS_PROT_PRIVATE

errOption
indicate what Historical Server must do when encountering a non-fatal error.
The choices are:

• SMC_HS_SESS_ERR_CONT – continue the session.

• SMC_HS_SESS_ERR_HALT – stop the session.

scriptOption
indicate whether Historical Server must create a script that creates tables for
loading results (from this recording session) into Adaptive Server. The
choices are:

• SMC_HS_SESS_SCRIPT_NONE – no script.

• SMC_HS_SESS_SCRIPT_SYBASE – Sybase script.

sessionIdHandle
pointer to a variable, which should be declared as type SMC_SESSION_ID.
If the call to smc_create_recording_session succeeds, this variable contains
the ID for the recording session.

Return value

Examples This example assumes that you have created a connection to Historical Server
and have a clientId.

SMC_SESSION_ID sessionId;
 SMC_SESSION_IDP sessionIdHandle = &sessionId;
if (smc_create_recording_session(clientId,
 "myMonitorServer",
 60, /* sample interval (seconds) */
 "/usr/hist_serv_home_dir",
 "95/07/22 15:00", /* start time */
 "95/07/23 15:30", /* end time */
 SMC_HS_SESS_PROT_PUBLIC,

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_create_view

156

 SMC_HS_SESS_ERR_CONT,
 SMC_HS_SESS_SCRIPT_SYBASE,
 sessionIdHandle) != SMC_RET_SUCCESS)
 {
 printf("smc_create_recording_session failed\n");
 /* do some cleanup */
 }

Usage • In a Historical Server connection, recording sessions and playback
sessions are mutually exclusive. An application that connects to Historical
Server and creates a playback session must end the playback session using
the function smc_terminate_playback before creating a recording session.

• Refer to the Adaptive Server Enterprise Monitor Historical Server User’s
Guide for more information on the hs_create_recording_session
command.

Valid server modes

Errors

See also smc_initiate_recording

smc_create_view
Description Creates a view that can contain one or more data items.

For information about data items, refer to Chapter 2, “Data Items and
Statistical Types”.

You can use the smc_create_view function with both Monitor Server and
Historical Server. When used with Historical Server
(SMC_SERVER_M_HISTORICAL), it creates a view for the recording or
playback session that is being defined.

Syntax SMC_RETURN_CODE smc_create_view
 (SMC_CONNECT_ID clientId,

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INTERNAL_ERROR Internal error

SMC_RET_INVALID_SVR_MODE Invalid server mode

CHAPTER 3 Monitor Client Library Functions

157

 SMC_DATAITEM_STRUCTP dataItemListHandle,
 SMC_SIZET dataItemListLength,
 SMC_CHARP viewName,
 SMC_VIEW_IDP viewIdHandle)

Parameters clientId
identifies the connection.

dataItemListHandle
pointer to array of SMC_DATAITEM_STRUCTs.

dataItemListLength
number of data items in the array pointed to by the dataItemListHandle.

viewName
null-terminated string containing a descriptive name for this view. This
name can include a – z, A – Z, 0 – 9, and underscore (_) characters, or can
be NULL.

Used only for a Historical Server connection. For a live connection, the view
name is ignored.

viewIdHandle
pointer to a variable, which should be declared as type SMC_VIEW_ID. If
the call to smc_create_view succeeds, this variable contains the ID for the
view.

Return value

Examples This example assumes that you have created a connection and have a clientId.

SMC_DATAITEM_STRUCT dataItem =
 { SMC_NAME_PAGE_LOGICAL_READ,
 SMC_STAT_VALUE_SAMPLE };
 SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
 SMC_VIEW_ID viewId;
 SMC_VIEW_IDP viewHandle = &viewId;

if (smc_create_view(clientId,
 dataItemHandle,
 1, /* just one dataItem */
 NULL, /* this is a Monitor Server view */
 viewIdHandle) != SMC_RET_SUCCESS)

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_create_view

158

 {
 printf("smc_create_view failed\n");
 /* do some cleanup */
 }

Usage • Refer to Chapter 2, “Data Items and Statistical Types” for rules for using
views with live views.

• When called against a Historical Monitor connection, smc_create_view
must be preceded by a call to smc_create_recording_session or
smc_create_playback_session.

• When used in Historical Server during the definition of a recording
session, it defines a view to be recorded by Historical Server during the
recording session.

• When used in Historical Server during a playback session, it selects a view
for playback from those previously recorded in recording session(s). If the
playback session uses more than one input session, then the selected view
must exist in all input sessions and use the same name, data items, and
filters.

• Depending on whether the playback session was created for “raw” or
summarizing playback, the playback view may or may not include certain
data items from the original view. Refer to the Adaptive Server Enterprise
Monitor Historical Server User’s Guide for more information on the
hs_create_playback_view command.

Valid server modes

Errors

See also smc_create_recording_session, smc_create_playback_session,
smc_initiate_recording, smc_initiate_playback, smc_drop_view

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_API_FUNC_SEQUENCE Invalid calling sequence of
Monitor Client Library
functions

SMC_RET_INVALID_DINAME Invalid data item

SMC_RET_INVALID_DI_STATTYPE Invalid data item statistic type

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

CHAPTER 3 Monitor Client Library Functions

159

smc_drop_alarm
Description Removes an alarm on a data item in a view.

Syntax SMC_RETURN_CODE smc_drop_alarm
 (SMC_CONNECT_ID clientId,
 SMC_VIEW_ID viewId,
 SMC_ALARM_ID alarmId)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

alarmId
identifies the alarm.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• You have created an alarm on that view and have an alarmId.

if (smc_drop_alarm(clientId,
 viewId,
 alarmId) != SMC_RET_SUCCESS)
 {
 printf("smc_drop_alarm_failed\n");
 exit(1);
 }

Usage You cannot drop an alarm created while defining a Historical session (that is,
when the connection mode is SMC_SERVER_M_HISTORICAL).

Valid server modes

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_BUSY Function not executed, connection is busy.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL No

smc_drop_filter

160

Errors

See also smc_create_alarm_ex, smc_drop_view

smc_drop_filter
Description Removes a filter on a data item.

Syntax SMC_RETURN_CODE smc_drop_filter
 (SMC_CONNECT_ID clientId,
 SMC_VIEW_ID viewId,
 SMC_FILTER_ID filterId)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

filterId
identifies the filter to be dropped.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• You have created a filter on that view and have a filterId.

if (smc_drop_filter(clientId,
 viewId,
 filterId) != SMC_RET_SUCCESS)
 {
 printf("smc_drop_filter_failed\n");
 /* do some cleanup */

Error Indicates

SMC_RET_INVALID_VIEWID Function failed.

SMC_RET_INVALID_ALARMID Alarm does not exist.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

161

 }

Usage • Dropping a filter takes effect at the next call to smc_refresh following the
call to smc_drop_filter.

• You cannot drop a filter created while defining a Historical Server session
(that is, when the connection mode is
SMC_SERVER_M_HISTORICAL).

Valid server modes

Errors

See also smc_create_filter, smc_drop_view

smc_drop_view
Description Removes a view from a connection.

Syntax SMC_RETURN_CODE smc_drop_view
 (SMC_CONNECT_ID clientId,
 SMC_VIEW_ID viewId)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL No

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

SMC_RET_INVALID_FILTERID Filter does not exist.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_get_command_info

162

• You have created a view on that connection and have a viewId.

if (smc_drop_view(clientId,
 viewId) != SMC_RET_SUCCESS)
 {
 printf("smc_drop_view_failed\n");
 /* do some cleanup */
 }

Usage • All alarms and filters associated with the data items in the view are
dropped.

• You cannot drop a view created on a Historical Server session (that is,
when the connection mode is SMC_SERVER_M_HISTORICAL).

Valid server modes

Error

See also smc_create_view, smc_drop_alarm, smc_drop_filter

smc_get_command_info
Description Retrieves detailed information about an alarm or error notification.

Syntax SMC_RETURN_CODE smc_get_command_info
 (SMC_CONNECT_ID clientId,
 SMC_COMMAND_ID commandId,
 SMC_INFO_TYPE infoType,
 SMC_VALUE_UNIONP infoValue,
 SMC_SIZETP outputLengthHandle)

Parameters clientId
identifies the connection.

commandId
identifies an invocation of a callback function.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL No

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

CHAPTER 3 Monitor Client Library Functions

163

infoType
describes the type of requested information. See “Data available for alarm
callbacks” on page 129.

infoValue
pointer to an SMC_VALUE_UNION structure receiving the value of
infoType.

outputLengthHandle
a pointer to an integer variable. Upon a successful call to
smc_get_command_info, the Monitor Client Library writes into this variable.
The actual length, in bytes, of the data to be copied into *infoValue (not
including the null-terminator byte). If the infoValue datatype is not
SMC_CHARP, this parameter is ignored. Pass null if the information is not
desired.

Return value

Examples This example assumes that:

• An error callback function is executing.

• You have created a connection and have a clientId.

• The example code is being used in the context of a Monitor Client Library
API callback function, which supplies the commandId.

SMC_VALUE_UNION myValue;
 SMC_VALUE_UNIONP myValuePtr = &myValue;
 if (smc_get_command_info(clientId,
 commandId,
 SMC_INFO_ERR_NUM,
 myValuePtr,
 NULL) != SMC_RET_SUCCESS)
 {
 printf("smc_get_command_info failed\n");

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions within the same program.

SMC_RET_INVALID_COMMAND Instance of command does not exist.

SMC_RET_INVALID_CONNECT Connection does not exist.

SMC_RET_INVALID_INFOTYPE Invalid context for requested
information type.

SMC_RET_INVALID_PARAMETER Invalid parameter value.

smc_get_command_info

164

 /* do some cleanup */
 }

Usage • For the definition of an SMC_VALUE_UNION structure, see “Union:
SMC_VALUE_UNION” on page 240.

• For data of type SMC_CHARP, stringValue points to the value. The
Monitor Client Library allocates the memory for this string and the calling
application must deallocate it using free().

• To retrieve just the length in bytes of a string, pass null for infoValue and
a valid pointer for outputLengthHandle.

• Table 3-6 lists the command infoType and associated datatype:

Table 3-6: Monitor Client Library command information types

Information type infoValue datatype Available

SMC_INFO_ALARM_ACTION_DATA SMC_CHARP In an alarm
callback
function

SMC_INFO_ALARM_ALARMID SMC_SIZET In an alarm
callback
function

SMC_INFO_ALARM_CURRENT_
VALUE

Depends on the data
item and statistic type
combination. (See
Chapter 2, “Data Items
and Statistical Types”.)

In an alarm
callback
function

SMC_INFO_ALARM_DATAITEM SMC_VOIDP In an alarm
callback
function

SMC_INFO_ALARM_ROW SMC_SIZET In an alarm
callback
function

SMC_INFO_ALARM_THRESHOLD_
VALUE

Depends on data item/
statistic type
combination. (See
Chapter 2, “Data Items
and Statistical Types”.)

In an alarm
callback
function

SMC_INFO_ALARM_TIMESTAMP SMC_CHARP In an alarm
callback
function

SMC_INFO_ALARM_VALUE_
DATATYPE

SMC_INT In an alarm
callback
function

CHAPTER 3 Monitor Client Library Functions

165

Valid server modes

Errors This function does not employ error callback functions.

See also smc_create_alarm_ex

smc_get_dataitem_type
Description Returns the datatype for the specified data item.

Syntax SMC_RETURN_CODE smc_get_dataitem_type
 (SMC_DATAITEM_STRUCTP dataItemHandle,
 SMC_DATAITEM_TYPEP ptrType)

Parameters dataItemHandle
pointer to data item and statistical type.

SMC_INFO_ALARM_VIEWID SMC_SIZET In an alarm
callback
function

SMC_INFO_ERR_MAPSEVERITY SMC_SIZET In an error
callback
function

SMC_INFO_ERR_MSG SMC_CHARP In an error
callback
function

SMC_INFO_ERR_NUM SMC_SIZET In an error
callback
function

SMC_INFO_ERR_SEVERITY SMC_SIZET In an error
callback
function

SMC_INFO_ERR_SOURCE SMC_SIZET In an error
callback
function

SMC_INFO_ERR_STATE SMC_SIZET In an error
callback
function

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Information type infoValue datatype Available

smc_get_dataitem_type

166

ptrType
pointer to data value type.

Return value

Examples SMC_DATAITEM_STRUCT dataItem =
 { SMC_NAME_PAGE_LOGICAL_READ,
 SMC_STAT_VALUE_SAMPLE };
 SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
 SMC_DATAITEM_TYPE dataItemType;
 SMC_DATAITEM_TYPEP dataItemTypeHandle = &dataItemType;

if (smc_get_dataitem_type(dataItemHandle,
 dataItemTypeHandle) != SMC_RET_SUCCESS)
 {
 printf("smc_get_dataitem_type failed\n");
 /* do some cleanup */
 }

Usage • The data item types are as follows:

• If you supply a data item and statistical type that Monitor Client Library
does not support, the output parameter type is set to
SMC_DI_TYPE_NONE.

See also smc_create_view

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

Data item type Description

SMC_DI_TYPE_CHARP Pointer to a character string.

SMC_DI_TYPE_DATIM Sybase date and time.

SMC_DI_TYPE_DOUBLE Double-precision floating-point number.

SMC_DI_TYPE_ENUMS An enumerated datatype, specific to the data
item. Enumerated types are defined in the
mctype.sh include file and in Appendix B,
“Datatypes and Structures”.

SMC_DI_TYPE_INT Integer.

SMC_DI_TYPE_LONG Long integer.

CHAPTER 3 Monitor Client Library Functions

167

smc_get_dataitem_value
Description Returns data after a refresh. This data is returned one data item of one row at a

time.

Syntax SMC_RETURN_CODE smc_get_dataitem_value
 (SMC_CONNECT_ID clientId,
 SMC_VIEW_ID viewId,
 SMC_DATAITEM_STRUCTP dataItemHandle,
 SMC_SIZET row,
 SMC_VALUE_UNIONP returnVal)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

dataItemHandle
pointer to data item and statistic type.

row
row number of requested data.

returnVal
return value that contains the value of one data item.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• The view contains the dataItem defined in the example.

• You have successfully executed a refresh call.

• The row count is greater than zero.

SMC_DATAITEM_STRUCT dataItem =
 { SMC_NAME_PAGE_LOGICAL_READ,
 SMC_STAT_VALUE_SAMPLE };
 SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
SMC_VALUE_UNION returnValue;

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT No connection exists with the specified ID.

smc_get_row_count

168

 SMC_VALUE_UNIONP returnValueHandle = &returnValue;
if (smc_get_dataitem_value(clientId,
 viewId,
 dataItemHandle,
 0,/* row number */
 returnValueHandle) != SMC_RET_SUCCESS)
 {
 printf("smc_get_dataitem_value failed\n");
 /* do some cleanup */
 }

Usage • The first row of data is indexed by row number zero, the second by one,
and so on.

• For data of type SMC_DI_TYPE_CHARP, the Monitor Client Library
allocates the memory. The calling application must deallocate the memory
using free().

• See Appendix B, “Datatypes and Structures” for a listing of members in
SMC_VALUE_UNION.

• See the mctype.sh include file or Appendix B, “Datatypes and Structures”
for the values for enumerated types.

Errors

See also smc_refresh_ex, smc_get_dataitem_type

smc_get_row_count
Description Returns the number of rows returned by a given view after a refresh.

Syntax SMC_RETURN_CODE smc_get_row_count
 (SMC_CONNECT_ID clientId,
 SMC_VIEW_ID viewId,
 SMC_SIZETP rowCountHandle)

Parameters clientId
identifies the connection.

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

SMC_RET_INVALID_DINAME Invalid data item.

SMC_RET_INVALID_DISTAT Invalid data item statistic type.

SMC_RET_INVALID_PARAMETER Invalid parameter.

CHAPTER 3 Monitor Client Library Functions

169

viewId
identifies a view created on the connection.

rowCountHandle
pointer to a variable into which Monitor Client Library writes the number of
rows in a view.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• You have successfully executed a refresh call.

SMC_SIZET rowCount;
 SMC_SIZETP rowCountHandle = &rowCount;
if (smc_get_row_count(clientId,
 nviewId,
 rowCountHandle) != SMC_RET_SUCCESS)
 {
 printf("smc_get_row_count failed\n");
 /* do some cleanup */
 }

Usage The first row of data is indexed by row number 0, the second by 1, and so on.

Valid server modes

Error

See also smc_refresh_ex, smc_get_dataitem_value

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (during playback)

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

smc_get_version_string

170

smc_get_version_string
Description Returns the Monitor Client Library version number.

Syntax SMC_RETURN_CODE smc_get_version_string
 (SMC_CHARPP versionBuffer)

Parameters versionBuffer
return value that contains the version string.

Return value

Examples SMC_CHARP versionBufferHandle;
if (smc_get_version_string(&versionBufferHandle)
 != SMC_RET_SUCCESS)
 {
 printf("smc_get_version_string failed\n");
 /* do some cleanup */
 }
 printf("%s\n",versionBufferHandle);
free(versionBufferHandle);

Usage • The Monitor Client Library allocates the memory for this string. The
calling application must deallocate this memory using free().

• This function does not require a connection.

smc_initiate_playback
Description Concludes the definition of views for a playback session on Historical Server,

and prepares to start playback.

Syntax SMC_RETURN_CODE smc_initiate_playback
 (SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Return value

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

CHAPTER 3 Monitor Client Library Functions

171

Examples This example assumes that:

• You have created a connection to Historical Server and have a clientId.

• You have successfully executed smc_create_playback_session.

• You have created at least one view on the connection.

if (smc_initiate_playback(clientId) !=
 SMC_RET_SUCCESS)
 {
 printf("smc_initiate_playback failed\n");
 /* do some cleanup */
 }

Usage • The data for a playback session is defined by calls to smc_create_view,
made after a call to smc_create_playback_session and before the call to
smc_initiate_playback.

• If this playback session was defined to create a new session from playback
(that is, if smc_create_playback_session was called with playbackTarget
SMC_HS_TARGET_FILE), then smc_initiate_playback creates the new
session. The application must then call smc_terminate_playback to
conclude the playback session.

• If the playback session was defined to play back data to the application
(that is, if smc_create_playback_session was called with playbackTarget
SMC_HS_TARGET_CLIENT), then the application calls smc_refresh_ex
to retrieve each playback sample, and smc_terminate_playback to conclude
the playback session.

• After a successful call to smc_terminate_playback, the Historical Server
connection can be used to define another playback session, or to create a
recording session.

Valid server modes

Errors

SMC_RET_INVALID_CONNECT Connection does not exist.

Return value Indicates

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_SVR_MODE Invalid server mode.

SMC_RET_INTERNAL_ERROR Internal error.

smc_initiate_recording

172

See also smc_create_view, smc_create_playback_session, smc_refresh_ex,
smc_terminate_playback

smc_initiate_recording
Description Completes the definition of a recording session against Historical Server, that

is, an SMC_SERVER_M_HISTORICAL connection only.

Syntax SMC_RETURN_CODE smc_initiate_recording
 (SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Return value

Examples The following example assumes that:

• You have created a connection to Historical Server and have a clientId.

• You have successfully executed smc_create_recording_session.

• You have created at least one view on the connection.

if (smc_initiate_recording(clientId) !=
 SMC_RET_SUCCESS)
 {
 printf("smc_initiate_recording failed\n");
 /* do some cleanup */
 }

Usage • The data for the recording session is defined by calls to smc_create_view
and smc_create_filter that are made after a call to
smc_create_recording_session and before the call to
smc_initiate_recording.

• After a successful call to smc_initiate_recording, the Historical Server
connection can be used to define another recording session, or to create a
playback session.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

173

Valid server modes

Errors

See also smc_create_alarm_ex, smc_create_filter, smc_create_view,
smc_create_recording_session, smc_terminate_recording_session

smc_refresh_ex
Description Obtains a sampling of data for all views on a connection.

Syntax SMC_RETURN_CODE smc_refresh_ex
 (SMC_CONNECT_ID clientId,
 SMC_SIZET step)

Parameters clientId
identifies the connection.

step
during playback in a Historical Server connection, allows skipping ahead a
specified number of samples. Ordinarily, on playback, step is +1 to retrieve
the next sample (negative step values are not allowed).

Does not apply for live connections; use SMC_UNUSED.

Return value

Examples This example assumes that:

• You have created a connection and have a clientId.

• You have created at least one view on that connection.

if (smc_refresh_ex(clientId,SMC_UNUSED)

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_SVR_MODE Invalid server mode.

SMC_RET_INTERNAL_ERROR Internal error.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_terminate_playback

174

 != SMC_RET_SUCCESS)
 {
 printf("smc_refresh_ex failed\n");
 /* do some cleanup */
 }

Usage • In a playback session, smc_refresh_ex must be preceded by a call to
smc_initiate_playback.

• If you try to refresh a view at the same time someone creates a database,
the refresh may fail.

• A refresh for a view may fail if one or more databases on Adaptive Server
are in single-user mode.

Valid server modes

Errors

See also smc_connect_ex

smc_terminate_playback
Description Concludes a playback session on Historical Server.

Syntax SMC_RETURN_CODE smc_terminate_playback
 (SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Return value

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (for playback)

Error Indicates

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions in program.

SMC_RET_INVALID_SVR_MODE Invalid server mode.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

175

Examples This example assumes that:

• You have created a connection to Historical Server and have a clientId.

• You have successfully executed smc_create_playback_session.

• You have created at least one view on the connection.

• You have successfully executed smc_initiate_playback.

if (smc_terminate_playback(clientId)
 != SMC_RET_SUCCESS)
 {
 printf("smc_terminate_playback failed\n");
 /* do some cleanup */
 }

Usage • After a successful call to smc_terminate_playback, the Historical Server
connection can be used to create another playback session, or to define a
recording session.

Valid server modes

Errors

See also smc_create_playback_session, smc_initiate_playback

smc_terminate_recording
Description Cancels a recording session on a Historical Server connection.

Syntax SMC_RETURN_CODE smc_terminate_playback(
 SMC_CONNECT_ID clientId,
 SMC_SESSION_ID sessionId
SMC_HS_SESS_DELETE_OPTdeleteOption,
)

Parameters clientId
identifies the Monitor connection.

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_SVR_MODE Invalid server mode.

SMC_RET_INTERNAL_ERROR Internal error.

smc_terminate_recording

176

sessionId
identifies the recording session to cancel.

deleteOption
specifies whether Historical Server should delete the data files, if any,
associated with the session. The choices are SMC_HS_DELETE_FILES
and SMC_HS_RETAIN_FILES.

This parameter is ignored if the session has not been initiated or if it has not
started recording.

Return value

Examples This example assumes that:

• You have created a connection to Historical Server and have a clientId.

• You have successfully executed smc_create_recording_session and have a
sessionId.

if (smc_terminate_recording(
 clientId,
 sessionId,
 SMC_HS_DELETE_FILES)
 != SMC_RET_SUCCESS)
 {
 printf("smc_terminate_recording failed\n");
 /* do some cleanup */
 }

Usage • If the recording session had already been initiated, then
smc_terminate_recording cancels the session. If the session had been
scheduled, but had not actually started recording, then
smc_terminate_recording causes the session to be unscheduled. If the
session had actually started recording, then smc_terminate_recording
causes the session to end prematurely, that is, before the scheduled end
time.

• If the recording session had not been initiated, then
smc_terminate_recording cancels definition of the recording session. After
a successful call to smc_terminate_recording, the HISTORICAL
connection may be used to create another recording session, or to define a
playback session.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Monitor connection does not exist.

CHAPTER 3 Monitor Client Library Functions

177

Valid server modes

Errors

See also smc_create_recording_session, smc_initiate_recording

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_SVR_MODE Invalid server mode.

SMC_RET_INTERNAL_ERROR Internal error.

smc_terminate_recording

178

179

C H A P T E R 4 Building a Monitor Client Library
Application

This chapter contains information about building a Monitor Client Library
application on the following platforms:

This chapter describes the steps required to build a Monitor Client Library
application, including:

• Compiling

• Linking

• Running

Two sample programs are provided with the Monitor Client Library:

• testmon, which obtains data from a Monitor Server

• testhist, which creates a Historical Server recording session and
places data into a file

You can use the build procedures supplied with these sample applications
as a model for other applications. The sample programs are discussed
separately for UNIX and Windows platforms.

Note The following instructions assume that the Monitor Client Library
is installed in the Sybase root directory, and that the SYBASE environment
variable is set to this root directory.

Topic Page
Building on UNIX platforms 180

Building on Windows platforms 182

Building on UNIX platforms

180

Building on UNIX platforms
This section explains how to compile, link, run, and build the sample
applications for UNIX platforms.

Compiling the application
Each source file that uses the Monitor Client Library must include the
following line:

#include "mcpublic.h"

The header files for Monitor Client Library are installed, by default, in the
monclt/include directory of the directory indicated by the SYBASE
environment variable.

Open Client header files, which are needed for compilation, are also installed
in this directory. Include this directory in the compilation command line. For
example, you could enter:

cc -I$SYBASE/monclt/include myprog.c

If the header files have been installed in directories other than the default,
substitute those directories in the compilation command line.

Linking the application
The Monitor Client Library is installed in the monclt/lib directory of the
directory indicated by the SYBASE environment variable. In addition, Open
Client libraries, which are required for linking with the Monitor Client Library,
are installed in the monclt/lib directory. To find the names of the libraries with
which you must link your application, see the make files supplied with the
examples.

CHAPTER 4 Building a Monitor Client Library Application

181

Running the application
To run a Monitor Client Library application, set the SYBASE environment
variable to the Open Client installation directory that contains the locales,
charsets, and lib directories. These directories are loaded during Monitor
Client Library installation.

Note Adaptive Server and Monitor Server must be configured and running on
your network before you run a Monitor Client Library application.

Building the sample applications
The sample programs and the procedures to build them are installed, by
default, in the $SYBASE/sample/monclt directory. The two versions of the
build procedure are:

• Makefile, which uses the native ANSI compiler and linker

• Makefile_gcc, which uses the GNU C compiler and linker

To build and run the sample programs, use the following steps:

1 If the entries for the Adaptive Server, Monitor Server, and Historical
Server that you intend to use with the examples do not appear in your
interfaces file, add the entries. You can use monclt/bin/sybinit to edit the
interfaces file.

2 Copy the sample files from the monclt/sample directory to another
directory to keep the original sample for future reference and enable you
to edit your own copy.

3 If you are not already there, change your directory to the directory that
contains your copies of the sample files.

4 Edit the example.h file to supply the names of:

• Adaptive Server

• Monitor Server

• Historical Server

• Login name on Adaptive Server

• Password

• interfaces file location

Building on Windows platforms

182

If you are using the default interfaces file located in the directory indicated
by the SYBASE environment variable, you can accept the default null
string ("") for the interfaces file name. If you are not using the default
interfaces file, specify the full path name of the interfaces file.

5 Set the MONCLTLIBDIR environment variable to the root installation
directory for Monitor Client Library, which is by default, the monclt
directory of the Sybase root installation directory:

setenv MONCLTLIBDIR $SYBASE/monclt

6 You can edit the make files and change the value of the SYBASE variable
to point to a different Sybase root directory. By default, it points to
$MONCLTLIBDIR.

7 Use the make utility to build the test programs.

If you use the native UNIX make utility, enter:

make all

If you use the GNU compiler, enter:

make -f Makefile_gcc

8 Run the sample programs.

To run the program that retrieves and displays live data from Monitor
Server, enter:

./testmon

To run the program that creates a recording session using Historical
Server, enter:

./testhist

Building on Windows platforms
This section describes how to compile, link, run, and build the sample
applications on a Windows platform.

Compiling the application
To compile a Monitor Client Library application on a Windows platform, do
the following:

CHAPTER 4 Building a Monitor Client Library Application

183

1 Include the following line in each source file that uses Monitor Client
Library:

#include "mcpublic.h"

2 Include the path of the directory that contains the Monitor Client Library
and Open Client header files in the list of directories (sometimes called the
Include path) in which the C compiler preprocessor looks for header files.
The header files for Monitor Client Library and Open Client are installed,
by default, in the C:\SYBASE\INCLUDE directory.

3 Set the compiler preprocessor option to define the _WIN and WIN32
preprocessor macros.

4 Set the code generation option to use the __cdecl calling convention.

Note To use a calling convention other than the default, you must declare it in
each callback function that uses it.

Linking the application
The Monitor Client Library is contained in the smcapi32.lib file, which is
installed in the C:\SYBASE\LIB directory.

You can specify the full path name of the library or the smcapi32.lib file name
in the list of libraries for the linker to use for your application. However, if you
include only the file name, you must include the C:\SYBASE\LIB directory in
the list of directories in which the linker looks for libraries.

Running the application
Refer to the release bulletin for Adaptive Server Enterprise Monitor for a list
of software required to run a Monitor Client Library application.

Building on Windows platforms

184

Define the SYBASE environment variable to indicate the directory where the
Sybase client software has been installed. The ini directory within this
directory must contain the sql.ini file. Use the SQLEDIT utility to set up this file
to include the names of any Adaptive Server installations, Monitor Servers, and
(optionally) Historical Servers that your application uses.

Note Adaptive Server and Monitor Server must be configured and running on
your network before you run a Monitor Client Library application.

Building the sample applications
The sample programs and the build procedures to build them are installed in
the C:\SYBASE\SAMPLE\MONCLT\TESTMON and
C:\SYBASE\SAMPLE\MONCLT\TESTHIST directories.

For each of the sample programs, there is a project (.mak) file. For applications
to be built using Microsoft Visual C/C++ version 4.0 and to be run under
Windows NT or Windows 95 as a console application, the two project files are
TESTMO32.MAK and TESTHI32.MAK.

To build and run the sample programs, use the following steps:

1 Modify the PATH environment variable to include the C:\SYBASE\DLL
directory in which the Sybase DLLs were installed.

2 If you have not already done so, set the SYBASE environment variable to
the Sybase \SYBASE root installation directory.

3 If you do not have the appropriate server names in the sql.ini file, add the
entries for the Adaptive Server installation, Monitor Server, and Historical
Server that you intend to use to the C:\SYBASE\INI\SQL.INI file.

4 Edit the \SYBASE\SAMPLE\MONCLT\TESTMON\ EXAMPLE.H and
\SYBASE\SAMPLE\MONCLT\TESTHIST\ EXAMPLE.H files to supply
the names of the Adaptive Server, Monitor Server, Historical Server (for
TESTHIST only), login name on Adaptive Server, and password.

5 Open the project (.mak) file for the sample application you want to build.

• To use the program that tests a live connection to Monitor Server,
enter:

\SYBASE\SAMPLE\MONCLT\TESTMON\TESTMO32.MAK

• To use the program that tests Historical Server, enter:

CHAPTER 4 Building a Monitor Client Library Application

185

\SYBASE\SAMPLE\MONCLT\TESTHIST\TESTHI32.MAK

6 If the Monitor Client Library is installed in a directory other than
\SYBASE:

• Modify the compiler preprocessor option to include the INCLUDE
subdirectory of the installation directory, instead of the default
\SYBASE\INCLUDE directory, in the list of directories in which the C
compiler preprocessor looks for header files.

• Edit the list of libraries for the linker to use for the application so that
it specifies the full path name of the library, instead of the
\SYBASE\LIB\SMCAPI32.LIB default directory path name.

7 Build the project.

8 Run the application.

To run applications under Windows NT or Windows 95, enter the name of
the executable program from a Command Prompt window. For example:

C:\SYBASE\SAMPLE\MONCLT\TESTMON\WinDebug\TESTMO32

Building on Windows platforms

186

187

C H A P T E R 5 Monitor Client Library
Configuration Instructions

This chapter describes the installation and configuration process for
Monitor Client Library.

Loading Monitor Client Library
To move the Monitor Client Library files from the distribution media onto
your machine, use Studio Installer. This utility allows you to load all of the
products you have ordered onto one machine in one Studio Installer
session or to distribute your software among different licensed machines
by running separate Studio Installer sessions.

Using Studio Installer
If you have not already done so, follow the instructions in the installation
guide to load Monitor Client Library onto your machine.

After loading the software, return to this chapter to complete the
installation and configuration of Monitor Client Library.

Topic Page
Loading Monitor Client Library 187

Results of the load 188

Confirming your login account and permissions 188

Modifying the interfaces file 188

Setting up the user environment 190

Using Monitor Client Library 191

Results of the load

188

Results of the load
The Studio Installer utility places the Monitor Client Library software in the
load directory you specified to Studio Installer during the installation process.
The default load directory is the $SYBASE directory.

The load directory contains all software and other files for Monitor Client
Library, including the locales and charsets subdirectories at the correct version
level for Monitor Client Library.

Confirming your login account and permissions
To perform the tasks described in this chapter, you must be logged in using the
“sybase” account or some other account that has read, write, and search
(execute) permissions on the load directory. The load directory is the directory
name you supplied to Studio Installer when you loaded the Monitor Client
Library software onto your machine. The default load directory is the
$SYBASE directory.

Modifying the interfaces file
Before a Monitor Client Library application can run, it must have access to an
interfaces file that contains entries for Adaptive Server Enterprise Monitor.
The interfaces file can exist on a local or remote machine, so long as the
Monitor Client Library application has access to the file system containing the
interfaces file.

If an interfaces file does not exist on a machine where a Monitor Client Library
application will run and an interfaces file is not accessible remotely, you must
create one.

The interfaces file accessed by a Monitor Client Library application must
contain entries for the following servers:

• The Adaptive Server installations being monitored

• The Monitor Server(s) that Monitor Viewer is using

• Optionally, the Monitor Historical Server if one is being used

CHAPTER 5 Monitor Client Library Configuration Instructions

189

The entries that you add to the interfaces file accessed by the Monitor Client
Library application must match the entries that already exist in the interfaces
file for the servers, on the server machine. Those entries define the server
names, their host machine names, and their port numbers. You must use the
same values on the client machine. See the person who installed Monitor
Server and Monitor Historical Server to obtain the entries for the servers.

The general format for additions to a client interfaces file is:

sql_server_name
 query entry
 master entry
 monitor_server_name
 query entry
 master entry
 historical_server_name
 query entry
 master entry

Use the sybinit utility or a text editor to add entries to the interfaces file.

Note Before invoking sybinit, make sure that your SYBASE environment
variable points to the directory containing the interfaces file that you want to
change or, if the file does not yet exist on your machine, the directory where
you want it to reside.

If you use a text editor to update the interfaces file, entries must comply with
the following rules:

• The entry cannot contain blank lines.

• The server_name line must start in the first column of the interfaces file.

• The entries for query and master must have one tab preceding them. You
must indent the query and master lines using the Tab key; do not use the
space bar to indent these two lines.

If you use sybinit to edit the interfaces file, the utility enforces these rules.

For information about editing interfaces files, specifics about the interfaces file
format, and details about parameters within an interfaces file entry, see
Configuring Adaptive Server Enterprise for your platform.

Setting up the user environment

190

Setting up the user environment
On start-up, a Monitor Client Library application must:

• The correct version of the locales and charsets directories

• An interfaces file

The SYBASE environment variable defines the location of the locales and
charsets directories. The SYBASE variable also defines the default location of
the interfaces file; however, the Monitor Client Library application might need
to override that default location.

Setting the SYBASE environment variable
When a user starts a Monitor Client Library application, the directory pointed
to by the SYBASE environment variable must contain the correct version of the
locales and charsets directories. Therefore, users must set their SYBASE
environment variable to point to the monclt subdirectory of the load directory
(the directory where the Studio Installer placed Monitor Client Library
software).

Overriding the default location of the interfaces file
The default location of the interfaces file is the directory pointed to by the
SYBASE environment variable. Since the SYBASE environment variable must
point to the load directory, then one of the following statements also must be
true when users run a Monitor Client Library application:

• The interfaces file must be located in the load directory, or

• The Monitor Client Library application code must override the default
location of the interfaces file.

To override the default location, the Monitor Client Library application
must call the smc_connect function, specifying an explicit value in the
interfaceFile parameter. In most cases, it would be appropriate to obtain
the value of the interfaceFile parameter from the user at start-up time, as
a command-line argument, from an X resource file, or from an interactive
dialog box.

For more information about the smc_connect function, see the Adaptive Server
Enterprise Monitor Client Library Programmer’s Guide.

CHAPTER 5 Monitor Client Library Configuration Instructions

191

Using Monitor Client Library
After completing the installation and setting up the user environment, you can
build and run the sample programs provided. For more details on the sample
programs, see the Adaptive Server Enterprise Monitor Client Library
Programmer’s Guide.

If you have not already done so, read the Adaptive Server Enterprise Monitor
Client Library Release Bulletin for your platform.

Notes • Adaptive Server and Monitor Server must be configured and running on
your network before you run a Monitor Client Library application.

• For maximum responsiveness, Sybase recommends that Monitor Client
applications run on different machines from the one on which Adaptive
Server and Monitor Server are running.

Using Monitor Client Library

192

193

A P P E N D I X A Examples of Views

This appendix contains examples of views. These views also appear in the
sample views file installed with Historical Server.

You may find that some of these views collect exactly the information that
you are interested in, while others can serve as templates for building the
views that you need.

Some of the sample views differ from one another only in the time interval
over which the data is accumulated (either the duration of the most recent
sample interval or the entire session). Other views may contain similar
data items, but in a different order. The order in which data items appear
in a view is significant because the data is sorted according to the key
field. The first key field appears in a view’s definition and acts as the
primary sort key, the second key field is the secondary sort key, and so on.

#include mcpublic.h

SMC_VOID
ErrorCallback(
SMC_SIZET id,
SMC_SIZET error_number,
SMC_SIZET severity,
SMC_SIZET map_severity,
SMC_SIZET source,
SMC_CCHARP error_msg,
SMC_SIZET state);

SMC_VOID
RefreshCallback(
SMC_SIZET id,
SMC_VOIDP user_msg,
SMC_CHARP msg);
SMC_CHARP
SMC_DATAITEM_NAME value);

SMC_CHARP
LookupDataItemStat(
SMC_DATAITEM_STATTYPE value);

Cache performance summary

194

SMC_CHARP
LookupLockResult(
SMC_LOCK_RESULT value);

SMC_CHARP
LookupLockResultSummary(
SMC_LOCK_RESULT_SUMMARY value);

SMC_CHARP
LookupLockStatus(
SMC_LOCK_STATUS value);

SMC_CHARP
LookupLockType(
SMC_LOCK_TYPE value);

SMC_CHARP
LookupObjectType(
SMC_OBJ_TYPE value);

SMC_CHARP
LookupProcessState(
SMC_PROCESS_STATE value);
SMC_INT
main(
SMC_INT argc,
SMC_CHARP argv[])
{

Cache performance summary
This view shows the overall effectiveness of Adaptive Server caches during the
most recent sample interval. It shows the percentage of data page reads that
were satisfied from Adaptive Server data caches and the percentage of requests
for procedure execution that were satisfied from Adaptive Server procedure
cache.

SMC_SIZET cache_perf_sum_count = 2;
SMC_DATAITEM_STRUCT cache_perf_sum_view[] = {
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_HIT_PCT, SMC_STAT_VALUE_SAMPLE }
};

APPENDIX A Examples of Views

195

Current statement summary
This view displays information about the statement that is currently being
executed by Adaptive Server whether it is part of a stored procedure or batch
text. Use a view such as this if you are trying to determine what an application
is doing at a particular point in its execution.

SMC_SIZET cur_stmt_act_count = 11;
SMC_DATAITEM_STRUCT cur_stmt_act_view[] = {
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_TEXT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_BATCH_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_CONTEXT_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_START_TIME, SMC_STAT_VALUE_SAMPLE },
};

Database object lock status
This view shows the status of locks on database objects that are held or being
requested by Adaptive Server processes as of the end of the most recent sample
interval. Each lock is identified by:

• The name and ID of the object being locked

• The name and ID of the database that contains that object

• The page number to which the lock applies (if it is a page lock)

Each Adaptive Server process associated with the lock is also identified by its
login name, Process ID and Kernel Process ID. The type of lock is shown,
together with the current status of the lock and an indication of whether or not
this is a demand lock.

If the lock is being requested by the process, the amount of time that this
process has waited to acquire the lock and the Process ID of the process that
already holds the lock are shown. If the process already holds the lock, the
count of other processes waiting to acquire that lock is shown.

Database object page I/O

196

SMC_SIZET object_lock_status_count = 14;
SMC_DATAITEM_STRUCT object_lock_status_view[] = {
{ SMC_NAME_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_TYPE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_STATUS, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEMAND_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_TIME_WAITED_ON_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_BLOCKING_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCKS_BEING_BLOCKED_CNT, SMC_STAT_VALUE_SAMPLE }
};

Database object page I/O
This view shows the objects in Adaptive Server databases and the page I/Os
associated with them. It shows the Adaptive Server database name and ID, and
the object names and IDs within each database. For each object, this view
shows the associated logical reads, physical reads, and page writes for both the
most recent sample interval and for the session.

SMC_SIZET object_page_io_count = 10;
SMC_DATAITEM_STRUCT object_page_io_view[] = {
{ SMC_NAME_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SESSION }
};

APPENDIX A Examples of Views

197

Data cache activity for individual caches
This view shows information about the performance of individual data caches.

For each named cache, including the default data cache, configured in
Adaptive Server, this view collects the cache’s name and the percentage of
page reads for objects bound to the cache that were satisfied from the cache
since the start of the recording session.

This view also shows the:

• Efficiency of the cache’s use of space

• Percentage of times when an attempt to acquire the cache’s spinlock was
forced to wait, since the start of the session

• Number of cache hits and misses for the session

SMC_SIZET data_cache_activity_count = 7;
SMC_DATAITEM_STRUCT data_cache_activity__view[] = {
{ SMC_NAME_DATA_CACHE_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DATA_CACHE_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DATA_CACHE_HIT_PCT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DATA_CACHE_EFFICIENCY, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DATA_CACHE_CONTENTION, SMC_STAT_RATE_SESSION },
{ SMC_NAME_DATA_CACHE_HIT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DATA_CACHE_MISS, SMC_STAT_RATE_SESSION }

};

Data cache statistics for session
This view shows the effectiveness of the data caches of Adaptive Server since
the start of the session. It shows the:

• Percentage of requests for page reads that were satisfied from cache for the
session

• Number of logical reads, physical reads, and page writes for the session

• Rate of logical reads, physical reads, and page writes for the session

SMC_SIZET session_page_cache_stats_count = 7;
SMC_DATAITEM_STRUCT session_page_cache_stats_view[] = {
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SESSION },

Data cache statistics for sample interval

198

{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_RATE_SESSION },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_RATE_SESSION },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_RATE_SESSION }
};

Data cache statistics for sample interval
This view shows the effectiveness of the data caches of Adaptive Server for the
most recent sample interval. It shows the:

• Percentage of requests for page reads that were satisfied from cache for the
most recent sample interval

• Number of logical reads, physical reads, and page writes for the most
recent sample interval

• Rate of logical reads, physical reads, and page writes for the most recent
sample interval

SMC_SIZET sample_page_cache_stats_count = 7;
SMC_DATAITEM_STRUCT sample_page_cache_stats_view[] = {
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_RATE_SAMPLE }
};

Device I/O for session
This view shows the I/O activity that occurred on Adaptive Server database
devices since the start of the session. It identifies each device by name. Device
I/O levels are presented in two ways: as counts of total device I/Os, reads and
writes since the start of the session, and also as overall rates of total I/Os, reads
and writes per second since the session began.

APPENDIX A Examples of Views

199

SMC_SIZET session_device_io_count = 7;
SMC_DATAITEM_STRUCT session_device_io_view[] = {
{ SMC_NAME_DEV_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DEV_WRITE, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DEV_IO, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DEV_READ, SMC_STAT_RATE_SESSION },
{ SMC_NAME_DEV_WRITE, SMC_STAT_RATE_SESSION },
{ SMC_NAME_DEV_IO, SMC_STAT_RATE_SESSION }
};

Device I/O for sample interval
This view shows the I/O activity that occurred on Adaptive Server database
devices during the most recent sample interval. It identifies each device by
name. Device I/O levels are presented in two ways: as counts of total device
I/Os, reads and writes during the most recent sample interval, and also as rates
of total I/Os, reads and writes per second during the sample interval.

SMC_SIZET sample_device_io_count = 7;
SMC_DATAITEM_STRUCT sample_device_io_view[] = {
{ SMC_NAME_DEV_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_WRITE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_IO, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_DEV_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_DEV_WRITE, SMC_STAT_RATE_SAMPLE }
};

Device I/O performance summary
This view shows reads and writes to database devices by Adaptive Server,
since the start of the session. It shows the:

• Overall rate of reads and writes to database devices since the start of the
session

• Most active database device for that time period

Engine activity

200

• Rate of reads and writes to the most active device

SMC_SIZET device_perf_sum_count = 3;
SMC_DATAITEM_STRUCT device_perf_sum_view[] = {
{ SMC_NAME_DEV_IO, SMC_STAT_RATE_SESSION },
{ SMC_NAME_MOST_ACT_DEV_NAME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_MOST_ACT_DEV_IO, SMC_STAT_RATE_SESSION }
};

Engine activity
This view shows the level of activity for each active Adaptive Server engine
during the most recent sample interval. This view shows, for each engine, the:

• Percentage of the sample interval when that engine used the CPU

• Number of lock requests

• Number of logical page reads, physical page reads, and page writes that
were generated by the engine during the sample interval

SMC_SIZET engine_activity_count = 6;
SMC_DATAITEM_STRUCT engine_activity_view[] = {
{ SMC_NAME_ENGINE_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CPU_BUSY_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_CNT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

Lock performance summary
This view shows the total number of locks of each type requested and granted
during the most recent sample interval.

SMC_SIZET lock_perf_sum_count = 3;
SMC_DATAITEM_STRUCT lock_perf_sum_view[] = {
{ SMC_NAME_LOCK_TYPE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_RESULT_SUMMARY, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_CNT, SMC_STAT_VALUE_SAMPLE }

APPENDIX A Examples of Views

201

};

Network activity for session
This view shows the network activity over all Adaptive Server network
connections since the start of the session. It shows the:

• Default packet size

• Maximum packet size

• Average packet sizes sent and received since the start of the session

• Number of packets sent

• Number of packets received

• The rate at which packets were sent and received

• Number of bytes sent

• Number of bytes received

• Rate at which bytes were sent and received

SMC_SIZET session_network_activity_count = 12;
SMC_DATAITEM_STRUCT session_network_activity_view[] = {
{ SMC_NAME_NET_DEFAULT_PKT_SIZE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_MAX_PKT_SIZE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKT_SIZE_SENT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_PKT_SIZE_RCVD, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_PKTS_SENT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_PKTS_RCVD, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_PKTS_SENT, SMC_STAT_RATE_SESSION },
{ SMC_NAME_NET_PKTS_RCVD, SMC_STAT_RATE_SESSION },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_BYTES_RCVD, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_RATE_SESSION },
{ SMC_NAME_NET_BYTES_RCVD, SMC_STAT_RATE_SESSION }
};

Network activity for sample interval

202

Network activity for sample interval
This view shows the network activity over all Adaptive Server network
connections during the most recent sample interval. It shows the:

• Default packet size

• Maximum packet size

• Average packet sizes sent and received for the sample interval

• Number of packets sent

• Number of packets received

• Rate at which packets were sent and received

• Number of bytes sent

• Number of bytes received

• Rate at which bytes were sent and received

SMC_SIZET sample_network_activity_count = 12;
SMC_DATAITEM_STRUCT sample_network_activity_view[] = {
{ SMC_NAME_NET_DEFAULT_PKT_SIZE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_MAX_PKT_SIZE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKT_SIZE_SENT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKT_SIZE_RCVD, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKTS_SENT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKTS_RCVD, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKTS_SENT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_NET_PKTS_RCVD, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_BYTES_RCVD, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_NET_BYTES_RCVD,, SMC_STAT_RATE_SAMPLE }
};

Network performance summary
This view shows the rate of Adaptive Server activity over all its network
connections during the most recent sample interval. It shows the number of
bytes per second that were received by and sent by Adaptive Server during the
interval.

APPENDIX A Examples of Views

203

SMC_SIZET network_perf_sum_count = 2;
SMC_DATAITEM_STRUCT network_perf_sum_view[] = {
{ SMC_NAME_NET_BYTES_RCVD, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_NET_BYTES_SENT,, SMC_STAT_RATE_SAMPLE }
};

Procedure cache statistics for session
This view shows the effectiveness of the procedure cache of Adaptive Server
since the start of the session. It shows the:

• Percentage of requests for stored procedure executions that were satisfied
by the procedure cache

• Number of logical reads and physical reads of stored procedures since the
start of the session

• Overall rate of logical and physical reads of stored procedures since the
start of the session

SMC_SIZET session_procedure_cache_stats_count = 5;
SMC_DATAITEM_STRUCT session_procedure_cache_stats_view[] = {
{ SMC_NAME_STP_HIT_PCT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_STP_LOGICAL_READ,, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_STP_LOGICAL_READ, SMC_STAT_RATE_SESSION },
{ SMC_NAME_STP_PHYSICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_STP_PHYSICAL_READ, SMC_STAT_RATE_SESSION }
};

Procedure cache statistics for sample interval
This view shows the effectiveness of the procedure cache of Adaptive Server
for the most recent sample interval. It shows the:

• Percentage of requests for stored procedure executions that were satisfied
by the procedure cache for the most recent sample interval

• Number of logical reads and physical reads of stored procedures during
the most recent sample interval

Procedure page I/O

204

• Rate of logical and physical reads of stored procedures for the most recent
sample interval

SMC_SIZET sample_procedure_cache_stats_count = 5;
SMC_DATAITEM_STRUCT sample_procedure_cache_stats_view[] = {
{ SMC_NAME_STP_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_LOGICAL_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_STP_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_PHYSICAL_READ, SMC_STAT_RATE_SAMPLE }
};

Procedure page I/O
This view shows page I/Os that occurred while running stored procedures
during the most recent sample interval. For each stored procedure that
generated page I/Os during the sample interval, it shows the stored procedure
name and ID, together with the name and ID of the database that contains the
procedure. If page I/Os were produced when no stored procedure was active,
those I/Os are associated with procedure ID and database ID values of zero.

This view also shows, on a per stored procedure level:

• Total page I/Os

• Percentage of page I/O requests that could be satisfied by Adaptive Server
data caches

• Number of logical reads, physical reads, and page writes generated while
executing the stored procedures during the most recent sample interval.

SMC_SIZET procedure_page_cache_io_count = 9;
SMC_DATAITEM_STRUCT procedure_page_cache_io_view[] = {
{ SMC_NAME_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

APPENDIX A Examples of Views

205

Process activity
This view shows the CPU use, page I/Os, and current process state for all
processes in Adaptive Server.

For each process in the most recent sample interval it shows the:

• Login name

• Process ID

• Kernel Process ID

• Current process state.

The view also presents each process’s connect time, total page I/Os and CPU
usage time, accumulated since the start of the session.

SMC_SIZET process_activity_count = 7;
SMC_DATAITEM_STRUCT process_activity_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CONNECT_TIME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_CPU_TIME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_CUR_PROC_STATE, SMC_STAT_VALUE_SAMPLE }
};

Process database object page I/O
This view shows the page I/Os by database object for each Adaptive Server
process. For each process that had page I/Os during the most recent sample
interval it shows the:

• Login name

• Process ID

• Kernel Process ID

For each such process and for each database object it accessed, the view shows
the:

• Object name

• Object ID

Process detail for locks

206

• Database name and ID

• Page I/Os

The view also shows the total page I/Os, the percentage of page I/O requests
that could be satisfied by Adaptive Server cache, and the number of logical
reads, physical reads, and page writes for the most recent sample interval.

SMC_SIZET process_object_page_io_count = 13;
SMC_DATAITEM_STRUCT process_object_page_io_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_TYPE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

Process detail for locks
This view shows the status of locks held or being requested by Adaptive Server
processes as of the end of the most recent sample interval. Each lock is
identified by:

• Login name

• Process ID

• Kernel Process ID of the Adaptive Server process associated with the lock

• Name and ID of the object being locked

• Name and ID of the database that contains that object

• Page number to which the lock applies (if it is a page lock)

• Current status of each lock

• Indication of whether or not this is a demand lock

APPENDIX A Examples of Views

207

If the lock is being requested by the process, the amount of time that this
process has waited to acquire the lock and the Process ID of the process that
holds the lock are shown. If the process holds the lock, the count of other
processes waiting to acquire that lock is shown.

SMC_SIZET process_detail_locks_count = 13;
SMC_DATAITEM_STRUCT process_detail_locks_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_STATUS, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEMAND_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_TIME_WAITED_ON_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_BLOCKING_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCKS_BEING_BLOCKED_CNT, SMC_STAT_VALUE_SAMPLE }
};

Process detail page I/O
This view shows the page I/Os for each Adaptive Server process in detail. It
shows the following as of the end of the most recent sample interval:

• Login name

• Process ID

• Kernel Process ID

• Process state and current engine are shown for each Adaptive Server
process

The view shows the percentage of page I/O requests that could be satisfied by
Adaptive Server data caches, both for the sample interval and since the start of
the session. It also shows the number of logical reads, physical reads, and page
writes since the start of the session.

SMC_SIZET process_detail_io_count = 12;
SMC_DATAITEM_STRUCT process_detail_io_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },

Process locks

208

{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_PROC_STATE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_ENGINE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CONNECT_TIME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_CPU_TIME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SESSION }
};

Process locks
This view shows the count of lock requests for every process in Adaptive
Server that generated lock requests during the most recent sample interval.

SMC_SIZET process_lock_count = 4;
SMC_DATAITEM_STRUCT process_lock_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_CNT, SMC_STAT_VALUE_SAMPLE }
};

Process page I/O
This view summarizes the page I/Os for each Adaptive Server process for the
most recent sample. For each process in Adaptive Server that generated page
I/Os during the interval, it shows the login name, Process ID, and Kernel
Process ID.

This view also shows, for each process:

• Total page I/Os

• Percentage of page I/O requests that could be satisfied by Adaptive Server
data caches

• Number of logical reads, physical reads, and writes for the most recent
sample interval

APPENDIX A Examples of Views

209

SMC_SIZET process_page_io_count = 8;
SMC_DATAITEM_STRUCT process_page_io_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

Process state summary
This view shows the number of processes that were in each process state at the
end of the most recent sample interval.

SMC_SIZET process_perf_sum_count = 2;
SMC_DATAITEM_STRUCT process_perf_sum_view[] = {
{ SMC_NAME_PROC_STATE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PROC_STATE_CNT, SMC_STAT_VALUE_SAMPLE }
};

Process stored procedure page I/O
This view shows the page I/Os associated with stored procedure executions by
Adaptive Server processes. It shows the login name, Process ID, and Kernel
Process ID for each process that generated page I/Os during the sample
interval.

For each process and stored procedure that generated page I/Os, it shows the
name and ID of the database that contains the stored procedure, and the name
and ID of the procedure.

For the most recent sample interval, the view shows the:

• Total page I/Os

• Percentage of page I/O requests that could be satisfied from data caches

• Number of logical reads, physical reads, and page writes

Server performance summary

210

SMC_SIZET process_procedure_page_io_count = 12;
SMC_DATAITEM_STRUCT process_procedure_page_io_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

Server performance summary
This view shows overall Adaptive Server performance. It shows the:

• Number of lock requests per second

• Percentage of the sample interval when Adaptive Server was busy

• Number of transactions processed per second

• Number of times Adaptive Server detected a deadlock during the most
recent sample interval

SMC_SIZET server_perf_sum_count = 4;
SMC_DATAITEM_STRUCT server_perf_sum_view[] = {
{ SMC_NAME_LOCK_CNT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_CPU_BUSY_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_DEADLOCK_CNT, SMC_STAT_VALUE_SAMPLE }
};

APPENDIX A Examples of Views

211

Stored procedure activity
This view shows stored procedure activity for procedure statements. Each
statement of any stored procedure that was executed during the most recent
sample interval is identified by:

• Name and ID of the database that contains the procedure

• Name and ID of the procedure

• Relative number of the statement within the stored procedure

• Line of the procedure’s text on which the statement begins

The view shows the:

• Number of times each statement was executed, both during the most recent
sample interval and since the start of the session

• Average elapsed time needed to execute the statement, both for the sample
interval and for the session so far

SMC_SIZET procedure_activity_count = 10;
SMC_DATAITEM_STRUCT procedure_activity_view[] = {
{ SMC_NAME_ACT_STP_DB_ID,SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_LINE_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_STMT_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_NUM_TIMES_EXECUTED, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_NUM_TIMES_EXECUTED, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_STP_ELAPSED_TIME, SMC_STAT_AVG_SAMPLE },
{ SMC_NAME_STP_ELAPSED_TIME, SMC_STAT_AVG_SESSION }
};

Transaction activity
This view shows the transaction activity that occurred in the
 Adaptive Server, both for the sample interval and the session.

SMC_SIZET transaction_activity_count = 20;
SMC_DATAITEM_STRUCT transaction_activity_view[] = {
{ SMC_NAME_XACT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT_DELETE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT_INSERT, SMC_STAT_VALUE_SAMPLE },

Transaction activity

212

{ SMC_NAME_XACT_UPDATE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT_UPDATE_DIRECT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT_DELETE, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT_INSERT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT_UPDATE, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT_UPDATE_DIRECT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT_DELETE, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT_INSERT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT_UPDATE, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT_UPDATE_DIRECT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT, SMC_STAT_RATE_SESSION },
{ SMC_NAME_XACT_DELETE, SMC_STAT_RATE_SESSION },
{ SMC_NAME_XACT_INSERT, SMC_STAT_RATE_SESSION },
{ SMC_NAME_XACT_UPDATE,, SMC_STAT_RATE_SESSION },
{ SMC_NAME_XACT_UPDATE_DIRECT, SMC_STAT_RATE_SESSION }
};SMC_SIZET num_views = 27;
 SMC_SIZET* view_count = (SMC_SIZET*) malloc (sizeof(SMC_SIZET)
 * num_views);
 SMC_DATAITEM_STRUCT** view_list = (SMC_DATAITEM_STRUCT**)
 malloc (sizeof(SMC_DATAITEM_STRUCT*) * num_views);
 SMC_SIZET** view_id_handle_list = (SMC_SIZET**) malloc
 (sizeof(SMC_SIZET*) * num_views);
 SMC_SIZET* view_id_list = (SMC_SIZET*) malloc
 (sizeof(SMC_SIZET) * num_views);

 SMC_SIZET client_id;
 SMC_SIZETP client_id_handle = &client_id;

 SMC_SERVER_MODE server_mode = SMC_SERVER_M_LIVE;
 SMC_CHAR server_name[40];
 SMC_CHAR user_name[40];
 SMC_CHAR password[40];
 SMC_CHAR interfaces_file[40];

 SMC_RETURN_CODE ret;
 SMC_SIZET refresh_num, view_num, col_num, row_num;

 SMC_SIZET num_refreshes = 10;

 SMC_SIZET row_count;
 SMC_SIZETP row_count_handle = &row_count;

 SMC_DATAITEM_STRUCTP dataitem_list;
 SMC_DATAITEM_NAME dataitem_name;

APPENDIX A Examples of Views

213

 SMC_CHARP dataitem_name_str;
 SMC_DATAITEM_STATTYPE dataitem_stat;
 SMC_CHARP dataitem_stat_str;
 SMC_DATAITEM_TYPE dataitem_type;

 SMC_VALUE_UNION data_union;
 SMC_VALUE_UNIONP data_union_handle = &data_union;
 SMC_CHARP data_str;
 SMC_INT ival;
printf("**\n");
printf("** Test Driver for SQL Monitor Client Library **\n");
printf("**\n");
if (argc != 5)
{
 printf(Usage: testcli <SQLMonitorServer> <user> <password>
 <"interfaces_file>\n");
 exit(1);
 }

 strcpy(server_name, argv[1]);
 strcpy(user_name, argv[2]);
 strcpy(password, argv[3]);
 strcpy(interfaces_file, argv[4]);

 for(view_num=0; view_num<num_views; view_num++)
 {
 view_id_handle_list[view_num] = &(view_id_list[view_num]);
 }

 view_count [0] = cache_perf_sum_count;
 view_list [0] = cache_perf_sum_view;
 view_count [1] = object_lock_status_count;
 view_list [1] = object_lock_status_view;
 view_count [2] = object_page_io_count;
 view_list [2] = object_page_io_view;
 view_count [3] = session_page_cache_stats_count;
 view_list [3] = session_page_cache_stats_view;
 view_count [4] = sample_page_cache_stats_count;
 view_list [4] = sample_page_cache_stats_view;
 view_count [5] = session_device_io_count;
 view_list [5] = session_device_io_view;
 view_count [6] = sample_device_io_count;
 view_list [6] = sample_device_io_view;
 view_count [7] = device_perf_sum_count;
 view_list [7] = device_perf_sum_view;
 view_count [8] = engine_activity_count;

Transaction activity

214

 view_list [8] = engine_activity_view;
 view_count [9] = lock_perf_sum_count;
 view_list [9] = lock_perf_sum_view;
 view_count [10] = session_network_activity_count;
 view_list [10] = session_network_activity_view;
 view_count [11] = sample_network_activity_count;
 view_list [11] = sample_network_activity_view;
 view_count [12] = network_perf_sum_count;
 view_list [12] = network_perf_sum_view;
 view_count [13] = session_procedure_cache_stats_count;
 view_list [13] = session_procedure_cache_stats_view;
 view_count [14] = sample_procedure_cache_stats_count;
 view_list [14] = sample_procedure_cache_stats_view;
 view_count [15] = procedure_page_cache_io_count;
 view_list [15] = procedure_page_cache_io_view;
 view_count [16] = process_activity_count;
 view_list [16] = process_activity_view;
 view_count [17] = process_object_page_io_count;
 view_list [17] = process_object_page_io_view;
 view_count [18] = process_detail_locks_count;
 view_list [18] = process_detail_locks_view;
 view_count [19] = process_detail_io_count;
 view_list [19] = process_detail_io_view;
 view_count [20] = process_lock_count;
 view_list [20] = process_lock_view;
 view_count [21] = process_page_io_count;
 view_list [21] = process_page_io_view;
 view_count [22] = process_perf_sum_count;
 view_list [22] = process_perf_sum_view;
 view_count [23] = process_procedure_page_io_count;
 view_list [23] = process_procedure_page_io_view;
 view_count [24] = server_perf_sum_count;
 view_list [24] = server_perf_sum_view;
 view_count [25] = procedure_activity_count;
 view_list [25] = procedure_activity_view;
 view_count [26] = transaction_activity_count;
 view_list [26] = transaction_activity_view;

 printf("********** testing smc_connect() **********\n");
 ret = smc_connect(server_mode,
 server_name,
 user_name,
 password,
 interfaces_file,
 ErrorCallback,
 0,

APPENDIX A Examples of Views

215

 0,
 client_id_handle);
 if (ret != SMC_RET_SUCCESS)
 {
 printf("error returned by smc_connect()\n");
 return (int) ret;
 }
 else
 {
 printf("smc_connect() succeeded\n");
 }
printf("********** testing smc_create_view() **********\n");
for(view_num=0; view_num<num_views; view_num++)
{
ret = smc_create_view(client_id,

view_list[view_num],
view_count[view_num],
(SMC_CHARP) 0,
view_id_handle_list[view_num]);

 if (ret != SMC_RET_SUCCESS)
 {
 printf("error returned by smc_create_view(%d)\n",
 view_num);
 return (int) ret;
 }
 else
 {
 printf("smc_create_view(%d) succeeded\n", view_num);
 }
 }
printf("********** testing smc_refresh() **********\n");
for(refresh_num=0; refresh_num<num_refreshes; refresh_num++)
{
 ret = smc_refresh(client_id,
 (SMC_VOIDP) 0,
 RefreshCallback,
 0);
 if (ret != SMC_RET_SUCCESS)
 {
 printf("error returned by smc_refresh() number %d\n",
 refresh_num);
 return (int) ret;
 }
 else
 {
 printf("smc_refresh() number %d succeeded\n", refresh_num);

Transaction activity

216

 }

 for(view_num=0; view_num<num_views; view_num++)
 {
 printf("****** testing smc_get_row_count() ******\n");
 ret = smc_get_row_count(client_id,
 view_id_list[view_num],
 row_count_handle);
 if (ret != SMC_RET_SUCCESS)
 {
 printf("error returned by smc_get_row_count()\n");
 return (int) ret;
 }
 else
 {
 printf("smc_get_row_count(view_id = %d) = %d\n",
 view_id_list[view_num], row_count);
 }

 dataitem_list = view_list[view_num];

 /* print dataitem name headers */
 for(col_num = 0; col_num<view_count[view_num]; col_num++)
 {
 dataitem_name = (dataitem_list[col_num]).dataItemName;
 dataitem_name_str = LookupDataItemName(dataitem_name);
 printf("Col %d %s\t", col_num, dataitem_name_str);
 }
 printf("\n");

 /* print dataitem stattype headers */
 for(col_num = 0; col_num<view_count[view_num]; col_num++)
 {
 dataitem_stat = (dataitem_list[col_num]).dataItemStatType;
 dataitem_stat_str = LookupDataItemStat(dataitem_stat);
 printf("Col %d %s\t", col_num, dataitem_stat_str);
 }
 printf("\n");

 for(row_num = 0; row_num<row_count; row_num++)
 {
 for(col_num = 0; col_num<view_count[view_num];
 col_num++)
 {
 dataitem_name = (dataitem_list[col_num]).dataItemName;
 dataitem_stat = (dataitem_list[col_num]).dataItemStatType;

APPENDIX A Examples of Views

217

 dataitem_name_str = LookupDataItemName(dataitem_name);
 ret = smc_get_dataitem_value(client_id,
 view_id_list[view_num],
 &(dataitem_list[col_num]),
 row_num,
 data_union_handle);
 if (ret != SMC_RET_SUCCESS)
 {
 printf("error returned by smc_get_dataitem_value()\n");
 return (int) ret;
 }

 smc_get_dataitem_type(&(dataitem_list[col_num]),
 &dataitem_type);

 switch(dataitem_type)
 {
 case SMC_DI_TYPE_CHARP:
 printf("Col %d:
 \"%s\"\t",col_num,data_union.stringValue);
 free(data_union.stringValue);
 break;
 case SMC_DI_TYPE_DOUBLE:
 printf("Col %d:
 %f\t",col_num,data_union.doubleValue);
 break;
 case SMC_DI_TYPE_ENUMS:
 ival = data_union.intValue;
 switch (dataitem_name)
 {
 case SMC_NAME_LOCK_RESULT_SUMMARY:
 data_str = LookupLockResultSummary(
 ((SMC_LOCK_RESULT_SUMMARY) ival));
 printf("Col %d: \"%s\"\t",col_num, data_str);
 break;
 case SMC_NAME_LOCK_RESULT:
 data_str = LookupLockResult(
 ((SMC_LOCK_RESULT) ival));
 printf("Col %d: \"%s\"\t",col_num, data_str);
 break;
 case SMC_NAME_LOCK_STATUS:
 data_str = LookupLockStatus(
 ((SMC_LOCK_STATUS) ival));
 printf("Col %d: \"%s\"\t",col_num, data_str);
 break;
 case SMC_NAME_LOCK_TYPE:

Transaction activity

218

 data_str = LookupLockType(((SMC_LOCK_TYPE)
ival));

 printf("Col %d: \"%s\"\t",col_num, data_str);
 break;
 case SMC_NAME_OBJ_TYPE:
 data_str = LookupObjectType(((SMC_OBJ_TYPE)

ival));
 printf("Col %d: \"%s\"\t",col_num, data_str);
 break;
 case SMC_NAME_CUR_PROC_STATE:
 case SMC_NAME_PROC_STATE:
 data_str = LookupProcessState(

((SMC_PROCESS_STATE) ival));
 printf("Col %d: \"%s\"\t",col_num, data_str);
 break;
 default:
 printf("Col %d: \"ERR with %s\"\t",col_num,

dataitem_name_str);
 }
 break;
 case SMC_DI_TYPE_LONG:
 printf("Col %d: %d\t",col_num,

data_union.longValue);
 break;
 case SMC_DI_TYPE_DATIM:
 case SMC_DI_TYPE_NONE:
 default:
 printf("Col %d: \"ERR with %s\"\t",col_num,

dataitem_name_str);
 }
 }
 printf("\n");
 }
 }
 }

 printf("********** testing smc_disconnect() **********\n");
 ret = smc_disconnect(client_id);
 if (ret != SMC_RET_SUCCESS)
 {
 printf("error returned by smc_disconnect()\n");
 return (int) ret;
 }
 {
 printf("smc_disconnect() succeeded\n");
 }

APPENDIX A Examples of Views

219

 free(view_count);
 free(view_list);

 return 0;
}

SMC_VOID
ErrorCallback(
 SMC_SIZET id,
 SMC_SIZET error_number,
 SMC_SIZET severity,
 SMC_SIZET map_severity,
 SMC_SIZET source,
 SMC_CCHARP error_msg,
 SMC_SIZET state
)
{
 printf("**\n");
 printf("Inside ErrorCallback()\n");

 printf("id = %d\n", id);
 printf("error_number = %d\n", error_number);
 printf("err severity = %d\n", severity);
 printf("map severity = %d\n", map_severity);
 printf("source = %d\n", source);
 printf("error msg = %s\n", error_msg);
 printf("state = %d\n", state);
 printf("**\n");
 return;
}

SMC_VOID
RefreshCallback(
 SMC_SIZET id,
 SMC_VOIDP user_msg,
 SMC_CHARP msg
)
{
 printf("**\n");
 printf("Inside RefreshCallback()\n");

 printf("id = %d\n", id);
 printf("user_msg = %s\n", (SMC_CHARP) user_msg);

Transaction activity

220

 printf("msg = %s\n", msg);

 return;
}

SMC_CHARP
LookupDataItemName(
 SMC_DATAITEM_NAME value
)
{
 typedef struct {
 SMC_CHARP str_name;
 SMC_DATAITEM_NAME enum_name;
 } DATAITEM_NAME_MAPPER;
 DATAITEM_NAME_MAPPER dataitem_name_map[] = {
 { "Process ID", SMC_NAME_SPID },
 { "Kernel Process ID", SMC_NAME_KPID },
 { "Cache Name", SMC_NAME_DATA_CACHE_NAME },
 { "Database ID", SMC_NAME_DB_ID },
 { "Object ID", SMC_NAME_OBJ_ID },
 { "Procedure Database ID",SMC_NAME_ACT_STP_DB_ID },
 { "Procedure ID", SMC_NAME_ACT_STP_ID },
 { "Procedure Line Number",SMC_NAME_STP_LINE_NUM },
 { "Lock Type", SMC_NAME_LOCK_TYPE },
 { "Lock Result", SMC_NAME_LOCK_RESULT },
 { "Lock Results Summarized",SMC_NAME_LOCK_RESULT_SUMMARY },
 { "Lock Status", SMC_NAME_LOCK_STATUS },
 { "Engine Number", SMC_NAME_ENGINE_NUM },
 { "Page Number", SMC_NAME_PAGE_NUM },
 { "Device Name", SMC_NAME_DEV_NAME },
 { "Process State", SMC_NAME_PROC_STATE },
 { "Login Name", SMC_NAME_LOGIN_NAME },
 { "Database Name", SMC_NAME_DB_NAME },
 { "Owner Name", SMC_NAME_OWNER_NAME },
 { "Object Name", SMC_NAME_OBJ_NAME },
 { "Object Type", SMC_NAME_OBJ_TYPE },
 { "Procedure Database Name",SMC_NAME_ACT_STP_DB_NAME },
 { "Procedure Owner Name",SMC_NAME_ACT_STP_OWNER_NAME },
 { "Procedure Name", SMC_NAME_ACT_STP_NAME },
 { "Blocking Process ID", SMC_NAME_BLOCKING_SPID },
 { "Cache Efficiency", SMC_NAME_DATA_CACHE_EFFICIENCY },
 { "Cache Hit Pct", SMC_NAME_DATA_CACHE_HIT_PCT },
 { "Cache Hits", SMC_NAME_DATA_CACHE_HIT },
 { "Cache Misses", SMC_NAME_DATA_CACHE_MISS },
 { "Cache Spinlock Contention",SMC_NAME_DATA_CACHE_CONTENTION },

APPENDIX A Examples of Views

221

 { "Connect Time", SMC_NAME_CONNECT_TIME },
 { "CPU Busy Percent", SMC_NAME_CPU_BUSY_PCT },
 { "CPU Percent", SMC_NAME_CPU_PCT },
 { "CPU Time", SMC_NAME_CPU_TIME },
 { "Current Engine", SMC_NAME_CUR_ENGINE },
 { "Current Process State",SMC_NAME_CUR_PROC_STATE },
 { "Deadlock Count", SMC_NAME_DEADLOCK_CNT },
 { "Demand Lock", SMC_NAME_DEMAND_LOCK },
 { "Device Hits", SMC_NAME_DEV_HIT },
 { "Device Hit Percent", SMC_NAME_DEV_HIT_PCT },
 { "Device I/O", SMC_NAME_DEV_IO },
 { "Device Misses", SMC_NAME_DEV_MISS },
 { "Device Reads", SMC_NAME_DEV_READ },
 { "Device Writes", SMC_NAME_DEV_WRITE },
 { "Lock Count", SMC_NAME_LOCK_CNT },
 { "Lock Hit Percent", SMC_NAME_LOCK_HIT_PCT },
 { "Lock Status Count", SMC_NAME_LOCK_STATUS_CNT },
 { "Locks Being Blocked Count",SMC_NAME_LOCKS_BEING_BLOCKED_CNT },
 { "Code Memory Size", SMC_NAME_MEM_CODE_SIZE },
 { "Kernel Structures Memory Size",SMC_NAME_MEM_KERNEL_STRUCT_SIZE },
 { "Page Cache Size", SMC_NAME_MEM_PAGE_CACHE_SIZE },
 { "Procedure Buffer Size",SMC_NAME_MEM_PROC_BUFFER },
 { "Procedure Header Size",SMC_NAME_MEM_PROC_HEADER },
 { "Server Structures Size",SMC_NAME_MEM_SERVER_STRUCT_SIZE },
 { "Most Active Device I/O", SMC_NAME_MOST_ACT_DEV_IO },
 { "Most Active Device Name",SMC_NAME_MOST_ACT_DEV_NAME },
 { "Net I/O Bytes", SMC_NAME_NET_BYTE_IO },
 { "Net Bytes Received", SMC_NAME_NET_BYTES_RCVD },
 { "Net Bytes Sent", SMC_NAME_NET_BYTES_SENT },
 { "Net Default Packet Size",SMC_NAME_NET_DEFAULT_PKT_SIZE },
 { "Net Max Packet Size", SMC_NAME_NET_MAX_PKT_SIZE },
 { "Net Packet Size Received",SMC_NAME_NET_PKT_SIZE_RCVD },
 { "Net Packet Size Sent",SMC_NAME_NET_PKT_SIZE_SENT },
 { "Net Packets Received",SMC_NAME_NET_PKTS_RCVD },
 { "Net Packets Sent", SMC_NAME_NET_PKTS_SENT },
 { "Page Hit Percent", SMC_NAME_PAGE_HIT_PCT },
 { "Logical Page Reads", SMC_NAME_PAGE_LOGICAL_READ },
 { "Page I/O", SMC_NAME_PAGE_IO },
 { "Physical Page Reads", SMC_NAME_PAGE_PHYSICAL_READ },
 { "Page Writes", SMC_NAME_PAGE_WRITE },
 { "Process State Count", SMC_NAME_PROC_STATE_CNT },
 { "Timestamp", SMC_NAME_TIMESTAMP },
 { "Elapsed Time", SMC_NAME_ELAPSED_TIME },
 { "SQL Server Name", SMC_NAME_SQL_SERVER_NAME },
 { "SQL Server Version", SMC_NAME_SQL_SERVER_VERSION },
 { "Procedure Elapsed Time",SMC_NAME_STP_ELAPSED_TIME },

Transaction activity

222

 { "Procedure Hit Percent",SMC_NAME_STP_HIT_PCT },
 { "Procedure Line Text", SMC_NAME_STP_LINE_TEXT },
 { "Procedure Execution Count",SMC_NAME_STP_NUM_TIMES_EXECUTED },
 { "Procedure Logical Reads",SMC_NAME_STP_LOGICAL_READ },
 { "Procedure Physical Reads",SMC_NAME_STP_PHYSICAL_READ },
 { "Time Waited on Lock", SMC_NAME_TIME_WAITED_ON_LOCK },
 { "Transactions", SMC_NAME_XACT },
 { "Rows Deleted", SMC_NAME_XACT_DELETE },
 { "Rows Inserted Clustered",SMC_NAME_XACT_CINSERT },
 { "Rows Inserted", SMC_NAME_XACT_INSERT },
 { "Rows Inserted Nonclustered",SMC_NAME_XACT_NCINSERT },
 { "Rows Updated", SMC_NAME_XACT_UPDATE },
 { "Rows Updated Directly",SMC_NAME_XACT_UPDATE_DIRECT },
 { (SMC_CHARP)0,SMC_NAME_NONE }
 };

 SMC_INT idx = 0;
 SMC_BOOL match = FALSE;
 while(match == FALSE)
 {
 if (value == dataitem_name_map[idx].enum_name)
 return dataitem_name_map[idx].str_name;

 if (dataitem_name_map[idx].enum_name == SMC_NAME_NONE)
 return dataitem_name_map[idx].str_name;

 idx++;
 }
}

SMC_CHARP
LookupDataItemStat(
 SMC_DATAITEM_STATTYPE value
)
{
 typedef struct {
 SMC_CHARP str_stat;
 SMC_DATAITEM_STATTYPE enum_stat;
 } DATAITEM_STAT_MAPPER;

 DATAITEM_STAT_MAPPER dataitem_stat_map[] = {
 { "Value for Sample", SMC_STAT_VALUE_SAMPLE },
 { "Value for Session", SMC_STAT_VALUE_SESSION },
 { "Rate for Sample", SMC_STAT_RATE_SAMPLE },
 { "Rate for Session", SMC_STAT_RATE_SESSION },

APPENDIX A Examples of Views

223

 { "Avg for Sample", SMC_STAT_AVG_SAMPLE },
 { "Avg for Session", SMC_STAT_AVG_SESSION },
 { (SMC_CHARP)0,0 }
 };

 SMC_INT idx = 0;
 SMC_BOOL match = FALSE;

 while(match == FALSE)
 {
 if (value == dataitem_stat_map[idx].enum_stat)
 return dataitem_stat_map[idx].str_stat;

 if (dataitem_stat_map[idx].enum_stat == 0)
 return dataitem_stat_map[idx].str_stat;

 idx++;
 }
}

SMC_CHARP
LookupLockResult(
 SMC_LOCK_RESULT value
)
{
 typedef struct {
 SMC_CHARP str_lock_res;
 SMC_LOCK_RESULT enum_lock_res;
 } LOCK_RESULT_MAPPER;

 LOCK_RESULT_MAPPER lock_result_map[] = {
 { "granted", SMC_LOCK_R_GRANTED },
 { "notneeded", SMC_LOCK_R_NOTNEEDED },
 { "waited", SMC_LOCK_R_WAITED },
 { "didntwait", SMC_LOCK_R_DIDNTWAIT },
 { "deadlock", SMC_LOCK_R_DEADLOCK },
 { "interrupted", SMC_LOCK_R_INTERRUPTED},
 { (SMC_CHARP)0,0 }
 };

 SMC_INT idx = 0;
 SMC_BOOL match = FALSE;

 while(match == FALSE)
 {

Transaction activity

224

 if (value == lock_result_map[idx].enum_lock_res)
 return lock_result_map[idx].str_lock_res;

 if (lock_result_map[idx].enum_lock_res == 0)
 return lock_result_map[idx].str_lock_res;

 idx++;
 }
}
SMC_CHARP
LookupLockResultSummary(
 SMC_LOCK_RESULT_SUMMARY value
)
{
 typedef struct {
 SMC_CHARP str_lock_ressum;
 SMC_LOCK_RESULT_SUMMARY enum_lock_ressum;
 } LOCK_RESULT_SUMMARY_MAPPER;

 LOCK_RESULT_SUMMARY_MAPPER lock_result_summary_map[] = {
 { "granted", SMC_LOCK_RS_GRANTED },
 { "notgranted", SMC_LOCK_RS_NOTGRANTED },
 { (SMC_CHARP)0,0 }
 };

 SMC_INT idx = 0;
 SMC_BOOL match = FALSE;

 while(match == FALSE)
 {
 if (value == lock_result_summary_map[idx].enum_lock_ressum)
 return lock_result_summary_map[idx].str_lock_ressum;

 if (lock_result_summary_map[idx].enum_lock_ressum == 0)
 return lock_result_summary_map[idx].str_lock_ressum;

 idx++;
 }
}

SMC_CHARP
LookupLockStatus(
 SMC_LOCK_STATUS value
)
{
 typedef struct {

APPENDIX A Examples of Views

225

 SMC_CHARP str_lock_status;
 SMC_LOCK_STATUS enum_lock_status;
 } LOCK_STATUS_MAPPER;

 LOCK_STATUS_MAPPER lock_status_map[] = {
 { "held_blocking", SMC_LOCK_S_HELD_BLOCKING },
 { "held_notblocking", SMC_LOCK_S_HELD_NOTBLOCKING },
 { "requested_blocked", SMC_LOCK_S_REQUESTED_BLOCKED },
 { "requested_notblocked",SMC_LOCK_S_REQUESTED_NOTBLOCKED },
 { (SMC_CHARP)0,0 }
 };

 SMC_INT idx = 0;
 SMC_BOOL match = FALSE;

 while(match == FALSE)
 {
 if (value == lock_status_map[idx].enum_lock_status)
 return lock_status_map[idx].str_lock_status;

 if (lock_status_map[idx].enum_lock_status == 0)
 return lock_status_map[idx].str_lock_status;

 idx++;
 }
}

SMC_CHARP
LookupLockType(
 SMC_LOCK_TYPE value
)
{
 typedef struct {
 SMC_CHARP str_lock_type;
 SMC_LOCK_TYPE enum_lock_type;
 } LOCK_TYPE_MAPPER;

 LOCK_TYPE_MAPPER lock_type_map[] = {
 { "ex_tab", SMC_LOCK_T_EX_TAB },
 { "sh_tab", SMC_LOCK_T_SH_TAB },
 { "ex_int", SMC_LOCK_T_EX_INT },
 { "sh_int", SMC_LOCK_T_SH_INT },
 { "ex_page", SMC_LOCK_T_EX_PAGE },
 { "sh_page", SMC_LOCK_T_SH_PAGE },
 { "upd_page", SMC_LOCK_T_UP_PAGE },

Transaction activity

226

 { (SMC_CHARP)0,0 }
 };

 SMC_INT idx = 0;
 SMC_BOOL match = FALSE;

 while(match == FALSE)
 {
 if (value == lock_type_map[idx].enum_lock_type)
 return lock_type_map[idx].str_lock_type;

 if (lock_type_map[idx].enum_lock_type == 0)
 return lock_type_map[idx].str_lock_type;

 idx++;
 }

227

A P P E N D I X B Datatypes and Structures

Summary of datatypes
Table B-1 lists Monitor Client Library type constants with descriptions
and their corresponding C or Open Client datatypes.

Table B-1: Summary of datatypes

Monitor Client Library datatype Description

Corresponding
C or Open
Client datatype

SMC_ALARM_ACTION_TYPE Specifies the type of action to take when an alarm
is triggered

None

SMC_ALARM_ID Alarm identifier size_t

SMC_ALARM_IDP Pointer to alarm identifier size_t*

SMC_BOOL Boolean int

SMC_CHAR Character char

SMC_CHARP Character pointer char*

SMC_CHARPP Pointer to character pointer char**

SMC_CCHARP Constant character pointer CS_CONST char*

SMC_CLOSE_TYPE Specifies an option when closing a Adaptive
Server Enterprise Monitor connection

None

SMC_COMMAND_ID Command identifier size_t

SMC_COMMAND_IDP Pointer to command identifier size_t*

SMC_CONNECT_ID Connection identifier size_t

SMC_CONNECT_IDP Pointer to connection identifier size_t*

SMC_DATETIME Date and time CS_DATETIME

SMC_DATAITEM_NAME Identifies a particular piece of performance data
that Monitor Client Library is to obtain

None

SMC_DATAITEM_NAMEP Pointer to SMC_DATAITEM_NAME None

SMC_DATAITEM_STATTYPE Identifies what normalization, if any, Monitor
Client Library should perform on data

None

SMC_DATAITEM_STRUCT Identifies data that Monitor Client Library is to
obtain

None

SMC_DATAITEM_STRUCTP Pointer to SMC_DATAITEM_STRUCT None

Summary of datatypes

228

SMC_DATAITEM_TYPE Identifies datatype of data that Monitor Client
Library obtains

None

SMC_DATAITEM_TYPEP Pointer to SMC_DATAITEM_TYPE None

SMC_DOUBLE Double precision floating point double

SMC_DOUBLEP Pointer to double precision double*

SMC_ERR_SEVERITY Indicates the degree of severity of an error None

SMC_FILTER_ID Filter identifier size_t

SMC_FILTER_IDP Pointer to filter identifier size_t*

SMC_FILTER_TYPE Specifies the type of filter to create with
smc_create_filter

None

SMC_HS_ESTIM_OPT Specifies whether, in playback of historical
performance data, to authorize estimation of data
that cannot be calculated reliably from the
available recorded data

None

SMC_HS_MISSDATA_OPT Specifies whether, in playback of historical
performance data, a sample should be returned for
a period of time for which no data is available

None

SMC_HS_PLAYBACK_OPT Specifies whether playback of historical
performance data should be normalized or
summarized or both

None

SMC_HS_SESS_DELETE_OPT Specifies whether to delete data files associated
with a Historical Server session

None

SMC_HS_SESS_ERR_OPT Specifies whether a recording session should
continue after an error

None

SMC_HS_SESS_PROT_LEVEL Specifies whether the data in a recording session
should be accessible to other users

None

SMC_HS_SESS_SCRIPT_OPT Specifies whether to create a script to create tables
corresponding to the views in a recording session

None

SMC_HS_TARGET_OPT Specifies whether playback of historical
performance data should be sent to the client
application, or used to create a new session

None

SMC_INFO_TYPE Specifies the type of information to request in a call
to smc_get_command_info

None

SMC_INT Integer int

SMC_INTP Pointer to integer int*

SMC_LOCK_RESULT Identifies the possible outcomes of a lock request None

SMC_LOCK_RESULT_SUMMARY Identifies the two major categories of outcomes of
a lock request

None

Monitor Client Library datatype Description

Corresponding
C or Open
Client datatype

APPENDIX B Datatypes and Structures

229

The rest of this appendix describes individual datatypes that have no equivalent
in C or Open-Client Client Library.

SMC_LOCK_STATUS Identifies the possible statuses of a lock or lock
request

None

SMC_LOCK_TYPE Identifies the granularity and exclusivity of a lock None

SMC_LONG Long long

SMC_LONGP Pointer to long long*

SMC_OBJ_TYPE Identifies the type of an object in an Adaptive
Server database

None

SMC_PROC_STATE Identifies the possible statuses of an Adaptive
Server process

None

SMC_PROP_ACTION Specifies the action to take in a call to
smc_connect_props

None

SMC_PROP_TYPE Specifies the property that is the object of a call to
smc_connect_props

None

SMC_RETURN_CODE Indicates whether a Monitor Client Library
operation succeeded, and, if not, what error
occurred

None

SMC_SERVER_MODE Specifies whether a Adaptive Server Enterprise
Monitor connection is to obtain live performance
data or whether to manipulate historical data

None

SMC_SESSION_ID Session identifier size_t

SMC_SESSION_IDP Pointer to session identifier size_t*

SMC_SIZET unsigned integer size_t

SMC_SIZETP Pointer to unsigned integer size_t*

SMC_SOURCE Indicates the software layer that detected an error None

SMC_VALUE_UNION Structure containing data None

SMC_VALUE_UNIONP Pointer to SMC_VALUE_UNION None

SMC_VIEW_ID View identifier size_t

SMC_VIEW_IDP Pointer to view identifier size_t*

SMC_VOID Void void

SMC_VOIDP Pointer to void void*

Monitor Client Library datatype Description

Corresponding
C or Open
Client datatype

Enum: SMC_ALARM_ACTION_TYPE

230

Enum: SMC_ALARM_ACTION_TYPE
An enum to identify the type of action taken when an alarm is triggered:

Table B-2: Alarm action type

Enum: SMC_CLOSE_TYPE
An enum used to identify the extent of a close command:

Table B-3: Close type

Enum: SMC_DATAITEM_NAME
An enum used in conjunction with smc_create_view to specify performance
data. See Chapter 2, “Data Items and Statistical Types” for a list of the
available data items.

Enum: SMC_DATAITEM_STATTYPE
An enum used in conjunction with smc_create_view to identify statistical type
and accumulation interval of performance data.

Table B-4: Data item statistical type

SMC_ALARM_A_EXEC_PROC

SMC_ALARM_A_LOG_TO_FILE

SMC_ALARM_A_NOTIFY

SMC_CLOSE_REQUEST

SMC_STAT_VALUE_SAMPLE

SMC_STAT_VALUE_SESSION

SMC_STAT_RATE_SAMPLE

SMC_STAT_RATE_SESSION

SMC_STAT_AVG_SAMPLE

SMC_STAT_AVG_SESSION

APPENDIX B Datatypes and Structures

231

Structure: SMC_DATAITEM_STRUCT
A structure used in conjunction with smc_create_view to identify performance
data.

Enum: SMC_DATAITEM_TYPE
An enum used in conjunction with smc_get_dataitem_type to identify physical
type of performance data results:

Table B-5: Data item type

Enum: SMC_ERR_SEVERITY
An enum used in conjunction with smc_get_command_info to identify the
severity of an error, warning, or informational notification.

Table B-6: Error severity

typedef struct SMC_DATAITEM_STRUCT{

SMC_DATAITEM_NAME dataItemName

SMC_DATAITEM_STATTYPE dataItemStatType

} SMC_DATAITEM_STRUCT;

SMC_DI_TYPE_NONE

SMC_DI_TYPE_CHARP

SMC_DI_TYPE_DATIM

SMC_DI_TYPE_DOUBLE

SMC_DI_TYPE_ENUMS

SMC_DI_TYPE_INT

SMC_DI_TYPE_LONG

SMC_ERR_SEV_INFO

SMC_ERR_SEV_WARN

SMC_ERR_SEV_FATAL

Enum: SMC_FILTER_TYPE

232

Enum: SMC_FILTER_TYPE
An enum to identify the types of filters:

Table B-7: Filter type

Enum: SMC_HS_ESTIM_OPT
An enum to specify whether to allow certain data to be estimated during a
playback session.

Table B-8: Historical Server error action

Enum: SMC_HS_MISSDATA_OPT
An enum to specify what action Historical Server should take if a given sample
during a playback session has no performance data to play back:

Table B-9: Historical Server missing data option

Enum: SMC_HS_PLAYBACK_OPT
An enum to specify whether data for a playback session should be normalized,
summarized, or both.

SMC_FILT_T_EQ

SMC_FILT_T_NEQ

SMC_FILT_T_GE

SMC_FILT_T_LE

SMC_FILT_T_GE_AND_LE

SMC_FILT_T_TOP_N

SMC_HS_ESTIM_ALLOW

SMC_HS_ESTIM_DISALLOW

SMC_HS_MISSDATA_SHOW

SMC_HS_MISSDATA_SKIP

APPENDIX B Datatypes and Structures

233

Table B-10: Historical Server protection level

Enum: SMC_HS_SESS_DELETE_OPT
An enum to specify whether to delete data files associated with a Historical
Server connection.

Table B-11: Historical Server file deletion option

Enum: SMC_HS_SESS_ERR_OPT
An enum to specify what action Historical Server should take if a recording
session encounters non-fatal errors:

Table B-12: Historical Server error option

Enum: SMC_HS_SESS_PROT_LEVEL
An enum to specify the protection level for access to performance data
recorded by Historical Server:

Table B-13: Historical Server protection level

SMC_HS_PBTYPE_ENTIRE

SMC_HS_PBTYPE_ACTUAL

SMC_HS_PBTYPE_INTERVAL

SMC_HS_PBTYPE_RAW

SMC_HS_SESS_DELETE_FILES

SMC_HS_SESS_RETAIN_FILES

SMC_HS_SESS_ERR_CONT

SMC_HS_SESS_ERR_HALT

SMC_HS_SESS_PROT_PRIVATE

SMC_HS_SESS_PROT_PUBLIC

Enum: SMC_HS_SESS_SCRIPT_OPT

234

Enum: SMC_HS_SESS_SCRIPT_OPT
An enum to specify the type of script (if any) that Historical Server should
create to help the user to manipulate the performance data of a recording
session:

Table B-14: Historical Server script option

Enum: SMC_HS_TARGET_OPT
An enum to specify whether the playback session will return data to the
application or whether playback will create a new session on Historical Server:

Table B-15: Historical Server script option

Enum: SMC_HS_TARGET_OPT
An enum to specify the destination of data in a playback session:

Table B-16: Historical Server playback target option

Enum: SMC_INFO_TYPE
An enum to identify the various pieces of data that are available for querying
from a callback function, using smc_get_command_info:

Table B-17: Information type

SMC_HS_SESS_SCRIPT_SYBASE

SMC_HS_SESS_SCRIPT_NONE

SMC_HS_TARGET_CLIENT

SMC_HS_TARGET_FILE

SMC_HS_TARGET_CLIENT

SMC_HS_TARGET_FILE

SMC_INFO_ALARM_ACTION_DATA

SMC_INFO_ALARM_ALARMID

APPENDIX B Datatypes and Structures

235

Enum: SMC_LOCK_RESULT
An enum to identify results of a lock request:

Table B-18: Lock result type

Enum: SMC_LOCK_RESULT_SUMMARY
An enum to identify whether the lock request was granted or not granted:

Table B-19: Lock result summary type

SMC_INFO_ALARM_CURRENT_VALUE

SMC_INFO_ALARM_DATAITEM

SMC_INFO_ALARM_ROW

SMC_INFO_ALARM_THRESHOLD_VALUE

SMC_INFO_ALARM_TIMESTAMP

SMC_INFO_ALARM_VALUE_DATATYPE

SMC_INFO_ALARM_VIEWID

SMC_INFO_ERR_MAPSEVERITY

SMC_INFO_ERR_MSG

SMC_INFO_ERR_NUM

SMC_INFO_ERR_SEVERITY

SMC_INFO_ERR_SOURCE

SMC_INFO_ERR_STATE

SMC_LOCK_R_GRANTED

SMC_LOCK_R_NOTNEEDED

SMC_LOCK_R_WAITED

SMC_LOCK_R_DIDNTWAIT

SMC_LOCK_R_DEADLOCK

SMC_LOCK_R_INTERRUPTED

SMC_LOCK_RS_GRANTED

SMC_LOCK_RS_NOTGRANTED

Enum: SMC_LOCK_STATUS

236

Enum: SMC_LOCK_STATUS
An enum to identify the status of a lock:

Table B-20: Lock status type

Enum: SMC_LOCK_TYPE
An enum to identify lock types:

Table B-21: Lock type

Enum: SMC_OBJ_TYPE
An enum to identify object types:

Table B-22: Object type

Enum: SMC_PROC_STATE
An enum to identify process states:

SMC_LOCK_S_HELD_BLOCKING

SMC_LOCK_S_HELD_NOTBLOCKING

SMC_LOCK_S_REQUESTED_BLOCKED

SMC_LOCK_S_REQUESTED_NOTBLOCKED

SMC_LOCK_T_EX_TAB

SMC_LOCK_T_SH_TAB

SMC_LOCK_T_EX_INT

SMC_LOCK_T_SH_INT

SMC_LOCK_T_EX_PAGE

SMC_LOCK_T_SH_PAGE

SMC_LOCK_T_UP_PAGE

SMC_OBJ_T_STP

SMC_OBJ_T_TBL

APPENDIX B Datatypes and Structures

237

Table B-23: Process state

Enum: SMC_PROP_ACTION
An enum used to identify the desired action of an smc_connect_props function
call:

Table B-24: Connection property action

Enum: SMC_PROP_TYPE
An enum used to identify the property to operate on in a call to
smc_connect_props:

Table B-25: Connection property

SMC_PROC_STATE_ALARM_SLEEP

SMC_PROC_STATE_BACKGROUND

SMC_PROC_STATE_BAD_STATUS

SMC_PROC_STATE_INFECTED

SMC_PROC_STATE_LOCK_SLEEP

SMC_PROC_STATE_RECV_SLEEP

SMC_PROC_STATE_RUNNABLE

SMC_PROC_STATE_RUNNING

SMC_PROC_STATE_SEND_SLEEP

SMC_PROC_STATE_SLEEPING

SMC_PROC_STATE_STOPPED

SMC_PROC_STATE_TERMINATING

SMC_PROC_STATE_YIELDING

SMC_PROC_STATE_REMOTE_IO

SMC_PROC_STATE_SYNC_SLEEP

SMC_PROP_ACT_SET

SMC_PROP_ACT_GET

SMC_PROP_ACT_CLEAR

SMC_PROP_APPNAME

SMC_PROP_ERROR_CALLBACK

Enum: SMC_RETURN_CODE

238

Enum: SMC_RETURN_CODE
An enum to identify the types of return codes:

Table B-26: Return codes

SMC_PROP_IFILE

SMC_PROP_LOGIN_TIMEOUT

SMC_PROP_PACKETSIZE

SMC_PROP_PASSWORD

SMC_PROP_SERVERMODE

SMC_PROP_SERVERNAME

SMC_PROP_TIMEOUT

SMC_PROP_USERDATA

SMC_PROP_USERNAME

SMC_RET_SUCCESS

SMC_RET_FAILURE

SMC_RET_INSUFFICIENT_MEMORY

SMC_RET_CONNECTION_ERROR

SMC_RET_UNABLE_TO_CONNECT_TO_SMS

SMC_RET_UNABLE_TO_CONNECT_TO_SS

SMC_RET_MISSING_RESULT_TABLE

SMC_RET_INVALID_USER_PASSWD

SMC_RET_INVALID_PARAMETER

SMC_RET_INVALID_CACHE

SMC_RET_INVALID_DCID

SMC_RET_INVALID_COMMAND

SMC_RET_INVALID_VIEWID

SMC_RET_INVALID_DINAME

SMC_RET_INVALID_DISTAT

SMC_RET_INVALID_DI_STRUCT

SMC_RET_DI_STAT_MISMATCH

SMC_RET_INVALID_DI_COMBO

SMC_RET_INVALID_DATATYPE

SMC_RET_INVALID_VALUE_COUNT

SMC_RET_INVALID_FILTER_VALUE

APPENDIX B Datatypes and Structures

239

Enum: SMC_SERVER_MODE
An enum to identify the types of Adaptive Server Enterprise Monitor
connections:

Table B-27: Server mode type

Enum: SMC_SOURCE
An enum used in conjunction with ErrorCallback to identify the source of an
error, warning or informational notification.

Table B-28: Error source

SMC_RET_INVALID_FILTER_RANGE

SMC_RET_DATAITEM_CONTAINS_FILTER

SMC_RET_INVALID_COMPOSITE_FILTER

SMC_RET_INVALID_SVR_MODE

SMC_RET_MISSING_DATAITEM

SMC_RET_INVALID_FILTERID

SMC_RET_INVALID_ALARMID

SMC_RET_INVALID_ALARM_VALUE

SMC_RET_INVALID_DINAME_FOR_ALARM

SMC_RET_INVALID_API_FUNC_SEQUENCE

SMC_RET_INVALID_API_FUNCTION

SMC_RET_INVALID_PROPERTY

SMC_RET_INVALID_INFOTYPE

SMC_RET_CONNECT_NOT_CLOSED

SMC_RET_ARITHMETIC_OVERFLOW

SMC_RET_LOGIN_LACKS_SA_ROLE

SMC_RET_INTERNAL_ERROR

SMC_SERVER_M_LIVE

SMC_SERVER_M_HISTORICAL

SMC_SRC_UNKNOWN

SMC_SRC_HS

Union: SMC_VALUE_UNION

240

Union: SMC_VALUE_UNION
A union used in conjunction with smc_connect_props, smc_get_command_info,
and smc_get_dataitem_value to set and retrieve results.

SMC_SRC_SMC

SMC_SRC_CT

SMC_SRC_SS

SMC_SRC_SMS

typedef union SMC_VALUE_UNION {

SMC_INT intValue

SMC_LONG longValue

SMC_DOUBLE doubleValue

SMC_SIZET sizetValue

SMC_CHARP stringValue

SMC_VOIDP voidpValue

SMC_DATETIME datetimeValue

} SMC_VALUE_UNION;

241

A P P E N D I X C Backward Compatibility

Monitor Client Library version 11.5 and later replaces several API
functions. The new API and callback functions provide improved features
and extensibility. Replaced API and callback functions have been
preserved within the library for backwards compatibility.

Obsolete and replacement functions
Table C-1 maps obsolete Monitor Client Library functions to their
replacement functions:

Table C-1: Obsolete functions and replacement functions

The most significant syntactic difference between the obsolete and
replacement functions is the callback function parameter. In earlier
versions, SMC_CALLBACK, SMC_ALARM_CALLBACK, and
SMC_ERR_CALLBACK were used to specify a callback function. These
callback function types are have been replaced by SMC_GEN_CALLBACK.

Note The new refresh function, smc_refresh_ex, does not use any
callback function, unlike the obsolete smc_refresh.

Obsolete Replacement

smc_change_error_handler smc_connect_props

smc_connect smc_connect_alloc
 smc_connect_props
 smc_connect_ex

smc_create_alarm smc_create_alarm_ex

smc_disconnect smc_close
 smc_connect_drop

smc_refresh smc_refresh_ex

New functions

242

In addition to changing the callback function types, smc_connect and
smc_disconnect have been replaced by a set of functions that allow for greater
flexibility and control.

New functions
Table C-2 lists the new functions.

Table C-2: New functions

Note New functions cannot be used with obsolete functions.

Rules for functions and callbacks compatibility
Use the following rules to decide which functions and callbacks can be used
together:

• If you are using any new or replacement functions, do not use obsolete
functions.

• If you are using obsolete functions, use the obsolete error callback
function types.

• If you are using replacement or new functions, use the version 11.1 error
callback function types.

• You can use unchanged functions with all other types of functions.

smc_create_playback_session

smc_get_command_info

smc_initiate_playback

smc_terminate_playback

smc_terminate_recording

243

A P P E N D I X D Troubleshooting Information
and Error Messages

This appendix contains two sections.

• “Troubleshooting” lists problems that you may encounter using
Monitor Client Library, but that do not have specific error messages.

• “Error Messages” describes error messages that you may receive.

Troubleshooting
Confusing messages from
Adaptive Server

If you create a view that requires information from a database that needs
to be recovered, you get error messages from Adaptive Server rather than
a concise error message from Monitor Client Library.

View refreshes fail • If you try to refresh a view at the same time as someone creates a
database, the refresh may fail.

• A refresh for a view may fail if one or more databases on Adaptive
Server are in single user mode.

Negative numbers as
object IDs

If you create a view using the SMC_NAME_OBJ_ID data item, you
might see negative numbers as object IDs. Negative object IDs are an
accurate reporting of IDs as assigned by Adaptive Server.

Monitor Server reports on all activity, including activity on temporary
tables that Adaptive Server creates to perform a complex query. The
object IDs that Adaptive Server assigns to temporary tables can be
positive or negative. The object ID that was assigned by Adaptive Server
is reported.

In views that show SMC_NAME_OBJ_NAME, the string **TempObject**
is reported for temporary tables.

Error messages

244

Error messages
Monitor Client Library is an Open Server application that uses the Open Client
Library to communicate with Adaptive Server and Monitor Server. Any of
these components can detect and report errors conditions. Monitor Client
Library also detects and reports error conditions, which it logs or reports or
both to clients.

The following building, linking, and compiling error messages may be
reported. They are listed here in alphabetical order.

Communication failure: check if server is running.
While running testmon.exe, one of the following conditions caused the error to
be reported:

• Server names are incorrect in example.h.

• sql.ini file is missing.

• sql.ini file has incorrect network connection information.

• Adaptive Server is not running.

• Historical Server is not running.

• User name is incorrectly set in example.h.

• Password for the user name is incorrectly set in example.h.

Configuration failure: possibly missing interfaces file or bad login
parameters.

While running testmon.exe, one of the following conditions caused the error to
be reported:

• Server names are incorrect in example.h.

• sql.ini file is missing.

• sql.ini file has incorrect network connection information.

• Adaptive Server is not running.

• Historical Server is not running.

• User name is incorrectly set in example.h.

APPENDIX D Troubleshooting Information and Error Messages

245

• Password for the user name is incorrectly set in example.h.

Don’t know how to build example.h
While building testmon.exe, one of the following conditions caused the
compile error to be reported:

• Project needs to rebuild all dependencies.

• Project’s include file path needs the location of the file names.

• Default location would be C:\SYBASE\INCLUDE and
C:\SYBASE\MONCLT\SAMPLE.

error L2029: ‘SMC_CONNECT’ : unresolved external
While building testmon.exe, the following condition caused the link error to be
reported:

• smcapi32.lib needs to be included as one of the libraries in which to link.
It is located by default in C:\SYBASE\MONCLT\LIB.

error L2029: ‘SMC_CREATE_VIEW’ : unresolved external
While building testmon.exe, the following condition caused the link error to be
reported:

• You need to include smcapi32.lib as one of the libraries in which to link.
It is located by default in C:\SYBASE\MONCLT\LIB.

fatal error C1083: Cannot open include file: ‘cstypes.h’: No such file
or directory

While building testmon.exe, one of the following conditions caused the
compile error to be reported:

• Project needs to rebuild all dependencies.

• Project’s include file path needs the location of the file names.

Error messages

246

• Default location would be C:\SYBASE\INCLUDE and
C:\SYBASE\MONCLT\SAMPLE.

fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such
file or directory

While building testmon.exe, the following condition caused the compile error
to be reported:

• Project’s include path for the preprocessor needs to be edited to the correct
setting. It is currently set to C:\SYBASE\MONCLT\INCLUDE;
C:\SYBASE\INCLUDE.

LINK: fatal error L4051: smcapi32.lib : cannot find library
While building testmon.exe, the following condition caused the link error to be
reported:

• The project’s Library File’s path needs to include the location of
smcapi32.lib, which is assumed to be in C:\SYBASE\MONCLT\LIB.

 247

A
activity

none 45
alarm callback syntax 143
alarms

adding 125
callback functions 11, 128
creating 140
removing 125
retrieve information 162
setting 11

allocating
connection structure 6

application programming interface 2
architecture

SQL Server Monitor 2
average

statistical types 8
average, statistic type

definition of 9

C
calculation

statistical type 8
callback function 11, 128
cancelling

recording session 175
client connection 6
command info types 129, 165
command structure

deallocating 13
commands

isql 4
compiling 179

UNIX 180
Windows 182

configuring

Monitor Server 3
SQL Server 3
SQL Server Monitor 2

connecting
server 6

connection
closing 125
creating 125, 131
deallocating 125, 132
establishing 125, 134
initialize playback 125
Monitor 131
properties 135, 140
reusing 13
setting properties 125

connection structure
allocating 6
deallocating 13

connections
summaries 46

creating
filters 10

D
data item

defined 43
definition 7

data item statistical type 8
data item type

returning 125
data items

list of 47
result and key 43
retrieving 126
SMC_NAME_ACT_STP_DB_ID 49
SMC_NAME_ACT_STP_DB_NAME 50
SMC_NAME_ACT_STP_ID 50
SMC_NAME_ACT_STP_NAME 51

Index

Index

248

SMC_NAME_ACT_STP_OWNER_NAME 51
SMC_NAME_APP_EXECUTION_CLASS 52
SMC_NAME_APPLICATION_NAME 52
SMC_NAME_BLOCKING_SPID 53
SMC_NAME_CONNECT_TIME 54
SMC_NAME_CPU_BUSY_PCT 54
SMC_NAME_CPU_PCT 55
SMC_NAME_CPU_TIME 55
SMC_NAME_CPU_YIELD 56
SMC_NAME_CUR_APP_NAME 56
SMC_NAME_CUR_ENGINE 56
SMC_NAME_CUR_EXECUTION_CLASS 57
SMC_NAME_CUR_PROC_STATE 57
SMC_NAME_CUR_STMT_ACT_STP_DB_ID 58
SMC_NAME_CUR_STMT_ACT_STP_DB_NAME

59
SMC_NAME_CUR_STMT_ACT_STP_ID 59
SMC_NAME_CUR_STMT_ACT_STP_NAME 60
SMC_NAME_CUR_STMT_ACT_STP_OWNER_NA

ME 60
SMC_NAME_CUR_STMT_ACT_STP_TEXT 61
SMC_NAME_CUR_STMT_BATCH_ID 61
SMC_NAME_CUR_STMT_BATCH_TEXT 62
SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLE

D 62
SMC_NAME_CUR_STMT_CONTEXT_ID 63
SMC_NAME_CUR_STMT_CPU_TIME 63
SMC_NAME_CUR_STMT_ELAPSED_TIME 63
SMC_NAME_CUR_STMT_LINE_NUM 64
SMC_NAME_CUR_STMT_LOCKS_GRANTED_IM

MED 65
SMC_NAME_DATA_CACHE_HIT_PCT 71
SMC_NAME_DATA_CACHE_ID 71
SMC_NAME_DATA_CACHE_NAME 74
SMC_NAME_LOCK_RESULT_SUMMARY 86
SMC_NAME_LOCK_STATUS 86
SMC_NAME_LOCK_STATUS_CNT 87
SMC_NAME_LOCKS_BEING_BLOCKED_CNT

88
SMC_NAME_OBJ_NAME 101
SMC_NAME_OWNER_NAME 101
SMC_NAME_PROC_STATE_CNT 107

data refresh 12, 173
deallocating

connection structure 13
detail

specifying in view 43
details

server-wide data 44

E
empty rows 45

views, in 45
error handler 127
error handling 127
error messages

callback function 128
Monitor Historical Server 244

error notification 162

F
filters

adding 125, 144
creating 10
removing 125, 160
types 10

function summary 126
functions

using threads 126

G
graphical user interface 2

H
Historical Server 2, 3

cancel session 175
isql interface to 4
Monitor Client Library and 4
playback in 4

I
information types 129, 165

Index

 249

callback data 129
isql

Historical Sever and 4

K
key data items

defined 43

L
linking 179

UNIX 180
Windows 183

M
Monitor Client Library 2

definition of 1
Historical Server and 4
playback 4
properties 138
relationship to Monitor Server 3

Monitor Historical Server
connection 125
definition of 2
messages 244

Monitor Server 2
summaries 46

Monitor Viewer 2

O
Open Server 2

P
performance 3
performance data 12
playback 4

conclude definition 126

conclude session 174
creating a session 148
ending a session 126
initializing 125

program structure
closing connections 13
connecting to a server 6
creating filters 10
creating views 7
deallocating connections 13
setting alarms 11

properties
clearing 140
connection 140
retrieving 140
setting 140

R
rate

statistical types 8
recording

conclude definition 126
creating a session 154
initializing 125
initiating session 172

recording, initiating 126
refresh data 12, 173
reopen a connection 13
result data items

defined 43
return values 127
row count

retrieving 126
rows

empty 45

S
sample

statistical types 8
sample applications 179

UNIX 182
Windows 184

Index

250

servers
connecting to 6
logging into 7

server-wide data
details of 44

session
cancelling 175
statistical types 8

session, creating 125
setting

alarms 11
shared memory 3
smc_close 125, 130
smc_connect_alloc 125, 131

see also connection structure 6
smc_connect_drop 125, 132
smc_connect_ex 7, 13, 125, 133
smc_connect_props 6, 125, 135
smc_create_alarm 11
smc_create_alarm_ex 125, 140
smc_create_filter 10, 125, 144
smc_create_playback_session 125, 148
smc_create_recording_session 125, 153
smc_create_view 9, 125, 156
smc_drop_alarm 125, 158
smc_drop_filter 125, 160
smc_drop_view 125, 161
smc_get_command_info 125, 162
smc_get_dataitem_type 125, 165
smc_get_dataitem_value 12, 126, 166
smc_get_row_count 12, 126, 168
smc_get_version_string 126, 169
smc_initiate_playback 126
smc_initiate_recording 126, 172
SMC_NAME_ACT_STP_DB_ID 49
SMC_NAME_ACT_STP_DB_NAME 50
SMC_NAME_ACT_STP_ID 50
SMC_NAME_ACT_STP_NAME 51
SMC_NAME_ACT_STP_OWNER_NAME 51
SMC_NAME_APP_EXECUTION_CLASS 52
SMC_NAME_APPLICATION_NAME 52
SMC_NAME_BLOCKING_SPID 53
SMC_NAME_CONNECT_TIME 54
SMC_NAME_CPU_BUSY_PCT 54
SMC_NAME_CPU_PCT 55
SMC_NAME_CPU_TIME 55

SMC_NAME_CPU_YIELD 56
SMC_NAME_CUR_APP_NAME 56
SMC_NAME_CUR_ENGINE 56
SMC_NAME_CUR_EXECUTION_CLASS 57
SMC_NAME_CUR_PROC_STATE 57
SMC_NAME_CUR_STMT_ACT_STP_DB_ID 58
SMC_NAME_CUR_STMT_ACT_STP_DB_NAME

59
SMC_NAME_CUR_STMT_ACT_STP_ID 59
SMC_NAME_CUR_STMT_ACT_STP_NAME 60
SMC_NAME_CUR_STMT_ACT_STP_OWNER_NA

ME 60
SMC_NAME_CUR_STMT_ACT_STP_TEXT 61
SMC_NAME_CUR_STMT_BATCH_ID 61
SMC_NAME_CUR_STMT_BATCH_TEXT 62
SMC_NAME_CUR_STMT_BATCH_TEXT_ENABL

ED 62
SMC_NAME_CUR_STMT_CONTEXT_ID 63
SMC_NAME_CUR_STMT_CPU_TIME 63
SMC_NAME_CUR_STMT_ELAPSED_TIME 63
SMC_NAME_CUR_STMT_LINE_NUM 64
SMC_NAME_CUR_STMT_LOCKS_GRANTED_IM

MED 65
SMC_NAME_DATA_CACHE_HIT_PCT 71
SMC_NAME_DATA_CACHE_ID 71
SMC_NAME_DATA_CACHE_NAME 74
SMC_NAME_LOCK_RESULT_SUMMARY 86
SMC_NAME_LOCK_STATUS 86
SMC_NAME_LOCK_STATUS_CNT 87
SMC_NAME_LOCKS_BEING_BLOCKED_CNT

88
SMC_NAME_OBJ_NAME 101
SMC_NAME_OWNER_NAME 101
SMC_NAME_PROC_STATE_CNT 107
smc_refresh_ex 12, 126, 173
SMC_STAT_AVG_SESSION

definition of 9
SMC_STAT_RATE_SAMPLE

definition of 8
SMC_STAT_RATE_SESSION

definition of 9
SMC_STAT_VALUE_SAMPLE

definition of 8
SMC_STAT_VALUE_SESSION

definition of 8
smc_terminate_playback 126, 174

Index

 251

smc_terminate_recording 175
specifying

detail in view 43
SQL Server Monitor

architecture 2
components 2
definition 1

statistical type 8
structures

allocating a connection structure 6
summaries

connection 46
Sybase Central 3

T
terminating playback 174
testhist 179
threads 126
triggering

alarms 11
ty 140

V
value

statistical type 8
version number 126
view

contents 44
description 9

views 7
alarms 11
amount of detail 43
defining 125
definition 7
dropping 125, 161
empty rows 45
filters on views 10
monitor summaries 46
retrieving data 126
sampling data 173

Index

252

	Programmer’s Guide
	About This Book
	CHAPTER 1 Getting started with Monitor Client Library
	Overview
	What is Adaptive Server Enterprise Monitor
	Adaptive Server Enterprise Monitor components
	Adaptive Server Enterprise Monitor architecture

	Writing a Basic Monitor Client Library program
	Application logic flow
	Step 1: define error handling
	Step 2: connect to a server
	Allocating a connection structure
	Setting connection structure properties
	Required connection properties
	Connecting to a server

	Step 3: create a view
	Data items
	Statistical types
	Creating views for a connection

	Step 4: create filters
	Step 5: set alarms
	Step 6: request performance data and process results
	Step 7: close and deallocate connections
	Closing and deallocating connections
	Reopening connections

	Playing back recorded data

	A sample Monitor Client Library program
	Example program

	CHAPTER 2 Data Items and Statistical Types
	Overview
	Result and key data items
	Data items and views
	Rows with no data versus no rows in views
	Server-level status
	Combining data items
	Result and key combinations
	Connection summaries
	Current statement and application name data items

	Data item definitions
	Deciphering the names of data items
	SMC_NAME_ACT_STP_DB_ID
	SMC_NAME_ACT_STP_DB_NAME
	SMC_NAME_ACT_STP_ID
	SMC_NAME_ACT_STP_NAME
	SMC_NAME_ACT_STP_OWNER_NAME
	SMC_NAME_APPLICATION_NAME
	SMC_NAME_APP_EXECUTION_CLASS
	SMC_NAME_BLOCKING_SPID
	SMC_NAME_CONNECT_TIME
	SMC_NAME_CPU_BUSY_PCT
	SMC_NAME_CPU_PCT
	SMC_NAME_CPU_TIME
	SMC_NAME_CPU_YIELD
	SMC_NAME_CUR_APP_NAME
	SMC_NAME_CUR_ENGINE
	SMC_NAME_CUR_EXECUTION_CLASS
	SMC_NAME_CUR_PROC_STATE
	SMC_NAME_CUR_STMT_ACT_STP_DB_ID
	SMC_NAME_CUR_STMT_ACT_STP_DB_NAME
	SMC_NAME_CUR_STMT_ACT_STP_ID
	SMC_NAME_CUR_STMT_ACT_STP_NAME
	SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME
	SMC_NAME_CUR_STMT_ACT_STP_TEXT
	SMC_NAME_CUR_STMT_BATCH_ID
	SMC_NAME_CUR_STMT_BATCH_TEXT
	SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED
	SMC_NAME_CUR_STMT_CONTEXT_ID
	SMC_NAME_CUR_STMT_CPU_TIME
	SMC_NAME_CUR_STMT_ELAPSED_TIME
	SMC_NAME_CUR_STMT_LINE_NUM
	SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED
	SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED
	SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED
	SMC_NAME_CUR_STMT_NUM
	SMC_NAME_CUR_STMT_PAGE_IO
	SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ
	SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ
	SMC_NAME_CUR_STMT_PAGE_WRITE
	SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT
	SMC_NAME_CUR_STMT_START_TIME
	SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET
	SMC_NAME_DATA_CACHE_CONTENTION
	SMC_NAME_DATA_CACHE_EFFICIENCY
	SMC_NAME_DATA_CACHE_HIT
	SMC_NAME_DATA_CACHE_HIT_PCT
	SMC_NAME_DATA_CACHE_ID
	SMC_NAME_DATA_CACHE_LARGE_IO_DENIED
	SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED
	SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED
	SMC_NAME_DATA_CACHE_MISS
	SMC_NAME_DATA_CACHE_NAME
	SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY
	SMC_NAME_DATA_CACHE_REUSE
	SMC_NAME_DATA_CACHE_REUSE_DIRTY
	SMC_NAME_DATA_CACHE_REF_AND_REUSE
	SMC_NAME_DATA_CACHE_SIZE
	SMC_NAME_DB_ID
	SMC_NAME_DB_NAME
	SMC_NAME_DEADLOCK_CNT
	SMC_NAME_DEMAND_LOCK
	SMC_NAME_DEV_HIT
	SMC_NAME_DEV_HIT_PCT
	SMC_NAME_DEV_IO
	SMC_NAME_DEV_MISS
	SMC_NAME_DEV_NAME
	SMC_NAME_DEV_READ
	SMC_NAME_DEV_WRITE
	SMC_NAME_ELAPSED_TIME
	SMC_NAME_ENGINE_NUM
	SMC_NAME_HOST_NAME
	SMC_NAME_KPID
	SMC_NAME_LOCK_CNT
	SMC_NAME_LOCK_HIT_PCT
	SMC_NAME_LOCK_RESULT
	SMC_NAME_LOCK_RESULT_SUMMARY
	SMC_NAME_LOCK_STATUS
	SMC_NAME_LOCK_STATUS_CNT
	SMC_NAME_LOCK_TYPE
	SMC_NAME_LOCKS_BEING_BLOCKED_CNT
	SMC_NAME_LOCKS_GRANTED_IMMED
	SMC_NAME_LOCKS_GRANTED_WAITED
	SMC_NAME_LOCKS_NOT_GRANTED
	SMC_NAME_LOG_CONTENTION_PCT
	SMC_NAME_LOGIN_NAME
	SMC_NAME_MEM_CODE_SIZE
	SMC_NAME_MEM_KERNEL_STRUCT_SIZE
	SMC_NAME_MEM_PAGE_CACHE_SIZE
	SMC_NAME_MEM_PROC_BUFFER
	SMC_NAME_MEM_PROC_HEADER
	SMC_NAME_MEM_SERVER_STRUCT_SIZE
	SMC_NAME_MOST_ACT_DEV_IO
	SMC_NAME_MOST_ACT_DEV_NAME
	SMC_NAME_NET_BYTE_IO
	SMC_NAME_NET_BYTES_RCVD
	SMC_NAME_NET_BYTES_SENT
	SMC_NAME_NET_DEFAULT_PKT_SIZE
	SMC_NAME_NET_MAX_PKT_SIZE
	SMC_NAME_NET_PKT_SIZE_RCVD
	SMC_NAME_NET_PKT_SIZE_SENT
	SMC_NAME_NET_PKTS_RCVD
	SMC_NAME_NET_PKTS_SENT
	SMC_NAME_NUM_ENGINES
	SMC_NAME_NUM_PROCESSES
	SMC_NAME_OBJ_ID
	SMC_NAME_OBJ_NAME
	SMC_NAME_OBJ_TYPE
	SMC_NAME_OWNER_NAME
	SMC_NAME_PAGE_HIT_PCT
	SMC_NAME_PAGE_INDEX_LOGICAL_READ
	SMC_NAME_PAGE_INDEX_PHYSICAL_READ
	SMC_NAME_PAGE_IO
	SMC_NAME_PAGE_LOGICAL_READ
	SMC_NAME_PAGE_NUM
	SMC_NAME_PAGE_PHYSICAL_READ
	SMC_NAME_PAGE_WRITE
	SMC_NAME_PROC_STATE
	SMC_NAME_PROC_STATE_CNT
	SMC_NAME_SPID
	SMC_NAME_SQL_SERVER_NAME
	SMC_NAME_SQL_SERVER_VERSION
	SMC_NAME_STP_CPU_TIME
	SMC_NAME_STP_ELAPSED_TIME
	SMC_NAME_STP_EXECUTION_CLASS
	SMC_NAME_STP_HIT_PCT
	SMC_NAME_STP_LINE_NUM
	SMC_NAME_STP_LINE_TEXT
	SMC_NAME_STP_LOGICAL_READ
	SMC_NAME_STP_NUM_TIMES_EXECUTED
	SMC_NAME_STP_PHYSICAL_READ
	SMC_NAME_STP_STMT_NUM
	SMC_NAME_THREAD_EXCEEDED_MAX
	SMC_NAME_THREAD_EXCEEDED_MAX_PCT
	SMC_NAME_THREAD_MAX_USED
	SMC_NAME_TIME_WAITED_ON_LOCK
	SMC_NAME_TIMESTAMP
	SMC_NAME_TIMESTAMP_DATIM
	SMC_NAME_XACT
	SMC_NAME_XACT_DELETE
	SMC_NAME_XACT_DELETE_DEFERRED
	SMC_NAME_XACT_DELETE_DIRECT
	SMC_NAME_XACT_INSERT
	SMC_NAME_XACT_INSERT_CLUSTERED
	SMC_NAME_XACT_INSERT_HEAP
	SMC_NAME_XACT_SELECT
	SMC_NAME_XACT_UPDATE
	SMC_NAME_XACT_UPDATE_DEFERRED
	SMC_NAME_XACT_UPDATE_DIRECT
	SMC_NAME_XACT_UPDATE_EXPENSIVE
	SMC_NAME_XACT_UPDATE_IN_PLACE
	SMC_NAME_XACT_UPDATE_NOT_IN_PLACE

	CHAPTER 3 Monitor Client Library Functions
	Threads
	Error handling
	Error handler
	Callback function
	smc_close
	smc_connect_alloc
	smc_connect_drop
	smc_connect_ex
	smc_connect_props
	smc_create_alarm_ex
	smc_create_filter
	smc_create_playback_session
	smc_create_recording_session
	smc_create_view
	smc_drop_alarm
	smc_drop_filter
	smc_drop_view
	smc_get_command_info
	smc_get_dataitem_type
	smc_get_dataitem_value
	smc_get_row_count
	smc_get_version_string
	smc_initiate_playback
	smc_initiate_recording
	smc_refresh_ex
	smc_terminate_playback
	smc_terminate_recording

	CHAPTER 4 Building a Monitor Client Library Application
	Building on UNIX platforms
	Compiling the application
	Linking the application
	Running the application
	Building the sample applications

	Building on Windows platforms
	Compiling the application
	Linking the application
	Running the application
	Building the sample applications

	CHAPTER 5 Monitor Client Library Configuration Instructions
	Loading Monitor Client Library
	Using Studio Installer

	Results of the load
	Confirming your login account and permissions
	Modifying the interfaces file
	Setting up the user environment
	Setting the SYBASE environment variable
	Overriding the default location of the interfaces file

	Using Monitor Client Library

	APPENDIX A Examples of Views
	Cache performance summary
	Current statement summary
	Database object lock status
	Database object page I/O
	Data cache activity for individual caches
	Data cache statistics for session
	Data cache statistics for sample interval
	Device I/O for session
	Device I/O for sample interval
	Device I/O performance summary
	Engine activity
	Lock performance summary
	Network activity for session
	Network activity for sample interval
	Network performance summary
	Procedure cache statistics for session
	Procedure cache statistics for sample interval
	Procedure page I/O
	Process activity
	Process database object page I/O
	Process detail for locks
	Process detail page I/O
	Process locks
	Process page I/O
	Process state summary
	Process stored procedure page I/O
	Server performance summary
	Stored procedure activity
	Transaction activity

	APPENDIX B Datatypes and Structures
	Summary of datatypes
	Enum: SMC_ALARM_ACTION_TYPE
	Enum: SMC_CLOSE_TYPE
	Enum: SMC_DATAITEM_NAME
	Enum: SMC_DATAITEM_STATTYPE
	Structure: SMC_DATAITEM_STRUCT
	Enum: SMC_DATAITEM_TYPE
	Enum: SMC_ERR_SEVERITY
	Enum: SMC_FILTER_TYPE
	Enum: SMC_HS_ESTIM_OPT
	Enum: SMC_HS_MISSDATA_OPT
	Enum: SMC_HS_PLAYBACK_OPT
	Enum: SMC_HS_SESS_DELETE_OPT
	Enum: SMC_HS_SESS_ERR_OPT
	Enum: SMC_HS_SESS_PROT_LEVEL
	Enum: SMC_HS_SESS_SCRIPT_OPT
	Enum: SMC_HS_TARGET_OPT
	Enum: SMC_HS_TARGET_OPT
	Enum: SMC_INFO_TYPE
	Enum: SMC_LOCK_RESULT
	Enum: SMC_LOCK_RESULT_SUMMARY
	Enum: SMC_LOCK_STATUS
	Enum: SMC_LOCK_TYPE
	Enum: SMC_OBJ_TYPE
	Enum: SMC_PROC_STATE
	Enum: SMC_PROP_ACTION
	Enum: SMC_PROP_TYPE
	Enum: SMC_RETURN_CODE
	Enum: SMC_SERVER_MODE
	Enum: SMC_SOURCE
	Union: SMC_VALUE_UNION

	APPENDIX C Backward Compatibility
	Obsolete and replacement functions
	New functions
	Rules for functions and callbacks compatibility

	APPENDIX D Troubleshooting Information and Error Messages
	Troubleshooting
	Error messages
	Communication failure: check if server is running.
	Configuration failure: possibly missing interfaces file or bad login parameters.
	Don’t know how to build example.h
	error L2029: ‘SMC_CONNECT’ : unresolved external
	error L2029: ‘SMC_CREATE_VIEW’ : unresolved external
	fatal error C1083: Cannot open include file: ‘cstypes.h’: No such file or directory
	fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such file or directory
	LINK: fatal error L4051: smcapi32.lib : cannot find library

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

